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Resumen

El problema de asignación de personal aparece en diversas industrias. La asignación
eficiente de personal a trabajos, proyectos, herramientas, horarios, entre otros, tiene
un impacto directo en términos monetarios para el negocio.

El problema de asignación multidimensional (PAM) es la extensión natural del
problema de asignación y puede ser utilizado en aplicaciones donde se requiere la
asignación de personal. El caso más estudiado de PAM es el problema de asig-
nación en tres dimensiones, sin embargo en años recientes han sido propuestas algu-
nas heuŕısticas de búsqueda local y algoritmos meméticos para el caso general. Sean
X1, . . . , Xs una colección de s ≥ 3 conjuntos disjuntos, considere todas las combina-
ciones que pertenecen al producto Cartesiano X = X1× · · · ×Xs tal que cada vector
x ∈ X, donde x = (x1, . . . , xs) con xi ∈ Xi ∀ 1 ≤ i ≤ s, tiene asociado un peso
w(x). Un MAP en s dimensiones se denota como PAs. Una asignación factible es
una colección A = (x1, . . . , xn) de n vectores si xik 6= xjk para cada i 6= j y 1 ≤ k ≤ s.
El peso total de una asignación A está dado por w(A) =

∑n
i=1w(xi). El objetivo de

PAs consiste en encontrar una asignación de peso mı́nimo.

En este trabajo de tesis se realiza un estudio profundo de PAM comenzando con
un resumen del estado del arte de algoritmos, heuŕısticas y metaheuŕısticas para su
resolución. Se describen algunos algoritmos y se propone uno nuevo que resuelve
instancias de tamaño medio para PAM. Se propone la generalización de las conocidas
heuŕısticas de variación de dimensión aśı como una búsqueda local generalizada que
proporciona un nuevo estado del arte de búsquedas locales para PAM. Adicional-
mente, se propone un algoritmo memético con una estructura sencilla pero efectiva y
que es competitivo con el mejor algoritmo memético conocido para PAM.

Finalmente, se presenta un caso particular de problema de asignación de personal:
el Problema de Asignación de Horarios (PAH). El PAH considera la asignación de
personal a uno, dos o más conjuntos de objetos, por ejemplo puede ser requerida la
asignación de profesores a cursos a periodos de tiempo a salones, para determinados
grupos de estudiantes. Primero, se presenta el PAH aśı como una breve descripción
de su estado del arte. Luego, se propone una nueva forma de modelar este pro-
blema a través de la resolución de PAM y se aplica sobre el PAH en la Universidad
Autónoma Metropolitana unidad Azcapotzalco (UAM-A). Se describen las considera-
ciones particulares del PAH en la UAM-A y proponemos una nueva solución para éste.
Nuestra solución se basa en la resolución de múltiples PA3 a través de los algoritmos
y heuŕısticas propuestos.

Palabras clave: Problema de asignación de personal, problema de asignación multidi-
mensional, problema de asignación de horarios, búsqueda local, heuŕıstica de variación
de dimensión, algoritmo memético.
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Abstract

Personnel assignment problems appear in several industries. The efficient assignment
of personnel to jobs, projects, tools, time slots, etcetera, has a direct impact in terms
monetary for the business.

The Multidimensional Assignment Problem (MAP) is a natural extension of the
well-known assignment problem and can be used on applications where the assignment
of personnel is required. The most studied case of the MAP is the three dimensional
assignment problem, though in recent years some local search heuristics and memetic
algorithms have been proposed for the general case. Let X1, . . . , Xs be a collection
of s ≥ 3 disjoint sets, consider all combinations that belong to the Cartesian product
X = X1× · · · ×Xs such that each vector x ∈ X, where x = (x1, . . . , xs) with xi ∈ Xi

∀ 1 ≤ i ≤ s, has associated a weight w(x). A feasible assignment is a collection
A = (x1, . . . , xn) of n vectors if xik 6= xjk for each i 6= j and 1 ≤ k ≤ s. The weight of
an assignment A is given by w(A) =

∑n
i=1w(xi). A MAP in s dimensions is denoted

as sAP. The objective of sAP is to find an assignment of minimal weight.

In this thesis we make an in depth study of MAP beginning with the state-of-
the-art algorithms, heuristics, and metaheuristics for solving it. We describe some
algorithms and we propose a new one for solving optimally medium size instances of
MAP. We propose the generalization of the called dimensionwise variation heuristics
for MAP and a new generalized local search heuristic that provides new state-of-the-
art local searches for MAP. We also propose a new simple memetic algorithm that is
competitive against the state-of-the-art memetic algorithm for MAP.

In the last part of this thesis, we study a particular case of personnel assignment
problem: the School Timetabling Problem (STP). The STP considers the assignment
of personnel to other two or more sets, for example the assignment of professors to
courses to time slots to rooms can be required. First, we provide a brief description
of the state-of-the-art for STP. Then, we introduce a new approach for modeling
this problem through the resolution of several MAP and we apply our solution on
a real life case of study: STP at the Universidad Autonoma Metropolitana campus
Azcapotzalco (UAM-A). We provide the particular aspects for STP at UAM-A and
we provide a new solution for this problem. Our approach is based on solving several
3AP considering the introduced model and our proposed techniques.

Key words: Personnel assignment problem, multidimensional assignment problem,
school timetabling problem, local search, dimensionwise variation, memetic algorithm.
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Chapter 1

Introduction

The fast growth of some companies results in the loss of visibility of most of their
employees around its different departments. Personnel assignment is a difficult task
and, in some cases, it is easier to hire a new person instead of using an existing
resource. The efficient assignment of human resources is of great importance because
it has a huge monetary impact.

Some examples where the assignment of personnel is relevant are: crew assignment
in the navy; pilots and flight attendants to flights; nurses, surgeons and medical
assistants to surgeries; professors, schedules, and rooms to courses; software engineers
to technological projects; among many others.

The assignment of personnel can be modeled as an assignment problem. An
assignment problem deals with the question of how to assign persons to jobs where
each person is rated for a job through considering some aspects, for example: his
skills for performing a job, his availability, his experience, etc.

Even when the assignment of personnel is a very common problem it is usually
solved by hand. In general, the personnel is assigned to projects by their managers
whom not always have the visibility of all the people working at the company. On
the cases where the managers have the visibility of all their personnel, another pro-
blem consists in determining a rating for the relation person-job, which is even a
more difficult task. Once the values for the relations are somehow calculated, the
corresponding problem can be solved as an assignment problem.

However, there are some problems in which an assignment is required between per-
sons and other two or more sets of objects, for example as in the school timetabling
problem. In the school timetabling problem an assignment is required between pro-
fessors, courses, rooms and time slots. This is an example of a multidimensional
assignment problem which is a generalization of the classical assignment problem.

The assignment problem has been widely studied and several algorithms have
been proposed for its resolution. The most popular algorithm was proposed by
[Kuhn, 1955] and it is known as the Hungarian method which is a polynomial time al-
gorithm. Faster algorithms are currently known [Ahuja et al., 1994], [Bertsekas, 2009],

13



14 Chapter 1

[Goldberg and Kennedy, 1997], [Ramshaw and Tarjan, 2012a].

The multidimensional assignment problem has been studied mainly in the case
with three dimensions. Only in the last ten years a few heuristics have been proposed
for the case with an arbitrary number of dimensions. The most popular algorithm
was proposed by [Balas and Saltzman, 1991] for the case with 3 dimensions and is
a branch and bound based technique which is an exponential time algorithm. It
is known that, unless P = NP, there is no polynomial time algorithm to solve this
problem: in 1972 Karp proved that 3 dimensional matchings is a NP-hard problem.

The multidimensional assignment problem is not only related to problems where
the assignment of personnel is required, it has many other applications, e.g. for
the multisensor data association problem where the objective is to determine which
measurements from one or more sensors are related to the same object; for the pro-
blem of selecting roots of a system of polynomial equations; for the geometric three-
dimensional assignment problem; among many others.

We consider the school timetabling problem as a case of study of assignment of
personnel because it has been approached by many authors, although most of them
do not deal with the multidimensional assignment problem involved, they solve a
simplified version. On the other hand, it is easy to get real data for this problem.

We claim that the same methodology developed for our case of study could be
applied to other cases of assignment of personnel.

1.1 Motivation

The assignment problem is arguably one of the most important problems in operations
research, and the multidimensional assignment problem arises naturally in industry.
However, there is no general purpose software that helps to deal with the problem of
how to assign persons to jobs or resources where more than two sets are involved in
the assignment.

Recently some heuristics and a memetic algorithm were published for the multi-
dimensional assignment problem for the cases with an arbitrary number of dimen-
sions ([Karapetyan and Gutin, 2011a] and [Karapetyan and Gutin, 2011b]). One of
the main goals of this thesis is to develop better heuristics to solve larger problem
size instances.

Another motivation for this thesis was to solve a problem that involved the as-
signment of personnel, the school timetabling problem is a good option because it is
still a very difficult problem to solve.

We promote the development of a generic tool to solve instances of the school
timetabling problem by considering some basic restrictions. Similar tools could also
be used to solve other assignment problems where two or more sets are involved in
the assignment.
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1.2 Problem description

The school timetabling problem is taken as a case of study for the assignment of
personnel.

The school timetabling problem could be modeled as a multidimensional assign-
ment problem. It is stated as follows: let p be a set of n professors and let c be a
set of n courses and let r be a set of n rooms and let t be a set of n time slots. A
weight for the relation professor-course-room-time slot is somehow calculated. An
assignment is a combination of the permutations of the elements from each set such
that the elements from each set are present in only one relation and all the elements
are present among all the relations.

The timetabling school problem can be formulated as a multidimensional assign-
ment problem. In this case it is required an assignment of n professors to n curses to
n rooms to n time slots.

The easiest way of assigning the costs of the relations in the timetabling school
problem is to set a 0 value in the case of valid relations, that is, if a professor p is
able to teach the course d in the room r at the time slot t, otherwise it should be 1.
This will give us the maximum number of possible assignments.

Several options for the selection of the costs could be explored, the main dis-
advantage is that different ways of setting the costs may give a very different set
of solutions. The only way to evaluate the results of this part is to compare them
against the previous history and compare them to hand generated solutions.

The timetabling problem may vary widely from one educational institution to
another. This thesis is focused on the generality of this problem more than in specific
restrictions from particular scenarios.

1.3 Methodology

This thesis was developed by going through several stages. We started with the study
of the state of the art of the assignment problem and, mainly, of the multidimensional
assignment problem, then we proposed some new heuristics for the multidimensional
assignment problem and, finally, we took a real instance of the school timetabling
problem in order to test our heuristics.

In this way, the methodology adopted was as follows:

• The study and comparison of algorithms for the assignment problem.

• The study of algorithms and heuristics for the multidimensional assignment
problem. We are focused on the techniques that were proven to be the best
ones (in terms of quality solution and complexity).

• Development of some algorithms for the multidimensional assignment problem.
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16 Chapter 1

• Development of several local search heuristics for the multidimensional assign-
ment problem and their experimental evaluation.

• Development of a memetic algorithm for the multidimensional assignment pro-
blem and its experimental evaluation.

• The study of the school timetabling problem as a particular case of personnel
assignment problems.

• The procurement of a real application of the school timetabling problem.

• Modeling and solving this real timetabling problem through the resolution of
several multidimensional assignment problems.

• Analysis of results, conclusions and proposal of future work.

1.4 Thesis structure

This document is structured as follows: In Chapter 2 we state the assignment problem
and we compare some of the best algorithms to solve this problem. In Chapter 3 we
stated the multidimensional assignment problem and we propose several algorithms,
heuristics and a memetic algorithm for solving it, then we compare such procedures
against state of the art heuristics and meta-heuristics. In Chapter 4 we study the
school timetabling problem as a case study for personnel assignment problems and we
propose a new solution based on the resolution of several 3AP for a real application.
In Chapter 5 we give the conclusions and we propose some future work.
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The assignment problem

The assignment problem (AP) is introduced before the multidimensional assignment
problem (MAP) because it is easier to start with the problem in its two dimensional
version and then extended it to higher dimensions. On the other hand, it is necessary
because some of the presented heuristics consider a simplification of a multidimen-
sional assignment problem to an assignment problem as part of its machinery.

The assignment problem deals with the question of how to assign a set X of n
items to a set Y of n items such that X ∩ Y = ∅. An assignment is a bijection
ϕ of n items between X and Y . By considering such sets, the representation of an
assignment is given by a permutation ϕ such that:

(
1 2 . . . n− 1 n

ϕ(1) ϕ(2) . . . ϕ(n− 1) ϕ(n)

)

where 1 is mapped to ϕ(1), . . . , and n is mapped to ϕ(n). For example, let X =
{x1, x2, x3, x4}, Y = {y1, y2, y3, y4} and the permutation ϕ = {3, 1, 4, 2}, then a po-
ssible assignment is:

(
1 2 3 4
3 1 4 2

)
⇔
(
x1 x2 x3 x4
y3 y1 y4 y2

)

Each permutation ϕ of the set with n items has a unique correspondence with the
permutation matrix Pϕ = (pij) of size n× n where:

pij =

{
1 if j = ϕ(i)
0 otherwise.

Furthermore, a permutation matrix satisfies the system of linear equations:

17
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n∑
j=1

pij = 1 for i with 1 ≤ i ≤ n

n∑
i=1

pij = 1 for j with 1 ≤ j ≤ n

(2.1)

where pij ∈ {0, 1} for all i, j with 1 ≤ i, j ≤ n.

In the case of the previous example where X = {x1, x2, x3, x4}, Y = {y1, y2, y3, y4}
and ϕ = {3, 1, 4, 2}, the matrix corresponding to the system of linear equations is:

0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0


An assignment can also be described through bipartite graphs. Let G = (X, Y ;E)

be a bipartite graph with disjoint vertex sets X and Y and with edges E ⊆ X × Y .
A matching M in G is a subset of edges of E such that every vertex of G meets
exactly one edge of the matching. In this way an assignment could be represented as
a matching M of G. The representation for the last example of an assignment as a
matching in a bipartite graph is shown in the Figure 2.1.

x1

x2

x3

x4

y1

y2

y3

y4

X Y

Figure 2.1: Representation of an assignment as a matching in a bipartite graph.

The assignment problem becomes an optimization problem when we consider the
cost of assigning some x ∈ X to some y ∈ Y . Let C = (cij) be a matrix of size n×n,
where cij is the cost of assigning xi to yj for all i, j with 1 ≤ i, j,≤ n.

Given the assignment problem as a permutation ϕ an let Sn be the set of all the
permutations with n elements, the objective is defined as:

min
ϕ∈Sn

n∑
i=1

ciϕ(i) (2.2)
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Similarly, if the permutation matrix is associated with the cost matrix C then the
corresponding 0-1 integer linear programming formulation is:

min
n∑
i=1

n∑
j=1

cijpij

subject to :
n∑
j=1

pij = 1 for i with 1 ≤ i ≤ n

n∑
i=1

pij = 1 for j with 1 ≤ j ≤ n

(2.3)

where pij ∈ {0, 1} for all i, j with 1 ≤ i, j ≤ n.

For the case of an assignment formulated as a matching in a bipartite graph,
consider weighted edges E, then the cost of a matching is:

c(M) =
∑

(x,y)∈M

c(x, y) (2.4)

where the objective is to minimize c(M).

There are some variants of the problem for the cases when the sizes of the sets
are different, or not all the relations are present. Such variants are described by
considering an assignment as a matching in a bipartite graph.

Let G = (X∪Y ;E) be a bipartite graph that admits either |X| = |Y | or |X| 6= |Y |,
a bipartite graph is said to be balanced when |X| = |Y |, otherwise, the bipartite graph
is said to be unbalanced. Moreover, it could be that M in G does not include all
the vertices of G even when |X| = |Y |. A perfect matching is a matching in which
|M | = |X| = |Y |. In 1935, Hall provided the necessary and sufficient conditions for
the existence of a perfect assignment [Hall, 1935].

Let ν(G) be the maximum size of any matching in G an let τ be a target value,
we require a matching M in G whose cost is minimum compared to all the possible
matchings of size τ . According to [Ramshaw and Tarjan, 2012b], three variants of an
assignment problem can be stated:

Perfect assignments: Let G be a balanced bipartite graph with weighted edges.
If ν(G) = n, then calculate the perfect matching of minimum cost in G; otherwise
the assignment is not feasible.

Imperfect assignments: Let G be a bipartite graph, either balanced or unba-
lanced, with weighted edges and let t ≥ 1 be a target size. Calculate the matching of
minimum cost in G of size τ = min(t, ν(G)).
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Incremental assignments: Let G be a bipartite graph, either balanced or un-
balanced, with weighted edges. Calculate the minimum cost matchings in G of sizes
1, 2, . . . , ν(G) presenting the result for each size. The size τ is selected from the closed
interval [1, ν(G)], the process ends when the desired value of τ is reached.

Perfect assignments are easier than the other two variants and the most difficult
are the incremental assignments. The most studied case has been the perfect assign-
ment problem given that imperfect assignments can be reduced to perfect assignment
as is described in [Vargas, 2011]. For the problem of incremental assignments the
best algorithms known are just variants of the Hungarian method.

2.1 State of the art

The first algorithm for the assignment problem was proposed by [Easterfield, 1946]
and its complexity was O(2nn2), however the problem was described in terms of a
combinatorial problem rather than as an assignment problem.

The assignment problem was formally described in a paper entitled “The personnel
assignment problem” [Votaw and Orden, 1953].

The Hungarian method was proposed by [Kuhn, 1955]. One year later Kuhn
proposed more variants of the assignment problem [Kuhn, 1956]. The name of “Hun-
garian method” was because the algorithm was largely based on the earlier work of
two Hungarian mathematicians: König and Egervary. The Hungarian method was
reviewed in [Munkres, 1957], where it was determined that its complexity was O(n4).
The Hungarian method is also known as the Kuhn-Munkres algorithm.

Since then, a lot of algorithms have been proposed for the assignment problem. In
general, there are some general methodologies to solve it, here we describe the most
relevant among them.

2.1.1 Auction algorithms

Auction algorithms for the assignment problem were introduced by [Bertsekas, 1981]
early in the eighties. This type of algorithms has been used extensively in business
environments to determine the best prices on a set of offered products to multiple
buyers.

An auction algorithm is an iterative procedure where we compare a set of offers
and then a sale is performed to the best bidder, the goal of the algorithm is to select
optimal prices and an assignment that maximizes the benefit. The classical methods
for the assignment problem are based on iterative improvements of some cost function,
which may be a primal cost (similar to primal simplex methods) or a dual cost (as
in the Hungarian method), but auction algorithms perform local updates which may
deteriorate both the primal and dual cost, although in the end it finds an optimal
assignment, which is due to the principle of approximate optimality. This is explained
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in detail [Bertsekas, 2009].

The auction algorithms are excellent at solving perfect assignments. Even when
some auction algorithms cannot deal directly with problems in unbalanced graphs,
there are some techniques that allow us to transform an assignment problem over
an unbalanced graph to an equivalent problem in a balanced graph by adding some
dummy vertices and edges so that this type of algorithm is able to solve the co-
rresponding problem. The complexity of faster auction algorithms is approximately
O(nm log(nC)) where n is the number of vertices, m is the number of edges and C
is the maximum weight among all the edges.

One of the main advantages of auction algorithms for the assignment problem is
that they are highly parallelizable, as shown in [Bertsekas, 1988] and, for the match-
ing problem, as shown in [Naparstek and Leshem, 2016]. This is due to the fact
that auction algorithms perform local improvements which can occur at the same
time. The complexity of parallel auction algorithms for a problem with n vertices is
approximately O(n2 log n) if implemented on n parallel machines.

There are several works that deal with different variants of the assignment problem
and its applications, e. g. for the classical linear network flow problem and some of
its special cases as max-flow and shortest path [Bertsekas, 1992], for the asymmetric
assignment problem [Bertsekas and Castanon, 1993], for multi-assignment problems
where persons ban be assigned to several objects and conversely [Bertsekas et al., 1993].

2.1.2 Weight scaling algorithms

Weight scaling algorithms were introduced by [Gabow and Tarjan, 1989] later in the
eighties. This is one of the most common techniques to solve the assignment problem.

A weight scaling algorithm creates a flow network based on the bipartite graph
of the corresponding assignment problem. By using a parameter called ε, it performs
some scaling phases aimed to reduce the flow error obtained at each of the previous
scaling phases. Each scaled phase gives an approximate optimal solution. The mini-
mum cost is obtained at the last scaling phase. Complexity of the first weight scaling
algorithm was O(

√
nm log nC) where n is the number of vertices, m is the number of

edges and C is the maximum weight among all the edges.

In contrast with auction algorithms, this type of technique is not so good at
solving perfect assignments but it is able to solve imperfect assignments. Another
difference is that, whereas auction algorithms perform local improvements, weight
scaling algorithms perform global updates. Weight scaling algorithms could also
be parallelizable as is shown in [Gabow and Tarjan, 1989], which allows to obtain
a complexity of O(n2 log n) using n processors. Even when auction algorithms and
weight scaling algorithms present some differences, [Orlin and Ahuja, 1992] was able
to combine both ideas for creating a hybrid version to solve assignment problems.

This type of technique could also be used to solve other type of problems, e. g.
for the shortest path problem [Goldberg, 1995] and for network problems that work
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by scaling the numeric parameters [Gabow, 1985].

Weight scaling algorithms were later improved by [Ramshaw and Tarjan, 2012a],
achieving a complexity of O(m

√
s log sC) and by [Duan and Su, 2012] reducing the

complexity to O(m
√
n log n).

2.1.3 Push relabel algorithms

Push-relabel algorithms for the assignment problem were introduced in the middle
nineties by [Goldberg and Kennedy, 1995].

A push-relabel algorithm, also known as preflow-push algorithm, is an algorithm
for computing maximum flows. This type of technique consists in converting a preflow
into a maximum flow by moving flow between neighboring nodes using push opera-
tions under the guidance of relabel operations. A push relabel algorithm is able to
solve an assignment problem by converting the bipartite graphs into a flow network.

This type of technique can be combined with a weight scaling technique in order to
obtain better bounds for the assignment problem as in [Goldberg and Kennedy, 1997]
where they achieve a reduction to O(m

√
n log (nC)).

2.2 Selection of an efficient algorithm

Some of the heuristics that will be described in the next chapter require the use
of a solver for instances of the assignment problem. The type of instances that
will be solved correspond to the variant of perfect assignments. In order to choose
a fast algorithm for this purpose three implementations of recent algorithms were
experimentally evaluated.

2.2.1 The Hungarian method

The implemented Hungarian method consists on an improvement of its original ver-
sion and it was proposed by [Ramshaw and Tarjan, 2012a].

As the classical Hungarian method, this version works on the bipartite graph of
the assignment problem. Algorithm 1 shows the general structure of the Hungarian
method.

Let G = (X∪Y ;E) be the bipartite graph of the assignment problem with vertices
in X ∪ Y and weights in E, the Hungarian method works as follows: the algorithm
starts with an empty matching, then builds up its matching by augmenting along
tight augmenting paths. By using a variant of Dijkstra’s algorithm a shortest path
forest is build aimed to reach all the remaining x 6∈ A, if some y is reachable from
some x through an alternating path then a new augmenting path of minimum cost
is obtained. At each step of the algorithm a matching of size s and minimum cost
is obtained. The algorithm ends when the maximum size ν(G) of any matching at
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Algorithm 1: Improved version of the Hungarian method (by Ramshaw and
Tarjan)

Input: G = (X ∪ Y ;E): Bipartite graph of an assignment problem.
Result: A: The min-cost assignment of size s.

1 Set A to the empty matching;
2 Set prices at X to 0, at Y to C;
3 Let ν(G) be the max size of any matching at G. for s in 0 : ν(G) do
4 use Dijkstra to build a shortest path forest with roots at all x 6∈ A;
5 if some y 6∈ A was reached then
6 Raise prices to tighten the tree path to y;
7 Augment A along that tight path;

8 else
9 return A of size ν(G);

G is reached. This algorithm has an overall complexity of O(ms+ s2 log r) where m
is the number of edges, s = ν(G) and r = |Y |. This algorithm is explained in detail
in[Ramshaw and Tarjan, 2012a].

The Hungarian method solves the problem of incremental assignments which is
more difficult than perfect assignments, however it is the obligated reference in order
to have a clear idea about how good other algorithms are, in comparison to this
technique.

2.2.2 The FlowAssign algorithm

In order to evaluate a weight scaling technique the FlowAssign algorithm proposed
by [Ramshaw and Tarjan, 2012b] was implemented.

In contrast with the Hungarian algorithm, this technique works on a derived flow
network from the original bipartite graph. Algorithm 2 shows the general structure
of the FlowAssign algorithm.

Let G = (X ∪ Y ;E) be the bipartite graph of the assignment problem with
vertices in X ∪ Y and weights in E, let t be a target value of the desired size of the
assignment such that t ≤ min(|X|, |Y |) and let NG be a derived flow network from
G, the FlowAssign algorithm works as follows: first, the Hopcroft-Karp algorithm is
applied in order to obtain a matching M of size s such that s = t if assignment of
size t exists or s = ν(G) < t, otherwise. Then, the matching M is converted into an
integral flow f on NG, this transforms the problem of finding minimum cost matchings
in G to the equivalent problem of finding minimum cost integral flows in NG. A set
of scalings is performed by starting from some predefined ε value that denotes the
precision of the solution reached at each scaling-phase. The Refine function builds a
shortest-path forest, finds a maximal set P of augmenting paths that are compatible
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Algorithm 2: FlowAssign algorithm (by Ramshaw and Tarjan)

Input: G = (X ∪ Y ;E): Bipartite graph of an assignment problem;
t: The required size of the assignment.
Result: A: The min-cost assignment of size s;
s: The maximum size reached of an assignment such that s ≤ t.

1 Set (M, s) = HopcroftKarp(G, t);
2 Convert M into an integral flow f on NG with |f | = s;
3 Set ε = ε̄;
4 ∀v ∈ NG set the prices pd(v) = 0;
5 while ε > ε do
6 ε = ε/q;
7 Refine(f , p, ε) builds a shortest path forest, finds a maximal set of

augmenting paths and augments along them;

8 Round prices to integers that make all arcs proper;

and augment along them. It starts by considering prices for the vertices that are ε̄
optimum and it is improving the current solution at each iteration. Once a required
precision ε is reached, the main loop ends and the last step round prices to integers
that make all arcs proper and gives the required solution. This algorithm has an
overall complexity of O(m

√
s log (sC)) where m is the number of edges, s is the size

of the assignment A and C is the maximum weight in the bipartite graph. This
algorithm is explained in detail in [Ramshaw and Tarjan, 2012a].

The FlowAssign algorithm solves the problem of imperfect assignments which is
more difficult than perfect assignments but easier than incremental assignments, this
is why its complexity is better than the one for the Hungarian method.

2.2.3 The ε−scaling Auction algorithm

In order to evaluate a faster algorithm, we consider the ε−scaling Auction algorithm
proposed by [Bertsekas, 2009]. In particular, an specific implementation provided by
[Vargas, 2017] was evaluated.

This technique differs from the previous ones because it performs local improve-
ments in order to reach a global optimum whereas the other ones perform global
updates for the same goal. The ε−scaling Auction algorithm operates like a real auc-
tion. The core of this algorithm is that, at each step a condition called complementary
slackness should be kept. The complementary slackness states that it is possible to
obtain an optimal solution to the dual when only an optimal solution to the primal
is known. It provides the conditions for the feasible primal and dual solutions of an
assignment problem to be optimal. This algorithm only works on feasible instances
of the problem of the perfect assignment problems category. The Algorithm 3 shows
the general structure of this algorithm.
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Algorithm 3: The ε−scaling Auction algorithm (by Bertsekas)

Input: G = (X ∪ Y ;E): Bipartite graph of an assignment problem;
ε > 0: The precision parameter to satisfy the Complementary Slackness
condition.
Result: A: The min-cost assignment of size n.

1 Set A = ∅;
2 Let p the prices that will satisfy the ε− Complementary Slackness condition

(such that w(x1y1)− p(y1) ≤ miny2∈N(x1) {w(x1y2)− p(y2)}+ ε);
3 while is some x 6∈ A do
4 Consider some x1 6∈ A;
5 Find the edges x1y1, x1y2 with the two minimum costs;
6 if If u has only 1 neighbor then
7 Set γ =∞;

8 else
9 Set γ = (w(x1y1)− p(y2))− (w(x1y2)− p(y1));

10 Set p(y1) = p(y1)− γ − ε;
11 return A

Let G = (X∪Y ;E) be the bipartite graph of the assignment problem with vertices
in X ∪ Y and weights in E and let ε be a required parameter, the ε−scaling Auction
algorithm works as follows: first, a matching A is set up to the empty set and any
arbitrary initial prices p are considered. At each step of the main loop an unassigned
vertex of the set X is considered as well as its two neighbors with the two minimum
costs. Then, depending on the number of neighbors of the selected vertex its price is
updated. If the procedure is applied to an instance that has perfect matchings then the
procedure always terminates with an optimal assignment, otherwise, the main loop
will never end. This algorithm has an overall complexity of O(mn log (nC)) where
m is the number of edges, n is the number of vertices (recall here n = |X| = |Y |)
and C is the maximum weight in the bipartite graph. This algorithm is explained in
detailed in [Vargas, 2017].

2.3 Families of instances for the AP

One way to distinguish families of instances for the assignment problem is by the
number of vertices in X and Y. In this way, there are two general types of families of
instances: the family of instances with an equal number of vertices (|X| = |Y |) and
the family of instances with a different number of vertices |X| 6= |Y |, abbreviated
ENV and DNV respectively. We are interested on the family of instances ENV.

A way to generate a test bed for the family of instances ENV is to consider a
complete bipartite graph with uniformly random generated weights in the closed in-
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terval [a, b]. To consider a complete bipartite graph is not the only option however,
for the purposes of this thesis, the complete bipartite graph is the only type of ins-
tances we are going to analyze. On the other hand, all the instances that consider
non-complete bipartite graphs can be transformed into instances with complete bi-
partite graphs where the missing edges can be added with a very high value (or very
low depending on the optimization function) such that those edges can be discarded
from the optimal solution. This is why, in order to provide a comparison between
each solver several distributions will be considered.

The next subsections describe the types of distributions used to set the weights
of the edges among some instances of the type ENV that consider complete bipartite
graphs. Some distributions are continuous and are described by a probability density
function which is used to specify the probability of the random variable for falling
within a range of values. The other distributions are discrete and are described by a
probability mass function which gives the probability for a discrete random variable
to be an exact value.

2.3.1 Uniform distribution

The uniform distribution is a family of symmetric distributions such that each member
of the family occurs with the same probability. This distribution is described by the
next probability density function:

f(x) =

{
1
b−a for a ≤ x ≤ b

0 for x < a or x > b
(2.5)

This family of instances will be generated by considering x under the closed integer
interval [1, 100].

2.3.2 Normal distribution

The normal distribution is a family of continuous distributions such that each member
x is associated to the normal random variable with a cumulative probability. This
distribution is described by the following function:

f(x) = [1/σ
√

2π]e−(x−µ)
2/2σ2

. (2.6)

This family of instances have the particularity that the sum of the members ge-
nerated have a bell distribution.

This family of instances will be generated by considering the parameters µ = 50
and σ = 10 such that the generated values tend to 50 and the general values belong to
an interval near to [1, 100]. Since this is a continuous distribution the generated values
will be truncated in order to get only the corresponding integer values. Anyway, we
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The assignment problem 27

will use a normality testing to experimentally show that truncating values to integers
has no affectation over the distribution curve.

2.3.3 Poisson distribution

The Poisson distribution is a discrete probability distribution that models the pro-
bability of the number of events occurring in a given interval of time or space. The
events occur within a known average rate and independently of the time since the
last event. This distribution is described by the following probability density:

Pr(k events in the interval) = e−λ
λk

k!
(2.7)

This family of instances will be generated by setting λ = 50 such that the genera-
ted values tend to something similar like in the normal distribution. A formulation
proposed by [Ahrens and Dieter, 1982] will be used for this distribution. They pro-
vided samples from Poisson distributions of mean µ ≥ 10 by truncating suitable
normal deviates and applying a correction with low probability. The advantage of
such technique is that it provides a competitive method for generation of values.

2.3.4 Binomial distribution

The binomial distribution is a discrete probability distribution that considers the pro-
bability of the number success events in a sequence of n independent experiments with
a success probability of p. This distribution is described by the following probability
density:

Pr(x = k) =

(
n

k

)
pk(1− p)n−k for k = 0, 1, . . . n. (2.8)

This family of instances will be generated by setting the parameters n = 100 and
p = 0.25 such that the generated values tend to 25, within the closed interval of
[0, 100].

2.3.5 Hypergeometric distribution

The hypergeometric distribution is a discrete probability distribution that describes
the probability of k successes in n draws, without replacement, from a population
of size N which contains exactly K successes. This distribution is described by the
following probability mass function:

Pr(x = k) =

(
K
k

)(
N−K
n−k

)(
N
n

) . (2.9)
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This family of instances will be generated by considering the parameters N = 200,
K = 50, n = 50 such that the generated values are within the closed interval of
[0, 50] and the behavior of data has the desired curve. A formulation proposed by
[Kachitvichyanukul and Schmeiser, 1985] will be used for this distribution.

2.4 Performance results

All the instances were generated in the programming language R version 3.1.3 be-
cause it provides an easy way for number generating under the previously described
distributions.

We applied Jarque-Bera test ([Jarque and Bera, 1987]) to verify that, for the cho-
sen parameters, our generated sample data do not have the skewness and kurtosis
matching a normal distribution. Algorithm 4 shows the created function to apply
Jarque-Bera test over a generated sample data. The probability value pvalue is the
probability, for a given statistical model, of accepting or rejecting null hypothesis at
that significance level. In [Jarque and Bera, 1987] is recommended a pvalue = 0.1
however we decided to use pvalue = 0.05 which allows to have a higher significance
level for the sizes of the generated sample data. The input sampleData is then
evaluated under Jarque-Bera test; it rejects the null hypothesis (returns 0) when
pvalue < 0.05, which means that sampleData do not have the skewness and kurtosis
matching a normal and it accepts the null hypothesis (returns 1) otherwise.

Algorithm 4: Jarque-Bera test for the composite hypothesis of normality

Input: NameDistribution: name of the distribution to verify
sampleData: a numeric vector of data values
Result: 1 if the behaviour is the expected or 0 otherwise

1 Set pvalue := 0.1;
// The maximum value at which the hypothesis is rejected

2 Set test := jb.norm.test(sampleData, nrepl = 100);
3 if test$p.value ≥ pvalue then
4 return 1// The sample data is approximated by a normal

distribution

5 return 0// The sample data is not approximated by a normal

distribution

Algorithm 5 shows the code used to generate the five families of instances for the
AP as well as the applied test. Each instance file is generated with a header value
n that indicates the number of vertices on the bipartite graph (with n = |X| = |Y |
); then following are n2 integer values corresponding with the n2 edge costs given
in the order w(x1, y1), . . . , w(x1, yn), w(x2, y1), . . . , w(x2, y1), . . . , w(xn, y1), . . . ,
w(xn, yn). This format is commonly used to store complete bipartite graphs. Five
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instances for each combination of distribution and N were generated for a total of 125
instances. The 25 instances for each distribution were tested under Jarque-Bera test.
The variable test ok shows the number of instances that accepted the null hypothesis
for each distribution.

Algorithm 5: Instance generator for a variety of families of instances for the
AP

Input:
Result: A total of (number of instances * length(n sampleData) * 5)

instances for the AP under the distributions uniform, normal,
Poisson, binomial, and hypergeometric.

1 set.seed(0);
2 Set n sampleData := c(64, 128, 256, 512, 1024);
3 Set number of instances := 5;
4 Set test ok := c(0, 0, 0, 0, 0);
5 for iteration in 1:number of instances do
6 for n in n sampleData do
7 Set edges := n * n;
8 Set sampleData := round(runif(edges, min = 1, max = 100));
9 Set test ok[1]:= test ok[1] + testNormal(“Uniform”, sampleData);

10 write(c(n, sampleData), file = sprintf(“ap unif n%d k%d.in”, n,
iteration), ncolumns = 1);

11 Set sampleData := abs(round(rnorm(edges, 50, 10)));
12 Set test ok[2]:= test ok[2] + testNormal(“Normal”, sampleData);
13 write(c(n, sampleData), file = sprintf(“ap norm n%d k%d.in”, n,

iteration), ncolumns = 1);
14 Set sampleData := rpois(edges, 50);
15 Set test ok[3]:= test ok[3] + testNormal(“Poisson”, sampleData);
16 write(c(n, sampleData), file = sprintf(“ap pois n%d k%d.in”, n,

iteration), ncolumns = 1);
17 Set sampleData := rbinom(edges, 100, 0.25);
18 Set test ok[4]:= test ok[4] + testNormal(“Binom”, sampleData);
19 write(c(n, sampleData), file = sprintf(“ap binom n%d k%d.in”, n,

iteration), ncolumns = 1);
20 Set sampleData := rhyper(edges, 50, 150, 50);
21 Set test ok[5]:= test ok[5] + testNormal(“Hyper”, sampleData);
22 write(c(n, sampleData), file = sprintf(“ap hyper n%d k%d.in”, n,

iteration), ncolumns = 1);

23 print(test ok)

Table 2.1 shows the results of applying Jarque-Bera test for normality to the
generated instances. The number of instances that accepted the null hypothesis was
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25 in the case of the instances generated under Normal distribution and very near
to 0 for the rest of the cases. Hence, for the given parameters for each distribution
the obtained sample data do not have the skewness and kurtosis matching a normal
distribution except in the case of normal distribution as is expected.

Table 2.1: Number of successes under Jarque-Bera test for normality.

Distribution Number of successes Ratio

Binomial 2 8%
Hypergeometric 1 4%
Normal 25 100%
Poisson 0 0%
Uniform 0 0%

The format name for the instance files is ap distribution nN kiteration.in where
distribution corresponds with one of unif (uniform), norm (normal), pois (Poisson),
binom (binomial), and hyper (hypergeometric); N corresponds with the number of
vertices; and iteration corresponds with the consecutive number for the generated
instance.

All the instances were solved through an improved version of the Hungarian
method, the FlowAssign algorithm, and the ε−scaling Auction algorithm. These
algorithms were implemented in C++ and their performance was evaluated on a
platform with an Intel Core i5-3210M 2.5 GHz processor with 4 GB of RAM under
Windows 8.

Table 2.2 shows the running times for the described families of instances. Each
value represents the averaged running times for the five instances for each combina-
tion of family of instances and problem size N . It can be observed that the fastest
algorithm was the ε-scaling Auction algorithm, followed by the FlowAssign algorithm
and then by the Hungarian algorithm. In fact, this is the expected behavior since
each algorithm is better at solving a different category of the assignment problem:
the Hungarian method for incremental assignments (which is the most difficult cate-
gory of AP), the FlowAssign algorithm for imperfect assignments, and the ε−scaling
Auction algorithm for perfect assignments (which corresponds to the easiest category
of AP). All the generated instances corresponds with the problem of perfect assign-
ments. This is why, the ε−scaling Auction algorithm outperformed the other two
algorithms.

By considering the average of the total time results reported in Table 2.2, it can be
observed that the ε-scaling Auction algorithm is approximately 10 times faster than
the FlowAssign algorithm whereas it is 3 times faster than the Hungarian method.
The highlight result is that the ε-scaling Auction can be 33 times faster than an
improved version of the Hungarian method. This comparison is relevant because a
solver for the category of perfect assignments is required as part of some heuristics
that will be described in the next chapter. Those heuristics are able to get better
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Table 2.2: Averaged running times for the five families of instances for the AP solved
through Auction, FlowAssign and Hungarian algorithms.

Family of Averaged seconds for five instances
instances N Auction FlowAssign Hungarian

64 0.006 0.006 0.006
128 0.003 0.025 0.031

Binomial 256 0.009 0.119 0.187
512 0.034 0.481 1.044

1024 0.166 2.688 7.297

64 0.000 0.006 0.012
128 0.000 0.019 0.031

Hypergeometric 256 0.006 0.103 0.166
512 0.041 0.500 1.081

1024 0.247 2.750 7.604

64 0.000 0.009 0.009
128 0.000 0.025 0.038

Normal 256 0.013 0.116 0.203
512 0.038 0.490 1.066

1024 0.175 2.656 7.163

64 0.003 0.010 0.003
128 0.006 0.028 0.028

Poisson 256 0.013 0.100 0.169
512 0.041 0.500 1.043

1024 0.169 2.613 7.016

64 0.000 0.006 0.012
128 0.000 0.025 0.031

Uniform 256 0.015 0.109 0.181
512 0.066 0.522 1.288

1024 0.394 2.209 10.154

Ave. time 0.058 0.645 1.835

solutions if they are executed many times in certain period of time, so the possibility
to have a better algorithm to solve instances of perfect assignment allows to increase
the solution quality in a shorter period of time.

Table 2.3 shows the average of the running times by each family of distribution and
algorithm showed in Table 2.2. The row Average shows the average overall running
times for each algorithm and the row Standard dev. shows the standard deviation σ
among the running times for all the families of instances under the same algorithm.
It can be observed that the families of instances Binomial, Hypergeometric, Normal
and Poisson have a similar level of difficulty for all the algorithms whereas the level
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of difficulty of the Uniform family is significantly different. The Uniform family is
the easiest family for FlowAssign algorithm whereas is the most difficult for ε-scaling
Auction algorithm and Hungarian method. It is explained because ε-scaling Auction
algorithm and Hungarian method are local-like update algorithms which performs
better when distribution of weights is different. In the case of ε-scaling Auction
algorithm the auctions will be easier to decide since distribution of weights is variable
and will require less scaling phases. In the case of Hungarian method the augmenting
paths can be easier to obtain due to variability at weights distribution. FlowAssign is
a global-like update technique, so that at each iteration the optimization is performed
uniformly being instances with Uniform distributions over the weights the easiest cases
to solve. Even so, the ε-scaling Auction algorithm is the faster algorithm in all the
cases which is the relevant fact for our purposes.

Table 2.3: Comparative results for the sum of running times of Auction, FlowAssign
and Hungarian over the families of instances for the AP.

Auction FlowAssign Hungarian

Binomial 0.044 0.664 1.713
Hypergeometric 0.059 0.676 1.779
Normal 0.045 0.659 1.696
Poisson 0.046 0.650 1.652
Uniform 0.095 0.574 2.333

Average 0.058 0.645 2.333

Standard dev. 0.022 0.040 0.282

Based on the experimental results of Table 2.3 we can conclude that the weights
distribution have an impact on the algorithmic performance. In the case of the
ε−scaling Auction algorithm and the FlowAssign algorithm the complexity function
has an explicit relation with the weights but, in the case of the Hungarian method,
such relation is not part of the complexity function.

2.5 Conclusions

There is a wide variety of algorithms that solve different categories of AP. It is re-
commendable to use the better algorithm according with the category problem to
solve.

Here were implemented some of the best algorithms to solve each category of
linear assignment problems in order to show the expected performance in practice for
the category that we care, which are perfect assignments.

Five families of instances were proposed based on five types of distributions for
the weights generation of each family of instances. This families were specifically
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generated for the perfect assignment problem under complete bipartite graphs.

The ε−scaling Auction algorithm obtained the fastest running times for solving all
the families of instances proposed and the proportional relation between its running
times and those obtained by the Hungarian algorithm is of approximately 30x times
faster.

The weights distributions are important because they have an impact on the
implemented algorithms.

This analysis is relevant because some of the heuristics that we improved im-
plemented the Hungarian method in their heuristics as in [Huang and Lim, 2006]
and [Karapetyan and Gutin, 2011a] whereas we implemented the ε−scaling Auction
algorithm, which is a better option for our heuristics. Such results are presented in
the next chapter.
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Chapter 3

The multidimensional assignment
problem

The multidimensional assignment problem (MAP), also known as sAP in the case of
s dimensions, is a natural extension of the well-known assignment problem (AP).

The multidimensional assignment problem, also called the axial multi-index as-
signment problem, deals with the question of how to perform an assignment between
the elements of s disjoint sets with n items at each.

Let s ≥ 2 be a fixed number of dimensions and let X1, X2, . . . , Xs be a collection
of s disjoint sets, without loss of generality we assume that n = |X1| = |X2| = · · · =
|Xs| (otherwise we add some dummy elements to equilibrate them), a sAP could be
equivalently stated in one of several ways.

An s-dimensional assignment can be stated as s−1 bijections ϕi (for 1 ≤ i < s) of n
items where ϕ1 maps X1 and X2, . . . , ϕs−1 maps X1 and Xs. Then, the representation
of an assignment is given by a set of s− 1 permutations ϕi such that:

1 2 . . . n− 1 n
ϕ1(1) ϕ(2) . . . ϕ(n− 1) ϕ(n)
. . . . . . . . . . . . . . .

ϕs−1(1) ϕs−1(2) . . . ϕs−1(n− 1) ϕs−1(n)


where 1 is mapped to ϕ1(1), . . . , and n is mapped to ϕ1(n), and ϕ1(1) is mapped
to ϕ2(1), . . . , and ϕ1(n) is mapped to ϕ2(n), and so on. For example, let s = 3
and X1 = {x11, x12, x13, x14}, X2 = {x21, x22, x23, x24} and X3 = {x31, x32, x33, x34} and the
permutations ϕ1 = (3, 1, 4, 2) and ϕ2 = (2, 3, 1, 4), then a possible assignment is: 1 2 3 4

3 1 4 2
2 3 1 4

⇔
 x11 x12 x13 x14

x23 x21 x24 x22
x32 x33 x31 x34

 .

Each combination of the permutations ϕ1, . . . , ϕs−1 of the sets with n items has a
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unique correspondence with the permutation matrix Pϕ1,...,ϕs−1 = (pi1i2...is) of size ns

where:

pi1i2...is =

{
1 if i2 = ϕ1(i

1) and . . . and is = ϕs−1(i
1)

0 otherwise
.

Furthermore, a permutation matrix satisfies the system of linear equations:

n∑
i2=1

n∑
i3=1

· · ·
n∑

is=1

pi1i2...is = 1 for i with 1 ≤ i1 ≤ n

. . .
n∑

i1=1

n∑
i2=1

· · ·
n∑

is−1=1

pi1i2...is = 1 for i with 1 ≤ is ≤ n

(3.1)

where pi1i2...is ∈ {0, 1} for all i1, i2, . . . , is with 1 ≤ i1, i2, . . . , is ≤ n.

The previous example corresponds with the permutation matrices:
0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0




0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0




0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0




0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0


An assignment can also be described through multipartite hypergraphs. Let G =

(X1, X2, . . . , Xs;E) be a multipartite hypergraph with disjoint vertex sets X1, X2,
. . . , Xs and with hyperedges E ⊆ X1 × X2 × · · · × Xs. A matching M in G is a
subset of hyperedges of E such that every vertex of G meets at most one edge of the
matching. In this way an assignment could be represented as a matching M of G.
The representation for our example as a matching in a bipartite graph is shown in
Figure 3.1. Each hyperedge of the assignment is represented with a different color, for
example, vertices x11, x

2
3 and x32 are related through a hyperedge colored with black.

The multidimensional assignment problem becomes an optimization problem when
we consider the cost of assigning some x1 ∈ X1 to some x2 ∈ X2, . . . , to some xs ∈ Xs.
Let C = (ci1i2...is) be a matrix of size ns, where ci1i2...is is the cost of assigning x1i1 to
x2i2 to . . . to xsis for all i1, i2, . . . , is with 1 ≤ i1, i2, . . . , is ≤ n.

Given the assignment problem as a combination of permutations ϕ1, ϕ2, . . . , ϕs−1,
let CSn be the set of all the combinations of s− 1 sets of permutations with n items
at each, the objective is defined as:

min
ϕ1ϕ2...ϕs−1∈CSn

n∑
i=1

ciϕ1(i)ϕ2(i)...ϕs−1(i) (3.2)

Similarly, if the permutation matrix is related to the cost matrix C then the
corresponding 0-1 integer linear programming formulation is:

UAM Azcapotzalco Sergio Pérez PAP through the MAP
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x11

x12

x13

x14

x21

x22

x23

x24

x31

x32

x33

x34

X1 X2 X3

Figure 3.1: Representation of a 3-dimensional assignment as a matching in a multi-
partite hypergraph.

min
n∑

i1=1

n∑
i2=1

· · ·
n∑

is=1

ci1i2...ispi1i2...is

subject to :
n∑

i2=1

n∑
i3=1

· · ·
n∑

is=1

pi1i2...is = 1 for i1 with 1 ≤ i1 ≤ n

n∑
i1=1

n∑
i3=1

· · ·
n∑

is=1

pi1i2...is = 1 for i2 with 1 ≤ i2 ≤ n

. . .
n∑

i1=1

n∑
i2=1

· · ·
n∑

is−1=1

pi1i2...is = 1 for is with 1 ≤ is ≤ n

(3.3)

where pi1i2...is ∈ {0, 1} for all i1, i2, . . . , is with 1 ≤ i1, i2, . . . , is ≤ n.

For the case of an assignment formulated as a matching in a multipartite hyper-
graph, consider weighted hyperedges E Then the cost of a matching is:

c(M) =
∑

(x1,x2,...,xs)∈M

c(x1, x2, . . . , xs) (3.4)

where the objective is to minimize c(M).

3.1 State of the art

The multidimensional assignment problem has been studied since the middle fifties
by [Schell, 1955] and by [Koopmans and Beckmann, 1957]. It was formally described
by [Pierskalla, 1968].
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Early in the 1970s, [Karp, 1972] showed that the problem of deciding whether there
exists a 3-dimensional matching of size at least k is NP-complete and, consequently,
the optimization problem of finding the largest 3-dimensional matching is NP-hard.
In the middle 1970s, [Frieze, 1974] proposed for the first time an integer programming
formulation for the 3AP. In general, the Multidimensional Matching Problem (MMP),
abbreviated sMP, is a particular case of MAP in which we assign a value of 0 to the
present relations and a value of 1 to those non present, the objective is to find a
multidimensional assignment of minimum cost. The optimal assignment will contain
the relations of the largest s-dimensional matching plus some non present relations
which we need to discard. The MMP is NP-hard and, indeed, the MAP is NP-hard
for every s ≥ 3 as shown in [Garey and Johnson, 1979].

It has been proven that unless P = NP, there is no ε-approximate polynomial time
algorithm for the multidimensional assignment problem [Crama and Spieksma, 1992].
However, the special case of 3AP where a distance, verifying the triangle inequalities,
is defined on the elements from each dimension, and the cost of the weight is either
the sum of the lengths of its distances or the sum of the lengths of its two shortest
distances was proven to be ε-approximable [Crama and Spieksma, 1992].

In the middle 1990s, [Spieksma and Woeginger, 1996] studied two more geometric
special cases of the 3AP: given are three sets X1, X2, X3 of n points in the Euclidean
plane one possible goal is to find a partition of X1 ∪ X2 ∪ X3 into n three-colored
triangles such that (a) the total circumference of all triangles is minimum or (b) the
total area of all triangles is minimum. The special cases were proven to be NP-hard.

Even when MAP is NP-hard, [Grundel et al., 2004] studied weights coefficients
from three different random distribution: uniform, exponential and standard normal.
They showed that in the cases of uniform and exponential distributions, experimental
data indicates that the mean optimal value converges to zero when the problem
size increases. Such results allow to have an estimation about the optimal value of
instances generated under some random distributions.

About the same time, [Grundel and Pardalos, 2005] proposed a test problem ge-
nerator for MAP. The advantage of this generator is that it guarantees the existence of
a unique solution. Its main disadvantage falls in its complexity which is exponential.

The most studied case of MAP is the 3AP, though in recent years several algo-
rithms and heuristics were proposed for the sAP.

In order to provide a better summary and analysis for the multidimensional as-
signment problem it was created a general classification of the developed techniques.
The next subsections describe such categories.

3.1.1 Exact algorithms

There are just a few papers that describe algorithms to solve exactly the multidi-
mensional assignment problem. Even when several techniques can be designed aimed
to find optimal solutions in shorter running times, any of them will have an expo-
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nential complexity, unless P = NP . Even if we have algorithm with an exponential
complexity two possible advantages of one over other can be: a lower complexity, for
example O(2n) < O(3n) < O(n!), and a small multiplicative constant (for small cases
of n).

One of the first algorithms was developed by [Balas and Saltzman, 1991]. They
presented a branch and bound algorithm for 3AP. In their work, they apply a La-
grangian relaxation which incorporates a class of facet inequalities in order to find
lower bounds. They applied a primal heuristic based on the principle of minimizing
maximum regret and a variable depth interchange phase for finding upper bounds.
The results are reported for instances with n ∈ {4, 6, . . . , 24, 26} vertices and uni-
formly random generated weights w(x) ∈ {0, . . . , 100}, obtaining running times from
some seconds to some minutes. The complexity of this algorithm is not presented
but, based on the time results, it seems to be approximately O(2n).

A more recent technique was presented by [Magos and Mourtos, 2009]. They stud-
ied the classes of Clique facets for the axial and planar assignment polytopes, then
they developed a polynomial-time separation procedure which allows to incorporate
such facet classes within an Integer Programming solver. This reduced the solving
time of instances of the multidimensional assignment problem. Some of the facets
that they considered were taken from the work of [Balas and Saltzman, 1991], in this
way, this work represents an improvement of the older Branch and Bound algorithm
of [Balas and Saltzman, 1991].

3.1.2 Approximate algorithms

The approximate algorithms are valid only for some particular cases of the geometric
version of the 3AP, however, they have been widely studied and many authors have
developed several heuristics.

Early in the nineties, [Crama and Spieksma, 1992] described the first approxima-
tion algorithms for the special case of the 3AP when the costs are associated with the
triangle inequalities. In their work it was shown that the geometric special cases of
the 3AP are ε-approximate and proposed 1/2 and 1/3 approximate algorithms, i. e.
heuristics which always deliver a feasible solution whose cost is at most 3/2 and 4/3,
respectively, the optimal cost. The complexity of such heuristics is O(n3).

Some years later, [Bandelt et al., 1994] extended the ideas previously provided by
[Crama and Spieksma, 1992] to more than three dimensions. [Bandelt et al., 1994]
defined four cost functions that allow to deal with the problem similarly to the geo-
metric version in three dimensions. Several approximation algorithms and heuristics
for each particular case were proposed.

Later in the nineties, [Johnsson et al., 1998] described a slightly different version
of the geometric special case of the 3AP in which it is required to find a partition
set of n = 3p points into p disjoint subsets, each consisting of three points; the
objective is to minimize the total cost of the triplets. They provide some of the first
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ideas of the possible approximate algorithms for this problem but could not provide a
proper upper bound. Instead, they developed other heuristics based on tabu-search,
simulated annealing and genetic algorithms.

In recent years, [Kuroki and Matsui, 2009] also extended the geometric special
case of 3AP to the d-dimensional space and the weight of an edge is defined by the
square of the Euclidean distance between its two endpoints. Their work reduced the
previously known bound from (4− 6/s) to (5/2− 3/s) times the optimal value. The
complexity of this approximation algorithm is O(s · n4)

3.1.3 Local search heuristics

In this field there is a wide variety of methods that consider different classes and
sizes of neighborhoods. The main characteristic of this type of technique is that it
evaluates some selected neighborhood and if some improvement could be obtained
then the procedure moves to the corresponding new solution. Most of the techniques
developed evaluate several neighborhoods in some predefined way and end when no
improvement is obtained.

Some of the first local searches were proposed by [Balas and Saltzman, 1991] for
3AP. They described a local search heuristic called variable depth interchange heuris-
tic which consists on considering two triplets of vertices of a current feasible so-
lution and look for a combination that improves the cost of both triplets. Other
heuristics called greedy, reduced cost, and minimax-regret were proposed and are
explained in detail in the same work. All the heuristics were tested on instan-
ces with n ∈ {20, 25, . . . , 65, 70} vertices and uniformly random generated weights
w(x) ∈ {0, . . . , 1000}, obtaining running times of less than a minute. The complexity
for the greedy and reduced cost heuristics is O(n2), for the minimax-regret heuristic
is O(n3 log n) and for the variable depth interchange heuristic is O(

(
n
2

)
) ∼ O(n2).

Early in the 2000s, [Robertson, 2001] presented a greedy randomized adaptive
search procedure (GRASP) for MAP. It considers as part of its machinery four of
the heuristics proposed by [Balas and Saltzman, 1991]. A GRASP is a multistart
metaheuristic for combinatorial optimization problems. It consists of a construction
procedure based on a greedy randomized algorithm of a local search. The four variants
of the GRASP were tested on instances with s = 5 and n = 25. The experimental
evaluation was focused on instances of the data association problem that appear in
the centralized multisensor multitarget tracking systems. Even when all the heuristics
are described in detail the complexity and the effectiveness of such heuristics is not
reported.

About the same time, [Huang and Lim, 2003] developed a heuristic framework
called Fragmental Optimization for the MAP. This heuristic consists in an iterative
improvement algorithm that follows the principle of easy things first. The goal of
the heuristic is to optimize a portion or fragment of the entire problem iteratively.
The experimental evaluation was performed on the data set instances provided by
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[Balas and Saltzman, 1991] and by [Crama and Spieksma, 1992], obtaining the opti-
mal values in all data sets. The running times showed an improvement in comparison
with the previous works.

Some years later, [Aiex et al., 2005] presented another GRASP with path relinking
for the 3AP. Path relinking is an intensification strategy that explores trajectories
that connect high-quality solutions while the iterations of the GRASP occurs. Seven
variants of such heuristics were developed and evaluated on the instances provided by
[Balas and Saltzman, 1991] and by [Crama and Spieksma, 1992]. The complexity of
all the heuristics is O(n3) for each iteration. The reported results consider executions
that go from 100 until 10,000 iterations.

Later in the 2000s, [Gutin et al., 2007] carried out the worst-case analysis of the
greedy and max-regret heuristics proposed by [Balas and Saltzman, 1991]. They
showed that max-regret may find the unique worst possible solution for some instances
of the 3AP. Finally, two new heuristics based on max-regret are proposed but its
experimental evaluation was not performed.

Early in the 2010s, [Karapetyan and Gutin, 2011a] proposed several local search
heuristics and generalized some others for the MAP. The most representative heuris-
tics were called dimensionwise variation heuristics, k-opt, and variable depth inter-
change. A dimensionwise variation heuristic consists in a simplification of a sAP to a
2AP. This allows to explore neighborhoods of size O(n!) and to find a local optimum
on it. The k-opt heuristics considers a feasible solution and takes a set of k vectors
from the feasible assignment and optimizes them such that a local optimum over such
vectors is achieved. The values used for k were 2 and 3. The variable depth inter-
change heuristics is a variation of the one proposed by [Balas and Saltzman, 1991].
In contrast with many of the previous authors, [Karapetyan and Gutin, 2011a] pro-
posed several new families of instances and evaluated their heuristics on each. The
families of instances consider the problem sizes with s = {3, 4, 5, 6, 7, 8} and with
n = {150, 50, 30, 18, 12, 8}, respectively. The results reported shown a relative solu-
tion error of approximately 5% in most of the instances. Dimensionwise variation
heuristics were evaluated as the best local searches for MAP.

In recent years, [Nguyen et al., 2014] developed a new approach based on cross-
entropy methods for the MAP. Cross-entropy methods can be applied to combinatorial
optimization problems. These methods consist on the construction of a random se-
quence of solutions which converges probabilistically to the optimal or near-optimal
solution. This methods have two main steps: in the first one are generated random
data according to some pre-established mechanism; in the second step the parame-
ters of the random mechanism are updated to produce a better sample in the next
iteration. The experimental evaluation was performed on the data set provided by
[Grundel and Pardalos, 2005] and the reported results showed a relative solution er-
ror of approximately 5% which is similar to the obtained by the dimensionwise varia-
tion heuristics, however the test bed used by [Karapetyan and Gutin, 2011a] contains
larger problem sizes.
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3.1.4 Evolutionary algorithms

An evolutionary algorithm is a generic population based metaheuristic optimization
technique. This type of algorithms uses mechanisms inspired by biological evolution,
such as reproduction, mutation, recombination, and selection. The procedure starts
with a set of candidate solutions having the role of population and, through a fitness
functions, the quality of the solutions is measured. This type of technique has proven
to perform well approximating solutions to many optimization problems.

One of the first genetic algorithms in this line was proposed by [Magyar et al., 2000]
for the 3MP. They proposed a genetic algorithm hybridized with some local search
heuristics, which also contains an adaptive control parameters that tunes the pa-
rameters at the running time. Even though they used their own random generated
data set, they claimed to obtain a relative solution error that is approximately 3.7%
away from the optimal solutions, which improved the earlier results obtained by
[Johnsson et al., 1998].

In the middle 2000s, [Huang and Lim, 2006] designed a new genetic algorithm
hybridized with a local search heuristic for the 3AP, which was the base for the
designing of more powerful heuristics for the MAP. A generic genetic algorithm was
considered but a local search heuristic replaced the mutation operator. The local
search heuristic they used consists on a simplification of a 3AP to a 2AP and this idea
was the base for the creation of the dimensionwise variation heuristics later proposed
by [Karapetyan and Gutin, 2011a]. Until that moment, this heuristic outperformed
all the previous heuristics for the 3AP. The experimental evaluation was performed
by considering the classical data set provided by [Balas and Saltzman, 1991].

Even when the concept of memetic algorithm (which is a genetic algorithm com-
bined with a local search heuristic) is older [Moscato, 1989], the term was popularized
later in the 2000s and some authors preferred to use the term genetic algorithm hy-
bridized with a local search heuristic.

Some years later, [Bozdogan and Efe, 2008] designed an ant colony optimization
heuristic for the MAP. This type of heuristic consists on iteratively constructing
random candidate solutions which are biased to be in good regions of the problem
space under the influence of two forces: information about the specific problem and
pheromone trails. The information about the specific problem is gathered from a
fitness function to be optimized whereas the pheromone trail is a specialty of the ant
colony optimization achieved by the positive feedback from ant paths constructed
throughout the algorithm. This method did not represent a significant improvement
however the authors let some open research lines in order to build better heuristics
with this ideas.

Late in the 2000s, [Gutin and Karapetyan, 2009] proposed the first ideas for a
new memetic algorithm for the MAP which was combined with the dimensionwise
variation heuristic. At the same time, such work described the preliminary ideas for
the development of a general purpose memetic algorithm aimed to be able to vary
the population size at the running time of the algorithm in order to start with a lot
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of individuals and to have the best ones to the end of the execution.

Early in the 2010s, [Karapetyan and Gutin, 2011b] finally described a new general
purpose memetic algorithm which was able to vary the population size during the
running time. The first sections of the work describe how to build such a memetic
algorithm and how its parameters should be tuned in order to vary the population size.
By the end of such work, some families of instances of the MAP are solved by using this
technique and the results are compared against the best known heuristics for the MAP.
The results obtained through its experimental evaluation showed a relative solution
error of approximately 1% which outperformed all the previous known heuristics for
the MAP and represents the state of the art for solving the MAP.

3.2 Families of instances for the MAP

Several families of instances have been proposed to evaluate the effectiveness of al-
gorithms and heuristics for the MAP. Here we summarize the most relevant families,
which are used in this thesis. The main difference between families lies in the way we
set the weight of the tuples of the corresponding instance.

The most common family of instances is the Random family that considers an
independent weight distribution. Other families were introduced in the works of
[Karapetyan and Gutin, 2011a] and [Karapetyan and Gutin, 2011b] with so-called de-
composable weights such as Clique, Square Root, Geometric and Product.

3.2.1 The Random family

This family has the property that the weight of each tuple is assigned with a value
generated uniformly at random over some closed interval [a, b].

The most known family of instances was provided by [Balas and Saltzman, 1991]
for 3AP. It includes 60 test instances with the problem size n ∈ {4, 6, . . . , 24, 26}. For
each n, five instances were created with the integer weight coefficients w(x) generated
uniformly at random in the interval [0, 100]. The names of the instances are referred
in this work as s bs n where s = 3, bs comes from Balas and Saltzman and n is the
number of vertices.

Other family of instances of this type was provided by [Magos and Mourtos, 2009]
for the 4AP, 5AP, and 6AP. It includes 200 test instances with three different dimen-
sion sizes: s = 4 and n ∈ {10, 11, . . . , 19, 20}; s = 5 and n ∈ {7, 8, . . . , 13, 14}; s = 6
and n = 8. For each combination of s and n, ten instances were created with the
integer weight coefficients w(x) generated uniformly at random in the interval [1, ns].
The names of the instances are referred in this work as s axial n where s is the number
of dimensions and n is the number of vertices.

A third family of instances was provided by [Karapetyan and Gutin, 2011a] and
[Karapetyan and Gutin, 2011b]. It includes 120 test instances with four different
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dimension sizes: s = 3 and n ∈ {40, 70, 100}; s = 4 and n ∈ {20, 30, 40}; s = 5 and
n ∈ {15, 18, 25}; s = 6 and n ∈ {12, 15, 18}. For each combination of s and n, ten
instances were randomly generated. The names of the instances are referred in this
work as srn where s is the number of dimensions, r comes from the word Random
and n is the number of vertices.

3.2.2 The Clique family

This family of instances has weights defined through s-partite graphs G = (X1∪· · ·∪
Xs, E). The weight w(e) of every edge e ∈ E was generated uniformly at random in
the interval [1, 100]. Let C be a clique in G and let EC be the set of edges induced by
this clique, then the weight of a vector, corresponding to the clique C, is given by:

wC(EC) =
∑
e∈EC

w(e). (3.5)

A set of instances for this family was provided by [Karapetyan and Gutin, 2011b].
It includes 120 test instances with four different dimension sizes: s = 3 and n ∈
{40, 70, 100}; s = 4 and n ∈ {20, 30, 40}; s = 5 and n ∈ {15, 18, 25}; s = 6 and
n ∈ {12, 15, 18}. For each combination of s and n, ten instances were randomly
generated. The names of the instances are referred in this work as scqn where s is
the number of dimensions, cq comes from the word Clique and n is the number of
vertices.

3.2.3 The Square Root family

This family of instances is similar to the family of instances Clique. The main differ-
ence is that it considers the square root of a sum of squares of the involved weights,
as in Equation 3.6.

wSR(EC) =

√∑
e∈EC

w(e)2. (3.6)

A set of instances for this family was provided by [Karapetyan and Gutin, 2011b].
It considers the same problem sizes as the family of instances Clique. The names of
the instances are referred in this work as ssqn where s is the number of dimensions,
sq comes from the word square root and n is the number of vertices.

3.2.4 The Geometric family

This family of instances is a special case of the family of instances Clique. In this
case, the sets X1, . . . , Xs corresponds to s sets of points in a s-dimensional Euclidean
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space, and the distance between two points p ∈ Xi and q ∈ Xj is defined by the
Euclidean distance.

dG(p, q) =
√

(px − qx)2 + (py − qy)2. (3.7)

It has been proven by [Spieksma and Woeginger, 1996] that the family of instances
Geometric is NP -hard for s ≥ 3 but they can be ε-approximated.

A set of instances for this family was proposed by [Karapetyan and Gutin, 2011a].
It includes 60 test instances with six different dimension sizes: s = 3 and n = 150;
s = 4 and n = 50; s = 5 and n = 30; s = 6 and n = 18; s = 7 and n = 12; s = 8
and n = 8. For each combination of s and n, ten instances were randomly generated.
The names of the instances are referred in this work as sgn where s is the number of
dimensions, g comes from the word Geometric and n is the number of vertices.

3.2.5 The Product family

This family of instances was originally proposed by [Burkard et al., 1996]. In this
family, the weight of a vector x is defined as follows:

wP (x) =
s∏
j=1

ajxj (3.8)

where aj is an array of n values, selected uniformly at random from {1, . . . , 10}.
A set of instances for this family was proposed by [Karapetyan and Gutin, 2011a].

It considers the same problem sizes as the family of instances Geometric. The names
of the instances are referred in this work as spn where s is the number of dimensions,
p comes from the word Product and n is the number of vertices.

3.3 Exact algorithms

In this section we describe some basic algorithms and our state of the art implemen-
tation to solve MAP.

There are many ways to represent a solution of a MAP but the most represen-
tative is a matrix of size n × s where each of the n rows is a vector of size s and
represents a selected tuple from the set of hyperedges E. Such representation allows
easily to validate the feasibility of an instance because it reduces to verifying that
all the elements from each column are different between them and belong to the set
{1, . . . , n}.
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3.3.1 Brute force

A natural solution consists in evaluating all the possible combinations from Equa-
tion 3.2 to find the optimum. This gives a complexity of O(n!s−1) and it requires a
space of O(n · s).

Algorithm 6 shows a generic implementation through recursion of the Brute Force
algorithm for the MAP which generates all the possible assignments of a sAP through
the generation of all the possible combinations of permutations of sets with n elements.
At each recursive call, the i-th column of the matrix A is assigned with a permutation
of the corresponding vector xi. At each call of the base case a new possible assignment
is evaluated and the best one is updated according to the best (minimum) cost.

The relevance of this technique is due to some local search heuristics, as 2-opt and
3-opt [Karapetyan and Gutin, 2011a], using this technique as part of their machinery
and, it offers a better option for solving very small instances of sAP (at least in
comparison with more complex techniques).

Algorithm 6: The brute force algorithm for MAP.

Input: G = (X1, . . . , Xs;E). Weighted hypergraph of a sAP of size n.
Result: A: The min cost assignment as a matrix of size n× s.

1 Set An×s := 0;
2 Set A1 := {1, . . . , n};
3 Set bestAssignment := A;
4 Call BruteForce(s, A);
5 BruteForce ← function(currentDimension, A){
6 if currentDimension = 1 then
7 if calculateCost(bestAssignment) > calculateCost(A) then
8 Set bestAssignment := A;

9 return;

10 Set xcurrentDimension := {1, . . . , n};
11 Set origin := x;
12 repeat
13 Set AcurrentDimension = xcurrentDimension;

// Ai refers to the column i of the matrix A
14 Call BruteForce(currentDimension - 1, A);
15 Set y := next premutation(x);

16 until x = origin;
17 };
18 return bestAssignment;
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3.3.2 Wise brute force

This approach consists in generating all the first O(n!s−2) possible Cartesian products
of permutations for the first s − 1 sets and then applying a 2AP solution for each
combination against the last set. This allows a complexity reduction from O(n!s−1)
to O(n!s−2n3), and the space that it requires changes from O(n · s) to O(n · s+ n2).

Algorithm 7 shows the improved version of the brute force algorithm for the
MAP. The main difference against the brute force algorithm is that in this case
there is one recursion level less by stopping at currentDimension = 2 instead of at
currentDimension = 1 and in the base case the optimal permutation of the column 2,
for the current state of A, is found through the solving of a 2AP. This allows to reduce
the complexity of this level from O(n!) to O(n3) which is the general complexity of
solving a 2AP.

This algorithm is relevant because it provided the first ideas to the creation of the
dimensionwise variation heuristics.

3.3.3 Dynamic programming reduction

This approach consists in reducing the set of all possible candidates from O(n!s−1) to
O(2(s−1)·n) by memorizing the optimal solution for some sub-problems in a similar way
as in the dynamic programming solution (proposed simultaneously by [Bellman, 1962]
and [Held and Karp, 1962]) for the Traveling Salesman Problem.

Let S1, . . . , Ss be sets of n vertices each and let X = S1 × S2 × · · · × Ss be all
members of the Cartesian product between the elements of all the sets. X is composed
by vectors from all the possible combinations of vertices from the sets Si. Lets denote
by Ski a set of any k vertices of Si, for 1 ≤ i ≤ n, and let Xk = {k} × Sk2 × · · · × Sks
be all members of the Cartesian product between the elements of all the sets. Recall
that the set S1 can be fixed. An appropriate subproblem should be defined with an
optimal partial solution for the MAP. Suppose we take one vector xk ∈ Xk. The
corresponding vertices xki ∈ xk should be deleted from each set Ski , then an optimal
partial solution is calculated for the rest of the vertices. The optimal solution consists
in choosing the vector xk whose sum with its corresponding optimal partial solution
is minimum. Then the appropriate subproblem is established.

For a collection of subsets of vertices Sk2 ⊆ {1, . . . , n}, . . . , Sks ⊆ {1, . . . , n} with
|Sk2 | = · · · = |Sks | = k which includes a vector xk ∈ Xk where xk = (k, xk2, . . . , x

k
s),

let C(k, Sk2 , . . . , S
k
s ) be the cost of the minimum assignment that considers k subsets

with vertices in the corresponding sets Sk2 , . . . , S
k
s .

When k = 0, it is established C(0, S0
2 , . . . , S

0
s ) = 0 since the assignment has no

vectors.

In order to define C(k, Sk2 , . . . , S
k
s ) in terms of smaller subproblems, one vector

xk = (k, xk2, . . . , x
k
s) should be selected such that xki ∈ Ski for all 2 ≤ i ≤ s. All

the vectors xk ∈ Xk should be evaluated in order to get the best xk such that
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Algorithm 7: The wise brute force algorithm for MAP.

Input: G = (X1, . . . , Xs;E). Weighted hypergraph of a sAP of size n.
Result: A: The min cost assignment as a matrix of size n× s.

1 Set An×s := 0;
2 Set A1 := {1, . . . , n};
3 Set bestAssignment := A;
4 Call WiseBruteForce(s, A);
5 WiseBruteForce ← function(currentDimension, A){
6 if currentDimension = 2 then
7 Set A2 = {1, . . . , n};
8 Fix the columns 1, 3, . . . , s against the elements from the column 2;
9 Generate the matrix Mn×n of the corresponding 2AP and solve it;

10 Let A := 2AP (Mn×n) be the solution of the corresponding 2AP;
11 if calculateCost(bestAssignment) > calculateCost(A) then
12 Set bestAssignment := A;

13 return;

14 Set xcurrentDimension := {1, . . . , n};
15 Set origin := x;
16 repeat
17 Set AcurrentDimension = xcurrentDimension;

// Ai refers to the column i of the matrix A
18 Call WiseBruteForce(currentDimension - 1, A);
19 Set y := next premutation(x);

20 until x = origin;
21 };
22 return bestAssignment;

C(k, Sk2 , . . . , S
k
s ) = minxk∈Xk C(k, Sk2 − xk2, . . . , Sks − xks) + w(xk)

A recursive function could be stated in the following way:

C(k, Sk2 , . . . , S
k
s ) =


0 if k = 0

minxk∈Xk (C(k − 1, S2 − xk2, . . . , Ss − xks) + w(xk)) if k ≥ 1
(3.9)

As we can see in Equation 3.9, at each recursive call one vertex is subtracted
from each set so that the size of all the sets always remains balanced. The process of
selecting the vector with the minimum weight among all the available vectors from
Xk takes O(ks−1) time. The possible state of a vertex xki ∈ Ski at the step k is to be
present or not, therefore the total number of possible states is 2(s−1)·n. By applying
a memorization technique we can avoid repeated recursive calls. The complexity
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for this algorithm is O(2(s−1)·nns−1) which is better than the previously described
algorithms but, still exponential. A disadvantage of this solution is the requirement
of exponential space, which is of O(2(s−1)·n), since it needs to memorize the answers
for the derived substates.

Algorithm 8 shows the general structure of the procedure for the dynamic pro-
gramming reduction. The interesting part of this algorithm lies in the AvailableTuples
function because it consist in obtaining the possible tuples x based on the turned on
bits from the bit set bitSetS. This function should carefully select the x subsets such
that the repeated subsets of vertices for the next iterations are avoided. The algo-
rithm returns the best cost of a partial assignment and, by the end of the algorithm,
returns the optimal assignment.

This algorithm is relevant because it provides a better upper bound on the com-
plexity to optimally solve a particular instance of a sAP of size n.

Algorithm 8: The dynamic programming reduction for MAP.

Input: G = (X1, . . . , Xs;E). Weighted hypergraph of a sAP of size n.
Result: A: The min cost assignment as a matrix of size n× s.

1 Let bitSetS be a bitset of size n× s;
2 Set bitSetS := (1 << (n× s))− 1;
// This turned on all the bits of bitSetS

3 Set result := DynamicProgrammingReduction(bitSetS);
4 DynamicProgrammingReduction ← function(bitSetS){
5 if bitSetS = 0 then
6 return {0, ∅};
7 Set bestCost := ∞;
8 Set bestPartialA := ∅;
// The function AvailableTuples extract all the available tuples

considering the turned on bits from the given bitset

9 for x ∈ AvailableTuples(bitSetS) do
10 Turn off the corresponding bits of bitSetS according to the elemnents in x;
11 Set result := DynamicProgrammingReduction(bitSetS);
12 if result.cost + cost(x) < bestCost then
13 Set bestCost := result.cost;
14 Set bestPartialA := result.assignment ∪ x;

15 return {bestCost, bestPartialA};
16 };
17 return result.assignment ;
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3.3.4 MAP-Gurobi

The Gurobi Optimizer is a commercial optimization solver for linear programming,
quadratic programming, quadratically constrained programming, mixed-integer lin-
ear programming, mixed-integer quadratic programming, and mixed integer quadrat-
ically constrained programming. Gurobi Optimizer is designed from the ground up
to exploit modern architectures and multi-core processors, using the most advanced
implementations of the latest algorithms. Image 3.2 shows the general Applica-
tion Programming Interface (API) of Gurobi. Even when Gurobi Optimizer is a
commercial software, it is easy to get a free academic version for purposes of re-
search [Gurobi Optimization, 2017a].

Figure 3.2: Application Programming Interface (API) of Gurobi.

We use Gurobi to specifically solve our 0-1 integer linear programming formu-
lation provided in Equation 4.1. Gurobi performs the next steps for solving linear
programming [Gurobi Optimization, 2016] formulations:

1. Pre solve process. The goal is to reduce the problem size. In this step, redundant
constraints are eliminated and it is applied the substitution of variables.

2. Resolution with primal and dual simplex method. The goal is to solve the
model. First, Karush-Kuhn-Tucker [Kuhn and Tucker, 1951] (KKT) conditions
for linear programming optimality are verified. Then, the model is partitioned
into basic and non-basic variables, non-basic structural variables corresponds to
tight bounds whereas non-basic slack variables correspond to tight constraints.
Next, the model is solved for basic variables and for non-basic is applied the
next process:

(a) Pick a non basic variable to enter the basis. A variable with a negative
reduced cost should be picked.
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(b) Push one variable out of the basis.

(c) Update primal and dual variables, reduced costs, basis, basis factors,
etcetera.

(d) Apply simplex pivots until no more negative reduced cost variables exist.
This yields optimality.

3. Apply parallel Barrier method with crossover. The goal is also to solve the
model. An interior point method (also referred as Barrier method) is applied.
This method is a class of algorithm to solve linear and nonlinear convex opti-
mization problems. In this case, the Karmarkar’s algorithm [Karmarkar, 1984]
is applied. It consists on modifying the KKT conditions. For simplicity it
considers the all-inequality version of a nonlinear optimization problem:

min f(x)
subject to :

ci(x) ≥ 0 for i ∈ {1, . . . ,m}
(3.10)

Then, a so called logarithmic Barrier function (see Equation 3.11) is associated
with the model.

B(x, µ) = f(x)− µ
m∑
i=1

log(ci(x)) (3.11)

Here µ is a small positive scalar. As µ converges to zero the minimum of B(x, µ)
should converge to a solution of the model.

As we can see, Gurobi applies both simplex method and parallel Barrier simulta-
neously. The optimal solution is provided by the first technique that finishes. The
Gurobi reference manual can be found at [Gurobi Optimization, 2017b].

We called MAP-Gurobi to our implementation of our 0-1 integer linear program-
ming formulation. Algorithm 9 shows the implemented model. First a Gurobi en-
vironment object is created. Then the environment object is associated with a new
Gurobi model. At line 3, we have to declare a Gurobi variable p that associates the
multipartite hypergraph G with a s-dimensional binary matrix p. Since the number
of dimensions s can vary, we decided to consider p as a vector of size ns to keep the
values of all the variables. The function AllocateMemoryGRBVar allows to assign
the required memory for p based on G. At line 5, the objective function is defined
and it is assigned to a Gurobi expression. At line 6, the model is defined to be min-
imized. The main cycle at the line 7 allows to add all the restrictions to the model.
Finally the model is solved and the assignment is retrieved according to the turned
on variables in p.

This implementation provides us with a very strong machinery to solve small
instances of sAP and here we used it as part of the proposed heuristics. Due to
the internal functionality of Gurobi, it is difficult to provide the complexity and the
space required for this algorithm, however we decided to perform an experimental
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Algorithm 9: The MAP-Gurobi algorithm for MAP.

Input: G = (X1, . . . , Xs;E). Weighted hypergraph of a sAP of size n.
Result: A: The min cost assignment as a matrix of size n× s.

1 Set GRBEnv env := GRBEnv();
// Gurobi enviroment object

2 Set GRBModel model := GRBModel(env);
/* Create variables */

3 Set GRBVar p := NULL;
4 AllocateMemoryGRBVar(p, G, model);
5 Set GRBLinExpr objetiveFuntion := GenerateObjetiveFunction(G, p);
6 Set model.setObjective(objetiveFuntion, GRB MINIMIZE);
/* Add constraints */

7 for s in 1:G.getDimensions() do
8 for i in 1:G.getSize(s) do
9 Set GRBLinExpr expr := addRestriction(G, s, i, p);

10 Set model.addConstr(expr == 1);

/* Optimize model */

11 Set model.optimize();
12 Set assignment := getGurobiSolution(G, p, model);
13 return assignment ;

evaluation in order to provide a fair approach for it. Two sets of small and medium
size families of instances were solved. We also tried another family of larger instances.
However, our implementation only had success with the smaller instances of that set.
The rest of instances were not solved due to the limitation of computer power. When
this solver has to tackle problems with a very large search space, the program crashes
due to the large amount of memory required to solve this type of instances. The
results of this experiments are shown in the next subsection.

3.3.5 Experimental evaluation

The three first algorithms were implemented specifically for the 3AP. Table 3.1 shows
the results for Balas-Saltzman family of instances solved by these algorithms. The
brute force algorithm becomes intractable for n > 8, the wise brute force algorithm
for n > 10 and the dynamic programming reduction for n > 14. Even when these
algorithms are exponential, there is a considerable difference between the comple-
xity of each algorithm. Figures 3.3, 3.4, and 3.5 show the difference between the
growth of each curve as soon as the number of vertices n is increased. The scale
of the complexity function is logarithmic in order to show the growth of all curves
simultaneously. The number of dimensions have a significant impact on the grow of
the curves. In particular, for 5AP it can be observed that the behavior of the brute
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force algorithm and the wise brute force algorithm tend to be similar, whereas the
dynamic programming reduction grows slowly. Do not forget that all three curves
have at least exponential growth, however, the first two are factorials which is worse
than exponential.

Figure 3.3: Complexity curves (in logarithmic scale) of exact algorithms for 3AP.

In order to evaluate the performance of the MAP-Gurobi implementation several
families of instances were considered.

MAP-Gurobi was implemented in C++ and its performance was evaluated on a
platform with an Intel Core i5-3210M 2.5 GHz processor with 4 GB of RAM under
Windows 8.

The smallest problem size family of instances is sbsn ([Balas and Saltzman, 1991]).
Table 3.1 shows the running times for the instances sbsn solved by MAP-Gurobi.
Since Gurobi is a state of the art optimization solver for integer programming, it can
be observed how this family of instances was solved by MAP-Gurobi without any
problem in approximately one second in opposite with the first three algorithms. The
disadvantage is that this set of instances do not allow us to have any guess about the
complexity of MAP-Gurobi to solve 3AP.

A bigger problem size family of instances is saxialn ([Magos and Mourtos, 2009]).
Table 3.2 shows the corresponding running times for this family of instances. The re-
sults obtained by Magos’ algorithm are shown just for an illustrative reference because
we did not implement their algorithm. The complexity for this algorithm was also
not provided. In order to provide a guess on the exponential function that is related
to the complexity of the MAP-Gurobi algorithm, we considered a factor called rela-
tive increment. This factor allows us to observe the proportional increment between
solving two instances with the same number of dimensions but whose difference in
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Figure 3.4: Complexity curves (in logarithmic scale) of exact algorithms for 4AP.

Figure 3.5: Complexity curves (in logarithmic scale) of exact algorithms for 5AP.

the number of vertices is one. For the family of instances 4axialn the average relative
increment of the running times for the Magos’ algorithm was about 1.8 as well as for
MAP-Gurobi, hence the experimental evaluation shows that the complexity function
is approximately O(2n). In contrast, for the family of instances 5axialn the average
relative increment was 3.7 for the Magos’ algorithm and 2.7 for MAP-Gurobi, hence
the experimental evaluation shows that the complexity functions are approximately
O(4n) and O(3n), respectively. Since there is only one instance for the family of ins-
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Table 3.1: Computational results for the family of instances of Balas and Saltzman
under exact algorithms

Instance Optimum Variables Brute Wise brute Dynamic MAP-Gurobi
force force programming

3 bs 4 42.2 64 0.0 0.1 0.1 0.1
3 bs 6 40.2 216 0.1 0.1 0.1 0.1
3 bs 8 23.8 512 60.0 0.4 0.1 0.1

3 bs 10 19.0 1000 - 43.4 0.1 0.1
3 bs 12 15.6 1728 - - 2.0 0.1
3 bs 14 10.0 2744 - - 48.1 0.2
3 bs 16 10.0 4096 - - - 0.3
3 bs 18 6.4 5832 - - - 0.4
3 bs 20 4.8 8000 - - - 0.9
3 bs 22 4.0 10648 - - - 0.8
3 bs 24 1.8 13824 - - - 0.9
3 bs 26 1.0 17576 - - - 1.3

tances 6axialn it is not possible to provide any guess. By considering these results, a
good guess for the complexity of sAP by using MAP-Gurobi could be O((s− 2)n) for
s ∈ {4, 5}.

The largest problem size instances were provided by [Karapetyan and Gutin, 2011b].
Tables 3.3, 3.4, and 3.5 show the corresponding running times for three families of
instances. It can be observed that all the instances with 3 dimensions were solved
to optimality but there is a big difference in terms of the solving time between each
family of instances. Some of the instances in 4, 5, and 6 dimensions could not be
solved. It is important to highlight that MAP-Gurobi found optimal values for some
instances for which the best known heuristics could not find the optimal value. This
is highlighted in bold in the Optimum columns found on each table. In this case, it
was not possible to provide a guess on the complexity function because the corres-
ponding relative increment factor can not be calculated. Further experiments could
be performed by considering instances of consecutive problem sizes for each family,
however the estimation provided thanks to the family of instances saxialn was good
enough to obtain the required complexity approach.

In conclusion, considering the running times for the family of instances saxialn
a fair approximation to the complexity function for MAP-Gurobi is O((s − 1)n),
however this seems to be a big upper bound since in the experimental evaluation
MAP-Gurobi performed better than this. On the other hand, according to the running
times for the families of instances provided by [Karapetyan and Gutin, 2011b] it was
determined that, in addition to the size of the input, weight distribution has an
impact on the running time, in particular, the experimental evaluation shows that
MAP-Gurobi performs better when the weights of the vectors of an instance are
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Table 3.2: Computational results for the family of instances saxialn under Magos’
algorithm and MAP-Gurobi

Magos’ algorithm MAP Gurobi

Instance Optimum Variables Seconds Relative Inc. Seconds Relative Inc.

4 axial 10 480.3 10000 28 - 1.3 -
4 axial 11 603.0 14641 45 1.6 2.8 2.1
4 axial 12 711.3 20736 80 1.7 3.2 1.1
4 axial 13 839.7 28561 144 1.8 7.5 2.3
4 axial 14 831.3 38416 232 1.6 10.6 1.4
4 axial 15 822.1 50625 384 1.6 24.9 2.3
4 axial 16 736.9 65536 686 1.7 45.0 1.8
4 axial 17 643.5 83521 794 1.1 91.7 2.0
4 axial 18 608.7 104976 2031 2.5 132.7 1.4
4 axial 19 533.5 130321 5142 2.5 147.4 1.1
4 axial 20 503.8 160000 8714 1.6 336.3 2.2
5 axial 7 407.8 16807 8 - 1.4 -
5 axial 8 587.3 32768 47 5.8 4.8 3.4
5 axial 9 471.9 59049 188 4.0 14.0 2.9

5 axial 10 341.3 100000 882 4.6 30.4 2.1
5 axial 11 274.4 161051 4811 5.4 84.0 2.7
5 axial 12 219.7 248832 10328 2.1 300.4 3.5
5 axial 13 177.5 371293 19104 1.8 704.3 2.3
5 axial 14 141.1 537824 42141 2.2 1311.8 1.8
6 axial 8 156.9 262144 19812 - 107.9 -

distributed uniformly at random within a range among all the vectors of X.

Finally, it can be observed that more than the number of variables of an instance,
what matters is the size of the search of an instance, e. g. whereas instances with
s = 5 dimensions and n = 18 vertices were solved, instances with s = 4 dimensions
and n = 30 vertices were not solved to optimality due to the fact that 18!4 < 30!3.

3.4 Local search heuristics

Local search is a heuristic method for solving optimization problems. This heuristic
can be used on problems that can be formulated through minimization or maximiza-
tion functions that allow to evaluate the optimality of several candidate solutions.
Local search heuristics move from one solution to another by applying some local
changes over a candidate solution until a better solution is found or a time bound is
elapsed.

These techniques have been proven to be some of the most successful to deal with
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Table 3.3: Computational results for the family of instances Random under MAP-
Gurobi

s n Variables Previous best known Optimum found Seconds

3 40 64000 40.0 40.0 4.1
3 70 343000 70.0 70.0 11.9
3 100 1000000 100.0 100.0 50.9
4 20 160000 20.0 20.0 10.3
4 30 810000 30.0 30.0 56.5
4 40 2560000 40.0 40.0 173.0
5 15 759375 15.0 15.0 68.0
5 18 1889568 18.0 18.0 186.5
5 25 9765625 25.0 - -
6 12 2985984 12.0 12.0 493.1
6 15 11390625 15.0 - -
6 18 34012224 18.0 - -

Table 3.4: Computational results for the family of instances Clique under MAP-
Gurobi

s n Variables Previous best known Optimum found Seconds

3 40 64000 939.9 939.9 3.3
3 70 343000 1158.4 1157.1 50.7
3 100 1000000 1368.1 1345.9 771.7
4 20 160000 1901.8 1901.8 8.4
4 30 810000 2281.9 - -
4 40 2560000 2606.3 - -
5 15 759375 3110.7 3110.7 43.0
5 18 1889568 3458.6 3458.6 196.5
5 25 9765625 4192.7 - -
6 12 2985984 4505.6 4505.6 689.1
6 15 11390625 5133.4 - -
6 18 34012224 5765.5 - -

MAP and this is why we study them extensively in this work.

Each of the next heuristics requires an initial feasible solution A = (x1, x2, . . . , xn)
generated somehow. A feasible solution can easily be generated just by choosing a
random permutation for each set of vertices from each dimension except the first
(recall that the first dimension can be fixed), and by creating the corresponding
vectors xi from combining the i-th elements from each dimension as a valid vector
xi ∈ A.

Lets consider an artificial instance with s = 4 dimensions and n = 5 vertices
in order to illustrate the next heuristics to describe. Let eji be the i-th element
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Table 3.5: Computational results for the family of instances Square Root under MAP-
Gurobi

s n Variables Previous best known Optimum found Seconds

3 40 64000 610.6 606.9 2.6
3 70 343000 737.1 733.6 62.0
3 100 1000000 866.3 838.1 1062.1
4 20 160000 929.3 929.3 9.4
4 30 810000 535.1 - -
4 40 2560000 1271.4 - -
5 15 759375 1203.9 1203.9 79.4
5 18 1889568 - 1343.8 1029.0
5 25 9765625 1627.5 - -
6 12 2985984 - 1436.8 427.3
6 15 11390625 1654.6 - -
6 18 34012224 1856.3 - -

of dimension j, weights are set up as the product of the corresponding indices of
the related vertex from each dimension, so that the weights of all the vectors are
w(e11, e

2
1, e

3
1, e

4
1) = 1, w(e11, e

2
1, e

3
1, e

4
2) = 2, . . . , w(e15, e

2
5, e

3
5, e

4
5) = 625. For simplicity

the vectors (e1a, e
2
b , e

3
c , e

4
d) will be written as (a, b, c, d) since the dimension to which

the vertex belongs can be deducted from the position of the index in the vector.

A possible feasible solution for an instance is:

A =


x1 : (1, 2, 3, 4)
x2 : (2, 3, 1, 3)
x3 : (3, 5, 4, 2)
x4 : (4, 1, 2, 1)
x5 : (5, 4, 5, 5)

The cost of this solution is w(A) = w(x1) + w(x2) + w(x3) + w(x4) + w(x5) =
24 + 18 + 120 + 8 + 500 = 670.

The structure of a feasible solution is illustrated because it helps to exemplify the
description of the next heuristics. Note that this structure allows us to have a solution
as the desired matrix with n rows and s columns where the i-th row is related to the
vector xi ∈ A and the j-th column is related to the set of vertices Xj.

3.4.1 Basic local search heuristics

Our first approach was to develop some simple local search heuristics based on known
techniques in order to have a reference about the effectiveness of simple methods
against more robust and complex techniques.
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3.4.1.1 Simple swap

Our simple swap heuristic is based on the 2-opt technique proposed by [Croes, 1958]
for solving the traveling salesman problem. In the traveling salesman problem (TSP),
a list of cities and the distances between each pair of cities is given. The goal is to
find the shortest route that visits each city exactly once and returns to the original
city. Given an initial route, this heuristic consider two cities and swaps them and if
the new route is shorter than the initial route, then the feasible solution is updated.

Given a feasible solution for a sAP, this heuristic consists on choosing a dimension
d and swapping two of its vertices indexed by i, j ∈ {1, . . . , n} with i < j. If the new
solution is better than the previous one then the feasible solution is updated with the
new vectors.

Algorithm 10 shows the pseudo-code of the simple swap heuristic MAP. A com-
plete iteration of this heuristic considers all the dimensions and all the possible combi-
nation of pairs from each dimension. There are

(
n
2

)
= O(n2) possible combinations of

vertices by each of the s dimensions, then one iteration takes O(sn2) time. The varia-
ble iter helps to stop the heuristic after some maximum number of desired iterations.
In our experimental evaluation no more than 10 iterations were performed.

Algorithm 10: The simple swap heuristic for MAP.

Input: G = (X1, . . . , Xs;E). Weighted hypergraph of a sAP of size n.
iter. Maximum number of iterations of the heuristic.
Result: A: The min cost assignment as a matrix of size n× s.

1 Set A := FeasibleRandomGeneratedSolutionForMAP(G);
2 Set improved := true;
3 Set iterations := 1;
4 while improved = true and iterations ≤ iter do
5 Set improved := false;
6 Set iterations := iterations +1;
7 foreach d in {1, . . . , s} do
8 foreach i = 1 to n do
9 foreach j = i+ 1 to n do

10 Set A′ := A;
11 swap(xdi , x

d
j ) from A′;

12 if assignmentCost(A′) < assignmentCost(A) then
13 Set improved := true;
14 Set A := A′;

15 return {A};

For example, consider the feasible solution A, for our artificial instance and choose
the dimension d = 2 and the vertices x21 and x23. The swapping is performed as follows:
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[
(1, 2, 3, 4)→ (1,5, 3, 4)
(3, 5, 4, 2)→ (3,2, 4, 2)

]
.

The corresponding weights are:[
24→ 60

120→ 48

]
.

The two new vectors have a lower cost (144 = 24 + 120 > 60 + 48 = 108) so the
feasible solution A is updated.

A =


x1 : (1,5,3,4)
x2 : (2, 3, 1, 3)
x3 : (3,2,4,2)
x4 : (4, 1, 2, 1)
x5 : (5, 4, 5, 5)

The search space for one iteration of this local search is O(sn2) which is too small
in comparison with the whole search space (O(n!s−1)). It can be a disadvantage
because the number of neighbors evaluated at each iteration is small. However, the
main advantage of this heuristic is that it can move from any assignment to any
other through some path of simple swaps. In general, it is easy to show that we can
start at any assignment and to move to any other by applying an algorithm of depth
first search (DFS) or breadth first search (BFS) that explores the whole search space
through simple swaps. It is obvious that such algorithms will be exponential but the
point is to expose that even when this local search search is a bit simple it can be
able to reach high quality solutions.

3.4.1.2 Inversion

The inversion heuristic is a generalization of the simple swap, which was originally
proposed for the TSP. Given an initial route, two cities are selected and its correspon-
ding tour is reversed, if the new route is shorter than initial route, then the feasible
solution is updated.

Given a feasible solution for a sAP, this heuristic consists on choosing a dimension
d and reverse the sub-array with two end vertices indexed by i, j ∈ {1, . . . , n} with i <
j. The sub-array of vertices xdi , x

d
i+1, . . . , x

d
j−1, x

d
j is reversed as xdj , x

d
j−1, . . . , x

d
i+1, x

d
i

from the feasible solution. If the new solution is better than the previous one then
the feasible solution is updated with the new vectors.

Algorithm 11 shows the pseudo-code of the inversion heuristic for MAP. A com-
plete iteration of this heuristic considers all the dimensions and all the possible com-
binations of pairs from each dimension. An inversion takes O(j − i) = O(n) time.
There are

(
n
2

)
= O(n2) possible combinations of vertices by each of the s dimensions,
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then one iteration takes O(sn3) time. The variable iter has the same objective as in
the 2-opt heuristic.

Algorithm 11: The inversion heuristic for MAP.

Input: G = (X1, . . . , Xs;E). Weighted hypergraph of a sAP of size n.
iter. Maximum number of iterations of the heuristic.
Result: A: The min cost assignment as a matrix of size n× s.

1 Set A := FeasibleRandomGeneratedSolutionForMAP(G);
2 Set improved := true;
3 Set iterations := 1;
4 while improved = true and iterations ≤ iter do
5 Set improved := false;
6 Set iterations := iterations +1;
7 foreach d in {1, . . . , s} do
8 foreach i = 1 to n do
9 foreach j = i+ 1 to n do

10 Set A′ := A;
11 reversingV ertices(xdi , x

d
j ) from A′;

12 if assignmentCost(A′) < assignmentCost(A) then
13 Set improved := true;
14 Set A := A′;

15 return {A};

For example, consider the feasible solution A, for our artificial instance and choose
the dimension d = 2 and the vertices x21 and x24. The swapping is performed as follows:


(1, 2, 3, 4)→ (1,1, 3, 4)
(2, 3, 1, 3)→ (2,5, 1, 3)
(3, 5, 4, 2)→ (3,3, 4, 2)
(4, 1, 2, 1)→ (4,2, 2, 1)

 .
The corresponding weights are: 

24→ 12
18→ 30

120→ 72
8→ 16

 .
The two new vectors have a lower cost (170 = 24+18+120+8 > 12+30+72+16 =

130) so the feasible solution A is updated.
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A =


x1 : (1,1,3,4)
x2 : (2,5,1,3)
x3 : (3,3,4,2)
x4 : (4,2,2,1)
x5 : (5, 4, 5, 5)

The search space for one iteration of this heuristic is also O(sn2) but in comparison
with the simple swap heuristic it explores a different neighborhood. Whereas this
heuristic is able to perform changes that can affect at all the vectors, the simple swap
heuristic performs changes that only affects at two vectors.

3.4.1.3 Circular rotation

We proposed the circular rotation heuristic as an option that considers a bigger search
space than the inversion heuristic. Furthermore the search spaces of the circular
rotation and the inversion heuristics are different. The ideas for this heuristic come
from applying it to the TSP. Given an initial route, two cities are selected and its
corresponding tour is circularly rotated one by one either left to right or right to left,
but in only one direction. Each time that a new route is shorter than the initial route,
the feasible solution is updated.

Given a feasible solution for a sAP, this heuristic consists on choosing a dimension
d and selecting two end point vertices indexed by i, j ∈ {1, . . . , n} with i < j and
rotate the sub-array of vertices xdi , x

d
i+1, . . . , x

d
j−1, x

d
j , either left to right or right to

left, from the feasible solution. For example, in one single circular left rotation the
vertices are rotated as xdi+1, x

d
i+2, . . . , x

d
j , x

d
i . Each time that the new solution is better

than the previous one, the feasible solution is updated with the new vectors.

Algorithm 12 shows the pseudo-code of the circular rotation heuristic for MAP. A
complete iteration of this heuristic considers all the dimensions and all the possible
combinations of pairs from each dimension. A single circular rotation process takes
O(|j − i|) = O(n) time and the total number of rotations is O(|j − i|) = O(n), so the
complexity of a circular rotation indexed by i and j is O(n2). There are

(
n
2

)
= O(n2)

possible combinations of vertices by each of the s dimensions, then one iteration takes
O(sn4) time. The variable iter has the same objective as for the previous heuristics.

For example, consider the feasible solution A, for our artificial instance and choose
the dimension d = 2 and the vertices x21 and x24. A single circular left rotation is as
follows:


(1, 2, 3, 4)→ (1,3, 3, 4)
(2, 3, 1, 3)→ (2,5, 1, 3)
(3, 5, 4, 2)→ (3,1, 4, 2)
(4, 1, 2, 1)→ (4,2, 2, 1)

 .
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Algorithm 12: The circular rotation heuristic for MAP.

Input: G = (X1, . . . , Xs;E). Weighted hypergraph of a sAP of size n.
iter. Maximum number of iterations of the heuristic.
Result: A: The min cost assignment as a matrix of size n× s.

1 Set A := FeasibleRandomGeneratedSolutionForMAP(G);
2 Set improved := true;
3 Set iterations := 1;
4 while improved = true and iterations ≤ iter do
5 Set improved := false;
6 Set iterations := iterations +1;
7 foreach d in {1, . . . , s} do
8 foreach i = 1 to n do
9 foreach j = i+ 1 to n do

10 Set A′ := A;
11 Set x orig := xdj ;

12 repeat
13 rotateV ertices(xdi , x

d
j ) from A′;

// either left rotation or right rotation

14 if assignmentCost(A′) < assignmentCost(A) then
15 Set improved := true;
16 Set A := A′;

17 until x orig 6= xdi ;

18 return {A};

The corresponding weights are:
24→ 36
18→ 30

120→ 24
80→ 16

 .
The two new vectors have a lower cost (242 = 24+18+120+80 > 36+30+24+16 =

106) so the feasible solution A is updated.

A =


x1 : (1,3,3,4)
x2 : (2,5,1,3)
x3 : (3,1,4,2)
x4 : (4,2,2,1)
x5 : (5, 4, 5, 5)

It is easy to verify that the sense of the rotations does not matter since always
the best option is chosen among all the rotations. In a circular left to right rotation
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the first single rotation corresponds to the same configuration as in the last rotation
of a circular right to left rotation. At the end of a circular rotation, the direction can
be any, what survives is the best configurations among all the rotations.

The search space for one iteration of this heuristic is O(sn3).

3.4.1.4 k-vertex permutation

We proposed the k-vertex permutation heuristic as a more exhaustive option that
considers even a larger search space than the previous heuristics. The ideas for this
heuristic come similarly from applying it to the TSP. Given an initial route, two
cities are selected and its corresponding tour starts to be exhaustively permuted such
that the best permutation is selected. This heuristic is a generalization of the three
previous heuristics. However, it is not a good idea to apply it over an arbitrary length
path.

Given a feasible solution for a sAP, this heuristic consists on choosing a dimen-
sion d and a positive integer 0 < k < n. Perform all the k! permutations of the
vertices indexed by i, i + k − 1 ∈ 1, . . . , n, that is xdi , x

d
i+1, . . . , x

d
i+k−1, x

d
i+k, from the

feasible solution. At the end of a step the new solution is at least as good as the
initial permutation because the optimal permutation over such search space is found
exhaustively.

Algorithm 13 shows the pseudo-code of the k−vertex permutation heuristic for
MAP. A complete iteration of this heuristic considers all the dimensions and all the
possible valid indexes for i and i+k. A single permutation process over k vertices takes
O(k!) time and the total number of contiguous subsets of vertices is O(s(n− k+ 1)),
then one iteration takes O(s(n − k + 1)k!) time. In this case, larger values of k will
increase considerably the complexity of the heuristic. In fact, selecting k > 10 will
definitively be intractable in a conventional computer. Again the variable iter should
be given.

For example, consider the feasible solution A, for our artificial instance and choose
the dimension d = 2, k = 3 and the index i = 1. A 3-vertex permutation will have to
select between the next options:

 (1, 2, 3, 4)→ (1,2, 3, 4), (1,2, 3, 4), (1,3, 3, 4), (1,3, 3, 4), (1,5, 3, 4), (1,5, 3, 4)
(2, 3, 1, 3)→ (2,3, 1, 3), (2,5, 1, 3), (2,2, 1, 3), (2,5, 1, 3), (2,2, 1, 3), (2,3, 1, 3)
(3, 5, 4, 2)→ (3,5, 4, 2), (3,3, 4, 2), (3,5, 4, 2), (3,2, 4, 2), (3,3, 4, 2), (3,2, 4, 2)

 .
The corresponding weights are:

 24→ 24, 24, 36, 36, 60, 60
18→ 18, 30, 12, 30, 12, 18

120→ 120, 72, 120, 48, 72, 48

 .
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Algorithm 13: The k−vertex permutation heuristic for MAP.

Input: G = (X1, . . . , Xs;E). Weighted hypergraph of a sAP of size n.
iter. Maximum number of iterations of the heuristic.
Result: A: The min cost assignment as a matrix of size n× s.

1 Set A := FeasibleRandomGeneratedSolutionForMAP(G);
2 Set improved := true;
3 Set iterations := 1;
4 while improved = true and iterations ≤ iter do
5 Set improved := false;
6 Set iterations := iterations +1;
7 foreach d in {1, . . . , s} do
8 foreach i = 1 to n do
9 foreach j = i+ 1 to n do

10 Set A′ := A;
11 Set x orig := xdj ;

12 foreach Permutation P of the vertices xdi , . . . , x
d
j do

13 Replace the vertices xdi , . . . , x
d
j from A′ with the

corresponding permutation P ;
14 if assignmentCost(A′) < assignmentCost(A) then
15 Set improved := true;
16 Set A := A′;

17 return {A};

The two new vectors have a lower cost (242 = 24 + 18+ 120 > 36 +30 + 48 = 114)
so the feasible solution A is updated.

A =


x1 : (1,3,3,4)
x2 : (2,5,1,3)
x3 : (3,2,4,2)
x4 : (4, 1, 2, 1)
x5 : (5, 4, 5, 5)

It can be observed that the optimal permutation can be found by solving a 2AP
between the permuted k vertices and the vertices in the same vectors from the other
dimensions. In this way, the complexity of this heuristic can be reduced from O(s(n−
k + 1)k!) to O(s(n− k + 1)4). This idea can be considered as the predecessor of the
dimensionwise variation heuristics.
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3.4.2 Dimensionwise variation heuristics

The dimensionwise variation heuristics (DVH) are a set of heuristics that perform
local improvements over a feasible solution by applying an exact technique. Ini-
tially, [Huang and Lim, 2006] applied this technique for 3AP and in the work of
[Karapetyan and Gutin, 2011a] they were extended for more than 3 dimensions, how-
ever this technique can be more general.

In general, a DVH works as follows: at one step of the heuristic all the dimensions
but a proper subset F ⊂ {1, . . . , s} are fixed and a matrix M of size n×n with entries
Mi,j = w(vi,j) is generated. Let vdi,j denote the d-th element of the vector vi,j, all the
vectors are built according to the next function:

vdi,j =

{
xdi if d ∈ F
xdj if d 6∈ F for 1 ≤ d ≤ s . (3.12)

The corresponding 2AP can be solved in O(n3) time and gives a local optimum for
the corresponding neighborhood. In the works proposed by [Huang and Lim, 2006]
and [Karapetyan and Gutin, 2011a] was proposed to use the Hungarian method, how-
ever we suggest to use the ε-scaling Auction algorithm or an even faster algorithm for
it.

The simplest version of DVH allows to have only one dimension in F . However,
allowing to have bigger subsets can be explored more neighborhoods.

Algorithm 14 shows the pseudo-code of a dimensionwise variation heuristic. A
complete iteration of this heuristic consists in trying every possible non empty subset
F ∈ ℘({1, . . . , s}). There are O(2s) possible combinations, then one iteration takes
O(2sn3) time. This heuristic performs iterations until no improvement is obtained
or the required number of iterations iter are reached. Even when the complexity
could be high, [Karapetyan and Gutin, 2011a] reported that at most ten iterations
are performed before they converge to a local optimum. Such observation was also
verified.

In order to exemplify the reduction of a feasible solution of a sAP to a 2AP consider
the previous randomly generated feasible solution A (for our artificial instance) and
pick the set F = {2, 4}, then M is obtained as:


(1, 2, 3, 4) (2, 2, 1, 4) (3,2,4,4) (4, 2, 2, 4) (5, 2, 5, 4)
(1, 3, 3, 3) (2, 3, 1, 3) (3, 3, 4, 3) (4,3,2,3) (5, 3, 5, 3)
(1,5,3,2) (2, 5, 1, 2) (3, 5, 4, 2) (4, 5, 2, 2) (5, 5, 5, 2)
(1, 1, 3, 1) (2, 1, 1, 1) (3, 1, 4, 1) (4, 1, 2, 1) (5,1,5,1)
(1, 4, 3, 5) (2,4,1,5) (3, 4, 4, 5) (4, 4, 2, 5) (5, 4, 5, 5)

→
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Algorithm 14: The dimensionwise variation heuristic for MAP.

Input: G = (X1, . . . , Xs;E). Weighted hypergraph of a sAP of size n. iter.
Maximum number of iterations of the heuristic.

Result: A: The min cost assignment as a matrix of size n× s.
1 Set A := FeasibleRandomGeneratedSolutionForMAP(G);
2 Set improved := true;
3 Set bestCost := assignmentCost(A);
4 Set iterations := 1;
5 while improved = true and iterations ≤ iter do
6 Set improved := false;
7 Set iterations := iterations +1;
8 foreach F ∈ {℘({1, . . . , s})\∅} do
9 By considering the Equation 3.12, obtain the matrix Mn×n for the

corresponding 2AP;
10 Set A′ := SolutionFor2AP(Mn×n);

// We suggest the ε-scaling Auction algorithm

11 if assignmentCost(A′) < bestCost then
12 Set improved := true;
13 Set bestCost := assignmentCost(A′);
14 Map the solution A′ to the corresponding feasible solution onto A;

15 return {A};


24 16 96 64 200
27 18 108 72 225
30 20 120 80 250

3 2 12 8 25
60 40 240 160 500


The values marked in bold denote the new vectors that will be considered as the

new feasible solution after solving the corresponding 2AP. Then, the new feasible
solution is:

A′ =


x1
′

: (1, 5, 3, 2)

x2
′

: (2, 4, 1, 5)

x3
′

: (3, 2, 4, 4)

x4
′

: (4, 3, 2, 3)

x5
′

: (5, 1, 5, 1)

The cost of the new solution A′ is w(A′) = w(x1
′
) + w(x2

′
) + w(x3

′
) + w(x4

′
) +

w(x5
′
) = 30 + 40 + 96 + 72 + 25 = 263 which is equal to the optimal minimum cost

of the solved 2AP.
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This heuristic considers a search space of size O(n!) at each step, which corre-
sponds with the search space of a 2AP. It is easy to see that at the end of one step of
this heuristic, the current feasible solution cannot be worse, due to the fact that we
are optimizing the derived search space by solving the corresponding 2AP. Another
way to verify this property is by observing that the new vectors selected, among the
set of derived vectors, always consider the original vectors plus other combinations
such that, if some vectors should be changed to get a better solution, then the 2AP
solution obtains the best ones.

3.4.3 The generalized dimensionwise variation heuristics

The simplification of a sAP to a 2AP can be applied for any sAP with s ≥ 3. Here
we propose a generalization of this heuristic which consists in reducing a sAP to a
tAP with 2 ≤ t < s.

The generalized dimensionwise variation heuristic (GDVH) works as follows: let
t be an integer value such that 2 ≤ t ≤ s − 1 and, based on t, suppose to have
F1, . . . , Ft−1 non empty proper subsets of {1, . . . , s} such that F1 ∩ · · · ∩ Ft−1 = ∅
and F1 ∪ · · · ∪ Ft−1 ⊂ {1, . . . , s}. At one step of the heuristic all the dimensions but
F1∪· · ·∪Ft−1 are fixed and a t-dimensional matrix M t of size n1×· · ·×nt (recall the
simplification ni = n for 1 ≤ i ≤ t) with entries Mi1,...,it = w(vi1,...,it) is generated. Let
vdi1,...,it denote the d-th element of the vector vi1,...,it , all the vectors are built according
to the next function:

vdi1,i2,...,it−1,it =


xdi1 if d ∈ F1

xdi2 if d ∈ F2

. . .
xdit−1 if d ∈ Ft−1
xdit otherwise

for 1 ≤ d ≤ s . (3.13)

The corresponding tAP instance can be solved by using some exact technique, in
this case with the MAP-Gurobi. Algorithm 15 shows the pseudo-code of the gen-
eralized dimensionwise variation heuristic. A complete iteration tries every possible
combination of t subsets of {1, . . . , s}. There are about O(ts) combinations, there-
fore one iteration takes O(ts · (t − 1)n) time where O((t − 1)n) is the complexity of
solving an instance of size O(nt) with the MAP-Gurobi, except for the cases when
t = 2 because those are the same as for the DVH and can be solved in O(n3). In the
experimental evaluation we also found that, as for DVH, less than ten iterations are
performed before they converge to a local optimum. In any case, the input parameter
iter for the bound of the number of iterations is required.

This reduction is not so difficult to see. In order to exemplify a reduction of
this type consider the same randomly generated feasible solution A for our artificial
instance and pick t = 3 and the sets F1 = {2, 4}, F2 = {3} such that F1 ∪ F2 ⊂
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The multidimensional assignment problem 69

Algorithm 15: The generalized dimensionwise variation heuristic for MAP.

Input: G = (X1, . . . , Xs;E). Weighted hypergraph of a sAP of size n. t. The
value of the desired problem size reduction such that 2 ≤ t < s. iter.
Maximum number of iterations of the heuristic.

Result: A: The min cost assignment as a matrix of size n× s.
1 Set A := FeasibleRandomGeneratedSolutionForMAP(G);
2 Set improved := true;
3 Set bestCost := assignmentCost(A);
4 Set iterations := 1;
5 while improved = true and iterations ≤ iter do
6 Set improved := false;
7 Set iterations := iterations +1;
8 foreach F1, . . . , Ft−1 ∈ {CombinationSets({1, . . . , s}) do
9 By considering the Equation 3.15, obtain the matrix M t for the

corresponding tAP;
10 Set A′ := MAP-Gurobi(M t) ;
11 if assignmentCost(A′) < bestCost then
12 Set improved := true;
13 Set bestCost := assignmentCost(A′);
14 Map the solution A′ to the corresponding feasible solution onto A;

15 return {A};

{1, . . . , s}, then M3 is obtained as:

M3
1


(1, 2, 3, 4) (2, 2, 3, 4) (3, 2, 3, 4) (4, 2, 3, 4) (5, 2, 3, 4)
(1, 2, 1, 4) (2, 2, 1, 4) (3, 2, 1, 4) (4, 2, 1, 4) (5, 2, 1, 4)
(1, 2, 4, 4) (2,2,4,4) (3, 2, 4, 4) (4, 2, 4, 4) (5, 2, 4, 4)
(1, 2, 2, 4) (2, 2, 2, 4) (3, 2, 2, 4) (4, 2, 2, 4) (5, 2, 2, 4)
(1, 2, 5, 4) (2, 2, 5, 4) (3, 2, 5, 4) (4, 2, 5, 4) (5, 2, 5, 4)

→


24 48 72 96 120
8 16 24 32 40

32 64 96 128 160
16 32 48 64 80
40 80 120 160 200



M3
2


(1, 3, 3, 3) (2, 3, 3, 3) (3, 3, 3, 3) (4, 3, 3, 3) (5, 3, 3, 3)
(1, 3, 1, 3) (2, 3, 1, 3) (3, 3, 1, 3) (4, 3, 1, 3) (5, 3, 1, 3)
(1, 3, 4, 3) (2, 3, 4, 3) (3, 3, 4, 3) (4, 3, 4, 3) (5, 3, 4, 3)
(1, 3, 2, 3) (2, 3, 2, 3) (3,3,2,3) (4, 3, 2, 3) (5, 3, 2, 3)
(1, 3, 5, 3) (2, 3, 5, 3) (3, 3, 5, 3) (4, 3, 5, 3) (5, 3, 5, 3)

→
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27 54 81 108 135
9 18 27 36 45
36 72 108 144 180
18 36 54 72 90
45 90 135 180 225



M3
3


(1, 5, 3, 2) (2, 5, 3, 2) (3, 5, 3, 2) (4, 5, 3, 2) (5, 5, 3, 2)
(1, 5, 1, 2) (2, 5, 1, 2) (3, 5, 1, 2) (4,5,1,2) (5, 5, 1, 2)
(1, 5, 4, 2) (2, 5, 4, 2) (3, 5, 4, 2) (4, 5, 4, 2) (5, 5, 4, 2)
(1, 5, 2, 2) (2, 5, 2, 2) (3, 5, 2, 2) (4, 5, 2, 2) (5, 5, 2, 2)
(1, 5, 5, 2) (2, 5, 5, 2) (3, 5, 5, 2) (4, 5, 5, 2) (5, 5, 5, 2)

→


30 60 90 120 150
10 20 30 40 50
40 80 120 160 200
20 40 60 80 100
50 100 150 200 250



M3
4


(1, 1, 3, 1) (2, 1, 3, 1) (3, 1, 3, 1) (4, 1, 3, 1) (5, 1, 3, 1)
(1, 1, 1, 1) (2, 1, 1, 1) (3, 1, 1, 1) (4, 1, 1, 1) (5, 1, 1, 1)
(1, 1, 4, 1) (2, 1, 4, 1) (3, 1, 4, 1) (4, 1, 4, 1) (5, 1, 4, 1)
(1, 1, 2, 1) (2, 1, 2, 1) (3, 1, 2, 1) (4, 1, 2, 1) (5, 1, 2, 1)
(1, 1, 5, 1) (2, 1, 5, 1) (3, 1, 5, 1) (4, 1, 5, 1) (5,1,5,1)

→


3 6 9 12 15
1 2 3 4 5
4 8 12 16 20
2 4 6 8 10
5 10 15 20 25



M3
5


(1,4,3,5) (2, 4, 3, 5) (3, 4, 3, 5) (4, 4, 3, 5) (5, 4, 3, 5)
(1, 4, 1, 5) (2, 4, 1, 5) (3, 4, 1, 5) (4, 4, 1, 5) (5, 4, 1, 5)
(1, 4, 4, 5) (2, 4, 4, 5) (3, 4, 4, 5) (4, 4, 4, 5) (5, 4, 4, 5)
(1, 4, 2, 5) (2, 4, 2, 5) (3, 4, 2, 5) (4, 4, 2, 5) (5, 4, 2, 5)
(1, 4, 5, 5) (2, 4, 5, 5) (3, 4, 5, 5) (4, 4, 5, 5) (5, 4, 5, 5)

→


60 120 180 240 300
20 40 60 80 100
80 160 240 320 400
40 80 120 160 200

100 200 300 400 500


In this example, we can observe that the vertices of the dimensions in the set

{1, . . . , s}\{F1 ∪ F2} are fixed in the corresponding vectors of M ; the vertices of the
dimensions in the set F1 just vary between each matrix Mi and Mj for all i 6= j and
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1 ≤ i, j ≤ 5; the vertices of the dimensions in the set F2 vary at each matrix Mi for
all 1 ≤ i ≤ 5. The optimal solution of this 3AP provides us the vectors of the new
feasible solution A′ which are:

A′ =


x1
′

: (1, 4, 3, 5)

x2
′

: (2, 2, 4, 4)

x3
′

: (3, 3, 2, 3)

x4
′

: (4, 5, 1, 2)

x5
′

: (5, 1, 5, 1)

The cost of the new solution A′ is w(A′) = w(x1
′
) + w(x2

′
) + w(x3

′
) + w(x4

′
) +

w(x5
′
) = 60 + 64 + 54 + 40 + 25 = 243 which is equal to the optimal minimum cost

of the 3AP solved.

This heuristic considers a search space of size O(n!t−1) at each step and, as for
DVH, at the end of one step of this heuristic the current feasible solution cannot be
worse. Since the search space is bigger than in the case of DVH this heuristics tend
to provided better solutions at each simple reduction.

Keep in mind that if the reduction to some tAP with 3 ≤ t ≤ s − 1 still has a
big search space then the resolution of the reduction could take a while or could not
be solved due to the computer power. However, the same may occur in reductions to
some 2AP with n equal to many thousands of vertices.

We called SDVt a dimensionwise variation heuristic that reduces a sAP to a tAP
and considers |Fi| = 1 for all 1 ≤ i < t. We called DVt a dimensionwise variation
heuristic that reduces a sAP to a tAP and considers |Fi| ≥ 1 for all 1 ≤ i < t.

3.4.4 The k-opt heuristic

The k-opt heuristic for 3AP was proposed originally by [Balas and Saltzman, 1991]
and was extended for sAP by [Karapetyan and Gutin, 2011a].

A k-opt heuristic works as follows: for every possible subset R of k vectors with
R ∈ A, solve the corresponding sAP subproblem with k vertices on each dimension.
The corresponding sAP subproblem with k < n vertices is solved with some exact
technique, which may result in the replacement of the selected vectors for better ones.
In particular, the most common option is to implement the 2-opt and 3-opt heuristics
by using the Brute Force algorithm because it is the fastest option for instances with
2 or 3 vertices and many dimensions.

Algorithm 16 shows the pseudo-code of the k-opt heuristic. A complete iteration
considers each of the

(
n
k

)
possible combinations of vectors. This heuristic repeats

iterations until no improvement is performed. By applying the Brute Force algorithm
an iteration has a complexity of O(

(
n
k

)
k!s−1). By applying Gurobi-MAP an iteration

has a complexity of O(
(
n
k

)
(s− 1)k). As in the case for DVH a bound of ten iterations

is fixed.
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Algorithm 16: The k-opt heuristic for MAP.

Input: G = (X1, . . . , Xs;E). Weighted hypergraph of a sAP of size n.
k. The value of the desired k-Opt heuristic to use.
iter. Maximum number of iterations of the heuristic.
Result: A: The min cost assignment as a matrix of size n× s.

1 Set A := FeasibleRandomGeneratedSolutionForMAP(G);
2 Set improved := true;
3 Set iterations := 1;
4 while improved = true and iterations ≤ iter do
5 Set improved := false;
6 Set iterations := iterations +1;

7 foreach combination P of vectors in
(
n
k

)
∈ A do

8 Set P ′ := BruteForce(P );// MAP-Gurobi(P) is suggested for

k ≥ 4
9 if assignmentCost(P ′) < assignmentCost(P ) then

10 Set improved := true;
11 Replace the set of vectors in P with P ′ in A;

12 return {A};

In order to illustrate this heuristic consider the previous generated feasible solution
A for our artificial instance and pick k = 2 vectors, in particular the vectors x4 and
x5. The optimal solution for this two vectors can be found from the next pairs:[

(4, 1, 2, 1) (4, 1, 2, 5) (4, 1, 5, 1) (4, 1, 5, 5)
(5, 4, 5, 5) (5, 4, 5, 1) (5, 4, 2, 5) (5, 4, 2, 1)

(4, 4, 2, 1) (4, 4, 2, 5) (4,4,5,1) (4, 4, 5, 5)
(5, 1, 5, 5) (5, 1, 5, 1) (5,1,2,5) (5, 1, 2, 1)

]
The corresponding weights are

[
8 40 20 100 32 160 80 400

500 100 200 40 125 25 50 10

]
.

The vectors marked with bold are the new vectors that will be considered as part
of the new feasible solution after applying one step of this heuristic. The new feasible
solution will be:

A =


x1 : (1, 2, 3, 4)
x2 : (2, 3, 1, 3)
x3 : (3, 5, 4, 2)
x4 : (4,4,5,1)
x5 : (5,1,2,5)

This heuristic considers a search space of size O(k!s−1) at each step. As in the
previously described heuristics, at the end of each iteration of this heuristic the current
feasible solution cannot be worse.
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3.4.5 Combined heuristics

The idea of this type of heuristics consists in running several types of heuristics
one after the other. The main advantage of a combined heuristic is that it allows
us to explore in different types of neighborhoods which may result in a significant
improvement.

A correct way to combine several heuristics is to run each heuristic until no im-
provement is obtained and then continue with the next one. The most common is to
combine a DVH with a k-opt heuristic because they include all the basic heuristics
plus several other neighborhoods.

We evaluated three heuristics of this type:

1. Basics combined. Is a combination of all the basic heuristics. The order of ex-
ecution is: simple swap, inversion, circular rotation and, k-vertex permutation.

2. DV2+3-opt. Is a combination of a DV2 and then a 3-opt heuristic. This
heuristic was proposed by [Karapetyan and Gutin, 2011a].

3. DV3+3-opt. Is a combination of a DV3 and then a 3-opt heuristic. We combine
our DV3 with the 3-opt proposed by [Karapetyan and Gutin, 2011a].

3.4.6 A generalized local search heuristic

We introduce a new heuristic called Generalized Local Search Heuristic (GLSH),
which extends and combines the ideas from the GDVH and the k-opt heuristic.

A GLSH works as follows: let r be an integer value such that 2 ≤ r ≤ s and,
suppose we have F1, . . . , Fr−1 non empty proper subsets such that F1∩ · · · ∩Fr−1 = ∅
and F1 ∪ · · · ∪ Fr−1 ⊂ {1, . . . , s}. Notice the difference of 1 between the considered
range for r and the integer value t used in GDVH. Let k be an integer value with
2 ≤ k ≤ n. The integer values r and k should be chosen such that a reduction of the
original problem (this in terms of the searching space) is achieved, which means that
the next restrictions should hold:

2 ≤ r ≤ s
2 ≤ k ≤ n

r + k < s+ n
. (3.14)

At one step of this heuristic all the dimensions but F1 ∪ · · · ∪ Fr−1 are fixed and
a set Q of k vectors from the feasible solution A are chosen, then a r-dimensional
matrix M r of size k1 × · · · × kr (recall the simplification ki = k for 1 ≤ i ≤ r) with
entries Mi1,...,ir = w(vi

1,...,ir) is generated. Let vdi1,...,ir denote the d-th element of the
vector vi1,...,ir , all the vectors are built according to the next function:
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vdi1,i2,...,ir−1,ir =


xdi1 if d ∈ F1

xdi2 if d ∈ F2

. . .
xdir−1 if d ∈ Fr−1
xdir otherwise

for 1 ≤ d ≤ s . (3.15)

The corresponding rAP instance with k vertices at each dimension can be solved
using some exact technique, again, we suggest the MAP-Gurobi implementation. The
search space of this heuristic is O(kr−1!).

This heuristic extends and generalizes GDVH and k-opt heuristics because by
selecting the values r, k as 2 ≤ r < s and k = n we have the case of a GDVH and by
selecting the values r, k as r = s and 2 ≤ k < n we have a k-opt heuristic. A possible
advantage of GLSH over GDVH is its flexibility. Whereas GLSH can consider any
subset of vectors of A, GDVH always considers the complete list of vectors of A. By
selecting the values r, k as 2 ≤ r < s and 2 ≤ k < n we have a particular case of
GLSH which is not considered neither in GDVH nor k-opt heuristics.

The GLSH can work either as a GDVH or as a k-opt, however the parameters r
and k could be tuned at each step of the heuristic, instead of being fixed.

Even when one of the main advantages of GLSH is its flexibility to move among
different searching spaces due to the possibility of tunning of the parameters r and
k, in the experimental evaluation experience showed in the next section it was deter-
mined that, for the particular case when the GLSH is equal to the GDVH, the quality
solution is comparable to the one of more complex meta-heuristics as the memetic
algorithm proposed by [Karapetyan and Gutin, 2011b]. This heuristic and some re-
sults obtained were published in a work entitled A new Local Search Heuristic for the
Multidimensional Assignment Problem [Pérez Pérez et al., 2017a].

3.4.7 Multi-start local search

A multi-start local search (MLS) is a strategy in which one can start multiple instances
of a local search, and allocate computational resources, e. g. processing time, to the
instances depending on their behavior. This multi-strategy has to decide when to
allocate additional resources to a particular instances and when to start new instances.
This heuristic is explained in detail in [Kocsis and György, 2009]. We decided to
implement a very simple idea for this strategy.

Algorithm 17 shows the structure of an MLS for MAP. We designed our MLS
to be executed for a predefined time. First, a feasible solution bestSolution will be
generated at random. It will be our first best solution. The main loop will be executed
for the required time. At each iteration, a new feasible solution A will be generated at
random and it will be improved through some local search. If the improved solution
A is better than bestSolution, then the latter solution will be updated.

We decided to evaluate all the described local searches in combination with MLS.
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Algorithm 17: The multi-start local search for MAP.

Input: G = (X1, . . . , Xs;E). Weighted hypergraph of a sAP of size n.
maxSec. Number of seconds for running the MLS.
Result: A: The min cost assignment as a matrix of size n× s.

1 Set bestSolution := FeasibleRandomGeneratedSolutionForMAP(G);
2 Set seconds := 0;
3 while seconds < maxSec do
4 Set A := FeasibleRandomGeneratedSolutionForMAP(G);
5 Set A := LocalSearchForMAP(A);
6 if assignmentCost(A) < assignmentCost(bestSolution) then
7 Set bestSolution := A;

8 Set seconds := updateRunningTime();

9 return {bestSolution};

3.4.8 Iterated local search

An Iterated Local Search (ILS) is a modification of a local search for solving opti-
mization problems. A local search can get into a local minimum such that, in some
cases, it can not be performed an improvement through the available neighbors. An
ILS consists on performing a soft random perturbation once the local minimum is
reached, then the local search is applied again. The idea is modify the local minimum
reached in order to move into a new neighborhood which will not be so different from
the previous one.

Algorithm 17 shows the structure of an ILS for MAP. We designed our ILS to
be executed for a predefined time. First, a feasible solution A will be generated at
random. It will be our first best solution. The main loop will be executed for the
required time. At each iteration, A will be improved through some local search. If
the improved solution A is better than bestSolution, then the latter solution will be
updated. The improved solution A will be perturbed and it will be used for the next
iteration.

We decided to evaluate all the described local searches, with the exception of SDV3
and DV3, in combination with this technique. We decided to exclude SDV3 and DV3
of our analysis because an ILS requires several iterations to obtain higher quality
solutions. Furthermore, SDV3 and DV3 are very expensive in terms of computational
time. We believe that the combination of ILS with SDV3 and DV3 can be more
competitive if the execution time of SDV3 and DV3 is reduced. We let such evaluation
as future work.

3.4.9 Experimental evaluation

Several local search heuristics were compared in our experiments:

UAM Azcapotzalco Sergio Pérez PAP through the MAP
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Algorithm 18: The iterated local search for MAP.

Input: G = (X1, . . . , Xs;E). Weighted hypergraph of a sAP of size n.
maxSec. Number of seconds for running the ILS.
Result: A: The min cost assignment as a matrix of size n× s.

1 Set bestSolution := FeasibleRandomGeneratedSolutionForMAP(G);
2 Set seconds := 0;
3 while seconds < maxSec do
4 Set A := LocalSearchForMAP(A);
5 if assignmentCost(A) < assignmentCost(bestSolution) then
6 Set bestSolution := A;

7 Set A := Perturbate(A);
8 Set seconds := updateRunningTime();

9 return {bestSolution};

1. Basic heuristics. We implemented the simple swap, inversion, circular rotation
and, the 6-vertex permutation heuristic. We decided to implement a version of
the k-vertex permutation heuristics with k = 6 because such value even provide
acceptable running times.

2. Dimensionwise variation heuristics. We implemented the SDV2 and the DV2
proposed by [Karapetyan and Gutin, 2011a]. Also, we implemented the SDV3
and the exhaustive DV3.

3. k−opt heuristics. We implemented the brute force 2-opt and 3-opt heuristics
proposed by [Karapetyan and Gutin, 2011a], and the same techniques but im-
plemented with MAP-Gurobi.

4. Combined heuristics. We implemented the basics combined heuristic, the DV2+
3-opt heuristic and the DV3+3-opt heuristic.

5. Multi-start local searches. We implemented a multi-start local search combined
with all our basic heuristics, the k-opt heuristics, and the SDV2 and the DV2
proposed by [Karapetyan and Gutin, 2011a].

6. Iterated local searches. We implemented an iterated local search combined
with all our basic heuristics, the k-opt heuristics, and the SDV2 and the DV2
proposed by [Karapetyan and Gutin, 2011a].

We evaluated all these heuristics under the families Random, Clique, Square Root,
Geometric and Product. The problem size instances are s = 4, n ∈ {20, 30, 40, 50},
s = 5, n ∈ {15, 18, 25, 30} and s = 6, n ∈ {12, 15, 18}. For Random, Clique and
Square Root we used the same instances used in [Karapetyan and Gutin, 2011b],
excluding the instances with s = 3 dimensions since all of them were solved optimally
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by our MAP-Gurobi. The problem sizes s = 4, n = 50 and s = 5, n = 30 are not
included in their set and they were generated for our own analysis. For the Geometric
and Product families we generated our own set of instances because such families were
not included in theirs.

For each family of instances evaluated under some heuristic we calculate the rela-
tive solution error which was also the metric used by [Karapetyan and Gutin, 2011a]
and [Karapetyan and Gutin, 2011b]. The relative solution error RSE is a metric to
measure the size of an error with respect to the size of the solution. In this case, let
opt be the optimal solution for a particular instance and let A be the feasible solution
then the relative solution error of A is calculated as:

w(A)− w(opt)

w(opt)
× 100 (3.16)

Each local search was included as part of a multi-start local search which consists
on executing them a certain number of times z, instead of some execution time, and
returning the best solution found after all the executions. We decided to set z = 30
because in our computational experience a higher number of executions did not pro-
vide significant higher quality solutions and it was computationally more expensive.

All the heuristics were also implemented in C++ and its performance was evalua-
ted on a platform with an Intel Core i5-3210M 2.5 GHz processor with 4 GB of RAM
under Windows 8.

All the tables of solutions and running times show the averaged results for ten
instances of each problem size for the corresponding family.

3.4.9.1 Computational results for basic heuristics

Basic heuristics, excepting the k-vertex permutation, are very simple procedures that
explore small neighborhoods, however, they provide high quality solutions for the
Geometric family of instances.

Tables 3.6 and 3.7 show the experimental results for all the basic heuristics. At
each of the results cells, we show the averaged results for ten instances of each type.
The first column corresponds to the instance name, the second column is the best
known value averaged for ten instances of the corresponding type and the rest of the
columns show the best value found by each heuristic for the ten instances.

It can be observed that in all the cases the simple swap is the most effective
heuristic among the basic heuristics. However, all the results are pretty far away
from the optimal value, except for the family of instances Geometric under the simple
swap, where the results are near to the optimal solutions. The combination of all of
the basic heuristics result in a slightly most effective heuristic but at a very high
computational cost. We can conclude that there is not a big advantage about the
combination of all the basic heuristics.

Table 3.8 shows a summary of the relative solution error for the five families of
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Table 3.6: Random, Clique and SquareRoot under basic heuristics.

Instance Best Simple Inversion Circular 6-vertex Basics
known swap rotation permutation combined

4r20 20.0 66.8 146.5 153.3 94.9 62.8
4r30 30.0 92.4 232.1 236.4 147.7 85.6
4r40 40.0 110.4 317.5 340.0 196.0 106.4
4r50 50.0 132.2 409.8 425.0 254.7 127.7
5r15 15.0 50.8 93.6 102.2 58.9 44.7
5r18 18.0 55.4 114.6 127.5 73.0 52.3
5r25 25.0 72.3 169.1 184.1 101.3 68.7
5r30 30.0 81.4 212.7 224.9 125.8 76.1
6r12 12.0 39.8 66.3 72.9 41.2 34.5
6r15 15.0 47.0 84.2 95.1 53.1 42.7
6r18 18.0 52.8 105.0 116.4 64.7 48.7
Avg 24.8 72.8 177.4 188.9 110.1 68.2

RSE - 193.5 615.3 661.7 344.0 175.0

4cq20 1901.8 2235.4 3011.3 3070.2 2688.2 2188.7
4cq30 2281.9 3012.3 4523.0 4561.8 3968.8 2923.2
4cq40 2606.3 3664.5 5929.5 6089.0 5256.9 3668.5
4cq50 3032.6 4441.9 7518.2 7559.1 6672.1 4439.7
5cq15 3110.7 3438.0 4206.1 4276.7 3825.5 3400.5
5cq18 3458.6 3962.4 5070.0 5136.4 4552.7 3907.9
5cq25 4192.7 5134.1 6978.8 7050.6 6250.3 5062.6
5cq30 4671.7 5948.4 8387.3 8457.2 7515.6 5858.7
6cq12 4505.6 4842.5 5546.9 5627.4 5110.6 4771.3
6cq15 5133.4 5702.1 6831.6 6917.2 6217.9 5595.7
6cq18 5765.5 6575.8 8085.8 8265.8 7412.6 6488.5

Avg 3696.4 4450.7 6008.0 6091.9 5406.5 4391.4

RSE - 20.4 62.5 64.8 46.3 18.8
4sr20 929.3 1123 1503.1 1529.7 1344.7 1101.3
4sr30 1118.6 1524.2 2230.3 2265.0 1975.1 1499.1
4sr40 1271.4 1914.7 2999.6 3016.1 2616.2 1878.8
4sr50 1491.1 2320.9 3755.7 3811.7 3318.6 2294.8
5sr15 1203.9 1360.2 1644.9 1668.9 1501.3 1336.7
5sr18 1343.9 1582.6 1989.2 2004.0 1798.2 1558.8
5sr25 1627.5 2071.4 2738.3 2766.7 2470.4 2029.7
5sr30 1828.1 2414.8 3272.8 3291.9 2948.0 2373.8
6sr12 1436.8 1557.0 1761.1 1784.4 1630.7 1531.6
6sr15 1654.6 1862.3 2181.2 2216.8 2006.1 1833.6
6sr18 1856.3 2151.4 2600.3 2627.1 2382.4 2127.3
Avg 1432.8 1807.5 2425.1 2452.9 2181.1 1778.7

RSE - 26.2 69.3 71.2 52.2 24.1

instances under the basic heuristics. The basic combined heuristic provides the lowest
relative solution error for this techniques followed by the simple swap.

Table 3.9 shows the running times for all the basic heuristics. The k-vertex per-
mutation heuristic and, in consequence, the basics combined heuristic are computa-
tionally the most expensive heuristics.
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Table 3.7: Geometric and Product under basic heuristics.
Instance Best Simple Inversion Circular 6-vertex Basics

known swap rotation permutation combined

4g20 2380.5 2383.2 3079.0 3173.0 2917.2 2382.1
4g30 3015.2 3026.9 4569.6 4685.3 4286.9 3026.0
4g40 3523.8 3553.0 6072.8 6209.9 5728.4 3551.1
4g50 4102.3 4148.9 7631.9 7833.3 7184.5 4145.9
5g15 3423.7 3427.2 4102.5 4207.6 3890.8 3426.8
5g18 3799.3 3807.7 4815.0 4970.4 4578.9 3806.2
5g25 4594.9 4615.4 6620.4 6827.4 6286.7 4611.6
5g30 5036.8 5078.1 7813.0 8066.9 7443.1 5072.4
6g12 4483.7 4487.3 5148.2 5262.6 4920.0 4485.6
6g15 5242.4 5252.8 6352.9 6469.1 6088.9 5248.0
6g18 5767.4 5785.7 7480.3 7587.4 7115.0 5778.1
Avg 4124.5 4142.4 5789.6 5935.7 5494.6 4139.4

RSE - 0.4 40.4 43.9 33.2 0.4

4p20 8397.3 8402.9 8443.2 8464.4 8437.6 8403.2
4p30 13154.1 13159.0 13237.2 13284.8 13241.1 13159.0
4p40 16810.0 16817.4 16944.2 17011.0 16959.2 16817.7
4p50 20705.6 20716.1 20891.2 20965.6 20905.2 20716.9
5p15 21422.8 27070.6 27678.6 28194.1 26494.5 27067.9
5p18 23371.5 29763.9 30580.8 30101.6 32239.7 29763.8
5p25 29693.0 43046.5 43517.1 43928.8 43390.9 43051.0
5p30 34799.4 50234.6 50993.1 51318.1 52256.7 50232.8
6p12 7421.0 30578.3 32048.7 33045.3 32400.1 30436.8
6p15 8888.9 39227.4 42392.0 42291.5 42485.3 39115.5
6p18 9600.2 47585.2 52434.2 51415.7 52785.9 47384.8
Avg 17660.3 29691.1 30832.8 30911.0 31054.2 29649.9

RSE - 68.1 74.6 75.0 75.8 67.9

Table 3.8: Summary of relative solution error for basic heuristics.

Family of Simple Inversion Circular 6-vertex Basics
instances swap rotation permutation combined

Random 193.5 615.3 661.7 344.0 175.0
Clique 20.4 62.5 64.8 46.3 18.8

SquareRoot 26.2 69.3 71.2 52.2 24.1
Geometric 0.4 40.4 43.9 33.2 0.4

Product 68.1 74.6 75.0 75.8 67.9

3.4.9.2 Computational results for k-opt heuristics

The k-opt heuristics explore higher neighborhoods than the basic heuristics and they
offer better solutions than these heuristics.

Tables 3.10 and 3.11 show the experimental results for the k-opt heuristics. It
can be observed that the solutions obtained for the k-opt heuristics have a simi-
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Table 3.9: Running times for Random, Clique, Square Root, Geometric, and Product
under basic heuristics.

Inst. Simple Invers. Circ. 6-vertex Basics Inst. Simple Invers. Circ. 6-vertex Basics
swap rot. perm. comb. swap rot. perm. comb.

4r20 0.0 0.0 0.3 3.9 4.2 4g20 0.1 0.1 0.5 6.2 6.2
4r30 0.2 0.2 1.6 9.5 10.9 4g30 0.2 0.2 1.7 11.8 12.5
4r40 0.4 0.4 4.4 15.5 20.7 4g40 0.4 0.4 4.5 17.9 21.9
4r50 1.4 1.2 11.5 30.3 44.1 4g50 0.9 0.8 10.0 28.7 37.8
5r15 0.0 0.0 0.2 3.1 2.9 5g15 0.0 0.0 0.2 4.3 3.7
5r18 0.1 0.1 0.4 4.7 4.7 5g18 0.1 0.1 0.4 6.2 5.7
5r25 0.7 0.6 1.6 9.5 10.4 5g25 0.6 0.6 1.7 12.8 12.5
5r30 3.7 2.5 4.9 23.5 26.6 5g30 1.5 1.5 3.5 20.1 20.5
6r12 0.2 0.2 0.2 2.7 2.4 6g12 0.2 0.2 0.3 4.0 3.5
6r15 0.8 0.8 1.0 6.0 5.9 6g15 0.7 0.7 0.9 7.4 6.6
6r18 2.5 2.4 2.9 10.8 10.6 6g18 2.5 1.8 2.3 12.5 11.4

Avg 0.9 0.8 2.6 10.9 13.0 Avg 0.6 0.5 2.3 11.9 12.9

4cq20 0.3 0.2 0.7 7.9 8.0 4p20 0.1 0.1 0.4 5.2 4.4
4cq30 0.6 0.3 2.6 17.1 19.4 4p30 0.2 0.2 1.7 12.4 10.6
4cq40 0.9 0.7 7.2 26.8 37.1 4p40 0.5 0.5 5.1 20.6 18.6
4cq50 1.8 1.5 17.3 46.3 70.9 4p50 2.4 1.1 10 40.8 30.1
5cq15 0.1 0.0 0.2 4.1 3.9 5p15 0.3 0.2 0.4 6.0 5.0
5cq18 0.1 0.1 0.5 6.2 6.3 5p18 0.4 0.3 0.8 9.2 7.4
5cq25 0.6 0.6 1.9 12.7 13.9 5p25 1.3 1.2 2.6 19.3 15.2
5cq30 2.9 2.2 5.2 28.2 32.2 5p30 2.7 2.6 5.5 28.8 23.7
6cq12 0.2 0.1 0.3 3.9 3.4 6p12 0.4 0.3 0.4 5.2 4.2
6cq15 0.7 0.6 0.8 7.2 6.7 6p15 1.3 1.0 1.3 9.3 7.5
6cq18 1.9 1.8 2.2 11.5 11.3 6p18 4.6 3.0 3.4 14.9 12.7

Avg 0.9 0.7 3.5 15.6 19.3 Avg 1.3 1.0 2.9 15.6 12.7

4sr20 0.0 0.0 0.3 4.2 4.4
4sr30 0.1 0.1 1.6 9.4 11.4
4sr40 0.4 0.4 4.9 17.0 23.4
4sr50 1.9 1.4 17.7 46.4 70.8
5sr15 0.0 0.0 0.2 4.0 3.8
5sr18 0.1 0.1 0.5 6.1 6.1
5sr25 0.6 0.6 1.8 12.3 13.5
5sr30 3.1 2.2 5.2 28.2 31.7
6sr12 0.2 0.1 0.3 3.8 3.4
6sr15 0.6 0.6 0.8 7.1 6.5
6sr18 1.9 1.8 2.2 11.3 11.1

Avg 0.8 0.6 3.2 13.6 16.9

lar quality solution independently of the implementation, either through brute force
as in [Karapetyan and Gutin, 2011a] or through our MAP-Gurobi, however MAP-
Gurobi is computationally more expensive. The advantage of the brute force version
is that we can solve the corresponding k-opt problem on s dimensions in place whereas
for the MAP-Gurobi version we need to create the corresponding s-dimensional matrix
and to build a model for the MAP-Gurobi, which is a process expensive computation-

UAM Azcapotzalco Sergio Pérez PAP through the MAP
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ally. In summary, it is not convenient to use MAP-Gurobi for solving a lot of small
instances of MAP.

It can be observed that k-opt heuristics provide better solutions than basic heuris-
tics however they are still far from optimal solutions, but not in the case of the family
of instances Geometric, in which case the results are very near to the optimal solu-
tions. It can be observed that there is a significant difference between the 2-opt and
the 3-opt heuristics in all the cases. We believe that the 4-opt heuristic can even
be greater than the 3-opt heuristic, however its evaluation is computationally very
expensive so that we need a higher computer power. It can be interesting to deter-
mine the value of k for which the k-opt Gurobi version is better than the brute force
algorithm. We let such analysis as future work.

Table 3.12 shows a summary of the relative solution error for the five families of
instances under the k-opt heuristics. The 3-opt heuristic provides the lowest relative
solution error among this type of techniques and, in particular, the Gurobi version is
slightly better than the brute force version.

Table 3.13 shows the corresponding running times for the k-opt heuristics. It can
be observed that running times for the 2-opt and 3-opt heuristics of MAP-Gurobi
version are high whereas running times of brute force version are relatively shorter.

3.4.9.3 Computational results for dimensionwise variation heuristics

This family of techniques is one of the most competitive heuristics for MAP.

Tables 3.14 and 3.15 show the experimental results for some versions of the DVH.
We can observe that by combining DV2 + 3-opt the quality of the results obtained are
increased considerably, such that the relative solution error is lower than 10% for all
the families of instances. By the other hand, both of our proposed versions of DVH,
the SDV3 and DV3, are superior to the combination of DV2 + 3-opt, obtaining the
optimal solutions for all the instances of the Random and the Geometric families of
instances. In our case, the combination of DV3 + 3-opt does not provide a significant
advantage against the DV3 by itself. Even when we averaged the relative solution
error for all the families of instances, we can calculate this metric for each family of
instances and for each dimension and, in general, the lower values of relative solution
error belongs to the instances with the dimension s = 3, followed by those for s = 5
and finally for s = 6. We believe that the use of reductions of a sAP to a (s− 1)AP
can even provide higher quality solutions, however we let such analysis as future work.

Table 3.16 shows a summary of the relative solution error for the five families
of instances under DVH. The heuristics DV3 and DV3 + 3-opt provide the lowest
relative solution error among this type of techniques. We consider that there is not
a significant difference between the use of DV3 and its combination with the 3-opt.
Probably the combination of DV3 with more powerful k-opt heuristics can provide
higher results like in the case of the combination with DV2 with the 3-opt. We let
such analysis as future work.
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Table 3.10: Random, Clique and SquareRoot under k-opt heuristics.

Instance Best 2-opt 3-opt 2-opt 3-opt
known (GK) (GK) MAP-Gurobi MAP-Gurobi

4r20 20.0 52.5 25.7 53.7 24.1
4r30 30.0 72.7 35.3 70.2 33.1
4r40 40.0 87.8 44.0 84.7 41.7
4r50 50.0 105.6 53.3 101.7 50.6
5r15 15.0 31.3 16.5 30.4 15.7
5r18 18.0 36.2 19.0 34.1 18.3
5r25 25.0 47.8 25.4 45.3 25.0
5r30 30.0 54.8 30.1 48.6 30.0
6r12 12.0 21.1 12.0 19.5 12.0
6r15 15.0 24.5 15.0 23.2 15.0
6r18 18.0 28.3 18.0 28.5 18.0
Avg 24.8 51.1 26.8 49.1 25.8

RSE - 106.0 8.1 98.0 4.0

4cq20 1901.8 2179.8 1983.5 2189.2 1985.9
4cq30 2281.9 2913.0 2549.9 2917.3 2555.3
4cq40 2606.3 3627.7 3055.3 3666.5 3088.5
4cq50 3032.6 4413.9 3670.3 4383.7 3608.4
5cq15 3110.7 3365.5 3185.3 3358.3 3191.1
5cq18 3458.6 3879.3 3597.3 3845.8 3579.6
5cq25 4192.7 5061.8 4562.1 5025.1 4528.2
5cq30 4671.7 5817.3 5237.3 5790.1 5249.8
6cq12 4505.6 4744.0 4577.6 4737.3 4562.6
6cq15 5133.4 5552.8 5309.8 5583.1 5326.7
6cq18 5765.5 6511.4 6041.8 6529.1 6033.9

Avg 3696.4 4369.7 3979.1 4366.0 3973.6

RSE - 18.2 7.6 18.1 7.5
4sr20 929.3 1094.2 979.5 1081.1 981.1
4sr30 1118.6 1492.3 1272.5 1492.1 1283.4
4sr40 1271.4 1878.5 1527.9 1861.3 1550.6
4sr50 1491.1 2265.2 1852.0 2260.6 1842.7
5sr15 1203.9 1330.6 1248.6 1322.7 1246.7
5sr18 1343.9 1533.8 1416.6 1537.0 1419.1
5sr25 1627.5 2020.7 1814.0 1991.0 1808.6
5sr30 1828.1 2323.6 2080.0 2338.7 2048.0
6sr12 1436.8 1521.3 1468.3 1530.1 1460.5
6sr15 1654.6 1830.4 1730.9 1828.3 1722.8
6sr18 1856.3 2115.5 1979.0 2105.8 1983.9
Avg 1432.8 1764.2 1579.0 1759.0 1577.0

RSE - 23.1 10.2 22.8 10.1

Table 3.17 shows the corresponding running times for the DVH and the combined
heuristics. It can be observed that the computational cost of reductions of a sAP to a
3AP are more expensive than reductions to a 2AP. We claim that the computational
cost in comparison with the benefit obtained is excellent because for some families of
instances our DV3 is able to find the optimal solutions and, for the rest of families,
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Table 3.11: Geometric and Product under k-opt heuristics.

Instance Best 2-opt 3-opt 2-opt 3-opt
known (GK) (GK) MAP-Gurobi MAP-Gurobi

4g20 2380.5 2381.7 2380.5 2384.0 2380.5
4g30 3015.2 3022.6 3017.3 3021.9 3015.9
4g40 3523.8 3551.9 3529.6 3546.1 3525.5
4g50 4102.3 4131.5 4112.9 4143.3 4110.5
5g15 3423.7 3424.8 3423.7 3424.7 3423.7
5g18 3799.3 3806.2 3799.3 3803.6 3799.3
5g25 4594.9 4608.5 4596.5 4607.1 4595.8
5g30 5036.8 5068.7 5040.2 5059.5 5041.3
6g12 4483.7 4488.7 4483.7 4487.1 4483.7
6g15 5242.4 5247.7 5243.1 5248.0 5242.5
6g18 5767.4 5780.8 5767.4 5780.9 5767.4
Avg 4124.5 4137.6 4126.7 4136.9 4126.0

RSE - 0.3 0.1 0.3 0.0

4p20 8397.3 8399.1 8397.4 8398.4 8397.6
4p30 13154.1 13155.7 13154.2 13155.3 13154.1
4p40 16810.0 16812.3 16810.2 16812.3 16810.1
4p50 20705.6 20710.4 20706.3 20709.8 20705.7
5p15 21422.8 24213.4 21423.4 22861.5 21551.4
5p18 23371.5 26435.7 24012.4 24993.9 23440.6
5p25 29693.0 37232.6 30475.0 35341.0 30508.1
5p30 34799.4 43474.0 35811.6 41606.7 35727.9
6p12 7421.0 11882.0 8172.2 11366.7 7793.9
6p15 8888.9 15302.1 10356.6 14185.8 9514.6
6p18 9600.2 17181.3 11379.1 16506.6 10411.9
Avg 17660.3 21345.3 18245.3 20539.8 18001.4

RSE - 20.9 3.3 16.3 1.9

Table 3.12: Summary of relative solution error for k-opt heuristics.

Family of 2-opt 3-opt 2-opt 3-opt
instances (GK) (GK) MAP-Gurobi MAP-Gurobi

Random 106.0 8.1 98.0 4.0
Clique 18.2 7.6 18.1 7.5

SquareRoot 23.1 10.2 22.8 10.1
Geometric 0.3 0.1 0.3 0.0

Product 20.9 3.3 16.3 1.9

the relative solution error is approximately of 3% which is competitive against more
complex meta-heuristics such as the state of the art memetic algorithm proposed
by [Karapetyan and Gutin, 2011a].

In summary, it can be observed that the DVH techniques hold the title as the
better heuristics for the MAP and, our developed versions, the SDV3 and DV3,
provide competitive results against more complex metaheuristics which use, as part
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Table 3.13: Running times for Random, Clique, Square Root, Geometric, and Product
under k-opt heuristics.

Instance 2-opt 3-opt 2-opt 3-opt Instance 2-opt 3-opt 2-opt 3-opt
(GK) (GK) Gurobi Gurobi (GK) (GK) Gurobi Gurobi

4r20 0.4 2.2 21.3 614.8 4g20 0.2 1.2 16.9 370.4
4r30 0.7 7.9 53.1 2532.5 4g30 0.3 4.9 42.1 1402.2
4r40 1.3 19.3 91.8 6261.3 4g40 0.7 13.7 85.0 4002.1
4r50 1.5 35.1 114.1 10998.2 4g50 1.3 29.4 135.5 7860.4
5r15 0.4 3.2 16.2 1135.5 5g15 0.4 2.4 15.0 1090.5
5r18 0.4 6.9 27.2 2491.8 5g18 0.5 5.6 29.2 2318.3
5r25 1.2 16.7 49.6 6533.4 5g25 1.1 16.8 61.9 5891.4
5r30 2.9 36.3 98.6 18209.3 5g30 2.3 31.7 95.2 9285.7
6r12 0.6 10.9 25.2 613.7 6g12 0.4 8.9 22.3 350.7
6r15 1.5 23.5 44.6 1201.3 6g15 1.3 19.6 38.5 739.2
6r18 3.9 42.9 69.5 2666.6 6g18 3.1 37.6 60.5 1394.6
Avg 1.4 18.7 55.6 4841.7 Avg 1.1 15.6 54.7 3155.0

4cq20 0.3 2.3 26.3 287.6 4p20 0.2 0.9 13.3 393.1
4cq30 0.6 10.0 70.0 1130.1 4p30 0.3 4.1 42.0 1145.2
4cq40 1.1 28.7 127.1 3486.4 4p40 0.7 10.7 79.3 3608.8
4cq50 1.8 52.3 174.6 9938.3 4p50 1.3 22.1 129.1 7085.8
5cq15 0.2 3.7 19.1 1126.3 5p15 0.3 3.1 26.4 671.4
5cq18 0.4 7.2 31.5 2493.5 5p18 0.4 6.1 46.6 1420.0
5cq25 1.1 23.8 66.4 7007.8 5p25 1.3 18.1 105.1 4477.8
5cq30 3.0 52.2 129.8 15830.2 5p30 4.8 396.7 158.0 6520.8
6cq12 0.6 10.8 24.7 429.9 6p12 0.5 10.8 34.8 650.5
6cq15 1.1 25.8 43.0 973.3 6p15 1.1 24.3 60.4 1404.8
6cq18 3.1 48.5 64.6 2161.5 6p18 3.0 45.7 98.2 3068.1

Avg 1.2 24.1 70.6 4078.6 Avg 1.3 49.4 72.1 2767.8

4sr20 0.3 2.1 21.7 486.5
4sr30 0.5 8.4 55.6 2095.8
4sr40 0.9 24.5 112.7 5668.5
4sr50 1.7 52.7 187.7 11579.6
5sr15 0.3 4.8 27.8 1354.7
5sr18 0.4 8.4 39.1 3253.0
5sr25 1.4 28.0 88.6 8205.7
5sr30 2.9 53.2 126.1 17488.1
6sr12 0.5 12.9 30.1 622.3
6sr15 1.4 29.6 55.6 1244.0
6sr18 3.7 59.5 87.7 2505.2
Avg 1.3 25.8 75.7 4954.9

of their machinery, the simplest versions of the family of heuristics DVH, that is the
SDV2 and DV2.

3.4.9.4 Computational results for MLS and ILS

For this section we decided to compare the results obtained between MLS and ILS.
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Table 3.14: Random, Clique and Square Root under DVH.

Instance Best SDV2 DV2 DV2+ SDV3 DV3 DV3+
known (GK) (GK) 3-opt 3-opt

4r20 20.0 42.2 34.9 26.6 20.0 20.0 20.0
4r30 30.0 50.7 43.1 35.4 30.0 30.0 30.0
4r40 40.0 56.7 51.7 44.2 40.0 40.0 40.0
4r50 50.0 65.5 57.9 52.3 50.0 50.0 50.0
5r15 15.0 33.7 24.2 16.1 15.2 15.0 15.0
5r18 18.0 38.9 26.6 18.8 18.0 18.0 18.0
5r25 25.0 42.6 34.6 25.2 25.0 25.0 25.0
5r30 30.0 46.8 36.2 30.0 30.0 30.0 30.0
6r12 12.0 27.3 16.1 12.0 12.6 12.0 12.0
6r15 15.0 31.9 19.8 15.0 15.1 15.0 15.0
6r18 18.0 33.7 22.8 18.0 18.0 18.0 18.0
Avg 24.8 42.7 33.4 26.7 24.9 24.8 24.8

RSE - 72.2 34.7 7.7 0.4 0.0 0.0

4cq20 1901.8 2009.0 2000.5 1964.4 1910.3 1909.0 1909.0
4cq30 2281.9 2530.0 2515.3 2474.8 2319.1 2322.6 2322.6
4cq40 2606.3 3018.6 2992.8 2956.5 2722.6 2714.2 2714.2
4cq50 3032.6 3504.9 3498.9 3467.9 3153.7 3144.8 3144.8
5cq15 3110.7 3229.4 3223.4 3190.9 3148.0 3128.0 3128.0
5cq18 3458.6 3695.2 3624.2 3564.8 3507.7 3507.9 3507.9
5cq25 4192.7 4597.6 4570.1 4509.4 4340.4 4337.2 4335.2
5cq30 4671.7 5205.7 5195.3 5119.6 4918.4 4886.1 4886.1
6cq12 4505.6 4651.5 4615.5 4550.2 4534.9 4532.6 4532.6
6cq15 5133.4 5375.9 5382.1 5303.6 5237.2 5216.7 5214.9
6cq18 5765.5 6131.0 6123.0 6018.5 5917.6 5895.5 5894.0

Avg 3696.4 3995.3 3976.5 3920.1 3791.8 3781.3 3780.8

RSE - 8.1 7.6 6.1 2.6 2.3 2.3
4sr20 929.3 998.6 981.8 969.9 935.0 937.4 937.4
4sr30 1118.6 1267.3 1265 1244.5 1153.5 1153.2 1153.2
4sr40 1271.4 1496.0 1487.6 1478.4 1331.5 1337.0 1337.0
4sr50 1491.1 1765.4 1774.2 1743.3 1543.6 1551.6 1551.6
5sr15 1203.9 1276.6 1263.0 1243.3 1220.0 1215.4 1215.4
5sr18 1343.9 1460.2 1437.8 1416.5 1377.2 1369.3 1364.0
5sr25 1627.5 1826.0 1824.7 1779.2 1704.7 1703.9 1703.9
5sr30 1828.1 2082.1 2079.0 2058.8 1939.6 1935.3 1933.5
6sr12 1436.8 1502.4 1489.8 1467.7 1452.7 1447.6 1447.6
6sr15 1654.6 1757.5 1728.7 1706.2 1692.0 1689.1 1685.2
6sr18 1856.3 2008.5 1987.1 1970.6 1919.9 1911.9 1911.6
Avg 1432.8 1585.5 1574.4 1552.6 1479.1 1477.4 1476.4

RSE - 10.7 9.9 8.4 3.2 3.1 3.0

We implemented all the basic heuristics as part of MLS and ILS. Tables 3.18 and
3.19 show the experimental results obtained for these combinations. For the case of
the k-vertex permutation heuristic we considered k = 4. We considered an execution
time of 10 seconds for both MLS and ILS. We observed that more than10 seconds did
not provide us with higher quality solutions. We can observe a significant difference
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Table 3.15: Geometric and Product under DVH.
Instance Best SDV2 DV2 DV2+ SDV3 DV3 DV3+

known (GK) (GK) 3-opt(GK) 3-opt

4g20 2380.5 2380.5 2380.5 2380.5 2380.5 2380.5 2380.5
4g30 3015.2 3015.4 3015.2 3015.2 3015.2 3015.2 3015.2
4g40 3523.8 3524.4 3524.0 3523.8 3523.8 3523.8 3523.8
4g50 4102.3 4103.6 4102.4 4102.3 4102.3 4102.3 4102.3
5g15 3423.7 3423.7 3423.7 3423.7 3423.7 3423.7 3423.7
5g18 3799.3 3799.3 3799.3 3799.3 3799.3 3799.3 3799.3
5g25 4594.9 4595.7 4595.4 4594.9 4594.9 4594.9 4594.9
5g30 5036.8 5038.7 5037.1 5037.0 5036.8 5036.8 5036.8
6g12 4483.7 4485.6 4483.7 4483.7 4483.7 4483.7 4483.7
6g15 5242.4 5242.4 5242.6 5242.4 5242.4 5242.4 5242.4
6g18 5767.4 5767.4 5767.4 5767.4 5767.5 5767.4 5767.4
Avg 4124.5 4125.2 4124.7 4124.6 4124.6 4124.5 4124.6

RSE - 0.0 0.0 0.0 0.0 0.0 0.0

4p20 8397.3 8401.1 8397.9 8397.4 8397.3 8397.3 8397.3
4p30 13154.1 13156.3 13154.5 13154.2 13154.1 13154.1 13154.1
4p40 16810.0 16814.5 16810.9 16810.1 16810.0 16810.0 16810.0
4p50 20705.6 20713.4 20708.1 20706.1 20705.6 20705.6 20705.6
5p15 21422.8 27688.9 22293.3 21423.0 21671.8 21422.8 21422.8
5p18 23371.5 29756.5 25520.0 23508.4 24635.0 23371.8 23371.7
5p25 29693.0 43044.7 34971.2 30448.2 34333.0 30258.4 30258.0
5p30 34799.4 50230.6 41908.2 36243.8 40137.2 35231.3 35231.2
6p12 7421.0 29396.4 10314.4 8300.7 9282.6 7664.0 7664.0
6p15 8888.9 37193.8 12245.8 9889.0 10768.7 8888.9 8888.9
6p18 9600.2 46417.1 13125.6 10842.4 12085.9 9610.1 9610.1
Avg 17660.3 29346.7 19950 18156.7 19271.0 17774.0 17774.0

RSE - 66.2 13.0 2.8 9.1 0.6 0.6

Table 3.16: Summary of relative solution error for DVH.

Family of SDV2 DV2 DV2+ SDV3 DV3 DVH3+
instances (GK) (GK) 3-opt 3-opt

Random 72.2 34.7 7.7 0.4 0.0 0.0
Clique 8.1 7.6 6.1 2.6 2.3 2.3

SquareRoot 10.7 9.9 8.4 3.2 3.1 3.0
Geometric 0.0 0.0 0.0 0.0 0.0 0.0

Product 66.2 13.0 2.8 9.1 0.6 0.6

between the quality solution of the basic heuristics combined with a MLS and their
combination with an ILS. In all the cases the combination of the basic heuristics with
an ILS provide us with higher quality solutions. The most competitive results were
obtained with the Simple Swap heuristic combined with an ILS.

We implemented the 2-opt, 3-opt, SDV2, and DV2 heuristics as part of MLS and
ILS. Tables 3.20 and 3.21 show the experimental results obtained for these combi-
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Table 3.17: Running times for Random, Clique, Square Root, Geometric, and Product
under DVH.

Inst. SDV2 DV2 DV2 SDV3 DV3 DV3 Inst. SDV2 DV2 DV2 SDV3 DV3 DV3
(GK) (GK) 3-opt 3-opt (GK) (GK) 3-opt 3-opt

4r20 0.2 0.3 2.5 177.8 178.1 179.4 4g20 0.1 0.1 0.8 85.3 82.9 54.1
4r30 0.3 0.5 8.6 875.4 1297.0 866.0 4g30 0.2 0.2 2.6 224.9 208.9 172.8
4r40 0.9 0.8 21.4 2474.2 2895.3 2112.8 4g40 0.4 0.5 6.7 660.9 646.0 515.8
4r50 1.3 1.4 43.7 3035.8 3541.7 4011.4 4g50 1.2 1.6 18.0 1224.9 1011.7 1028.4
5r15 0.3 0.2 4.3 65.2 120.9 125.1 5g15 0.5 0.1 3.2 28.7 73.5 123.9
5r18 0.5 0.4 10.3 200.1 383 388.8 5g18 1.4 0.2 5.5 68.5 173.1 304.6
5r25 1.1 1.2 29.8 678.9 2013.5 1739.1 5g25 0.9 0.9 19.6 233.7 926.3 797.8
5r30 2.7 2.7 54.4 1514.6 4984.7 4813.6 5g30 2.6 2.9 33.1 563.0 1431.9 1312.2
6r12 0.4 0.3 9.6 38.9 159.9 183.1 6g12 0.4 0.4 8.4 35.9 215.7 255.7
6r15 1.0 0.9 21.5 77.0 269.6 303.7 6g15 1.1 1.1 18.7 65.3 406.5 486.0
6r18 2.5 103.1 36.7 183.9 676.6 645.4 6g18 3.2 3.2 40.9 159.9 1001.2 1133.5

Avg 1.0 10.2 22.1 847.4 1501.8 1397.1 Avg 1.1 1.0 14.3 304.6 561.6 562.3

4cq20 0.5 0.2 2.0 120 122.2 124.1 4p20 0.1 0.2 1.9 485.6 117.2 153.6
4cq30 0.4 0.4 6.1 431.3 426.7 432.0 4p30 0.5 0.5 6.1 849.0 827.2 840.0
4cq40 0.7 0.8 17.5 2128.8 1550.9 1540.8 4p40 0.7 0.9 15.7 2010.8 1770.1 1961.5
4cq50 1.3 1.6 38.4 2478.1 2505.5 2520.7 4p50 1.4 1.9 30.9 7837.3 8506.3 9160.0
5cq15 0.3 0.3 4.2 52.5 128.4 132.3 5p15 0.1 0.3 6.6 92.1 191.8 295.5
5cq18 0.4 0.4 7.1 129.9 296.7 300.6 5p18 0.4 0.6 12.3 286.4 637.2 831.6
5cq25 1.6 1.7 21.8 527.5 832.8 861.8 5p25 1.2 1.7 28.3 1015.9 2836.1 3108.4
5cq30 2.4 2.1 36.9 602.8 1334.2 1364.8 5p30 2.8 3.9 57.8 3655.8 7110.8 7033.6
6cq12 0.4 0.5 11.6 41.7 231.2 240.1 6p12 0.5 0.7 21.7 75.1 341.4 438.4
6cq15 1.1 1.2 26.6 80.1 442.9 457.2 6p15 1.3 1.9 44.9 163.6 639.5 842.9
6cq18 3.1 3.0 54.5 295.3 1099.0 1193.4 6p18 7.1 3.6 96.7 346.4 1544.7 2703.6

Avg 1.1 1.1 20.6 626.2 815.5 833.4 Avg 1.5 1.5 29.4 1528.9 2229.3 2488.1

4sr20 0.3 0.2 1.6 110.1 108.3 162.5
4sr30 0.4 0.4 6.1 505.4 521.3 528.0
4sr40 0.7 0.8 15.8 1539.4 2033.3 1512.0
4sr50 1.2 1.2 28.6 2405.5 2496.3 2381.3
5sr15 0.2 0.3 4.5 56.8 131.0 130.9
5sr18 0.5 0.3 5.9 100.5 230.9 245.2
5sr25 1.1 0.9 18.6 306.3 884.9 727.4
5sr30 2.5 2.7 44.1 860.0 2011.4 2640.9
6sr12 0.5 0.4 9.1 33.1 194.1 199.2
6sr15 1.1 1.0 19.8 64.8 362.1 375.0
6sr18 3.1 2.8 47.1 195.5 1547.9 1060.3

Avg 1.1 1.0 18.3 561.6 956.5 905.7

nations. We only considered the brute force implementations for 2-opt and 3-opt
heuristics. We considered an execution time of 30 seconds for both MLS and ILS. We
observed that more than 30 seconds did not provide us with higher quality solutions.
In all the cases the combination of these local searches witn an ILS obtained the best
quality solutions. We can observed that ILS combined with DV2 provides us with
the most competitive heuristics for these cases.

We conclude that there is a high advantage about the use of an ILS over a MLS.
We believe that other similar techniques as simulated annealing can provide higher
quality solutions.
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Table 3.18: Random, Clique and Square Root under basics combined with MLS and
ILS.

Inst. Best Simple swap Inversion Circular 4-vertex perm. Basics combined
known MLS ILS MLS ILS MLS ILS MLS ILS MLS ILS

4r20 20 48.4 36.3 97.2 57.0 123.6 91.1 99.1 65.5 57.0 46.2
4r30 30 74.8 60.2 177.4 121.4 215.7 178.3 169.9 118.1 83.3 70.3
4r40 40 95.0 77.1 264.4 179.6 316.4 275.1 237.1 169.7 110.9 94.0
4r50 50 113.7 94.4 358.0 243.4 422.6 371.8 323.8 236.8 131.6 118.3
5r15 15 32.3 26.9 57.7 41.9 73.7 59.0 54.0 44.2 36.9 30.8
5r18 18 39.0 32.4 77.7 53.0 97.3 85.3 72.8 60.0 44.9 40.3
5r25 25 55.9 47.5 130.8 95.3 153.2 139.2 118.8 93.1 64.2 57.7
5r30 30 67.3 57.1 166.6 116.1 204.1 165.6 156.8 108.7 73.7 64.9
6r12 12 23.2 20.1 33.4 29.3 45.8 41.8 38.1 30.2 25.9 23.9
6r15 15 30.2 26.4 53.7 45.4 67.7 61.1 55.0 44.2 35.5 33.8
6r18 18 37.8 34.9 72.9 59.2 95.2 79.3 67.0 57.9 43.6 40.9
Avg 24.8 56.1 46.7 135.4 94.7 165.0 140.7 126.6 93.5 64.3 56.5

RSE - 126.2 88.3 446.0 281.9 565.3 467.3 410.5 277.0 159.3 127.8

4cq20 1901.8 2036.3 1929.1 2741.9 2215.0 2898.1 2532.3 2843.1 2275.8 2109.3 1970.0
4cq30 2281.9 2823.5 2440.5 4181.5 3405.6 4418.4 4145.4 4298.9 3560.8 2870.9 2618.8
4cq40 2606.3 3539.3 3015.4 5706.4 4797.8 6089.0 5773.6 5933.1 4999.9 3656.4 3454.5
4cq50 3032.6 4312.2 3696.5 7243.4 6363.7 7572.0 7396.3 7497.8 6402.3 4479.5 4219.2
5cq15 3110.7 3233.4 3136.3 3887.1 3369.1 4072.5 3795.1 3990.1 3545.7 3296.2 3163.2
5cq18 3458.6 3727.1 3509.4 4685.1 4066.4 4935.8 4630.7 4810.1 4268.8 3832.3 3602.9
5cq25 4192.7 4906.2 4380.2 6631.6 5857.2 6905.0 6574.2 6763.2 6033.0 5024.0 4649.7
5cq30 4671.7 5703.5 5028.6 7999.5 7169.3 8312.9 7996.4 8223.6 7187.4 5859.4 5412.7
6cq12 4505.6 4600.4 4529.7 5171.1 4763.0 5309.9 4973.7 5239.1 4853.8 4691.7 4588.0
6cq15 5133.4 5441.9 5189.4 6400.2 5853.6 6612.8 6273.5 6515.3 5972.2 5530.9 5296.3
6cq18 5765.5 6307.3 5956.2 7718.4 7001.7 7993.2 7669.5 7836.8 7151.7 6387.1 6008.9

Avg 3696.4 4239.2 3891.9 5669.7 4987.5 5920.0 5614.6 5813.7 5113.8 4339.8 4089.5

RSE - 14.7 5.3 53.4 34.9 60.2 51.9 57.3 38.3 17.4 10.6

4sr20 929.3 1023.1 946.0 1361.8 1120.8 1443.0 1290.7 1425.9 1177.9 1068.8 1002.6
4sr30 1118.0 1427.1 1218.8 2094.0 1773.7 2212.6 2015.8 2179.5 1823.0 1491.3 1352.3
4sr40 1271.4 1821.4 1536.1 2855.4 2467.9 3033.3 2905.3 2933.5 2462.6 1909.1 1779.1
4sr50 1530.1 2246.5 1920.1 3632.1 3210.4 3833.5 3760.5 3722.4 3169.8 2334.6 2182.4
5sr15 1203.9 1274.3 1225.1 1525.2 1345.1 1578.8 1484.3 1566.9 1378.2 1306.0 1239.2
5sr18 1343.9 1479.1 1394.6 1847.0 1621.6 1939.4 1792.8 1892.3 1671.8 1516.2 1407.0
5sr25 1627.5 1957.7 1767.6 2608.6 2357.2 2711.4 2567.1 2657.7 2365.6 2016.0 1879.2
5sr30 1852.4 2308.7 2013.3 3159.7 2839.7 3240.3 3149.0 3166.0 2871.0 2340.3 2174.3
6sr12 1436.8 1480.0 1451.5 1635.0 1532.7 1704.3 1598.6 1685.0 1546.1 1492.6 1452.6
6sr15 1654.6 1773.6 1696.9 2076.1 1917.1 2120.1 2025.8 2091.5 1948.8 1793.1 1714.8
6sr18 1856.3 2051.9 1923.0 2477.4 2266.7 2556.0 2470.8 2507.0 2337.8 2088.6 1974.9
Avg 1432.8 1713.0 1553.9 2297.5 2041.2 2397.5 2278.2 2348.0 2068.4 1759.7 1650.8

RSE - 19.6 8.5 60.4 42.5 67.3 59.0 63.9 44.4 22.8 15.2

3.4.9.5 General results

Here we compare the results obtained by the best local searches. The best heuristics
from each section were: Simple Swap, 3-opt, DV3, and the ILS combined with SDV2.
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The multidimensional assignment problem 89

Table 3.19: Geometric and Product under basics combined with MLS and ILS.
Inst. Best Simple swap Inversion Circular 4-vertex perm. Basics combined

known MLS ILS MLS ILS MLS ILS MLS ILS MLS ILS

4g20 2380.5 2380.5 2380.5 2790.8 2439.1 2981.0 2676.9 3118.7 2530.1 2380.5 2380.5
4g30 3015.2 3015.7 3015.2 4252.0 3420.9 4560.2 4079.9 4727.0 3595.9 3020.0 3016.1
4g40 3523.8 3533.2 3524.8 5734.8 4676.1 6193.4 5704.3 6389.6 4831.9 3551.2 3529.7
4g50 4102.3 4124.1 4105.7 7273.2 6161.3 7888.6 7536.2 8110.4 6369.2 4158.2 4124.7
5g15 3423.7 3423.7 3423.7 3791.4 3456.8 3964.3 3686.6 4092.8 3575.8 3423.7 3423.7
5g18 3799.3 3799.3 3799.3 4483.5 3985.8 4739.1 4436.1 4889.8 4162.0 3799.7 3799.3
5g25 4594.9 4595.3 4596.8 6209.4 5387.9 6617.3 6213.8 6916.6 5688.7 4597.6 4600.5
5g30 5036.8 5043.3 5036.8 7438.4 6431.7 7865.8 7460.8 8265.1 6661.0 5060.1 5044.5
6g12 4483.7 4483.7 4483.7 4502.5 4743.2 4675.7 4939.6 4630.3 5090.4 4483.7 4483.7
6g15 5242.4 5242.4 5242.4 5461.9 5874.1 5927.4 6250.4 5688.9 6433.5 5242.4 5243.2
6g18 5767.4 5767.4 5767.4 6279.2 6996.0 7065.2 7423.4 6568.9 7661.2 5772.4 5770.6
Ave 4124.5 4128.1 4125.1 5292.5 4870.3 5679.8 5491.6 5763.5 5145.4 4135.4 4128.8

RSE - 0.1 0.0 28.3 18.1 37.7 33.1 39.7 24.8 0.3 0.1

4p20 8397.3 8397.8 8397.4 8412.5 8401.2 8430.9 8415.7 8432.3 8408.0 8399.8 8398.4
4p30 13154.1 13155.2 13154.6 13190.5 13164.6 13244.5 13214.4 13243.7 13176.9 13156.4 13155.5
4p40 16810.0 16813.1 16810.6 16883.5 16842.1 16989.5 16942.1 17008.8 16864.3 16816.1 16815.7
4p50 20705.6 20712.2 20709.4 20831.5 20759.0 20986.1 20895.1 21027.2 20790.4 20716.8 20714.1
5p15 21422.8 22069.9 21590.8 22206.2 21844.3 23552.7 23700.0 23437.7 26873.4 23314.9 23104.7
5p18 23371.4 25469.1 24498.1 26176.2 25579.6 27205.5 30502.7 27961.8 29535.5 26972.0 29379.4
5p25 29693.0 36186.1 35200.8 37974.5 35536.0 39923.5 46782.5 41242.7 46310.8 38633.6 44389.0
5p30 34799.4 45473.7 42278.1 46339.3 43980.5 49689.9 53578.0 51106.3 52296.7 49222.3 51445.5
6p12 7421.0 18035.0 11242.8 19809.0 12511.0 22605.5 15384.5 25573.4 15088.4 20607.5 14164.8
6p15 8888.9 24992.8 14636.1 27116.2 17007.1 32411.4 23906.0 34078.7 22705.4 30613.3 21627.7
6p18 9600.2 32754.3 18541.8 37470.3 21715.2 41529.8 30234.1 46548.8 29696.8 38673.8 26970.7
Ave 17660.3 24005.4 20641.9 25128.2 21576.4 26960.8 25777.7 28151 25613.3 26102.4 24560.5

RSE - 35.9 16.9 42.3 22.2 52.7 46.0 59.4 45.0 47.8 39.1

We also decided to add the results of the ILS combined with Simple Swap and 3-
opt in order to have a better reference about the improvement obtained with these
combination.

Tables 3.22 and 3.23 show the general results obtained among the best heuristics
from each type. The 3-opt and DV2 correspond with the local searches proposed
by [Karapetyan and Gutin, 2011a]. The rest of the heuristics were proposed in this
thesis. We can observe that the DV2 (ILS) and the DV3 provided us with the best
local searches to solve MAP. DV2 (ILS) obtained the best results for the families
of instances Clique and Square Root whereas DV3 obtained the best results for the
families of instances Product, Random, and Geometric.

3.5 A new simple memetic algorithm for the MAP

The concept of memetic algorithm comes from the idea of combining a genetic al-
gorithm with a local search. A genetic algorithm is a metaheuristic inspired by the
process of natural selection.

Genetic algorithms approach optimization problems by considering some bio-
inspired operators such as mutation, crossover and selection. A genetic algorithm
requires a genetic representation of a feasible solution as well as a fitness function to
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Table 3.20: Random, Clique and Square Root under k-opt and DV2 combined with
MLS and ILS.

Instance Best 2-opt 3-opt SDV2 (GK) DV2 (GK)
known MLS ILS MLS ILS MLS ILS MLS ILS

4r20 20 37.4 28.7 23.2 22.4 31.0 27.8 28.2 25.2
4r30 30 57.1 43.0 33.9 32.8 42.3 38.1 38.2 36.0
4r40 40 74.0 58.3 43.8 42.7 51.1 46.9 46.5 44.3
4r50 50 89.9 71.7 53.3 52.6 60.4 55.7 54.9 53.7
5r15 15 21.8 18.2 15.2 15.1 23.7 20.9 18.8 18.0
5r18 18 26.5 22.3 18.1 18.0 27.3 24.0 21.8 21.4
5r25 25 37.0 32.1 25.2 25.1 35.2 32.4 29.5 29.3
5r30 30 45.5 39.1 30.2 30.0 40.2 37.8 34.2 33.7
6r12 12 13.1 12.6 12.0 12.0 17.8 16.7 13.5 13.7
6r15 15 18.0 16.9 15.0 15.0 23.1 22.0 17.2 17.1
6r18 18 22.3 20.4 18.0 18.0 26.0 25.0 20.2 20.0
Avg 24.8 40.2 33.0 26.2 25.8 34.4 31.6 29.4 28.4

RSE - 62.1 33.1 5.6 4.0 38.7 27.4 18.5 14.5

4cq20 1901.8 1999.2 1921.5 1937.4 1919.2 1914.8 1907.7 1918.2 1910.9
4cq30 2281.9 2728.1 2391.0 2490.0 2378.3 2405.6 2317.8 2421.7 2331.9
4cq40 2606.3 3392.0 2899.9 3047.7 2923.2 2892.8 2697.2 2878.8 2705.9
4cq50 3032.6 4189.5 3520.1 3688.7 3481.6 3408.0 3182.8 3415.0 3166.6
5cq15 3110.7 3183.1 3129.6 3131.6 3135.8 3137.1 3111.8 3130.0 3116.7
5cq18 3458.6 3628.6 3488.4 3544.8 3514.4 3518.4 3491.1 3526.0 3485.2
5cq25 4192.7 4754.4 4346.8 4559.4 4397.0 4439.6 4289.0 4449.6 4268.8
5cq30 4671.7 5526.4 4974.1 5242.5 5033.0 5045.3 4772.5 5080.4 4843.3
6cq12 4505.6 4529.6 4516.9 4550.4 4521.9 4522.3 4516.4 4528.4 4521.9
6cq15 5133.4 5315.1 5178.4 5287.8 5213.0 5221.3 5156.4 5223.1 5179.0
6cq18 5765.5 6140.0 5879.8 6081.5 5952.3 5968.6 5826.3 5991.4 5852.3

Avg 3696.5 4126.0 3840.6 3960.2 3860.9 3861.3 3751.7 3869.3 3762.0

RSE - 11.6 3.9 7.1 4.5 4.5 1.5 4.7 1.8

4sr20 929.3 1006.6 942.7 947.9 945.1 939.2 936.8 942.9 937.5
4sr30 1118.0 1376.6 1194.5 1253.5 1173.5 1209.5 1134.8 1202.3 1146.5
4sr40 1271.4 1749.7 1464.7 1525.6 1437.7 1451.7 1340.3 1444.7 1340.6
4sr50 1491.1 2156.3 1767.6 1854.1 1760.5 1711.5 1564.6 1724.7 1572.4
5sr15 1203.9 1238.5 1211.2 1223.4 1213.7 1219.4 1209.8 1214.6 1207.9
5sr18 1343.9 1440.3 1363.4 1397.8 1358.8 1389.4 1358.5 1379.3 1358.7
5sr25 1627.5 1888.0 1720.2 1800.9 1728.5 1755.9 1685.3 1757.2 1675.5
5sr30 1828.1 2208.9 1966.0 2083.3 2007.7 2017.2 1890.8 2020.2 1897.4
6sr12 1436.8 1458.3 1442.8 1464.1 1446.9 1442.2 1441.5 1445.6 1439.8
6sr15 1654.6 1732.4 1672.8 1728.1 1686.0 1691.8 1671.0 1700.7 1668.0
6sr18 1856.3 2011.6 1898.4 1985.2 1933.1 1932.5 1886.4 1950.3 1897.1
Avg 1432.8 1660.7 1513.1 1569.4 1517.4 1523.7 1465.4 1525.7 1467.4

RSE - 15.9 5.6 9.5 5.9 6.3 2.3 6.5 2.4

evaluate the quality of the solution. The advantage of this type of technique is that
it works on a set of multiple feasible solutions and improve them by taking the best
individuals among an evolutionary process. The diversification of individuals avoids
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Table 3.21: Geometric and Product under k-opt and DV2 combined with MLS and
ILS.

Instance Best 2-opt 3-opt SDV2 (GK) DV2 (GK)
known MLS ILS MLS ILS MLS ILS MLS ILS

4g20 2380.5 2380.5 2380.5 2380.5 2380.5 2380.5 2380.5 2380.5 2380.5
4g30 3015.2 3015.4 3018.4 3016.6 3021.3 3015.2 3015.2 3015.2 3015.2
4g40 3523.8 3526.7 3527.1 3534.2 3540.7 3523.8 3523.8 3523.8 3523.8
4g50 4102.3 4115.7 4104.4 4114.6 4113.8 4102.3 4102.3 4102.3 4102.3
5g15 3423.7 3423.7 3423.7 3423.7 3424.7 3423.7 3423.7 3423.7 3423.7
5g18 3799.3 3799.3 3799.3 3799.3 3801.1 3799.3 3799.3 3799.3 3799.3
5g25 4594.9 4594.9 4595.4 4600.1 4600.6 4594.9 4594.9 4594.9 4594.9
5g30 5036.8 5040.9 5037.2 5048.9 5058.5 5036.9 5036.8 5036.8 5036.8
6g12 4483.7 4483.7 4483.7 4483.7 4486.4 4483.7 4483.7 4483.7 4483.7
6g15 5242.4 5242.4 5242.4 5244.4 5248.4 5242.4 5242.4 5242.4 5242.4
6g18 5767.4 5767.4 5771.1 5772.8 5785.5 5767.4 5767.4 5767.4 5767.4
Avg 4124.5 4126.4 4125.7 4129.0 4132.9 4124.6 4124.5 4124.5 4124.5

RSE - 0.0 0.0 0.1 0.2 0.0 0.0 0.0 0.0

4p20 8397.3 8397.4 8397.4 8397.4 8397.3 8398.3 8397.5 8397.4 8397.4
4p30 13154.1 13154.2 13154.2 13154.2 13154.2 13154.9 13154.6 13154.2 13154.2
4p40 16810.0 16810.9 16810.3 16810.2 16810.2 16811.8 16810.4 16810.4 16810.2
4p50 20705.6 20708.2 20707.0 20706.2 20705.9 20710.4 20707.9 20707.2 20706.1
5p15 21422.8 21424.5 21423.0 21423.1 21422.8 22428.2 22221.3 21424.2 21423.2
5p18 23371.4 23460.9 23457.9 23371.8 23508.0 25476.4 24108.7 24080.9 23457.9
5p25 29693.0 31755.9 30681.7 30474.7 30334.0 36165.7 35753.5 32973.6 32772.1
5p30 34799.4 38305.3 36380.8 35668.9 36264.7 45499.9 43844.8 39066.4 38584.5
6p12 7421.0 8688.1 7844.9 7842.1 7749.9 19155.9 11931.6 9029.1 8232.8
6p15 8888.9 11527.9 10274.0 10336.8 10216.6 25725.7 15527.8 10861.9 10602.2
6p18 9600.2 13682.4 11667.5 11666.4 10623.7 32859.3 16444.1 12220.0 11436.0
Avg 17660.3 18901.4 18254.4 18168.3 18107.9 24217.0 20809.3 18975.0 18688.8

RSE - 7.0 3.4 2.9 2.5 37.1 17.8 7.4 5.8

to direct the set of feasible solutions to a local optimum since it allows to explore
several neighborhoods at the same time.

Algorithm 19 shows the general structure of a genetic algorithm. Let generations
be the number of evolutionary steps, let N be the required size for the population
among the evolutionary process and, let mutationProbability be the probability of
mutating an individual. A genetic algorithm works as follows: at first, all the indi-
viduals are created according to the required size N . Then a total of generations
iterations are executed. At each iteration, we perform first a selection of the best
individuals. Based on the selected individuals, a set of new individuals is created.
Finally, with a low probability, some mutations are applied to the individuals. It is
expected to have better individuals as long as the generations pass.

In a memetic algorithm the main idea is to mutate the individuals by improving
them instead of by performing random changes over them. Such improvements can be
done by a local search heuristic. The disadvantage is that the technique can direct the
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Table 3.22: General results for Random, Clique and Square Root under the best local
searches.

Instance Best Simple S. swap 3-opt 3-opt DV2 DV2 DV3
known swap (ILS) (ILS) (ILS)

4r20 20 66.8 36.3 25.7 22.4 28.2 25.2 20.0
4r30 30 92.4 60.2 35.3 32.8 38.2 36.0 30.0
4r40 40 110.4 77.1 44.0 42.7 46.5 44.3 40.0
4r50 50 132.2 94.4 53.3 52.6 54.9 53.7 50.0
5r15 15 50.8 26.9 16.5 15.1 18.8 18.0 15.0
5r18 18 55.4 32.4 19.0 18.0 21.8 21.4 18.0
5r25 25 72.3 47.5 25.4 25.1 29.5 29.3 25.0
5r30 30 81.4 57.1 30.1 30.0 34.2 33.7 30.0
6r12 12 39.8 20.1 12.0 12.0 13.5 13.7 12.0
6r15 15 47.0 26.4 15.0 15.0 17.2 17.1 15.0
6r18 18 52.8 34.9 18.0 18.0 20.2 20.0 18.0
Avg 24.8 72.8 46.7 26.8 25.8 29.4 28.4 24.8

RSE - 193.5 88.3 8.1 4.0 18.5 14.5 0.0

4cq20 1901.8 2235.4 1929.1 1983.5 1919.2 1918.2 1910.9 1909.0
4cq30 2281.9 3012.3 2440.5 2549.9 2378.3 2421.7 2331.9 2322.6
4cq40 2606.3 3664.5 3015.4 3055.3 2923.2 2878.8 2705.9 2714.2
4cq50 3032.6 4441.9 3696.5 3670.3 3481.6 3415.0 3166.6 3144.8
5cq15 3110.7 3438.0 3136.3 3185.3 3135.8 3130.0 3116.7 3128.0
5cq18 3458.6 3962.4 3509.4 3597.3 3514.4 3526.0 3485.2 3507.9
5cq25 4192.7 5134.1 4380.2 4562.1 4397.0 4449.6 4268.8 4337.2
5cq30 4676.4 5948.4 5028.6 5237.3 5033.0 5080.4 4843.3 4886.1
6cq12 4505.6 4842.5 4529.7 4577.6 4521.9 4528.4 4521.9 4532.6
6cq15 5133.4 5702.1 5189.4 5309.8 5213.0 5223.1 5179.0 5216.7
6cq18 5765.5 6575.8 5956.2 6041.8 5952.3 5991.4 5852.3 5895.5

Avg 3696.4 4450.7 3891.9 3979.1 3860.9 3869.3 3762.0 3781.3

RSE - 20.4 5.3 7.6 4.5 4.7 1.8 2.3

4sr20 929.3 1123 946 979.5 945.1 942.9 937.5 937.4
4sr30 1118.0 1524.2 1218.8 1272.5 1173.5 1202.3 1146.5 1153.2
4sr40 1271.4 1914.7 1536.1 1527.9 1437.7 1444.7 1340.6 1337.0
4sr50 1491.1 2320.9 1920.1 1852.0 1760.5 1724.7 1572.4 1551.6
5sr15 1203.9 1360.2 1225.1 1248.6 1213.7 1214.6 1207.9 1215.4
5sr18 1343.9 1582.6 1394.6 1416.6 1358.8 1379.3 1358.7 1369.3
5sr25 1627.5 2071.4 1767.6 1814.0 1728.5 1757.2 1675.5 1703.9
5sr30 1828.1 2414.8 2013.3 2080.0 2007.7 2020.2 1897.4 1935.3
6sr12 1436.8 1557.0 1451.5 1468.3 1446.9 1445.6 1439.8 1447.6
6sr15 1654.6 1862.3 1696.9 1730.9 1686.0 1700.7 1668.0 1689.1
6sr18 1856.3 2151.4 1923.0 1979.0 1933.1 1950.3 1897.1 1911.9
Avg 1432.8 1807.5 1553.9 1579 1517.4 1525.7 1467.4 1477.4

RSE - 26.2 8.5 10.2 5.9 6.5 2.4 3.1

individuals to some local optimum because the diversification provided by random
mutations is lost. In some cases, one can apply some random changes over a low
proportion of the individuals in order to avoid losing the diversity.
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Table 3.23: General results for Geometric and Product under the best local searches.
Instance Best Simple S. swap 3-opt 3-opt DV2 DV2 DV3

known swap (ILS) (ILS) (ILS)

4g20 2380.5 2383.2 2380.5 2380.5 2380.5 2380.5 2380.5 2380.5
4g30 3015.2 3026.9 3015.2 3017.3 3021.3 3015.2 3015.2 3015.2
4g40 3523.8 3553.0 3524.8 3529.6 3540.7 3523.8 3523.8 3523.8
4g50 4102.3 4148.9 4105.7 4112.9 4113.8 4102.3 4102.3 4102.3
5g15 3423.7 3427.2 3423.7 3423.7 3424.7 3423.7 3423.7 3423.7
5g18 3799.3 3807.7 3799.3 3799.3 3801.1 3799.3 3799.3 3799.3
5g25 4594.9 4615.4 4596.8 4596.5 4600.6 4594.9 4594.9 4594.9
5g30 5036.8 5078.1 5036.8 5040.2 5058.5 5036.8 5036.8 5036.8
6g12 4483.7 4487.3 4483.7 4483.7 4486.4 4483.7 4483.7 4483.7
6g15 5242.4 5252.8 5242.4 5243.1 5248.4 5242.4 5242.4 5242.4
6g18 5767.4 5785.7 5767.4 5767.4 5785.5 5767.4 5767.4 5767.4
Avg 4124.5 4142.4 4125.1 4126.7 4132.9 4124.5 4124.5 4124.5

RSE - 0.4 0.0 0.1 0.2 0.0 0.0 0.0

4p20 8397.3 8402.9 8397.4 8397.4 8397.3 8397.4 8397.4 8397.3
4p30 13154.1 13159.0 13154.6 13154.2 13154.2 13154.2 13154.2 13154.1
4p40 16810.0 16817.4 16810.6 16810.2 16810.2 16810.4 16810.2 16810.0
4p50 20705.6 20716.1 20709.4 20706.3 20705.9 20707.2 20706.1 20705.6
5p15 21422.8 27070.6 21590.8 21423.4 21422.8 21424.2 21423.2 21422.8
5p18 23371.4 29763.9 24498.1 24012.4 23508.0 24080.9 23457.9 23371.8
5p25 29693.0 43046.5 35200.8 30475.0 30334.0 32973.6 32772.1 30258.4
5p30 34799.4 50234.6 42278.1 35811.6 36264.7 39066.4 38584.5 35231.3
6p12 7421.0 30578.3 11242.8 8172.2 7749.9 9029.1 8232.8 7664.0
6p15 8888.9 39227.4 14636.1 10356.6 10216.6 10861.9 10602.2 8888.9
6p18 9600.2 47585.2 18541.8 11379.1 10623.7 12220.0 11436.0 9610.1
Avg 17660.3 29691.1 20641.9 18245.3 18107.9 18975.0 18688.8 17774.0

RSE - 68.1 16.9 3.3 2.5 7.4 5.8 0.6

The first memetic algorithm for the MAP was proposed by [Huang and Lim, 2006].
It was called LSGA (Local Searching Genetic Algorithm) and consisted on a basic
structure of a genetic algorithm with an initial population of 100 individuals randomly
generated, a crossover operator partially mapped crossover, the SDV2 instead of a
mutation operator, a basic selection similar to the elitist selection, and a stopping
criteria consisting on ending either after 10 generations of no improvement or when
in the set of individuals there are many duplicates. Figure 3.6 shows the general
structure of an iteration of the LSGA.

We introduce a Simple Memetic Algorithm (SMA) similar to the LSGA. The main
difference is that we evaluated several crossover operators, selection functions, local
search heuristics, and some mutations, in order to obtain a more robust memetic
algorithm that provided us higher quality solutions. In addition, the structure of our
SMA is a bit more sophisticated.

Algorithm 20 shows the structure of our SMA. SMA returns the best individual
found among all the iterations. In the initialization, the population is randomly
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Algorithm 19: The general structure of a genetic algorithm.

Input: generations: The number of generations to iterate.
N : The size of the population among the iterations.
mutationProbability: The probability to mutate an individual.
Result: best individual: The best individual among all the generations.

1 Set individuals := Initialization(N);
2 Set iterations := 1;
3 while iterations ≤ generations do
4 Set individuals := SelectionOfSurvivors(individuals);
5 Set offspring := Crossover(individuals);
6 foreach individual in offspring do
7 Set individual := MutateIndividual(individual, mutationProbability);

8 Set individuals := offspring;
9 Set iterations := iterations +1;

10 return {GetBestOfIndividuals(individuals)};

Figure 3.6: Structure of the LSGA proposed by Huang and Lim (2006).

generated and improved by a local search heuristic, then the first best individual
is obtained. At each iteration, we first apply a crossover method but, instead of
obtaining an offspring equal to the required size of the population, we just generate a
proportion determined by the input parameter survivorPerc. These individuals will
be the first part of the next generation. After the crossing, each individual from the
offspring may be improved by the local search heuristic. The second part of the new
generation of individuals is obtained from the selection method. Just the proportion
of the current population indicated by the input parameter survivorPerc is going
to survive. At the end of each iteration, some individuals of the new population are
mutated with a probability of mutationProb. Finally, we update the best individual
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by considering the individuals from the next generations.

Algorithm 20: A new memetic algorithm for MAP.

Input: G = (X1, . . . , Xs;E). Weighted hypergraph of a sAP of size n.
generations. The number of generations to iterate.
crossoverMethod. The type of crossover method to be used.
LSHMethod. The type of local search heuristic to be used.
mutationMethod. The type of mutation method to be used.
mutationProb. The probability to mutate an individual.
N. The size fo the population among the iterations.
selectionMethod. The type of selection method to be used.
survivorPerc. The % of survivor individuals from the previous generation.
Result: best individual: The best fitted individual.

1 Set individuals := ∅;
2 while |individuals| ≤ N do
3 Set new individual := FeasibleRandomGeneratedSolutionForMAP(G);
4 Set new individual := LSH(individual, LSHMethod);
5 Set individuals := individuals ∪ new individual;

6 Set best individual := GetBestOfIndividuals(individuals);
7 Set iterations := 1;
8 while iterations ≤ generations do
9 Set offspring := Crossover(individuals, crossoverMethod, 1.0 -

survivorPerc);
10 foreach off in offspring do
11 Set off := LSH(off, LSHMethod);

12 Set new individuals := Selection(individuals, selectionMethod,
survivorPerc);

13 Set individuals := new individuals ∪ offspring;
14 foreach individual in individuals do
15 Set individual := Mutate(individual, mutationMethod, mutationProb);
16 Set individual := LSH(individual, LSHMethod);

17 Set best individual := GetBestOfIndividuals(individuals ∪ best individual);
18 Set iterations := iterations+1;

19 return {best individual};

One of the main differences of our memetic algorithm against others is that we
select uniformly at random two individuals to be crossed instead of using a selection
function. In our case, we decided to use the selection function to select a set of
individuals from the current generation to be part of the next generation joined with
the individuals resulting from the crossover function. By performing this process we
allow a higher diversification as well as increase the fitness of the population. Even
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when a good individual can be crossed with an individual of low quality, the local
search heuristic allows to improve the resulted individual.

3.5.1 Genetic representation and fitness function

A genetic representation is the way of representing solutions in an evolutionary
method. The genetic representation must have all the characteristics that allow us
to evaluate the quality of a feasible solution.

The most common representation of a solution is as a binary array. In our case we
decided to adopt the genetic representation as a set of s permutations, where each of
the s dimensions of a feasible solution corresponds with a permutation of the vertices
on that dimension. This representation is the same used for the feasible solutions of
our developed local search heuristics and will allow us to incorporate them as part of
our memetic algorithm. The disadvantage of this representation is that the crossing
of individuals, in most cases, produces infeasible solutions which must be repaired.

The fitness function is the way to evaluate how close to the optimum is a feasible
solution. Our fitness function consists on summing the weights of the hyperedges of
each feasible solution. Let ci be the solution value of some individual i, its fitness
value is given by fi = 1/ci. A solution A is more apt than a solution B if the sum of
the weights of the vectors of A is lower than the sum of the weights of the vector of
B. The process of evaluating each solution takes O(sn) time.

3.5.2 The selection function

In our case, the selection function allows us to obtain the next generation of individ-
uals from a current population. There are several methods to perform the selection
for the next generation of individuals. We implemented three different selection func-
tions: deterministic, tournament, and roulette wheel selection.

3.5.2.1 Deterministic selection

This strategy consists in choosing a limited number of the best candidates of a popu-
lation to survive for the next generation. The number of elite individuals should not
be high, otherwise the population will tend to degenerate and we lose diversity.

Algorithm 21 shows this procedure. It is quite simple, the first step consists in
ordering the individuals according to its fitness function. Then the best survivorPerc
percent of the individuals is selected to be returned. Since only a sorting is required,
this process takes O(N logN) time where N is the number of individuals in the
population.

The main advantage of this strategy is that it tries to avoid previously discarded
solutions that were not so good. The main disadvantage is that it may cause a fast
convergence to local optimums.

UAM Azcapotzalco Sergio Pérez PAP through the MAP
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Algorithm 21: The deterministic selection function.

Input: Individuals. A set of assignments.
survivorPerc. The percentage of survivor individuals from the current set.
Result: survivors: The set of survivor individuals.

1 orderedIndividuals := Sort individuals descending by its fitness value;
2 survivors := Select the best survivorPerc individuals from orderedIndividuals;
3 return {survivors};

3.5.2.2 Tournament selection

This is a rank-based strategy. It consists on randomly choosing a set of individuals
and performing a set of tournaments between them. The winner of each tournament
is selected to be part of the next generation. If the size of a tournament is small,
then weak individuals have a bigger chance to be selected, whereas if the size of a
tournament is large, then weak individuals have a lower chance.

Algorithm 22 shows this procedure. In the first step, we perform a random per-
mutation of the elements from {1, . . . , N}. Such permutation will be used to match
in a tournament the 1st and the 2nd individuals, the 3rd and the 4th individuals and
so on until we have the required population size. The winner from each tournament
is added to the survivors set. A random permutation of the individuals can be per-
formed in O(N) time and the tournaments are comparisons between a pair of fitness
functions, therefore this procedure takes O(N) time.

Algorithm 22: The tournament selection function.

Input: Individuals. A set of assignments.
survivorPerc. The percentage of survivor individuals from the current set.
Result: survivors: The set of survivor individuals.

1 Set N := |individuals|;
2 Set permutation := Make a random permutation of the elements from 1, . . . , N ;
3 Set survivors := ∅;
4 Set index := 1;
5 Set permutation := permutation || permutation// || is for concatenation

6 while |survivors| < survivorPerc ∗ |individuals| do
7 Set winner := MakeTournament(individuals[ permutation[index] ],

individuals[ permutation[index + 1]]);
8 Set survivors := survivors ∪ winner;
9 Set index := index + 2;

10 return {survivors};

The main advantage of this strategy is that it promotes the diversification of
individuals. The main disadvantage is that the best individuals can be discarded
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from the previous generation.

3.5.2.3 Roulette wheel selection

This is strategy that selects individuals according to some probability of selection
determined by the fitness of each individual. This strategy is also known as fitness
proportionate selection. The idea is that individuals with a better fitness have a
higher chance to be selected whereas lower fitness individuals have a lower probability
of being selected. Let fi be the fitness of the individual i of the current population,
then its probability of being selected is:

pi =
fi∑N
i=1 fi

(3.17)

Algorithm 23 shows this procedure. In the first step, the individuals are sorted in
descending order by its fitness value. The total fitness sum fitSum is calculated and
an array dp stores the cumulative fitness sum until each sorted individual. Then a set
of survivorPerc ·N iterations are performed. At each iteration, a uniformly random
value α is generated from the reals interval [0, fitSum). Then we perform a binary
search over the array dp to find the first index j at which α ≤ dp[j]. Then, the j-th
individual is added to the next generation.

Algorithm 23: The roulette wheel selection function.

Input: Individuals. A set of assignments.
survivorPerc. The percentage of survivor individuals from the current set.
Result: survivors: The set of survivor individuals.

1 Set N := |individuals|;
2 Set orderedIndividuals := Sort individuals descending by its fitness value;
3 Set fitnessSum := 0;
4 Set dp := An array of N elements;
5 foreach index in 1 : N do
6 Set fitnessSum := fitnessSum + fitness(orderedIndividuals[i]);
7 Set dp[index] := fitnessSum;

8 Set survivors := ∅;
9 while |survivors| < survivorPerc ∗ |orderedIndividuals| do

10 Set alpha := random() % fitnessSum;
11 Set index := binarySearch(dp, dp + N, alpha);

// returns the lowest index with alpha ≤ dp[index]

12 Set survivors := survivors ∪ orderedIndividuals[index];

13 return {survivors};

The main advantage of this function is that all individuals have a probability of
being selected according to its fitness value so the expected behavior is to have a

UAM Azcapotzalco Sergio Pérez PAP through the MAP
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bigger proportion of the most apt individuals but, it is allowed to take some weak
individuals, promoting a higher diversification. The main disadvantage is that the
same individual can be selected to appear more than once for the next generation,
especially the best fitted individuals. The binary search in the main cycle takes
O(logN) time and survivorPerc ·N iterations are required, therefore the complexity
is O(survivorPerc ·N · logN).

3.5.3 The crossover operator

The crossover is a genetic operator used to generate new individuals (chromosomes)
from one generation to the next. This is a process analogous to biological reproduc-
tion. A crossover takes some characteristics from two or more parents and combines
them to create a new individual.

Formerly, the selection function is used to select the individuals to cross, however
we decided to choose uniformly at random two elements from the current genera-
tion to cross them, even if they have very different fitness values. The main reason
to apply this criteria is that a new individual is always improved through a local
search, therefore if the new individual from the crossing is not so good, then it will
be improved, resulting in an individual that, in fact, can be better than its par-
ents. In the works proposed by [Huang and Lim, 2006] as well as in the proposed
by [Karapetyan and Gutin, 2011b] they performed this type of crossing obtaining
good results. In addition, in our experimental evaluation we observed that this al-
lows us to have a higher diversity among the generations. We observed that this
criteria is good in this case because the local searches that we use as improvement
use to provide high quality solutions, the main problem occurs when two good solu-
tions are combined, since they are very similar then in most of the cases we observed
that it is not obtained a better solution. However, by combining two solutions that
are different it allows to create a very different individual that is able to consider a
completely new neighborhood. Further analysis could be performed but in our expe-
rience this alternative provided us with really good results this is why we decided to
follow a similar line as other authors.

We implemented three basic crossover techniques: partially mapped crossover,
cycle crossover, and order crossover. All this crossover techniques were implemented
to work over permutations. Recall that the vertices on each dimension are represented
as a permutation.

3.5.3.1 Partially mapped crossover

The partially mapped crossover (PMX) was introduced by [Goldberg and Lingle, 1985]
and was proposed for the TSP. The PMX consists on passing an ordered subsegment
tour from the parents to the offspring. A string portion from one parent is mapped
onto a string portion from the other parent and the remaining information is ex-
changed. If the resulting offspring is invalid it must be repaired.
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Algorithm 24 shows the PMX procedure. Initially we select two points for a
crossing segment and each individual of the offspring is copied from its corresponding
parents. Then, the segment indicated by the crossing points is swapped between the
two elements of the offspring. If required, the repairing process consists on changing
the duplicated values (out of the exchanged segment) of each permutation by its co-
rresponding mapped value from the other permutation. If the corresponding mapped
value is already present in the current permutation then the mapped value should be
evaluated with its corresponding mapped value from the other permutation and so
on, in a cyclic way, until a non present value in the current permutation is reached.

Algorithm 24: The partially mapped crossover.

Input: ind1, ind2. The parents to cross.
Result: o1 ∪ o2. The two new individuals after the crossing.

1 Set p1 := random() % father1.assignment.size;
2 Set p2 := random() % father2.assignment.size;
3 Set p1 := min(p1, p2), p2 := max(p1, p2);
4 Set o1 := ind1;
5 Set o2 := ind2;
6 foreach index in p1:p2 do
7 swap(o1.assignment[index], o2.assignment[index]);

// Repair o1

8 foreach dim in 1:s do
9 Set already := An array of n elements initialized with zeros;

10 foreach index in p1:p2 do
11 Set already[ o1.matching[index][dim] ] := index;

12 foreach index in 0 : (n− 1) do
13 if index < p1 or index > p2 then
14 while (next = already[o1.matching[index][dim]]) 6= 0 do
15 Set o1.matching[index][dim] = o2.matching[next][dim];

16 Repair o2 analogous to o1;
17 return {o1 ∪ o2};

Suppose we have the permutations ind1 = (2, 3, 5, 1, 4) and ind2 = (3, 5, 1, 4, 2)
and the crossing points p1 = 1 and p2 = 3. Then the corresponding offspring are
initialized as o1 = (2, 3, 5, 1, 4) and o2 = (3, 5, 1, 4, 2). The crossing step is as follows:[

o1 : (2, 3, 5, 1, 4)→ (2,5,1,4, 4)
o2 : (3, 5, 1, 4, 2)→ (3,3,5,1, 2)

]
.

We can observe that o1 has the second 4 repeated, then the cyclic process is 41 → 12,
11 → 52, 51 → 32, then 3 is the replacing value for the repeated 4. In o2 the first 3 is
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repeated, then the cyclic process is 32 → 51, 52 → 11, 12 → 41, then 4 is the replacing
value for the repeated 3.[

o1 : (2, 5, 1, 4, 4)→ (2, 5, 1, 4,3)
o2 : (3, 3, 5, 1, 2)→ (4, 3, 5, 1, 2)

]
.

Let n be the size of each permutation (which is in fact the number of vertices by
dimension) and s the number of permutations (dimensions) to repair, the swapping
process can be performed in O(n) time, whereas each repairing process can take O(n)
time and can require O(n) repairing processes. Then, the complexity of this operator
is O(sn2).

3.5.3.2 Cycle crossover

The cycle crossover (CX) is a procedure that consists on swapping the elements of
some cyclic permutation between the elements of two vectors. It consists on choosing
a random index and, for each permutation, it swaps all the elements from the two
parents that belong to the cyclic permutation that contains the element pointed by
the chosen index.

Algorithm 25 shows the CX procedure. Initially, we choose a uniformly random
index p1 in the interval [0, n) and each individual of the offspring is copied from its
corresponding parents. Then, the corresponding cyclic permutation at p1 is detected
and we move among all its elements. The two elements from each permutation vector
along the cyclic permutation are swapped.

Suppose we have the permutations ind1 = (2, 3, 1, 5, 4) and ind2 = (3, 1, 2, 4, 5)
and the chosen index p1 = 1. The corresponding offspring are o1 = (2, 3, 1, 5, 4) and
o2 = (3, 1, 2, 4, 5). The cyclic permutation is as follows:[

o1 : (2, 3, 1, 5, 4)→ (2,1, 1, 5, 4)→ (2, 1,2, 5, 4)→ (3, 1, 2, 5, 4)
o2 : (3, 1, 2, 4, 5)→ (3,3, 2, 4, 5)→ (3, 3,1, 4, 5)→ (2, 3, 1, 4, 5)

]
.

Since there are s permutations of size n this process takes O(sn) time. The advantage
of this procedure is that no repairing is required. The disadvantage is that if the cyclic
permutation includes all the elements of the permutation then no new individuals are
generated.

3.5.3.3 Order crossover

The order crossover was also introduced by [Goldberg and Lingle, 1985] for the TSP.
It is similar to the PMX crossover but with a different repairing process. The repairing
is performed by removing the duplicated values and replacing them by the missing
values but in the same order as they appear in the opposite parent.

Algorithm 26 shows the OX procedure. After the swapping process, as in PMX,
the repairing process is performed. All the duplicated elements out of the exchanged
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Algorithm 25: The cycle crossover.

Input: ind1, ind2. The parents to cross.
Result: o1 ∪ o2. The two new individuals after the crossing.

1 Set p1 := random() % ind1.assignment.size;
2 Set o1 := ind1;
3 Set o2 := ind2;
4 Let s be the number of dimensions of the assignment;
5 Let n be the number of vertices by dimension;
6 foreach dim in 1:s do
7 Set indexes := An array of n elements;
8 foreach index in 1:n do
9 Set indexes[ o1.matching[i][dim] ] := index;

10 Set start vertex := o1.matching[point][dim];
11 Set index := point;
12 while start vertex 6= o2.matching[index][dim] do
13 Set next point := o2.matching[index][dim];
14 swap(o1.assignment[index][dim], o2.assignment[index][dim]);
15 Set index := indexes[ next point ];

16 swap(o1.assignment[index][dim], o2.assignment[index][dim]);

17 return {o1 ∪ o2};

segment are replaced with the missing elements of the corresponding permutation
according with their position in the opposite parent, going from left to right.

Suppose we have the permutations ind1 = (5, 3, 1, 2, 4) and ind2 = (3, 1, 2, 4, 5)
and the crossing points p1 = 2 and p2 = 4. The corresponding offspring are o1 =
(5, 3, 1, 2, 4) and o2 = (3, 1, 2, 4, 5). The crossing step is as follows:[

o1 : (5, 3, 1, 2, 4)→ (2,1,2,4, 4)
o2 : (3, 1, 2, 4, 5)→ (3,3,1,2, 5)

]
.

Then the repairing process is as follows:[
o1 : (2, 1, 2, 5, 4)→ (∗, 1, 2, 4, ∗)→ (3, 1, 2, 4,5)
o2 : (3, 3, 1, 4, 5)→ (∗, 3, 1, 4, 5)→ (2, 3, 1, 4, 5)

]
.

Since there are s permutations of size n this process takes O(sn) time. The advantage
of this procedure is that the repairing process is faster than in PMX. The disadvantage
is that the general structure of new individuals can be very different.

3.5.4 The mutation operator

Mutation is a genetic operator used to maintain the diversity from one generation
to the next. In a mutation process the original solution can be changed completely.
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The multidimensional assignment problem 103

Algorithm 26: The ordered crossover.

Input: ind1, ind2. The parents to cross.
Result: o1 ∪ o2. The two new individuals after the crossing.

1 Set p1 := random() % father1.assignment.size;
2 Set p2 := random() % father2.assignment.size;
3 Set p1 := min(p1, p2), p2 := max(p1, p2);
4 Set o1 := ind1;
5 Set o2 := ind2;
6 foreach index in p1:p2 do
7 swap(o1.assignment[index], o2.assignment[index]);

// Repair o1

8 foreach dim in 1:s do
9 Set flag := An array of n booleans;

10 Set vertices order := An array of n integers;
11 foreach index in 0 : (n− 1) do

// Set true if p1 ≤ i and i ≤ p2, otherwise set false

12 Set flag[ o1.matching[index][dim] ] := (p1 ≤ i and i ≤ p2);
13 Set vertices order[index] := ind2.matching[index][dim];

14 Set next := 0;
15 foreach index in 0 : (n− 1) do
16 if index < p1 or index > p2 then
17 while next < n and flag[vertices order[next]] = True do
18 Set next := next + 1;

19 Set o1.matching[index][dim] = vertices order[next];
20 Set next := next + 1;

21 Repair o2 analogous to o1;
22 return {o1 ∪ o2};

The mutation process should occur with a low probability over the individuals of a
population.

We implemented two different mutations that are followed by an improvement
through a local search. In this way, even when the mutated individual can be very
different to its original version, the local search will be able to increase the quality of
such individual. The implemented mutations are the analogous procedures to some
of our basic local search heuristics.

3.5.4.1 The swapping mutation

The swapping mutation SM performs slight changes on a feasible solution. This
mutation is similar to the simple swap heuristic. This operator consists on choosing
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two arbitrary indices from each permutation and swapping them.

Algorithm 27 shows the SM procedure. For each dimension, two random indices,
p1 and p2 are swapped. We decided to swap different points from each dimension
because if we swap the same vertices at all the dimensions it only will change the
vectors of place without representing any change in the current solution. By swapping
a different pair of vertices at each dimension we will make changes in up to 2s vectors.

Algorithm 27: The swapping mutation.

Input: ind. The individual to mutate.
Result: ind. The individual mutated.

1 foreach dim in 1 : s do
2 Set p1 := random() % ind.assignment.size;
3 Set p2 := random() % ind.assignment.size;
4 swap(ind.assignment[p1][dim], ind.assignment[p2][dim]);

5 return {ind};

There are s changes performed in O(1) time each, so the complexity of this pro-
cedure is O(s).

3.5.4.2 The inversion mutation

The inversion mutation IM performs significant changes on a feasible solution. This
mutation is similar to the inversion heuristic. This operator consists on choosing two
arbitrary indices from each permutation and reversing the whole interval (including
the chosen indices) of vertices.

Algorithm 28 shows the IM procedure. For each dimension, two random indices,
p1 and p2, are selected and the vertices between the given closed interval given by
[p1, p2] are reversed.

Algorithm 28: The inversion mutation.

Input: ind. The individual to mutate.
Result: ind. The individual mutated.

1 foreach dim in 1:s do
2 Set p1 := random() % ind.assignment.size;
3 Set p2 := random() % ind.assignment.size;
4 while p1 < p2 do
5 swap(ind.assignment[p1][dim], ind.assignment[p2][dim]);
6 Set p1 := p1 + 1;
7 Set p2 := p2 − 1;

8 return {individual};
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Table 3.24: Averaged best known solutions.

s n Random Clique SquareRoot Geometric Product
(r) (cq) (sq) (g) (p)

4 20 20.0 1901.8 929.3 2380.5 8397.3
4 30 30.0 2281.9 1118.6 3015.2 13154.1
4 40 40.0 2606.3 1271.4 3523.8 16810.0
4 50 50.0 3032.6 1491.1 4102.3 20705.6
5 15 15.0 3110.7 1203.9 3423.7 21422.8
5 18 18.0 3458.6 1343.9 3799.3 23371.5
5 25 25.0 4192.7 1627.5 4594.9 29693.0
5 30 30.0 4671.7 1828.1 5036.8 34799.4
6 12 12.0 4505.6 1436.8 4483.7 7421.0
6 15 15.0 5133.4 1654.6 5242.4 8888.9
6 18 18.0 5765.5 1856.3 5767.4 9600.2

Avg - 24.8 3696.4 1432.8 4124.5 17660.3

There are s inversions performed in O(n) time each, so the complexity of this
procedure is O(sn).

3.5.5 Experimental evaluation

For our experimental evaluation we considered the same five families of instances,
which include the family of instances provided by [Karapetyan and Gutin, 2011b] to
evaluate their memetic algorithm. In the case of our SMA we solved the instances by
considering all the possible combinations of selections, crossovers, and mutations (for
a total of 3× 3× 2 = 18 combinations). We considered a population size of N = 100,
a mutation probability mp = 10%, a survivors probability sp = 50% and a running
time of 30 seconds for each instance. The population size, mutation probability and
survivors probability were selected based on our experience after testing a test bed
that considered all the combinations from N ∈ {10, 50, 100}, mp ∈ {2, 4, 6, 8, 10} and
sp ∈ {25, 50}. We evaluated our SMA under two variants of DVH: SDV2 and DV2.

Table 3.24 shows the best known values for the families of instances considered
in our experimental evaluation. We show the averaged results for ten instances of
each type. In some cases, we already know the optimal solutions thanks to our MAP-
Gurobi, in those cases we highlight in bold the corresponding average. Table 3.24 can
be used as reference to verify how close are the results obtained by SMA to the best
known solutions.

Tables 3.25, 3.26, and 3.27 show the results for the families of instances provided
by [Karapetyan and Gutin, 2011b] plus our additional set of ten instances for s = 4
with n = 50 and for s = 5 with n = 30 for each family of instances. We can observe
that the RSE is high for the family of instances Random. This occurs because SDV2
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and DV2 provide a low quality solution error for this family of instances. In the case
of the families of instances Clique and Square Root our SMA provides similar quality
results to those reported by the best known memetic algorithm for MAP. The RSE
of SMA combined with the SDV2 for the family of instances Clique, considering the
deterministic selection, CX, and IM operators, is approximately 0.5 whereas for the
best known memetic algorithm is 0.1. The RSE of SMA combined with the SDV2 for
the family of instances Square Root, considering the deterministic selection, CX and
IM operators, is approximately 1.1 whereas for the best known memetic algorithm
is 0.1. In general, the results obtained by SMA combined with SDV2 and DV2
outperformed those obtained by SDV3 and DV3.

Table 3.25: Random under SMA combined with SDV2 and DV2.
Inst. SMA combined with SDV2 SMA combined with DV2

PMX CX OX PMX CX OX
SM IM SM IM SM IM SM IM SM IM SM IM

Deterministic Deterministic

4r20 28.2 27.9 29.3 28.4 28.9 28.0 25.7 25.6 26.2 25.6 25.7 25.9
4r30 39.7 38.9 39.7 40.6 40.2 40.2 36.1 36.4 37.1 36.0 35.6 36.5
4r40 48.5 48.0 49.0 49.0 48.9 48.6 45.2 44.9 45.9 45.5 45.1 45.5
4r50 57.0 57.6 58.0 58.2 57.6 58.5 53.7 54.0 54.4 53.5 54.4 53.8
5r15 21.2 20.6 21.3 20.8 20.8 21.3 17.8 17.7 17.7 18.0 17.6 18.0
5r18 25.5 25.0 25.9 25.7 24.9 25.1 20.7 21.0 21.0 21.6 20.9 21.1
5r25 33.4 33.5 33.8 32.7 33.4 33.0 28.3 28.3 28.2 27.9 28.0 28.3
5r30 38.7 37.9 38.5 38.6 38.5 37.7 32.9 32.9 33.6 33.3 33.1 32.7
6r12 16.5 16.6 16.9 17.1 17.1 16.5 13.3 13.0 13.2 13.3 12.8 12.9
6r15 21.2 20.0 21.7 20.9 20.4 21.2 16.2 15.8 16.3 16.6 16.2 15.8
6r18 24.4 24.3 24.4 24.8 24.4 24.9 19.3 19.3 19.8 19.1 19.1 19.5
Avg 32.2 31.8 32.6 32.4 32.3 32.3 28.1 28.1 28.5 28.2 28.0 28.2
RSE 29.8 28.2 31.5 30.6 30.2 30.2 13.3 13.3 14.9 13.7 12.9 13.7

Tournament Tournament

4r20 28.5 28.7 29.3 28.6 29.3 29.8 25.4 24.9 26.1 25.6 26.0 25.9
4r30 40.1 39.2 40.9 39.8 40.2 40.3 36.2 36.3 36.3 36.4 36.3 36.3
4r40 49.5 48.8 49.4 49.6 49.3 49.1 45.4 44.7 45.3 45.4 45.2 45.6
4r50 57.3 57.6 57.9 56.9 58.0 57.7 53.9 53.8 54.4 54.6 53.8 54.4
5r15 20.8 21.4 21.7 21.2 21.3 20.6 17.7 17.6 17.8 17.7 17.6 17.2
5r18 25.3 25.0 25.8 26.0 25.6 25.7 20.9 20.9 20.7 20.8 21.1 21.2
5r25 33.4 33.4 32.8 33.5 32.9 33.1 28.5 28.5 28.4 28.5 27.6 28.1
5r30 37.9 38.0 38.0 37.7 38.4 37.7 32.8 32.8 33.5 33.0 33.1 33.3
6r12 16.8 16.0 16.8 16.8 17.0 16.5 13.0 13.0 12.6 12.9 12.9 13.1
6r15 20.8 20.8 20.9 20.8 21.2 20.5 16.3 16.2 16.1 16.0 16.7 16.4
6r18 23.9 24.1 24.3 24.8 24.4 25.1 19.4 19.0 19.1 19.5 19.3 19.4
Avg 32.2 32.1 32.5 32.3 32.5 32.4 28.1 28.0 28.2 28.2 28.1 28.3
RSE 29.8 29.4 31.0 30.2 31.0 30.6 13.3 12.9 13.7 13.7 13.3 14.1

Roulette wheel Roulette wheel

4r20 29.1 28.4 29.4 28.5 29.2 29.5 26.1 25.9 26.7 26.4 25.4 25.6
4r30 39.8 39.9 40.0 40.6 40.3 39.9 35.9 35.8 36.6 36.6 36.7 36.9
4r40 49.2 49.4 50.0 49.4 49.6 49.7 45.3 45.3 45.8 45.6 44.8 45.2
4r50 57.5 57.2 58.6 58.3 58.0 57.4 54.0 53.9 54.3 54.5 54.3 54.0
5r15 21.7 21.3 20.6 21.5 21.8 22.1 17.7 17.5 18.0 18.1 17.8 17.5
5r18 25.1 25.3 25.4 25.8 25.5 25.4 21.2 21.0 21.0 21.1 21.1 21.5
5r25 33.6 32.9 33.3 34.0 34.1 33.5 28.0 28.1 28.4 28.5 28.3 28.6
5r30 38.5 38.7 39.7 38.5 38.4 38.7 33.0 33.0 33.4 33.1 33.2 32.8
6r12 16.2 16.4 16.7 17.4 16.3 16.9 13.6 12.7 13.1 12.8 13.1 13.1
6r15 19.9 21.0 21.2 20.9 20.9 20.9 16.3 16.7 16.3 16.2 16.5 16.4
6r18 25.1 24.1 25.2 24.7 23.5 23.9 19.5 19.0 19.6 19.5 19.5 19.6
Avg 32.3 32.2 32.7 32.7 32.5 32.5 28.2 28.1 28.5 28.4 28.2 28.3
RSE 30.2 29.8 31.9 31.9 31.0 31.0 13.7 13.3 14.9 14.5 13.7 14.1
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Table 3.26: Clique under SMA combined with SDV2 and DV2.
Inst. SMA combined with SDV2 SMA combined with DV2

PMX CX OX PMX CX OX
SM IM SM IM SM IM SM IM SM IM SM IM

Deterministic Deterministic

4cq20 1901.9 1901.9 1901.9 1901.8 1901.8 1902.2 1901.9 1901.8 1902.2 1901.8 1901.8 1902.2
4cq30 2294.2 2293.6 2291.3 2293.1 2315.6 2312.4 2291.7 2288.3 2291.1 2293.1 2317.3 2312.7
4cq40 2679.0 2674.6 2647.0 2639.3 2752.4 2752.0 2692.1 2684.7 2657.0 2654.3 2761.8 2766.1
4cq50 3196.7 3178.4 3178.4 3159.0 3283.9 3270.5 3259.1 3235.2 3233.1 3230.3 3294.9 3323.6
5cq15 3110.7 3110.7 3110.7 3110.7 3110.7 3110.7 3110.7 3110.7 3110.7 3110.7 3110.7 3110.7
5cq18 3459.4 3458.6 3459.4 3458.6 3458.6 3460.1 3459.4 3459.4 3458.6 3459.3 3459.4 3459.4
5cq25 4204.3 4204.8 4205.2 4201.0 4247.8 4226.4 4216.5 4207.3 4206.2 4205.1 4259.5 4260.6
5cq30 4712.3 4713.5 4701.8 4699.3 4839.7 4803.7 4744.0 4725.4 4729.2 4704.8 4827.8 4816.0
6cq12 4505.6 4505.6 4505.6 4505.6 4505.6 4505.6 4505.6 4507.1 4506.8 4505.6 4505.6 4505.6
6cq15 5134.4 5134.4 5134.4 5133.4 5133.4 5133.4 5136.9 5133.7 5136.4 5139.3 5139.3 5145.3
6cq18 5775.4 5775.7 5785.2 5777.2 5779.3 5772.8 5794.1 5795.4 5795.1 5809.4 5822.6 5832.0
Avg 3724.9 3722.9 3720.1 3716.3 3757.2 3750.0 3737.5 3731.7 3729.7 3728.5 3763.7 3766.7
RSE 0.8 0.7 0.6 0.5 1.6 1.5 1.1 1.0 0.9 0.9 1.8 1.9

Tournament Tournament

4cq20 1901.8 1901.8 1901.9 1901.9 1902.1 1902.1 1901.9 1902.2 1902.7 1902.2 1902.4 1902.5
4cq30 2297.8 2292.3 2295.2 2294.3 2335.7 2320.2 2291.9 2293.7 2298.3 2299.5 2340.0 2328.8
4cq40 2695.7 2696.4 2675.7 2652.8 2757.9 2768.8 2701.3 2701.5 2678.0 2661.1 2776.3 2767.4
4cq50 3216.4 3219.2 3193.5 3175.7 3305.2 3290.8 3249.3 3254.9 3234.5 3228.3 3305.1 3327.7
5cq15 3110.7 3110.7 3110.7 3110.7 3110.7 3110.7 3110.7 3110.7 3110.7 3110.7 3110.7 3110.7
5cq18 3460.1 3460.1 3460.1 3460.1 3460.1 3462.2 3460.1 3459.4 3460.1 3459.3 3462.6 3459.4
5cq25 4212.1 4203.9 4205.5 4205.5 4267.1 4250.7 4219.6 4218.1 4213.9 4212.6 4263.5 4282.5
5cq30 4767.0 4732.3 4712.0 4700.0 4839.2 4848.3 4782.5 4770.5 4717.1 4726.4 4853.3 4894.0
6cq12 4505.6 4505.6 4505.6 4505.6 4505.6 4505.6 4505.6 4505.6 4505.6 4505.6 4505.6 4505.6
6cq15 5133.4 5134.4 5134.4 5134.4 5134.4 5135.6 5138.3 5137.4 5134.6 5139.0 5147.0 5139.9
6cq18 5776.4 5775.3 5779.3 5779.9 5789.1 5789.1 5808.4 5811.1 5799.5 5800.4 5841.4 5828.5
Avg 3734.3 3730.2 3724.9 3720.1 3764.3 3762.2 3742.7 3742.3 3732.3 3731.4 3773.4 3777.0
RSE 1.0 0.9 0.8 0.6 1.8 1.8 1.3 1.2 1.0 0.9 2.1 2.2

Roulette wheel Roulette wheel

4cq20 1901.8 1903.4 1903.1 1902.3 1903.8 1902.4 1902.7 1901.8 1903.1 1901.8 1902.4 1903.0
4cq30 2301.5 2296.4 2293.0 2295.6 2315.1 2320.6 2301.6 2300.0 2298.3 2291.8 2310.9 2323.9
4cq40 2701.8 2678.6 2666.0 2673.4 2751.5 2754.3 2680.6 2683.4 2675.9 2672.8 2760.2 2749.4
4cq50 3208.6 3194.2 3166.0 3186.5 3277.7 3273.7 3225.1 3258.8 3220.7 3207.9 3275.6 3277.8
5cq15 3110.7 3110.7 3110.7 3110.7 3110.7 3110.7 3110.7 3110.7 3110.7 3110.7 3110.7 3110.7
5cq18 3460.6 3458.6 3459.3 3459.4 3459.4 3459.4 3460.1 3460.6 3460.1 3460.1 3459.4 3458.9
5cq25 4223.8 4218.0 4218.3 4208.4 4242.8 4227.2 4229.5 4229.6 4216.2 4217.3 4274.6 4271.6
5cq30 4749.0 4714.1 4726.9 4713.1 4779.6 4788.8 4770.9 4762.4 4744.2 4724.1 4801.1 4855.4
6cq12 4505.6 4505.6 4505.6 4505.6 4505.6 4505.6 4505.6 4505.6 4506.8 4505.6 4505.6 4505.6
6cq15 5133.4 5135.6 5133.4 5134.4 5133.6 5135.1 5144.8 5139.1 5138.5 5136.6 5145.9 5148.1
6cq18 5780.3 5783.5 5782.4 5776.0 5782.3 5797.5 5811.3 5816.0 5798.8 5804.7 5823.9 5826.2
Avg 3734.3 3727.2 3724.1 3724.1 3751.1 3752.3 3740.3 3742.5 3733.9 3730.3 3760.9 3766.4
RSE 1.0 0.8 0.7 0.7 1.5 1.5 1.2 1.2 1.0 0.9 1.7 1.9

Tables 3.28 and 3.29 show the results obtained for the families of instances Ge-
ometric and Product. In the case of the family of instances Geometric, the SMA
combined with either SDV2 or DV2 is able to find the optimal solutions in all the
evaluated instances for any combination of operators. The RSE of SMA combined
with the DV2 for the family of instances Product, considering the roulette wheel se-
lection, PMX and IM operators, is approximately 2.4. For the family of instances
Product can be considered to combine the SMA with the SDV3 or the DV3, however
the only use of such local searches provides a RSE of approximately 0.6.

It is important to mention that the RSE of the best known memetic algorithm
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Table 3.27: Square Root under SMA combined with SDV2 and DV2.
Inst. SMA combined with SDV2 SMA combined with DV2

PMX CX OX PMX CX OX
SM IM SM IM SM IM SM IM SM IM SM IM

Deterministic Deterministic

4sq20 929.4 931.1 929.7 929.7 929.4 929.3 930.2 930.5 929.7 929.4 930.1 931.0
4sq30 1122.3 1122.3 1119.7 1126.1 1146.7 1138.0 1123.1 1121.6 1126.9 1122.3 1148.3 1144.5
4sq40 1335.4 1313.0 1311.9 1295.9 1362.1 1366.3 1336.0 1322.1 1306.0 1304.8 1366.8 1366.0
4sq50 1597.4 1592.2 1577.1 1567.4 1637.8 1636.0 1630.8 1621.9 1611.7 1607.2 1645.7 1648.3
5sq15 1203.9 1205.0 1206.8 1205.3 1206.5 1204.9 1205.0 1204.7 1206.8 1205.3 1204.9 1204.8
5sq18 1345.2 1346.9 1346.7 1349.3 1345.5 1345.1 1348.0 1345.4 1347.3 1347.8 1345.9 1349.1
5sq25 1642.0 1645.2 1637.0 1647.1 1670.0 1669.9 1672.5 1667.8 1658.2 1643.6 1694.0 1699.8
5sq30 1896.3 1881.8 1871.2 1863.0 1941.3 1934.3 1934.5 1939.2 1927.2 1928.4 1962.3 1956.7
6sq12 1436.8 1436.8 1436.8 1436.8 1436.8 1436.8 1436.8 1436.8 1436.8 1436.8 1436.8 1436.8
6sq15 1657.3 1656.2 1658.3 1658.0 1658.8 1657.8 1658.9 1658.1 1658.7 1660.0 1660.7 1661.9
6sq18 1859.1 1858.4 1858.7 1860.4 1861.4 1858.6 1867.5 1864.5 1867.2 1866.5 1888.2 1879.6
Avg 1456.8 1453.5 1450.4 1449.0 1472.4 1470.6 1467.6 1464.8 1461.5 1459.3 1480.3 1479.9
RSE 1.7 1.4 1.2 1.1 2.8 2.6 2.4 2.2 2.0 1.8 3.3 3.3

Tournament Tournament

4sq20 930.6 930.8 930.1 930.6 931.2 931.3 929.6 929.3 930.0 929.7 931.8 931.8
4sq30 1125.6 1123.8 1124.5 1122.7 1157.5 1149.2 1132.2 1129.3 1129.3 1125.1 1151.8 1151.1
4sq40 1344.6 1332.6 1324.9 1303.3 1381.5 1385.0 1336.7 1333.7 1328.5 1322.1 1376.9 1380.7
4sq50 1611.3 1606.3 1592.6 1570.2 1652.3 1664.8 1622.6 1629.5 1610.4 1605.6 1657.0 1652.2
5sq15 1205.5 1205.3 1205.1 1205.5 1205.1 1205.5 1205.7 1203.9 1204.4 1205.5 1207.3 1205.1
5sq18 1344.8 1347.0 1347.8 1348.5 1347.9 1346.4 1347.1 1344.7 1351.7 1348.5 1346.5 1349.1
5sq25 1644.5 1644.3 1639.4 1648.8 1685.7 1672.7 1672.1 1667.8 1666.7 1658.8 1711.9 1697.6
5sq30 1897.4 1896.3 1881.5 1867.2 1951.2 1941.9 1946.3 1934.8 1944.6 1934.2 1960.8 1961.4
6sq12 1436.8 1436.8 1436.8 1436.8 1436.8 1436.8 1436.8 1436.8 1436.8 1437.7 1436.8 1436.8
6sq15 1656.4 1657.5 1657.8 1656.9 1659.0 1658.7 1658.9 1657.9 1660.8 1660.9 1666.8 1661.3
6sq18 1859.7 1860.3 1860.7 1858.1 1867.3 1865.9 1871.7 1873.9 1865.9 1866.2 1888.1 1886.2
Avg 1459.7 1458.3 1454.7 1449.9 1479.6 1478.0 1469.1 1467.4 1466.3 1463.1 1485.1 1483.0
RSE 1.9 1.8 1.5 1.2 3.3 3.2 2.5 2.4 2.3 2.1 3.7 3.5

Roulette wheel Roulette wheel

4sq20 929.8 930.7 930.1 930.5 933.3 931.2 931 931.1 930.8 931.5 930.9 932.1
4sq30 1133.6 1127.2 1130.7 1129.4 1160.9 1144.5 1138.0 1133.4 1134.3 1126.7 1159.3 1152.2
4sq40 1344.5 1339.3 1332.9 1320.3 1373.8 1374.0 1337.8 1334.6 1332.2 1328.4 1373.1 1371.3
4sq50 1616.9 1606.9 1589.8 1579.7 1639.7 1632.3 1635.2 1630.1 1606.7 1605.1 1647.6 1647.4
5sq15 1204.2 1204.8 1204.7 1205.2 1204.7 1205.1 1205.9 1205.5 1204.7 1204.4 1205.6 1204.7
5sq18 1346.4 1347.4 1346.6 1350.5 1348.2 1347.3 1348.7 1346.8 1347.0 1348.8 1351.8 1350.0
5sq25 1644.4 1644.7 1647.4 1654.5 1660.8 1680.8 1683.2 1667.6 1672.8 1669.1 1699.6 1687.2
5sq30 1914.3 1917.4 1894.9 1888.0 1947.1 1947.4 1942.5 1930.1 1927.7 1928.5 1966.4 1972.8
6sq12 1436.8 1436.8 1436.8 1436.8 1436.8 1436.8 1436.8 1436.8 1437.5 1436.8 1436.9 1436.8
6sq15 1658.6 1658.2 1657.9 1656.5 1659.4 1656.3 1664.1 1658.4 1663.4 1661.7 1665.1 1663.4
6sq18 1859.3 1859.9 1860.7 1859.3 1870.0 1864.1 1872.6 1870.8 1872.2 1868.4 1889.3 1890.4
Avg 1462.6 1461.2 1457.5 1455.5 1475.9 1474.5 1472.3 1467.7 1466.3 1464.5 1484.1 1482.6
RSE 2.1 2.0 1.7 1.6 3.0 2.9 2.8 2.4 2.3 2.2 3.6 3.5

were obtained after running times of 300 seconds whereas ours were obtained within
30 seconds. This is why we decided to execute one more time our SMA but now
considering a running time of 300 seconds and the combination of the operators that
obtained the best results.

In order to determine the best combination of operators we compared the RSE
obtained for all the families of instances. Table 3.30 shows a summary of the RSE
obtained for each combination of operators for the SMA combined with SDV2 and
DV2. The last set of rows, called “Wins”, is the number of cases in which the
corresponding combination obtained the best results among all the combinations. In
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Table 3.28: Geometric under SMA combined with SDV2 and DV2.
Inst. SMA combined with SDV2 SMA combined with DV2

PMX CX OX PMX CX OX
SM IM SM IM SM IM SM IM SM IM SM IM

Deterministic Deterministic

4g20 2380.5 2380.5 2380.5 2380.5 2380.5 2380.5 2380.5 2380.5 2380.5 2380.5 2380.5 2380.5
4g30 3015.2 3015.2 3015.2 3015.2 3015.2 3015.2 3015.2 3015.2 3015.2 3015.2 3015.2 3015.2
4g40 3523.8 3523.8 3523.8 3523.8 3523.8 3523.8 3523.8 3523.8 3523.8 3523.8 3523.8 3523.8
4g50 4102.3 4102.3 4102.3 4102.3 4102.3 4102.3 4102.3 4102.3 4102.3 4102.3 4102.3 4102.3
5g15 3423.7 3423.7 3423.7 3423.7 3423.7 3423.7 3423.7 3423.7 3423.7 3423.7 3423.7 3423.7
5g18 3799.3 3799.3 3799.3 3799.3 3799.3 3799.3 3799.3 3799.3 3799.3 3799.3 3799.3 3799.3
5g25 4594.9 4594.9 4594.9 4594.9 4594.9 4594.9 4594.9 4594.9 4594.9 4594.9 4594.9 4594.9
5g30 5036.8 5036.8 5036.8 5036.8 5036.8 5036.8 5036.8 5036.8 5036.8 5036.8 5036.8 5036.8
6g12 4483.7 4483.7 4483.7 4483.7 4483.7 4483.7 4483.7 4483.7 4483.7 4483.7 4483.7 4483.7
6g15 5242.4 5242.4 5242.4 5242.4 5242.4 5242.4 5242.4 5242.4 5242.4 5242.4 5242.4 5242.4
6g18 5767.4 5767.4 5767.4 5767.4 5767.4 5767.4 5767.4 5767.4 5767.4 5767.4 5767.4 5767.4
Avg 4124.5 4124.5 4124.5 4124.5 4124.5 4124.5 4124.5 4124.5 4124.5 4124.5 4124.5 4124.5
RSE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Tournament Tournament

4g20 2380.5 2380.5 2380.5 2380.5 2380.5 2380.5 2380.5 2380.5 2380.5 2380.5 2380.5 2380.5
4g30 3015.2 3015.2 3015.2 3015.2 3015.2 3015.2 3015.2 3015.2 3015.2 3015.2 3015.2 3015.2
4g40 3523.8 3523.8 3523.8 3523.8 3523.8 3523.8 3523.8 3523.8 3523.8 3523.8 3523.8 3523.8
4g50 4102.3 4102.3 4102.3 4102.3 4102.3 4102.3 4102.3 4102.3 4102.3 4102.3 4102.3 4102.3
5g15 3423.7 3423.7 3423.7 3423.7 3423.7 3423.7 3423.7 3423.7 3423.7 3423.7 3423.7 3423.7
5g18 3799.3 3799.3 3799.3 3799.3 3799.3 3799.3 3799.3 3799.3 3799.3 3799.3 3799.3 3799.3
5g25 4594.9 4594.9 4594.9 4594.9 4594.9 4594.9 4594.9 4594.9 4594.9 4594.9 4594.9 4594.9
5g30 5036.8 5036.8 5036.8 5036.8 5036.8 5036.8 5036.8 5036.8 5036.8 5036.8 5036.8 5036.8
6g12 4483.7 4483.7 4483.7 4483.7 4483.7 4483.7 4483.7 4483.7 4483.7 4483.7 4483.7 4483.7
6g15 5242.4 5242.4 5242.4 5242.4 5242.4 5242.4 5242.4 5242.4 5242.4 5242.4 5242.4 5242.4
6g18 5767.4 5767.4 5767.4 5767.4 5767.4 5767.4 5767.4 5767.4 5767.4 5767.4 5767.4 5767.4
Avg 4124.5 4124.5 4124.5 4124.5 4124.5 4124.5 4124.5 4124.5 4124.5 4124.5 4124.5 4124.5
RSE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Roulette wheel Roulette wheel

4g20 2380.5 2380.5 2380.5 2380.5 2380.5 2380.5 2380.5 2380.5 2380.5 2380.5 2380.5 2380.5
4g30 3015.2 3015.2 3015.2 3015.2 3015.2 3015.2 3015.2 3015.2 3015.2 3015.2 3015.2 3015.2
4g40 3523.8 3523.8 3523.8 3523.8 3523.8 3523.8 3523.8 3523.8 3523.8 3523.8 3523.8 3523.9
4g50 4102.3 4102.3 4102.3 4102.3 4102.3 4102.3 4102.3 4102.3 4102.3 4102.3 4102.3 4102.3
5g15 3423.7 3423.7 3423.7 3423.7 3423.7 3423.7 3423.7 3423.7 3423.7 3423.7 3423.7 3423.7
5g18 3799.3 3799.3 3799.3 3799.3 3799.3 3799.3 3799.3 3799.3 3799.3 3799.3 3799.3 3799.3
5g25 4594.9 4594.9 4594.9 4594.9 4594.9 4594.9 4594.9 4594.9 4594.9 4594.9 4594.9 4594.9
5g30 5036.8 5036.8 5036.8 5036.8 5036.8 5036.8 5036.8 5036.8 5036.8 5036.8 5036.8 5036.8
6g12 4483.7 4483.7 4483.7 4483.7 4483.7 4483.7 4483.7 4483.7 4483.7 4483.7 4483.7 4483.7
6g15 5242.4 5242.4 5242.4 5242.4 5242.4 5242.4 5242.4 5242.4 5242.4 5242.4 5242.4 5242.4
6g18 5767.4 5767.4 5767.4 5767.4 5767.4 5767.4 5767.4 5767.4 5767.4 5767.4 5767.4 5767.4
Avg 4124.5 4124.5 4124.5 4124.5 4124.5 4124.5 4124.5 4124.5 4124.5 4124.5 4124.5 4124.6
RSE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

the case of the family of instances Geometric we can observe that all the combinations
of operators obtained a RSE equal to zero. The maximum number of victories for
each combination of operators is 6, however the number of wins for any combination
was at most 3. The combination of operators that obtained the best results was a
deterministic selection combined with a cycle crossover and an inversion mutation.
These combination is only better on the cases of the families of instances Clique and
Square Root. For the families of instances Random and Product is not clear which of
our three selections is the best one, however the combination of a partially mapped
crossover with an inversion mutation provided us with the best results.

UAM Azcapotzalco Sergio Pérez PAP through the MAP
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Table 3.29: Product under SMA combined with SDV2 and DV2.
Inst. SMA combined with SDV2 SMA combined with DV2

PMX CX OX PMX CX OX
SM IM SM IM SM IM SM IM SM IM SM IM

Deterministic Deterministic

4p20 8397.5 8397.5 8397.8 8397.7 8397.7 8397.6 8397.4 8397.4 8397.4 8397.4 8397.4 8397.3
4p30 13154.3 13154.3 13154.6 13154.6 13154.5 13154.5 13154.2 13154.2 13154.2 13154.2 13154.2 13154.2
4p40 16811.0 16811.1 16811.1 16811.1 16811.1 16811.1 16810.2 16810.2 16810.3 16810.3 16810.3 16810.2
4p50 20709.5 20709.4 20709.8 20710.4 20709.7 20709.5 20706.6 20706.6 20706.7 20706.5 20706.6 20706.6
5p15 21592.3 21427.3 21744.5 21580.4 21429 21710.9 21423.2 21423 21423.5 21423.3 21423.1 21423.1
5p18 23589.2 23493.7 24500.7 24274.8 23640.5 23658.9 23371.7 23371.5 23513.9 23372.2 23531.6 23513.9
5p25 30543.6 30916.7 33519.6 32275.5 31990.2 31456.2 31001.6 31367.2 31576.8 31017.6 31016.6 30859.8
5p30 38024.6 37337.5 42653.9 41361.3 40490.0 41129.4 37376.7 37485.5 37600.1 37089.4 37524.7 37564.7
6p12 11570.5 11221.3 14602.2 13797.3 12916.3 12817.3 8048.1 7821.4 8254.7 8047.1 8214.1 7970.8
6p15 17356.6 17263.8 21627.3 21183.2 20966.1 18603.5 9917.4 9774.7 9853.3 10154.4 9996.5 9941.8
6p18 23289.9 22307.4 27821.6 27188.7 26449.5 27009.9 11236.2 11217.3 11291 11495.1 11347.8 11269.8
Avg 20458.1 20276.4 22322.1 21885.0 21541.3 21405.3 18313.0 18320.8 18416.5 18333.4 18374.8 18328.4
RSE 15.8 14.8 26.4 23.9 22.0 21.2 3.7 3.7 4.3 3.8 4.0 3.8

Tournament Tournament

4p20 8397.7 8397.8 8397.8 8398 8397.6 8397.9 8397.4 8397.4 8397.4 8397.4 8397.4 8397.4
4p30 13154.6 13154.5 13154.8 13154.5 13154.6 13154.5 13154.2 13154.2 13154.2 13154.1 13154.2 13154.2
4p40 16811.2 16811.0 16811.5 16811.1 16811.0 16811.1 16810.2 16810.3 16810.2 16810.2 16810.3 16810.2
4p50 20709.4 20709.5 20710.0 20709.8 20709.8 20709.3 20706.5 20706.6 20706.7 20706.7 20706.7 20706.5
5p15 21428.8 21696.6 21883.0 21699.0 21745.0 21714.2 21423 21423 21423.3 21423.2 21423.1 21423.0
5p18 23448.5 23654.7 24596.5 25071.9 24307.6 24429.9 23945.3 23942.9 23389.3 23513.2 23372.1 23513.7
5p25 32824.2 30920.0 35888.0 35183.3 33184.5 32460.9 31383.0 31016.7 31383.5 31449.4 31813.5 31017.8
5p30 40104.0 39074.8 43442.8 43648.6 42383.1 42450.1 36704.8 37272.8 36936.4 37069.0 37620.4 38572.3
6p12 13248.3 12212.4 15569.1 15116.3 15430.0 14218.1 8093.5 8161.2 8273.1 8410.2 8095.8 8182.5
6p15 19463.9 19229.0 23572.0 22360.3 21930.2 20937.6 10183.1 10055.4 10033.6 10069.4 10308.8 10024.5
6p18 25515.2 24496.8 29148.5 28334.8 28623.4 27654.8 11536.2 10995.2 11451.7 11234.2 11484.7 11142.6
Avg 21373.3 20941.6 23015.8 22771.6 22425.2 22085.3 18394.3 18357.8 18359.9 18385.2 18471.5 18449.5
RSE 21.0 18.6 30.3 28.9 27.0 25.1 4.2 3.9 4.0 4.1 4.6 4.5

Roulette wheel Roulette wheel

4p20 8397.8 8397.9 8397.9 8397.8 8397.9 8397.9 8397.4 8397.4 8397.4 8397.4 8397.4 8397.4
4p30 13154.7 13154.7 13154.6 13154.8 13154.6 13154.5 13154.2 13154.2 13154.2 13154.2 13154.2 13154.2
4p40 16810.8 16810.9 16811.5 16811.5 16811.1 16811.2 16810.3 16810.1 16810.3 16810.3 16810.3 16810.3
4p50 20710.0 20709.6 20710.2 20710.2 20709.7 20709.6 20706.6 20706.5 20706.6 20706.7 20706.7 20706.5
5p15 21424.0 21543.9 21741.3 21740.8 21860.9 21860.9 21422.8 21422.8 21423.0 21423.0 21423.1 21422.9
5p18 23492.4 23510.2 24389.6 23915.6 23602.3 24081.9 23371.5 23371.6 23512.7 23371.6 23942.8 23371.8
5p25 30859.5 31530.6 32609.0 32860.1 32205.1 31568.9 30346.2 30630.4 30779.3 31878.0 30888.8 30532.6
5p30 38479.1 38223.4 40895.7 41565.1 40233.0 39435.9 36811.9 36273.4 36816.1 37024.5 37242.6 37799.2
6p12 10379.4 11092.0 11504.3 12163.2 11936.7 11046.8 7750.3 7856.7 8160.9 7953.3 8125.2 7857.8
6p15 15423.0 13915.9 16535.4 17123.8 15788.5 16233.2 9841.1 9581.2 9932.6 9555.6 9850.9 9700.2
6p18 18579.6 16463.7 20411.1 18797.7 19929.2 18233.0 11304.9 10640.7 10833.1 11084.3 11428.1 10979.9
Avg 19791.8 19577.5 20651.0 20658.2 20420.8 20139.4 18174.3 18076.8 18229.7 18305.4 18360.9 18248.4
RSE 12.1 10.9 16.9 17.0 15.6 14.0 2.9 2.4 3.2 3.7 4.0 3.3

According with our experience from local searches, DV3 is able to solve exactly
the test bed of the family of instances Random and it obtained a RSE of 0.6 for
the family of instances Product. This is an example in which the results obtained by
DV3 outperformed the results obtained by a memetic algorithm. However, the RSE of
DV3 for the families of instances Clique and Square Root are 2.3 and 2.7 respectively.
This is why that for the final evaluation we decided to apply the combination of the
operators that are better solving the families of instances Clique and Square Root.

We implemented the LSGA proposed by [Huang and Lim, 2006] in order to com-
pare their results against ours. Since LSGA was designed for 3AP we generalized it
for sAP. We applied the same considerations: a population size N = 100, a PMX as
crossover and an improvement through the solving of a reduction of a 3AP to a 2AP
instead of a mutation. We implemented two versions of the LSGA, the difference
is on the algorithm to solve the corresponding 2AP. The first version considers the
Hungarian method and the second version considers the ε-scaling Auction algorithm.
Both versions are equivalent in terms of quality solution, however the version that
considers ε-scaling Auction algorithm is faster. We verified that we had replicated
the results from their paper.
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Table 3.30: Relative solution errors for all combinations of operators for SMA.
Family of inst. Selection SMA combined with SDV2 SMA combined with DV2

PMX CX OX PMX CX OX
SM IM SM IM SM IM SM IM SM IM SM IM

Deterministic 29.8 28.2 31.5 30.6 30.2 30.2 13.3 13.3 14.9 13.7 12.9 13.7
Random Tournament 29.8 29.4 31.0 30.2 31.0 30.6 13.3 12.9 13.7 13.7 13.3 14.1

Roulette 30.2 29.8 31.9 31.9 31.0 31.0 13.7 13.3 14.9 14.5 13.7 14.1

Deterministic 0.8 0.7 0.6 0.5 1.6 1.5 1.1 1.0 0.9 0.9 1.8 1.9
Clique Tournament 1.0 0.9 0.8 0.6 1.8 1.8 1.3 1.2 1.0 0.9 2.1 2.2

Roulette 1.0 0.8 0.7 0.7 1.5 1.5 1.2 1.2 1.0 0.9 1.7 1.9

Deterministic 1.7 1.4 1.2 1.1 2.8 2.6 2.4 2.2 2.0 1.8 3.3 3.3
Square Tournament 1.9 1.8 1.5 1.2 3.3 3.2 2.5 2.4 2.3 2.1 3.7 3.5

Roulette 2.1 2.0 1.7 1.6 3.0 2.9 2.8 2.4 2.3 2.2 3.6 3.5

Deterministic 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Geometric Tournament 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Roulette 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Deterministic 15.8 14.8 26.4 23.9 22.0 21.2 3.7 3.7 4.3 3.8 4.0 3.8
Product Tournament 21.0 18.6 30.3 28.9 27.0 25.1 4.2 3.9 4.0 4.1 4.6 4.5

Roulette 12.1 10.9 16.9 17.0 15.6 14.0 2.9 2.4 3.2 3.7 4.0 3.3

Deterministic 1 2 1 3 1 1 1 1 2 3 2 1
Wins Tournament 1 1 1 1 1 1 1 2 1 2 1 1

Roulette 1 2 1 1 1 1 1 2 1 2 1 1

Table 3.31 shows the results obtained for all the families of instances under LSGA
with the Hungarian method (HM) and the ε-scaling Auction algorithm (AA). It can
be observed that the RSE obtained by the two versions of LSGA are very similar, so
we consider both versions are equivalent. Table 3.32 shows the corresponding running
times. It can be observed that the version of LSGA with the AA is approximately 5
times faster than the version with the HM.

We implemented the memetic algorithm of [Karapetyan and Gutin, 2011b] but we
could not replicate their results through our implementation. We also asked to the
authors for their implementation but it was not provided. In order to compare our
results against such implementation we decided to consider the RSE obtained by both
heuristics. We considered the best results that they reported which were obtained
after a running time of 300 seconds.

Tables 3.33 and 3.34 show the results for all the families of instances under
LSGA (with AA), our SMA (with SDV3 and DV3), and the memetic algorithm
of [Karapetyan and Gutin, 2011b] (MA). All the algorithms were executed for a run-
ning time of 300 seconds. For the SMA we considered the parameters N = 100,
m = 10, sp = 50, and the combination of the operators deterministic selection, cycle
crossover and inversion mutation as we decided after the evaluation of all the com-
binations of operators. Even when we could not replicate the implementation of MA
we are considering their reported results. Their results were obtained through an im-
plementation in Visual C++ and their instances were evaluated on a platform based
on AMD Athlon 64 X2 3.0 GHz processor which is a better architecture compared to
our Intel Core i5-3210M 2.5 GHz processor. We calculated the results obtained by
MA (GK) based on their reported RSE. In the case of the family of instances Random
the MA (GK) outperformed the results of our SMA, however our SDV3 and DV3 are
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Table 3.31: Random, Clique, Square Root, Geometric, and Product under LSGA.

Inst. Best HM AA RSE Inst. Best HM AA RSE
known HM AA known HM AA

4r20 20.0 34.2 33.8 71.0 69.0 4g20 2380.5 2380.5 2380.5 0.0 0.0
4r30 30.0 45.7 45.1 52.3 50.3 4g30 3015.2 3015.2 3015.2 0.0 0.0
4r40 40.0 56.1 55.2 40.3 38.0 4g40 3523.8 3523.8 3523.8 0.0 0.0
4r50 50.0 63.8 63.1 27.6 26.2 4g50 4102.3 4102.3 4102.3 0.0 0.0
5r15 15.0 27.8 26.2 85.3 74.7 5g15 3423.7 3423.7 3423.7 0.0 0.0
5r18 18.0 30.8 30.8 71.1 71.1 5g18 3799.3 3799.3 3799.3 0.0 0.0
5r25 25.0 39.4 39.0 57.6 56.0 5g25 4594.9 4594.9 4594.9 0.0 0.0
5r30 30.0 44.0 44.8 46.7 49.3 5g30 5036.8 5036.8 5037.1 0.0 0.0
6r12 12.0 20.9 21.1 74.2 75.8 6g12 4483.7 4483.7 4483.7 0.0 0.0
6r15 15.0 23.8 25.6 58.7 70.7 6g15 5242.4 5242.4 5242.4 0.0 0.0
6r18 18.0 29.2 28.7 62.2 59.4 6g18 5767.4 5767.4 5767.4 0.0 0.0
Avg 24.8 37.8 37.6 52.4 51.6 Avg 4124.5 4124.5 4124.6 0.0 0.0

4cq20 1901.8 1909.8 1911.2 0.4 0.4 4p20 8397.3 8398.7 8398.7 0.0 0.0
4cq30 2281.9 2298.0 2304.6 0.7 0.9 4p30 13154.1 13155.3 13155.4 0.0 0.0
4cq40 2606.3 2726.6 2718.5 4.6 4.3 4p40 16810.0 16812.9 16812.6 0.0 0.0
4cq50 3032.6 3344.4 3310.6 10.2 9.1 4p50 20705.6 20711.9 20711.0 0.0 0.0
5cq15 3110.7 3114.3 3113.1 0.1 0.0 5p15 21422.8 22035.5 21559.1 2.8 0.6
5cq18 3458.6 3463.1 3465.3 0.1 0.1 5p18 23371.4 23801.6 23495.6 1.8 0.5
5cq25 4192.7 4228.3 4233.2 0.8 0.9 5p25 29693.0 30273.4 30154.1 1.9 1.5
5cq30 4671.7 4714.8 4739.3 0.9 1.4 5p30 34799.4 35985.9 35732.1 3.4 2.6
6cq12 4505.6 4513.0 4511.8 0.1 0.1 6p12 7421.0 10960.6 10861.6 47.6 46.3
6cq15 5133.4 5145.4 5145.3 0.2 0.2 6p15 8888.9 14480.4 16656.9 62.9 87.3
6cq18 5765.5 5795.9 5809.7 0.5 0.7 6p18 9600.2 20561.2 20611.6 114.1 114.6

Avg 3696.4 3750.3 3751.1 1.4 1.4 Avg 17660.3 19743.4 19831.7 11.7 12.2

4sr20 929.3 933.6 936.2 0.4 0.7
4sr30 1118.0 1136.0 1137.0 1.6 1.6
4sr40 1271.4 1365.6 1395.2 7.4 9.7
4sr50 1491.1 1673.2 1680.1 12.2 12.6
5sr15 1203.9 1207.7 1209.5 0.3 0.4
5sr18 1343.9 1349.7 1349.1 0.4 0.3
5sr25 1627.5 1647.0 1647.6 1.1 1.2
5sr30 1828.1 1872.8 1884.9 2.4 3.1
6sr12 1436.8 1440.4 1440.6 0.2 0.2
6sr15 1654.6 1666.9 1664.0 0.7 0.5
6sr18 1856.3 1872.4 1869.0 0.8 0.6

Avg 1432.8 1469.6 1473.9 2.5 2.8

able to obtain the same results within lower running times in some cases (it can be
observed at Table 3.17). In the case of the family of instances Clique our results are
practically equivalent to theirs. In the case of the family of instances Square Root
our results are very near to their results, they obtained a RSE of 0.1 whereas ours
was 0.3. Even when the families of instances Geometric and Product were proposed
by the same authors in [Karapetyan and Gutin, 2011a] they did not evaluated such
instances under their MA (GK). At any case, we can observe that our SMA combined
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Table 3.32: Running times for Random, Clique, Square Root, Geometric, and Product
under LSGA.

Instance HG AA Instance HG AA Instance HG AA

4r20 15.9 2.4 4cq20 11.0 2.3 4sr20 11.3 3.8
4r30 46.3 5.5 4cq30 51.4 8.7 4sr30 71.5 14.4
4r40 65.5 13.5 4cq40 91.0 22.0 4sr40 97.5 22.6
4r50 115.6 17.9 4cq50 146.1 34.5 4sr50 130.4 29.5
5r15 9.0 2.5 5cq15 6.1 2.3 5sr15 8.3 2.7
5r18 14.0 3.6 5cq18 12.4 3.7 5sr18 19.1 5.6
5r25 31.2 9.2 5cq25 48.0 10.7 5sr25 58.9 14.9
5r30 47.3 16.3 5cq30 111.8 23.3 5sr30 127.3 29.7
6r12 8.7 2.7 6cq12 4.9 2.1 6sr12 6.6 3.3
6r15 14.9 6.6 6cq15 12.4 4.3 6sr15 15.8 7.4
6r18 23.5 13.9 6cq18 21.2 9.0 6sr18 32.4 11.7
Avg 35.6 8.5 Avg 46.9 11.1 Avg 52.6 13.2

4g20 5.3 1.6 4p20 22.9 4.7
4g30 23.5 3.8 4p30 50.7 9.7
4g40 52.8 7.2 4p40 140.7 14.1
4g50 88.9 10.7 4p50 216.1 24.9
5g15 4.7 1.2 5p15 21.7 4.6
5g18 8.8 2.2 5p18 34.0 8.6
5g25 22.9 5.9 5p25 98.2 21.6
5g30 35.6 9.1 5p30 165.7 24.2
6g12 2.5 1.2 6p12 21.9 7.1
6g15 8.6 3.0 6p15 36.6 8.9
6g18 15.9 8.4 6p18 51.4 14.9
Avg 24.5 4.9 Avg 78.1 13.0

with the DV2 outperformed to the LSGA.

In conclusion, we consider that the most difficult families of instances are Clique
and Square Root for which the use of SMA combined with our DV2 is the most
effective option. We suggest the use of the operators deterministic, PMX and IM
as the best combination of operators for our SMA. For the rest of cases, the use of
SDV3 or DV3 provides higher quality solutions. We consider that a most exhaustive
selection of the parameters N , mp, and sp can be performed as well as the evaluation
of other operators to be considered as part of our SMA. We let such analysis as future
work since for our purposes we have developed a strong set of algorithms, heuristics,
and meta-heuristics to solve a wide variety of instances of MAP.

Some of the results obtained by the SMA were accepted for its publication in
the 14th International Conference on Electrical Engineering, Computing Science and
Automatic Control (CCE 2017) [Pérez Pérez et al., 2017b].
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Table 3.33: Random, Clique and Square Root under memetic algorithms.

Inst. Best LSGA SMA-1 SMA-2 MA RSE
known (AA) (SDV2) (DV2) (GK) LSGA SMA-1 SMA-2 MA

4r20 20 33.8 27.2 24.7 20.0 69.0 36.0 23.5 0.0
4r30 30 45.1 38.0 34.4 30.0 50.3 26.7 14.7 0.0
4r40 40 55.2 47.0 43.8 40.0 38.0 17.5 9.5 0.0
4r50 50 63.1 56.2 52.2 - 26.2 12.4 4.4 -
5r15 15 26.2 19.8 16.9 15.0 74.7 32.0 12.7 0.0
5r18 18 30.8 23.5 19.8 18.0 71.1 30.6 10.0 0.0
5r25 25 39.0 31.8 27.0 25.0 56.0 27.2 8.0 0.0
5r30 30 44.8 36.5 32.0 - 49.3 21.7 6.7 -
6r12 12 21.1 15.7 12.6 12.0 75.8 30.8 5.0 0.0
6r15 15 25.6 18.9 15.6 15.0 70.7 26.0 4.0 0.0
6r18 18 28.7 23.0 18.7 18.0 59.4 27.8 3.9 0.0
Avg 24.8 37.6 30.7 27.1 24.8 58.2 26.2 9.3 0.0

4c20 1901.8 1911.2 1903.7 1901.8 1901.8 0.5 0.1 0.0 0.0
4c30 2281.9 2304.6 2290.2 2289.2 2297.9 1.0 0.4 0.3 0.7
4c40 2606.3 2718.5 2633.8 2632.3 2618.0 4.3 1.1 1.0 0.5
4c50 3032.6 3310.6 3048.6 3043.6 - 9.2 0.5 0.4 -
5c15 3110.7 3113.1 3110.7 3110.7 3110.7 0.1 0.0 0.0 0.0
5c18 3458.6 3465.3 3458.6 3459.4 3458.6 0.2 0.0 0.0 0.0
5c25 4192.7 4233.2 4217.7 4202.8 4195.2 1.0 0.6 0.2 0.1
5c30 4671.7 4739.3 4704.7 4705.2 - 1.4 0.7 0.7 0.0
6c12 4505.6 4511.8 4505.6 4505.6 4505.6 0.1 0.0 0.0 0.0
6c15 5133.4 5145.3 5134.9 5133.6 5133.4 0.2 0.0 0.0 0.0
6c18 5765.5 5809.7 5785.3 5777.8 5769.0 0.8 0.3 0.2 0.1
Avg 3696.4 3751.1 3708.5 3705.6 3699.5 0.9 0.2 0.1 0.1

4sr20 929.3 936.2 931.3 929.8 929.3 0.7 0.2 0.1 0.0
4sr30 1118.0 1137.0 1122.5 1120.8 1119.5 1.7 0.4 0.3 0.1
4sr40 1271.4 1395.2 1286.5 1282.2 1276.6 9.7 1.2 0.8 0.4
4sr50 1491.1 1680.1 1504.6 1494.8 - 12.7 0.9 0.2 0.0
5sr15 1203.9 1209.5 1204.7 1204.2 1203.9 0.5 0.1 0.0 0.0
5sr18 1343.9 1349.1 1346.7 1346.6 1343.9 0.4 0.2 0.2 0.0
5sr25 1627.5 1647.6 1639.4 1636.6 1629.8 1.2 0.7 0.6 0.1
5sr30 1828.1 1884.9 1834.8 1839.3 - 3.1 0.4 0.6 0.0
6sr12 1436.8 1440.6 1437.5 1436.8 1436.8 0.3 0.0 0.0 0.0
6sr15 1654.6 1664.0 1657.7 1660.4 1654.6 0.6 0.2 0.4 0.0
6sr18 1856.3 1869.0 1860.1 1861.7 1857.0 0.7 0.2 0.3 0.0

Avg 1432.8 1473.9 1438.7 1437.6 1433.7 1.8 0.4 0.3 0.1

3.6 General results

We have developed a wide variety of algorithms, heuristics, and meta-heuristics for
MAP. We have compared our results against the state of the art techniques obtaining
a new set of techniques that allows to obtain competitive results. In order to provide
a better idea about the results obtained we summarize all our best results in this
section.
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Table 3.34: Geometric and Product under memetic algorithms.

Instance Best LSGA SMA-1 SMA-1 RSE
known (AA) (SDV2) (DV2) LSGA SMA-1 SMA-2

4g20 2380.5 2380.5 2380.5 2380.5 0.0 0.0 0.0
4g30 3015.2 3015.2 3015.2 3015.2 0.0 0.0 0.0
4g40 3523.8 3523.8 3523.8 3523.8 0.0 0.0 0.0
4g50 4102.3 4102.3 4102.3 4102.3 0.0 0.0 0.0
5g15 3423.7 3423.7 3423.7 3423.7 0.0 0.0 0.0
5g18 3799.3 3799.3 3799.3 3799.3 0.0 0.0 0.0
5g25 4594.9 4594.9 4594.9 4594.9 0.0 0.0 0.0
5g30 5036.8 5037.1 5036.8 5036.8 0.0 0.0 0.0
6g12 4483.7 4483.7 4483.7 4483.7 0.0 0.0 0.0
6g15 5242.4 5242.4 5242.4 5242.4 0.0 0.0 0.0
6g18 5767.4 5767.4 5767.4 5767.4 0.0 0.0 0.0
Avg 4124.5 4124.6 4124.5 4124.5 0.0 0.0 0.0

4p20 8397.3 8398.7 8397.5 8397.3 0.0 0.0 0.0
4p30 13154.1 13155.4 13154.3 13154.2 0.0 0.0 0.0
4p40 16810.0 16812.6 16810.6 16810.2 0.0 0.0 0.0
4p50 20705.6 20711.0 20708.7 20706.2 0.0 0.0 0.0
5p15 21422.8 21559.1 21595.8 21423.0 0.6 0.8 0.0
5p18 23371.4 23495.6 24314.5 23371.8 0.5 4.0 0.0
5p25 29693.0 30154.1 32346.3 30583.5 1.6 8.9 3.0
5p30 34799.4 35732.1 39773.5 36412.0 2.7 14.3 4.6
6p12 7421.0 10861.6 14898.6 8021.7 46.4 100.8 8.1
6p15 8888.9 16656.9 20724.8 9619.7 87.4 133.2 8.2
6p18 9600.2 20611.6 26376.0 10814.9 114.7 174.7 12.7
Avg 17660.3 19831.7 21736.4 18119.5 23.1 39.7 3.3

Table 3.35 shows the results for the families of instances Random, Clique and
Square Root under MAP-Gurobi, the iterated local search combined with DV2, DV3,
SMA combined with DV2 and the memetic algorithm proposed by Gutin and Kara-
petyan MA (GK). In the case of the family of instances Random, it can be observed
that DV3 and MA (GK) provide the best results. In the case of the family of ins-
tances Clique, it can be observed that MA (GK) provides the best results, however
the results obtained by our SMA (DV2) are very competitive against MA results. In
the case of the family of instances Square Root, it can be observed that MA (GK)
provides the best results, however the results obtained by our SMA (DV2) are also
competitive against MA results.

The running times for MAP-Gurobi can be consulted at the Tables 3.3, 3.4, and 3.5
whereas running times for DV3 can be consulted at the Table 3.17. In the case of DV2
(ILS) the results reported correspond with running times of 30 seconds (recall more
than this time did not provided better results). In the case of the memetic algorithms
SMA and MA the results reported correspond with running times of 300 seconds. We
focused our attention in the quality solution but not in the execution time to get a
solution. Even when we have a considerable difference in seconds for the compared
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116 Chapter 3

Table 3.35: General results for Random, Clique and Square Root under the best
techniques.

Instance Best MAP-Gurobi DV2 DV3 SMA MA
known (ILS) (DV2) (GK)

4r20 20 20.0 25.2 20.0 24.7 20.0
4r30 30 30.0 36.0 30.0 34.4 30.0
4r40 40 40.0 44.3 40.0 43.8 40.0
5r15 15 15.0 18.0 15.0 16.9 15.0
5r18 18 18.0 21.4 18.0 19.8 18.0
5r25 25 - 29.3 25.0 27.0 25.0
6r12 12 12.0 13.7 12.0 12.6 12.0
6r15 15 - 17.1 15.0 15.6 15.0
6r18 18 - 20.0 18.0 18.7 18.0
Avg 21.4 - 25.0 21.4 23.7 21.4

RSE - - 16.8 0.0 10.7 0.0

4cq20 1901.8 1901.8 1910.9 1909.0 1901.8 1901.8
4cq30 2281.9 - 2331.9 2322.6 2289.2 2297.9
4cq40 2606.3 - 2705.9 2714.2 2632.3 2618.0
5cq15 3110.7 3110.7 3116.7 3128.0 3110.7 3110.7
5cq18 3458.6 3458.6 3485.2 3507.9 3459.4 3458.6
5cq25 4192.7 - 4268.8 4337.2 4202.8 4195.2
6cq12 4505.6 4505.6 4521.9 4532.6 4505.6 4505.6
6cq15 5133.4 - 5179.0 5216.7 5133.6 5133.4
6cq18 5765.5 - 5852.3 5895.5 5777.8 5769.0

Avg 3661.8 - 3708.1 3729.3 3668.1 3665.6

RSE - - 1.3 1.8 0.2 0.1

4sr20 929.3 929.3 937.5 937.4 929.8 929.3
4sr30 1118.0 - 1146.5 1153.2 1120.8 1119.5
4sr40 1271.4 - 1340.6 1337.0 1282.2 1276.6
5sr15 1203.9 1203.9 1207.9 1215.4 1204.2 1203.9
5sr18 1343.9 1343.9 1358.7 1369.3 1346.6 1343.9
5sr25 1627.5 - 1675.5 1703.9 1636.6 1629.8
6sr12 1436.8 1436.8 1439.8 1447.6 1436.8 1436.8
6sr15 1654.6 - 1668.0 1689.1 1660.4 1654.6
6sr18 1856.3 - 1897.1 1911.9 1861.7 1857.0
Avg 1382.4 - 1408.0 1418.3 1386.6 1383.7

RSE - - 1.9 2.6 0.3 0.1

techniques, we consider that this difference is negligible because all the compared
techniques solve instances in a few minutes, which matches with the purposes of this
thesis. We believe that can be developed faster techniques, however we have covered
our purposes which were to provide techniques that were able to obtain high quality
solutions for the MAP. We let the study of faster techniques as future work.

UAM Azcapotzalco Sergio Pérez PAP through the MAP



Chapter 4

Personnel assignment problems:
the school timetabling problem as
a case study

In different problem contexts it is required to assign people to objects, such as employ-
ees to jobs, employees to offices, professors to courses, job seekers to vacant positions,
etc. Each assignment has a value and, depending on the perspective, we wish either
to minimize the total value, in which case the value is a cost, or maximize it, in
which case the value is a benefit. The correct assignment of people will increase the
productivity of the involved process.

The set of problems in which it is required to assign people to resources are known
as personnel assignment problems (PAP).

Consider the case when a university has n1 professors to fill n2 courses. Based
on the aptitude and experience of each professor, such as previously taught courses,
research line, approval rating, number of times that such a class was taught, among
others. In addition, it can be required to assign the professor into a classroom between
a set of n3 classrooms. Some aspects as the equipment of the classroom, if the
classroom has computers, number of blackboards, etc, could be considered to perform
the assignment. Finally, time restrictions of the professor or for the required time
to teach the class can be considered from a set of n4 time slots. The objective is
to identify an assignment of professors to courses to classrooms to time slots that
minimizes the total cost overall possible assignments. This problem is called school
timetabling problem (STP).

Each problem of assignment of personnel has its own restrictions and considera-
tions and it can be a difficult task to identify them and, even more, to weight them.

We will tackle the school timetabling problem as a case study of personnel assign-
ment problems, however the same considerations and restrictions can be applied to
other problems.
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4.1 State of the art

There are many works that deal with different personnel assignment problems, how-
ever, just a few modeled them as multidimensional assignment problems. Here we
decided to focus our study in personnel assignment problems related to the school
timetabling problem.

Early in the sixties, [Lewis, 1961] introduced the school timetabling problem as a
problem in which some pupils required to be assigned into classes, commonly between
4 and 6 classes in total. In these formulation the teachers and classrooms were relevant
for the assignment.

In the late sixties, [Wolfenden and Johntson, 1969] presented more requirements
of a program for timetabling. They form a list in which each entry specifies a list of
items which must be available simultaneously for certain number of time slots. An
item can be a professor, a class, a classroom, and a time slot.

In the same year, [Lawrie, 1969] described an integer linear programming model of
a school timetabling but considered each combination of items or sets under bipartite
graphs, then combined the solutions to get a set of timetables. He solved his model
by applying some branching procedures.

In the mid seventies, [Dempster et al., 1975] provided a brief description of the
development of computer-based school timetabling systems in the UK. This is a good
document to start to evaluate a set of different approaches to tackle the STP. Ideas
like preassignments (some professor/class must occur on certain time slot), preference
preassignments (some professor/class must occur in one of some preselected time
slots), consecutive periods (some professor/class must occur within a certain section
of time slots), setting requirements (a set of professors/classes must occur at the same
time slots), special rooms (some professor/class must occur in a special room). We
adopt some of this ideas in order to add them into our formulation.

In the mid eighties, [de Werra, 1985] provided some ideas with an emphasis on
graph theoretical models. This work is another excellent reference to start to model
an STP in many different ways adopting the best one according to the problem
restrictions. In his most relevant model, he described a model aimed to assign classes
to teachers to time slots through a couple of bipartite graphs. Instead of solving a 3AP
he joined the bipartite graph of classes to teachers to the bipartite graph of teachers
to time slots and solved through a flow network by adding a source vertex to the
classes vertices and a sink vertex from the time slots vertices. Such formulation has
been commonly used by many authors, since the complexity of solving this problem
is similar to solving two normal assignment problems.

In the late nineties, [Burke et al., 1997] provided a new analysis of the state of
the art for the STP and provided ideas for larger size instances. They divided the
constraints provided by other authors in hard constraints and soft constraints for
the STP. A timetable which breaks a hard constraints is not a feasible solution, soft
constraints can be violated but with a cost involved. They provided some basic ideas
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for different types of heuristics to solve the STP such as genetic algorithms, memetic
algorithms, simulated annealing, tabu search, and constraint logic programming.

In the mid 2000’s, [Cambazard et al., 2005] proposed an interactive constraint
programming model in which one can either add or remove constraints. This type
of techniques are called dynamic constraint satisfaction problems in which we have
a sequence of static constraint satisfaction problems where each constraint satisfac-
tion problem is the consequence of the addition or retraction of a constraint in the
preceding problem.

In 2007, [Abdullah et al., 2007b] proposed a randomized iterative improvement
algorithm with composite neighborhood structures for the STP. A composite neigh-
borhood structure subsumes two or more neighborhood structures. The advantage
of such process is to move along neighborhoods that two structures cannot reach by
themselves. Given an initial randomly generated feasible solution and given a set of
neighborhood structures, at each iteration of the process all the neighborhood struc-
tures are evaluated and if some provides a better solution it is accepted with some
pre-established probability. This process is similar to a local search heuristic with the
difference that the probability of acceptance of a solution makes the process stochas-
tic. In the same year, [Abdullah et al., 2007a] also proposed a memetic algorithm for
the STP which consisted on a basic genetic algorithm combined with their previously
developed heuristic.

In 2008, [Cerdeira-Pena et al., 2008] proposed a memetic algorithm which con-
sisted of a basic genetic algorithm combined with a 2-opt based local search heuristic.
They applied several selection operators, for example tournament and elitist, and a
mutation operators that changes dynamically its probability of being applied when
no better solutions are found. In the same year, [Jat and Yang, 2008] proposed an-
other memetic algorithm which consisted of a basic genetic algorithm combined with
two different local search heuristics, under the claim that such combination provided
higher quality results. At the same time, [Lara et al., 2008] proposed other evolu-
tionary algorithm but of a different type: a bee algorithm. A bee algorithm is a
population based search algorithm that somehow measures the topological distance
between solutions. This type of algorithm performs a local search combined with a
random search and, by evaluating the solutions using a fitness function, determines a
new population of bees. All these heuristics were tested on real life instances of their
corresponding universities, claiming practical good results for the timetable genera-
tion.

Recently, several genetic and memetic algorithms have been proposed for the STP.
For example [Raghavjee and Pillay, 2009], [Qaurooni, 2011], [Budiono and Wong, 2011],
[Doulaty et al., 2013], [Fonseca and Santos, 2013], but they only vary in the type of
hard and soft restrictions to consider and in the basic genetic operators as well as in
the way to generate the initial population. However, none of these procedures solves
the timetabling problem modeled as a 4AP.
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4.2 Modeling the school timetabling problem as a

MAP

The school timetabling problem can be formulated as a s-dimensional assignment
problem (sAP). For example, for a given group of students, it can be required the
assignment of n1 professors to n2 courses to n3 time slots. The corresponding 3-
dimensional matrix of costs is Cn1n2n3 where the entry cijk is related to the cost
of assigning the professor pi to the class cj to the time slot tk with 1 ≤ i ≤ n1,
1 ≤ j ≤ n2, and 1 ≤ k ≤ n3. The goal is to find an assignment of minimum cost,
then the corresponding 0-1 integer linear programming formulation is:

min

n1∑
i=1

n2∑
j=1

n3∑
k=1

cijkbijk

subject to :

n2∑
j=1

n3∑
k=1

bijk = 1 for i with 1 ≤ i ≤ n1

n1∑
i=1

n3∑
k=1

bijk = 1 for j with 1 ≤ j ≤ n2

n1∑
i=1

n2∑
j=1

bijk = 1 for k with 1 ≤ k ≤ n3

(4.1)

where bijk ∈ {0, 1} for all 1 ≤ i ≤ n1, 1 ≤ j ≤ n2, 1 ≤ k ≤ n3.

The first set of restrictions establishes that a professor will be assigned to one
class at some time slot. The second set of restrictions establishes that each class will
be taught by one professor at some time slot. The last set of restrictions establishes
that each time slot will be available for one professor teaching some course. It can
be considered that not necessarily n1 = n2 = n3, hence some elements from each set
will not belong to the final assignment.

In practice, the set of professors and courses will be larger than the set of time slots.
In addition, if other sets are involved we can consider them as extra dimensions, for
example sometimes should be considered the set of classrooms and groups of students
as the dimensions fourth and five. However, each classroom can frequently be used at
every time slot and a time slot can be used to teach simultaneously several courses.
The only case when the same time slot cannot be used more than once is when all
the courses need to be taken by a particular group of people, which is the case that
we are considering.

Even when a 3AP remains NP-hard, our MAP-Gurobi is able to solve exactly
instances of 3AP up to 130 vertices by dimension in some minutes, whereas our
Simple Memetic Algorithm provides an excellent meta-heuristic to obtain feasible
solutions of high quality for 3AP with more than 130 vertices by dimension.
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4.2.1 Setting up the costs matrix for the STP

One of the main difficulties is to propose a reasonable costs matrix for the sAP to
solve. We propose two criteria to perform this task.

4.2.1.1 Binary costs matrix

The simplest way for setting up the cost of all the vectors or hyperedges of the instance
is to set a 0 value for the valid combinations and a 1 for the invalid ones. The idea is
to identify the set of valid combinations and set the rest as invalids.

In practice, each professor is able to teach a very small number of courses, usually
less than 10. Moreover, each professor is only able to teach such class in a subset of
the available time slots. For instance, in some universities time slots use to be one
hour, one hour and a half or two hours. When time slots are one hour then a day
can have at most 15 time slots (considering the length of a school day from 7:00 a.m.
until 10 p.m.). Usually professors are only available for eight hours from a predefined
schedule time, which represents only the half of such time slots.

In terms of the courses, some of them need to be taught in a classroom with special
requirements such as laboratory instrumental, computer machines, projectors, and
classroom capacity. Such restrictions can help to reduce significantly the number of
available combinations.

Depending on the logistic of each school, more restrictions can be considered and
that can helps to reduce the number of possible valid combinations.

In order to perform this task in an easier way, we propose to generate a set of
bipartite graphs which set the possible valid combination in a simple way, aimed to
generate an instance in a similar way to the Clique family of instances for the MAP.

In this case we require the following bipartite graphs:

1. Professors-courses.

2. Professors-time slots.

3. Courses-classrooms.

There are other combinations, however they do not represent realistic restrictions
or are already cover at the provided combinations, for example, it is not common to
have a professor with a preference over some classroom (although sometimes a special
requirement must be satisfied) in which case such restriction will be excluded from
the assignment problem.

The final 4-dimensional matrix will have a 0 value for the allowed combinations
according to the given bipartite graphs.

For example, suppose we have n1 = 4, n2 = 4, n3 = 4 and n4 = 4. Suppose that
professor p2 is only able to teach the courses c1 and c4, in the time slots t1, t3 and
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t4. In addition, suppose that the class c1 requires to be set in the classrooms r1 or r4
whereas the class c2 requires to be set in the classrooms r1 or r3.

If we were allowing all the possible combinations for each professor then a total
of 64 would be set for p2, however, under the given restrictions just a set of 12
combinations are valid.

(p2, c1, r1, t1) (p2, c1, r1, t3) (p2, c1, r1, t4)
(p2, c1, r4, t1) (p2, c1, r4, t3) (p2, c1, r4, t4)
(p2, c2, r1, t1) (p2, c2, r1, t3) (p2, c2, r1, t4)
(p2, c2, r4, t1) (p2, c2, r4, t3) (p2, c1, r4, t4)

 .

All these vectors will have a 0 cost in the 4−dimensional costs matrix and the rest
that consider professor p2 will have a 1 value.

4.2.1.2 Priority costs matrix

The binary costs matrix has the disadvantage that all the valid vectors or combina-
tions have the same weight whereas in practice some restrictions can have a higher
priority than others.

For example it may be more important to set professors to courses, then professors
to time slots and, finally, courses to classrooms.

A very simple way to model a priority of a bipartite graph over another is as
follows:

• Set a priority to each bipartite graph from 1 to P where P is the number of
bipartite graphs. P denotes the highest priority and 1 the lowest priority.

• Fill each entry of the costs matrix with 2P -1.

• For each entry of the costs matrix subtract 2j−1 with 1 ≤ j ≤ P depending on
the priorities that apply to such entry based on its corresponding vector from
the bipartite graphs.

At the end the lower costs entries will have a higher chance to be selected. This
methodology provides an option to measure the cost of setting infeasible options under
the given restrictions.

The advantage of this method is that we can generate P ! different orders for the
priorities and, indeed, we will have P ! candidates to be choose the final assignment
from, instead of having just one solution as in the binary costs matrix definition.

4.2.2 Dealing with a different number of vertices per set

To simplify this part we decided to change the size of each dimension to the size
of the higher dimensions by adding some dummy vertices in order to balance them.
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The only required rule is to set a very high cost (depending on the selected model to
create the matrix costs) for those vectors that consider at least one dummy vertex.

This will allow us to use our algorithms and heuristics exactly in the same way
that they already work, however this will increase considerably the complexity of an
instance.

Suppose we have n1 > n2 > n3 > n4 ≥ 1. The final assignment will be of size
n1 and we will have some vectors in the final assignment that are invalid because
they consider some dummy vertices. Such vectors should be taken out of the solution
as well as the invalid vectors due to the corresponding restrictions according to the
selected model to build the matrix costs.

4.3 A real life instance: scheduling classes at UAM

We obtained a real data set which corresponds to the information of 9 years of classes
scheduling at the Faculty of Basic Sciences and Engineering of the Universidad Au-
tonoma Metropolitana campus Azcapotzalco (UAM-A). Here we summarize some
important aspects and considerations about the classes scheduling in this faculty.

• This faculty is divided into five departments: Basic Sciences, Systems, Elec-
tronics, Energy, and Materials.

• The faculty can require some courses from other faculties and departments of
the university.

• Each department is in charge of some specific courses and each course is dis-
pensed by only one department.

• At UAM, a year is divided in three quarters called Y Y I, Y Y P and Y YO for
winter, spring and autumn correspondingly. For example, the quarter of winter
of 2016 is denoted as 16I.

• A course is called UEA (from the Spanish unidad de enseñanza-aprendizaje).

• For each quarter there is a minimum requirement of courses that should be
covered.

• Some courses can be required to have more than one class.

• Each course is required to be taught a specific number of hours in a week.

• Most courses are taught a multiple of 90 minutes.

• The most common cases are to have courses of 270 minutes or 180 minutes and
the less common cases are of 90, 360 or 450 minutes in a week.
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• Courses with more than 450 minutes are usually self-studying courses and should
not be taught in some specific time slot so they are not considered as part of the
assignment process, since the function of the professor is more as an advisor.

• Each course has assigned a number of credits that counts for the students record
in the university.

• The number of credits multiplied by ten is the desired number of hours that the
student should dedicate to studying such course.

• The possible notes obtained by a student are MB (10), B (8), S (6) and NA
(not approved).

• The university opens at 7:00 a.m. and closes at 10:00 p.m.

• Each professor can be assigned to zero, one, or more courses limited only by
the working day of each person, however the average number of classes taught
by each professor is between 1 and 2.

• Each professor is assigned to some class by considering its experience or if he
claims to know the topics of specific courses.

• In most the cases, a course should preferably be assigned at the same time slot
on each week day that it uses.

The real data set is presented in a large spreadsheet. The table is composed by
the following columns:

• Id. Some identifier of the row for each set of quarters.

• Record. The number of the registry corresponding with such class.

• UEA. The identifier of the course.

• UEA name. The name of the course.

• Group. The identifier of the group.

• Quarter. The identifier of the quarter (as Y Y I, Y Y P or Y YO)

• Credits. The number of credits of the course.

• Theory hours. The number of hours of theory that should be taught.

• Laboratory hours. The number of hours of the practical laboratory.

• Department. The name of the department.

• MB. The number of student who got MB.
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• B. The number of student who got B.

• S. The number of student who got S.

• NA. The number of not approved students.

• Capacity. The maximum number of students in such class.

• Number of declines. The number of people that decline to the course.

• Approval count. The number of students that approve the course. It corre-
sponds with the sum of MB,

• Not approval count. The number of students that do not approve the course.

• Professor. The name of the professor.

• Five columns for the day of week from Monday to Friday. Each day contains the
time period for the corresponding course or a dash if the course is not taught
such day.

This data set has 42604 records. The data considers records from many other
departments because there are courses from other Faculties (such as the Faculty of
Social Sciences and Humanities and the Faculty of Sciences and Arts for Design) that
are shared by students from this Faculty. In total, there are 1372 professors, 1346
courses, and 34 departments among all records. For the purposes of our assignment
we only consider the columns: UEA, UEA name, quarter, theory hours, laboratory
hours, department, professor and the five columns for the day of the week. The other
columns could be also useful by giving a weight based on the approval count or the
number of declines, however we are considering a more general case in which these
aspects may not be relevant. If they are, then they can be incorporated as part of
the cost in some particular way depending of the requirements and the value added
for the assignment. In this moment we do not have some information about the value
added of other variables for the assignment.

4.3.1 Solving the school timetabling problem at UAM

In order to solve this particular STP we make the following assumptions:

• We solve the assignment problem for each department independently. We ana-
lyzed that fewer than 10% of professors are assigned to courses in two depart-
ments and less than the 1% are in more than two departments. Anyway we will
avoid assigning a professor to more than one course at the same time slot.

• In order to have the UEA requirement we can consider the assigned courses for
the corresponding quarter. This means that we will perform assignments over
the quarters from the data set.
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• In order to obtain the available working day of each professor for a quarter to
solve, we consider the time slots at which such professor was assigned in at
least one class during the previous nine quarters. In practice, these data must
be part of the input, however by this moment we do not have the records of such
historical data. Such data must belongs to the department of Human Resources
or could be collected from the preferred time slots of each professor.

• For the set of courses for which a professor will be available we consider those
courses that were taught during the previous nine quarters.

• We consider time slots of 90 minutes starting at 7:00 a.m. and finishing at 10:00
p.m. This gives us a total of 10 time slots in a day to set courses.

• The starting point of each time slot is fixed according with the Table 4.1:

Table 4.1: Starting times for the 10 time slots considered at UAM
Time slot 1 2 3 4 5 6 7 8 9 10

Starting time 7:00 8:30 10:00 11:30 13:00 14:30 16:00 17:30 19:00 20:30

• In order assign a class in one step, for the courses that require an assignment
with more than one time slot a schema is designed to create time periods which
allow us to consider a group of time slots as a unique time period.

• Each course should be assigned from 1 to 5 time slots so, each course will be
assigned to the same time slots over the week according with its number of
required time slots.

• In addition to divide the data by department, we will divide the courses for
each department according with their number of time slots required. We have
5 categories of courses, it means those required in either 1, 2, 3, 4 or 5 time
slots. This means that we will be solving approximately 34 × 5 (number of
departments × number of categories of courses) multidimensional assignment
problems for design a complete courses scheduling for a quarter.

• We do not have the information about the rooms so, the corresponding MAPs
can be modeled as 3AP.

One of the most difficult parts of this modeling was to create the general schema
for those courses that should be assigned in more than one time slot over different
days of the week (as many as the number of time slots). The number of all possible
combinations can be really high and unrealistic for most cases. For example, a course
that should be set at two time slots could be assigned on Monday at 7:00 and on
Friday at 19:00, which is not desirable. The time periods schema that we consider
reduces the number of combinations under the assumption that all the time slots of a
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course should be given at the same starting points among the days of the week. For
example, a course with four time slots can be assigned at any of the 10 starting points
and assigned to one of five possible combinations which are described on Table 4.2.
Additionally, we show a binary representation of the days of the week considered for
the required time slots where the left most bit corresponds to Monday and the right
most bit to Friday. A bit set to 1 indicates that such day will be part of the time
period for the course. The binary representation of time periods helps to deal with
the generation of the combinations and its handling in an algorithm.

Table 4.2: Five possible options for a course with four time slots
Considered days Binary representation

Monday, Tuesday, Wednesday, Thursday 11110
Monday, Tuesday, Wednesday, Friday 11101
Monday, Tuesday, Thursday, Friday 11011

Monday, Wednesday, Thursday, Friday 10111
Tuesday, Wednesday, Thursday, Friday 01111

There are a total of
(
5
1

)
= 5,

(
5
2

)
= 10,

(
5
3

)
= 10,

(
5
4

)
= 5 and

(
5
5

)
= 1 possible

combinations for courses with 1, 2, 3, 4, and 5 time slots respectively. By considering
the starting points for the time slots, this gives us a maximum of 10×10 unique time
periods among which the courses could be assigned.

By considering all the previous assumptions, we proposed a new approach to
solve the STP at UAM-A that is based on the resolution of several 3AP to satisfy
the quarterly UEA requirement at the faculty of Basic Sciences and Engineering at
UAM-A. Algorithm 29 shows our proposed solution.

The process shown in Algorithm 29 is as follows: first the list of assignments is set
to empty. The cycle on line 3 allows to divide the UEA requirements by department
and the cycle on line 4 allows to divide the requirements according to the number of
required time slots for the courses, both divisions are considered at the same time on
line 5. On line 6 the time slots are converted into time periods according with the
rules previously described. The cycle on line 8 will be executed while we have required
courses to assign or until the process can not set a required course. On line 10 we
obtain all the possible feasible assignments based on the list of ProfessorsToCourses,
the professor availability, and the given time periods. Then, on line 11 we generate the
binary costs matrix for the 3AP by adding the required dummy vertices if necessary.
On line 12 the corresponding 3AP is solved and then on line 13 we get the list of
valid assignments from the corresponding solution to the 3AP. Since the problem is
solved by applying the technique of modeling the 3AP through a binary costs matrix
the only valid assignments are those whose cost is equal to zero. On lines 14, 15 and
16 we update the professor availability, the missing list of UEA requirements and
the final ListOfAssignments. The deepest cycle can be executed as many times as
the number of required courses in the worst case. However in practice, just a few
executions were required before filling the requirements or not finding more feasible
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Algorithm 29: A new solution for the STP at UAM-A based on the 3AP.

Input:
UEAReqByD. The requirements of UEA by department.
Departments. The list of departments.
ProfessorToCourses. A list of professors with their list of courses.
ProfessorAvailability. The working day of professors for the whole week.
TimeSlotsByCourse. The number of time slots by course.
Result: classesScheduling: The classes scheduling description.

1 Set ListOfAssignments := ∅;
2 foreach department ∈ Departments do
3 for blocks from 5 to 1 do
4 CoursesToSet := GetCoursesWithBlocks(UEAReqByD[department],

TimeSlotsByCourse, blocks);
5 TimePeriods := GetCombinationsOfTimePeriods(blocks);
6 MissingCourses := |CoursesToSet|+1;
7 while MissingCourses > |CoursesToSet| and |CoursesToSet| > 0 do
8 MissingCourses := |CoursesToSet|;
9 possibleAssignments := getAssignments(ProfessorsToCourses,

ProfessorAvailability, TimePeriods);
10 costsMatrix := generateBinaryCostsMatrix(possibleAssignments);
11 finalAssignment := SolveMAP(costsMatrix);
12 validAssignment := GetFeasibleAssignments(finalAssignment);
13 UpdateProfessorAvailability(ProfessorAvailability,

validAssignment);
14 ListOfAssignments := ListOfAssignments ∪ validAssignment;
15 UpdateCoursesToSet(CoursesToSet, validAssignment);

16 Set classesScheduling := getCompleteScheduling(ListOfAssignments);
17 return {classesScheduling};

assignments. Finally, we build the classes scheduling based on the ListOfAssignments
found by this procedure.

We decided to start with the courses with the highest number of time slots because
such courses are taught usually by a small number of professors therefore they have
a higher priority to be assigned first, however different orders for such process can
provide different global solutions.

4.3.2 Results on a real data set

We evaluated our solution for the STP at UAM-A by proposing classes scheduling for
the quarters of 15P, 15O and 16I for all the departments considered in the data set. It
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is difficult to determine if our solution is better than the proposed classes scheduling
for the corresponding quarters because we do not have a way to measure how good
were the actual classes scheduling for such quarters. However, we proposed a metric
that calculates the percentage of satisfied courses. This metric allow us to measure
the effectiveness of the assignment by itself to cover all the set of UEA requirement
for each quarter.

In order to solve the 3AP instances involved in our solution for the STP at UAM-A
we considered our two best techniques:

1. MAP-Gurobi. It is used when the number of vertices is at most 130.

2. Simple Memetic Algorithm (SMA). It is used when the number of vertices is
greather than 130.

Our solution for the STP at UAM-A was implemented in the programming lan-
guage R and its performance was evaluated on a platform with an Intel Core i5-3210M
2.5 GHz processor with 4 GB of RAM under Windows 8.

It is important to mention that our solution does not satisfy the 100.0% of the
UEA requirement in all the cases because we are only considering the historical time
periods and the historical courses taught for each professor. The actual historical
information used for the corresponding quarter to solve is not available. In addi-
tion, our formulation to generate time periods do not consider some special cases of
time periods, for example when a class should be scheduled on different days and at
different starting times or when a course with two time slots should be set in two
consecutive time slots on the same day (because it is a laboratory course) or courses
with three time slots that should be set in two days of 1.5 time slot each due to
the working day professor requirements. This reasons derive in the problem that our
solution cannot find feasible options when an assignment with such time periods is
required. Another special case is when professors were hired just in the quarter in
which the assignment is solved and the cases when some professors are teaching some
courses for the first time in the quarter to solve, which is again due to the fact that
we are only considering just the historical data for the last nine quarters to create
the valid assignment. If the model received such new information then the quality of
the assignment could be higher.

Tables 4.3, 4.4, and 4.5 show a summary of the classes scheduling found by our
solution for the STP at UAM-A considering the metric of the percentage of satisfied
courses. We show the number of UEA requirements, the number of satisfied courses,
the number of not satisfied courses, and the percentage of satisfied courses. We can
observe that in general the percentage of the total satisfaction of the UEA requirement
was greater than 86.0%, even when in our assignment we did not consider some special
cases of time periods. The quarter of higher demand usually is the Y YO.

It is important to highlight that this results were obtained by only considering
the historical information about previously taught courses and historically observed
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Table 4.3: Percentage of satisfied courses at UAM-A for the quarter 15P.

Department UEA Satisfied Missing Percentage of
requirements courses courses satisfied courses

ADMINISTRACION 3 2 1 66.6
CIENCIAS BASICAS 377 375 2 99.4

DERECHO 8 8 0 100.0
DIR CYAD 1 0 1 0.0

DIRECCION DE LA 263 197 66 74.9
ECONOMIA 5 3 2 60.0

ELECTRONICA 198 194 4 97.9
ENERGIA 279 273 6 97.8

EVA. DISENO EN E 1 0 1 0.0
HUMANIDADES 5 2 3 40.0

INV.CONOCIMIENTO 3 3 0 100.0
MATERIALES 156 155 1 99.3

OFICINAS DE LA R 6 4 2 66.6
PROCESOS TEC. RE 3 1 2 33.3

SECRETARIA ACADE 21 5 16 23.8
SISTEMAS 169 168 1 99.4

SOCIOLOGIA 4 3 1 75.0

Total 1502 1393 109 92.7

time periods of availability at the university for each professor. In order to get a more
realistic solution, it is necessary to have the information of the options of courses to
teach by each professor for the quarter to solve as well as the corresponding availability
of time slots in a week. Our tool is providing a solution that, by using the historical
information, is able to determine if the actual UEA requirements can be covered with
the currently hired personal or if it is necessary to hire some additional positions in
order to cover the missing requirement.

We omitted the results for the version of our solution that considers the creation
of a priority costs matrix because such formulation is more realistic for the cases when
the information about preferred courses to teach and availability of time slots is the
actual considered information for the quarter to solve and not the historical data. We
let such evaluation as future work.
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Table 4.4: Percentage of satisfied courses at UAM-A for the quarter 15O.

Department UEA Satisfied Missing Percentage of
requirements courses courses satisfied courses

ADMINISTRACION 118 104 14 88.1
CIENCIAS BASICAS 550 547 3 99.4
DEPTO. DE ESTUDI 6 1 5 16.6

DEPTO. DE PROCES 4 2 2 50.0
DEPTO. DE TECNOL 8 1 7 12.5

DERECHO 210 187 23 89.0
DIR CSH. 34 25 9 73.5

DIR CYAD 47 32 15 68.0
DIRECCION DE LA 190 168 22 88.4

ECONOMIA 150 121 29 80.6
ELECTRONICA 249 249 0 100.0

ENERGIA 315 299 16 94.9
EVA. DISENO EN E 156 104 52 66.6

FILOSOFIA 3 1 2 33.3
HUMANIDADES 78 70 8 89.7

INV.CONOCIMIENTO 118 90 28 76.2
MATEMATICAS 5 3 2 60.0

MATERIALES 222 222 0 100.0
MEDIO AMBIENTE 74 42 32 56.7
OFICINAS DE LA R 5 4 1 80.0

PROCESOS TEC. RE 222 162 60 72.9
PRODUCCION ECONO 3 3 0 100.0
SECRETARIA ACADE 4 4 0 100.0

SISTEMAS 204 202 2 99.0
SOCIOLOGIA 145 61 84 42.0

TEORIA Y ANALISI 3 1 2 33.3

Total 3123 2705 418 86.6
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Table 4.5: Percentage of satisfied courses at UAM-A for the quarter 16I.

Department UEA Satisfied Missing Percentage of
requirements courses courses satisfied courses

ADMINISTRACION 3 3 0 100.0
CIENCIAS BASICAS 247 246 1 99.5

DERECHO 10 10 0 100.0
DIR CSH. 1 0 1 0.0

DIRECCION DE LA 176 127 49 72.1
ECONOMIA 3 3 0 100.0

ELECTRONICA 135 133 2 98.5
ENERGIA 173 166 7 95.9

EVA. DISENO EN E 2 2 0 100.0
HUMANIDADES 5 5 0 100.0

MATERIALES 101 100 1 99.0
OFICINAS DE LA R 4 2 2 50.0

PROCESOS TEC. RE 4 4 0 100.0
SECRETARIA ACADE 65 2 63 3.0

SISTEMAS 110 110 0 100.0
SOCIOLOGIA 4 4 0 100.0

Total 1043 917 126 87.9
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Conclusions

We can conclude several things about two different lines of research, first the results
about algorithms and heuristics for the resolution of the multidimensional assignment
problem and, second, the modeling and resolution of personnel assignment problems,
in particular the school timetabling problem, through the multidimensional assign-
ment problem. Even if such lines are related, we decided to divide our perspective
into both lines in order to show the progress on each research line, as well as the
possible future work.

5.1 The assignment problem

We determined that the Hungarian method is not the most suitable algorithm to
solve some particular types of instances of the assignment problem, in particular for
the three general variants of assignment problems: perfect assignments, imperfect
assignments, and incremental assignments.

For the purposes of solving a 2-dimensional assignment problem as part of an
s-dimensional assignment problem with s ≥ 3, we determined that the most suitable
technique is a state-of-the-art auction algorithm aimed to solve perfect assignment
which is the particular problem to solve for this case. This auction algorithm is called
ε-scaling auction algorithm and it is more than 20 times faster than a state-of-the-art
version of the Hungarian method, which was a very important fact that helped us to
obtain a high quality solution in our simple memetic algorithm but in lower running
times in comparison with the more complex state-of-the-art memetic algorithm for
the multidimensional assignment problem.

Another contribution is that we found that a very important factor that has an
impact on the resolution time is the distribution of the weights among the edges of
the bipartite graph of each instance. Those instances whose distribution of weights
among the edges were uniformly generated at random are the most difficult to solve
by the ε-scaling auction algorithm in comparison to the other studied distributions.
The distribution that we care for the purposes of the multidimensional assignment
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problem were those uniformly generated at random, but even in this case the ε-scaling
auction algorithm is approximately 30 times faster than the Hungarian method.

5.2 The multidimensional assignment problem

The multidimensional assignment problem is known to be an NP-hard problem and
even when better algorithms for this problem can be proposed in the future, unless P
= NP, it will be difficult to reach a progress that allows to solve exactly instances of
real life because the complexity of the problem grows exponentially and the real life
problem sizes are considerably larger to the currently reached progress.

We summarize the main exact techniques that solve this problem and propose a
new one, our MAP-Gurobi, which even defeated a state-of-the-art technique for the
particular cases of instances of 3AP up to 130 vertices under the evaluated families of
instances proposed by several authors at different researches, finding optimal solutions
for some instances where only feasible solutions were known.

We proposed some naive basic local search heuristics and the generalization of
state-of-the-art local search heuristics, such as the generalization of the dimension-
wise variation heuristics and the generalized local search heuristic, which allows us to
obtain new local searches as DV3 and DVH3 that are competitive against the state-
of-the-art metaheuristic (a relative complex memetic algorithm) that uses as part of
its machinery some lower quality solution techniques with respect to our proposed
local searches. We determined that the techniques DV3 and DVH3 provide very high
quality solutions that obtained optimal results for the evaluated families of instances
Random and Geometric, results pretty near to the optimal for the family of instan-
ces Product, with a relative solution error of 0.6%, and very competitive results for
the families of instances Clique and Square Root, with relative solution errors of ap-
proximately 1.8% and 2.6% correspondingly. Some of these results were accepted for
its publication on Studies in Computational Intelligence [Pérez Pérez et al., 2017a].
We also determined that the combination of an ILS with DV2 provides even higher
quality solutions for the families of instances Clique and Square Root. This combi-
nation obtained a relative solution error of 1.3% for the family of instances Clique
and of 1.9% for the family of instances Square Root, which outperformed the results
obstained by DV3 for these families of instances. We propose the combination of an
ILS with DV3 as future work.

We proposed a new state-of-the-art simple memetic algorithm for the MAP which
is competitive against the previously state-of-the-art memetic algorithm in terms of
the complexity of the structure of the procedure as well as in obtaining similar quality
solutions in lower running times. We determined that the quality of the memetic al-
gorithm depends on the local search used as well as on the combination of the method
used for the selection function, the crossover operator, and the mutation operator,
where the contribution is that among the evaluated selection functions and operators,
the elitist selection function, the cycled crossover operator, and the inversion mutation
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provide us the results of higher quality under the evaluated families of instances. The
relative solution errors for the families of instances Clique and Square Root under our
simple memetic algorithm, which were the most difficult families for DV3 and DVH3,
were of 0.2% and 0.3% respectively after running times of 300 seconds, which is sim-
ilar to the reported relative solution errors of 0.1% and 0.1% for the state-of-the-art
memetic algorithm after the same running time. Some of these results were accepted
for its publication in the 14th International Conference on Electrical Engineering,
Computing Science and Automatic Control (CCE 2017) [Pérez Pérez et al., 2017b].

We constructed a state-of-the-art software for solving instances of the multidi-
mensional assignment problem in as many dimensions and vertices as the current
restrictions of memory space allow us to have.

5.3 Personnel assignment problems

We determined that any problem that deals with the assignment of personnel can be
modeled through a multidimensional assignment problem for the cases where assign-
ments between persons and two or more other disjoint sets of things of concepts are
involved. We focused our study of personnel assignment problems on the case of the
school timetabling problem, where the assignment between elements from more than
two sets is required.

Once we have a nice software to solve instances of the multidimensional assignment
problem, the only concern is to design a methodology for the establishing of weights
for the hyperedges of the corresponding sAP. We proposed two criteria for this task:
the binary costs matrix and the priority costs matrix. The first criterion is good
for the cases where only feasibility is important whereas the second criterion tries
to measure priorities over the assignment. These two criteria can be applied to any
type of personnel assignment problem, even when they are originally proposed for
the school timetabling problem: we only need to model the corresponding problem
according to the given methodologies and the proper restrictions and considerations
of the problem to solve.

We considered the problem of the Faculty of Basic Sciences and Engineering at
the Universidad Autonoma Metropolitana campus Azcapotzalco as a particular case
of a school timetabling problem. We proposed a new solution for this problem which
considered the historical data about previously taught courses by professors and their
availability time periods at the university in order to determine if, based on such
historical data, the university could be able to satisfy the UEA requirement for the
a particular quarter. The more realistic case is to consider the actual requirements
for a new quarter and the actual restrictions of the professors however, while this
thesis was written, such data were not available. We show that the effectiveness
of our methodology from the perspective of the percentage of the satisfied UEA
requirements is higher than the 90% by considering historical data. We suppose that
the use of the proposed solution, not only using historical data, but with the actual
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data to be used for the classes scheduling of a new quarter can give even better results
and can be also useful to decide whether new hirings are required in order to satisfy
the UEA requirements or whether these can be satisfied with the available personnel
at that moment. We were able to add several restrictions to our solution and to
obtain results in a few minutes, whereas the current mechanism can take more than
a few days depending on the restrictions for each quarter. We conclude that our tool
is able to be tested and applied to future scenarios of classes scheduling at UAM-A.

5.4 Future work

In the case of MAP, we believe that should be possible to develop a better algorithm
than MAP-Gurobi for solving it because even when MAP-Gurobi represents a new
state of the art algorithm, it is based on a generic machinery. We only considered
the versions SDV2, DV2, SDV3, and DV3 of GDVH, however we believe that other
heuristics like SDV4, DV4, or in general SDV(s − 1) and DV(s − 1) could provide
higher quality solutions. We believe that smarter local searches derived from the k-
opt heuristics also can be proposed in order to provide higher quality solutions than
the brute force version of k-opt. We considered that our simple memetic algorithm
can also explore over other selection functions, crossover, and mutation operators
such that the development of other more specific for MAP could provide even higher
quality solutions. In addition, one could consider the combination of our simple
memetic algorithm with stronger local searches as DV3 or DV(s − 1) in order to
compare its performance against the current state of the art, which considers local
searches of lower quality solutions.

In the case of the STP, new ways to build the costs matrix for the corresponding
sAP can be proposed as well as other ways for the creation of time periods from time
slots, which may include some particular cases not considered in our solution. It is
necessary to apply our solution by considering a realistic scenario instead of historical
information, this will provide a better metric for our solution. It is necessary to
consider the information about rooms since our solution could not test those scenarios
since in the information of real data the number of rooms was not available. More
complex but realistic versions for the STP at UAM-A should consider the original
demand of courses for the quarter to solve as well as preferences of students in order
to obtain a solution that satisfies more aspects of the problem.
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Appendix A

Best known solutions

Here we show the best known solutions for the families of instances Random, Clique,
Square Root, Geometric and Product which were considered in our experimental
evaluations. It includes the original instances for the families Random, Clique and
Square Root provided by Gutin and Karapetyan in [Karapetyan and Gutin, 2011b]
and the extra data set with (s = 3, n = 130), (s = 4, n = 50), and (s = 5, n = 30).
The last column of each table is the average value for the best known solutions (or
optimal in some cases) for the ten samples of each type of instance, defined for a
pair of s and n and for the corresponding family of instances. The average value of
the best known solutions (or optimal in some cases) is the reference that we used
for calculating the relative solution error in our reported results. In the next tables
(except for the family of instances Random), we show a row colored in green for those
solutions that correspond with the optimal value. For the cases where we know the
optimal solutions they were found thanks to our MAP-Gurobi. The rest of values
that we have as the best known solutions were obtained from the best solution found
after all the executions that we performed over each problem instance considering all
our developed techniques. In most of the cases we obtained the same averages for
each set of ten instances as those obtained in [Karapetyan and Gutin, 2011b].

Table A.1 shows the optimal solutions for the family of instances Random. This
is the only case in which we know that the values of the best solutions obtained
correspond with the optimal solution without considering our MAP-Gurobi. The
weight of any hyperedge of an instance for this family is not lower than one. Since
the costs of the best solutions obtained are equal to the number of vertices n then
the best solutions obtained correspond with the optimal solutions. We included our
30 samples generated for 3r130, 4r50, and 5r30.

Table A.2 and shows the best known solutions for the family of instances Clique.
We included our 30 samples generated for 3cq130, 4cq50, and 5cq30. It is important
to mention that in the case of the set of instances 3cq70 the best solution reported
was 1158.4 whereas we found that the optimum value corresponds with 1157.1. We
also found that for the set of instances 3cq100 the best solutions reported was 1368.1
whereas we found that the optimum value corresponds with 1345.9.
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Table A.1: Optimal solutions for the family of instances Random.

Instance 1 2 3 4 5 6 7 8 9 10 Avg

3r40 40 40 40 40 40 40 40 40 40 40 40
3r70 70 70 70 70 70 70 70 70 70 70 70

3r100 100 100 100 100 100 100 100 100 100 100 100
3r130 130 130 130 130 130 130 130 130 130 130 130

4r20 20 20 20 20 20 20 20 20 20 20 20
4r30 30 30 30 30 30 30 30 30 30 30 30
4r40 40 40 40 40 40 40 40 40 40 40 40
4r50 50 50 50 50 50 50 50 50 50 50 50

5r15 15 15 15 15 15 15 15 15 15 15 15
5r18 18 18 18 18 18 18 18 18 18 18 18
5r25 25 25 25 25 25 25 25 25 25 25 25
5r30 30 30 30 30 30 30 30 30 30 30 30

6r12 12 12 12 12 12 12 12 12 12 12 12
6r15 15 15 15 15 15 15 15 15 15 15 15
6r18 18 18 18 18 18 18 18 18 18 18 18

Table A.2: Best known solutions for the family of instances Clique.

Instance 1 2 3 4 5 6 7 8 9 10 Avg

3cq40 944 927 948 1022 849 926 957 900 950 976 939.9
3cq70 1089 1133 1195 1111 1224 1204 1122 1183 1153 1157 1157.1

3cq100 1333 1394 1340 1357 1357 1336 1330 1357 1314 1341 1345.9
3cq130 1494 1604 1632 1575 1601 1596 1585 1521 1644 1446 1569.8

4cq20 1764 2043 2019 1923 1876 1905 1928 1803 1923 1834 1901.8
4cq30 2274 2254 2279 2377 2345 2289 2222 2325 2270 2188 2281.9
4cq40 2745 2500 2673 2559 2682 2610 2648 2600 2576 2597 2606.3
4cq50 2986 2983 3085 3037 2918 3059 3126 2980 3059 3093 3032.6

5cq15 3220 3126 3069 3158 2983 3193 3400 3100 2871 2987 3110.7
5cq18 3651 3324 3710 3529 3556 3292 3420 3265 3433 3406 3458.6
5cq25 4242 4171 4245 4228 4063 4175 4230 4065 4326 4182 4192.7
5cq30 4794 4593 4647 4900 4662 4759 4497 4616 4676 4573 4671.7

6cq12 4683 4363 4418 4269 4607 4562 4360 4698 4605 4491 4505.6
6cq15 5232 5203 5162 4967 5178 5271 5217 4885 5045 5174 5133.4
6cq18 5689 5811 5823 5718 5784 5907 5751 5890 5598 5700 5765.5
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Table A.3 shows the best known solutions for the family of instances Square Root.
We included our 30 samples generated for 3sr130, 4sr50, and 5sr30. In the case of
the sets of instances 3cq40, 3sr70 and 3sr100 the best solutions reported were 610.6,
737.1, and 866.3 whereas we found that the optimum values correspond with 606.9,
733.6, and 838.1.

Table A.3: Best known solutions for the family of instances Square Root.

Instance 1 2 3 4 5 6 7 8 9 10 Avg

3sr40 603 592 607 664 561 595 629 586 597 635 606.9
3sr70 684 728 772 707 778 768 703 750 726 720 733.6

3sr100 838 853 831 846 859 826 828 849 816 835 838.1
3sr130 935 1014 982 1006 969 988 947 996 906 986 972.9

4sr20 860 979 959 956 917 929 983 867 944 899 929.3
4sr30 1111 1125 1097 1162 1127 1134 1076 1171 1110 1067 1118.0
4sr40 1330 1236 1302 1281 1297 1288 1306 1288 1275 1252 1271.4
4sr50 1469 1476 1525 1455 1463 1513 1526 1489 1512 1483 1491.1

5sr15 1242 1201 1194 1249 1156 1253 1312 1173 1078 1181 1203.9
5sr18 1406 1308 1429 1353 1371 1292 1331 1285 1321 1343 1343.9
5sr25 1661 1631 1675 1651 1581 1634 1634 1593 1669 1582 1627.5
5sr30 1874 1810 1806 1889 1820 1881 1769 1801 1845 1786 1828.1

6sr12 1495 1383 1410 1356 1464 1446 1395 1515 1456 1448 1436.8
6sr15 1652 1683 1698 1618 1670 1688 1668 1599 1616 1654 1654.6
6sr18 1846 1897 1897 1823 1837 1881 1863 1879 1811 1831 1856.3

Table A.4 shows the best known solutions for the family of instances Geometric.
All these instances were designed for the purposes of this thesis. This family of
instances is one of the easiest families. Most of the problem instances were solved
through our MAP-Gurobi.

Table A.5 shows the optimal solutions for the family of instances Product. All
these instances were designed for the purposes of this thesis. This family of instances
is one of the most difficult families. Most of the problem instances could not be solved
through our MAP-Gurobi.
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Table A.4: Best known solutions for the family of instances Geometric.

Instance 1 2 3 4 5 6 7 8 9 10 Avg

3g40 1857 1471 1752 1761 1482 1697 1420 1730 1998 2143 1731.1
3g70 2530 2876 2263 2102 2155 2571 2229 2277 2530 2420 2395.3

3g100 2744 2930 2401 2837 3273 3054 3059 3115 3494 2730 2963.7
3g130 3059 3545 4138 4186 3521 3453 3671 3250 3529 3022 3537.4

4g20 2459 2149 2270 2392 2223 2842 2199 2963 2158 2150 2380.5
4g30 3117 2934 2602 2542 2886 3148 2747 2633 3480 4063 3015.2
4g40 3603 4042 3528 3226 3332 3238 3696 4265 2858 3450 3523.8
4g50 4327 4283 3923 4082 3660 4012 4521 4551 3967 3697 4102.3

5cq15 3220 3126 3069 3158 2983 3193 3400 3100 2871 2987 3110.7
5cq18 3651 3324 3710 3529 3556 3292 3420 3265 3433 3406 3458.6
5cq25 4242 4171 4245 4237 4063 4175 4230 4065 4326 4182 4193.6
5cq30 4794 4625 4669 4900 4662 4767 4497 4616 4676 4573 4677.9

6cq12 4683 4363 4418 4269 4607 4562 4360 4698 4605 4491 4505.6
6cq15 5232 5203 5162 4967 5178 5271 5217 4885 5045 5174 5133.4
6cq18 5689 5811 5823 5718 5784 5907 5751 5890 5598 5700 5767.1

Table A.5: Best known solutions for the family of instances Product.

Instance 1 2 3 4 5 6 7 8 9 10 Avg

3p40 3841 4083 3811 4898 2960 3444 2773 4713 3187 4591 3830.1
3p70 6306 6196 8185 5111 6636 6083 7508 5309 7033 5609 6397.6

3p100 9729 7735 8964 8641 10306 8114 9657 8125 7178 11292 8974.1
3p130 13675 13902 9926 13309 11241 11316 10539 12767 9554 13234 11946.3

4p20 7405 8375 7925 11299 11733 12828 4308 5596 8734 5770 8397.3
4p30 13162 14102 12997 18177 9280 11353 8522 17114 10260 16574 13154.1
4p40 15320 16670 23027 14868 13984 13912 18139 19578 19014 13588 16810.0
4p50 19394 15872 32191 15110 16594 23106 25597 18544 19720 20928 20705.6

5p15 17542 20300 25710 15693 21278 40216 14237 17960 31012 10280 21422.8
5p18 17405 27204 25689 17504 37318 19650 17606 30716 16514 24108 23371.4
5p25 26182 28026 28177 39686 33103 28061 23175 35135 20066 35319 29693.0
5p30 32478 20904 27964 50082 38184 25262 45056 32557 42027 33480 34799.4

6p12 6612 7904 5260 6878 4920 12846 13234 5024 3312 8220 7421.0
6p15 7909 8992 6312 6304 14266 12434 5402 13188 7066 7016 8888.9
6p18 8049 8372 9022 11526 15522 3916 10761 11682 7844 9308 9600.2
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