
The Traveling Tournament Problem

by

Salomon Bendayan

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Combinatorics & Optimization

Waterloo, Ontario, Canada, 2022

© Salomon Bendayan 2022

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

In this thesis we study the Traveling Tournament problem (TTP) which asks to generate
a feasible schedule for a sports league such that the total travel distance incurred by all
teams throughout the season is minimized. Throughout our three technical chapters a
wide range of topics connected to the TTP are explored.

We begin by considering the computational complexity of the problem. Despite existing
results on the NP-hardness of TTP, the question of whether or not TTP is also APX-hard
was an unexplored area in the literature. We prove the affirmative by constructing an
L-reduction from (1, 2)-TSP to TTP. To reach the desired result, we show that given an
instance of TSP with a solution of cost K, we can construct an instance of TTP with a
solution of cost at most 20m(m+1)cK where m = c(n− 1)+ 1, n is the number of teams,
and c > 5, c ∈ Z is fixed. On the other hand, we show that given a feasible schedule to the
constructed TTP instance, we can recover a tour on the original TSP instance.

The next chapter delves into a popular variation of the problem, the mirrored TTP,
which has the added stipulation that the first and second half of the schedule have the
same order of match-ups. Building upon previous techniques, we present an approximation
algorithm for constructing a mirrored double round-robin schedule under the constraint
that the number of consecutive home or away games is at most two. We achieve an
approximation ratio on the order of 3/2 +O(1)/n.

Lastly, we present a survey of local search methods for solving TTP and discuss the
performance of these techniques on benchmark instances.

iii

Acknowledgements

I would like to thank my supervisor Joseph Cheriyan for his guidance throughout my
degree. I would also like to thank Professor Kevin Cheung of Carleton University for
graciously lending his time and expertise on this project.

I am grateful to Chahira, Cami, Enrique, Vanessa, Amy, Abbey and all the friends I
made along the way for making my time in Waterloo a special and memorable experience.
Lastly, I am forever indebted to my parents for their continued support and unwavering
belief in me.

iv

Table of Contents

List of Figures vii

List of Tables ix

1 Introduction 1

1.1 Introduction . 1

1.2 The Traveling Tournament Problem . 2

1.2.1 Unconstrained TTP . 3

1.2.2 Mirrored TTP . 4

1.3 Approximation Algorithms . 4

1.4 Computational Methods for TTP . 6

1.4.1 Lower Bound & Solution Methods 6

1.4.2 Integer Programming . 6

1.4.3 Local Search Methods . 7

1.5 Related Problems . 7

2 APX Hardness of Unconstrained TTP 10

2.1 Overview . 10

2.2 Reduction from (1,2)-TSP to UTTP . 11

2.3 APX Hardness of Boosted TSP . 15

2.4 APX Hardness of UTTP . 16

v

3 Mirrored TTP 21

3.1 Overview . 21

3.2 The Problem . 21

3.3 Literature Review . 23

3.4 Feasibility of mTTP(2) . 24

3.5 SRR vs. DRR Tournaments . 26

3.6 SRR Schedule vs mirrored DRR Schedule 27

3.7 Constructing a mTTP(2) Schedule . 34

3.7.1 Lower Bound . 34

3.7.2 Algorithm for n/2 even . 35

3.7.3 Counting the trips taken with 12 teams 40

3.7.4 Cost Analysis . 45

3.7.5 Algorithm for n/2 odd . 49

3.7.6 Cost Analysis . 52

4 Local Search Methods 57

4.1 Introduction . 57

4.2 Applications to TTP . 57

4.3 Heuristics for MTTP . 59

4.4 Simulated Annealing Approach to TTP . 63

4.5 Variable Neighborhood Search Method for solving TTP 70

5 Conclusions 74

References 76

vi

List of Figures

2.1 Small example: G′ from G with c = 3. 12

2.2 The (m+ 1) games team 1 of group j will play in one round of the dummy
tournament when dummy teams i and j play each other. 14

2.3 The leftmost graph shows P (in red) going from one copy to Gi. The next
graph shows the equivalent edges (blue) going back and forth from the cen-
tral vertex. Finally we see the induced tour on a copy Gi. 18

3.1 Illustration of the graph construction. 26

3.2 Configuration with n/2 inner teams in the center and n/2 outer teams in a
ring surrounding them. 29

3.3 Illustration of an SRR schedule and the edges missing from ∆. 32

3.4 Initial configuration. First stage of the SRR schedule for 12 teams 35

3.5 Second stage of the SRR for 12 teams . 36

3.6 Final stage of the SRR schedule for 12 teams 36

3.7 Games played between pairs . 37

3.8 Example with 20 teams. 37

3.9 Trips of length 2 taken by Team 7 . 41

3.10 Trips taken by Team 7 including single trips 42

3.11 Actual trips taken by Team 7 . 42

3.12 Trips counted for Team 2 . 43

3.13 Actual trips taken by Team 2 . 44

3.14 Trip of length two for odd i travelling between pairs 48

vii

3.15 Initial configuration for 14 teams . 50

3.16 Games between pairs on the edge with three nodes. 51

3.17 Trip of length two for odd i travelling between pairs 55

4.1 Simulated Annealing algorithm. Source: [1, Fig. 1]. 67

4.2 Results of TTSA on TTP. Source: [1, Table 3] 68

4.3 Solution quality over time for 12 teams. Source: [1, Fig. 4] 69

4.4 Generating the initial configuration. Source: [22] 71

4.5 The VNS algorithm for TTP. Source: [22] 72

4.6 Results of VNS on benchmark instances. Source [22, Table 2]. The clustering
results are due to [3], AIS results are due to [4] 73

viii

List of Tables

3.1 Mirrored DRR schedule on 4 teams. 22

3.2 Home-away assignments of first and last day 24

3.3 Case 1: 2 teams have different home-away assignments 25

3.4 Case 2: 4 teams have different home-away assignments 25

3.5 First 4 days of the schedule with 8 teams. 30

3.6 First 4 days of the mirrored schedule with 8 teams. 31

3.7 Home-away pattern at the meeting point of the two SRR schedules 38

3.8 Full mirrored DRR schedule for our example on 12 teams 39

3.9 SRR schedule for 14 teams . 52

4.1 Schedule with 6 teams . 60

4.2 Schedule after applying SwapHome(1, 4, 2) 61

4.3 Schedule after applying SwapTeam(2, 3) 61

4.4 Schedule after applying SwapRound(3, 7) 65

ix

Chapter 1

Introduction

1.1 Introduction

The Traveling Tournament Problem (TTP) was introduced by Easton, Nemhauser, and
Trick [13] and inspired by Trick’s work done for Major League Baseball (USA). Trick and
his partner, baseball executive Doug Bureman, worked on creating better schedules for the
MLB since 1996. The problem quickly grew in popularity as other sports leagues realized
adopting a mathematical method of generating season schedules could greatly decrease
operational costs. Satisfying leagues requirements has increased in difficulty as leagues
are increasing in number of teams, number of games played by each team, and geographic
dispersion of teams. As professional sports leagues have more specific demands ranging
from maximizing television viewership, to minimizing operating costs for teams, it has
become in a sports league’s best interest to invest in generating optimal season schedules.
Moreover, as sports science evolved and the importance of proper rest for top athletes
became more apparent, professional sports leagues seek to generate season schedules that
minimize travel time for players.

We have described a broad problem of generating optimal schedules, however, the notion
of optimality may vary considerably depending on our objectives. As we will see in the
following section, our goal in this thesis will be to minimize the traveling distance incurred
by all teams over a full season. Despite the inherently applied nature of the problem, we do
not concern ourselves with real-world examples. While we do discuss some computational
results, we focus on the theoretical aspects of the problem which spark our interest as
purely mathematical research.

1

In this chapter we begin by introducing the problem as it was proposed originally and
some solution methods are discussed. Variants of the problem and the progress made on
these versions is presented. Finally, we discuss some interesting problems related to TTP.

1.2 The Traveling Tournament Problem

Given n teams, with n being even, a round-robin tournament is a series of games played
between the teams such that every team plays every other team. A m round-robin tourna-
ment is defined the same way with the added stipulation that every team plays every other
team m times. Each game is designated to be played in one team’s home venue, making
them the home team, while their opponent is the away team.

A series of consecutive away games is called a road trip, while consecutive home games
is a home stand. At the beginning of the tournament, all teams are at home, and must
return home at the conclusion of the tournament.

The distances between all team venues are given in an n× n matrix D. When playing
an away game, a team travels from their home city to their opponent’s city. When playing
consecutive away games, they travel directly from one opponent’s city to the next. At the
conclusion of their road trip, they return to their home city.

Note that the length of a road trip (or home stand) is given by the number of opponents
played and not the distance travelled by the team.

The Traveling Tournament Problem (TTP) can be succinctly captured as follows:

Input: An even number of teams, n; an n by n integral distance matrix, D; L,U
integer parameters.

Output: A double round-robin tournament on the n teams such that:

• every team plays every other team once at their home venue and once at the venue
of the opponent

• the length of every home stand and road trip is between L and U , and

• the total distance travelled by the teams is minimized.

A schedule satisfying the first constraint is a feasible double round-robin tournament. The
second constraint is called the at-most constraint. The final constraint ensures optimality.
There may be an additional constraint placed on the tournament:

2

- No repeaters: there are no teams i, j such that in the tournament schedule, i plays
at j, followed immediately by j plays at i.

This last constraint is quite natural to have in the interest of fans who want to see different
match-ups on consecutive days.

Note that for L = 1 and U = n − 1 a team may take a road trip visiting all other
teams, which equates to finding a traveling salesman tour. On the other hand, for small
U , teams must return home often thus the distance travelled will increase. The parameter
L is taken to be 1 throughout this thesis thus leaving us with the ability to choose the
parameter U . The TTP was originally introduced with U = 3 but we will explore the
problem for different values. We rename the parameter k and the version of the problem
being discussed is distinguished by using the notation TTP(k).

Over the years, a growing number of variants and instances of TTP were introduced.
Here are several classes of instances which have become popular benchmarks:

The circle instance is one where n cities correspond to the nodes of a circle graph of
size n. Nodes i and i+ 1, and nodes n− 1 and 0 are joined by an edge of length 1. Then
the shortest distance from i to j (i > j) is the minimum of i − j and j − i + n. A circle
instance with n teams is denoted CIRCn.

The National League instance with n teams is denoted NLn, and is given by n teams of
the Major League Baseball league and distances are given by the “air distance” from city
centers. Optimal solutions to NL4 and NL6 are given in [13]. NL8 was solved optimally
for the first time in [14] using a branch and price algorithm in parallel with constraint
programming although the no-repeaters condition was neglected.

The constant distance instance (denoted CONn) was introduced by Ribeiro and Urrutia
[32] and the problem is formulated just as we would expect: the distance between all pairs
of cities is constant, typically equal to one. Fujiwara, Imahori, Matsui, and Miyashiro [15]
proposed a lower bound for the constant distance TTP and devised two approximation
algorithms that produce feasible solutions with values close to their lower bound.

A description of these instances as well as the most current progress on them can be
found at the web-page maintained by Trick [31].

1.2.1 Unconstrained TTP

The unconstrained TTP (uTTP) is formulated identically to the original TTP except we do
not enforce the at-most constraint. Thus we do not impose a bound on the maximum length

3

of home stands and road trips. In this formulation, a team can take an arbitrarily long road
trip, possibly visiting all other teams, before returning home. The unconstrained version of
the problem was shown to be NP-hard [2], and when the number of consecutive home/away
games is fixed to three, the problem is strongly NP-complete [29]. NP-completeness was
later shown for all fixed values of k > 3 [6].

1.2.2 Mirrored TTP

The mirrored TTP (mTTP) is a widely studied variation of the problem. The first paper on
mTTP is due to Ribeiro and Urrutia [27]. This version includes the additional constraint
that the schedule of the first half of the season is the same as that of the second half of the
season, but with the venues reversed. If team A plays at city B on the first day of the first
half of the season, then team B would play at city A on the first day of the second half of
the season. This version of the problem is of interest to the sports scheduling community
due to being a common tournament structure in Latin America.

Cheung [8] used a two-phase method based on generating timetables from 1-factorizations
and finding optimal home/away assignments to solve NL8 and CIRC8 to optimality. More-
over, Cheung used a Benders approach to compute lower bounds for the mirrored TTP [9].
These bounds remain the current best-known lower bounds for the mirrored problem.

Incidentally, several key results for the mirrored TTP were not intended to specifically
solve the mirrored problem. The fact that the resulting schedule was mirrored was merely
a byproduct of the method used to construct it. For that reason, there are a number of
important results on mTTP which are discussed in other sections.

1.3 Approximation Algorithms

TTP was originally introduced with a bound k on the number consecutive home or away
games a team can play. Due to the influence of Major League Baseball on the formulation
of the problem, k was taken to be 3. However, the problem for other values of k has
been studied as well. We now present the current best approximations for the problem for
different values of k. We assume the distances between team venues satisfy the triangle
inequality thus the distances are metric.

Imahori, Matsui, and Miyashiro [19] proposed a constant factor approximation algo-
rithm for the unconstrained TTP (i.e. k = n− 1, n is the number of teams) with approxi-
mation ratio 2.75. If a shortest Hamilton cycle on the cities is known, the approximation

4

ratio is improved to 2.25. The solution returned by the algorithm is a mirrored schedule
thus it is also a feasible solution to the unconstrained mTTP.

There is no feasible schedule when k = 1 [11].

Campbell and Chen [5] studied the problem for k = 2 in 1976, preceding the formal def-
inition of the TTP. Since then there have been many attempts to get a good approximation
ratio, but the result depends on the parity of n/2.

Thielen and Westphal [30] devised an algorithm for each case and found a 3/2+O(1)/n
bound for n/2 odd and a 1+O(1)/n bound for n/2 even. Imahori [18] built on this method
and proved a 1 + O(1)/n bound when n/2 is odd. Zhao and Xiao [36] also achieved a
1 +O(1)/n ratio for n/2 odd which has a slightly better ratio (1 + 12/n versus 1 + 24/n)
than found by Imahori.

In the case where n/2 is even, Xiao and Kou [34] gave an approximation algorithm with
approximation ratio of (1 + 1/4n). Chaterjee and Roy [7] found an approximation ratio of

1+ ⌈log2 n/4⌉+4
2(n−2)

which yields slightly better results than that of Xiao and Kou when n ≤ 32.

For k = 3, the most popular version of the problem, Imahori, Matsui, and Miyashiro
[20] proposed a randomized approximation algorithm which yields a feasible solution whose
approximation ratio is less than 2 + (9/4)/(n − 1). They then used a derandomization
technique to find a deterministic approximation algorithm with the same approximation
ratio. These algorithms were the first with constant approximation ratio, which is at most
2.75. The result relies on a new lower bound that is not as tight as previously known lower
bounds, but easier to calculate. This new bound implies that any feasible solution to a
TTP(3) instance is at most three times the optimal value of the instance. In fact, their
lower bound yields a trivial approximation ratio of k for any feasible TTP(k) solution.

When k ≥ 4, Westphal and Noparlik [33] proposed an approximation algorithm which
produces a solution no more than 5.875 times the optimal for any choice of n ≥ 6.

Yamaguchi, Imahori, Matsui, and Miyashiro [35] considered TTP(k) for all fixed k ≥ 3.
When k ≤ 5, the approximation ratio of the proposed algorithm is bounded by (2k−1)/k+
O(k/n), when k > 5, the ratio is bounded by (5k − 7)/(2k) + O(k/n). For k = 3, the
approximation ratio of the proposed algorithm is 5/3+O(1)/n. The schedule produced by
their algorithm is a mirrored schedule.

The Bipartite Traveling Tournament Problem (BTTP) was introduced by Hoshino and
Kawarabayashi [16] where 2n teams are split into two groups of n teams. Each team plays
one home and one away game against all other teams in the other group. This variant was
introduced to model the scheduling of games for the Nippon Professional Baseball (NPB)
league, Japan’s largest sports league. Each NPB team plays 24 inter-league games each

5

season thus the bipartite structure of games between two groups was relevant. The problem
is NP-complete. Despite its computational hardness, an optimal schedule for inter-league
games was found for the NPB which is made up of only 12 teams.

Hoshino and Kawarabayashi [17] produced a polynomial-time algorithm to solve the
BTTP with an approximation ratio of 1+ 2c/3+ (3− c)/3n, where c is the approximation
factor of the TSP.

1.4 Computational Methods for TTP

1.4.1 Lower Bound & Solution Methods

It is possible to generate a lower bound on the optimal solution to TTP by finding the
minimum distance teams must travel regardless of other constraints. Solving for the min-
imum distance travelled by a single team i requires finding a collection of tours starting
from i’s home city, each with length between L and U , such that all other cities are visited.
Summing up the minimum distance for all teams yields a lower bound on TTP which is
referred to as the Independent Lower Bound (ILB). Note that finding the ILB involves
solving a vehicle routing problem.

1.4.2 Integer Programming

Two methods were proposed in Easton et al. [13] to produce feasible solutions and prove
optimality: constraint programming, and integer programming. We will not cover the
constraint programming approach in this thesis.

By adding additional constraints to the sub-problem we solve to find the ILB, we can
fully formulate the TTP. Trick proposes generating all possible road trips of appropriate
length and assigning a decision variable xj to each, which determines if the road trip j is
selected or not.

The constraints of the problem are given as:

1. Each team must play every other team twice.

2. Each team can play only one game per day.

3. Teams cannot have consecutive road trips.

6

Given the ILB, we can also require that a team travels at least its minimum distance.
This cuts down on the number of road trips we need to explore, thus reducing the compu-
tation time.

1.4.3 Local Search Methods

Given an optimization problem that is computationally hard to solve, local search methods
may be used to find an optimal solution. For the local search methods studied in this
thesis, we assume that each instance of the problem has a discrete set of feasible solutions.
A local search algorithm starts from a candidate solution and then iteratively moves to
a neighboring solution until a stopping criterion is met. Each local search algorithm is
therefore defined by how the neighborhood of solutions is chosen, as well as its stopping
criterion.

Several heuristic methods were implemented to achieve good results on benchmark
instances of TTP. The first example of these methods being applied to TTP was a simulated
annealing technique used by Anagnostopoulos et al. [1] to solve TTP(3). A greedy iterative
search method was proposed by Ribeiro and Urrutia [27] to solve the mirrored TTP. More
recently, Khelifa and Boughaci [22] proposed a Variable Neighborhood search technique
to solve TTP(3). They then went on to achieve even better results for the unconstrained
TTP using an Evolutionary Harmony search algorithm [23]. Further discussion of local
search methods as well as the papers mentioned above can be found in Chapter 4.

1.5 Related Problems

Vehicle Routing Problem (VRP) : In the Vehicle Routing Problem (sometimes called
the multiple TSP), there is a set of depots, clients, and vehicles and the goal is to optimally
design routes for the vehicles from the depots to the clients. The problem is defined by
a complete graph G = (V,E), and a cost function c : E → R+. We choose the depot
vertex without loss of generality to be v0, while the remaining vertices are client vertices.
An optimal solution to VRP is a minimum cost collection of tours such that each client is
visited exactly once by exactly one vehicle where vehicles start and end their tours at a
depot, see Laporte [24].

Referee assignment : Duarte, Ribeiro, Urrutia, and Haeusler [12] consider the Ref-
eree Assignment problem which is the problem of assigning referees to oversee all games
in an already scheduled tournament. Referees provide a max number of games they are

7

willing to oversee, and a target number of games they hope to be assigned to. The goal is
then to assign a referee to each game of the tournament such that, over all referees, the
difference between their target number and the actual number of games they are assigned
is minimized. Additionally, the total idle time of all referees should be minimized. Idle
time is the time a referee must wait between consecutive games they are assigned to. A
commercial solver (CPLEX 9.0) was used to compute the complete minimum Pareto set for
medium-sized problems, and give results for an instance with 50 games and 100 referees.

Break minimization with broadcast objectives : Ribeiro and Urrutia [26] consider
the following problem with two objectives: minimizing the number of breaks (which ensures
fairness) and maximizing the revenue due to broadcasting of popular games. A break occurs
whenever a team plays two consecutive games at home or away.

The problem is considered in the context of the Brazilian soccer league. Because of this,
there are particular constraints that are specific to the league’s requirements, for example,
the soccer league has a mirrored schedule. One way to generalize the broadcast objective
is to assign a popularity score to each team. The popularity of a game is then the sum of
the scores of the participating teams. A new variable that determines if a game is televised
or not is introduced. Given a fixed number of games to be televised, the new additional
objective is then to maximize the popularity of televised games.

To tackle the bi-objective problem, an extra constraint is added stipulating that the
number of breaks reaches its minimum. The broadcast objective is then maximized sub-
ject to this restriction. If the maximum objective of the restricted problem is equal to
the unconstrained maximum, this solution is called an ideal point, meaning all objectives
are simultaneously at their individual optimal values. If the maximum value of the un-
constrained problem is greater than the maximum value of the restricted problem, this
solution is not an ideal point, however it is still a non-dominated solution, meaning we
cannot find a solution which improves an objective without trading a decrease in the other
objective. Note that the authors assume that there exists some solution such that the
number of breaks reaches its minimum. This is a fair assumption to make in this problem
as this fact was experimentally verified on all test instances and their variations.

An integer programming formulation of the problem could not be solved in reasonable
time by CPLEX, so a multi-phase decomposition algorithm was proposed. This process
involves generating all home-away patterns that can feasibly be mirrored then solving an
integer program to find the maximum objective value of each home-away pattern.

Scheduling with absences : Schauz [28] considers the problem of scheduling a tour-
nament where each team has a pre-specified number of allowable absences, t. The goal is
then to determine how many rounds are necessary to schedule the whole tournament in

8

the worst case. The problem is approached as a graph coloring problem. When scheduling
a round-robin tournament, we only consider complete multigraphs where the number of
edges between two nodes is the number of times they must compete against each other.
Each color represents a round of the schedule, thus it follows that a legal coloring of the
multigraph defines a feasible schedule since each team is assigned to play exactly one game
per round. A vertex labeling c : V → Z+ is used to denote single absences of a team, i.e.
what round they are unavailable, so c(v) = 5 means team v is absent at round 5. An edge
coloring c′ : E → Z+ determines the round a match-up e = (u, v) is played. The goal
is therefore to find a proper coloring c′ such that c′(uv) differs from c(u) and c(v) for all
uv ∈ E. This ensures that c′ avoids c, which means a match-up between u and v is not
scheduled on a day that one of them is absent.

χ
′
c(G) is defined as the c-avoiding chromatic index of G which is the least number of

rounds necessary to arrange all match-ups e ∈ E such that c′ avoids c. To account for all t
possible absences of a single team, a multi-labelling of v ∈ V is defined so each vertex may
be assigned multiple labels. A multi-labelling is a t-labelling if |c(v)| ≤ t ∀v ∈ V . Then
the t-avoiding chromatic index of G is χt(G) = max{χ′

c |c is a t-labelling}.

For any graph G such that |E| > 0, we have the general lower bound χt ≥ ∆(G) + 2t.
Since we are interested in round-robin schedules, we are interested in complete graphs. For
pre-announced absences, we have

n+ 2t− 1 ≤ χt(Kn) ≤ n+ 2t

Moreover, for n ≥ 2, χ1(Kn) = n+ 1.

For unannounced absences, we have χt
OL ≤ n+ 2t, where χt

OL is the on-line t-avoiding
chromatic index i.e. the information on absences are not announced and thus not known
beforehand.

Schauz conjectures that χt(G) = ∆(G)+2t and χt
OL = χ

′
(G)+2t. The result is proven

for all bipartite graphs, but not for all general graphs.

9

Chapter 2

APX Hardness of Unconstrained
TTP

2.1 Overview

Ever since its proposal in 2001, TTP was suspected to be computationally hard to solve
due to the similarity to the traveling salesman problem (TSP), which is well known to be
strongly NP-hard and has become an important benchmark problem in computer science.
The first NP-completeness proof for the unconstrained version of TTP was given by Bhat-
tacharyya [2]. In this variant, the at-most constraint is ignored thus allowing teams to
have unlimited consecutive home or away games, which in turn allows a reduction from
TSP. Not long after, a reduction from 3-SAT was used to prove NP-hardness of TTP(3)
by Thielen and Westphal [29]. More recently, TTP(k) was shown to be NP-complete for
all fixed k > 3 where the author used a similar approach by using a reduction from k-SAT
[6].

The results stated above are examples of reductions that preserve hardness and they
are used to prove that new problems are hard to solve by using reductions from known
NP-hard problems. We can take this one step further and prove that problems are hard
to approximate within a certain factor by using reductions that preserve approximation.
These are reductions from a problem Π to another problem Π′ such that if there is an
approximation algorithm with approximation ratio α for problem Π′, then there is an
approximation algorithm with approximation ratio f(α) for problem Π, where f is some
function. These results yield hardness theorems via the contrapositive: if there is no f(α)-
approximation algorithm for problem Π unless P = NP, then there is no α-approximation

10

algorithm for problem Π′ unless P = NP. We can then use approximation preserving
reductions from problems that are known to be hard to approximate to derive hardness
results for a number of other problems. If we know that Π is hard to approximate within
some factor, the reduction implies that Π′ is also hard to approximate within some factor.
Such a reduction is called an L-reduction and we define it formally now.

Definition 1. Given two optimization problems Π and Π′, we say we have an L-reduction
from Π to Π′ if for some a, b > 0:

1. For each instance I of Π we can compute in polynomial time an instance I ′ of Π′.

2. OPT(I ′) ≤ a·OPT(I).

3. Given a solution of value V ′ to I ′, we can compute in polynomial time a solution of
value V to I such that

|OPT (I)− V | ≤ b|OPT (I ′)− V ′|

Given an L-reduction between two minimization problems Π and Π′, and we have an
α-approximation algorithm for problem Π′, then we can obtain a solution for instance I
of Π. We do so by generating the instance I ′ in polynomial time and then using the α-
approximation algorithm to get a solution of value V ′ ≤ αOPT(I ′). Finally we compute
in polynomial time a solution to I with value V such that

V ≤ OPT (I)− b(OPT (I ′)− V ′) ≤ OPT (I)− abOPT (I) + abαOPT (I) = OPT (I)(1− ab+ abα)

Inspired by Bhattacharyya’s proof of NP hardness of the unconstrained TTP, we build
on this result to show the problem is also APX hard. In this chapter we present an L
reduction from (1, 2)-TSP to TTP. To reach the desired result, we show that given an
instance of TSP with a solution of cost K, we can construct an instance of TTP with a
solution of cost at most 20m(m+1)cK where m = c(n− 1)+ 1, n is the number of teams,
and c > 5, c ∈ Z is fixed. On the other hand, we show that given a feasible schedule to the
constructed TTP instance, we recover a tour on the original TSP instance.

2.2 Reduction from (1,2)-TSP to UTTP

Given a complete graph G on n vertices, we want to construct a graph G′ such that the
optimal TSP solution on G has cost K if and only if the optimal TSP solution on G′ has

11

cost cK for some choice of c > 5. To construct G′, begin by fixing a vertex v of G. Consider
c copies of G, where all copies of v are contracted into one vertex. This construction has
c(n − 1) + 1 vertices. The cost of an edge between vertices in the same copy remains the
same as it was in G, while the cost of an edge e = (x, y) between vertices in different copies
is determined by the cost of going from one endpoint to v and then to the other endpoint
i.e. w′(e) = w(x, v) + w(v, y). We present an example of this construction in Figure 2.1
where we take v = v1 as the central vertex and use an illegal choice of c = 3 just to keep
the example small. We also do not include all the edges of the graph and instead record
the full distance matrix in D.

G :

v1

v2v3

y2
y3

x2

x3

z3

z2

v1

2

2
G′ 2 1

1

1

2

2
2

2

2

3
3

3

Figure 2.1: Small example: G′ from G with c = 3.

D =

v x2 x3 y2 y3 z2 z3

v − 1 2 1 2 1 2
x2 1 − 2 2 3 2 3
x3 2 2 − 3 4 3 4
y2 1 2 3 − 2 2 3
y3 2 3 4 2 − 3 4
z2 1 2 3 2 3 − 2
z3 2 3 4 3 4 2 −

Now let’s show that the graph G′ is such that the optimal TSP solution on G has cost

K if and only if the optimal TSP solution on G′ has cost cK. Let τ be a TSP tour on G.
In G′, we start from v, and travel τ on a copy of G, but instead of completing the tour
and returning to v, we move to the next copy of G in G′. By construction, moving from
one copy to the next directly, costs the same as returning to v and then starting τ anew

12

on this copy. After having travelled across each copy in this way, we have completed a
salesman tour of G′ and incurred a cost of cK since we had to complete τ c times. The
other direction of the claim is clear: due to the metric condition, going from one copy of G
to another is as costly as returning to v and then moving to the next copy thus it is always
best to visit one copy of G at a time. Therefore if there is a TSP tour on G′ with cost cK,
since each copy of G (in G′) has equal weight we have a TSP tour on G of cost K.

To show the reduction from (1, 2)-TSP to TTP, we show that given an instance of
(1, 2)-TSP with cost K, we can construct an instance of TTP with cost at most f(K), and
vice-versa.

Given an instance of (1, 2)-TSP on graph G, with cost K, we construct G′ as described
earlier where G′ has m = c(n − 1) + 1 vertices. Construct a new graph H by adding
vertex u to G′, and connecting u to all vertices of G′ with an edge of weight wu = cK−1

2
.

We construct the corresponding TTP instance on H by placing 2 teams at v (the central
vertex of G′), one team at every other vertex of G′, and (m + 1)(10m − 1) teams at u to
get n′ = 10m(m+ 1) teams in total.

Lemma 1. If the input graph G has a TSP solution of cost K, then H has a feasible TTP
solution of cost at most 20m(m+ 1)cK.

Proof. Let τ be a tour on G of cost K, then G′ has a tour τ ′ of cost cK.

We begin by splitting up the teams into 10m groups of size m + 1. All teams corre-
sponding to vertices in G′ are in the same group, which we denote as group 1. We build
the schedule such that every team plays 2m games against the other teams in their group,
m home games and m away games. They then play 2(m + 1)(10m − 1) games against
teams from different groups. Thus in the first 2m rounds of the schedule, games only occur
within the same groups.

The total travel cost of these 2m rounds can be bounded. Note that games between
all other groups besides group 1 carry a traveling cost of zero since they are all located at
u. For a team in group 1, the max distance it will travel in these rounds is 8m since an
edge in G′ has weight at most 4, and it must visit m teams. Therefore the total distance
travelled by all teams in the first 2m rounds is at most 8m(m+ 1).

For the remaining rounds of the schedule, identify each group as a single team and
create a single-round robin “dummy tournament” where a game between dummy teams
corresponds to m+1 games between members of each group (see Figure 2.2 for an illustra-
tion of these underlying games). The home-away assignment of the dummy teams apply
to the underlying teams within the group i.e. if dummy team i is at home and receives

13

...

...

Group i Group j

team i1

j1

j(m+ 1)

j2

Figure 2.2: The (m + 1) games team 1 of group j will play in one round of the dummy
tournament when dummy teams i and j play each other.

dummy team j, then all teams in group i are at home for their games against teams in
group j.

We assign all away games for dummy team 1 (which is the group of teams located in
G′). This stage of the schedule has 10m − 1 rounds which means each team in group 1
plays (10m − 1)(m + 1) away games at u in this stage. The cost of travelling from any
vertex in G′ to u is wu. For all teams in group 1 to visit u, the total traveling cost incurred
is (m + 1)wu. Once they are at u, they play all teams in group i, then all teams in the
following group, while remaining at u. When the teams of group 1 return home, they
again collectively travel a distance of (m+ 1)wu. All other groups are at u so no distance
is travelled in this stage of the schedule. It follows that the total distance travelled in this
stage of the schedule is 2(m+ 1)wu.

To complete the schedule, we duplicate the single-round robin tournament of the pre-
vious stage, swapping the home-away assignments. Now all the teams at u must travel to
G′. Once they are at G′, they play teams in group 1 in the order of the tour τ ′. Traveling
to G′ means covering a distance of (m + 1)wu per group, at which point they embark on
the TSP tour of G′, τ ′, which has a cost of cK. Upon completing the tour, they return
home to u. Note that each team does not travel the entire length of τ ′, since they return
to u once they have visited each team thus they skip one edge of G′. The edge that is
skipped is different for each team in a group thus for a whole group, one entire length of
τ ′ is economized. The total distance travelled by a single group in this stage is at most
2(m+ 1)wu + (m+ 1)cK − cK = 2(m+ 1)wu +mcK.

Having completed all these rounds, we have a feasible schedule which yields a feasible
solution to TTP on H.

14

The cost of this solution is:

≤ (10m− 1)(2wu(m+ 1) +mcK) + 2wu(m+ 1) + 8m(m+ 1)

= 20wum(m+ 1) + (10m− 1)mcK + 8m(m+ 1)

< 20wum(m+ 1) + 10m2cK + 8m(m+ 1)

< 20wum(m+ 1) + 10m(m+ 1)cK + 8m(m+ 1)

< 20wum(m+ 1) + 10m(m+ 1)cK + 10m(m+ 1)

= 20wum(m+ 1) + 10m(m+ 1)(cK + 1)

= 20

(
cK − 1

2

)
m(m+ 1) + 10m(m+ 1)(cK + 1)

= 10m(m+ 1)cK − 10m(m+ 1) + 10m(m+ 1)cK + 10m(m+ 1)

= 20m(m+ 1)cK

This is the bound that was claimed hence the lemma is proved.

Lemma 2. If there is no TSP tour on G of cost at most K then the corresponding TTP
instance on H has no schedule with cost at most 20m(m+ 1)cK.

Proof. For any feasible TTP solutions, the distance traveled by any team is at least the
cost of a TSP tour on the cities. Suppose the optimal tour on G has cost K + α, α > 1.
We know that G′ has a TSP tour of cost c(K + α). Now, since any edge of G′ has weight
at most 4, and joining any vertex of G′ to u has cost wu, the TSP tour on H has cost at
least 2wu + c(K + α)− 4. The cost of the tournament schedule on H is therefore:

≥ 10m(m+ 1)(2wu + c(K + α)− 4)

= 20wum(m+ 1) + 10m(m+ 1)c(K + α)− 40m(m+ 1)

= 20wum(m+ 1) +m(m+ 1)(10cK + 10cα− 40)

> 20wum(m+ 1) + 10m(m+ 1)(cK + 1)

= 20m(m+ 1)cK

We use the fact that c > 5, α ≥ 1 and replace wu by cK−1
2

to conclude the claim.

2.3 APX Hardness of Boosted TSP

Let G be a complete graph with metric costs on m nodes, and let m(m + 1)-TSP be
the problem of computing a TSP tour T such that the objective (m(m + 1))(cost(T)) is

15

minimized. This new problem will be referred to as boosted TSP.

Claim 1. Boosted TSP is APX hard.

Proof. Given some input graph G on m nodes, let OPTB and OPT be the optimal values
of the boosted TSP and regular TSP respectively, on this instance. Suppose there is a
polynomial time approximation scheme for boosted TSP, then for any ε we can find a
solution S in polynomial time such that m(m + 1) · cost(S) is at most (1 + ε) · OPTB =
(1 + ε)(m(m+ 1)) ·OPT . Therefore, cost(S) is at most (1 + ε) ·OPT . Moreover, since S
is a TSP tour on G, it is a feasible solution to the TSP. It follows that if boosted TSP has
a PTAS, then for every ε, we can find a TSP tour S such that cost(S) is within (1 + ε) of
OPT. Since TSP is known to be APX hard, we conclude that boosted TSP is as well.

2.4 APX Hardness of UTTP

In this section we make use of the results of Section 2.2 to show that unconstrained TTP
is APX-hard using an L-reduction from (1, 2)-TSP.

Let I be a boosted TSP instance on graph G with input integers c. Let I ′ be the
corresponding TTP instance constructed as in Section 2.2.

To get a valid L-reduction we need to verify three conditions:

1. For each instance I of boosted TSP, we can compute an instance I ′ of TTP in
polynomial time.

2. OPT (I ′) ≤ a ·OPT (I)

3. Given a solution of value V ′ to I ′, we can compute in polynomial time a solution to
I of cost V such that

|OPT (I)− V | ≤ b|OPT (I ′)− V ′|

For condition 1, it suffices to use the reduction in Section 2.2 where the boosted TSP
instance is the TSP instance on G with its objective multiplied by m(m + 1). Since we
are not given a TSP tour on G, we take K = 2|G| = 2n which is an upper bound on the
cost of any tour on G due to the (1, 2) metric. Taking this value of K allows us to use the
construction described in Section 2.2, and preserves the upper bound on the constructed
TTP solution.

16

For condition 2, we can compute a directly. Suppose the instance of boosted TSP on
the graph G has optimal solution m(m + 1)K∗, note that clearly K∗ ≥ n. Then due to
Lemma 1 and our choice of wu = 2cn−1

2
, the cost of the optimal solution to our constructed

TTP instance is bounded.

OPT (I ′) ≤ 20wum(m+ 1) + 10m(m+ 1)(2cn+ 1)

= 10(2cn− 1)m(m+ 1) + 10m(m+ 1)(2cn+ 1)

= 40m(m+ 1)cn

≤ 40m(m+ 1)cK∗

= 40c ·OPT (I)

To show condition 3 holds we show that given a solution to our TTP instance, we
recover a solution to the TSP instance on G. If the TTP solution is optimal, then the
TSP solution is as well. On the other hand, if the TTP solution has some slack from the
optimal, then the TSP solution constructed is at most 10 times as far from the optimal
tour on G which would satisfy condition 3 with b = 10.

All teams at u visit all teams at G′. Let ui be the team for which its cost of visiting
teams at G′ is minimal. Over the course of possibly multiple trips, ui visits each team at
G′. The order in which teams are visited creates a sequence of vertices which include all
vertices in G′. Let P be the path defined by this sequence of vertices, since it covers all
v ∈ G′, P is a TSP path on G′. By our choice of the edge costs for G′, we know that going
from one copy of G to another is as costly as returning to the central vertex v, and then
going to the next copy. This means that the TSP path P can be mapped to a walk P ′

by replacing edges (x, y) of P that cross copies by the edges (x, v), (v, y). Thus P induces
a tour on each copy of G, with the exception of the copies at which the path starts and
ends. Let S be the cheapest induced tour on a copy of G, and let V be its cost.

Claim 2. Given an optimal solution to TTP of cost V ′, let S be the cheapest induced TSP
tour on G with cost V . We claim that S is optimal for the TSP instance on G.

Proof. We proceed by contradiction. We have that V ′ is the cost of our optimal TTP
solution, and V is the cost of the constructed TSP solution. Since the TSP solution is not
optimal, let S∗ be an optimal TSP tour on G. We use S∗ to construct a TTP solution as
in Section 2.2, and the cost its solution is denoted VS∗ . We bound this cost by Lemma 1.

VS∗ ≤ 20wum(m+ 1) + (10m− 1)m(cS∗) + 8m(m+ 1)

17

Figure 2.3: The leftmost graph shows P (in red) going from one copy to Gi. The next
graph shows the equivalent edges (blue) going back and forth from the central vertex.
Finally we see the induced tour on a copy Gi.

For our current TTP solution V ′, we have:

V ′ ≥ 20wum(m+ 1) + (10m− 1)(m+ 1)(cV − 4)

We can then compare the cost of the two TTP solutions. After eliminating the identical
first term in both expressions we have:

V ′ − VS∗ ≥ (10m− 1)(m+ 1)(cV − 4)− (10m− 1)m(cS∗)− 8m(m+ 1)

= (10m− 1)m(cV − cS∗ − 4) + (10m− 1)(cV − 4)− 8m(m+ 1)

≥ (10m− 1)m+ 10m− 1− 8m2 − 8m

= 2m2 +m− 1

To reach the final inequality we use the fact that since S is not optimal, V differs from S∗

by at least 1, and that c ≥ 5, therefore c(V −S∗) ≥ 5. We remark that 2m2+m−1 > 0 for
all m ≥ 1, which is trivially true for any instance. Thus the cost of our solution V ′ greater
than the cost of the solution VS∗ which we constructed using the optimal TSP tour S∗.
This contradicts the optimality of V ′ since we have just constructed a cheaper solution to
our TTP instance. We conclude that S must be optimal for the TSP instance on G.

Claim 3. Given a non-optimal solution to TTP of cost V ′, let S be the cheapest induced
TSP tour on G with cost V . We claim that condition 3 holds for V and V ′.

Proof. We assume for a contradiction that the inequality in condition 3 does not hold for
b = 10. We have that V ′ is a non-optimal solution to the TTP instance I ′, and V is the cost

18

of the constructed TSP solution. If V is optimal, the inequality of condition 3 is trivially
true.

b · |OPT (I ′)− V ′| ≥ 0 = |OPT (I)− V |

We now assume V is not optimal for the TSP instance I. Let S∗ be an optimal TSP tour
on G. As in the proof of Claim 2, we use S∗ to construct a new TTP solution, denoted
VS∗ . We also re-use the same bounds on V ′ and VS∗ :

VS∗ ≤ 20wum(m+ 1) + (10m− 1)m(cS∗) + 8m(m+ 1)

V ′ ≥ 20wum(m+ 1) + (10m− 1)(m+ 1)(cV − 4)

We can then compare the cost of the two TTP solutions. After eliminating the identical
first term in both expressions we have:

V ′ − VS∗ ≥ (10m− 1)(m+ 1)(cV − 4)− (10m− 1)m(cS∗)− 8m(m+ 1)

= (10m− 1)m(cV − cS∗ − 4) + (10m− 1)(cV − 4)− 8m(m+ 1)

≥ (10m− 1)m+ 10m− 1− 8m2 − 8m

= 2m2 +m− 1

> 0 ∀m ≥ 1

Therefore V ′ > VS∗ . Moreover, since OPT (I ′) ≤ VS∗ , the gap between V ′ and OPT
is always at least the gap between V ′ and VS∗ i.e. |OPT (I ′)− V ′| ≥ |V ′ − VS∗ |. We then
have:

|OPT (I ′)− V ′| ≥ |VS∗ − V ′|
≥ |(10m− 1)(m+ 1)(cV − 4)− (10m− 1)m(cS∗)− 8m(m+ 1)|
≥ |(10m− 1)m(c(V − S∗)− 4) + (10m− 1)(cV − 4)− 8m(m+ 1)|
≥ (10m− 1)m(c|V − S∗| − 4) + (10m− 1)(cV − 4)− 8m(m+ 1)

Now we make use of our assumption that condition 3 does not hold i.e. |S∗ − V | =
|OPT (I)− V | > b · |OPT (I ′)− V ′|. Using b = 10 yields the following:

|OPT (I ′)− V ′| ≥ (10m− 1)m(c|V − S∗| − 4) + (10m− 1)(cV − 4)− 8m(m+ 1)

> (10m− 1)m(10c|OPT (I ′)− V ′| − 4) + (10m− 1)(cV − 4)− 8m(m+ 1)

Using the fact that c ≥ 5, it holds that cV − 4 ≥ 1. Moreover, using this bound on c, and
the non-optimality of V ′ we have:

c · b|OPT (I ′)− V ′| − 4 ≥ 4b · |OPT (I ′)− V ′| − 4 + b · |OPT (I ′)− V ′|
≥ b · |OPT (I ′)− V ′|

19

Armed with these two facts, we revisit the final inequality in the previous block.

|OPT (I ′)− V ′| > (10m− 1)m(10c|OPT (I ′)− V ′| − 4) + (10m− 1)(cV − 4)− 8m(m+ 1)

≥ 10(10m− 1)m · |OPT (I ′)− V ′|+ (10m− 1)− 8m(m+ 1)

= 10(10m− 1)m · |OPT (I ′)− V ′| − 8m2 + 2m− 1

≥ (10m− 1)m · |OPT (I ′)− V ′|+ 9(10m− 1)m− 8m2 + 2m− 1

= (10m− 1)m · |OPT (I ′)− V ′|+ 82m2 − 7m− 1

> (10m− 1)m · |OPT (I ′)− V ′|
> |OPT (I ′)− V ′|

We have reached a contradiction for b = 10, thus we conclude that condition 3 indeed
holds.

Having verified all conditions, we have an L-reduction from boosted TSP to TTP, and
hence TTP is APX-hard.

20

Chapter 3

Mirrored TTP

3.1 Overview

In this chapter we consider the mirrored Traveling Tournament problem (mTTP). The
problem is defined and we discuss common methods of constructing mirrored schedules.
These methods rely on our ability to find good single round-robin tournaments hence
the relationship between a single round-robin (SRR) tournament and a double round-
robin (DRR) tournament is examined. We propose several new results which compare the
optimal value of a SRR schedule to the optimal value of a DRR schedule, as well as the
value of an optimal SRR schedule compared to that of an optimal mirrored DRR schedule.
Finally, we introduce the first constructive algorithm for building a mirrored DRR schedule
when the number of consecutive home or away games is restricted to two. We prove that
the approximation guarantee of the algorithm is on the order of 3/2 +O(1)/n.

3.2 The Problem

A widely studied variation of the Travelling Tournament problem is the mirrored version,
first described by Ribeiro and Urrutia [27]. This problem is described identically to the
TTP but with the additional constraint that the schedule of the first half of the season is
the same as that of the second half of the season, but with the venues reversed. If team
A plays at away at team B’s venue on the first day of the first half of the season, then
team B plays away team A’s venue on the first day of the second half of the season. Table

21

Team 1 2 3 4
Day 1 @2 1 @4 3
Day 2 @3 4 1 @2
Day 3 @4 @3 2 1

Day 4 2 @1 4 @3
Day 5 3 @4 @1 2
Day 6 4 3 @2 @1

Table 3.1: Mirrored DRR schedule on 4 teams.

3.1 shows an example of a feasible mirrored double round-robin schedule on 4 teams. The
table is split into two halves to demonstrate the mirrored schedule.

As in the regular TTP, we have a parameter k which is the maximum number of
consecutive home or away games a team can play. We use the notation mTTP(k) to
specify mirrored TTP(k). Due to the way the problem was introduced, mTTP(3) remains
the most popular version and has seen the most progress.

Given a SRR schedule S, its mirror m(S) is another SRR schedule with the same order
of games but opposite home-away assignments. Concatenating the two SRR schedules
yields a DRR schedule that is mirrored. This approach remains the most common and
intuitive way of building a DRR schedule, mirrored or not. It becomes clear that any
method for constructing a mirrored schedule is only as good as the SRR schedule used
to create it. The relationship between an SRR schedule and its mirror, as well as the
relationship between an SRR schedule and a DRR schedule (mirrored or not) has yet to
be discussed thoroughly in the literature. We explore the relationship between single and
double round-robin schedules in Section 3.5 and further explore the relationship between
a SRR schedule and an optimal mirrored DRR schedule in Section 3.6.

When focusing on mTTP, the challenge is to construct a SRR schedule that can indeed
be mirrored to create a mirrored DRR schedule. Note that when concatenating a SRR
schedule and its mirror schedule, even if each of these schedules has at most k consecutive
home games (or k consecutive away games), once they are concatenated, a team may have
have more than k consecutive home games (or k consecutive away games). Feasibility
therefore cannot be taken for granted for all values of k. The following result illustrates
this.

There is no feasible schedule for mTTP(2) when n = 4. See Theorem 1 and its proof
in Section 3.4.

Incidentally, several key results for the mirrored TTP were not intended to specifically

22

solve the mirrored problem. The fact that the resulting schedule is mirrored is merely a
byproduct of the method used to construct it.

3.3 Literature Review

In this section we discuss some papers that give key results for the mirrored TTP. Not
all of these papers actually solved the mirrored problem but they each have some method
that proved to be helpful for us.

The mirrored version of the problem was first introduced by Ribeiro and Urrutia [27].
They studied this version of the problem due to it being a common tournament structure in
Latin America. A SRR tournament is constructed without assigning venues to games. This
SRR tournament is then mirrored to get a full DRR tournament. A local search method
is implemented to ensure the resulting DRR schedule satisfies the at-most constraint, and
the schedule is then optimized to reduce the traveling cost.

Yamaguchi, Imahori, Miyashiro, and Matsui [35] propose an approximation algorithm
to solve TTP(k) for k ≥ 3. They build a mirrored schedule by using a Kirkman schedule
to generate an initial SRR schedule without giving teams a home-away assignment. They
then define particular home-away assignments which allow them to concatenate a SRR
schedule with its mirror to produce a feasible mirrored DRR schedule. When k ≤ 5, the
approximation ratio of the proposed algorithm is bounded by (2k − 1)/k +O(k/n), when
k > 5, the ratio is bounded by (5k−7)/(2k)+O(k/n). For k = 3, the approximation ratio
of the proposed algorithm is 5/3 +O(1)/n.

Imahori, Matsui, and Miyashiro [19] build a DRR schedule that happens to be mirrored.
They solve the unconstrained TTP (i.e. k = n − 1). They propose an approximation
algorithm which has a ratio of 2.75. The method used to build the schedule relies on the
fact that the problem being solved is unconstrained.

Thielen and Westphal [30] proposed an algorithm for constructing a DRR schedule for
TTP(2) which gave an approximation ratio of 3/2+O(1)/n. Their method paved the way
for building mirrored schedules even though the algorithm they proposed does not produce
a mirrored solution. They begin by building a SRR schedule according to the canonical
tournament by De Werra [10], also known as the circle method. They then create a DRR
schedule where the second half of the season has the same order of games as the initial SRR
schedule but with opposite venues. However, the concatenation of the two SRR schedules
can create some issues. At the point where the two halves of the schedules meet, it is
possible for a team to play more than two consecutive home or away games. To get around

23

this, the second half of the schedule starts with the games of the last two days of the first
half. This ensures that no team plays more than two home or away games in a row when
connecting the two halves of the schedule. The same approach was then used by Westphal
and Noparlik [33] to generate solutions for TTP(k) when k ≥ 4 and n ≥ 6, albeit using a
different lower bound to analyze the cost. Their analysis results in a 5.875-approximation
algorithm.

Imahori [18] took this approach one step further. The method leans heavily on the
work done by Thielen and Westphal: a perfect matching is computed and used as a lower
bound, and the circle method is used to generate a SRR schedule. However, in this scheme,
teams are paired up and these pairs are then matched together to schedule games between
them. A match between two pairs of teams corresponds to four games for each of the four
teams involved over two rounds. For example given pairs of teams (A,B) and (C,D), the
games in the first round are between A and C, and between B and D. The games in the
second round are between A and D, and between B and C.

3.4 Feasibility of mTTP(2)

Theorem 1. There is no feasible schedule for mTTP(2) when n = 4.

To demonstrate this result we present two lemmas covering both possible cases. Either
the first and last day have the same HA assignment or not. The following lemmas show
that each case results in an infeasible schedule violating the at-most constraint of k = 2.

Lemma 3. If the home-away assignment of Day 1 is the same as Day n− 1, there is no
feasible mirrored schedule for n = 4.

Proof. Consider the table 3.2 depicting the first half of a schedule where days 1 and n− 1
have the same home-away assignment. The particular choice of assignment is made without
loss of generality. Columns correspond to teams. On day 1, team 1 plays team 3 or 4,

Day 1: H H A A
Day 2: - - - -
Day 3: H H A A

Table 3.2: Home-away assignments of first and last day

while team 2 plays whichever team is is not being played by 1. On day n− 1, teams 1 and

24

2 will switch and make the opposite choice. So if on day 1, team 1 played team 3, then
that means team 2 played team 4. It follows that on day n− 1, team 1 plays team 4, and
team 2 plays team 3. However, since all teams must play each other once in one half of
the schedule, teams 1 and 2 must play each other on day 2. This is impossible since they
must both be away on day 2 to satisfy the at-most constraint.

Lemma 4. If the home-away assignment of Day 1 is the opposite as the assignment of
Day n− 1, there is no feasible mirrored schedule for n = 4.

Proof. Consider the table 3.3 depicting the first half of a schedule. The particular choice of
assignment is made without loss of generality. Columns correspond to teams. This time,
days 1 and n − 1 have different same home-away assignment. We have two cases. In the

Day 1: H H A A
Day 2: - - - -
Day 3: H A A H
Day 4: A A H H
Day 5: - - - -
Day 6: A H H A

Table 3.3: Case 1: 2 teams have different home-away assignments

first case, the home-away assignments of day 1 and day n−1 differ in just two teams. Since
day 2 and day 5 have opposite home-away assignments, if team 2 is home on day 2, then
it is away on day 5 which creates a streak of three away games in a row for team 2. On
the other hand, if team 4 is away on day 2, then it is home on day 5 which creates a streak
of three home games in a row for team 4. Thus in this first case, it is impossible to create
a feasible mirrored schedule for n = 4. In the second case,the home-away assignments of

Day 1: H H A A
Day 2: - - - -
Day 3: A A H H
Day 4: A A H H
Day 5: - - - -
Day 6: H H A A

Table 3.4: Case 2: 4 teams have different home-away assignments

day 1 and day n− 1 are different for all four teams. Since day 2 and day 5 have opposite

25

home-away assignments, if team 2 is home on day 2, then it is away on day 5 which creates
a streak of three away games in a row for team 2. On the other hand, if team 4 is away
on day 2, then it is home on day 5 which creates a streak of three home games in a row
for team 4. Thus in the second case as well, it is impossible to create a feasible mirrored
schedule for n = 4.

3.5 SRR vs. DRR Tournaments

We are interested in the relationship between the cost of a single round robin schedule, and
the cost of a double round robin schedule, each subject to the at-most constraint being k
i.e. a team can play at most k consecutive home or k consecutive away games. Let SRRk

and DRRk denote the SRR and DRR schedules respectively. We construct an example to
find a lower bound on the ratio of their costs:

c(DRRk)

c(SRRk)

Let n be the number of teams, with n− 1 teams located at the same point and thus at
distance 0 from each other. Place the last team, w, at a distance L from the other teams.
The construction is illustrated below in Figure 3.1.

Figure 3.1: Illustration of the graph construction.

Let us now compute the cost of a SRR schedule on this instance. To minimize the total
cost, w visits S, visits k teams and returns home. Our standing assumption is that n− 1
is divisible by k + 1. Using this assumption, we partition S into groups of size k + 1. On
each trip performed by w, it visits k teams in a group, then returns home and is visited
by the remaining unvisited team in the group. The total cost per group is then 4L: 2L for
the roundtrip by w, and another 2L for the roundtrip done by the last team in the group.

26

The total cost of this schedule is:

c(SRRk) =

(
n− 1

k + 1

)
· 4L

With a slight modification to the construction of a SRR schedule shown by Westphal and
Noparlik we can get a complete feasible schedule that attains this cost. We make it so that
team w plays k away games, then just a single home game before continuing with another
k away games.

To evaluate the cost of a DRR schedule, we remark that since all teams at S must visit
w, the cost is at least (n− 1) · 2L. Therefore,

c(DRRk)

c(SRRk)
≥ k + 1

2

We can make this ratio arbitrarily large for large values of k.

3.6 SRR Schedule vs mirrored DRR Schedule

For any SRR schedule S, let m(S) denote the mirrored SRR of S meaning it is a SRR
schedule with the same games each day but opposite HA assignments. Let drr(S) denote
the DRR schedule we get by concatenating S and m(S). The cost of the concatenated
schedule is computed by finding the cost of the resulting DRR schedule, not by adding the
costs of its constituent parts.

The following results hold for any value of k.

Claim 4. In the unit distance case, where all teams are at unit distance from each other,
the cost of a SRR schedule does not change when the HA assignments are flipped.

Proof. Let pi denote the number of returning teams on day i, and let ui denote the number
of embarking teams on day i. A returning team is one that played away the previous day,
and is now playing at home. An embarking team is one that played at home the previous
day and is now playing away. On day i, to count the number of away teams, we can take
the number of teams that were away the previous day, minus the number of teams that
returned home for day i, plus the number of teams that are embarking on a trip on day i.
Thus the number of away teams on day i is n/2− pi + ui. Since we know that the number
of away teams is n/2 every day, we conclude that pi = ui for all i ∈ {2, . . . , n− 1}.

27

For a SRR schedule S with unit distances, the total cost of the schedule is the cost of
n/2 teams playing away each day plus the cost of teams that return home from an away
trip. Thus we have:

c(S) = n · (n/2) +
n−1∑
i=2

pi

Let m(S) be the mirror of S, meaning it is a SRR schedule with the same games each
day but opposite HA assignments. It is clear that pi in S is equivalent to ui in m(S) since
whenever a team is embarking on a trip in S, it is returning from a trip in m(S).

c(m(S)) = n · (n/2) +
n−1∑
i=2

ui

Since we have shown that pi = ui, we conclude that c(S) = c(m(S)) as desired.

Claim 5. In the (1, 2)-metric, where all teams are at distance 1 or 2 from each other, the
cost of a mirrored SRR schedule is at most twice the cost of an optimal SRR schedule.

Proof. Let S be an SRR schedule on n teams. Let m(S) be its mirror. We have the
following lower bound on the cost of an SRR schedule:

c(S) ≥ n · n
2
+

n−1∑
i=2

pi

We also have an upper bound on the cost of its mirror m(S):

c(m(S)) ≤ 2 · n · n
2
+ 2 ·

n−1∑
i=2

ui

= 2 · n
2

2
+ 2 ·

n−1∑
i=2

pi

≤ 2 · c(S)

Claim 5 can be extended to any metric and we get:

c(m(S)) ≤ h · c(S)

28

•

•

h

h

Figure 3.2: Configuration with n/2 inner teams in the center and n/2 outer teams in a
ring surrounding them.

where h is the cost of the heaviest edge i.e. the largest distance between any pair of teams.
Moreover, we can use the result to get a bound on the cost of an optimal mirrored TTP
solution. Concatenating S and its mirror m(S) yields a mirrored DRR schedule which we
denote by drr(S). When the triangle inequality holds on the edge costs, the concatenated
DRR has cost at most the sum of the costs of S and m(S).

drr(S) ≤ c(S) + c(m(S))

This is because if a team in S plays away on the last day of the schedule, and also plays
away on the first day of m(S), instead of returning home and then embarking anew for
their first game of m(S), they travel directly from one venue to the next, thus short-cutting
their trip. Therefore:

OPT (mTTP) ≤ c(S∗) + c(m(S∗)) ≤ (h+ 1) · c(S∗)

Theorem 2. Given an SRR schedule S on n teams where the furthest distance between
two teams is h, we can bound the cost of the mirror SRR schedule m(S).

c(m(S)) ≤ c(S) + Θ(n2) · h

Proof. We begin by showing that the additive term cannot be linear by constructing an
instance where the cost of the mirrored SRR schedule is c(S) + Ω(n2) · h.

Let n be the number of teams where n/2 is even. We place n/2 teams together at
distance zero from each other, and then place the remaining n/2 teams in a circle around
the centered teams, such that the outer teams are at a distance of h from all other teams.
See Figure 3.2 for the configuration. We now construct a SRR schedule S and bound its
cost.

29

Let ui, i ∈ {1, . . . , n/2} denote the teams on the outer circle, and let wj, j ∈ {1, . . . , n/2}
denote the teams in the inner circle. The outer teams visit the inner teams in sequence.
On day 1, u1 visits w1 while u2 visits w2, and so on. On day 2, the ui’s move over by one
team so that u1 is now visiting w2, u2 is now visiting w3 and so on. After n/2 days, each
inner team has been visited by each outer team. Table 3.5 shows the schedule constructed
for the games between the inner and outer teams using n = 8.

w1 w2 w3 w4 u1 u2 u3 u4

1 u1 u2 u3 u4 @w1 @w2 @w3 @w4

2 u4 u1 u2 u3 @w2 @w3 @w4 @w1

3 u3 u4 u1 u2 @w3 @w4 @w1 @w2

4 u2 u3 u4 u1 @w4 @w1 @w2 @w3

Table 3.5: First 4 days of the schedule with 8 teams.

The cost of the first part of the schedule has cost:

n

2
· h · 2 = n · h

The outer teams have not played each other yet. Over the next (n/2−1) days the outer
teams play against all other outer teams while all inner teams play amongst themselves.
The cost of the inner teams playing themselves is zero, while the cost of the outer teams
playing themselves can be found by computing the cost of an optimal SRR schedule with
unit distances, and then multiplying the cost of the schedule by h. This is because all
outer teams are at equal distance from each other thus an optimal solution to the unit
distance case can just be scaled by h to find the cost of an optimal SRR schedule on the
outer teams. However, we must subtract nh

4
from this cost since half of the outer teams go

directly from an inner team to visit an outer team thus saving one trip of cost h. We have
a result due to [19] which gives the cost of an optimal SRR schedule with unit costs to be:(

n2

8
+

n

4
− 1

)
− n

4

Thus this portion of the schedule has the same cost multiplied by h. We therefore have
the total cost of the schedule to be:

c(S) = nh+

(
n2

8
+

n

4
− 1

)
· h− nh

4

30

w1 w2 w3 w4 u1 u2 u3 u4

1 @u1 @u2 @u3 @u4 w1 w2 w3 w4

2 @u4 @u1 @u2 @u3 w2 w3 w4 w1

3 @u3 @u4 @u1 @u2 w3 w4 w1 w2

4 @u2 @u3 @u4 @u1 w4 w1 w2 w3

Table 3.6: First 4 days of the mirrored schedule with 8 teams.

In the mirrored SRR schedule, the outer teams are visited by the inner teams for the
first n/2 days of the schedule. So on day 1, w1 visits u1 while w2 visits u2, and so on. After
n/2 days, all inner teams have played all outer teams and the inner teams then return
home. Table 3.6 shows the mirrored schedule constructed for the games between the inner
and outer teams using n = 8.

The cost of this first part of the schedule is:(n
2
+ 1

)
· h ·

(n
2

)
Over the next n/2 − 1 days the inner teams play amongst themselves while the outer

teams do the same. The cost of the inner teams playing each other is zero while the cost
of the outer teams playing each other is exactly the same as it was in S.

c(m(S)) =
(n
2
+ 1

)
· h ·

(n
2

)
+

(
n2

8
+

n

4
− 1

)
· h

=

(
n2

8
+

n

4
− 1

)
· h+

nh

2
+

n2

4
· h

= c(S) +

(
n2

4
− n

4

)
· h

= c(S) + Ω(n2) · h

Now that we are resigned to a quadratic additive term, we attempt to find the tightest
such bound.

First we define ∆ =
∑

(i,j)∈T 2 c(i, j) to be the sum of all distances between teams. Note
that since we sum over all ordered pairs of teams, each distance is counted twice. It is easy
to see that for any feasible SRR schedule S,

c(S) ≤ ∆

31

1 2

34

Trips taken in S:
1 → 2 → 3 → 4 →1
2 → 3 → 4 → 2
3 → 4 → 3

Edges used:
(1, 2), (2,3), (3,4), (4,1)
(2,3), (3,4), (4,2)
(3,4), (4,3)

1 2

34

A :

S :

1 2

34

B :

Figure 3.3: Illustration of an SRR schedule and the edges missing from ∆.

We also have:

∆ ≤ c(S) + c(missing edges)

Where the missing edges are those that are counted in ∆ but not used in S. Let us further
specify two kinds of missing edges. Let A be the set of edges that are used in S exactly
once, and let B be the set of edges counted in ∆ that are not included in S. Figure 3.3
contains an example of an SRR schedule S and demonstrates the partition of the edges
used in S into the sets A and B.

We have that c(A) ≤ n
2
(n − 2) · h. This is due to the fact that each team is incident

to at most n− 2 edges in A, however, every edge will be counted twice. The cost of these
edges is at most n

2
(n− 2) · h since h is the heaviest edge.

The number of edges in B is maximized when teams take longer trips thus avoiding
using as many edges as possible. This is achieved when each team i takes a trip that visits
all teams j > i. In doing so, team n has already been visited by all teams thus has no
need to travel and has no missing edges. Team n − 1 only travels to team n and back,
thus has n − 3 edges missing. Team 1 starts its trip at team 2 and returns via team n
thus it also has n− 3 missing edges. All other teams have n− 4 missing edges since they
have an edge coming in from the previous team, an edge for their embarking trip, and

32

an edge for their return. We therefore have that |B| ≤ 2(n − 3) + (n − 3)(n − 4). Thus
c(B) ≤ (n2 − 5n+ 6) · h.

Combining these bounds together we find a bound on the cost of m(S).

c(m(S)) ≤ ∆ ≤ c(S) + c(A) + c(B)

≤ c(S) +
n

2
(n− 2) · h+ (n2 − 5n+ 6) · h

= c(S) +

(
3n2

2
− 6n+ 6

)
· h

= c(S) +O(n2) · h

We arrive at the claim since we have shown that the additive term is both O(n2) and
Ω(n2).

Corollary 1. Let drr(S∗) denote the cost of a mirrored DRR schedule constructed by
concatenating the optimal SRR schedule S∗ and its mirror schedule, m(S∗). Then:

drr(S∗) ≤ OPT (mTTP) +O(n2) · h

Proof. We have already established that the concatenated DRR schedule has cost at most
that of the two SRR schedules that make it up. We therefore only need to show that the
inequalities hold for the cost of an optimal SRR schedule plus its mirror schedule.

The optimal mirrored TTP solution is made up of two concatenated SRR schedules
each corresponding to one half of the schedule. Let T be the SRR schedule corresponding
to the first half of the schedule, and m(T) be the SRR schedule of the second half. By
optimality of S∗:

2c(S∗) ≤ c(T) + c(m(T))

The full mirrored TTP solution is less costly due to the amount saved when concatenating
the two halves. When a team plays away in its last game of T , and is away again in its
first game of m(T), we save on the cost of this team returning home at the end of T , and
having to travel from home to start m(T). Since there are n/2 teams that play away each
day, and h is the largest distance between teams, the cost saved when concatenating T and
m(T) is at most nh

2
.

c(T) + c(m(T)) = OPT (mTTP) + “saved costs” ≤ OPT (mTTP) +
nh

2

33

Using Theorem 2:

c(S∗) + c(m(S∗)) ≤ 2c(S∗) +O(n2) · h
≤ OPT (mTTP) + “saved cost” +O(n2) · h

≤ OPT (mTTP) +
nh

2
+O(n2) · h

= OPT (mTTP) +O(n2) · h

3.7 Constructing a mTTP(2) Schedule

We use a construction inspired by Imahori [18] to build a SRR schedule such that it can be
concatenated with its mirror to yield a DRR schedule which is a feasible mirrored TTP(2)
solution. We propose an algorithm for constructing a mirrored schedule when n/2 is even,
and show it has cost at most 3/2 + 24

n−2
times the optimal mTTP(2) solution. We then

propose a slightly modified algorithm to construct mTTP(2) solution when n/2 is odd,
and prove its cost to be at most 3/2 + 24

n−4
times the optimal solution. Thus for all values

of n we have a valid method of constructing a mirrored schedule with an approximation
ratio of 3/2 +O(1)/n.

3.7.1 Lower Bound

Let T be the set of n teams. For each team i ∈ T , let s(i) =
∑

j∈T c(i, j) be its star weight.
We have ∑

i∈T

s(i) =
∑
i∈T

∑
j∈T

c(i, j) = ∆

We can represent the set of teams and the distances between them by a complete graph
on n vertices, Kn. The edge costs are the distances between team venues and all distances
are assumed to be metric.

Let c(M) be the cost of a minimum weight perfect matching on Kn. The travelling
distance for any team i is at least s(i) + c(M). Thus

OPT ≥
∑
i∈T

(s(i) + c(M)) = ∆ + n · c(M)

34

3.7.2 Algorithm for n/2 even

Given the complete graph on the n teams we compute a minimum weight perfect matching
M on it. Then, for all edges included in the matching, we compute the combined star
weight of its endpoints. The endpoints with the lowest combined star weight are then
labelled (n − 1, n) and we have that s(n − 1) + s(n) ≤ 4∆

n
. The remaining vertices are

labelled such that the edges (i, i+1) for all even i and (1, n− 2), make up the edges of M .
Additionally, we choose an ordering such that∑

i odd

s(i) ≥
∑
j even

s(j)

We begin by creating pairs of teams, each pair consists of teams (i, i + 1) for all odd
i. We then schedule games between pairs of teams. As in the Circle Method used by
Thielen and Westphal [30], teams circle around a graph to play each other, but now we fix
the home-away patterns on each node. We construct a single round-robin schedule in this
way, and due to our choice of home-away assignments, we are then able to concatenate
the SRR schedule with its mirror to yield a feasible mirrored DRR schedule. See Figure
3.4 to Figure 3.6 for an illustration of the construction on 12 teams. See Figure 3.7 for an
interpretation of how games between pairs of teams are decided.

Figure 3.4: Initial configuration. First stage of the SRR schedule for 12 teams

To ensure that we have a feasible SRR schedule, teams within the same pair play each
other on the first day of the schedule where team i plays at team i+1. Teams then proceed
with their scheduled games in the defined home-away pattern. After the first day where

35

Figure 3.5: Second stage of the SRR for 12 teams

Figure 3.6: Final stage of the SRR schedule for 12 teams

teams play within their pair, there are n/2−1 stages of the schedule (corresponding to n−2
days) where teams are cycling through the graph. This creates a feasible SRR schedule
since all pairs have been matched once, thus all teams have played all other teams once.

The home-away assignment of the horizontal arrow changes only at the last day,
while the home-away assignment of all vertical arrows remain fixed and alternate from
node to node. The alternating home-away assignments of nodes creates a pattern of
HAAHHA . . . AHHA. Thus as teams move along the vertical edges, they have consec-
utive home games followed by consecutive away games. Figure 3.8 shows an example of
the configuration with 20 teams. The larger number of teams allows for a larger number
of vertical arrows thus the alternating home-away assignments of the nodes ensures that a
majority of the trips taken by any team (excluding (n− 1, n)) will be of length 2.

36

(1,2)

(9,10)

HA

AH

Team
Round 91 2 10

1

2

9 10 @1 @2

@10 @9 12

Figure 3.7: Games played between pairs

(19, 20)

(1, 2)

(9, 10)

(17, 18)

HA

AH

HAAH

(11, 12)

(7, 8)

AH

HA

(3, 4)

(15, 16)

HA

AH

(13, 14)

(5, 6)

AH

HA

Figure 3.8: Example with 20 teams.

37

Once the SRR schedule is constructed, we take its mirror and concatenate it with the
original SRR schedule thus creating a DRR schedule. We now verify that the DRR schedule
is indeed a feasible mTTP(2) solution.

Firstly we note that there is no team that plays more than two consecutive home or away
games in either half of the DRR schedule due to the alternating home-away assignments
on the nodes. Moreover, there is no streak of more than two home or away games that
occur at the meeting point of the two SRR schedules due to our construction. Note that
if a team ends the first half on a HA node, then it started the season on a AH node and
vice-versa. Let (i, i + 1) be a pair of teams that ended on a HA node. Then on day 1, i
played at team i + 1 so it has a home-away pattern of AAH to start the season, and a
pattern of HA to finish. On the other hand, on day 1 team i + 1 plays at home thus has
a pattern of HAH to start the season. Table 3.7 shows the home-away patterns at the
point where the two SRR schedules meet for teams i and i + 1. Because of our choice of
patterns, there is no streak of more than two consecutive home or two consecutive away
games for i or i + 1. The result is symmetric for any pair of teams that end the first half
on a AH node. We conclude that the DRR schedule created by concatenating the SRR
schedule and its mirror is indeed a feasible solution to mTTP(2).

Team i i+ 1
Day n− 2 : H H
Day n− 1 : A A
Day n : H A

Day n+ 1 : H H
Day n+ 2 : A A

Table 3.7: Home-away pattern at the meeting point of the two SRR schedules

The full DRR schedule obtained from our construction is shown in Table 3.8. Columns
correspond to teams while rows are days.

38

1 2 3 4 5 6 7 8 9 10 11 12
1 @2 1 @4 3 @6 5 @8 7 @10 9 @12 11
2 9 10 7 8 @11 @12 @3 @4 @1 @2 5 6
3 @10 @9 @8 @7 12 11 4 3 2 1 @6 @5
4 @ 11 @12 @9 @10 @7 @8 5 6 3 4 1 2
5 12 11 10 9 8 7 @6 @5 @4 @3 @2 @1
6 @ 3 @ 4 1 2 9 10 @11 @12 @5 @6 7 8
7 4 3 @2 @1 @10 @9 12 11 6 5 @8 @7
8 5 6 @11 @12 @1 @2 @9 @10 7 8 3 4
9 @6 @5 12 11 2 1 10 9 @8 @7 @4 @3
10 @7 @8 @5 @6 3 4 1 2 11 12 @9 @10
11 8 7 6 5 @4 @3 @2 @1 @12 @11 10 9
12 2 @1 4 @3 6 @5 8 @7 10 @9 12 @11
13 @9 @10 @7 @8 11 12 3 4 1 2 @5 @6
14 10 9 8 7 @12 @11 @4 @3 @2 @1 6 5
15 11 12 9 10 7 8 @5 @6 @3 @4 @1 @2
16 @12 @11 @10 @9 @8 @7 6 5 4 3 2 1
17 3 4 @1 @2 @9 @10 11 12 5 6 @7 @8
18 @4 @3 2 1 10 9 @12 @11 @6 @5 8 7
19 @5 @6 11 12 1 2 9 10 @7 @8 @3 @4
20 6 5 @12 @11 @2 @1 @10 @9 8 7 4 3
21 7 8 5 6 @3 @4 @1 @2 @11 @12 9 10
22 @8 @7 @6 @5 4 3 2 1 12 11 @10 @9

Table 3.8: Full mirrored DRR schedule for our example on 12 teams

39

3.7.3 Counting the trips taken with 12 teams

To analyze the cost of the full mirrored schedule produced by our algorithm, we split it
into several parts and find a bound on the cost of each part. To facilitate the process we
consider the schedule on 12 teams and demonstrate how we count the cost on this example.
We start by splitting the trips taken into several parts and analyze their costs individually.

First we consider the trips involving the fixed teams n, n − 1. We assume that before
any other team plays at a fixed pair’s venue, they first return home and then travel from
their home venue to the fixed team’s venue. This detour may be more costly but it is
beneficial for our analysis. Similarly, any time one of the fixed teams play an away game,
we assume they travel from their home venue to their opponent’s venue and then return
home directly afterwards. The set of edges in this component is denoted Cn.

Next we consider the games taking place on the very first day of the SRR schedule.
These are the games played between teams within the same pair. For odd i, we assume
team i plays at i+1 then returns home. In the mirrored half of the season, i+1 travels to
i and then returns home. The edge (i, i+ 1) is therefore used twice in the first half of the
season, and twice again in the second half. The set of edges counted in this component is
denoted Cp.

The set of edges used in all the remaining games is denoted Co.

The trips taken by even and odd teams are counted differently. We use team 7 to
illustrate how the cost of an arbitrary odd team is counted. By inspecting Table 3.8 we
notice that team 7 plays the other teams in cyclic order. This is by design. Furthermore,
notice that team 7 plays consecutive home/away games when going from one pair to the
next. For example, team 7 plays the pair (3, 4) followed by the pair (5, 6) and plays away at
team 4 on day 14 and then plays away at team 5 on day 15. Thus team 7 travels directly
from team 4 to team 5, incurring the cost of the edge (4, 5). Recall that we chose the
perfect matching M to include the edges (j, j + 1) for all even j, therefore the edge (4, 5)
is in the matching. In fact, all of the trips between two cities will be of this sort for team
7. To count the edges used in these trips we need to count the edges in the matching, M ,
since team 7 uses the edges between pairs, and we also need to count the edges used by
team 7 when departing and returning home. In total, team 7 uses the edges s(7) + M .
Figure 3.9 shows all the trips of length 2 we’ve counted for team 7 thus far.

We are not done yet since the games before and after playing the pair (11, 12) cannot
be counted in this manner. The game before playing the fixed pair is counted as a single
trip since team 7 returns home before playing (11, 12), and similarly for the game played
after visiting the fixed pair. For team 7, the games against team 6 and team 9 are counted

40

4

5
1

2

7 3

10

Figure 3.9: Trips of length 2 taken by Team 7

as single trips. Figure 3.10 shows all trips we’ve counted for team 7 excluding the games
against its partner team 8 and against the fixed pair (11, 12). The edges counted in this
component, made up of the trips of length two, as well as the trips taken before and after
visiting (11, 12), are all included in Co.

The only trips left to count are those that occur on the second day of each season
half, as well as the games on the last day of each half and we count these as single trips.
For team 7, these are the trips to team 2 and team 3. The set of edges counted by this
component is denoted Cs.

We now claim that we have counted the cost of all trips taken by team 7. Figure 3.11
shows the actual trips taken by team 7 in the DRR schedule constructed by our algorithm.
The trips to 11 and 12 were counted in Cn and are shown in black. The trips of length 2,
as well as the trips before and after visiting (11, 12) were counted by Co and are shown in
green. The trips taken on the second and last days of the schedule were counted in Cs and
are shown in blue. The trip to its partner team was counted in Cp and is shown in red.

Note the trip visiting teams 3 and 8 includes the edge (3, 8) which was not actually
counted in any of our components. However, the edge (7, 8) was counted twice in Cp, and
the edge (3, 7) was counted twice in Cs, thus by the triangle inequality, we incurred at least
the cost of the edge (3, 8). Similarly, we remark that the edge (6, 11) is used by team 7
in the schedule but was not counted. However, the edge (7, 11) was counted twice in Cn,
and the edge (6, 7) was counted twice in Co: once by the star weight s(7), and once in the
matching M . Applying the triangle inequality once more we conclude that we incurred a
cost of at least the cost of all edges actually used in the schedule for team 7.

Now we turn to the even teams. We resort to a simplistic method of counting the trips

41

45

9

1

2

7

3

6

10

Figure 3.10: Trips taken by Team 7 including single trips

9

8

3

611

5

4

12
2

1

10

Figure 3.11: Actual trips taken by Team 7

42

3

5

6

10

8

9

4

7

Figure 3.12: Trips counted for Team 2

taken by assuming that all even teams take single trip when visiting all other teams. That
is, even teams starts from their home venue, play an away game at their opponent venue,
and then return home. Figure 3.12 shows the trips counted in Co for team 2. Note that
in the actual schedule constructed, team 2 will have some trips of length 2 thus short-
cutting the single trips we have counted. However, since the distances are metric, the
triangle inequality implies that our counting of trips is never longer than the actual trips
taken by team 2. Figure 3.13 shows the actual edges used by team 2 in the DRR schedule
constructed by our algorithm. The trips to 11 and 12 were counted in Cn and are shown
in black. All other trips were counted by Co and are shown in green. The trips taken on
the second and last days of the schedule were counted in Cs and are shown in blue. The
trip to its partner team was counted in Cp and is shown in red.

Note that all of the actual edges used by team 2 in the schedule we constructed are
included in at least one of the edge sets we defined, thus all the trips have been counted.
Therefore we have successfully counted all trips taken by team 7 and team 2, which we
used as examples of arbitrary odd and even teams respectively. To count the trips of any
other odd (respectively, even) team, we follow the same process described to count the
trips of team 7 (respectively, team 2). All that remains to do is bound the cost of each
component to arrive at a bound on the total cost of the schedule constructed.

43

4

5

8
912

10

1

11

2

7

3

6

Figure 3.13: Actual trips taken by Team 2

44

3.7.4 Cost Analysis

Having seen how we count the trips taken by an even and an odd team in the previous
section, we now focus on the task of computing the cost of each component we defined.

Recall our key assumptions: the n teams are numbered such that the edges joining two
pairs, (i, i+1) for all even i, and (1, n−2), make up the edges of a minimum weight perfect
matching M . We choose an ordering such that s(n − 1) + s(n) ≤ 4∆

n
. Additionally, we

choose an ordering such that ∑
i odd

s(i) ≥
∑
j even

s(j)

The costs are split as follows:

Ch : The cost associated with home games at the pair (n − 1, n). We assume teams
travel to (n − 1, n) from their home venue and then return there after the game. Thus
Ch ≤ 2(s(n− 1) + s(n)) ≤ 8∆

n
.

Ca : The cost associated with away games of the pair (n− 1, n). By the same reasoning
as above, Ca ≤ 2(s(n− 1) + s(n)) ≤ 8∆

n
.

We combine these two parts together, counting the home and away games of n and
n− 1, and denote it Cn. We have Cn ≤ 16∆

n
.

Cs : The cost associated with the games on the second and last day of each season half.
The games on the first day of the SRR schedule are games between teams within a pair
and are counted separately. We consider the cost as if all games on the second and last
days are single trips.

For any edge (i, j) it can be counted in four ways in the full DRR schedule: i and j
can play each other on the first or last day, and with alternating venues. If an edge is
included, it is used twice since i (or j) travel back and forth. Overall there are n/2 − 1
choices of initial configurations. By configuration we mean an assignment of pairs to nodes
that maintain the relative order, thus each stage of the schedule is a configuration. Each
one defines a different set of edges to be counted in this manner and an edge is counted
twice in at most 4 of these choices. Over all possible configurations we have a total cost of∑

i∈T

∑
j∈T

8 · c(i, j) ≤ 4∆

45

Consequently, there must be some choice of configuration such that

Cs ≤
4∆

n/2− 1
=

8∆

n− 2

Cp : The cost incurred by games played between teams in the same pair. We bound
the cost of these games by using twice the cost of the edge between the teams in the
pair. They must play each other twice, each traveling back and forth to do so, thus
Cp ≤ 4

∑
i odd c(i, i+ 1).

Co : The other costs. Here we further split the costs into the cost incurred by odd teams
and even teams. We begin with the cost incurred by all odd teams.

Note that odd teams visit teams within pairs in order, and visit pairs in order as well.
By adding an additional edge from the last opponent to the first, we have a cyclic order on
the opponents of i. Since we have already covered the costs associated with playing teams
n − 1 and n, the costs of the remaining trips in the cyclic order are exactly the same as
the costs for playing against the opponents in order i + 1, i + 2, . . . , n − 2, 1, 2, . . . , i − 1.
This can be seen for team 1 in Table 3.8.

For any team, the game played after having played at (n− 1, n) is a single trip due to
the alternating home-away assignment of our construction. Note that a team i will play
team j after having played (n − 1, n) if j is two nodes away from i (going in a clockwise
manner). In Figure 3.4 this means team 1 will play 3, team 3 will play 5, and so on. The
games after having played (n − 1, n) result in a single trip for the teams at the bottom
leftmost node, and since this node has a fixed home-away assignment of AH, it will only
be the first team in the pair that performs this single trip in the first SRR schedule. In the
mirrored SRR schedule, this cost will be counted by the even team in the pair thus its cost
is handled later. The cost of this single trip for team i is 2c(i, i+2). This pattern does not
hold for team n− 3 who plays at (n− 1, n) in the final stage of the SRR schedule. Instead,
for this team, they have a single trip in the game before playing (n− 1, n). This difference
comes from the fact that we swap the home-away assignment of the vertical arrow in the
last stage. For the team n− 3, they take a single trip to team n− 4. We remark that this
edge is in M thus we do not need to bound its cost. For all other odd teams we use the
triangle inequality:

c(i, i+ 2) ≤ c(i, i+ 1) + c(i+ 1, i+ 2) ∀i ̸= n− 3

46

Thus the total cost of these single trips for all odd teams is

2
∑
i odd
i ̸=n−3

c(i, i+ 2) + 2c(n− 3, n− 4)

≤
∑
i odd
i ̸=n−3

c(i, i+ 2) + c(i, i+ 1) + c(i+ 1, i+ 2) + 2c(n− 3, n− 4)

≤
∑
i odd
i ̸=n−3

c(i, i+ 1) + c(i, i+ 2) + 3c(M)

Now that we have covered the cost of the single trips taken by i throughout the entire
DRR schedule. The only trips left are those of length two, and since any home-stand in
the first half of the schedule is a road trip in the mirrored half, we can compute the total
cost for the full schedule. These trips of length two occur when i travels from one pair to
another, and include the edge (j, j + 1) for j even, which is an edge in M . As shown in
Figure 3.17, i travels to the second team j in a pair, then uses the edge (j, j + 1) to get to
the next pair, then returns home from team j + 1.

We have already covered the cost of teams playing within their own pair, and games
against n − 1 and n, and we counted the single trips between i and i + 2. The cost for
team i when i ̸= n− 3 is therefore at most

s(i)− c(i, i+ 1)− c(i, i+ 2)− c(i, n− 1)− c(i, n) + c(M)

For team n− 3 we replace the term c(i, i+2) by the term c(n− 3, n− 4) but we can ignore
it since the cost of this edge is included in c(M).

The total cost of all trips of length 2 for all odd teams is therefore at most∑
i odd

(s(i)− c(i, i+ 1)− c(i, n− 1)− c(i, n)) + (n/2− 1) · c(M)−
∑
i odd
i ̸=n−3

c(i, i+ 2)

Combining this cost with that of the single trips we have the total cost for odd teams to

47

i

j j + 1

Figure 3.14: Trip of length two for odd i travelling between pairs

be at most∑
i odd

(s(i)− c(i, i+ 1)− c(i, n− 1)− c(i, n)) + (n/2− 1) · c(M)−
∑
i odd
i ̸=n−3

c(i, i+ 2)

+
∑
i odd
i ̸=n−3

(c(i, i+ 1) + c(i, i+ 2)) + 3c(M)

≤
∑
i odd

(s(i)− c(i, n− 1)− c(i, n)) + (n/2 + 2) · c(M)

We now handle the total cost of all even teams. The cost incurred by an even team j
can be trivially bounded by 2s(j) however this bound can be sharpened by excluding the
costs that have been counted elsewhere. Games within pairs were already counted by Cp,
so we can subtract the cost of the edge between j and its partner team j − 1. We can
also subtract the cost of going to teams n − 1 and n since these trips are counted by Cn.
Therefore the cost for an even team j is at most 2(s(j)− c(j, j − 1)− c(j, n− 1)− c(j, n)).
The total cost of all even teams is at most

2
∑
j even

(s(j)− c(j, j − 1)− c(j, n− 1)− c(j, n))

= 2
∑
j even

s(j)− 2
∑
i odd

(c(i, i+ 1) + c(i+ 1, n− 1) + c(i+ 1, n))

48

Putting the cost of the even and odd teams together we arrive at

Co ≤
∑
i odd

s(i) + (n/2 + 2) · c(M) + 2
∑
j even

s(j)− 2
∑
i odd

c(i, i+ 1)− s(n)− s(n− 1)

= ∆ + (n/2 + 2) · c(M) +
∑
j even

s(j)− 2
∑
i odd

c(i, i+ 1)− s(n)− s(n− 1)

The final cost of the entire DRR schedule can be bounded by putting all parts together:

Cn + Cs + Cp + Co ≤
16∆

n
+

8∆

n− 2
+ 4

∑
i odd

c(i, i+ 1) + ∆+ (n/2 + 2) · c(M)

+
∑
j even

s(j)− 2
∑
i odd

c(i, i+ 1)− s(n)− s(n− 1)

≤ (3/2) ·∆+ (n/2 + 2) · c(M) +
24∆

n− 2

To arrive at the final inequality we use our assumption that s(i) ≥ s(i + 1) for all odd i.
Moreover, ∑

i odd

s(i) + s(i+ 1) = ∆

thus we have that ∑
j even

s(j) ≤ 1

2
∆

We also use the triangle inequality to find c(i, i + 1) ≤ c(i, n) + c(i + 1, n). Similarly,
c(i, i+ 1) ≤ c(i, n− 1) + c(i+ 1, n− 1) Therefore

2
∑
i odd

c(i, i+ 1) ≤ s(n) + s(n− 1)

We have a lower bound of ∆+ n · c(M) on the cost of any feasible DRR schedule, thus we
have found an approximation ratio of 3

2
+ 24

n−2
.

3.7.5 Algorithm for n/2 odd

The case where n/2 is odd is similar in construction to the even case. Given a complete
graph on the n teams, we choose an ordering of the teams such that s(n) + s(n − 1) +

49

(13,14)

(1,2)

(5,6)

(9,10)

HA

AH

HAAH

(7,8)

(3,4)

AH

HA

(11,12)

Figure 3.15: Initial configuration for 14 teams

s(n− 2) + s(n− 3) ≤ 4∆
n
. We compute a minimum weight perfect matching on the graph

and order the nodes such that the edges (i, i+ 1) and (1, n), where i is even, make up the
edges of the matching. Moreover, we ensure that our ordering of the teams satisfies∑

i odd

s(i) ≥
∑
j even

s(j)

Once the teams are ordered, we create pairs of teams, each pair consisting of teams i and
i+ 1 for all odd i.

The configuration now has two pairs of teams that are fixed. The pair (n, n − 1) is
still fixed on the horizontal arrow while (n − 2, n − 3) is fixed at the center node of the
leftmost vertical arrow and is the only arrow with three nodes on it. The other pairs of
teams rotate counterclockwise through the graph as before to visit all other pairs. Figure
3.16 shows an example of the games generated by the edge with three nodes. The top and
bottom pairs play according to their HA assignment while the HA pattern of (11, 12) is
determined by the other pairs. Thus team 11 will play HH while team 12 plays AA. To
avoid creating a streak of more than two consecutive home or away games for either of
these teams, they alternate their role each stage, meaning in the following stage, 11 will
play the games assigned to 12 and vice-versa. This has the desired effect of having teams
11 and 12 play HHAAHH...

After n/2 − 2 stages, each pair has done a full traversal of the graph, and each team
has played n − 3 games (including the game against their partner on the very first day).
Each team is still missing two games. This is because when pairs visit the left-most vertical
arrow, they only play one team from each of the other two pairs thus visiting this edge
twice means each team has a deficit of two games. To illustrate where the missing games
come from, consider the pair (1, 2). When this pair is the top of the triple edge, team 1
plays teams 9 and 12 while team 2 plays against teams 10 and 11. In their second visit to

50

(1,2)

(9,10)

HA

AH

(11,12)

Team
Round 91 2 10

1

2

12 10 @11 @2

@9 @11 121

11 12

9

2

@1

@10

Figure 3.16: Games between pairs on the edge with three nodes.

the triple edge, (1, 2) is the bottom node and this time team 1 plays teams 11 and 3 while
team 2 plays teams 12 and 4. Thus we see that the pair (1, 2) has played all their games
against pair (11, 12) but are missing games against the other two pairs that were matched
to the triple edge with them. Team 1 must still play teams 10 and 4 while team 2 is missing
games against teams 9 and 3. Since the pair (1, 2) behaves like all other non-fixed pairs,
we have established that all teams will be missing two games after running our algorithm
for a full traversal of the graph. The teams in the fixed pairs will in fact also be missing
two games since (n− 1, n) was never matched with (n− 3, n− 2), thus every team needs
to play two more games to complete the SRR schedule. We complete the SRR schedule by
adding two days at the end and schedule the missing games. When scheduling the missing
games, we enforce a HA pattern of HA for odd teams and AH for even teams, with the
exception of assigning AA for team n − 2 and HH for team n − 3. Table 3.9 shows the
full SRR schedule constructed in this manner with 14 teams.

Claim 6. The choice of HA assignments on the last two days of the SRR schedule ensures
it can be mirrored to produce a feasible mTTP(2) solution for any number of teams.

Proof. The SRR schedule created has no streak of home or away games longer than 2 games.
However, when combining the SRR schedule with its mirror, a streak may be created at
the point where the two halves meet. To avoid such a scenario, the HA assignment of the
first and last two days is chosen carefully. There are two problematic cases that may arise:
a team plays at home on the first two days, then plays away on the last day. This creates
a streak of 3 consecutive away games when mirrored. The second problematic case is the
opposite; a team plays away on the first two days and home on the last day. Note that on
day 1, team i plays at team i + 1 for all odd i. Thus the only teams that can have two
consecutive away games to start the season are odd teams. For this reason, we choose odd
teams to play away on the last day of the SRR schedule. Similarly, only even teams can

51

1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 @2 1 @4 3 @6 5 @8 7 @10 9 @12 11 @14 13
2 12 10 7 8 @13 @14 @3 @4 @11 @2 9 @1 5 6
3 @9 @11 @8 @7 14 13 4 3 1 12 2 @10 @6 @5
4 @13 @14 @9 @10 @12 @8 11 6 3 4 @7 5 1 2
5 14 13 10 9 7 11 @5 @12 @4 @3 @6 8 @2 @1
6 @11 @4 12 2 9 10 @13 @14 @5 @6 1 @3 7 8
7 3 12 @1 @11 @10 @9 14 13 6 5 4 @2 @8 @7
8 5 6 @13 @14 @1 @2 @12 @10 11 8 @9 7 3 4
9 @6 @5 14 13 2 1 9 11 @7 @12 @8 10 @4 @3
10 @7 @8 @11 @6 12 4 1 2 @13 @14 3 @5 9 10
11 8 7 5 12 @3 @11 2 1 14 13 6 @4 @10 @9
12 10 @3 2 @5 4 @7 6 @9 8 @1 @13 14 11 @12
13 @4 9 @6 1 @8 3 @10 5 @2 7 @14 13 @12 11

Table 3.9: SRR schedule for 14 teams

play two consecutive home games to start the SRR schedule thus they play at home on
the last day of the SRR schedule. Enforcing these conditions ensures that no team plays
more than two consecutive home or away games in the full DRR schedule produced by the
concatenation of the SRR schedule and its mirror.

3.7.6 Cost Analysis

Our analysis of the cost is virtually identical in content and organization to the analysis
of the algorithm for n/2 being even, presented in section 3.7.4. Nevertheless we repeat it
in full detail here.

We split the cost of the schedule into several parts and bound each cost individually.
Recall our key assumptions: the n teams are numbered such that the edges joining two
pairs, (i, i + 1) for all even i and (1, n), make up the edges of a minimum weight perfect
matching M . We choose an ordering such that s(n) + s(n− 1)+ s(n− 2)+ s(n− 3) ≤ 4∆

n
.

Additionally, we choose an ordering such that∑
i odd

s(i) ≥
∑
j even

s(j)

For ease of presentation, let nf denote the collection of fixed teams n, n − 1, n − 2 and

52

n− 3. Using this notation we have

s(nf) = s(n) + s(n− 1) + s(n− 2) + s(n− 3)

c(i, nf) = c(i, n) + c(i, n− 1) + c(i, n− 2) + c(i, n− 3)

We now present how we split the cost of the schedule:

Ch : The cost associated with home games at the pairs (n− 1, n) and (n− 2, n− 3). We
assume teams travel to these two pairs from their home venue and then return there after
the game. Thus Ch ≤ 2s(nf) ≤ 8∆

n

Ca : The cost associated with away games of the pairs (n− 1, n) and (n− 2, n− 3). By
the same reasoning as above, Ca ≤ 2s(nf) ≤ 8∆

n
.

We combine these two parts together thus counting the home and away games of the
four fixed teams and denote it Cn. We have Cn ≤ 16∆

n
.

Cs : The cost associated with the games on the second and last day of each season half.
The games on the first day of the SRR schedule are games between teams within a pair
and are counted separately. We consider the cost as if all games on the second and last
days will be single trips.

For any edge (i, j) it can be counted in four ways in the full DRR: i and j can play
each other on the first or last day with alternating venues. Finally, if such an edge is
included, it is used twice since i (or j) will use it to go back and forth. Overall there are
n/2−2 choices of initial configurations. A configuration is an assignment of pairs to nodes
that maintain the relative order so each stage of the schedule is a configuration. Each one
defines a different set of edges to be counted in this manner and an edge is counted twice
in at most 4 of these choices. Over all possible configurations we have a total cost of∑

i

∑
j

8 · c(i, j) ≤ 4∆

Consequently, there must be some choice of configuration such that

Cs ≤
4∆

n/2− 2
=

8∆

n− 4

53

Cp : The cost incurred by games played between teams in the same pair. We can bound
the cost of these games by using twice the cost of the edge between the teams in the
pair. They must play each other twice, each traveling back and forth to do so, thus
Cp ≤ 4

∑
i odd c(i, i+ 1).

Co : The other costs not counted by the above.

We begin by considering the games played on the triple edge and bounding their cost as
if they were single trips. For any team i, there are six games played due to this triple edge
but two of these games are against the fixed pair (n− 2, n− 3) and their cost is included
in Cn. Another one of these games is played on the very last day of the SRR schedule and
thus is counted by Cs which leaves three games to be counted. For a team i, let q1, q2, p1
be the teams it plays in these three remaining games. The cost associated with these three
games is at most

2(c(i, q1) + c(i, q2) + c(i, p1))

By the triangle inequality, c(i, j) ≤ c(i, n) + c(j, n). The idea is to use this inequality to
bound the total cost of games played on the triple edge:∑

i∈T

(c(i, q1) + c(i, q2) + c(i, p1)) ≤ s(n) + s(n− 1) + s(n− 2)

Lemma 5. An edge (i, j) used in the games associated with the triple edge is counted by
the star weight of at most one fixed team.

For now, we ignore the existence of the triple edge and we examine the resulting cost
incurred by odd teams and even teams. We begin with counting the cost of trips taken by
odd teams.

Note that odd teams visit teams within pairs in order, and visit pairs in order as well.
By adding an additional edge from the last opponent to the first, we have a cyclic order
on the opponents of i. The costs of the trips in the cyclic order are exactly the same as
the costs for playing against the opponents in order i+ 1, i+ 2, . . . , n, 1, 2, . . . , i− 1. This
can be seen for team 1 in Figure 3.9.

We covered the cost of the single trips taken by i throughout the entire DRR schedule,
thus the only trips left are those of length two. Moreover, since any home-stand in the first
half of the schedule is a road trip in the mirrored half, we can compute the total cost for
the full schedule. These trips occur when i travels from one pair to another and include

54

i

j j + 1

Figure 3.17: Trip of length two for odd i travelling between pairs

the edge (j, j + 1) for j even, which is an edge in M . As shown in Figure 3.14, i travels
to the second team j in a pair, then uses the edge (j, j + 1) to get to the next pair, then
returns home from team j + 1.

We have already covered the cost of teams playing within their own pair, and games
against the fixed teams, and we counted the trips played on the triple edge. The cost for
team i is therefore at most

s(i)− c(i, i+ 1)− c(i, nf) + c(M)

The total cost of all trips of length two for all odd teams is therefore at most∑
i odd

(s(i)− c(i, i+ 1)− c(i, nf)) + (n/2− 2) · c(M)

Combining this cost with that of the single trips we find the total cost for odd teams to
be at most∑

i odd

(s(i)− c(i, i+ 1)− c(i, nf)) + (n/2− 2) · c(M) + “triple edge costs”

≤
∑
i odd

(s(i)− c(i, i+ 1)− c(i, nf)) + (n/2− 2) · c(M) + s(n) + s(n− 1) + s(n− 2)

=
∑
i odd

(s(i)− c(i, i+ 1)− c(i, nf)) + (n/2− 2) · c(M) + s(nf)− s(n− 3)

We now turn to the cost for even teams. The cost incurred by an even team j can be
trivially bounded by 2s(j) however this bound can be sharpened by excluding the costs

55

that have been counted elsewhere. Games within pairs were already counted by Cp, so
we can subtract the cost of the edge between j and its partner team j − 1. We can also
subtract the cost of playing against the four fixed teams since these trips are counted by
Cn. We now have that cost for even team j is at most

2(s(j)− c(j, j − 1)− c(j, nf))

The total cost of all even teams is therefore at most

2
∑
j even

(s(j)− c(j, j − 1)− c(j, nf)) = 2
∑
j even

s(j)− 2
∑
i odd

(c(i, i+ 1) + c(i+ 1, nf))

Putting the cost of the even and odd teams together we arrive at

∆ + (n/2− 2) · c(M) +
∑
j even

s(j)− 3
∑
i odd

c(i, i+ 1)− s(n− 3)

The final cost of the entire DRR schedule can be bounded by putting all parts together:

Cn + Cs + Cp + Co

≤ 16∆

n
+

8∆

n− 4
+ 4

∑
i odd

c(i, i+ 1) + ∆+ (n/2− 2) · c(M)

+
∑
j even

s(j)− 3
∑
i odd

c(i, i+ 1)− s(n− 3)

≤ (3/2) ·∆+ (n/2− 2) · c(M) +
24∆

n− 4

To arrive at the final inequality we use our assumption that s(i) ≥ s(i + 1) for all odd i.
Moreover, ∑

i odd

s(i) + s(i+ 1) = ∆

thus we have that ∑
j even

s(j) ≤ 1

2
∆

We also use the triangle inequality to find c(i, i+1) ≤ c(i, n−3)+c(i+1, n−3). Therefore∑
i odd

c(i, i+ 1) ≤ s(n− 3)

We have a lower bound of ∆+ n · c(M) on the cost of any feasible DRR schedule, thus we
have found an approximation ratio of 3

2
+ 24

n−4
.

56

Chapter 4

Local Search Methods

4.1 Introduction

Given an optimization problem that is computationally hard to solve, local search methods
may be used to find an optimal solution. For the local search methods studied in this
chapter, we assume that each instance of the problem has a discrete set of feasible solutions.
A local search algorithm starts from a candidate solution and then iteratively moves to
a neighboring solution until a stopping criterion is met. Each local search algorithm is
therefore defined by how the neighborhood of solutions is chosen, as well as its stopping
criterion.

A discrete optimization problem is described by Π = (I,S) where I is the set of
instances and S(x) is the discrete set of feasible solutions for each instance x ∈ I. To
have an optimization problem we need a measure of the quality of a solution thus we must
have an objective function f : S(x) → R that evaluates each feasible solution. Given
an instance of the problem x, the goal is then to find a feasible solution y ∈ S(x) with
minimum objective function value f(y).

4.2 Applications to TTP

Below is a collection of papers which have made use of local search methods to solve TTP
along with a brief description of their contents. Three papers are presented in further
detail in the following sections. The most recent results for all benchmark instances are
available at [31].

57

A simulated annealing approach to the traveling tournament problem: In one
of the earliest examples of local search methods being applied to TTP, Anagnostopoulos,
Michel, Van Hentenryck, and Vergados [1] present a simulated annealing approach to pro-
duce high-quality solutions. Experiments were run on the benchmark instances introduced
by Easton, Nemhauser and Trick [13]. The algorithm’s worst solution quality over 50 runs
is always smaller or equal to the best-known solutions at the time.

Heuristics for the mirrored traveling tournament problem: This paper by Ribeiro
and Urrutia [27] features the first appearance of the mirrored version of the TTP in the
literature. They propose a new heuristic based on the combination of the GRASP and
iterated local search meta-heuristic to solve mTTP.

Clustering Search Approach for the TTP: Biajoli and Lorena [3] propose a hy-
brid heuristic to solve the mirrored TTP using Clustering Search. The method consists
in detecting supposed promising search areas based on clustering. The performance of
the method is shown on benchmark problems available in literature and real benchmark
problems, such as the Brazilian Soccer Championship.

A Variable Neighborhood Search Method for Solving the TTP: Khelifa and
Boughaci [22] make use of a variable neighborhood search (VNS) method to solve TTP(3).
They use solution neighborhoods that are similar to those used in [1, 27]. Their method
reaches optimal solutions for small instances and beats the previously best known results
on several benchmark instances.

Evolutionary harmony search algorithm for sport scheduling problem: Khelifa,
Boughaci, and Aimeur [23]. The approach succeeds in finding optimal solutions for several
instances. For the other instances, the general deviation from optimality is equal to 4.45%.
This paper generated the best solutions for the unconstrained TTP for multiple benchmark
instances. These results held until 2019.

A Variable Neighborhood Search for Major League Baseball Problem: Liang
et al. [25] use a VNS scheme inspired by the method of Khelifa and Boughaci [22]. They
perform experiments with their algorithm in an attempt to improve the total traveling
distance of the 2016 and 2019 MLB schedules. The output of their algorithm shows a 2.5%
improvement compared to the actual 2016 schedule and a 6% improvement compared to
the actual 2019 schedule.

58

4.3 Heuristics for MTTP

The mirrored version of the traveling tournament problem was introduced by Ribeiro and
Urrutia [27] and they proposed heuristic methods for solving it. They begin by describing
a three phase method to construct a mTTP schedule which will act as the initial feasible
solution to be optimized by conducting local changes on it.

The construction of the mirrored schedule begins by generating a SRR schedule using
the circle method. This is done by considering the complete graph Kn representing n
abstract teams and their pairwise distance from each other, and partitioning it into n− 1
perfect matchings. Each matching corresponds to one day of the SRR schedule and each
edge in the matching defines a game between the teams on its endpoints. The schedule is
then duplicated to create a mirrored DRR. At this stage, we have generated a schedule that
tells what match-ups occur on each day, but we have not determined the venue at which
these matches occur. This preliminary schedule is used to generate a n× n matrix where
the entry (i, j) is equal to the number of times the teams i and j are consecutive opponents
of other teams. The idea is that if a pair of teams i and j are consecutive opponents of
many other teams, these two teams should have a small distance between them since many
teams will incur the cost of travelling between i and j.

This brings us to the second stage of the construction. We now assign real teams to
the abstract teams with the intention of minimizing the traveling cost of the schedule we
created. We do so by prioritizing the assignment of teams that are close to each other to the
abstract teams that are frequently consecutive opponents of other teams. This amounts to
solving a particular quadratic assignment problem (QAP) and a quick heuristic is applied
to solve it.

The third and final stage of the construction is to assign venues to each of the scheduled
games. The choice of venue determines which team will be playing at home or away for
each match-up. To minimize the distance travelled, it is preferable to schedule road trips
that are as long as possible thus avoiding unnecessary trips to and from a teams home
venue. This stage occurs in two parts. First, venues are assigned randomly to yield a
feasible schedule, then, a local search is implemented to improve the traveling cost of the
schedule. The local search procedure uses the randomly generated assignment of venues as
initial solution and the SwapHome neighborhood which is described below. A solution is
returned once a local optimum has been reached. The neighborhoods structures used by
the heuristic are described as follows:

59

1 2 3 4 5 6
1 5 4 @6 @2 @1 3
2 4 @6 @5 @1 3 2
3 3 @5 @1 @6 2 4
4 6 @3 2 @5 4 @1
5 2 @1 4 @3 6 @5

6 @5 @4 6 2 1 @3
7 @4 6 5 1 @3 @2
8 @3 5 1 6 @2 @4
9 @6 3 @2 5 @4 1
10 @2 1 @4 3 @6 5

Table 4.1: Schedule with 6 teams

SwapHome(A,B,i) : For some game played by A and B on day i, this moves swaps the
venues of the match-up thus swapping the home/away assignment of these teams. This
move only affects this match-up and so it causes the least disturbance to the overall sched-
ule. Using the initial schedule on 6 teams shown in Table 4.1, the move SwapHome(1, 4, 2)
is then applied to it. The resulting schedule is shown in Table 4.2 where gray colored cells
indicate the games affected by the move.

SwapTeam(A,B) : For two teams A and B, this move swaps all opponents of team A
with the opponents of team B over all rounds. So if on day i the match-ups are (A,C) and
(B,D), then after this move, the match-ups of day i are (A,D) and (B,C). This process
is done for every day of the season. Using the initial schedule on 6 teams shown in Table
4.1, the move SwapTeam(2, 3) is then applied to it. The resulting schedule is shown in
Table 4.3 where gray colored cells indicate the games affected by the move.

PartialSwapRound(A,B,C,D,i, j) : For four teams A,B,C and D, and two rounds
i and j such that games (A,B) and (C,D) take place in round i, and games (A,C) and
(B,D) take place in round j, this move swaps games taking place on day i with games
taking place on day j, and vice versa. The result is games (A,C) and (B,D) now take
place in round i while games (A,B) and (C,D) now take place in round j.

The three neighborhoods SwapHome, SwapTeam, and PartialSwapRound are explored
by local search.

60

1 2 3 4 5 6
1 5 4 @6 @2 @1 3
2 @4 @6 @5 1 3 2
3 3 @5 @1 @6 2 4
4 6 @3 2 @5 4 @1
5 2 @1 4 @3 6 @5

6 @5 @4 6 2 1 @3
7 4 6 5 @1 @3 @2
8 @3 5 1 6 @2 @4
9 @6 3 @2 5 @4 1
10 @2 1 @4 3 @6 5

Table 4.2: Schedule after applying SwapHome(1, 4, 2)

1 2 3 4 5 6
1 5 @6 4 @3 @1 2
2 4 @5 @6 @1 2 3
3 2 @1 @5 @6 3 4
4 6 3 @2 @5 4 @1
5 3 4 @1 @2 6 @5

6 @5 6 @4 3 1 @2
7 @4 5 6 1 @2 @3
8 @2 1 5 6 @3 @4
9 @6 @3 2 5 @4 1
10 @3 @4 1 2 @6 5

Table 4.3: Schedule after applying SwapTeam(2, 3)

61

The last move used is Game Rotation, which consists of enforcing an arbitrary game to
be played in an arbitrary round, followed by the appropriate modifications to avoid teams
playing more than one game in the same round. The move is finalized by the application
of a fast Tabu search algorithm that throws away possible infeasibilities in the sequence of
home and away games generated by the move. The GR neighborhood is explored only as a
diversification move performed less frequently by the heuristic due to the high computation
costs associated with its investigation.

ST is the first neighborhood explored. Once a local optimum with respect to this neigh-
borhood is found, a quick local search using the SH neighborhood is performed in search of
a better venue assignment. Next, the PRS neighborhood is investigated. As before, once a
local optimum with respect to this neighborhood is found, the algorithm performs a quick
local search using the SH neighborhood in search of a better stadium assignment. This
scheme is repeated until a local optimum with respect to all three neighborhoods is found.

62

4.4 Simulated Annealing Approach to TTP

Before discussing the paper by Anagnostopoulos, Michel, Hentenryck, and Vergados [1],
we present a basic overview of simulated annealing.

Simulated annealing is a probabilistic local search heuristic for approximately solving
an optimization problem, typically used when the search space is large and discrete. Named
after a technique used in metallurgy, annealing involves the heating and controlled cooling
of a material to alter its physical properties. The central concept of the algorithm is
to simulate the evolution of an unstable physical system toward a thermodynamic stable
equilibrium point at a fixed temperature. In general, simulated annealing algorithms work
as follows.

The temperature is some initial positive value, and progressively decreases to zero. At
each iteration, the current candidate solution is replaced by a randomly selected neighbor-
ing solution. The algorithm first evaluates the improvement made by the choice of new
solution, if the choice of solution leads to a better objective value, it is selected. However,
even if no improvement is made, a worse solution can still be accepted according to some
probability which depends on the current temperature. Due to the slow cooling imple-
mented in the simulated annealing algorithm, moving to a worse solution is progressively
less likely as the solution space is explored. Accepting worse solutions allows for a more
extensive search for the global optimal solution.

Simulated annealing can be used for very hard computational optimization problems
where exact algorithms fail; even though it usually achieves an approximate solution to
the global minimum, it could be enough for many practical problems.

Anagnostopoulos et al. describe a simulated annealing algorithm (TTSA) to solve the
TTP(3). The algorithm starts from an initial configuration. Its basic step moves from
the current configuration c to a configuration in the neighborhood of c. A configuration
corresponds to a double-round robin schedule. The algorithm uses four important design
features that allow it to produce high-quality solutions:

1. TTSA separates the tournament constraints and the pattern constraints into hard
and soft constraints. Hard constraints are those that are always satisfied by the
configurations, this includes the round-robin constraints. Soft constraints are those
that may or may not be satisfied. These are the no repeaters and the at-most
constraints. By dividing the constraints in this manner, all configurations found in
the search represents a double round-robin tournament, while they may or may not
violate the no repeat and at-most constraints. To steer the search toward feasible

63

solutions, TTSA modifies the original objective function to include a penalty term
for violating soft constraints.

2. TTSA uses a large neighborhood of size O(n3), where n is the number of teams. The
moves defining the search neighborhoods can be rather complex and significantly
affect the schedule.

3. TTSA includes a strategic oscillation strategy to balance the time spent in the feasible
and infeasible regions.

4. TTSA incorporates the concept of “reheats” to escape from local minima when the
algorithm has very low temperatures. The reheats increase the temperature again
and divide the search into several phases.

TTSA was applied to the National League instances of the TTP. TTSA matched the
best found solutions on the smaller instances (up to eight teams) and improved all the
best-known solutions (at the time of the experiments) on instances with at least 10 teams.
Their results also show that the worst solution of TTSA is always smaller than or equal to
the best-known solution, indicating the robustness of TTSA.

It is computationally intensive to find very high-quality solutions using TTSA. How-
ever, in their experiments, TTSA required just 1000 seconds to beat the previously best
known results for 12 and 14 teams. This demonstrates the ability of simulated annealing
to successfully attack these hard optimization problems with a much simpler machinery
compared to other earlier approaches.

The TTSA uses five types of moves, each defining a neighborhood of solutions. The
first three moves are simple swap moves, some were defined in the previous section. The
last two moves are generalizations of the first three and are partial swap moves.

SwapHome(A,B,i) : For some game played by A and B on day i, this moves swaps the
venues of the match-up thus swapping the home/away assignment of these teams. This
move only affects this match-up and so it causes the least disturbance to the overall sched-
ule. Using the initial schedule on 6 teams shown in Table 4.1, the move SwapHome(1, 4, 2)
is then applied to it. The resulting schedule is shown in Table 4.2 where gray colored cells
indicate the games affected by the move.

64

1 2 3 4 5 6
1 5 4 @6 @2 @1 3
2 4 @6 @5 @1 3 2
3 @4 6 5 1 @3 @2
4 6 @3 2 @5 4 @1
5 2 @1 4 @3 6 @5

6 @5 @4 6 2 1 @3
7 3 @5 @1 @6 2 4
8 @3 5 1 6 @2 @4
9 @6 3 @2 5 @4 1
10 @2 1 @4 3 @6 5

Table 4.4: Schedule after applying SwapRound(3, 7)

SwapRound(i, j) : For two rounds i and j, this move swaps all games taking place on
day i with games taking place on day j, and vice versa. This move affects all teams, but
the change is restricted to these two days. Using the initial schedule on 6 teams shown
in Table 4.1, the move SwapRound(3, 7) is then applied to it. The resulting schedule is
shown in Table 4.4 where gray colored cells indicate the games affected by the move.

SwapTeam(A,B) : For two teams A and B, this move swaps all opponents of team A
with the opponents of team B over all rounds. So if on day i the match-ups are (A,C) and
(B,D), then after this move, the match-ups of day i are (A,D) and (B,C). This process
is done for every day of the season. Using the initial schedule on 6 teams shown in Table
4.1, the move SwapTeam(2, 3) is then applied to it. The resulting schedule is shown in
Table 4.3 where gray colored cells indicate the games affected by the move.

The next two moves are similar in structure but are partial swaps. They significantly
enlarge the neighborhood and yield a larger search space.

PartialSwapRound(A,B,C,D,i, j) : For four teams A,B,C and D, and two rounds
i and j such that games (A,B) and (C,D) take place in round i, and games (A,C) and
(B,D) take place in round j, this move swaps games taking place on day i with games
taking place on day j, and vice versa. The result is games (A,C) and (B,D) now take
place in round i while games (A,B) and (C,D) now take place in round j.

65

PartialSwapTeam(A,B,i) : For two teams A and B, this move swaps all opponents of
team A with the opponents of team B but only for round i. So if on day i the matchups
are (A,C) and (B,D), then after this move, the match-ups of day i are (A,D) and (B,C).

TTSA starts from a random initial schedule and proceeds with the traditional simu-
lated annealing procedure. Given a temperature T , the algorithm randomly selects one
of the moves in the neighborhood and computes ∆, the change in the objective function
produced by the move. If ∆ < 0, TTSA applies the move. Otherwise, it applies the move
with probability exp(∆/T). Since the temperature decreases over time, the probability of
accepting a non-improving move decreases as well. This behavior is obtained by decreas-
ing the temperature as follows. TTSA uses a variable counter which is incremented for
each non-improving move and reset to zero when a new best solution is found. When the
counter reaches a specified upper limit, the temperature is updated to T · β (where β is
a fixed constant smaller than 1) and the counter is reset to zero. Figure 4.1 includes the
pseudo-code of the algorithm.

The schedules considered by the TTSA algorithm may not be feasible since it considers
schedules that do not satisfy the no repeaters and at-most constraints. Moreover, even
if a solution schedule was initially feasible the moves considered may not maintain the
feasibility. To steer the algorithm towards feasible solutions, the objective function cannot
simply account for the cost of the schedule, rather it must combine the distance travelled
with the number of violated constraints.

The number of violated soft constraints in a schedule S is denoted nbv(S). The new
objective function C is given as:

C =

{
cost(S) if S feasible√

cost(S)2 + [w · f(nbv(S))]2 otherwise

Where w is a weight, and f : N → N is a sub-linear function such that f(1) = 1.

The TTSA makes use of a reheating technique to allow it to escape local minima. Once
a very low temperatures is reached in a simulated annealing algorithm, it becomes very
difficult for the algorithm to move to a new solution to escape from a local minimum since
the probability of accepting non-decreasing moves is very small. Reheating solves this issue
by increasing the temperature once again to escape the current local minimum. TTSA uses
a relatively simple reheating method: upon completion of the outermost loop, reheat by
doubling the value of the temperature when the best solution was found. TTSA now
terminates when the number of consecutive reheats without improving the best solution
reaches a given limit.

66

Figure 4.1: Simulated Annealing algorithm. Source: [1, Fig. 1].

67

Figure 4.2: Results of TTSA on TTP. Source: [1, Table 3]

The TTSA was applied to the National League instances as defined by Easton, Nemhauser,
and Trick [13]. The latest results on these benchmarks, and more, are maintained by Trick
on his webpage [31]. For n = 6, TTSA always succeeds in finding the optimal solution so
this instance is not considered. The most successful version of the algorithm uses a very
slowly cooling system (β ≃ .9999), a large number of phases (so that the system can reach
low temperatures), and long phases. To avoid big oscillations in the value of the penalty
weight w, the parameters δ and θ were chosen to be close to 1 (≃ 1.03). For each instance
set (i.e., for every value of n), in all 50 runs, the parameters had the same initial values.
Table 4.2 shows the results of TTSA for different values of n over 50 runs. The second
column shows the previously best found results as of November 2002. The next columns
record the smallest, largest, and average solution found by TTSA over 50 runs, as well as
the standard deviation.

As mentioned earlier, finding high-quality solutions using simulated annealing is com-
putationally expensive. Thus, studying the evolution of solution quality over time can
be informative for TTSA. Figure 4.3 shows the values of solutions to 12 team instances
with respect to running time (in seconds). The figure features a superposition of curves
representing the solution values over many runs.

It is interesting to observe the sharp initial decline in the solution values which is
followed by a long tail where improvements are very slow. In particular, TTSA takes about
1,000 seconds to beat the previous best results for 12 teams, after which improvements
proceed at a much slower rate. The same phenomenon arises for 14 teams.

Further experiments were run with different parameter values. The impact of different
components was also studied to evaluate how important they are to the performance of the
algorithm, however we restricted the discussion to the most successful version of TTSA.

68

Figure 4.3: Solution quality over time for 12 teams. Source: [1, Fig. 4]

69

4.5 Variable Neighborhood Search Method for solv-

ing TTP

Khelifa and Boughaci [22] propose a variable neighborhood search (VNS) method to achieve
high-quality solutions to the TTP(3). They construct an initial feasible schedule and then
make use of three swap moves to explore the solution space and improve the traveling cost.
The moves used in this paper have been defined previously but we present them here for
the sake completeness.

SwapHome(A,B,i) : For some game played by A and B on day i, this moves swaps
the venues of the match-up thus swapping the home/away assignment of these teams.
This move only affects this matchup and so it causes the least disturbance to the overall
schedule. The move SwapHome(1, 4, 2) is shown on an example with 6 teams in Table 4.2.
The gray colored cells are the games affected by the move.

SwapRound(i, j) : For two rounds i and j, this move swaps all games taking place on
day i with games taking place on day j, and vice versa. This move affects all teams, but
the change is restricted to these two days. The move is shown on an example with 6 teams
in Table 4.4.

SwapTeam(A,B,) : For two teams A and B, this move swaps all opponents of team A
with the opponents of team B over all rounds. So if on day i the matchups are (A,C) and
(B,D), then after this move, the matchups of day i are (A,D) and (B,C). This process is
done for every day of the season. The move SwapTeam(2, 3) is shown on an example with
6 teams in Table 4.3. The gray colored cells are the games affected by the move.

Given a feasible schedule, performing any of these three moves will maintain its feasi-
bility.

To generate the initial feasible schedule, a single round-robin tournament is constructed,
and then duplicated to yield a double round-robin tournament. The SRR schedule is
constructed using the Circle method as follows. Teams are enumerated from 1 to n and
match-ups are defined by a pairing based on teams’ positions. On day 1, team 1 plays team
n, team 2 plays team n − 1, and so on until the game between team n/2 and n/2 − 1 is
defined. For the second day, we recreate the same pattern of pairings, but rotated clockwise.
An example of this procedure with 6 teams is shown in Figure 4.4. The pairing of teams

70

yields a single round-robin schedule. To produce a double round-robin schedule, we mirror
the SRR schedule constructed and combine the two halves to yield a DRR tournament.

Figure 4.4: Generating the initial configuration. Source: [22]

While the combination of the initial SRR schedule with its mirror does yield a mirrored
DRR schedule, it may not be feasible due to violating the at-most constraint. To remedy
this, a simulated annealing algorithm is run on the DRR schedule but the only move
available in the procedure is SwapRound. By penalizing each violation of the at-most
constraints, the output of the simulated annealing algorithm is a feasible DRR schedule
that satisfies the at-most and no repeaters constraints. The output schedule is then fed to
a Variable Neighborhood Search algorithm where each move consists of a neighborhood.
Each neighborhood is explored until a local optimum was found, at which point the next
neighborhood is searched. Figure 4.5 shows a sketch of the VNS algorithm.

The algorithm was run on the popular benchmark instances including the National
League (NLx), circular (CIRCx) and constant distance (CONx) instances. Figure 4.6
contains the results of the VNS method.

The last two columns of the table contain the previously best-known results, as well
as the techniques used to find these results. The clustering method results are due to

71

Figure 4.5: The VNS algorithm for TTP. Source: [22]

72

[3] while the AIS results are due to [4]. The VNS algorithm reaches optimality for the
constant distance instances up to 14 teams. The algorithm does not reach optimality on
the National League instance for more that 6 teams, however we see substantial improve-
ment over the previous best results. In fact, with the exception of the NL4 and NL6
instances, the average result over multiple runs of the VNS algorithm outperforms the pre-
vious best methods. This indicates the robustness of the VNS algorithm and its viability
for consistently producing high-quality solutions.

Figure 4.6: Results of VNS on benchmark instances. Source [22, Table 2]. The clustering
results are due to [3], AIS results are due to [4]

73

Chapter 5

Conclusions

In this thesis we studied the Traveling Tournament problem (TTP). The TTP was intro-
duced with a parameter k which is the maximum number of consecutive home/away games
a team can play. We used the notation TTP(k) to specify which version of the problem was
being discussed. Throughout our three technical chapters a wide range of topics connected
to the TTP were explored. We began by considering the computational complexity of the
problem. Despite existing results on the NP-hardness of TTP, the question of whether or
not TTP is also APX-hard was an unexplored area in the literature. Our result proving the
affirmative is therefore of significant interest. The next chapter delves into a popular vari-
ation of the problem, the mirrored TTP (mTTP). Building upon previous techniques, we
proposed the first approximation algorithm for solving mTTP(2), and proved an approx-
imation ratio of 3/2 + O(1)/n. Lastly, we presented a survey of local search methods for
solving TTP and discussed the performance of these techniques on benchmark instances.

Many approximation algorithms have been proposed for TTP, thus determining whether
the problem is APX-hard is of interest to the research community. To the best of our
knowledge, no such result appears in the literature. Inspired by Bhattacharyya’s [2] proof
of NP hardness of the unconstrained TTP, we built on this result to show the problem is
also APX hard. In Chapter 2 we presented an L-reduction from (1, 2)-TSP to TTP. To
reach the desired result, we showed that given an instance of TSP with a solution of cost
K, we can construct an instance of TTP with a solution of cost at most 20m(m + 1)cK
where m = c(n− 1)+ 1, n is the number of teams, and c > 5, c ∈ Z is fixed.. On the other
hand, we showed that given a feasible schedule to the constructed TTP instance, we can
recover a tour on the original TSP instance.

In Chapter 3 we considered the mirrored Traveling Tournament problem (mTTP),

74

an important variant of the original TTP which has seen considerable research progress.
Unlike the TTP, which has been studied for different values of k, the mTTP has primarily
been explored for k = 3. This led us to consider extending the existing approximation
algorithm for TTP(2), such that we can produce mirrored schedules, thus solving mTTP(2).

The most common methods of constructing mirrored schedules rely on our ability to find
good single round-robin tournaments hence the relationship between a single round-robin
(SRR) tournament and a double round-robin (DRR) tournament was studied. Several new
results were presented including relationships between the optimal value of a SRR schedule
to an optimal DRR schedule, as well as the value of an optimal SRR schedule compared
to that of an optimal mirrored DRR tournament. The key result of the chapter was the
presentation of the first constructive algorithm for building a mirrored DRR schedule when
the number of consecutive home or away games is restricted to two. The approximation
guarantee of the algorithm is shown to be on the order of 3/2 +O(1)/n.

The final chapter contains a survey of several papers which make use of local search
methods to solve TTP. We discussed several heuristic methods which achieve good results
on benchmark instances of TTP. Three papers were discussed in more detail. Due to
our interest in the mirrored TTP, we studied the work of Ribeiro and Urrutia [27] who
first introduced the problem and proposed a greedy iterative search method to find high-
quality solutions to the mirrored problem. We then explored one of the first examples
of heuristic methods being applied to TTP which was a simulated annealing technique
by Anagnostopoulos et al. [1] to solve TTP(3). Finally we looked at a more recent
development, a Variable Neighborhood search technique proposed by Khelifa and Boughaci
[22] to solve TTP(3).

Further Research Directions

Over the course of researching the TTP, several interesting research directions came up.
Below are several open questions, as well as results that can potentially be improved upon.

1. Prove NP-hardness of TTP(2).

2. Prove APX-hardness of TTP(k) for fixed values of k.

3. Improve the approximation ratio of mTTP(k) for k > 2. Yamaguchi et al. [35]
presented approximation ratios for mTTP(k) for all fixed k > 2. When k ≤ 5, the
approximation ratio of the proposed algorithm is bounded by (2k − 1)/k + O(k/n),
when k > 5, the ratio is bounded by (5k − 7)/(2k) +O(k/n).

75

References

[1] A. Anagnostopoulos, L. Michel, P. Van Hentenryck, and Y. Vergados. A simulated
annealing approach to the traveling tournament problem. J. Sched., 9(2):177–193, 04
2006.

[2] Rishiraj Bhattacharyya. Complexity of the unconstrained traveling tournament prob-
lem. Operations Research Letters, 44(5):649–654, 2016.

[3] Fabŕıcio Lacerda Biajoli and Luiz Antonio Nogueira Lorena. Clustering search ap-
proach for the traveling tournament problem. In Alexander Gelbukh and Ángel Fer-
nando Kuri Morales, editors, MICAI 2007: Advances in Artificial Intelligence, pages
83–93, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[4] Leslie Pérez Cáceres and Maéıa Cristina Riff. Aisttp: An artificial immune algorithm
to solve traveling tournament problems. International Journal of Computational In-
telligence and Applications, 11(01):1250008, 2012.

[5] Robert Thomas Campbell and DS Chen. A minimum distance basketball scheduling
problem. Management science in sports, 4:15–26, 1976.

[6] Diptendu Chatterjee. Complexity of traveling tournament problem with trip length
more than three, 2021. arXiv:2110.02300.

[7] Diptendu Chatterjee and Bimal Kumar Roy. An improved scheduling algorithm for
traveling tournament problem with maximum trip length two. 2021. arXiv:2109.09065.

[8] Kevin K.H. Cheung. Solving mirrored traveling tournament problem benchmark in-
stances with eight teams. Discrete Optimization, 5(1):138–143, 2008.

[9] Kevin K.H. Cheung. A benders approach for computing lower bounds for the mirrored
traveling tournament problem. Discrete Optimization, 6(2):189–196, 2009.

76

[10] D. de Werra. Scheduling in sports. In P. Hansen, editor, Annals of Discrete Mathe-
matics (11), volume 59 of North-Holland Mathematics Studies, pages 381–395. North-
Holland, 1981.

[11] D. de Werra. Some models of graphs for scheduling sports competitions. Discrete
Applied Mathematics, 21(1):47–65, 1988.

[12] Alexandre Duarte, Celso Ribeiro, Sebastián Urrutia, and Edward Haeusler. Referee
assignment in sports leagues. Lecture Notes in Computer Science, 3867:158–173, 01
2006.

[13] Kelly Easton, George Nemhauser, and Michael Trick. The traveling tournament prob-
lem description and benchmarks. In Toby Walsh, editor, Principles and Practice
of Constraint Programming — CP 2001, pages 580–584, Berlin, Heidelberg, 2001.
Springer Berlin Heidelberg.

[14] Kelly Easton, George Nemhauser, and Michael Trick. Solving the Travelling Tour-
nament Problem: A Combined Integer Programming and Constraint Programming
Approach. In Edmund Burke and Patrick De Causmaecker, editors, Practice and The-
ory of Automated Timetabling IV, pages 100–109, Berlin, Heidelberg, 2003. Springer
Berlin Heidelberg.

[15] Nobutomo Fujiwara, Shinji Imahori, Tomomi Matsui, and Ryuhei Miyashiro.
Constructive algorithms for the constant distance traveling tournament problem.
PATAT’06, page 135–147, Berlin, Heidelberg, 2006. Springer-Verlag.

[16] Richard Hoshino and Ken-ichi Kawarabayashi. The inter-league extension of the trav-
eling tournament problem and its application to sports scheduling. Proceedings of the
AAAI Conference on Artificial Intelligence, 25(1):977–984, 08 2011.

[17] Richard Hoshino and Ken-ichi Kawarabayashi. An approximation algorithm for
the bipartite traveling tournament problem. Mathematics of Operations Research,
38(4):720–728, 2013.

[18] Shinji Imahori. A 1 + O(1/n) approximation algorithm for TTP(2), 2021.
arXiv:2108.08444.

[19] Shinji Imahori, Tomomi Matsui, and Ryuhei Miyashiro. A 2.75-approximation al-
gorithm for the unconstrained traveling tournament problem. Annals of Operations
Research, 218, 10 2011.

77

[20] Shinji Imahori, Ryuhei Miyashiro, and Tomomi Matsui. An approximation algorithm
for the traveling tournament problem. Annals of Operations Research, 194:317–324,
2012.

[21] Graham Kendall, Sigrid Knust, Celso C. Ribeiro, and Sebastián Urrutia. Scheduling
in sports: An annotated bibliography. Computers & Operations Research, 37(1):1–19,
2010.

[22] Meriem Khelifa and Dalila Boughaci. A variable neighborhood search method for
solving the traveling tournaments problem. Electronic Notes in Discrete Mathematics,
47:157–164, 2015. The 3rd International Conference on Variable Neighborhood Search
(VNS’14).

[23] Meriem Khelifa, Dalila Boughaci, and Esma Aı̈meur. Evolutionary Harmony Search
Algorithm for Sport Scheduling Problem, pages 93–117. Springer International Pub-
lishing, Cham, 2018.

[24] Gilbert Laporte. The vehicle routing problem: An overview of exact and approximate
algorithms. European Journal of Operational Research, 59(3):345–358, 1992.

[25] Yun-Chia Liang, Yen-Yu Lin, Angela Hsiang-Ling Chen, and Wei-Sheng Chen. Vari-
able neighborhood search for major league baseball scheduling problem. Sustainability,
13(7), 2021.

[26] Celso C. Ribeiro and Sebastián Urrutia. Scheduling the Brazilian Soccer Tournament
with Fairness and Broadcast Objectives. In Edmund K. Burke and Hana Rudová,
editors, Practice and Theory of Automated Timetabling VI, pages 147–157, Berlin,
Heidelberg, 2007. Springer Berlin Heidelberg.

[27] Celso C. Ribeiro and Sebastián Urrutia. Heuristics for the mirrored traveling tourna-
ment problem. European Journal of Operational Research, 179(3):775–787, 2007.

[28] Uwe Schauz. The tournament scheduling problem with absences. European Journal
of Operational Research, 254(3):746–754, 2016.

[29] Clemens Thielen and Stephan Westphal. Complexity of the traveling tournament
problem. Theor. Comput. Sci., 412:345–351, 02 2011.

[30] Clemens Thielen and Stephan Westphal. Approximation algorithms for TTP(2).
Mathematical Methods of Operations Research, 76:1–20, 2012.

78

[31] Michael Trick. Challenge traveling tournament instances. https://mat.tepper.cmu.
edu/TOURN/. Accessed: 2022-05-12.

[32] Sebastián Urrutia and Celso C. Ribeiro. Maximizing breaks and bounding solu-
tions to the mirrored traveling tournament problem. Discrete Applied Mathematics,
154(13):1932–1938, 2006. Traces of the Latin American Conference on Combinatorics,
Graphs and Applications.

[33] Stephan Westphal and Karl Noparlik. A 5.875-approximation for the traveling tour-
nament problem. Annals of Operations Research, 218:1–14, 01 2010.

[34] Mingyu Xiao and Shaowei Kou. An Improved Approximation Algorithm for the Trav-
eling Tournament Problem with Maximum Trip Length Two. In Piotr Faliszewski,
Anca Muscholl, and Rolf Niedermeier, editors, 41st International Symposium on Math-
ematical Foundations of Computer Science (MFCS 2016), volume 58 of Leibniz Inter-
national Proceedings in Informatics (LIPIcs), pages 89:1–89:14, Dagstuhl, Germany,
2016. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[35] Daisuke Yamaguchi, Shinji Imahori, Ryuhei Miyashiro, and Tomomi Matsui. An im-
proved approximation algorithm for the traveling tournament problem. Algorithmica,
61:1077–1091, 01 2011.

[36] Jingyang Zhao and Mingyu Xiao. The traveling tournament problem with maximum
tour length two: A practical algorithm with an improved approximation bound. In
Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence,
IJCAI-21, pages 4206–4212. International Joint Conferences on Artificial Intelligence
Organization, 08 2021.

79

https://mat.tepper.cmu.edu/TOURN/
https://mat.tepper.cmu.edu/TOURN/

	List of Figures
	List of Tables
	Introduction
	Introduction
	The Traveling Tournament Problem
	Unconstrained TTP
	Mirrored TTP

	Approximation Algorithms
	Computational Methods for TTP
	Lower Bound & Solution Methods
	Integer Programming
	Local Search Methods

	Related Problems

	APX Hardness of Unconstrained TTP
	Overview
	Reduction from (1,2)-TSP to UTTP
	APX Hardness of Boosted TSP
	APX Hardness of UTTP

	Mirrored TTP
	Overview
	The Problem
	Literature Review
	Feasibility of mTTP(2)
	SRR vs. DRR Tournaments
	SRR Schedule vs mirrored DRR Schedule
	Constructing a mTTP(2) Schedule
	Lower Bound
	Algorithm for n/2 even
	Counting the trips taken with 12 teams
	Cost Analysis
	Algorithm for n/2 odd
	Cost Analysis

	Local Search Methods
	Introduction
	Applications to TTP
	Heuristics for MTTP
	Simulated Annealing Approach to TTP
	Variable Neighborhood Search Method for solving TTP

	Conclusions
	References

