415,480 research outputs found

    Downwash-Aware Trajectory Planning for Large Quadrotor Teams

    Full text link
    We describe a method for formation-change trajectory planning for large quadrotor teams in obstacle-rich environments. Our method decomposes the planning problem into two stages: a discrete planner operating on a graph representation of the workspace, and a continuous refinement that converts the non-smooth graph plan into a set of C^k-continuous trajectories, locally optimizing an integral-squared-derivative cost. We account for the downwash effect, allowing safe flight in dense formations. We demonstrate the computational efficiency in simulation with up to 200 robots and the physical plausibility with an experiment with 32 nano-quadrotors. Our approach can compute safe and smooth trajectories for hundreds of quadrotors in dense environments with obstacles in a few minutes.Comment: 8 page

    Autonomous Exploration over Continuous Domains

    Get PDF
    Motion planning is an essential aspect of robot autonomy, and as such it has been studied for decades, producing a wide range of planning methodologies. Path planners are generally categorised as either trajectory optimisers or sampling-based planners. The latter is the predominant planning paradigm as it can resolve a path efficiently while explicitly reasoning about path safety. Yet, with a limited budget, the resulting paths are far from optimal. In contrast, state-of-the-art trajectory optimisers explicitly trade-off between path safety and efficiency to produce locally optimal paths. However, these planners cannot incorporate updates from a partially observed model such as an occupancy map and fail in planning around information gaps caused by incomplete sensor coverage. Autonomous exploration adds another twist to path planning. The objective of exploration is to safely and efficiently traverse through an unknown environment in order to map it. The desired output of such a process is a sequence of paths that efficiently and safely minimise the uncertainty of the map. However, optimising over the entire space of trajectories is computationally intractable. Therefore, most exploration algorithms relax the general formulation by optimising a simpler one, for example finding the single next best view, resulting in suboptimal performance. This thesis investigates methodologies for optimal and safe exploration over continuous paths. Contrary to existing exploration algorithms that break exploration into independent sub-problems of finding goal points and planning safe paths to these points, our holistic approach simultaneously optimises the coupled problems of where and how to explore. Thus, offering a shift in paradigm from next best view to next best path. With exploration defined as an optimisation problem over continuous paths, this thesis explores two different optimisation paradigms; Bayesian and functional

    Fly-by-Logic: Control of Multi-Drone Fleets with Temporal Logic Objectives

    Get PDF
    The problem of safe planning and control for multi- drone systems across a variety of missions is of critical impor- tance, as the scope of tasks assigned to such systems increases. In this paper, we present an approach to solve this problem for multi-quadrotor missions. Given a mission expressed in Signal Temporal Logic (STL), our controller maximizes robustness to generate trajectories for the quadrotors that satisfy the STL spec- ification in continuous-time. We also show that the constraints on our optimization guarantees that these trajectories can be tracked nearly perfectly by lower level off-the-shelf position and attitude controllers. Our approach avoids the oversimplifying abstractions found in many planning methods, while retaining the expressiveness of missions encoded in STL allowing us to handle complex spatial, temporal and reactive requirements. Through experiments, both in simulation and on actual quadrotors, we show the performance, scalability and real-time applicability of our method

    A Novel Cyber Resilience Framework – Strategies and Best Practices for Today's Organizations

    Get PDF
    Cyber resilience refers to an organization's ability to maintain its essential functions, services despite cyber-attacks and swiftly recover from any disruptions. It involves proactive measures like gathering threat intelligence and managing risks, as well as reactive measures such as incident response planning, data backup and recovery. To achieve cyber resilience, organizations must implement robust cyber security measures, regularly update their incident response plans, and educate employees on safe online practices. Furthermore, having a comprehensive backup and recovery strategy in place is crucial to swiftly restore critical systems and data in the event of an attack. Overall, the proposed framework emphasizes cyber resilience as a continuous and proactive approach for managing cyber security risks and safeguarding against the growing threat of cyber-attacks

    Approach for the development and application of target process module sets

    Get PDF
    The implementation of agile frameworks, such as SAFe, in large companies causes conflicts between the overall product development process with a rigid linkage to the calendar cycles and the continuous agile project planning. To resolve these conflicts, adaptive processes can be used to support the creation of realistic target-processes, i.e. project plans, while stabilizing process quality and simplifying process management. This enables the usage of standardisation methods and module sets for design processes. The objective of this contribution is to support project managers to create realistic target-processes through the usage of target-process module sets. These target-process module sets also aim to stabilize process quality and to simplify process management. This contribution provides an approach for the development and application of target-process module sets, in accordance to previously gathered requirements and evaluates the approach within a case study with project managers at AUDI AG (N=21) and an interview study with process authors (N=4) from three different companies

    Graceful Navigation for Mobile Robots in Dynamic and Uncertain Environments.

    Full text link
    The ability to navigate in everyday environments is a fundamental and necessary skill for any autonomous mobile agent that is intended to work with human users. The presence of pedestrians and other dynamic objects, however, makes the environment inherently dynamic and uncertain. To navigate in such environments, an agent must reason about the near future and make an optimal decision at each time step so that it can move safely toward the goal. Furthermore, for any application intended to carry passengers, it also must be able to move smoothly and comfortably, and the robot behavior needs to be customizable to match the preference of the individual users. Despite decades of progress in the field of motion planning and control, this remains a difficult challenge with existing methods. In this dissertation, we show that safe, comfortable, and customizable mobile robot navigation in dynamic and uncertain environments can be achieved via stochastic model predictive control. We view the problem of navigation in dynamic and uncertain environments as a continuous decision making process, where an agent with short-term predictive capability reasons about its situation and makes an informed decision at each time step. The problem of robot navigation in dynamic and uncertain environments is formulated as an on-line, finite-horizon policy and trajectory optimization problem under uncertainty. With our formulation, planning and control becomes fully integrated, which allows direct optimization of the performance measure. Furthermore, with our approach the problem becomes easy to solve, which allows our algorithm to run in real time on a single core of a typical laptop with off-the-shelf optimization packages. The work presented in this thesis extends the state-of-the-art in analytic control of mobile robots, sampling-based optimal path planning, and stochastic model predictive control. We believe that our work is a significant step toward safe and reliable autonomous navigation that is acceptable to human users.PhDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120760/1/jongjinp_1.pd

    Probabilistic Motion Planning for Automated Vehicles

    Get PDF
    This thesis targets the problem of motion planning for automated vehicles. As a prerequisite for their on-road deployment, automated vehicles must show an appropriate and reliable driving behavior in mixed traffic, i.e. alongside human drivers. Besides the uncertainties resulting from imperfect perception, occlusions and limited sensor range, also the uncertainties in the behavior of other traffic participants have to be considered. Related approaches for motion planning in mixed traffic often employ a deterministic problem formulation. The solution of such formulations is restricted to a single trajectory. Deviations from the prediction of other traffic participants are accounted for during replanning, while large uncertainties lead to conservative and over-cautious behavior. As a result of the shortcomings of these formulations in cooperative scenarios and scenarios with severe uncertainties, probabilistic approaches are pursued. Due to the need for real-time capability, however, a holistic uncertainty treatment often induces a strong limitation of the action space of automated vehicles. Moreover, safety and traffic rule compliance are often not considered. Thus, in this work, three motion planning approaches and a scenario-based safety approach are presented. The safety approach is based on an existing concept, which targets the guarantee that automated vehicles will never cause accidents. This concept is enhanced by the consideration of traffic rules for crossing and merging traffic, occlusions, limited sensor range and lane changes. The three presented motion planning approaches are targeted towards the different predominant uncertainties in different scenarios, while operating in a continuous action space. For non-interactive scenarios with clear precedence, a probabilistic approach is presented. The problem is modeled as a partially observable Markov decision process (POMDP). In contrast to existing approaches, the underlying assumption is that the prediction of the future progression of the uncertainty in the behavior of other traffic participants can be performed independently of the automated vehicle\u27s motion plan. In addition to this prediction of currently visible traffic participants, the influence of occlusions and limited sensor range is considered. Despite its thorough uncertainty consideration, the presented approach facilitates planning in a continuous action space. Two further approaches are targeted towards the predominant uncertainties in interactive scenarios. In order to facilitate lane changes in dense traffic, a rule-based approach is proposed. The latter seeks to actively reduce the uncertainty in whether other vehicles willingly make room for a lane change. The generated trajectories are safe and traffic rule compliant with respect to the presented safety approach. To facilitate cooperation in scenarios without clear precedence, a multi-agent approach is presented. The globally optimal solution to the multi-agent problem is first analyzed regarding its ambiguity. If an unambiguous, cooperative solution is found, it is pursued. Still, the compliance of other vehicles with the presumed cooperation model is checked, and a conservative fallback trajectory is pursued in case of non-compliance. The performance of the presented approaches is shown in various scenarios with intersecting lanes, partly with limited visibility, as well as lane changes and a narrowing without predefined right of way

    Search-based 3D Planning and Trajectory Optimization for Safe Micro Aerial Vehicle Flight Under Sensor Visibility Constraints

    Full text link
    Safe navigation of Micro Aerial Vehicles (MAVs) requires not only obstacle-free flight paths according to a static environment map, but also the perception of and reaction to previously unknown and dynamic objects. This implies that the onboard sensors cover the current flight direction. Due to the limited payload of MAVs, full sensor coverage of the environment has to be traded off with flight time. Thus, often only a part of the environment is covered. We present a combined allocentric complete planning and trajectory optimization approach taking these sensor visibility constraints into account. The optimized trajectories yield flight paths within the apex angle of a Velodyne Puck Lite 3D laser scanner enabling low-level collision avoidance to perceive obstacles in the flight direction. Furthermore, the optimized trajectories take the flight dynamics into account and contain the velocities and accelerations along the path. We evaluate our approach with a DJI Matrice 600 MAV and in simulation employing hardware-in-the-loop.Comment: In Proceedings of IEEE International Conference on Robotics and Automation (ICRA), Montreal, Canada, May 201
    • …
    corecore