38 research outputs found

    An approach to achieve zero turnaround time in TDD operation on SDR front-end

    Get PDF
    Thanks to the digitization and softwarization of radio communication, the development cycle of new radio technologies can be significantly accelerated by prototyping on software-defined radio (SDR) platforms. However, a slow turnaround time (TT) of the front-end of an SDR for switching from receiving mode to transmitting mode or vice versa, are jeopardizing the prototyping of wireless protocols, standards, or systems with stringent latency requirements. In this paper, a novel solution called BaseBand processing unit operating in Half Duplex mode and analog Radio Frequency front-end operating in Full Duplex mode, BBHD-RFFD, is presented to reduce the TT on SDR. A prototype is realized on the widely adopted AD9361 radio frequency frontend to prove the validity of the proposed solution. Experiments unveil that for any type of application, the TT in time division duplex (TDD) operation mode can be reduced to zero by the BBHD-RFFD approach, with negligible impact on the communication system in terms of receiver sensitivity. The impact is measured for an in-house IEEE 802.15.4 compliant transceiver. When compared against the conventional TDD approach, only a 7.5-dB degradation is observed with the BBHD-RFFD approach. The measured sensitivity of -91 dBm is still well above the minimum level (i.e., -85 dBm at 2.4 GHz) defined by the IEEE 802.15.4 standard

    CMCVT : a concurrent multi-channel virtual transceiver

    Get PDF
    State-of-the-art wireless Gateways (GW) used in Internet of Things (IoT) offer a single channel radio link, which limits the capabilities of the IoT network controlled by the GW, as the GW can only use a single channel at a time to communicate with the end-device(s). The quality of service (e.g., aggregate throughput, latency) offered by a single channel GW could be substantially improved by employing a multi-channel transceiver, which is capable of transmitting/receiving data on different radio channels simultaneously, particularly for larger wireless networks. However, current solutions available in both research and commercial communities only offer multi-channel receiver capabilities, and do not incorporate the multi-channel transmitter part. In addition, in terms of implementation, these multi-channel receivers duplicate single-channel hardware functionality. In this paper, for the first time, a novel concurrent multi-channel virtual transceiver is introduced. The virtual transceiver offers multi-channel capabilities and uses the same single-hardware hardware implementation for the Physical (PHY) layer by employing the virtualization technique. This new virtual transceiver concept is demonstrated for an IEEE 802.15.4 based 8 x 8 channel transceiver, implemented on an Field Programmable Gate Array (FPGA) of a modern Software Defined Radio and is compared with the existing duplication approach. The duplication approach consumes 9008 LUTs, and 12120 FFs, whereas the proposed approach occupies only 2959 LUTs and 2105 FFs, saving 67.15% LUTs and 82.63% FFs in comparison with the duplication approach. The experimental results reveal that the virtual transceiver provides the same performance (e.g., receiver sensitivity of -98.5dBm) as the transceiver achieved by duplicating the PHY layers but consumes much less hardware resources. (C) 2020 The Authors. Published by Elsevier GmbH

    A Secure, Configurable, Wireless System for Transfer of Sensor Data from Aircraft to Ground

    Get PDF
    Modern aircraft are complex systems, equipped with hundreds of embedded sensors that record a wide repertoire of data during flight, such as crucial engine and airframe parameters, status of flight control system, air conditioning system, landing gear, life-saving and emergency systems. The data from the sensors is stored in the Flight Data Recorder. Maintenance personnel routinely transfer this sensor data to a ground terminal device to analyze it for aircraft health and performance monitoring purposes. Manual methods of extracting sensor data can be tedious and error-prone when large fleets of aircraft are involved. This paper presents a novel system to extract sensor data from aircraft to a ground terminal, wirelessly. The wireless system is implemented using unique, configurable wireless transmitter receivers (WTRs) designed for this purpose. The hardware for the wireless transfer of data was designed, interfaced with a modern aircraftโ€™s system, and tested with the aircraft on the ground and another flying object. The data from the aircraftโ€™s Flight Data Recorder was successfully transmitted and received wirelessly by the ground terminal, over a distance of 50 meters (with aircraft on ground) and 10 Kilometers (with a flying object), in a secure mode with zero packet loss. The WTRs have also qualified the requisite tests for airborne certification

    ๋น„๋ฉดํ—ˆ๋Œ€์—ญ ์…€๋ฃฐ๋ผ ํ†ต์‹ ์„ ์œ„ํ•œ ์„ฑ๋Šฅ ํ–ฅ์ƒ ๊ธฐ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2021.8. ๋ฐ•์„ธ์›….The 3rd generation partnership project (3GPP) has standardized long-term evolution (LTE) licensed-assisted access (LTE-LAA) that uses a wide unlicensed band as an alternative solution to the insufficient bandwidth problem of the existing LTE. 3GPP cellular communications in unlicensed spectrum allow transmission only after completing listen-before-talk (LBT) operation. For downlink, the LBT operation helps cellular traffic to coexist well with Wi-Fi traffic. However, cellular uplink transmission is attempted only at the time specifically determined by the base station after having a successful LBT and the user equipment (UE) may suffer transmission failure and delayed transmission due to Wi-Fi interference. As a result, cellular uplink traffic does not coexist well with Wi-Fi traffic. NR-U suffers from the collision issue because its channel access mechanism is similar to that of Wi-Fi. Wi-Fi solves the collision problem through the request-to-send/clear-to-send (RTS/CTS) mechanism. However, NR-U has no way of solving the collision problem. As a result, NR-U suffers severe performance degradation due to collisions as the number of contending nodes increases. In this dissertation, we consider the following two enhancements to cellular communication in the unlicensed spectrum: (i) Uplink channel access enhancement for solving poor uplink performance and (ii) collision minimization for efficient channel utilization. First, we mathematically analyze the problem of unfairness between cellular and Wi-Fi for uplink channel access. To address the coexistence problem in unlicensed spectrum, we propose a standard-compliant approach, termed UpChance, which allows the UE to use a minimum length of uplink reservation signal (RS) and the base station to determine the optimal timing for the UE's uplink transmission. Through ns-3 simulation, we verify that UpChance improves the performance of fairness and random access completion time by up to 88% and 99%, respectively. Second, we propose to extend an RS duration and use a split RS for reservation in NR-U that consists of front RS and rear RS and design a new collision minimization scheme, termed R-SplitC, that contains two components: new split RS operation and contention window size (CWS) control. New split RS operation helps to minimize collisions in NR-U transmissions, and CWS control works to protect the performance of other communication technologies such as Wi-Fi. We mathematically analyze and evaluate the performance of our scheme and confirm that R-SplitC improves network throughput by up to 100.6% compared to the baseline RS scheme without degrading Wi-Fi performance. In summary, we propose standard-compliant uplink channel access enhancement scheme and collision minimization scheme for cellular communication in unlicensed spectrum. Through this research, we achieve enhancements of network performance such as throughput and fairness.3์„ธ๋Œ€ ํŒŒํŠธ๋„ˆ์‹ญ ํ”„๋กœ์ ํŠธ๋Š” ๊ธฐ์กด LTE์˜ ๋ถ€์กฑํ•œ ๋Œ€์—ญํญ ๋ฌธ์ œ์— ๋Œ€ํ•œ ๋Œ€์•ˆ์œผ๋กœ ๋„“์€ ๋น„๋ฉดํ—ˆ ๋Œ€์—ญ์„ ์‚ฌ์šฉํ•˜๋Š” ๋ผ์ด์„ ์Šค ์ง€์› ์ ‘์†์„ ํ‘œ์ค€ํ™”ํ•˜๊ณ  ์žˆ๋‹ค. ๋น„๋ฉดํ—ˆ ๋Œ€์—ญ์—์„œ 3GPP ์…€๋ฃฐ๋Ÿฌ ํ†ต์‹ ์€ LBT ๋™์ž‘์„ ์™„๋ฃŒํ•œ ํ›„์—๋งŒ ์ „์†ก์„ ํ—ˆ์šฉํ•œ๋‹ค. ๋‹ค์šด๋งํฌ์˜ ๊ฒฝ์šฐ LBT ์ž‘์—…์„ ํ†ตํ•ด ์…€๋ฃฐ๋Ÿฌ ํŠธ๋ž˜ํ”ฝ์ด ์™€์ดํŒŒ์ด ํŠธ๋ž˜ํ”ฝ๊ณผ ์ž˜ ๊ณต์กดํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ์…€๋ฃฐ๋Ÿฌ ์—…๋งํฌ ์ „์†ก์€ LBT ์„ฑ๊ณต ํ›„ ๊ธฐ์ง€๊ตญ์— ์˜ํ•ด ํŠน๋ณ„ํžˆ ๊ฒฐ์ •๋œ ์‹œ๊ฐ„์—๋งŒ ์‹œ๋„๋˜๋ฉฐ, ์‚ฌ์šฉ์ž ์žฅ๋น„๋Š” ์™€์ดํŒŒ์ด์˜ ๊ฐ„์„ญ์œผ๋กœ ์ธํ•ด ์ „์†ก ์‹คํŒจ์™€ ์ „์†ก ์ง€์—ฐ์„ ๊ฒช์„ ํ™•๋ฅ ์ด ๋†’๋‹ค. ๋”ฐ๋ผ์„œ ์…€๋ฃฐ๋Ÿฌ ์—…๋งํฌ ํŠธ๋ž˜ํ”ฝ์ด ์™€์ดํŒŒ์ด ํŠธ๋ž˜ํ”ฝ๊ณผ ์ž˜ ๊ณต์กดํ•˜์ง€ ๋ชปํ•œ๋‹ค. ๋ผ์ด์„ ์Šค ์ง€์› ์ ‘์† ๊ธฐ์ˆ ์€ ๋˜ํ•œ ์ฑ„๋„ ์•ก์„ธ์Šค ๋ฉ”์ปค๋‹ˆ์ฆ˜์ด ์™€์ดํŒŒ์ด์˜ ์ฑ„๋„ ์•ก์„ธ์Šค ๋ฉ”์ปค๋‹ˆ์ฆ˜๊ณผ ์œ ์‚ฌํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋™์‹œ ์ „์†ก์œผ๋กœ ์ถฉ๋Œ ๋ฌธ์ œ๋ฅผ ๊ฒช๊ณ  ์žˆ๋‹ค. ์™€์ดํŒŒ์ด๋Š” RTS/CTS ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ํ†ตํ•ด ์ถฉ๋Œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ํ˜„์žฌ ๋ผ์ด์„ ์Šค ์ง€์› ์ ‘์† ๊ธฐ์ˆ ์€ ์ถฉ๋Œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•  ๋ฐฉ๋ฒ•์ด ์กด์žฌํ•˜์ง€ ์•Š๋Š”๋‹ค. ๋”ฐ๋ผ์„œ ๋ผ์ด์„ ์Šค ์ง€์› ์ ‘์† ๊ธฐ์ˆ ์€ ๊ฒฝํ•ฉ ๋…ธ๋“œ ์ˆ˜๊ฐ€ ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ์ถฉ๋Œ๋กœ ์ธํ•ด ์‹ฌ๊ฐํ•œ ์„ฑ๋Šฅ ์ €ํ•˜๋ฅผ ๊ฒช๋Š”๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋น„๋ฉดํ—ˆ ๋Œ€์—ญ์—์„œ ์…€๋ฃฐ๋Ÿฌ ํ†ต์‹ ์— ๋Œ€ํ•œ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๋‘ ๊ฐ€์ง€ ๊ฐœ์„ ์„ ๊ณ ๋ คํ•œ๋‹ค. (i) ์—…๋งํฌ ์„ฑ๋Šฅ ์ €ํ•˜๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ์—…๋งํฌ ์ฑ„๋„ ์•ก์„ธ์Šค ํ–ฅ์ƒ ๋ฐ (ii) ํšจ์œจ์ ์ธ ์ฑ„๋„ ํ™œ์šฉ์„ ์œ„ํ•œ ์ถฉ๋Œ ์ตœ์†Œํ™”. ์ฒซ์งธ, ์—…๋งํฌ ์ฑ„๋„ ์•ก์„ธ์Šค๋ฅผ ์œ„ํ•œ ์…€๋ฃฐ๋Ÿฌ์™€ ์™€์ดํŒŒ์ด ์‚ฌ์ด์˜ ๋ถˆ๊ณต์ •์„ฑ ๋ฌธ์ œ๋ฅผ ์ˆ˜ํ•™์ ์œผ๋กœ ๋ถ„์„ํ•œ๋‹ค. ๋น„๋ฉดํ—ˆ ๋Œ€์—ญ์—์„œ์˜ ๊ณต์กด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด, ์šฐ๋ฆฌ๋Š” ๋‹จ๋ง์ด ์ตœ์†Œ ๊ธธ์ด์˜ ์—…๋งํฌ ์˜ˆ์•ฝ ์‹ ํ˜ธ๋ฅผ ์‚ฌ์šฉํ•˜๊ณ  ๊ธฐ์ง€๊ตญ์ด ๋‹จ๋ง์˜ ์—…๋งํฌ ์ „์†ก์— ๋Œ€ํ•œ ์ตœ์ ์˜ ํƒ€์ด๋ฐ์„ ๊ฒฐ์ •ํ•  ์ˆ˜ ์žˆ๋Š” UpChance๋ผ๋Š” ํ‘œ์ค€์„ ๋งŒ์กฑํ•˜๋Š” ์ƒํ–ฅ ๋งํฌ ์ฑ„๋„ ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์•ˆํ•œ๋‹ค. ns-3 ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•ด UpChance๊ฐ€ ๊ณต์ •์„ฑ๊ณผ ๋žœ๋ค ์•ก์„ธ์Šค ์™„๋ฃŒ ์‹œ๊ฐ„์„ ๊ฐ๊ฐ ์ตœ๋Œ€ 88%, 99% ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๊ฒƒ์„ ๊ฒ€์ฆํ•œ๋‹ค. ๋‘˜์งธ, ์šฐ๋ฆฌ๋Š” ์ „๋ฐฉ ์˜ˆ์•ฝ์‹ ํ˜ธ์™€ ํ›„๋ฐฉ ์˜ˆ์•ฝ์‹ ํ˜ธ๋กœ ๊ตฌ์„ฑ๋œ ๋ถ„ํ•  ์˜ˆ์•ฝ ์‹ ํ˜ธ๋ฅผ ์‚ฌ์šฉํ•˜๊ณ  ๊ฒฝํ•ฉ ์ฐฝ ํฌ๊ธฐ๋ฅผ ์ถ”๊ฐ€์ ์œผ๋กœ ์ œ์–ดํ•˜๋Š” R-SplitC๋ผ๋Š” ์ƒˆ๋กœ์šด ์ถฉ๋Œ ์ตœ์†Œํ™” ์ฒด๊ณ„๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ƒˆ๋กœ์šด ๋ถ„ํ•  ์˜ˆ์•ฝ ์‹ ํ˜ธ๋Š” ๋ผ์ด์„ ์Šค ์ง€์› ์ ‘์† ๊ธฐ์ˆ ์˜ ์ „์†ก๊ฐ„์˜ ์ถฉ๋Œ์„ ์ตœ์†Œํ™”ํ•˜๋Š” ๋ฐ ๋„์›€์„ ์ฃผ๋ฉฐ, ๊ฒฝํ•ฉ ์ฐฝ ํฌ๊ธฐ ์ œ์–ด๋Š” ์™€์ดํŒŒ์ด์™€ ๊ฐ™์€ ๋‹ค๋ฅธ ํ†ต์‹  ๊ธฐ์ˆ ์˜ ์„ฑ๋Šฅ์„ ๋ณดํ˜ธํ•œ๋‹ค. ์šฐ๋ฆฌ๋Š” ์šฐ๋ฆฌ ์ฒด๊ณ„์˜ ์„ฑ๋Šฅ์„ ์ˆ˜ํ•™์ ์œผ๋กœ ๋ถ„์„ํ•˜๊ณ  ํ‰๊ฐ€ํ•˜์—ฌ R-SplitC๊ฐ€ ์™€์ดํŒŒ์ด ์„ฑ๋Šฅ์„ ์ €ํ•˜์‹œํ‚ค์ง€ ์•Š๊ณ  ๊ธฐ์กด์˜ ์˜ˆ์•ฝ ์‹ ํ˜ธ ์ฒด๊ณ„์— ๋น„ํ•ด ๋„คํŠธ์›Œํฌ ์ฒ˜๋ฆฌ๋Ÿ‰์„ ์ตœ๋Œ€ 100.6% ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๊ฒƒ์„ ํ™•์ธํ•œ๋‹ค. ์š”์•ฝํ•˜๋ฉด, ์šฐ๋ฆฌ๋Š” ๋น„๋ฉดํ—ˆ ๋Œ€์—ญ์—์„œ ์…€๋ฃฐ๋Ÿฌ ํ†ต์‹ ์„ ์œ„ํ•œ ์—…๋งํฌ ์ฑ„๋„ ์•ก์„ธ์Šค ํ–ฅ์ƒ ๊ธฐ๋ฒ• ๋ฐ ์ถฉ๋Œ ์ตœ์†Œํ™” ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด, ์šฐ๋ฆฌ๋Š” ์ตœ์ฒจ๋‹จ ๊ธฐ์ˆ ์— ๋น„ํ•ด ์ฒ˜๋ฆฌ๋Ÿ‰ ๋ฐ ๊ณต์ •์„ฑ๊ณผ ๊ฐ™์€ ๋„คํŠธ์›Œํฌ ์„ฑ๋Šฅ์˜ ํ–ฅ์ƒ์„ ๋‹ฌ์„ฑํ•œ๋‹ค.1 Introduction 1 1.1 Motivation 1 1.2 Main Contributions 2 1.2.1 Uplink Channel Access Enhancement for Cellular Communication in Unlicensed Spectrum 2 1.2.2 R-SplitC: Collision Minimization for Cellular Communication in Unlicensed Spectrum 3 1.3 Organization of the Dissertation 4 2 Uplink Channel Access Enhancement for Cellular Communication in Unlicensed Spectrum 5 2.1 Introduction 5 2.2 Related Work and Preliminaries 7 2.2.1 Related Work 7 2.2.2 Preliminaries 8 2.3 Mathematical Analysis for Unfairness between Uplink Cellular and Wi-Fi 10 2.3.1 PRACH scenario 10 2.3.2 UL data scenario 13 2.4 Proposed Scheme 17 2.4.1 UE Operation 18 2.4.2 eNB Operation 19 2.5 Performance Evaluation 24 2.5.1 Simulation Environments 24 2.5.2 UL data transmission 25 2.5.3 Random access 27 2.6 Summary 29 3 R-SplitC: Collision Minimization for Cellular Communication in Unlicensed Spectrum 37 3.1 Introduction 37 3.2 Related Work and Preliminaries 39 3.2.1 Related Work 39 3.2.2 NR-U 40 3.2.3 listen-before-talk (LBT) 41 3.2.4 reservation signal and mini-slot 41 3.2.5 Wi-Fi 42 3.3 Proposed Scheme 44 3.3.1 New RS structure 46 3.3.2 CWS control 48 3.4 Performance Analysis 49 3.4.1 Throughput Analysis for R-Split 49 3.4.2 Throughput Analysis for R-SplitC 55 3.5 Performance Evaluation 57 3.5.1 Performance Evaluation for an NR-U only Network 58 3.5.2 Performance Evaluation for an NR-U/Wi-Fi Network 61 3.6 Summary 65 4 Concluding Remarks 67 4.1 Research Contributions 67 4.2Future Work 68 Abstract (In Korean) 75 ๊ฐ์‚ฌ์˜๊ธ€ 78๋ฐ•

    Glossary, Acronyms, Abbreviations: Space transportation system and associated payloads

    Get PDF
    A glossary of terms (and definitions) in current usage for the space transportation system and associated payloads, as well as acronyms and abbreviations, are presented

    STS and Cargo Glossary, acronyms, and abbreviations

    Get PDF
    Definitions are provided, and acronyms and abbreviations are explained

    Space Transportation System and associated payloads: Glossary, acronyms, and abbreviations

    Get PDF
    A collection of acronyms now in everyday use in the Shuttle world are listed. It is a combination of lists that were prepared at the Kennedy and Johnson Space Centers and by the Air Force

    Space transportation system and associated payloads: Glossary, acronyms, and abbreviations

    Get PDF
    A collection of some of the acronyms and abbreviations now in everyday use in the shuttle world is presented. It is a combination of lists that were prepared at Marshall Space Flight Center and Kennedy and Johnson Space Centers, places where intensive shuttle activities are being carried out. This list is intended as a guide or reference and should not be considered to have the status and sanction of a dictionary

    Space Transportation System and associated payloads: Glossary, acronyms, and abbreviations

    Get PDF
    A collection of acronyms in everyday use concerning shuttle activities is presented. A glossary of terms pertaining to the Space Transportation System is included
    corecore