120,275 research outputs found

    Master/worker parallel discrete event simulation

    Get PDF
    The execution of parallel discrete event simulation across metacomputing infrastructures is examined. A master/worker architecture for parallel discrete event simulation is proposed providing robust executions under a dynamic set of services with system-level support for fault tolerance, semi-automated client-directed load balancing, portability across heterogeneous machines, and the ability to run codes on idle or time-sharing clients without significant interaction by users. Research questions and challenges associated with issues and limitations with the work distribution paradigm, targeted computational domain, performance metrics, and the intended class of applications to be used in this context are analyzed and discussed. A portable web services approach to master/worker parallel discrete event simulation is proposed and evaluated with subsequent optimizations to increase the efficiency of large-scale simulation execution through distributed master service design and intrinsic overhead reduction. New techniques for addressing challenges associated with optimistic parallel discrete event simulation across metacomputing such as rollbacks and message unsending with an inherently different computation paradigm utilizing master services and time windows are proposed and examined. Results indicate that a master/worker approach utilizing loosely coupled resources is a viable means for high throughput parallel discrete event simulation by enhancing existing computational capacity or providing alternate execution capability for less time-critical codes.Ph.D.Committee Chair: Fujimoto, Richard; Committee Member: Bader, David; Committee Member: Perumalla, Kalyan; Committee Member: Riley, George; Committee Member: Vuduc, Richar

    Efficient Partitioning and Allocation of Data for Workflow Compositions

    Get PDF
    Our aim is to provide efficient partitioning and allocation of data for web service compositions. Web service compositions are represented as partial order database transactions. We accommodate a variety of transaction types, such as read-only and write-oriented transactions, to support workloads in cloud environments. We introduce an approach that partitions and allocates small units of data, called micropartitions, to multiple database nodes. Each database node stores only the data needed to support a specific workload. Transactions are routed directly to the appropriate data nodes. Our approach guarantees serializability and efficient execution. In Phase 1, we cluster transactions based on data requirements. We associate each cluster with an abstract query definition. An abstract query represents the minimal data requirement that would satisfy all the queries that belong to a given cluster. A micropartition is generated by executing the abstract query on the original database. We show that our abstract query definition is complete and minimal. Intuitively, completeness means that all queries of the corresponding cluster can be correctly answered using the micropartition generated from the abstract query. The minimality property means that no smaller partition of the data can satisfy all of the queries in the cluster. We also aim to support efficient web services execution. Our approach reduces the number of data accesses to distributed data. We also aim to limit the number of replica updates. Our empirical results show that the partitioning approach improves data access efficiency over standard partitioning of data. In Phase 2, we investigate the performance improvement via parallel execution.Based on the data allocation achieved in Phase I, we develop a scheduling approach. Our approach guarantees serializability while efficiently exploiting parallel execution of web services. We achieve conflict serializability by scheduling conflicting operations in a predefined order. This order is based on the calculation of a minimal delay requirement. We use this delay to schedule services to preserve serializability without the traditional locking mechanisms

    Dynamic deployment of web services on the internet or grid

    Get PDF
    PhD ThesisThis thesis focuses on the area of dynamic Web Service deployment for grid and Internet applications. It presents a new Dynamic Service Oriented Architecture (DynaSOAr) that enables the deployment of Web Services at run-time in response to consumer requests. The service-oriented approach to grid and Internet computing is centred on two parties: the service provider and the service consumer. This thesis investigates the introduction of mobility into this service-oriented approach allowing for better use of resources and improved quality of service. To this end, it examines the role of the service provider and makes the case for a clear separation of its concerns into two distinct roles: that of a Web Service Provider, whose responsibility is to receive and direct consumer requests and supply service implementations, and a Host Provider, whose role is to deploy services and process consumers' requests on available resources. This separation of concerns breaks the implicit bond between a published Web Service endpoint (network address) and the resource upon which the service is deployed. It also allows the architecture to respond dynamically to changes in service demand and the quality of service requirements. Clearly defined interfaces for each role are presented, which form the infrastructure of DynaSOAr. The approach taken is wholly based on Web Services. The dynamic deployment of service code between separate roles, potentially running in different administrative domains, raises a number of security issues which are addressed. A DynaSOAr service invocation involves three parties: the requesting Consumer, a Web Service Provider and a Host Provider; this tripartite relationship requires a security model that allows the concerns of each party to be enforced for a given invocation. This thesis, therefore, presents a Tripartite Security Model and an architecture that allows the representation, propagation and enforcement of three separate sets of constraints. A prototype implementation of DynaSOAr is used to evaluate the claims made, and the results show that a significant benefit in terms of round-trip execution time for data-intensive applications is achieved. Additional benefits in terms of parallel deployments to satisfy multiple concurrent requests are also shown

    A Taxonomy of Workflow Management Systems for Grid Computing

    Full text link
    With the advent of Grid and application technologies, scientists and engineers are building more and more complex applications to manage and process large data sets, and execute scientific experiments on distributed resources. Such application scenarios require means for composing and executing complex workflows. Therefore, many efforts have been made towards the development of workflow management systems for Grid computing. In this paper, we propose a taxonomy that characterizes and classifies various approaches for building and executing workflows on Grids. We also survey several representative Grid workflow systems developed by various projects world-wide to demonstrate the comprehensiveness of the taxonomy. The taxonomy not only highlights the design and engineering similarities and differences of state-of-the-art in Grid workflow systems, but also identifies the areas that need further research.Comment: 29 pages, 15 figure

    QoS-Aware Middleware for Web Services Composition

    Get PDF
    The paradigmatic shift from a Web of manual interactions to a Web of programmatic interactions driven by Web services is creating unprecedented opportunities for the formation of online Business-to-Business (B2B) collaborations. In particular, the creation of value-added services by composition of existing ones is gaining a significant momentum. Since many available Web services provide overlapping or identical functionality, albeit with different Quality of Service (QoS), a choice needs to be made to determine which services are to participate in a given composite service. This paper presents a middleware platform which addresses the issue of selecting Web services for the purpose of their composition in a way that maximizes user satisfaction expressed as utility functions over QoS attributes, while satisfying the constraints set by the user and by the structure of the composite service. Two selection approaches are described and compared: one based on local (task-level) selection of services and the other based on global allocation of tasks to services using integer programming

    A Dataflow Language for Decentralised Orchestration of Web Service Workflows

    Full text link
    Orchestrating centralised service-oriented workflows presents significant scalability challenges that include: the consumption of network bandwidth, degradation of performance, and single points of failure. This paper presents a high-level dataflow specification language that attempts to address these scalability challenges. This language provides simple abstractions for orchestrating large-scale web service workflows, and separates between the workflow logic and its execution. It is based on a data-driven model that permits parallelism to improve the workflow performance. We provide a decentralised architecture that allows the computation logic to be moved "closer" to services involved in the workflow. This is achieved through partitioning the workflow specification into smaller fragments that may be sent to remote orchestration services for execution. The orchestration services rely on proxies that exploit connectivity to services in the workflow. These proxies perform service invocations and compositions on behalf of the orchestration services, and carry out data collection, retrieval, and mediation tasks. The evaluation of our architecture implementation concludes that our decentralised approach reduces the execution time of workflows, and scales accordingly with the increasing size of data sets.Comment: To appear in Proceedings of the IEEE 2013 7th International Workshop on Scientific Workflows, in conjunction with IEEE SERVICES 201

    Measuring and Managing Answer Quality for Online Data-Intensive Services

    Full text link
    Online data-intensive services parallelize query execution across distributed software components. Interactive response time is a priority, so online query executions return answers without waiting for slow running components to finish. However, data from these slow components could lead to better answers. We propose Ubora, an approach to measure the effect of slow running components on the quality of answers. Ubora randomly samples online queries and executes them twice. The first execution elides data from slow components and provides fast online answers; the second execution waits for all components to complete. Ubora uses memoization to speed up mature executions by replaying network messages exchanged between components. Our systems-level implementation works for a wide range of platforms, including Hadoop/Yarn, Apache Lucene, the EasyRec Recommendation Engine, and the OpenEphyra question answering system. Ubora computes answer quality much faster than competing approaches that do not use memoization. With Ubora, we show that answer quality can and should be used to guide online admission control. Our adaptive controller processed 37% more queries than a competing controller guided by the rate of timeouts.Comment: Technical Repor

    Context constraint integration and validation in dynamic web service compositions

    Get PDF
    System architectures that cross organisational boundaries are usually implemented based on Web service technologies due to their inherent interoperability benets. With increasing exibility requirements, such as on-demand service provision, a dynamic approach to service architecture focussing on composition at runtime is needed. The possibility of technical faults, but also violations of functional and semantic constraints require a comprehensive notion of context that captures composition-relevant aspects. Context-aware techniques are consequently required to support constraint validation for dynamic service composition. We present techniques to respond to problems occurring during the execution of dynamically composed Web services implemented in WS-BPEL. A notion of context { covering physical and contractual faults and violations { is used to safeguard composed service executions dynamically. Our aim is to present an architectural framework from an application-oriented perspective, addressing practical considerations of a technical framework
    corecore