61,937 research outputs found

    Toward the automation of threat modeling and risk assessment in IoT systems

    Get PDF
    The Internet of Things (IoT) has recently become one of the most relevant emerging technologies in the IT landscape. IoT systems are characterized by the high heterogeneity of involved architectural components (e.g., device platforms, services, networks, architectures) and involve a multiplicity of application domains. In the IoT scenario, the identification of specific security requirements and the security design are very complex and expensive tasks, since they heavily depend on the configuration deployment actually in place and require security experts. In order to overcome these issues, we propose an approach aimed at supporting the security analysis of an IoT system by means of an almost completely automated process for threat modeling and risk assessment, which also helps identify the security controls to implement in order to mitigate existing security risks. We demonstrate the effectiveness of the approach by discussing its application to a home automation system, built on top of commercial IoT products

    Modeling of Secure and Dependable Applications Based on a Repository of Patterns: The SEMCO Approach

    Get PDF
    International audienceThe requirement for higher quality and seamless development of systems is continuously increasing, even in domains traditionally not deeply involved in such issues. Security and Dependability (S&D) requirements are incorporated to an increasing number of systems. These newer restrictions make the development of those systems more complicated than conventional systems. In our work, we promote a new approach called SEMCO (System and software Engineering with Multi-COncerns) combining Model-Driven Engineering (MDE) with a model-based repository of S&D patterns to support the design and the analysis of pattern-based secure and dependable system and software architectures. The modeling framework to support the approach is based on a set of modeling languages, to specify security and dependability patterns, resources and a set of property models, and a set of model transformation rules to specify some of the analysis activities. As part of the assistance for the development of S&D applications, we have implemented a tool-chain based on the Eclipse platform to support the different activities around the repository, including the analysis activities. The proposed approach was evaluated through a case study from the railway domain

    Information standards to support application and enterprise interoperability for the smart grid

    Get PDF
    Copyright @ 2012 IEEE.Current changes in the European electricity industry are driven by regulatory directives to reduce greenhouse gas emissions, at the same time as replacing aged infrastructure and maintaining energy security. There is a wide acceptance of the requirement for smarter grids to support such changes and accommodate variable injections from renewable energy sources. However the design templates are still emerging to manage the level of information required to meet challenges such as balancing, planning and market dynamics under this new paradigm. While secure and scalable cloud computing architectures may contribute to supporting the informatics challenges of the smart grid, this paper focuses on the essential need for business alignment with standardised information models such as the IEC Common Information Model (CIM), to leverage data value and control system interoperability. In this paper we present details of use cases being considered by National Grid, the GB transmission system operator for information interoperability in pan-network system management and planning.This study is financially supported by the National Grid, UK

    Model Based Development of Quality-Aware Software Services

    Get PDF
    Modelling languages and development frameworks give support for functional and structural description of software architectures. But quality-aware applications require languages which allow expressing QoS as a first-class concept during architecture design and service composition, and to extend existing tools and infrastructures adding support for modelling, evaluating, managing and monitoring QoS aspects. In addition to its functional behaviour and internal structure, the developer of each service must consider the fulfilment of its quality requirements. If the service is flexible, the output quality depends both on input quality and available resources (e.g., amounts of CPU execution time and memory). From the software engineering point of view, modelling of quality-aware requirements and architectures require modelling support for the description of quality concepts, support for the analysis of quality properties (e.g. model checking and consistencies of quality constraints, assembly of quality), tool support for the transition from quality requirements to quality-aware architectures, and from quality-aware architecture to service run-time infrastructures. Quality management in run-time service infrastructures must give support for handling quality concepts dynamically. QoS-aware modeling frameworks and QoS-aware runtime management infrastructures require a common evolution to get their integration

    Model based code generation for distributed embedded systems

    Get PDF
    Embedded systems are becoming increasingly complex and more distributed. Cost and quality requirements necessitate reuse of the functional software components for multiple deployment architectures. An important step is the allocation of software components to hardware. During this process the differences between the hardware and application software architectures must be reconciled. In this paper we discuss an architecture driven approach involving model-based techniques to resolve these differences and integrate hardware and software components. The system architecture serves as the underpinning based on which distributed real-time components can be generated. Generation of various embedded system architectures using the same functional architecture is discussed. The approach leverages the following technologies – IME (Integrated Modeling Environment), the SAE AADL (Architecture Analysis and Design Language), and Ocarina. The approach is illustrated using the electronic throttle control system as a case study

    Performance Testing of Distributed Component Architectures

    Get PDF
    Performance characteristics, such as response time, throughput andscalability, are key quality attributes of distributed applications. Current practice,however, rarely applies systematic techniques to evaluate performance characteristics.We argue that evaluation of performance is particularly crucial in early developmentstages, when important architectural choices are made. At first glance, thiscontradicts the use of testing techniques, which are usually applied towards the endof a project. In this chapter, we assume that many distributed systems are builtwith middleware technologies, such as the Java 2 Enterprise Edition (J2EE) or theCommon Object Request Broker Architecture (CORBA). These provide servicesand facilities whose implementations are available when architectures are defined.We also note that it is the middleware functionality, such as transaction and persistenceservices, remote communication primitives and threading policy primitives,that dominates distributed system performance. Drawing on these observations, thischapter presents a novel approach to performance testing of distributed applications.We propose to derive application-specific test cases from architecture designs so thatthe performance of a distributed application can be tested based on the middlewaresoftware at early stages of a development process. We report empirical results thatsupport the viability of the approach

    CRAC: Confidentiality Risk Assessment and IT-Architecture Comparison

    Get PDF
    CRAC is an IT-architecture-based method for assessing and comparing confidentiality risks of distributed IT systems. The method determines confidentiality risks by taking into account the effects of the leakage of confidential information (e.g. industrial secrets), and the paths that may be followed by different attackers (e.g. insider and outsider). We evaluate its effectiveness by applying it to a real-world outsourcing case
    • 

    corecore