4,012 research outputs found

    Bio-inspired enhancement of reputation systems for intelligent environments

    Get PDF
    Providing security to the emerging field of ambient intelligence will be difficult if we rely only on existing techniques, given their dynamic and heterogeneous nature. Moreover, security demands of these systems are expected to grow, as many applications will require accurate context modeling. In this work we propose an enhancement to the reputation systems traditionally deployed for securing these systems. Different anomaly detectors are combined using the immunological paradigm to optimize reputation system performance in response to evolving security requirements. As an example, the experiments show how a combination of detectors based on unsupervised techniques (self-organizing maps and genetic algorithms) can help to significantly reduce the global response time of the reputation system. The proposed solution offers many benefits: scalability, fast response to adversarial activities, ability to detect unknown attacks, high adaptability, and high ability in detecting and confining attacks. For these reasons, we believe that our solution is capable of coping with the dynamism of ambient intelligence systems and the growing requirements of security demands

    Vehicular Networks and Outdoor Pedestrian Localization

    Get PDF
    This thesis focuses on vehicular networks and outdoor pedestrian localization. In particular, it targets secure positioning in vehicular networks and pedestrian localization for safety services in outdoor environments. The former research topic must cope with three major challenges, concerning users’ privacy, computational costs of security and the system trust on user correctness. This thesis addresses those issues by proposing a new lightweight privacy-preserving framework for continuous tracking of vehicles. The proposed solution is evaluated in both dense and sparse vehicular settings through simulation and experiments in real-world testbeds. In addition, this thesis explores the benefit given by the use of low frequency bands for the transmission of control messages in vehicular networks. The latter topic is motivated by a significant number of traffic accidents with pedestrians distracted by their smartphones. This thesis proposes two different localization solutions specifically for pedestrian safety: a GPS-based approach and a shoe-mounted inertial sensor method. The GPS-based solution is more suitable for rural and suburban areas while it is not applicable in dense urban environments, due to large positioning errors. Instead the inertial sensor approach overcomes the limitations of previous technique in urban environments. Indeed, by exploiting accelerometer data, this architecture is able to precisely detect the transitions from safe to potentially unsafe walking locations without the need of any absolute positioning systems

    Developing Cyberspace Data Understanding: Using CRISP-DM for Host-based IDS Feature Mining

    Get PDF
    Current intrusion detection systems generate a large number of specific alerts, but do not provide actionable information. Many times, these alerts must be analyzed by a network defender, a time consuming and tedious task which can occur hours or days after an attack occurs. Improved understanding of the cyberspace domain can lead to great advancements in Cyberspace situational awareness research and development. This thesis applies the Cross Industry Standard Process for Data Mining (CRISP-DM) to develop an understanding about a host system under attack. Data is generated by launching scans and exploits at a machine outfitted with a set of host-based data collectors. Through knowledge discovery, features are identified within the data collected which can be used to enhance host-based intrusion detection. By discovering relationships between the data collected and the events, human understanding of the activity is shown. This method of searching for hidden relationships between sensors greatly enhances understanding of new attacks and vulnerabilities, bolstering our ability to defend the cyberspace domain

    Run-time integrity monitoring of untrustworthy analog front-ends

    Get PDF

    A Prototype Tool for Distinguishing Attacks and Technical Failures in Industrial Control Systems

    Get PDF
    Critical Infrastructures (CIs) are governed by Industrial Control Systems (ICSs). Modern ICSs do not operate in isolation anymore, but they are connected to the Internet. This transformation introduced numerous advantages, however, there are a few drawbacks as well. Integration with the Internet has left ICS exposed to potential cyber-attacks. Additionally, ICSs could also encounter technical failures during operation. Consequently, it is crucial to distinguish between attacks and technical failures to initiate an appropriate response. There is a deficiency of robust technology to assist operators in distinguishing attacks and technical failures in an ICS environment. However, a framework is proposed to construct Bayesian Network (BN) models that would help to distinguish between attacks and technical failures for different observable problems in our previous work. There are tools available to implement such BN models, but these tools are not appropriate to use in an ICS environment. In order to address this limitation, this paper develops and demonstrates a prototype tool for swift identification of the major cause (Intentional Attack/Accidental Technical Failure) in case of an abnormal behaviour in a component of ICS.The proposed tool enables BN models to automatically update prior probabilities based on the historical data and/or expert knowledge corresponding to the application. The developed tool can be further evaluated and used to distinguish between attacks and technical failures during operation in CIs where ICSs are employed

    Detecção de ataques de apresentação por faces em dispositivos móveis

    Get PDF
    Orientadores: Anderson de Rezende Rocha, Fernanda AlcĂąntara AndalĂłDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Com o crescimento e popularização de tecnologias de autenticação biomĂ©trica, tais como aquelas baseadas em reconhecimento facial, aumenta-se tambĂ©m a motivação para se explorar ataques em nĂ­vel de sensor de captura ameaçando a eficĂĄcia dessas aplicaçÔes em cenĂĄrios reais. Um desses ataques se dĂĄ quando um impostor, desejando destravar um celular alheio, busca enganar o sistema de reconhecimento facial desse dispositivo apresentando a ele uma foto do usuĂĄrio alvo. Neste trabalho, estuda-se o problema de detecção automĂĄtica de ataques de apresentação ao reconhecimento facial em dispositivos mĂłveis, considerando o caso de uso de destravamento rĂĄpido e as limitaçÔes desses dispositivos. NĂŁo se assume o uso de sensores adicionais, ou intervenção consciente do usuĂĄrio, dependendo apenas da imagem capturada pela cĂąmera frontal em todos os processos de decisĂŁo. ContribuiçÔes foram feitas em relação a diferentes aspectos do problema. Primeiro, foi coletada uma base de dados de ataques de apresentação chamada RECOD-MPAD, que foi especificamente projetada para o cenĂĄrio alvo, possuindo variaçÔes realistas de iluminação, incluindo sessĂ”es ao ar livre e de baixa luminosidade, ao contrĂĄrio das bases pĂșblicas disponĂ­veis atualmente. Em seguida, para enriquecer o entendimento do que se pode esperar de mĂ©todos baseados puramente em software, adota-se uma abordagem em que as caracterĂ­sticas determinantes para o problema sĂŁo aprendidas diretamente dos dados a partir de redes convolucionais, diferenciando-se de abordagens tradicionais baseadas em conhecimentos especĂ­ficos de aspectos do problema. SĂŁo propostas trĂȘs diferentes formas de treinamento da rede convolucional profunda desenvolvida para detectar ataques de apresentação: treinamento com faces inteiras e alinhadas, treinamento com patches (regiĂ”es de interesse) de resolução variĂĄvel, e treinamento com uma função objetivo projetada especificamente para o problema. Usando uma arquitetura leve como nĂșcleo da nossa rede, certifica-se que a solução desenvolvida pode ser executada diretamente em celulares disponĂ­veis no mercado no ano de 2017. Adicionalmente, Ă© feita uma anĂĄlise que considera protocolos inter-fatores e disjuntos de usuĂĄrio, destacando-se alguns dos problemas com bases de dados e abordagens atuais. Experimentos no benchmark OULU-NPU, proposto recentemente e usado em uma competição internacional, sugerem que os mĂ©todos propostos se comparam favoravelmente ao estado da arte, e estariam entre os melhores na competição, mesmo com a condição de pouco uso de memĂłria e recursos computacionais limitados. Finalmente, para melhor adaptar a solução a cada usuĂĄrio, propĂ”e-se uma forma efetiva de usar uma galeria de dados do usuĂĄrio para adaptar os modelos ao usuĂĄrio e ao dispositivo usado, aumentando sua eficĂĄcia no cenĂĄrio operacionalAbstract: With the widespread use of biometric authentication systems, such as those based on face recognition, comes the exploitation of simple attacks at the sensor level that can undermine the effectiveness of these technologies in real-world setups. One example of such attack takes place when an impostor, aiming at unlocking someone else's smartphone, deceives the deviceÂżs built-in face recognition system by presenting a printed image of the genuine user's face. In this work, we study the problem of automatically detecting presentation attacks against face authentication methods in mobile devices, considering the use-case of fast device unlocking and hardware constraints of such devices. We do not assume the existence of any extra sensors or user intervention, relying only on the image captured by the deviceÂżs frontal camera. Our contributions lie on multiple aspects of the problem. Firstly, we collect RECOD-MPAD, a new presentation-attack dataset that is tailored to the mobile-device setup, and is built to have real-world variations in lighting, including outdoors and low-light sessions, in contrast to existing public datasets. Secondly, to enrich the understanding of how far we can go with purely software-based methods when tackling this problem, we adopt a solely data-driven approach Âż differently from handcrafted methods in prior art that focus on specific aspects of the problem Âż and propose three different ways of training a deep convolutional neural network to detect presentation attacks: training with aligned faces, training with multi-resolution patches, and training with a multi-objective loss function crafted specifically to the problem. By using a lightweight architecture as the core of our network, we ensure that our solution can be efficiently embedded in modern smartphones in the market at the year of 2017. Additionally, we provide a careful analysis that considers several user-disjoint and cross-factor protocols, highlighting some of the problems with current datasets and approaches. Experiments with the OULU-NPU benchmark, which was used recently in an international competition, suggest that our methods are among the top performing ones. Finally, to further enhance the model's efficacy and discriminability in the target setup of user authentication for mobile devices, we propose a method that leverages the available gallery of user data in the device and adapts the method decision-making process to the user's and deviceÂżs own characteristicsMestradoCiĂȘncia da ComputaçãoMestre em CiĂȘncia da Computaçã

    Convolutional Neural Network Approach for Multispectral Facial Presentation Attack Detection in Automated Border Control Systems

    Get PDF
    [EN] Automated border control systems are the first critical infrastructure point when crossing a border country. Crossing border lines for unauthorized passengers is a high security risk to any country. This paper presents a multispectral analysis of presentation attack detection for facial biometrics using the learned features from a convolutional neural network. Three sensors are considered to design and develop a new database that is composed of visible (VIS), near-infrared (NIR), and thermal images. Most studies are based on laboratory or ideal conditions-controlled environments. However, in a real scenario, a subject’s situation is completely modified due to diverse physiological conditions, such as stress, temperature changes, sweating, and increased blood pressure. For this reason, the added value of this study is that this database was acquired in situ. The attacks considered were printed, masked, and displayed images. In addition, five classifiers were used to detect the presentation attack. Note that thermal sensors provide better performance than other solutions. The results present better outputs when all sensors are used together, regardless of whether classifier or feature-level fusion is considered. Finally, classifiers such as KNN or SVM show high performance and low computational level

    Multibiometric security in wireless communication systems

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University, 05/08/2010.This thesis has aimed to explore an application of Multibiometrics to secured wireless communications. The medium of study for this purpose included Wi-Fi, 3G, and WiMAX, over which simulations and experimental studies were carried out to assess the performance. In specific, restriction of access to authorized users only is provided by a technique referred to hereafter as multibiometric cryptosystem. In brief, the system is built upon a complete challenge/response methodology in order to obtain a high level of security on the basis of user identification by fingerprint and further confirmation by verification of the user through text-dependent speaker recognition. First is the enrolment phase by which the database of watermarked fingerprints with memorable texts along with the voice features, based on the same texts, is created by sending them to the server through wireless channel. Later is the verification stage at which claimed users, ones who claim are genuine, are verified against the database, and it consists of five steps. Initially faced by the identification level, one is asked to first present one’s fingerprint and a memorable word, former is watermarked into latter, in order for system to authenticate the fingerprint and verify the validity of it by retrieving the challenge for accepted user. The following three steps then involve speaker recognition including the user responding to the challenge by text-dependent voice, server authenticating the response, and finally server accepting/rejecting the user. In order to implement fingerprint watermarking, i.e. incorporating the memorable word as a watermark message into the fingerprint image, an algorithm of five steps has been developed. The first three novel steps having to do with the fingerprint image enhancement (CLAHE with 'Clip Limit', standard deviation analysis and sliding neighborhood) have been followed with further two steps for embedding, and extracting the watermark into the enhanced fingerprint image utilising Discrete Wavelet Transform (DWT). In the speaker recognition stage, the limitations of this technique in wireless communication have been addressed by sending voice feature (cepstral coefficients) instead of raw sample. This scheme is to reap the advantages of reducing the transmission time and dependency of the data on communication channel, together with no loss of packet. Finally, the obtained results have verified the claims

    The Impact of Pressure on the Fingerprint Impression: Presentation Attack Detection Scheme

    Get PDF
    This article belongs to the Special Issue Biometric Identification Systems: Recent Advances and Future Directions.Fingerprint recognition systems have been widely deployed in authentication and verification applications, ranging from personal smartphones to border control systems. Recently, the biometric society has raised concerns about presentation attacks that aim to manipulate the biometric system’s final decision by presenting artificial fingerprint traits to the sensor. In this paper, we propose a presentation attack detection scheme that exploits the natural fingerprint phenomena, and analyzes the dynamic variation of a fingerprint’s impression when the user applies additional pressure during the presentation. For that purpose, we collected a novel dynamic dataset with an instructed acquisition scenario. Two sensing technologies are used in the data collection, thermal and optical. Additionally, we collected attack presentations using seven presentation attack instrument species considering the same acquisition circumstances. The proposed mechanism is evaluated following the directives of the standard ISO/IEC 30107. The comparison between ordinary and pressure presentations shows higher accuracy and generalizability for the latter. The proposed approach demonstrates efficient capability of detecting presentation attacks with low bona fide presentation classification error rate (BPCER) where BPCER is 0% for an optical sensor and 1.66% for a thermal sensor at 5% attack presentation classification error rate (APCER) for both.This work was supported by the European Union’s Horizon 2020 for Research and Innovation Program under Grant 675087 (AMBER).Publicad
    • 

    corecore