271 research outputs found

    Multiple generation of Bengali static signatures

    Get PDF
    Handwritten signature datasets are really necessary for the purpose of developing and training automatic signature verification systems. It is desired that all samples in a signature dataset should exhibit both inter-personal and intra-personal variability. A possibility to model this reality seems to be obtained through the synthesis of signatures. In this paper we propose a method based on motor equivalence model theory to generate static Bengali signatures. This theory divides the human action to write mainly into cognitive and motor levels. Due to difference between scripts, we have redesigned our previous synthesizer [1,2], which generates static Western signatures. The experiments assess whether this method can approach the intra and inter-personal variability of the Bengali-100 Static Signature DB from a performance-based validation. The similarities reported in the experimental results proof the ability of the synthesizer to generate signature images in this script

    Arabic Handwriting: Analysis and Synthesis

    Get PDF

    Scene text localization and recognition in images and videos

    Get PDF
    Scene Text Localization and Recognition methods nd all areas in an image or a video that would be considered as text by a human, mark boundaries of the areas and output a sequence of characters associated with its content. They are used to process images and videos taken by a digital camera or a mobile phone and to \read" the content of each text area into a digital format, typically a list of Unicode character sequences, that can be processed in further applications. Three di erent methods for Scene Text Localization and Recognition were proposed in the course of the research, each one advancing the state of the art and improving the accuracy. The rst method detects individual characters as Extremal Regions (ER), where the probability of each ER being a character is estimated using novel features with O(1) complexity and only ERs with locally maximal probability are selected across several image projections for the second stage, where the classi cation is improved using more computationally expensive features. The method was the rst published method to address the complete problem of scene text localization and recognition as a whole - all previous work in the literature focused solely on di erent subproblems. Secondly, a novel easy-to-implement stroke detector was proposed. The detector is signi cantly faster and produces signi cantly less false detections than the commonly used ER detector. The detector e ciently produces character strokes segmentations, which are exploited in a subsequent classi cation phase based on features e ectively calculated as part of the segmentation process. Additionally, an e cient text clustering algorithm based on text direction voting is proposed, which as well as the previous stages is scale- and rotation- invariant and supports wide variety of scripts and fonts. The third method exploits a deep-learning model, which is trained for both text detection and recognition in a single trainable pipeline. The method localizes and recognizes text in an image in a single feed-forward pass, it is trained purely on synthetic data so it does not require obtaining expensive human annotations for training and it achieves state-of-the-art accuracy in the end-to-end text recognition on two standard datasets, whilst being an order of magnitude faster than the previous methods - the whole pipeline runs at 10 frames per second.Katedra kybernetik

    A novel approach to handwritten character recognition

    Get PDF
    A number of new techniques and approaches for off-line handwritten character recognition are presented which individually make significant advancements in the field. First. an outline-based vectorization algorithm is described which gives improved accuracy in producing vector representations of the pen strokes used to draw characters. Later. Vectorization and other types of preprocessing are criticized and an approach to recognition is suggested which avoids separate preprocessing stages by incorporating them into later stages. Apart from the increased speed of this approach. it allows more effective alteration of the character images since more is known about them at the later stages. It also allows the possibility of alterations being corrected if they are initially detrimental to recognition. A new feature measurement. the Radial Distance/Sector Area feature. is presented which is highly robust. tolerant to noise. distortion and style variation. and gives high accuracy results when used for training and testing in a statistical or neural classifier. A very powerful classifier is therefore obtained for recognizing correctly segmented characters. The segmentation task is explored in a simple system of integrated over-segmentation. Character classification and approximate dictionary checking. This can be extended to a full system for handprinted word recognition. In addition to the advancements made by these methods. a powerful new approach to handwritten character recognition is proposed as a direction for future research. This proposal combines the ideas and techniques developed in this thesis in a hierarchical network of classifier modules to achieve context-sensitive. off-line recognition of handwritten text. A new type of "intelligent" feedback is used to direct the search to contextually sensible classifications. A powerful adaptive segmentation system is proposed which. when used as the bottom layer in the hierarchical network. allows initially incorrect segmentations to be adjusted according to the hypotheses of the higher level context modules

    A novel approach to handwritten character recognition

    Get PDF
    A number of new techniques and approaches for off-line handwritten character recognition are presented which individually make significant advancements in the field. First. an outline-based vectorization algorithm is described which gives improved accuracy in producing vector representations of the pen strokes used to draw characters. Later. Vectorization and other types of preprocessing are criticized and an approach to recognition is suggested which avoids separate preprocessing stages by incorporating them into later stages. Apart from the increased speed of this approach. it allows more effective alteration of the character images since more is known about them at the later stages. It also allows the possibility of alterations being corrected if they are initially detrimental to recognition. A new feature measurement. the Radial Distance/Sector Area feature. is presented which is highly robust. tolerant to noise. distortion and style variation. and gives high accuracy results when used for training and testing in a statistical or neural classifier. A very powerful classifier is therefore obtained for recognizing correctly segmented characters. The segmentation task is explored in a simple system of integrated over-segmentation. Character classification and approximate dictionary checking. This can be extended to a full system for handprinted word recognition. In addition to the advancements made by these methods. a powerful new approach to handwritten character recognition is proposed as a direction for future research. This proposal combines the ideas and techniques developed in this thesis in a hierarchical network of classifier modules to achieve context-sensitive. off-line recognition of handwritten text. A new type of "intelligent" feedback is used to direct the search to contextually sensible classifications. A powerful adaptive segmentation system is proposed which. when used as the bottom layer in the hierarchical network. allows initially incorrect segmentations to be adjusted according to the hypotheses of the higher level context modules

    Large vocabulary off-line handwritten word recognition

    Get PDF
    Considerable progress has been made in handwriting recognition technology over the last few years. Thus far, handwriting recognition systems have been limited to small-scale and very constrained applications where the number on different words that a system can recognize is the key point for its performance. The capability of dealing with large vocabularies, however, opens up many more applications. In order to translate the gains made by research into large and very-large vocabulary handwriting recognition, it is necessary to further improve the computational efficiency and the accuracy of the current recognition strategies and algorithms. In this thesis we focus on efficient and accurate large vocabulary handwriting recognition. The main challenge is to speedup the recognition process and to improve the recognition accuracy. However. these two aspects are in mutual conftict. It is relatively easy to improve recognition speed while trading away some accuracy. But it is much harder to improve the recognition speed while preserving the accuracy. First, several strategies have been investigated for improving the performance of a baseline recognition system in terms of recognition speed to deal with large and very-large vocabularies. Next, we improve the performance in terms of recognition accuracy while preserving all the original characteristics of the baseline recognition system: omniwriter, unconstrained handwriting, and dynamic lexicons. The main contributions of this thesis are novel search strategies and a novel verification approach that allow us to achieve a 120 speedup and 10% accuracy improvement over a state-of-art baselinè recognition system for a very-large vocabulary recognition task (80,000 words). The improvements in speed are obtained by the following techniques: lexical tree search, standard and constrained lexicon-driven level building algorithms, fast two-level decoding algorithm, and a distributed recognition scheme. The recognition accuracy is improved by post-processing the list of the candidate N-best-scoring word hypotheses generated by the baseline recognition system. The list also contains the segmentation of such word hypotheses into characters . A verification module based on a neural network classifier is used to generate a score for each segmented character and in the end, the scores from the baseline recognition system and the verification module are combined to optimize performance. A rejection mechanism is introduced over the combination of the baseline recognition system with the verification module to improve significantly the word recognition rate to about 95% while rejecting 30% of the word hypotheses

    Geometristen muotojen reaaliaikainen tunnistus

    Get PDF
    Kynä- ja kosketuskäyttöliittymät vaativat toimiakseen tehokasta ja tarkkaa hahmontunnistusta. Tässä työssä esitellään reaaliaikaisen hahmontunnistuksen käsitteistöä, yleisiä menetelmiä ja aikaisempaa tutkimusta. Lyhyesti käsitellään eri tutkimusryhmien esittämiä hahmontunnistusjärjestelmiä. Lisäksi esitellään geometrisiin piirteisiin perustuva hahmontunnistusjärjestelmä. Työ antaa yksityiskohtaiset kuvaukset piirtoviivan esiprosessointi- ja piirteenirrotusalgoritmeista sekä hahmoluokittelumenetelmästä. Lisäksi kuvaillaan hahmontunnistusheuristiikka kahdelle yksinkertaiselle muodolle (nuoli ja tähti). Joukko koehenkilöitä käytti työssä toteutettua graa_sta käyttöliittymää, minkä tuloksena saatiin realistiset tulokset järjestelmän laskennallisesta suorituskyvystä ja tarkkuudesta: toteutettu järjestelmä on laskennallisesti nopea mutta tunnistustarkkuus monitulkintainen. Lopuksi pohditaan valitun lähestymistavan ongelmia ja rajoitteita.Effective sketch recognition is the basis for pen and touch-based human-computer interfaces. In this thesis the concepts, common methods and earlier work in the research area of online symbol recognition are presented. A set of shape recognition approaches proposed in the past by various research teams are briefly introduced. An online shape recognizer using global geometric features is described. The preprocessing and feature extraction algorithms as well as the shape classification method are described in detail. Recognition heuristics for two simple shapes (arrow and star) are suggested. A graphical user interface was implemented and a group of subjects employed to obtain realistic results of the computational performance and recognition accuracy of the system: the implemented system performs fast but the results on the recognition accuracy were ambiguous. Finally, the problems and restrictions of the approach are discussed
    corecore