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Abstract

Scene Text Localization and Recognition methods find all areas in an image or a video
that would be considered as text by a human, mark boundaries of the areas and output
a sequence of characters associated with its content. They are used to process images
and videos taken by a digital camera or a mobile phone and to “read” the content of
each text area into a digital format, typically a list of Unicode character sequences, that
can be processed in further applications.

Three different methods for Scene Text Localization and Recognition were proposed
in the course of the research, each one advancing the state of the art and improving the
accuracy. The first method detects individual characters as Extremal Regions (ER),
where the probability of each ER being a character is estimated using novel features
with O(1) complexity and only ERs with locally maximal probability are selected across
several image projections for the second stage, where the classification is improved using
more computationally expensive features. The method was the first published method
to address the complete problem of scene text localization and recognition as a whole
- all previous work in the literature focused solely on different subproblems.

Secondly, a novel easy-to-implement stroke detector was proposed. The detector is
significantly faster and produces significantly less false detections than the commonly
used ER detector. The detector efficiently produces character strokes segmentations,
which are exploited in a subsequent classification phase based on features effectively
calculated as part of the segmentation process. Additionally, an efficient text clustering
algorithm based on text direction voting is proposed, which as well as the previous
stages is scale- and rotation- invariant and supports wide variety of scripts and fonts.

The third method exploits a deep-learning model, which is trained for both text
detection and recognition in a single trainable pipeline. The method localizes and
recognizes text in an image in a single feed-forward pass, it is trained purely on synthetic
data so it does not require obtaining expensive human annotations for training and it
achieves state-of-the-art accuracy in the end-to-end text recognition on two standard
datasets, whilst being an order of magnitude faster than the previous methods - the
whole pipeline runs at 10 frames per second.
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Abstrakt

Čteńı textu patř́ı mezi aktuálńı a otevřené problémy v oblasti poč́ıtačového viděńı a
umělé inteligence. Metody pro lokalizaci a rozpoznáváńı textu v obraze automaticky
vyhledávaj́ı všechny textové oblasti ve fotografii nebo videu, nacháźı jejich pozici a
rozpoznávaj́ı jejich textový obsah jako posloupnost znak̊u. Tyto metody zpracovávaj́ı
obrázky a videa poř́ızené běžným fotoaparátem nebo mobilńım telefonem a ,,čtou“
obsah každé nalezené textové oblasti do digitálńıho formátu, který může být snadno
použit v navazuj́ıćıch aplikaćıch.

V pr̊uběhu výzkumu byly navrženy tři metody pro lokalizaci a rozpoznáváńı textu,
přičemž každá metoda posunula stav poznáńı v této oblasti a zlepšila celkovou přesnost
rozpoznáváńı. Prvńı metoda detekuje znaky jako Extremálńı Regiony (ER), kde pravdě-
podobnost, že daný region představuje znak, je efektivně odhadována pomoćı př́ıznak̊u s
konstantńı výpočetńı složitost́ı a pouze regiony s lokálně maximálńı pravděpodobnost́ı
jsou vybrány pro druhou fázi algoritmu, kde je klasifikace vylepšena již pomoćı v́ıce
výpočetně náročněǰśıch př́ıznak̊u. Metoda je celosvětově prvńı publikovanou metodou,
která se zaměřuje na kompletńı problém lokalizace i rozpoznáńı textu – všechny dř́ıve
publikované metody se zaměřovaly pouze na samostatné podproblémy.

Druhá metoda představuje nově navržený detektor znak̊u, který je významně rych-
leǰśı a který generuje výrazně méně chybných detekćı než standardně použ́ıvaný ER
detektor. Tento detektor zároveň generuje segmentace jednotlivých znak̊u, které jsou
následně rovnou využity při rozpoznáváńı. Jednotlivé znaky jsou spojeny ve slova po-
moćı efektivńıho algoritmu pro shlukováńı textu, který, stejně jako všechny předešlé
kroky, je invariantńı v̊uči zvětšeńı a rotaci a který podporuje velkou škálu jazyk̊u a
font̊u.

Třet́ı metoda využ́ıvá novou architekturu hluboké neuronové śıtě natrénované pro
lokalizaci i rozpoznáváńı textu. Trénováńı využ́ıvá syntetická data, č́ımž odpadá nut-
nost drahého a zdlouhavého ručńıho anotováńı. Tato metoda lokalizuje a rozpoznává
veškerý text v obrázku v rámci jediného pr̊uchodu a dosahuje celosvětově nejlepš́ı
přesnosti na dvou standardńıch datových sadách. Zároveň je o jeden řád rychleǰśı
než předchoźı metody – algoritmus lokalizuje a rozpoznává text rychlost́ı 10 sńımk̊u za
sekundu.
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1 Introduction

1.1 The Objective

Methods for Scene Text Localization and Recognition find all areas in an image or a
video that would be considered as text by a human, mark boundaries of the text areas
and output a sequence of characters associated with its content (see Figure 1.1). They
are used to process images and videos taken by a digital camera or a mobile phone and
to “read” the content of each text area into a digital format, typically a list of Unicode
character sequences, that can be processed in further applications.

Figure 1.1 The Scene Text Localization and Recognition problem. All legible areas in an image
with text are output as sequences of characters, which can be easily processed by a computer

Scene Text Localization and Recognition is an open and complex problem of com-
puter vision, because text typically occupies only a small fraction of the image, it has
non-uniform background, it suffers from noise, blur, occlusions and reflections and per-
spective effects need to be taken into account. Moreover real-world texts are often
short snippets written in different fonts and languages, text alignment does not follow
strict rules of printed documents and many words are proper names which prevents an
effective use of a dictionary. All the aforementioned factors make the Scene Text Local-
ization and Recognition problem significantly harder and standard printed document
recognition (OCR) methods and applications cannot be used [99, 37] (see Figure 1.2).

Standard computer vision object detection methods cannot be directly exploited for
text either, because their output is an object class and position (e.g. a “plane” or a
“cow”), but detecting “text” as a class without its content is not very useful (although
it is already quite a challenging problem, see Section 2.1). One could try to overcome
this issue by representing each possible character sequence as its own separate class, but
such an approach can only be applied when all the sequences (words) to be detected are
known in advance [134, 49]. Moreover, this approach does not generalize to arbitrary
text detection and recognition, because the space of text content is exponential - given
an alphabet A and a maximal text length L, there can be up to AL different text
classes.

The goal of the thesis is to advance the state of the art by introducing methods
specialized in text localization and recognition, without constraining the methods to
a particular domain of text, a font, a script, or a type of scene the text is captured

3



Figure 1.2 The difference between printed document OCR (left) and Scene Text Localization
and Recognition (right)

Figure 1.3 An aid for visually impaired people. Any detected text is automatically read out
loud using a speech synthesizer

in. Methods for scene text localization and recognition are very useful, because text
captures important information and cues about the scene and they are also an important
component of general image understanding, as text is one of the most frequent classes
in the real world. For example, in the COCO dataset for object detection, there are
over 173 000 text instances which makes it the most frequent class [129].

There are also many possible applications of scene text localization and recognition,
with some particular examples listed below.

Helping visually impaired. It is hard or even impossible for visually impaired or
elderly people to read text, but text often provides crucial information, which sometimes
cannot even be possibly obtained in any other way - for example, the only way to
distinguish between two different types of drugs can be just by reading the label on its
packaging. Linking the scene text recognition algorithm with a speech synthesiser and
deploying it on a mobile phone gives an easy-to-use and affordable assistive tool, which
is able to help by automatically detecting any text in the video stream and reading it
out loud (see Figure 1.3). The method must not only be accurate but also efficient,
because text has to be automatically detected directly from the live camera stream, as
it is not reasonable to expect that visually impaired people would take pictures of text.

Urban navigation. Navigation in urban environments or inside buildings cannot
rely on position information from GPS, so alternative methods have to be exploited.
One of the options is using business labels and other signs as one of the cues to determine
the position, and a scene text recognition algorithm is therefore required to transform
the surrounding textual information into a form which can be further processed. The
same applies for self-driving cars, where GPS and maps are available, but they may not
include temporary signs, which are often text-based.

4



Automated translation. One of the issues in machine translation applications is
the user input. Traditionally, a user has to type in the word/phrase that should be
translated, however this can be quite slow, error-prone and sometimes close to impos-
sible, if the user is not familiar with the alphabet of the text which he is trying to
translate (for example a European tourist in China trying to translate Chinese text).
Automated scene text recognition overcomes the issue by automatically recognizing
text in a picture taken by the user, possibly with a guidance from the user to select
which areas of the image to translate, effectively eliminating the need for any manual
input (see Section 7.1.2).

Indexing and searching image databases by textual content. An arbitrary
image or video databases can be automatically indexed by its textual so that user can
search by text queries, which is the most common input to search engines. A user
could find his favorite restaurant in a database such as Google Street View using just a
restaurant’s name, he could find a movie poster on Flickr or he could find an interview
with a certain person just by searching a TV news video archive.

1.2 Contributions

The main contributions of this thesis towards extending the state of the art in scene
text localization and recognition are

1. An end-to-end method joining both text localization and text recognition into a
single pipeline is proposed (see Chapter 4). Our method [88] was the first one to
address this problem as a whole, thus allowing practical applications - all previous
work focused solely on different subproblems.

2. Character detection is posed as an efficient sequential selection from the set of
Extremal Regions (see Section 4.1.1). The ER detector is robust to blur, illumi-
nation, color and texture variation and handles low-contrast text better than the
standard MSER detector [80]. The newly introduced features, which are incre-
mentally computed (see Section 4.1.2), allow the method to run in real time [91],
which was a significant improvement over previous methods.

3. We propose a novel easy-to-implement stroke detector (see Section 5.1), which
is significantly faster and produces significantly less false detections than the
detectors commonly used by scene text localization methods. Following the ob-
servation that text in virtually any script is formed of strokes, stroke keypoints
are efficiently detected and then exploited to obtain stroke segmentations.

4. The concept of text fragments is introduced (see Section 5.3), where a text frag-
ment can be a single character, a group of characters, a whole word or a part
of a character, which allows to drop the common assumption of region-based
methods that one region corresponds to a single character. A novel Character
Strokes Area is introduced, effectively approximating “strokeness” of text frag-
ments, which plays an important role in the discrimination between text and a
background clutter.

5. A lexicon-free text recognition method trained purely on synthetic data is pre-
sented (see Section 4.2.1). The method does not rely on any prior knowledge of
text to be detected (lexicon), unlike the majority of the methods in the literature
(see Section 2.5). The proposed method also shown that synthetic data can be
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successfully exploited for training scene text recognition, which is an idea that
has been successfully built upon and extended by several authors [45, 41].

6. The proposed method is amongst the first ones to detect and recognize text in
scene videos. Combined with the standard FoT tracker [131], it set a baseline for
end-to-end video text recognition (see Section 4.3.4) and it outperformed all other
participants. To our knowledge, no other method has published better results in
the end-to-end video text recognition.

7. A deep model which is trained for both text detection and recognition in a single
learning framework is presented (see Chapter 6). The model is trained for both
text detection and recognition in a single end-to-end pass and it outperforms
the combination of state-of-the-art localization and state-of-the-art recognition
methods.

1.3 Publications

This thesis build on the result previously published in the following publications

• A method for text localization and detection, ACCV 2010 [88] - the
paper introduces a first version of the end-to-end text detection and localization
pipeline, initially based on the MSER [80] detector.

• Real-Time Scene Text Localization and Recognition, CVPR 2012 [91]
- an efficient Extremal Region classifier, detailed in Section 4.1.3, is introduced,
allowing the whole text detection and recognition pipeline to run in real time.

• On Combining Multiple Segmentations in Scene Text Recognition,
ICDAR 2013 [92] - the paper describes the sequence selection algorithm to gen-
erate the final output, detailed in Section 4.2.2. The paper received the ICDAR
2013 Best Student Paper Award.

• Efficient Scene Text Localization and Recognition with Local Character
Refinement, ICDAR 2015 [94] - the paper introduces the concept of text
fragments and the Character Strokes Area feature, described in Section 5.3.1.
The paper received the ICDAR 2015 Best Paper Award.

• Real-time Lexicon-free Scene Text Localization and Recognition, TPAMI [95]
- the journal paper describes the text detection and recognition pipeline of Chap-
ter 4

• FASText: Efficient Unconstrained Scene Text Detector, ICCV 2015 [17]
- the paper introduces the FASText scene text detector, described in Chapter 5.

• Deep TextSpotter: An End-to-End Trainable Scene Text Localization
and Recognition Framework [18] - the paper presents the Single Shot Text
Detection and Recognition pipeline, described in Chapter 6.

6



The following publications were not included in the thesis, in order to keep the thesis
more focused and easier to follow

• Estimating hidden parameters for text localization and recognition,
CVWW 2011 [89]

• Text Localization in Real-world Images using Efficiently Pruned Ex-
haustive Search, ICDAR 2011 [90]

• Scene Text Localization and Recognition with Oriented Stroke Detec-
tion, ICCV 2013 [93]

• ICDAR 2015 competition on robust reading, ICDAR 2015 [52]

• COCO-Text: Dataset and Benchmark for Text Detection and Recog-
nition in Natural Images, WACV 2016 [129]

1.4 Authorship

I hereby certify that the results presented in this thesis were achieved during my own
research, in cooperation with my thesis advisor Jǐŕı Matas. The work presented in
Chapter 5, Chapter 6 and Section 7.1.2 is a joint work with Michal Bušta, who con-
tributed to the ideas and experiments presented in these sections.
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2 Related Work

In the research community, the problem of Scene Text Recognition was originally broken
down into several sub-tasks, because a complete scene text recognition problem was
deemed as too complex to solve. The split into these subtasks was also motivated by
the traditional printed document OCR pipeline, which had been already successful in
printed text recognition [72], so the idea was to only replace the initial stages of the
printed document pipeline to make it work for scene text as well.

2.1 Text Localization

Historically, the main focus of the scene text research community was given to the text
localization problem, because it is the first stage of any scene text recognition pipeline
and it was shown to be already very challenging, even without a subsequent recognition
phase.

In the text localization task, given an image I a method must find all rectangular
areas (x, y, w, h), which a human (annotator) would consider as text

I→
{

(xi, yi, wi, hi)
}n

xi, yi, wi, hi ∈ N (2.1)

where x and y denote top-left corner co-ordinates and w (h) denote the width (resp.
the height) of the rectangle.

The quality of the output is measured by comparing the set of the detected rectangles
D = {Di} =

{
(xi, yi, wi, hi)

}
with the set of rectangles provided by a human annotator

G = {Gi}. The standard evaluation protocol, as proposed by Wolf and Jolion [139],
defines the “recall” r and the “precision” p as

r =
∑n

i=1m(Di,G)
|G| (2.2)

p =
∑n

i=1m(Gi,D)
|D| (2.3)

where m(r,R) is a “match function” whose value depends on whether the rectangle r
is matched to one or more rectangles in the rectangle set R.

In the ICDAR Robust Reading competition [118, 53, 52], text is annotated on the
word level1, so methods are expected to output bounding boxes of individual words,
but detecting multiple words with a single rectangle or detecting a single word with
multiple rectangles should not be penalized as heavily as not detecting the word at all.
This requirement therefore resulted into the following match function definition

m(r,R) =





1 if ∃!t ∈ R : σ(r, t) ≥ 0.8 ∧ τ(r, t) ≥ 0.4 (one-to-one match)

0.8 if ∃S0 ⊂ R :
∑

si∈S0
σ(r, si) ≥ 0.8 ∧ ∀si∈S0τ(r, si) ≥ 0.4 (one-to-many match)

0.8 if ∃S0 ⊂ R : ∀si∈S0σ(r, si) ≥ 0.8 ∧∑si∈S0
τ(r, si) ≥ 0.4 (many-to-one match)

0 otherwise

(2.4)

1Even though the competition and the data set works solely with word bounding boxes, the definition
of word is not given. For example, it is not clear whether a phone number is single or multiple
words, or whether hyphens should break a word into two

8



Figure 2.1 Text localization output example. Given given an image I (left) two rectangular
areas (4, 522, 207, 583), (230, 521, 471, 582) are detected (right).

Singapore Singapore 
  

(a)

Invisible 
 

(b)

Figure 2.2 The standard text localization protocol [139] does not penalize loose bounding
boxes (a) or partial detections which could change meaning of the word (b) - all detections
illustrated above would achieve 100% recall and 100% precision. Detections denoted red,
ground truth in green

 

Registration Registration 
 

Figure 2.3 The text localization protocol [139] penalizes errors more in the vertical direction -
the detection on the left could still be correctly recognized in the OCR stage, yet it achieves
0% recall and precision, whilst the detection on the right achieves 100% recall and precision,
but it is impossible to get a correct recognition since a part of the word is missed completely.
Detections denoted red, ground truth in green

9



where σ and τ denote rectangle “recall” and “precision” area ratio

σ(x, y) =
area(x ∩ y)

area(y)
(2.5)

τ(x, y) =
area(x ∩ y)

area(x)
(2.6)

Although this protocol has been heavily used in the literature as well as in the re-
cent Robust Reading competitions [118, 53, 52], there are several inherent problems
in it. The protocol motivates methods to over-estimate the text area, since the preci-
sion threshold for successful detection is quite permissive (τ(r, t) ≥ 0.4) and therefore
the protocol doesn’t penalize bounding boxes which are only loosely around text (see
Figure 2.2a).

Equally, the required area overlap of 80% with the ground truth (σ(r, t) ≥ 0.8) does
not guarantee that the whole word is detected, and the undetected 20% of the word
can completely change the word’s meaning (see Figure 2.2b).

The dependence purely on the area ratio without any regard for the direction of
text implies that for longer words the protocol penalizes errors more in the vertical
direction, which is completely counter-intuitive - a tight word bounding box in the
vertical direction can be interpreted as not a match, even though all characters inside
it are still readable, whereas not detecting a part of the word in the horizontal direction
is still considered a valid match (see Figure 2.3), as in the previous case.

These limitations of the standard protocol should be taken into account when in-
terpreting text localization performance and when making comparison between text
localization methods, since even a method which would achieve 100% recall and 100%
precision could still be impractical for subsequent scene text recognition, and vice-
versa, a method with lower localization recall and precision can still achieve better
overall recognition performance.

Localizing text in an image can be a computationally very expensive task as gener-
ally any of the 2N subsets can correspond to text (where N is the number of pixels).
Existing methods for general text localization can be categorized into two major groups
- methods based on a sliding window (Section 2.1.1) and methods based on connected
components (Section 2.1.2). The CNN-based methods (Section 2.1.3) also in principle
fall into the first group.

2.1.1 Sliding-window Methods

The “sliding-window” methods use a window which is moved over the image and the
presence of text is estimated on the basis of local image features, which is an approach
successfully applied in generic object detection [130]. While these methods are generally
more robust to noise in the image as the features are aggregated over a larger image
area, their computation complexity is high because of the need to search with many
rectangles of different sizes, aspect ratios, rotations and perspective distortions, which
is an effect that does not occur in generic object detection.

Chen and Yuille [20] use AdaBoost classifier [116] combining mean intensity features,
intensity variance features, derivative features, histogram features and features based
on edge linking. A variant of Niblack’s adaptive binarization algorithm [97] is then
used to obtain segmentation. The method is computationally expensive (it takes 3
seconds to process a 2MPix image), it requires manual annotation of many subwindows
for training purposes (see Figure 2.4) and its localization performance is not clear
(standard evaluation protocol was not used).
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where Zt is a normalization factor chosen so that∑N
i=1 Dt+1(i) = 1. The algorithm selects the αt, ht(.) that

minimize Zt[αt, ht(.)]. Then the process repeats and out-
puts a strong classifier Ht(I) = sign(

∑T
t=1 αtht(I)). It

can be shown that this classifier will converge to the op-
timal classifier as the number of classifiers increases
[4].

AdaBoost requires a set of classified data with image
windows labelled manually as being text or non-text. Fig-
ure (7) shows some text examples. We performed this la-
belling for the training dataset and and divided each text
window into several overlapping text segments with fixed
width-to-height ratio 2:1. This lead to a total of 7,132 text
segments which were used as positive examples. The nega-
tive examples were obtained by a bootstrap process similar
to Drucker et al [2]. First we selected negative examples by
randomly sampling from windows in the image dataset. Af-
ter training with these samples, we applied the AdaBoost
algorithm to classify all windows in the training images
(at a range of sizes). Those misclassified as text were then
used as negative examples for retraining AdaBoost. The im-
age regions most easily confused with text were vegetation,
repetitive structures such as railings or building facades, and
some chance patterns.

Figure 7. Text example used for getting pos-
itive examples for training AdaBoost. Ob-
server the low quality of some of the exam-
ples.

The previous section described the weak classifiers we
used for training AdaBoost. We used standard AdaBoost
training methods to learn the strong classifier [4] [5] com-
bined with Viola and Jones’ cascade approach which uses
asymmetric weighting [19]. The cascade approach enables
the algorithm to rule out most of the image as text locations
with a few tests (so we do not have to apply all the tests ev-
erywhere in the image). This makes the algorithm extremely
fast when applied to the test dataset and yields order of mag-
nitude speed-up over standard AdaBoost [19]. Our algo-
rithm had a total of 4 cascade layers. Each layer has 1, 10,
30, 50 tests respectively. The overall algorithm uses 91 dif-
ferent feature tests. The first three layers of the cascade only

use mean, STD and module of derivative features, since they
can be easily calculated from integral images[19]. Compu-
tation intensive features, histogram and edge linking, in-
volve all pixels inside the sub-window. So we only let them
be selected in the last layer.

In the test stage, we applied the AdaBoost strong clas-
sifier H(I) to windows of the input images at a range of
scales. There was a total of 14 different window sizes, rang-
ing from 20 by 10 to 212 by 106, with a scaling factor of
1.2. Each window was classified by the algorithm as text or
non-text. There was often overlap between windows classi-
fied as text. We merged these regions by taking the union of
the text windows.

In our test stage, AdaBoost gave very high performance
with low false positives and false negatives (in agreement
with previous work on faces [19]). When applied to over
20,000,000 image windows, taken from 35 images, the to-
tal number of false positives was just over 118 and the num-
ber of false negatives was 27. By altering the threshold we
could reduce the number of false negatives to 5 but at the
price of raising the number of false positives, see table (1).
We decided to keep not to alter the threshold so as to keep
the number of false positives down to an average of 4 per
image (almost all of which will be eliminated at the read-
ing stage).

Thresh False Pos. False Neg. Images Subwindows
0.00 118 27 35 20,183,316
-0.05 1879 5 35 20,183,316

Table 1. Performance of AdaBoost at differ-
ent thresholds. Observe the excellent overall
performance and the trade-off between false
positives and false negatives.

We illustrate these results by showing the windows that
AdaBoost classifies as text for typical images in the test
dataset, see figure (8).

6. Extension and Binarization

Our next stage produces binarized text regions to be used
as inputs to the OCR reading stage. (It is possible to run
OCR directly on intensity images but we obtain substan-
tially worse performance if we do so). In addition to bina-
rization, we must extend the text regions found by the Ad-
aBoost strong classifiers because these regions sometimes
miss letters or digits at the start and end of the text.

We start by applying adaptive binarization [12] to the
text regions detected by the AdaBoost strong classifier. This
is followed by a connected component algorithm [13] which

0-7695-2158-4/04 $20.00 (C) 2004 IEEE

Figure 2.4 Positive training data samples used for sliding-window classifier training. Image
taken from [20]

The method was improved by Pan et al. [103] by incorporating a combination His-
togram Of Gradient (HOG) and multi-scale Local Binary Pattern feature in the text
detection stage. Furthermore, a Markov Random Field (MRF) is employed to to group
segmented characters into words, in contrast to the heuristic rules applied in [20]. The
method claims better localization performance than the winner of ICDAR 2005 Text
Locating Competition [76], which is not fully accurate because different evaluation
units were used (words vs. lines of text). Additionally, the method suffers from high
computational complexity (average processing time 1.5s on a 1MPix image).

More recently, Lee et al. [64] further improved the approach by incorporating more
discriminative but also more computationally expensive features, which slightly im-
proved text localization performance, but significantly slowed down the method (pro-
cessing time is several minutes per image).

Coates et al. [23] use unsupervised machine-learning techniques independently for
character detection and recognition. A 32-by-32 pixel window is shifted over the image
in multiple scales and each patch is classified using a linear SVM classifier as text or
non-text. Features used by the classifier are generated automatically in the training
stage using a variant of the K-means algorithm. Cropped characters are recognized
by resizing them into a fixed 32-by-32 pixel window and applying the same process.
The method however does not provide end-to-end text recognition as the characters are
cropped manually.

Zhu and Zanibbi [149] build on top of this work by introducing multi-stage gener-
ation and validation of character detections using convolutional, geometric and con-
textual features, and by exploiting a confidence-weighted AdaBoost classifier to obtain
text/non-text saliency map.

2.1.2 Region-based Methods

Region-based methods exploit a bottom-up strategy for text localization. At first, cer-
tain local features are calculated for each pixel in the image and then pixels with similar
feature values are grouped together using connected component analysis to form char-
acters, assuming low variance of the used feature(s) within a single character. The
methods can be scale-invariant and they inherently provide character segmentation,
which can be then used in an OCR stage. The biggest drawback is their sensitivity to
noise and to low-resolution images, because they require low variance of the local fea-
tures and a single pixel with different feature value can cause the connected component
analysis to fail.
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(a)

…

…

(b) (c) (d)

Figure 2. Example of the pre-processing stage. (a) the original image. (b) text confidence maps for the image pyramid (brightness
of pixels represents the probability as ”text”). (c) the text confidence map for the original image. (d) binarized image.

4.2 CC labeling with CRF

Based on the definition of CRF, we formulate CC analy-
sis into CC labeling problem: given the component set
X = (x1, x2, ...), on which a 2D undirected graph is con-
structed, the objective is to find the best component label
Y ∗ = (y∗1 , y

∗
2 , ...) to minimize the total graph energy E.

4.2.1 Neighborhood Graph

Considering the geometric and spatial relationship of com-
ponents, we construct the neighborhood graph with a com-
ponent linkage rule defined as

dist(xi, xj) < 2 ∗min(max( wi, hi ),max( wj , hj ) ), (4)

where dist(·, ·) is the centroid distance between two com-
ponents and w and h are component width and height re-
spectively. Any two components whose spatial relationship
obeys this rule can be linked together by an edge.

4.2.2 Energy Function

Considering the effectiveness and efficiency, we utilize
unary and binary cliques on the graph to construct the CRF
model, where multi-layer perceptron (MLP) is selected to
approximate the unary and binary energy function. The to-
tal energy function is defined as

E(X,Y,N, λ) =
∑

i

( (Eun(xi, yi, ωun) +

ωc ·
∑

ci

Ebi(xi, xj , yi, yj , j ∈ ni, ωbi) ),(5)

where values of Eun(·, ωun) and Ebi(·, ωbi) are outputs of
two-class (”text”, ”non-text”) and three-class (both texts,
both non-texts and different style) MLPs on unary and bi-
nary features, and ωc is a combination coefficient. Unary
and binary features (defined in Table 1, refer to [11]), some
of which are calculated with the text confidence map, are
extracted to represent the component property and compo-
nent neighboring relationship.

Unary feature Binary feature
normalized width centroid distance
normalized height scale ratio

aspect ratio shape difference
occupy ratio (horizontal and vertical)
compactness overlap degree
confidence (horizontal and vertical)

contour gradient (R,G,B) color difference (R,G,B)
average run-length confidence

number (minimum and maximum)

Table 1: Unary and binary features.

4.2.3 Learning and Inference

For parameter estimation of the CRF model, we use Min-
imum Classification Error (MCE) criterion [2] since it can
be directly integrated with the MLP optimization. In MCE
training, the misclassification measure can be approximated
by d(X,Λ) = −E(X,Y c, N,Λ)+E(X,Y r, N,Λ), where
Y c and Y r are the true and rival label respectively and Λ
represents CRF model parameters {ωun, ωbi, ωc}. The
measurement can be transformed into loss function

L(X,Λ) =
1

1 + exp(−ξ(d(X,Λ)))
, (6)

based on which parameters can be iteratively optimized by
stochastic gradient decent algorithm as

Λt+1 = Λt − εt · ∂L(X,Λ)

∂Λ
|Λ=Λt . (7)

When energy function parameters are learned fixed, graph
cuts (α-expansion) algorithm [1] is selected to find the best
label Y ∗ of components to minimize the total energy since
it can achieve approximate optimal results and is much effi-
cient than other inference algrothms.

During the training procedure, we use coupling strategy
to learn energy function parameters: at each time, the en-
ergy function is first fixed and graph cuts is used to label
components, then the total energy value for fixed graph la-
bels is used to optimize parameters based on MCE crite-
rion. This updating process continues until the total energy
only have very few changes. During the test procedure, to
speed up the process, some apparent non-text components
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Figure 2.5 Text confidence map. (a) the original image. (b) text confidence maps for the
image pyramid. (c) the text confidence map for the original image. Images taken from [104]

One of the first methods for general character localization was introduced by Ohya
et al. [100]. In their method, a local adaptive thresholding in grey-scale images is
used to detect candidate regions and regions with sufficient contrast are selected as
characters. Li et al. [67] apply thresholding in a quantized color space and they group
individual characters into text blocks by simple alignment rules. Both methods assume
that characters are upright without any rotation, that the contrast is high and that
background is uniform, which may be sufficient for signs or licence plates, but not for
general text localization.

Kim et al. [56] combine three independent detection channels (color continuity, edge
detection and color variance) to find candidate regions. Candidate regions are grouped
into blocks by size and position constraints and each block is then divided into over-
lapping 16 × 16 pixel subblocks, which are verified by an SVM classifier [24], exploit-
ing wavelet transform to generate features. If a ratio of subblocks marked as text is
higher than a predefined threshold, the block is marked as text. The method is not
scale-invariant because of the constant size of subblocks used for classification and the
precision is relatively bad because many small text-like patches are detected.

Takahashi and Nakajima [123] use a graph scheme, where vertices represent characters
and edges represent a predecessor-successor relation in a block of text. Candidate
regions are found using Canny edge detector in the CIELUV color space [21] and regions
that pass a set of heuristic constraints are considered vertices of the graph. Edges are
created between neighboring vertices and each edge is assigned a weight based on spatial
distance, shape and area similarity. Finally, a minimum spanning tree (MST) algorithm
is applied and edges with distance or angle over a predefined threshold are removed.
The method cannot handle illumination variations in foreground or background and
optimal edge weight estimation remains an open question.

Pan et al. [104, 105] create a text confidence map (see Figure 2.5) on a grey-scale
image pyramid using a calibrated Waldboost [122] classifier with Histogram Of Gradient
(HOG) features. Candidate regions are detected independently on a grey-scale image
using Niblack’s binarization algorithm [97] and a Conditional Random Field (CRF) [59]
is employed to label regions as text or non-text, considering the text confidence as one
of the unary features. Then, a simple gradient graph energy minimization approach is
applied to form block of texts. The method is computationally expensive because of
the image pyramid and the CRF inference and its localization performance cannot be
compared to other methods a proprietary evaluation metric was used.

An image operator Stroke Width Transform (SWT) was introduced by Epshtein et
al. [29]. The SWT method finds edges using Canny detector [19] and then estimates
stroke width for each pixel in the image (see Figure 2.6). Connected component algo-
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Abstract 

 
We present a novel image operator that seeks to find the value 

of stroke width for each image pixel, and demonstrate its use on 
the task of text detection in natural images. The suggested 
operator is local and data dependent, which makes it fast and 
robust enough to eliminate the need for multi-scale computation 
or scanning windows.  Extensive testing shows that the suggested 
scheme outperforms the latest published algorithms. Its 
simplicity allows the algorithm to detect texts in many fonts and 
languages.  

1. Introduction 
Detecting text in natural images, as opposed to scans of 

printed pages, faxes and business cards, is an important 
step for a number of Computer Vision applications, such 
as computerized aid for visually impaired, automatic geo-
coding of businesses, and robotic navigation in urban 
environments. Retrieving texts in both indoor and outdoor 
environments provides contextual clues for a wide variety 
of vision tasks. Moreover, it has been shown that the 
performance of image retrieval algorithms depends 
critically on the performance of their text detection 
modules. For example, two book covers of similar design 
but with different text, prove to be virtually 
indistinguishable without detecting and OCRing the text. 
The problem of text detection was considered in a number 
of recent studies [1, 2, 3, 4, 5, 6, 7]. Two competitions 
(Text Location Competition at ICDAR 2003 [8] and 
ICDAR 2005 [9]) have been held in order to assess the 
state of the art.  The qualitative results of the competitions 
demonstrate that there is still room for improvement (the 
winner of ICDAR 2005 text location competition shows 
recall=67% and precision=62%).  This work deviates from 
the previous ones by defining a suitable image operator 
whose output enables fast and dependable detection of 
text. We call this operator the Stroke Width Transform 
(SWT), since it transforms the image data from containing 
color values per pixel to containing the most likely stroke 
width. The resulting system is able to detect text 
regardless of its scale, direction, font and language.   

When applied to images of natural scenes, the success 
rates of OCR drop drastically, as shown in Figure 11. 

There are several reasons for this.  First, the majority of 
OCR engines are designed for scanned text and so depend 
on segmentation which correctly separates text from 
background pixels.   While this is usually simple for 
scanned text, it is much harder in natural images.  Second. 
natural images exhibit a wide range of imaging conditions, 
such as color noise, blur, occlusions, etc. Finally, while the 
page layout for traditional OCR is simple and structured, 
in natural images it is much harder, because there is far 
less text, and there exists less overall structure with high 
variability both in geometry and appearance. 

(a) (b) 

(c) (d) 
Figure 1: The SWT converts the image (a) from containing 
gray values to an array containing likely stroke widths for 
each pixel (b).  This information suffices for extracting the 
text by measuring the width variance in each component as 
shown in (c) because text tends to maintain fixed stroke 
width.  This puts it apart from other image elements such 
as foliage.  The detected text is shown in (d). 

One feature that separates text from other elements of a 
scene is its nearly constant stroke width. This can be 
utilized to recover regions that are likely to contain text. In 
this work, we leverage this fact. We show that a local 
image operator combined with geometric reasoning can be 
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978-1-4244-6983-3/10/$26.00 ©2010 IEEE

Figure 2.6 Stroke Width Transform (SWT). (a) the original image converted to grey-scale. (b)
stroke width estimation for each pixel. Images taken from [29]

rithm is then applied to form pixels with similar stroke width into character candidates,
which are merged into text blocks using several heuristic rules. The biggest limitation
of the method is its dependency on successful edge detection which is likely to fail on
blurred or low-contrast images. The method was further improved by Yao et al. [141]
where the heuristic rules for character candidate detection and text block formation are
replaced by trained classifiers with rotationally-invariant features. A similar edge-based
approach with different connected component algorithm is presented in [148].

Many of the text localization methods rely on the Maximally Stable Extremal Regions
(MSER) detector [80]. The idea to use MSERs for character detection (and recognition)
was first exploited by Donoser et al. [28], where they classified MSERs using cross-
correlation with training templates and then used standard search engine to select the
most probable text hypothesis and correct any misspellings.

Kang et al. [51] exploits Higher-Order Correlation Clustering [57] to group individual
MSERs into text lines and to eliminate non-textual MSERs. Yin et al. [144], the win-
ner of the ICDAR 2013 Robust Reading competition [53], uses a single-link clustering
algorithm with a trained distance. Later, the method was improved by using adap-
tive hierarchical clustering for grouping of MSERs and by supporting multi-oriented
text [143]. Huang et al. [44] combine the MSER detector with a CNN classifier to
distinguish between text and non-text regions and to split individual MSERs which
correspond to multiple characters.

Our work in the text localization and recognition in Chapter 4 also builds on top of
the MSER detector and its generalizations [81].

2.1.3 Convolutional Neural Networks

Tian et al. [124] combine the traditional sliding-window approach (see Section 2.1.1)
with a CNN classifier [61]. Candidate regions are first detected by sliding window
which is classified as text or non-text using a fast cascade boosting algorithm. The text
line extraction is then formulated as a min-cost flow problem, where each node is the
candidate region (patch) with an associated cost provided by a CNN classifier. The
CNN classifier is trained on the image patches obtained by the character detector and
it only has three convolutional layers and two fully-connected layers.

He et al. [42] train a CNN to classify 32× 32 patches as text/non-text. The training
exploits multi-task learning [31] paradigm as the optimized cost function is not simply
the text/non-text label, but it also incorporates explicit pixel-level segmentation and
the character label. In the testing phase, only regions detected as MSERs [80] in a

13



2 Z. Tian, W. Huang, T. He, P. He and Y. Qiao

(a) (b)

Fig. 1: (a) Architecture of the Connectionist Text Proposal Network (CTPN). We
densely slide a 3×3 spatial window through the last convolutional maps (conv5 )
of the VGG16 model [27]. The sequential windows in each row are recurrently
connected by a Bi-directional LSTM (BLSTM) [7], where the convolutional fea-
ture (3×3×C) of each window is used as input of the 256D BLSTM (including
two 128D LSTMs). The RNN layer is connected to a 512D fully-connected layer,
followed by the output layer, which jointly predicts text/non-text scores, y-axis
coordinates and side-refinement offsets of k anchors. (b) The CTPN outputs
sequential fixed-width fine-scale text proposals. Color of each box indicates the
text/non-text score. Only the boxes with positive scores are presented.

Current approaches for text detection mostly employ a bottom-up pipeline
[28,1,14,32,33]. They commonly start from low-level character or stroke detec-
tion, which is typically followed by a number of subsequent steps: non-text com-
ponent filtering, text line construction and text line verification. These multi-step
bottom-up approaches are generally complicated with less robustness and relia-
bility. Their performance heavily rely on the results of character detection, and
connected-components methods or sliding-window methods have been proposed.
These methods commonly explore low-level features (e.g., based on SWT [3,13],
MSER [14,33,23], or HoG [28]) to distinguish text candidates from background.
However, they are not robust by identifying individual strokes or characters sep-
arately, without context information. For example, it is more confident for people
to identify a sequence of characters than an individual one, especially when a
character is extremely ambiguous. These limitations often result in a large num-
ber of non-text components in character detection, causing main difficulties for
handling them in following steps. Furthermore, these false detections are eas-
ily accumulated sequentially in bottom-up pipeline, as pointed out in [28]. To
address these problems, we exploit strong deep features for detecting text infor-
mation directly in convolutional maps. We develop text anchor mechanism that
accurately predicts text locations in fine scale. Then, an in-network recurrent
architecture is proposed to connect these fine-scale text proposals in sequences,
allowing them to encode rich context information.

Deep Convolutional Neural Networks (CNN) have recently advanced gen-
eral object detection substantially [25,5,6]. The state-of-the-art method is Faster
Region-CNN (R-CNN) system [25] where a Region Proposal Network (RPN) is

Figure 2.7 The architecture of Tian et al. [125] employs a 3 × 3 sliding-window on the last
convolutional layer as an input to a RNN, which jointly predicts the text/non-text score,
the y-axis coordinates and the anchor side-refinement (a). Sample network output, color
indicates the text/non-text score (b). Images taken from [125]

contrast-enhanced image are considered for the classification by the CNN, resulting in
a text saliency map.

Gupta et al. [41] propose a fully-convolutional regression network, drawing inspiration
from the You Look Only Once (YOLO) approach for object detection [108]. An image is
divided into a fixed number of cells (14×14 in the highest resolution), where each cell is
associated with 7 values directly predicting the position of text: bounding-box location
(x, y), bounding-box size (w, h), bounding-box rotation (cos θ, sin θ) and text/non-text
confidence (c). The values are estimated by 7 local translation-invariant predictors
built on top of the first 9 convolutional layers of the popular VGG-16 architecture [120],
trained on synthetic data (see Section 3.8).

Tian et al. [125] adapt the Region Proposal Networks architecture [110] by horizon-
tally sliding a 3×3 window through on the last convolutional map of the VGG-16 [120]
and applying a Recurrent Neural Network to jointly predict the text/non-text score,
the y-axis coordinates and the anchor side-refinement (see Figure 2.7). Note that the
architecture expects that text is only horizontal, unlike the method of Gupta et al. [41].
Similarly, Liao et al . [70] adapt the SSD object detector [74] to detect horizontal bound-
ing boxes.

Ma et al . [78] adapt the Faster R-CNN architecture and extend it to detect text of
different orientations by adding anchor boxes of 6 hand-crafted rotations and 3 aspects.

2.2 Text Segmentation

The task segmentation task formulation was introduced in the ICDAR 2013 Robust
Reading competition [53], in order to obtain more fine-grained evaluation than in the
text localization task (Section 2.1) and in order to address some of the aforementioned
problems with the text localization protocol. In the text segmentation task, a method
must label all pixels of an image I so that pixels which a human would consider as
belonging to text are labelled as 1 (and the other pixels are labelled as 0).

I→ {0, 1}w×h (2.7)

where w (h) is the image width (height).

The evaluation protocol, proposed by Clavelli and Karatzas [22], uses “atoms” as
units for the evaluation. Atom is a connected component (see Figure 2.9), which typi-
cally corresponds to a single character, but can also correspond to a part of a character
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Figure 2.8 Text segmentation. Given given an image I (left) pixels labelled as belonging to
text are marked black (right).

Figure 2.9 Text segmentation ground truth. Each atom denoted by a different color (right).

in case the character is broken into multiple segments, or to multiple characters, when
characters are joint together.

Given a method output, each atom in the ground truth is labelled as either Well-
Segmented, Merged, Broken, Broken and Merged or Lost, based on a match heuris-
tics [22]. Additionally, detected components which cannot be matched to any ground
truth region are marked as False Positive. The heuristics labels an atom as Well-
Segmented, if at least Tmin = 0.5 of the ground truth skeleton pixels are part of
the atom (Minimal Coverage condition), and if none of the atom pixels are further
than Tmax = min(5, 0.9sw) from the ground truth edge (Maximal Coverage condition),
where sw denotes ground truth stroke width.

The image recall r precision p are then calculated as

r = |WS|
|G| (2.8)

p = |WS|
|D| (2.9)

where WS are the Well-Segmented atoms, G are the ground truth atoms and D are the
detected atoms.

The main drawback of the text segmentation task (and its evaluation protocol) is the
dependency on pixel-level comparison, which may not always correspond to the quality
one would obtain from a subsequent OCR stage. For instance, missing 30% of pixels
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Figure 2.10 The text segmentation protocol [22] may not always provide good clues whether
characters could be successfully processed by a subsequent OCR stage - source image (left)
and sample segmentation output (right). Well-Segmented atoms in green, Broken atoms in
orange

Fig. 4. Six results of our method on various texts from
IGN [10] image database. Segmentation is difficult as there is
a wide variety of text: text style, illumination and orientation
may vary. Decorations (illustrated background, relief effect
on characters...) may decrease readability.

5. EVALUATION

We have seen the results of our method. Now we measure
its efficiency. To do so, we compare our method with two
thresholding methods (that uses Niblack [5] and Sauvola [11]
criterion respectively as both are references in text segmenta-
tion) and the ultimate opening [8] (because of its efficiency).
To perform a comparison, we focus on different aspects: the
segmentation speed and quality. According to our context, we
perform the comparison on a randomly taken subset of Itowns
project [1] image database provided by IGN [10].
Before processing the comparison, each method is set up.
Different sets of parameters have been used for each method.
The parameters leading to the best result (in terms of segmen-
tation quality) are selected for each method and all compar-
isons are performed using selected parameters. For all meth-
ods we select the size of the mask9x9. k parameter is set to
−0.05 and0.05 for Niblack (eq. 1) and Sauvola (eq. 2) crite-
rion respectively. For our method, the lowest contrast (cmin

in eq. 7) is set to16 andp parameter (eq. 7) is set to80%.
Results of all methods can be seen in figure 6.

Fig. 6. Results of various algorithms on different images.
From top to bottom and left to right: Original image, Niblack
thresholding, Sauvola thresholding and our method. More
characters are segmented with our method.

Segmentation quality assessment

The segmentation evaluation is always difficult as it is, fora
part, subjective. It is, frequently, impossible to have a ground
truth to be use with a representative measure. To evaluate
segmentation as objectively as possible for our application,
we segment the image database and we count every properly
segmented characters. For us,properly segmentedmeans that
the character is not split or linked with other features around
it. The character must also be readable. The thickness may
vary a little provided that its shape remains correct. The eval-
uation image database contains501 readable characters. The
following table gives the result of each method:

% of properly segmented characters

Ultimate Opening 48,10
Sauvola 71,26
Niblack 73,85
TMMS 74,85

The ultimate opening surprisingly gives bad results. This may
be due to the fact that images may have motion blur (they
are acquired by sensors mounted on a moving vehicle). We
then cancel it from the rest of the comparison. Our method
gives the best results, followed by thresholding with Niblack
Criterion. Thresholding with Sauvola criterion is far lesseffi-
cient on average. It fails frequently on text correctly handled
with Niblack criterion or our method but, in some situations,
it gives the best quality segmentation. The overall poor result
is explained by the high difficulty level of the environment.

Figure 2.11 Toggle Mapping morphological segmentation [32] sample results, each connected
component denoted by a different color. Images taken from [32]
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(missing 30% of the skeleton) can significantly change the OCR class as for example
the character “O” can change to “U”, yet the evaluation protocol would still label the
atom as Well-Segmented (see Figure 2.10). On contrary, missing 60% of pixels when
compared to the ground truth may still leave the OCR label intact.

Moreover the task segmentation task enforces certain pipeline architectures (archi-
tectures similar to traditional printed document OCR), but the segmentation step may
be successfully omitted in the end-to-end setup (see Section 2.5).

All the methods listed in the Section 2.1.2 inherently provide some form of text seg-
mentation, due to their reliance on connected components. There are however several
methods which focus purely on text segmentation. Fabrizio et al. [32] use the Toggle
Mapping morphological operator [117], which is a generic operator which maps a func-
tion into a set of n functions. In their method, the image (function) is mapped to a set
of 2 functions (morphological erosion and morphological dilatation) and the mapping is
further thresholded by requiring a minimal contrast to eliminate noise in homogeneous
regions.

Kumar and Ramakrishnan [58] employ Otsu binarization [101] in each of the RGB
channels independently to find connected components. Then, each connected compo-
nent in its respective color plane is classified as text or background based on its thinned
representation and text components are formed into text lines by a horizontal clustering
algorithm, which spans all three color planes.

Mancas-Thillou and Gosselin [79] study cropped word binarization by clustering in
RGB color space using Euclidian and Cosine distance. Kim et al. [55] exploit user
interaction on a mobile device to find initial location of text and then color clustering
in HCL color space [115] is used to find initial candidate regions. The regions are then
expanded in horizontal direction using a set of heuristic rules to obtain blocks of text.

Let us note that in the last text segmentation competition [53], all methods spe-
cialized in text segmentation [32, 58] were outperformed by a generic text localization
method [144], where the character segmentations are simply the output of the MSER
detector [80].

2.3 Cropped Character Recognition

The cropped character recognition is the simplest text recognition task formulation
- given an image of a character, a method outputs a single character of the output
alphabet A:

I→ c : c ∈ A (2.10)

Yokobayashi and Wakahara [146] binarize character images using local adaptive
thresolding in one of the Cyan/Magenta/Yellow (CMY) color planes, depending on
the breadth of their histogram. Then they use a normalized cross-correlation as a
matching measure between the test image and a list of templates, which were synthetic
images of a single font. To our knowledge they were the first ones to use synthetic data
as training samples for scene text, an idea which we also exploited in Chapter 4.

Li and Tan [68] calculate Cross Ratio spectrum over the boundary of a region. The
Cross Ratio is a ratio between distances of four collinear points and it remains un-
changed under any perspective transformation. Comparing two Cross Ratio Spectra
employs Dynamic Time Warping algorithm and therefore has a quadratic complexity
for a single comparison, which is the main drawback of the method - classifying a single
character can take several minutes on a standard PC.
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Figure 2.12 Cropped character recognition. Given an image of a character I (left), a single
character is selected from the output alphabet (right).

De Campos et al. [26] evaluate six different local features - Shape Contexts [12], Ge-
ometric Blur [13], Scale Invariant Feature Transform [75], Spin Image [60], Maximum
Response of Filters [127] and Patch Descriptor [128] - for individual character recog-
nition. Together with the published Chars74k dataset (see Section 3.1), their work
represents a useful baseline in the scene text recognition.

Newell and Griffin [96] extend the work of De Campos et al. [26] by exploiting His-
togram of Oriented Gradients (HOG) [25] in a scale-space pyramid. Lee et al. [62] learn
a set of discriminative features which exploit the most informative sub-regions of each
character within a multi-class classification framework.

2.4 Cropped Word Recognition

In the cropped word recognition, a method outputs a sequence of characters based on
an image I of a single word which was manually cropped out by a human annotator.

I→ (c1, c2, . . . , cn) : ci ∈ A (2.11)

where A is the output alphabet (typically “A” to “Z”, sometimes lowercase “a” to “z”
and “0” through “9” are added).

In the evaluation, a standard case-sensitive Levenshtein distance [66] between the
method output and the ground truth is calculated for each word (image). The overall
method accuracy is then given by the sum of the Levenshtein distance over the whole
test set.

Figure 2.13 Cropped word recognition. Given an image of a single word I (left), a sequence
of characters is produced (right).

The cropped word recognition tasks gives an upper-bound currently achievable in
plain scene text recognition performance, but in fact it assumes that there exists a
text localization method with a 100% accuracy, which currently is far from being true.
Moreover, since the text was localized by a human, it is not clear that such text localiza-
tion is even possible without the recognition, because the human annotator could have
used the actual content of the text to create the annotation for localization. In other
words, it may be impossible to correctly localize text without the recognition phase.
Also, there are words which cannot be correctly recognized without further context,
which is unavailable when the word has already been cropped out.

Weinman et al. [135] combine lexicon, similarity and appearance information into a
joint model and use Sparse Belief Propagation [102] to infer the most probable string
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Large-Lexicon Attribute-Consistent Text Recognition in Natural Images 7

(a)- detected characters

(b)- initial transducer

Fig. 3. Constructing the initial transducer from sampled characters. (a) – a sample image with
the sampled locations superimposed, (b) - the initial transducer. The nodes of the transducer are
color-coded and correspond to detected characters. All characters that can be consecutive in the
word are connected with transitions in the initial transducer. ε denotes the empty character.

mapped into a single WFST. We finally find the lowest-weight sequence of the resulting
WFST that delivers the approximate MAP solution of (2).

In general, a weighted finite-state transducer (WFST) is based on a directed multi-
graph, where each vertex corresponds to a state, and each arc is assigned a weight w,
an input character ci from the alphabetAI and an output character co from the alphabet
AO (the notation (ci : co /w) is used further on). In this way, every path in the graph
defines an input sequence of characters, an output sequence of characters, and a weight.
One of the vertices of WFST is designated as a start vertex and a subset of vertices are
designated as end vertices, thus defining a set of valid paths going from the start to one
of the ends.

In this way, a WFST determines an input language LI and an output language LO,
defined as sets of character sequences corresponding to valid paths. Each valid path is
said to accept its input sequence LI and to transduce it to the output LO. A WFST
is called deterministic, if for each input-output sequence pairs there exists at most one
valid path that performs the correspondent transduction. Each non-deterministic WFST
A can be transformed to a deterministic WFST B with the same input and output lan-
guages i. e. for each transduction LI into LO that is possible in A, the output B has a
single valid path with the same weight as the lowest-weight valid path performing this
transduction in A. Such a transformation is called determinization, and a lot of research
effort has gone into the development of efficient determinization algorithms that can
keep the run-time and the size of the output WFST small.

Figure 2.14 The cropped word recognition problem is formulated by Novikova et al. as a
maximum a posteriori (MAP) inference in a weighted finite-state transducer [99]. Images
taken from [99]

content. Similarly, Mishra et al. [84] use a joint CRF model [59] to combine individual
character detection results with a language model (lexicon).

Novikova et al. [99] propose a probabilistic model which combines local likelihood and
pairwise positional consistency priors with higher order priors that enforce consistency
of characters and their attributes, such as font and colour. The word recognition is
then formulated as a maximum a posteriori (MAP) inference and weighted finite-state
transducers are exploited to find the optimal solution. A weighted finite-state trans-
ducer is a directed multigraph, where each vertex corresponds to a state, and each edge
has a weight, an input character and an output character. To get the optimal solution,
the shortest path in the transducer that accepts the optimal location sequence and
produces the optimal word has to be found (see Figure 2.14).

Yao et al. [142] learn mid-level character representation (strokelets) in a partially
supervised manner, adapting the generic patch discovery algorithm of Singh et al. [121].
In the recognition stage, a sliding window is shifted over the word image, activations of
different types of strokelets are tracked at each position, and the strokelet responses are
binned together to form a histogram feature vector, which is classified by a Random
Forest [15].

The PhotoOCR method of Bissaco et al. [14], which won the 2013 ICDAR Robust
Reading competition [53], exploits a deep neural network classifier trained on 2-level
HOG features [25]. Each word image is first over-segmented into characters (or their
fragment), each segment is classified by the NN classifier and finally Beam Search [114]
with strong N-gram language mode is applied to find the optimal character sequence.
The method also benefits from a large private training dataset with 107 training samples.

Almazán et al. [10] find a common embedding subspace for word images and their
labels, so that they are close to each other in terms of Euclidian distance in the em-
bedding space. Each label is first represented by a pyramidal histogram of characters
representation, which embeds strings into a n-dimensional space. Then, an attribute
model is trained to represent the word images and Canonical Correlation Regression is
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Figure 1: Overview of the proposed method. Images are first projected into an attributes space with the
embedding function φI after being encoded into a base feature representation with f . At the same time, labels
strings such as “hotel” are embedded into a label space of the same dimensionality using the embedding
function φY . These two spaces, although similar, are not strictly comparable. Therefore, we project the
embedded labels and attributes in a learned common subspace by minimizing a dissimilarity function
F (I,Y;U, V ) = ||UTφI(I) − V TφY(Y)||22 = ||ψI(I) − ψY(Y)||22. In this common subspace representations are
comparable and labels and images that are relevant to each other are brought together.

of very fine-grained, zero-shot classification, where
we are interested in classifying a word image into
(potentially) hundreds of thousands of classes, for
which we may not have seen any training example.
The examples on Figs. 9 and 10 illustrate these issues.

In this work we propose to address the spotting
and recognition tasks by learning a common repre-
sentation for word images and text strings. Using
this representation, spotting and recognition become
simple nearest neighbor problems. We first propose
a label embedding approach for text labels inspired
by the bag of characters string kernels [18], [19] used
for example in the machine learning and biocom-
puting communities. The proposed approach embeds
text strings into a d−dimensional binary space. In a
nutshell, this embedding –which we dubbed pyrami-
dal histogram of characters or PHOC – encodes if
a particular character appears in a particular spatial
region of the string (cf . Fig 2). Then, this embedding is
used as a source of character attributes: we will project
word images into another d−dimensional space, more
discriminative, where each dimension encodes how
likely that word image contains a particular character
in a particular region, in obvious parallelism with
the PHOC descriptor. By learning character attributes
independently, training data is better used (since the
same training words are used to train several at-
tributes) and out of vocabulary (OOV) spotting and
recognition (i.e., spotting and recognition at test time
of words never observed during training) is straight-
forward. However, due to some differences (PHOCs
are binary, while the attribute scores are not), direct
comparison is not optimal and some calibration is
needed. We finally propose to learn a low-dimensional
common subspace with an associated metric between
the PHOC embedding and the attributes embedding.

The advantages of this are twofold. First, it makes
direct comparison between word images and text
strings meaningful. Second, attribute scores of images
of the same word are brought together since they
are guided by their shared PHOC representation. An
overview of the method can be seen in Figure 1.

By having images and text strings share a common
subspace with a defined metric, word spotting and
recognition become a simple nearest neighbor prob-
lem in a low-dimensional space. We can perform QBE
and QBS (or even a hybrid QBE+S, where both an
image and its text label are provided as queries) using
exactly the same retrieval framework. The recognition
task simply becomes finding the nearest neighbor of
the image word in a text dictionary embedded first
into the PHOC space and then into the common
subspace. Since we use compact vectors, compression
and indexing techniques such as Product Quantiza-
tion [20] could now be used to perform spotting in
very large datasets. To the best of our knowledge, we
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Figure 2: PHOC histogram of a word at levels 1, 2, and
3. The final PHOC histogram is the concatenation of
these partial histograms.

Figure 2.15 Almazán et al. find a common embedding subspace for word images and their
labels, so that they are close to each other [10]. Image taken from [10]
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Figure A1: Lexicon-free output predictions on non-alphanumeric-text images by the proposed Recursive Recurrent Nets with
Attention Modeling (R2AM) framework. By directly operating on images without alphanumeric characters, we can see our
model produces output characters that are best fit to the underlying character-level language model implicitly learned from
the training data.
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Figure 2.16 The model of Lee and Osindero [63] implicitly captures the language model of the
training data, which is demonstrated by its output on images without any text. Images taken
from [63]

applied to find the final common embedding subspace (see Figure 2.15). Gordo [39] fur-
ther improves the embedding framework by exploiting mid-level features for character
representations in the attribute model.

Lee and Osindero [63] explore several Recurrent Neural Network (RNN) [137] models
with Long Short-Term Memory (LSTM) [43], built on top of a Recursive CNN [69]
with “soft” attention modelling [140] to filter features which are fed into the RNN.
The model can recognize word images without any supplied lexicon (unconstrained
text recognition), however the language model is strongly incorporated in the RNN
parameters, which is demonstrated by random predictions on images without any text
(see Figure 2.16).

Shi et al . [119] train a fully-convolutional network with a bidirectional LSTM us-
ing the Connectionist Temporal Classification (CTC), which was first introduced by
Graves et al . [40] for speech recognition to eliminate the need for pre-segmented data.
Unlike the method presented in Section 6, Shi et al . [119] only recognize a single word
per image (i.e. the output is always just one sequence of characters), they resize the
source image to a fixed-sized matrix of 100×32 pixels regardless of how many characters
it contains and the method is significantly slower because of the LSTM layer.

20



2.5 Word Spotting

Due to the complexity of the general scene text recognition problem, some methods
focus on a more constrained scenario when a relatively small lexicon of words is given
with each image and the aim is to localize only the words present in the lexicon. This
constrained scenario still has many interesting applications, such as local navigation
system for the blind (where possible names of local businesses in the area are known
based on current GPS position, but their exact location needs to be determined through
a vision system). This task formulation, which we refer to as word spotting, was first
introduced by Wang and Belongie [133]; in the most recent ICDAR 2015 Robust reading
competition [52], the task is referred to as “End to End”, however in this thesis we will
use the term “end to end” only in the context of the general scene text recognition
problem.

In the word spotting formulation, each image I is accompanied with a set of words L
called the lexicon and the goal is to find all rectangular areas (x, y, w, h) whose content
in the image I corresponds to a word of the lexicon.

L I−→ D =
{

(xi, yi, wi, hi)
}m

xi, yi, wi, hi ∈ N ∪ ∅ (2.12)

L ∈
{

(c1,1, c1,2, . . . , c1,n1), (c2,1, c2,2, . . . , c2,n2), . . .

(cm,1, cm,2, . . . , cm,nm)
}

: ci,j ∈ A (2.13)

Note that not all words in the lexicon are present in the image (so-called “distractor”
words, denoted as (∅, ∅, ∅, ∅)), and that not all words in the image have a corresponding
content in the lexicon.

In the evaluation, the image recall r and precision p are calculated as

r =
|M |
|G| (2.14)

p =
|M |
|D| (2.15)

M =
{
di ∈ D | m(di, G) = 1

}
(2.16)

where m(di, G) is a match predicate which declares whether the detection di is matched
to the image ground truth G.

In the most recent ICDAR competition [52], a detection di is matched to the ground
truth (m(di, G) = 1) if

• the character sequence is identical (using case-insensitive comparison), and

• the Intersection-over-Union [30] of the detected and the ground truth bounding box
is above 50%.

Wang and Belongie [133] detect and recognize individual characters using a multi-
scale sliding window approach. A Histograms of Oriented Gradient (HOG) features are
calculated for each window position and a nearest neighbor classifier is used to measure
distance between the patch and all character templates in all classes. Then, each word
in the lexicon is considered and the cost of its character configuration is estimated using
pictorial structures [33] that penalize disagreement with recognized labels and layout
deformation. The method was further improved in [132], where the nearest neighbor
classifier was replaced by Random Ferns [15] and an SVM classifier [24] is applied for
word re-scoring in order to incorporate higher-order features of word configuration (e.g.
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Figure 2.17 Word spotting output example. Given given an image I with lexicon L (left), two
words of the lexicon are localized in the image (right).

(a)

(b) (c)

Figure 2: A schematics of the CNNs used showing the dimensions of the featuremaps at each stage
for (a) dictionary encoding, (b) character sequence encoding, and (c) bag-of-N-gram encoding. The
same five-layer, base CNN architecture is used for all three models.

with one class per word. While the dictionaryW of a natural language may seem too large for this
approach to be feasible, in practice an advanced English vocabulary, including different word forms,
contains only around 90k words, which is large but manageable.

In detail, we propose to use a CNN classifier where each word w ∈ W in the lexicon corresponds
to an output neuron. We use a CNN with four convolutional layers and two fully connected layers.
Rectified linear units are used throughout after each weight layer except for the last one. In forward
order, the convolutional layers have 64, 128, 256, and 512 square filters with an edge size of 5,
5, 3, and 3. Convolutions are performed with stride 1 and there is input feature map padding to
preserve spatial dimensionality. 2× 2 max-pooling follows the first, second and third convolutional
layers. The fully connected layer has 4096 units, and feeds data to the final fully connected layer
which performs classification, so has the same number of units as the size of the dictionary we
wish to recognize. The predicted word recognition result w∗ out of the set of all dictionary words
W in a language L for a given input image x is given by w∗ = arg maxw∈W P (w|x,L). Since
P (w|x,L) = P (w|x)P (w|L)P (x)

P (x|L)P (w) and with the assumptions that x is independent of L and that prior
to any knowledge of our language all words are equally probable, our scoring function reduces to
w∗ = arg maxw∈W P (w|x)P (w|L). The per-word output probability P (w|x) is modelled by the
softmax scaling of the final fully connected layer, and the language based word prior P (w|L) can
be modelled by a lexicon or frequency counts. A schematic of the network is shown in Fig. 2 (a).

Training. We train the network by back-propagating the standard multinomial logistic regression
loss with dropout [10], which improves generalization. Optimization uses stochastic gradient de-
scent (SGD), dynamically lowering the learning rate as training progresses. With uniform sampling
of classes in training data, we found the SGD batch size must be at least a fifth of the total number
of classes in order for the network to train.

For very large numbers of classes (i.e. over 5k classes), the SGD batch size required to train effec-
tively becomes large, slowing down training a lot. Therefore, for large dictionaries, we perform in-
cremental training to avoid requiring a prohibitively large batch size. This involves initially training
the network with 5k classes until partial convergence, after which an extra 5k classes are added. The
original weights are copied for the original 5k classes, with the new classification layer weights be-
ing randomly initialized. The network is then allowed to continue training, with the extra randomly
initialized weights and classes causing a spike in training error, which is quickly trained away. This
process of allowing partial convergence on a subset of the classes, before adding in more classes, is
repeated until the full number of desired classes is reached. In practice for this network, the CNN
trained well with initial increments of 5k classes, and after 20k classes is reached the number of
classes added at each increment is increased to 10k.

3.2 Encoding Sequences of Characters

This section describes a different model for word recognition. Rather than having a single large dic-
tionary classifier as in Sect. 3.1, this model uses a single CNN with multiple independent classifiers,
each one predicting the character at each position in the word. This character sequence encoding
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Figure 2.18 Three different word output encodings proposed by Jaderberg et al. [45] - dictio-
nary encoding (a), character-at-position encoding (b) and character N-gram encoding (c).
Images taken from [45]

standard deviation of character spacing). Similarly, the method of Wang et al. [134] uses
a sliding-window approach combined with convolutional neural network classifiers. It
is demonstrated that the method performs well on noisy or otherwise distorted images,
however the accuracy significantly decreases with increasing size of the lexicon.

Jaderberg et al. [49] train a character-centric Convolutional Neural Network (CNN) [61],
which takes a 24 × 24 image patch and predicts a text/no-text score, a character and
a bigram class. The input image is scanned by the trained network in 16 scales and a
text saliency map is obtained by taking the text/no-text output of the network. Given
the saliency maps, word bounding boxes are then obtained by the run length smooth-
ing algorithm. Finally, each word is recognized independently by taking the cropped
word image and finding the optimal label sequence through the character and bigram
classifier output by dynamic programming.

The method is further improved in [47], where a word-centric approach is introduced.
First, horizontal bounding-box proposals are detected by aggregating the output of
the standard Edge Boxes [150] and Aggregate Channel Feature [27] detectors. Each
proposal is then classified by a Random Forest [15] classifier to reduce the number of
false positives and its position and size is further refined by a CNN regressor, to obtain
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a more suitable cropping of the detected word image. Each cropped word image is
then resized to a fixed size of 32 × 100 pixels and classified as one of the words in the
dictionary (see Figure 2.18a), where in their setup the dictionary contains ∼ 90 000
English words (plus words of the testing set, see Section 3.7). The classifier is trained
on a dataset of 9 million synthetic word images uniformly sampled from the dictionary.
As the last step, duplicate and overlapping detections are eliminated by Non-Maxima
Suppression and the bounding boxes are further refined by the CNN regressor in an
iterative manner to obtain the final word positioning.

The requirement of a dictionary is relaxed in [46], where an unconstrained text recog-
nition architecture is presented. The model either outputs a character class (or an empty
label) for every of 23 possible character positions in the word (see Figure 2.18b), or it
outputs a set of character N-grams, where each N-gram is a substring of the word up
to 4 characters in length (see Figure 2.18c).
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3 Datasets

3.1 Chars74K Dataset

The Chars74K dataset [1] was collected by de Campos et al. [26]. It contains 7705
English character images (A-Z, a-z and 0-9, in total 64 classes) and 3345 Kannada
character images (647 classes), which were manually segmented from 1922 scene text
images (see Figure 3.1). Additionally, the dataset contains 1416 scene images with each
word annotated by a polygon and its text transcription, however not every word in the
dataset is annotated.

(a) (b)

(c)

Figure 3.1 Samples from the Chars74K dataset. Individual English characters (a), Kannada
characters (b) and full images (c)

3.2 ICDAR 2003 Dataset

The ICDAR 2003 dataset [77] was created by Simon Lucas and his colleagues for the
ICDAR 2003 Robust Reading competition [77]. The dataset was used in an unchanged
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Figure 3.2 A sample of images used in the ICDAR 2005 and ICDAR 2011 datasets. Text in
the images is mostly horizontal, it occupies a large portion of an image and it typically is
present in the middle of an image.

form in the ICDAR 2005 Robust Reading competition [76], which is why in the literature
sometimes the dataset is also referred to as the ICDAR 2005 dataset.

The dataset contains 258 training and 251 testing images with words and characters
annotated by bounding boxes and their text content. 1157 word and 6185 character
images (1111 word and 5430 character images) were subsequently cropped from the
training (respectively testing) image set, to be used in Cropped Word Recognition
(Section 2.4) and Cropped Character Recognition (Section 2.3) evaluation.

The dataset was captured by people who were specifically tasked to capture text
in an outdoor environment, so as a result text in the dataset is mostly horizontal, it
occupies a large portion of an image and it typically is present in the middle of an
image [129], since the authors of the pictures tried to capture “nice” pictures of text
(see Figure 3.2).

3.3 ICDAR 2011 Dataset

The ICDAR 2011 dataset [2] was created by taking all images from the ICDAR 2003
dataset (see Section 3.2), removing images with no text, adding several new images and
splitting them again into a training and a testing subset. The dataset was first used in
the ICDAR 2011 Robust Reading Competition [118] and then subsequently in the 2013
competition [53], which is why it is sometimes referred to as the ICDAR 2013 dataset.
In the ICDAR 2015 Robust Reading competition [52], the dataset was used again in
the Focused Scene Text challenge (Challenge 2).

The dataset contains 229 training and 255 testing images, with corresponding 849
training and 716 testing cropped word images. As a result of the creation process, the
testing subset of the ICDAR 2011 dataset contains the same images as the training
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ICDAR 2003 training set ICDAR 2011 testing set

Figure 3.3 The same images are present in the ICDAR 2003 training set (left) and the ICDAR
2011 testing set (right), which is why training on both ICDAR 2003 and 2011 training sets
and then evaluating on the ICDAR 2011 testing set is not possible - a common mistake in
the literature

subset of the ICDAR 2003 dataset. This unfortunately often leads to evaluation prob-
lems in the literature, where some methods are trained on both ICDAR 2003 and 2011
training sets, falsely assuming they are different datasets, and evaluated on the 2011
testing set - but the testing set contains many images from the joint training set, and
therefore the accuracy evaluation is heavily skewed (see Figure 3.3).

3.4 ICDAR 2015 Dataset

The ICDAR 2015 dataset [2] was introduced in the ICDAR 2015 Robust Reading Com-
petition [52] to address the problems of the ICDAR 2003/2011 datasets (see Sections 3.2
and 3.3). The dataset is used in the Incidental Scene Text challenge (Challenge 4).

Figure 3.4 Sample images from the ICDAR 2015 dataset (also known as Incidental Scene Text
challenge). Many realistic effects such as occlusion, perspective distortion, blur or noise are
present.

The images were collected by people wearing Google Glass devices [138] and walking
in Singapore, and then subsequently by selecting and annotating only images with text.
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The images in the dataset were taken “not having text in mind”, and therefore contain
a high variability of text fonts and sizes and they include many realistic effects - e.g.
occlusion, perspective distortion, blur or noise (see Figure 3.4).

The dataset contains 1670 images with 17548 annotated words - 1500 images are
publicly available, split into training and testing set, and the remaining 170 images
represent a sequestered set for a future use. Each word is annotated by a quadrilateral
(3 points) and its Unicode transcription, thus supporting rotated and slanted text.

3.5 Street View Text Dataset

Figure 3.5 Sample images from the Street View Text dataset.

The Street View Text (SVT) dataset [3] was published by Wang and Belongie [133],
where the data was collected by asking annotators to find images with local businesses
in the Google Street View application. The annotators were instructed to find a repre-
sentative text associated with the business in the image, then to move the view point in
the application to minimize the skew of the text and finally to save the screen shot. The
dataset therefore contains mostly business names and business signs (see Figure 3.5),
and the business names can be typically obtained in publicly available dictionaries by
looking up businesses close to the GPS position of the image.

The words in the image picked by the annotators in this process are tagged by a
horizontal bounding-box and a case-insensitive transcription. Note that obviously as a
result only a small fraction of text in the images is labelled.

Each image is also associated with a lexicon of 50 unique words, which contains the
words tagged by the annotator, as well as words from business names present near the
location the image was taken. In total, the data set contains 350 images (100 training
and 250 testing images) of 20 different cities and 725 labeled words.

The word annotations were also exploited to create the dataset of cropped words
SVT-50, which contains 647 word images, each with a lexicon of 50 words. There is
also a lexicon of all test words (4282 words), which is referred to as SVT-FULL [134].
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on our dataset. Since this is not a competition, they are
anonymized in Table 2, which shows the evaluation results.
On the positive side, methods A and B have good detection
precision with 79.82 and 76.38% respectively. Further, we
observe good recognition accuracy. In particular, method A
achieves 83.76%. However, detection performance is very
weak overall. While method A finds considerable amounts
of legible machine printed text with 34.99%, no method per-
forms satisfactory. Even lower results are observed on legi-
ble handwritten text. These unsatisfactory detection results
on natural images in COCO-Text motivate future work.
Lastly, no method has even viable functionality to find il-
legible text. It is worthy of note that current photo OCR
algorithms are not supposed to detect or transcribe illegible
text. As a consequence, it requires novel methods to fill this
research gap. Note that these approaches are used in our
annotation and although we ensure redundancy with human
annotators the results are not a baseline.

6. Dataset Split
The dataset is split into training and validation set, which

contain 43686 and 20000 images respectively. To report
end-to-end text spotting results only legible machine printed
and handwritten text should be considered. We encourage
researchers to train and adjust parameters on the training
set, but minimize the number of runs on the evaluation set.

7. Discussion
We introduced COCO-Text2 a new dataset for detect-

ing and recognizing text in natural images to support the
advancement of text recognition in everyday life environ-
ments. Using over 1500 worker hours, we annotated a large
collection of text instances spanning several types of text.
This is the first large-scale dataset for text in natural im-
ages and also the first dataset to annotate scene text with at-
tributes such as legibility and type of text. Dataset statistics
indicate the images contain a wide variety of text and the
spatial distribution of text is broader than in related datasets.
We further evaluate state-of-the-art photo OCR algorithms
on our dataset. While the results indicate satisfactory pre-
cision, we identify significant shortcomings especially for
detection recall. This motivates future work towards algo-
rithms that can detect wider varieties of text. We believe this
dataset will be a valuable resource supporting this effort.

Acknowledgments
Funding for the crowd worker tasks was provided by a

Microsoft Research Award. We would like to thank our
collaborators Kai Wang from Google and Ankush Gupta
and Andrew Zisserman from Oxford for providing photo

2available at http://vision.cornell.edu/se3/coco-text

legible - machine printed

legible - handwritten

illegible - machine printed

illegible - handwritten

Figure 6. Crops around example text instances in COCO-Text
organized by text categories.
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Figure 3.6 Samples from the COCO-Text dataset and their legibility classification and text
category. Images taken from [129]

3.6 COCO-Text Dataset

The COCO-Text dataset [4, 129] with its 63 686 images and 173 589 annotated words is
the largest scene text dataset to date. The COCO-Text dataset was as the name sug-
gests based on the MSCOCO dataset [71] and each word is associated with a horizontal
bounding box, a legibility classification (legible/illegible), a text category (machine-
printed, hand-written, etc.), a script (Latin/other) and a Unicode transcription in case
of a Latin script. The original object categories from MSCOCO are available as well.

Since the images in the dataset were not collected with text in mind, the variety of
text and its hidden parameters (font, style, script, positioning, etc.) is higher than in
any of the existing datasets (see Figure 3.6).

3.7 MJSynth Dataset

In order to address the problem of small volume of training data to apply deep-learning
methods, Jaderberg et al. [45] created a synthetic dataset of 9 million word images
called MJSynth [5] (also referred to as the Synth90k dataset).

The dataset is based on a set 50 000 English words from the Hunspell dictionary [6],
augmented with all their suffixes and prefixes, and all the words from the testing
subsets of the ICDAR 2011 (Section 3.3), SVT (Section 3.5) and IIIT5k (Section 3.9)
datasets. The need to include words from the testing set is driven by the word-centric
approach to classify a word image into 1 of 90 000 classes (only words from the training
dictionary can be outputted [47]), however as a result there is not a clear separation
between training and testing data, and in the testing phase the system trained on the
synthetic data has already “seen” all the words in the testing set, although with a
different appearance.

Each word from the aforementioned dictionary is then rendered 100 times into a
synthetic word image, each time randomly applying different font, border rendering,
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(a)

(b)

Figure 1: (a) The text generation process after font rendering, creating and coloring the image-
layers, applying projective distortions, and after image blending. (b) Some randomly sampled data
created by the synthetic text engine.

trained to recognise a very large number of words using incremental training. While our lexicon is
restricted, it is so large that this hardly constitutes a practical limitation. Secondly, we show that this
state-of-the-art recogniser can be trained purely from synthetic data. This result is highly non-trivial
as, differently from CAPTCHA, the classifier is then applied to real images. While synthetic data
was used previously for OCR, it is remarkable that this can be done for scene text, which is signifi-
cantly less constrained. This allows our framework to be seamlessly extended to larger vocabularies
and other languages without any human-labelling cost. In addition to these two key contributions,
we study two alternative models – a character sequence encoding model with a modified formulation
to that of [8] (Sect. 3.2), and a novel bag-of-N-grams encoding model which predicts the unordered
set of N-grams contained in the word image (Sect. 3.3).

A discussion of related work follows immediately and our data generation system described after
in Sect. 2. Our deep learning word recognition architectures are presented in Sect. 3, evaluated
in Sect. 4, and conclusions are drawn in Sect. 5.

Related work. Traditional text recognition methods are based on sequential character classification
by either sliding windows [11, 26, 27] or connected components [18, 19], after which a word pre-
diction is made by grouping character classifier predictions in a left-to-right manner. The sliding
window classifiers include random ferns [22] in Wang et al. [26], and CNNs in [11, 27]. Both [26]
and [27] use a small fixed lexicon as a language model to constrain word recognition.

More recent works such as [2, 3, 20] make use of over-segmentation methods, guided by a supervised
classifier, to generate candidate proposals which are subsequently classified as characters or false
positives. For example, PhotoOCR [3] uses binarization and a sliding window classifier to generate
candidate character regions, with words recognised through a beam search driven by classifier scores
followed by a re-ranking using a dictionary of 100k words. [11] uses the convolutional nature of
CNNs to generate response maps for characters and bigrams which are integrated to score lexicon
words.

In contrast to these approaches based on character classification, the work by [7, 17, 21, 24] instead
uses the notion of holistic word recognition. [17, 21] still rely on explicit character classifiers, but
construct a graph to infer the word, pooling together the full word evidence. Rodriguez et al. [24]
use aggregated Fisher Vectors [23] and a Structured SVM framework to create a joint word-image
and text embedding. [7] use whole word-image features to recognize words by comparing to simple
black-and-white font-renderings of lexicon words.

Goodfellow et al. [8] had great success using a CNN with multiple position-sensitive character clas-
sifier outputs (closely related to the character sequence model in Sect. 3.2) to perform street number
recognition. This model was extended to CAPTCHA sequences (up to 8 characters long) where they
demonstrated impressive performance using synthetic training data for a synthetic problem (where
the generative model is known), but we show that synthetic training data can be used for a real-world
data problem (where the generative model is unknown).

2 Synthetic Data Engine
This section describes our scene text rendering algorithm. As our CNN models take whole word
images as input instead of individual character images, it is essential to have access to a training
dataset of cropped word images that covers the whole language or at least a target lexicon. While

2

Figure 3.7 The rendering process of the MJSynth dataset [45] (a). Samples from the MJSynth
dataset (b). Images taken from [45]

base colouring, perspective distortion, natural data blending (using a random patch
from the SVT and ICDAR 2003 datasets) and noise (see Figure 3.7a), thus generating
9 million word images. The redendered data were then randomly divided into 7.2M
training, 900k validation and 900k testing images.

3.8 SynthText Dataset

The SynthText dataset [7] created by Gupta et al. [41] contains 800 000 synthetically
created images with text. The background image is randomly taken from a set of
8 000 background images downloaded from Google Image Search, and text (word or up
to 3 text lines) extracted from the Newsgroup20 dataset is rendered into the image,
respecting local texture and geometry cues (see Figure 3.8). The dataset therefore
contain highly realistic scene text images with full annotations, although the placement
of the text does not respect priors of the real word - for example, text does not typically
appear on horse hair (Figure 3.8, bottom right).

A.2. Poisson Editing vs. Alpha Blending
Comparison between simple alpha blending (bottom row) and Poisson Editing [35] (top row).

Poisson Editing preserves local illumination gradient and texture details.

Po
is

so
n

E
di

tin
g

A
lp

ha
B

le
nd

in
g

A.3. SynthText in the Wild
Sample images from our synthetic text dataset (continued on the next page).

These images show text instances in various fonts, colours, sizes, with borders and shadows, against different backgrounds,
and transformed according to the local geometry and constrained to local contiguous regions of colour and text. Ground-truth
word bounding-boxes are marked in red.

12

Figure 3.8 Sample images from the SynthText dataset, the ground truth depicted by red rect-
angles. Images taken from [41]
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3.9 IIIT Datasets

The IIIT 5k Word (IIIT5k) dataset [8, 82] contains 5 000 (2 000 training and 3 000
testing) word images cropped from images with text found on the Internet. Each word
image has a case-insensitive transcription and a lexicon of 50 (IIIT5k-50 ) or 1 000
(IIIT5k-1k) words.

The IIIT Scene Text Retrieval dataset [83] consists of 10 000 images downloaded from
Flickr. There are 50 text query words, and each word is associated with a list of 10
to 50 images, which contain the word. There are also many distractor images with no
text at all. Note that this dataset does not contain any text localization information,
so it can only be applied for text retrieval tasks.

3.10 MSRA-TD500 Dataset

The MSRA-TD500 dataset [141] consists of 500 scene text images, split into 300 training
and 200 testing samples. The dataset contains English as well as Chinese text in
different orientations and text is annotated on a text-line level, where each text line is
associated with a rotated rectangular bounding box.

3.11 KAIST Dataset

The KAIST dataset [65] contains 3 000 images of indoor and outdoor scenes with text.
Words and characters are annotated by a bounding box, and character segmentations
are provided as well. The dataset contains text in English and Korean, however not all
text instances are annotated.

3.12 NEOCR Dataset

The Natural Environment OCR dataset (NEOCR) was introduced by Nagy et al. [87]
and it contains 659 real world images with 5238 text line annotations. Each text line
is annotated by a quadrilateral, its Unicode content and several additional attributes
such as language, type face, occlusion level or noise level.
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4 Text Recognition by Extremal Regions

4.1 Character Detection

4.1.1 Extremal Regions

Let us consider an image I as a mapping I : D ⊂ N2 → V, where V typically is
{0, . . . , 255}3 (a color image). A channel C of the image I is a mapping C : D → S
where S is a totally ordered set and fc : V → S is a projection of pixel values to a
totally ordered set. Let A denote an adjacency (neighborhood) relation A ⊂ D×D. In
our method we consider 4-connected pixels, i.e. pixels with coordinates (x ± 1, y) and
(x, y ± 1) are adjacent to the pixel (x, y).

Region R of an image I (or a channel C) is a contiguous subset of D

∀pi, pj ∈ R ∃pi, q1, q2, . . . , qn, pj : piAq1, q1Aq2, . . . , qnApj (4.1)

Outer region boundary ∂R is a set of pixels adjacent but not belonging to R

∂R = {p ∈ D \ R : ∃q ∈ R : pAq} (4.2)

Extremal Region (ER) is a region whose outer boundary pixels have strictly higher
values than the region itself

∀p ∈ R, q ∈ ∂R : C(q) > θ ≥ C(p) (4.3)

where θ denotes threshold of the Extremal Region (see Figure 4.2).
We consider RGB and HSI color spaces [21] and additionally an intensity gradient

channel (∇) where each pixel is assigned the value of “gradient” approximated by the
maximal intensity difference between the pixel and its neighbors (see Figure 4.1):

C∇(p) = max
q∈D : pAq

{
|CI(p)−CI(q)|

}
(4.4)

In real-world images there are certain instances where characters are formed of smaller
elements (see Figure 4.3 left) or a single element consists of multiple joint characters
(see Figure 4.3 right). By pre-processing the image in a Gaussian pyramid, in each

(a) (b) (c)

Figure 4.1 Intensity gradient magnitude channel ∇. (a) Source image. (b) Projection output.
(c) Extremal Regions at threshold θ = 24 (ERs bigger than 30% of the image area excluded
for better visualization)
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Figure 4.2 Extremal Region R is a region whose outer boundary pixels ∂R have strictly higher
values than pixels of the region itself. θ denotes threshold of the Extremal Region

s = 1 s = 1

s = 1/8 s = 1/4

Figure 4.3 Processing with a Gaussian pyramid (the pyramid scale denoted by s). Characters
formed of multiple small regions merge together into a single region (left column). A sin-
gle region which corresponds to characters “ME” is broken into two regions and serifs are
eliminated (right column)

level of the pyramid only a certain interval of character stroke widths is amplified -
if a character consists of multiple elements, the elements are merged together into a
single region and furthermore, serifs and thin joints between multiple characters are
eliminated. This does not represent a major overhead as each level is 4 times faster
than the previous one.

4.1.2 Incrementally Computable Descriptors

The key prerequisite for fast classification of ERs is a fast computation of region de-
scriptors that serve as features for the classifier.

An ER r at threshold θ is formed as a union of one or more (or none) ERs at threshold
θ− 1 and pixels of value θ. This induces an inclusion relation (see Figure 4.4) amongst
ERs where a single ER has one or more predecessor ERs (or no predecessor if it contains
only pixels of a single value) and exactly one successor ER (the ultimate successor is
the ER at threshold 255 which contains all pixels in the image). As proposed by
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Figure 4.4 Extremal Region (ER) lattice induced by the inclusion relation.

Zimmerman and Matas [81], it is possible to use a particular class of descriptors and
exploit the inclusion relation between ERs to incrementally compute descriptor values.

Let Rθ−1 denote a set of ERs at threshold θ − 1. An ER r ∈ Rθ at threshold θ is
formed as a union of pixels of regions at threshold θ − 1 and pixels of value θ,

r =
(⋃

u ∈ Rθ−1

)
∪
(⋃

p ∈ D : C(p) = θ
)

(4.5)

Let us further assume that descriptors φ(u) of all ERs at threshold u ∈ Rθ−1 are already
known. In order to compute a descriptor φ(r) of the region r ∈ Rθ it is necessary to
combine descriptors of regions u ∈ Rθ−1 and pixels {p ∈ D : C(p) = θ} that formed the
region r,

φ(r) =
(
⊕ φ(u)

)
⊕
(
⊕ ψ(p)

)
(4.6)

where ⊕ denotes an operation that combines descriptors of the regions (pixels) and
ψ(p) denotes an initialization function that computes the descriptor for given pixel p.
We refer to such descriptors where ψ(p) and ⊕ exist as incrementally computable (see
Figure 4.5).

It is apparent that one can compute descriptors of all ERs simply by sequentially
increasing threshold θ from 0 to 255, calculating descriptors ψ for pixels added at
threshold θ and reusing the descriptors of regions φ at threshold θ − 1. Note that
the property implies that it is necessary to only keep descriptors from the previous
threshold in the memory and that the ER method has a significantly smaller memory
footprint when compared with MSER-based approaches. Moreover if it is assumed that
the descriptor computation for a single pixel ψ(p) and the combining operation ⊕ has
constant time complexity, the resulting complexity of computing descriptors of all ERs
in an image of N pixels is O(N), because φ(p) is computed for each pixel just once and
combining function can be evaluated at most N times, because the number of ERs is
bound by the number of pixels in the image.

In this method we used the following incrementally computed descriptors:

Area a. Area (i.e. number of pixels) of a region. The initialization function is a
constant function ψ(p) = 1 and the combining operation ⊕ is an addition (+).

Bounding box (xmin, ymin, xmax, ymax). Top-right and bottom-left corner of the
region. The initialization function of a pixel p with coordinates (x, y) is a quadruple
(x, y, x + 1, y + 1) and the combining operation ⊕ is (min,min,max,max) where each
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Figure 4.5 Incrementally computable descriptors. Regions already existing at threshold θ − 1
marked grey, new pixels at threshold θ marked red, the resulting region at threshold θ outlined
with a dashed line

operation is applied to its respective item in the quadruple. The width w and height h
of the region is calculated as xmax − xmin and ymax − ymin respectively.

Perimeter p. The length of the boundary of the region (see Figure 4.5a). The
initialization function ψ(p) determines a change of the perimeter length by the pixel p
at the threshold where it is added

ψ(p) = 4− 2|{q : qAp ∧C(q) ≤ C(p)}| (4.7)

and the combining operation ⊕ is an addition (+). The complexity of ψ(p) is O(1),
because each pixel has at most 4 neighbors.

Euler number η. Euler number (genus) is a topological feature of a binary image
which is the difference between the number of connected components and the number
of holes. A very efficient yet simple algorithm [106] calculates the Euler number by
counting 2× 2 pixel patterns called quads. Consider the following patterns of a binary
image:

Q1 =

{
1 0
0 0

,
0 1
0 0

,
0 0
0 1

,
0 0
1 0

}
(4.8)

Q2 =

{
0 1
1 1

,
1 0
1 1

,
1 1
1 0

,
1 1
0 1

}
(4.9)

Q3 =

{
0 1
1 0

,
1 0
0 1

}
(4.10)

Euler number is then calculated as

η =
1

4
(C1 − C2 + 2C3)) (4.11)
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where C1, C2 and C3 denote number of quads Q1, Q2 and Q3 respectively in the image.

It follows that the algorithm can be exploited for incremental computation by simply
counting the change in the number of quads in the image. The value of the initialization
function ψ(p) is determined by the change in the number of the quads Q1, Q2 and Q3

by changing the value of the pixel p from 0 to 1 at given threshold C(p) (see Figure
4.5b),

ψ(p) =
1

4
(∆C1 −∆C2 + 2∆C3)) (4.12)

The complexity of ψ(p) is O(1), because each pixel is present in at most 4 quads. The
combining operation ⊕ is an addition (+).

Horizontal crossings ci. A vector (of length h) with number of transitions between
pixels belonging (p ∈ r) and not belonging (p /∈ r) to the region in given row i of the
region r (see Figure 4.5c and 4.8). The value of the initialization function is given by
the presence/absence of left and right neighboring pixels of the pixel p at the threshold
C(p). The combining operation ⊕ is an element-wise addition (+) which aligns the
vectors so that the elements correspond to same rows. The computation complexity of
ψ(p) is constant (each pixel has at most 2 neighbors in the horizontal direction) and the
element-wise addition has constant complexity as well assuming that a data structure
with O(1) random access and insertion at both ends (e.g. double-ended queue in a
growing array) is used.

4.1.3 Sequential Classifier

In the proposed method, each channel is processed separately over a coarse Gaussian
pyramid (in the original and inverted projections) and ERs are detected. In order to
reduce the high false positive rate and the high redundancy of the ER detector, only
distinctive ERs which correspond to characters are selected by a sequential classifier.
The classification is broken down into two stages for better computational efficiency
(see Figure 4.6).

In the first stage, a threshold is increased step by step from 0 to 255, incrementally
computable descriptors (see Section 4.1.2) are computed in O(1) for each ER r and
the descriptors are used as features for a classifier which estimates the class-conditional
probability p(character|r). The value of p(character|r) is tracked using the inclusion
relation of ER across all thresholds (see Figure 4.7) and only the ERs which correspond
to local maximum of the probability p(character|r) are selected (if the local maximum
of the probability is above a global limit pmin and the difference between local maximum
and local minimum is greater than ∆min).

A Real AdaBoost [116] classifier with decision trees was used with the following
features (calculated in O(1) from incrementally computed descriptors): aspect ratio
(w/h), compactness (

√
a/p), number of holes (1− η) and a horizontal crossings feature

(ĉ = median {c 1
6
w, c 3

6
w, c 5

6
w}) which estimates number of character strokes in horizon-

tal projection - see Figure 4.8. Only a fixed-size subset of c is sampled so that the
computation has a constant complexity. The output of the classifier is calibrated to
a probability function p(character|r) using Logistic Correction [98]. The parameters
were set experimentally to pmin = 0.2 and ∆min = 0.1 to obtain a high value of recall
(95.6%) (see Figure 4.9).

In the second stage, the ERs that passed the first stage are classified into character
and non-character classes using more informative but also more computationally expen-
sive features. In our method, an SVM [24] classifier with the RBF kernel [86] was used,
the parameter values σ and C were found by cross-validation on the training set. The
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Source 2MP image Intensity channel extracted

ERs selected in O(N) by the first stage of the
sequential classifier

ERs selected by the second stage of the clas-
sifier

Text lines formed Only ERs in text lines selected and labelled
by a character classifier
run time No. of ERs

Initial image - 6× 106

Char. det. (1st stage) 820ms 2671

Char. det. (2nd stage) 130ms 40
Text line formation 20ms 25
Character Recognition 110ms 25
Sequence Selection 15ms 12

Figure 4.6 Typical number of regions and timings in each stage (character detection in a single
channel only) on a standard 2GHz PC
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Figure 4.7 In the first stage of the sequential classification the probability p(character|r) of
each ER is estimated using incrementally computable descriptors that exploit the inclusion
relation of ERs. (a) A source image cut-out and the initial seed of the ER inclusion sequence
(marked with a red cross). (b) The value of p(character|r) in the inclusion sequence, ERs
passed to the second stage marked red
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Figure 4.8 The horizontal crossings feature used in the 1st stage of ER classification
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Figure 4.9 The precision-recall curve of the first stage of the sequential classifier obtained
by cross-validation. The configuration used in the experiments marked red (recall 95.6%,
precision 67.3%)
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(a) (b) (c)

Figure 4.10 The features used by the sequential character classifier allow detection of charac-
ters in various scripts - Armenian (a), Russian (b) and Kannada (c). Note that the training
set contains only Latin characters.

κ = 0 κ = 5 κ = 6 κ = 14 κ = 15 κ = 93
(a) (b)

Figure 4.11 The number of boundary inflexion points κ. (a) Characters. (b) Non-textual
content

classifier uses all the features calculated in the first stage and the following additional
features:

• Hole area ratio. ah/a where ah denotes number of pixels of region holes. This
feature is more informative than just the number of holes (used in the first stage)
as small holes in a much larger region have lower significance than large holes in a
region of comparable size.

• Convex hull ratio. ac/a where ac denotes the area of the convex hull of the region.

• The number of outer boundary inflexion points κ. The number of changes
between concave and convex angle between pixels around the region border (see
Figure 4.11). A character typically has only a limited number of inflexion points
(κ < 10), whereas regions that correspond to non-textual content such as grass or
pictograms have boundary with many spikes and thus more inflexion points.

Let us note that all features are scale-invariant, but not all are rotation-invariant -
namely the aspect ratio and the horizontal crossings. They also enable detecting char-
acters of different scripts, even though the training set only contains Latin alphabet (see
Figure 4.10). The features are also somewhat robust against small rotations (approx.
±15◦), so text of multiple orientations can be detected by simply rotating the input
image 6 times, at the cost of only a slightly lower precision (see Section 4.3.2).
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4.2 Text Line Formation

Let R denote the set of regions (character candidates) in all channels and scales detected
in the previous stage. Even though the cardinality ofR (and subsequently R) is linear in
number of pixels, the cardinality of the search space of all sequences is still exponential
(the complexity has decreased from 22n to 2n only).

In the proposed method, the space of all sequences is searched by effectively finding
all region triplets that could correspond to a (sub-)sequence of characters. Such triplets
are then formed into text lines by an agglomerative clustering approach, which exploits
bottom line estimates and additional typographical constraints as the distance measure
between individual clusters.

Data: a set of regions R
Result: a set of triplets T
T←− ∅;
for r1 ∈ R do

for r2 ∈ N (r1) do
if v

(
{r1, r2}

)
= 0 then

continue;
end
for r3 ∈ N (r2) do

if v
(
{r2, r3}

)
= 0 then

continue;
end
t←− {r1, r2, r3};
if v′(t) = 1 then

T←− T ∪ t;
end

end

end

end
Algorithm 1: Exhaustive enumeration of region pairs and triplets to form initial text
line candidates

In the first step of the text line formation (see Algorithm 1), character candidates r1 ∈
R are exhaustively enumerated and region pairs and triplets are formed by considering
region’s r1 neighbours r2 ∈ N (r1) and neighbours of the neighbours r3 ∈ N (r2). In our
method, a region r2 is considered a neighbour of r1

(
r2 ∈ N (r1)

)
, if r2 is amongst K = 5

closest regions to r1, where the distance of two regions is measured as the distance of
their centroids. Additionally, a left-to-right direction of the text is enforced by limiting
the set r2 ∈ N (r1) to regions r2 whose centroid is to the right of the centroid of r1, i.e.
cx(r2) > cx(r1) where cx(r) denotes the x-coordinate of the region’s r centroid.

In the exhaustive search, region pairs (r1, r2) and (r2, r3) and region triplets (r1, r2, r3)
are pruned by constraints v (respectively v′), which verify that the region pair (resp.
region triplet) corresponds to the trained typographical model and which ensure the
exhaustive search does not combinatorially explode. In our method both constraints
are implemented as an AdaBoost classifier [116]; the binary constraint v uses height
ratio and region distance normalized by region width as features, whilst the ternary
constraint v′ uses distance from the bottom line normalized by text line height and
region centroid angle. In our experiments, the classifiers were trained on the ICDAR
2013 Training set.

In the second step (see Algorithm 2), each triplet is first turned into a text line (of a
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Data: a set of triplets T
Result: a set of text lines L
// Estimate parameters of each triplet and create an initial set of text lines

L←− ∅;
for {r1, r2, r3} ∈ T do

b←− bottom line estimate of {r1, r2, r3};
x←− minimal x-coordinate of {r1, r2, r3};
x←− maximal x-coordinate of {r1, r2, r3};
h←− maximal height of {r1, r2, r3};
l←−

(
{r1, r2, r3}, b, x, x, h

)
;

L←− L ∪ l;
end
// Agglomerative clustering of text lines

repeat
// Find two closest text lines

d←− dmax;
for l ∈ L do

for l′ ∈ L \ l do
if dist(l, l′) < d then

d←− dist(l, l′);
m←− l,m′ ←− l′;

end

end

end
if d < dmax then

// Merge the two text lines

M = {r1, . . . , rn ∈ m} ∪ {r1, . . . , rn′ ∈ m′};
estimate b, x, x, h for M ;

L←− L ∪
(
M, b, x, x, h

)
;

L←− L \m1,m2;

end

until d < dmax;
Algorithm 2: Text line formation
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length 3) and an initial bottom line direction b is estimated by Least Median of Squares.
In addition to the bottom line estimate, a horizontal bounding-box which contains all
(3) text line regions is calculated and its co-ordinates x (left), x (right) and h (height)
are kept as well.

Next, text lines l and l′ with smallest mutual distance dist(l, l′) are found, the two sets
of their regions are merged together and a new bottom line direction and bounding-box
co-ordinates are updated based on the merged set of text line regions. The distance
between two lines dist(l, l′) is defined as normalized vertical distance between their
bottom lines measured at the beginning and end of a bounding-box formed as a union
of the two text lines’ bounding-boxes

dist(l, l′) =
max(|bl(χ)− bl′(χ)|, |bl(χ′)− bl′(χ′)|)

min(hl, hl′)

χ = min(xl, xl′)

χ′ = min(xl, xl′) (4.13)

The process continues until the smallest distance between any two text lines is below
the threshold dmax (in our experiments, we set dmax = 0.2).

As a final step of the text line formation, conflicting text lines are eliminated - two (or
more) text lines are in conflict if they contain the same region, which is not permitted
as we assume that a character can be present in one word only (see Section 4.2.2).
Conflicting text lines are typically created in images where the text is arranged into
multiple rows - in such case, the same region is a member of two or more different
triplets (this is quite common as there is no limitation in Algorithm 1 to ensure unique
assignment of a region into one triplet), but in the second step the triplets are not
merged together into a single text line because their bottom line direction is completely
different.

In order to eliminate the conflicts, text lines which share at least one region with
another text line are first grouped into clusters based on the presence of identical regions
- two text lines are a member of the same cluster if they have at least one region in
common. This process therefore forms isolated text clusters consisting of multiple text
lines, which are (possibly transitively) “connected” to each other by a shared region(s),
and on contrary each region is present in precisely one cluster. Each cluster is then
processed individually in the following iterative process: First, the text line with the the
highest number of regions in the cluster is added to the output and all text lines which
share a region with the selected text line (including the selected one) are removed from
the cluster. The process then continues until the text cluster does not contain any text
line. This can be viewed as a voting process, where in each cluster text lines vote for
text direction and the text line with highest number of regions (i.e. the text direction of
the longest text line) gets selected for the output, whilst all text lines which shared any
region with the selected text line (which must have different text direction, otherwise
they would have been merged into the selected text line in the previous process) are
eliminated.

Note that the algorithm is not affected by the order in which the text lines are
processed, because in the first step each text cluster is a transitive closure (where the
binary relation between two text lines is given by the existence of a shared region), and
in the second step the ordering is given by the descending number of regions in each
text line.
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→ ↘ ↓ ↙ ← ↖ ↑ ↗

Figure 4.12 Character recognition features: Input character (left). Features of the chain-code
bitmap for each direction (right).

Figure 4.13 Random samples from the training set. The set contains 5580 characters from 90
fonts with no distortions, blurring or rotations

4.2.1 Character Recognition

Let R denote a set of all text lines’ regions, i.e.

R =
⋃

l∈L
{r1, . . . , rn ∈ l} (4.14)

Each candidate region r ∈ R is labelled with a Unicode code(s) using an (approxima-
tive) nearest-neighbour classifier.

A set of labels L̂(r) ∈ A of a region r is defined as

L̂(r) =
{
l(t) : t ∈ NK(f(r)) | ‖f(t)− f(r)‖ ≤ d̄(l(t))

}
(4.15)

where l(t) denotes label of the training sample (template) t, NK(f(r)) denotes K
nearest-neighbours to the region r in the character feature space f , d̄(l) is a maxi-
mal distance for the label (class) l and A is the set of supported Unicode characters
(alphabet). In our experiments, the alphabet consisted of 26 uppercase and 26 lowercase
Latin characters and 10 digits (|A| = 62). Let us also note that a region might not be
assigned any label, in which case it is rejected in the following step (see Section 4.2.2).

The region is first normalized to a fixed-sized matrix of 35 × 35 pixel, while retain-
ing the centroid of the region and aspect ratio. Next, a 8-directional chain-code is
generated [73] for boundary pixels and each boundary pixel is inserted into a separate
bitmap depending on what direction of chain-code is assigned to it (there are 8 bitmaps
of 35 × 35 pixels, one bitmap for each chain-code direction - see Figure 4.12). After
Gaussian blurring (σ = 1.1) each bitmap is sub-sampled to a matrix of 5× 5 pixels to
generate 25 features for each direction. In total, 25 features × 8 directions generate
200 features per region.

In our experiments, the training set consists of images with a single black letter on a
white background. In total there were 5580 training samples (62 character classes in 90
different fonts). Let us note that no further distortions, blurring, scaling or rotations
were artificially introduced to the training set, in order to demonstrate the power of
the feature representation. The method can be also easily extended to incorporate
additional characters or even scripts (see Figure 4.14), however the recognition accuracy
might be affected by the increased number of classes.

The nearest-neighbor classifier NK was implemented by an approximative nearest-
neighbor classifier [85] for performance reasons and K was set to 11. The values d̄(l)
were estimated for each class and each feature representation by a cross-validation on
the training set as an average maximal distance over all folds, multiplied by a tolerance
factor of β. The value of β represents a trade-off between detecting more characters
from fonts not in the training set and more false positives. In our experiments, we
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Figure 4.14 The method can be also easily extended to incorporate additional characters or
even whole scripts

Θ = 180 Θ = 193 Θ = 198

Figure 4.15 Character boundaries are often fuzzy and it is not possible to locally determine the
threshold value unambiguously. Note the binarization of letters “ITE” in the word ”SUITES”
- as the threshold Θ is increased their appearance goes from “IIE” through “ITE” to “m”

used the value β = 2.5, which yields the best performance on the training subset of the
ICDAR dataset (see Section 4.3).

4.2.2 Sequence Selection

Let us consider a word as a character sequence. Given a set of regions R from the
character detector with a set of Unicode labels L(r) for each region r, the method
finds a set of words (i.e. a set of character sequences) for each text line where in each
sequence a region with a label corresponds to a character and the order of the regions
in the sequence corresponds to the order of the characters in the word. Note that a
solution might not be unambiguous, because the character detector will typically output
several regions for the same character in the image (the same character can be detected
with different threshold or in a different projection - see Figure 4.15), so ultimately
there can be several different regions that produce an identical character sequence.

Given regions r1 and r2 in a text line, r1 is an immediate predecessor of r2

(
r1Pr2

)
if r1

and r2 are part of the same text line and the character associated with r1 immediately
precedes the one associated with r2 in the sequence of characters. The predecessor
relation P induces a directed graph G for each text line, such that nodes correspond to
labeled regions

G = (V ,E ) (4.16)

V = {rl ∈ R×A : l ∈ L̂(r)} (4.17)

E = {(r1
l1 , r

2
l2) : r1Pr2} (4.18)

where rl denotes a region r with a label l ∈ A. Regions which don’t have any label
assigned by the character classifier (i.e. L̂(r) = ∅) are not part of the text line graph
and are therefore eliminated in this process.

In the proposed method, the immediate predecessor relation P is modeled by ordering
regions’ centroids in the direction of the associated text line, i.e. a region r1 is a
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Figure 4.16 Threshold interval overlap τ(r1, r2). A threshold interval is an interval of thresh-
olds during which the region has not changed its OCR label (red). Note that as the threshold
is increased the region grows or merges with other regions and the label changes
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predecessor of r2 if the centroid of r1 comes before the centroid of r2 in the text line
direction, the regions’ pixels do not overlap and there is no other region closer to r2

(measured as a distance of the centroids) which satisfies the conditions.
Each node rl and edge (r1

l1
, r2
l2

) has an associated score s(rl) and s(r1
l1
, r2
l2

) respectively

s(rl) = α1ψ(r) + α2ω(rl) (4.19)

s(r1
l1 , r

2
l2) = α3τ(r1, r2) + α4λ(l1, l2) (4.20)

where α1 . . . α4 denote weights which are determined in a training stage.
Region text line positioning ψ(r) is calculated as a negative sum of squared

Euclidian distances of the region’s top and bottom points from estimated position of
top and bottom text line respectively. This unary term is incorporated to prefer regions
which better fit on the text line.

Character recognition confidence ω(rl) estimates the probability, that the region
r has the character label l based on the confidence of the character classifier (see Sec-
tion 4.2.1). The estimate is calculated by taking the sum of (approximative) distances
in the character feature space of at most K nearest templates from training set with
the label l, normalized by the distance of the nearest template dmin

dmin(r) = min
t′∈NK(f(r))

d(t′, r) (4.21)

ω(rl) ≈
1

K

∑

t∈NK(f(r)):l(t)=l

dmin(r)

d(t, r)
(4.22)

d(x, y) = ‖f(x)− f(y)‖ (4.23)

Threshold interval overlap is a binary term which is incorporated to express
preference for segmentations that follow one after another in a word to have a similar
threshold. A threshold interval is an interval of thresholds during which the region has
not changed its OCR label. A threshold interval overlap τ(r1, r2) is the intersection of
intervals of regions r1 and r2 (see Figure 4.16).

Transition probability λ(l1, l2) estimates the probability that the label (character)
l1 follows after the label l2 in a given language model. Transition probabilities are
calculated in a training phase from a dictionary for a given language.

As a final step of the method, the directed graph is constructed with corresponding
scores assigned to each node and edge (see Figure 4.17), the scores are normalized by
width of the area that they represent (i.e. node scores are normalized by the width of
the region and edge scores are normalized by the width of the gap between regions)
and a standard dynamic programming algorithm is used to select the path with the
highest score. The sequence of regions and their labels induced by the optimal path
is then broken down into a sequence of words by calculating a median of spacing sm
between individual regions in the whole sequence and by introducing a word boundary
where the spacing is above 2sm. This process associates a sequence of words (or a single
word if no word boundary is found) with each text line, which is the final output of the
method.
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4.3 Experiments

4.3.1 Character Detector

An experimental validation shows that 85.6% characters in the ICDAR 2013 dataset [53]
are detected as ERs in a single channel and that 94.8% characters are detected if
the detection results are combined from all channels (see Table 4.1). A character is
considered as detected if bounding box of the ER matches at least 90% of the area of
the bounding box in the ground truth. In the proposed method, the combination of
intensity (I), intensity gradient (∇), hue (H) and saturation (S) channels was used as it
was experimentally found as the best trade-off between short run time and localization
performance.

4.3.2 ICDAR 2013 Dataset

The proposed method was evaluated on the ICDAR 2013 Robust Reading competition
dataset [53] (which is the same dataset as in the 2011 competition), which contains 1189
words and 6393 letters in 255 images. There are some challenging text instances in the
dataset (reflections, text written on complicated backgrounds, textures which resemble
characters), but on the other hand the text is English only, it is mostly horizontal and
the camera is typically focused on the text area.

Using the ICDAR 2013 competition evaluation protocol [139], the method reaches
the recall of 71.3%, precision of 82.1% and the f-measure of 76.3% in text localization
(see Figure 4.19 for sample outputs). The average processing time is 1.6s per image.

The method achieves significantly better recall (71%) than the winner of ICDAR 2013
Robust Reading competition (66%) and the recently published method of Yin et al. [144]
(68%). The overall f-measure (76%) outperforms all published methods (see Table 4.2),
but the precision is slightly worse than the winner of the ICDAR competition.

The main cause for the lower precision in text localization in some images are missed
characters, which then result in a word being only partially detected or detected as
multiple words; this is heavily penalized by the evaluation protocol, because such word
detection is assigned a precision of 0% (see Figure 4.20). The proposed method also
fails to detect text where there are not enough regions to form a text line (the text
formation algorithm needs to form at least one triplet - see Section 4.2), where the
word consists of connected letters (even if the line is formed, such region consisting of

Channel R (%) P (%)

R 83.3 7.7
G 85.7 10.3
B 85.5 8.9
H 62.0 2.0
S 70.5 4.1
I 85.6 10.1
∇ 74.6 6.3

Channel R (%) P (%)

I∪H 89.9 6.0
I∪S 90.1 7.2
I∪∇ 90.8 8.4
I∪H∪S 92.3 5.5
I∪H∪∇ 93.1 6.1
I∪R∪G∪B 90.3 9.2
I∪H∪S∪∇ 93.7 5.7

all (7 ch.) 94.8 7.1

Table 4.1 Recall (R) and precision (R) of character detection by ER detectors in individual
channels and their combinations. The channel combination used in the experiments is in bold
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method recall precision f-measure

proposed method 72.4 81.8 77.1
Yin et al. [144] 68.3 86.3 76.2

TexStar (ICDAR’13 winner) [53] 66.4 88.5 75.9
Kim (ICDAR’11 winner) [118] 62.5 83.0 71.3

Table 4.2 Text localization results on the ICDAR 2013 dataset
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Figure 4.18 Text localization performance on the rotated ICDAR 2013 dataset

method recall precision f-measure

proposed method 45.4 44.8 45.2
Weinman et al. [136] 41.1 36.5 33.7

Table 4.3 End-to-end text recognition results on the ICDAR 2013 dataset (case-sensitive).
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Figure 4.19 Text localization and recognition results on the ICDAR 2013 dataset. Ground
truth marked green, method output marked red

r = 0.6 p = 0.43 r = 0.33 p = 0.33 r = 0.33 p = 0.5

Figure 4.20 The main cause for the lower precision in text localization in some images are
missed characters, which then result in a word being only partially detected or detected as
multiple words. Such partial/multiple detections are heavily penalized by the evaluation
protocol (overall image recall r and precision p denoted below each image)
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(a) (b) (c) (d)

Figure 4.21 Samples of missed text in the ICDAR 2013 dataset. Not enough letters to form a
text line (a), very low contrast (b), letters are connected to the surrounding area which has
the same color (c) and multiple characters joint together (cursive) (d).
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Figure 4.22 Precision and recall of end-to-end word detection and recognition on the Street
View Text dataset. The configuration with the highest f-measure (68.1%) marked red

multiple letters is then rejected by the character classifier) or where there is no threshold
in any projection which separates a character from its background - see Figure 4.21.

In end-to-end text recognition, the method correctly localized and recognized 549
words (46%), where a word is considered correctly recognized if all its characters match
the ground truth using case-sensitive comparison, and the method “hallucinated” 60
words in total which do not have any overlap with the ground truth.

The proposed method outperforms the method of Weinman et al. [136] (see Table 4.3),
mostly benefiting from a superior text localization phase. The dataset was also exploited
in the ICDAR 2015 Robust Reading competition (see Section 4.3.4, Table 4.7).

In the second experiment, the dataset was rotated by 5◦ increments in the [−45◦; 45◦]
interval, thus creating a synthetic dataset of 4845 images of multi-oriented text with
complete annotations. The ability of the proposed method to detect text of different
orientations was then evaluated by calculating the average text localization f-measure
for each dataset rotation (see Figure 4.18). With small rotations (≤ 15◦) the f-measure
drops only slightly (the recall remains the same, but the precision is slightly worse),
but both the recall and the precision drops for rotations over 30◦. If the pipeline is
altered to rotate the input image 6 times (using 15◦ increments) and to combine the
rotated channels in the sequence selection stage, the precision on the original dataset
drops from 82.1% to 68.1% and the recall remains virtually the same. However, for the
rotated dataset the recall is maintained across all rotations and the precision is only
slightly worse for rotations over 35◦ (see Figure 4.18 - red).
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method f-measure

proposed method 68.1
proposed method (general language model) 64.7

T. Wang et al. [134] 46.0
K. Wang et al. [132] 38.0

Table 4.4 End-to-end word detection and recognition results on the Street View dataset

AVIS YMCA

CASBAH

TRIPLE

DOOR

THE

THE

HOULIHAN

HOULIHAN

GRAND

BOHEMIAN

HOTEL

Figure 4.23 Text localization and recognition results on the SVT dataset. Ground truth
marked green, method output marked red

4.3.3 Street View Text Dataset

The Street View Text (SVT) dataset [132] contains 647 words and 3796 letters in 249
images harvested from Google Street View. Images in the dataset are more challenging
because text is present in different orientations, the variety of fonts is bigger and the
images are noisy; on the other hand, the task formulation is slightly easier because with
each test image the evaluated method is also given a list of words (called lexicon) and
the method only needs to localize (and therefore recognize) words from the lexicon. Let
us note that not all lexicon words are in the image (these are called confuser words)
and vice-versa not all words present in the image are in the lexicon.

In order to make a fair comparison with the previously published work [134, 132] and
to make the proposed method compatible with the aforementioned task formulation,
the proposed pipe-line was slightly modified in order to exploit the presence of a lexicon.
Firstly, the character transition probabilities λ(c1, c2) (see Section 4.2.2) were calculated
for each image individually from its associated lexicon, which makes the method prefer
character sequences present in the lexicon. And secondly, the output of the method was
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(a) (b) (c)

Figure 4.24 Samples of missed text in the SVT dataset. Letters are connected to the sur-
rounding area which has the same color (a), multiple letters joint together (b) and artistic
fonts (c)
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THE
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COM

HOLLYWOOD

POSTERS

POSTERS

Figure 4.25 “False positives” in the SVT dataset are frequently caused by confusing actual
text for a confuser word from the lexicon (left column) or by incorrect ground truth where
“confuser” words from the lexicon are actually present in the image (right column)

further refined using the image lexicon - the words whose edit distance from a lexicon
word is below a selected threshold were considered a match and included in the final
output, whereas words whose edit distance was above the threshold were discarded.
The edit distance threshold is a parameter which makes the method accept more or less
similar output words as lexicon words (see Figure 4.22).

Using the same evaluation protocol as [134], the proposed method achieves the f-
measure of 68.1% for the best edit distance threshold, which significantly outperforms
the state-of-the-art methods (see Table 4.4). The method is able to cope with low-
contrast and noisy text and high variety of different fonts (see Figure 4.23 for output
examples). The average processing time is 3.1s per image, as the dataset images have
a higher resolution.

It can also be observed that many of the detections which are considered as false
positives are caused by actual text in the image. This is either caused by the fact that
the edit distance of the detected text is too close to a confuser word (see Figure 4.25
- left column) or by incorrect ground truth where confuser words are actually present
in the image (see Figure 4.25 - right column). The method fails to detect text where
letters are connected to the surrounding area which has the same color, where multiple
letters joint together or where the font is artistic and therefore is not present in the
training set (see Figure 4.24).
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Figure 4.26 Text localization and recognition results on the ICDAR 2015 Incidental scene text
dataset. Best viewed zoomed in color.

If general character transition probabilities λ(c1, c2) for English (i.e. the same ones
as in the Section 4.3.2) are used instead of lexicon-specific ones for each image, the f-
measure drops to 64.7%, which suggests that the method is still competitive even with
a general language model.

4.3.4 ICDAR 2015 Competition

The proposed method was used as the baseline method1 in the ICDAR 2015 Robust
Reading Competition [52] (see Figure 4.26). In the 2015 competition, the emphasis
was on the end-to-end text recognition evaluation, rather than on the individual sub-
tasks (text localization, text segmentation, cropped word recognition) as in the previous
years, mainly because the interpretation of individual subtasks’ results is problematic
because of the evaluation methodology (see Figure 4.20 for an illustration of the prob-
lems in the text localization protocol). Three different datasets were exploited for the
evaluation: Incidental scene text, Video Text and Focused scene text.

The new Incidental scene text dataset contains 17, 548 annotated text regions in 1670
scene text images captured with Google Glass. The dataset consists of significantly
more challenging images due to blur, different text orientations, small text dimensions
and many textures similar to text. It was introduced to reduce the possibility of over-
fitting and to address the aforementioned problems of the ICDAR 2013 Dataset (see
Section 4.3.2), which is now referred to as the Focused scene text dataset.

In order to make a fair comparison between methods and to see the impact of prior
knowledge, each dataset comes with three lexicons of a different size: the Strong lexicon
contains 100 words specific for each image, the Weak lexicon contains all words in the
dataset and the Generic lexicon contains 90K English words.

1The proposed method did not participate in the competition directly to avoid any conflict of interest
because the authors helped with data annotation of the newly introduced dataset
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Method
Strong Weak Generic

p r f p r f p r f

Stradvision-2 67.9 32.2 43.7 - - - - - -
proposed method 62.2 24.4 35.0 25.0 16.6 19.9 18.3 13.6 15.6

Stradvision-1 28.5 39.7 33.2 - - - - - -
NJU 48.8 24.5 32.6 - - - - - -

BeamSearch CUNI 37.8 15.7 22.1 33.7 14.0 19.8 29.6 12.4 17.5
Deep2Text-MO [144, 143] 21.3 13.8 16.8 21.3 13.8 16.8 21.3 13.8 16.8

OpenCV+Tessaract 40.9 8.3 13.8 32.5 7.4 12.0 19.3 5.0 8.0
BeamSearch CUNI+S 81.0 7.2 13.3 64.7 5.9 10.9 35.0 3.8 6.9

Table 4.5 ICDAR 2015 Robust Reading competition [52] - End-to-end Incidental text
recognition

Method MOTP MOTA ATA

proposed method 69.5 59.8 41.8
Stradvision-1 69.2 56.5 28.5

USTB-TexVideo [144, 143] 65.1 45.8 19.8
Deep2Text-I [144, 143] 62.1 35.4 18.6

USTB-TexVideo-II-2 [144, 143] 63.5 50.5 17.8
USTB-TexVideo-II-1 [144, 143] 60.5 21.2 13.8

Table 4.6 ICDAR 2015 Robust Reading competition [52] - End-to-end Video text recognition

Method
Strong Weak Generic

p r f p r f p r f

VGGMaxBBNet [47] 89.6 83.0 86.2 - - - - - -
Stradvision-1 88.7 75.0 81.3 84.0 73.7 78.5 69.5 65.0 67.2

proposed method 85.9 69.8 77.0 61.5 64.8 63.1 50.7 58.1 54.2
Deep2Text-II [144, 143] 81.7 69.8 75.3 81.7 69.8 75.3 81.7 69.8 75.3

NJU 80.2 69.6 74.5 - - - - - -
Deep2Text-I [144, 143] 84.0 66.7 74.4 84.0 66.7 74.4 84.0 66.7 74.4

MSER-MRF 84.5 61.4 71.13 - - - - - -
BeamSearch CUNI 67.9 59.0 63.1 65.1 57.5 61.0 59.4 52.9 56.0
OpenCV+Tessaract 75.7 49.0 59.5 69.5 47.1 56.0 51.0 37.6 43.3

BeamSearch CUNI+S 92.8 15.4 26.4 89.1 13.5 23.3 65.5 12.0 20.3

Table 4.7 ICDAR 2015 Robust Reading competition [52] - End-to-end Focused text recognition
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On the Incidental Scene Text dataset, the proposed method placed second using the
Strong lexicon (topped only by the deep-network based StradVision method, which is
not published) and placed first using the Weak lexicon (see Table 4.5). The best result
with the Generic lexicon is achieved by the BeamSearch method, which is based on the
proposed method differing only is its more sophisticated language model.

For the cropped word recognition subtask, the proposed method recognized 14.2%
words correctly. The main reason for the lower performance when compared to the end-
to-end setup is the requirement to initially detect at least 3 characters on a line, which
is less likely to be successful for images of individual cut out words (and impossible
for words containing less than 3 characters) - 33.8% individual words were missed
completely in the cropped word recognition setup because of this limitation.

On the Video Text dataset containing 15 test video sequences, the proposed method
(by processing the video frame by frame and by feeding its output to the FoT tracker [131])
outperformed all participants (see Table 4.6) in all three metrics [54]: the Multiple Ob-
ject Tracking Precision (MOTP), the Multiple Object Tracking Accuracy (MOTA) and
the Average Tracking Accuracy (ATA).

On the Focused Scene Text dataset (i.e. the ICDAR 2013 Dataset), the proposed
method in the end-to-end setup is outperformed only by the deep network of Jaderberg
et al. [47] trained on significantly more data and the deep-network based StradVision
method, which is not published (see Table 4.7).
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5 Efficient Unconstrained Scene Text Detector

5.1 FASText Keypoint Detector

The FASText keypoint detector is, as the name suggests, based on the well-known FAST
corner detector by Rosten and Drummond [111, 112]. The standard FAST detects
certain letters by firing on character corners (e.g. the letter “L” or “P”) or corners of
character stroke endings if the character is sufficiently thick (e.g. the ending of the letter
“l”), but is unable to detect characters whose stroke doesn’t have a corner or an ending
(e.g. the letter “O” or the digit “8”). Moreover, in a typical scene image the standard
FAST detector produces many false and repeated detections (see Section 5.5.1), which
unnecessarily slows down the processing.

Considering we are only interested in detecting character strokes, the FAST detector
is modified to introduce two novel keypoint classes: the Stroke Ending Keypoint (SEK)
matches a stroke ending, whilst the Stroke Bend Keypoint (SBK) matches a curved
segment of a stroke (see Figure 5.2).

For each pixel p in an image, pixel intensities I around a circle of 12 pixels x ∈
{1 . . . 12} are examined and each pixel x is assigned one of three labels

L(p, x) =




d, Ix ≤ Ip −m (darker)
s, Ip −m < Ix < Ip +m (similar)
b, Ix ≥ Ip +m (brighter)

(5.1)

where m is a margin, which is a parameter of the detector.
The pixel p is a Stroke Ending Keypoint (SEK) if there exists two contiguous

partitionings Ps and Pd (or Ps and Pb) such that |Ps| ∈ {1, 2, 3} and |Pd| = 12−|Ps| (or
|Pb| = 12 − |Ps|), where Pl denotes a contiguous partitioning of the pixels x with the
label l. In other words, the pixel p is a SEK if there exists a contiguous circle segment
of at least 9 pixels which are darker (or brighter) than the pixel p, whilst the remaining
pixels of the circle have a similar intensity to the pixel p. The keypoint can be either

Figure 5.1 The FASText detector output. Stroke End Keypoints (SEK) marked red, Stroke
Bend Keypoints (SBK) marked blue.
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Figure 5.2 The Stroke Ending Keypoint (left) and the Stroke Bend Keypoint (right). Pixels of
the Ps partitioning marked red, pixels of the Pb partitioning marked white, inner pixels Pi

for the connectivity test in purple.
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Figure 5.3 The proposed pipeline. The average processing time and the imprecision (number
of false and repeated detections) for a 1MPx image denoted below each stage.

positive or negative, depending whether the intensity of the stroke is higher or lower
than the background.

Using the same notation, the pixel p is a Stroke Bend Keypoint (SBK) if there
exists four contiguous partitionings Ps, P

′
s, Pd, P

′
d or (Ps, P

′
s, Pb, P

′
b) such that |Ps|, |P ′s| ∈

{1, 2, 3} and |Pd| > 6, |P ′d| = 12− |Pd| − |Ps| − |P ′s| (or |Pb| > 6, |P ′b| = 12− |P ′b| − |Ps| −
|P ′s|). The pixel p is a SBK if there is a contiguous circle segment of at least 6 pixels
which are darker (or brighter) than the pixel p, two distinct circle segments which have
similar intensity to the pixel p and the remaining pixels on the circle are darker (or
brighter) than the pixel p.

The implementation of the aforementioned tests is very straightforward and the tests
can be computed by a single pass around the 12 pixel circle. The computational com-
plexity of the detector is reduced even further (by the factor of 2) by inserting a simple
rule, which examines the opposite pixels and tests that all opposite pixels are brighter
than Ip + t or darker than Ip − t. If none of the conditions is met, the pixel p cannot
be a FASText keypoint and is quickly rejected without any further processing.

The final verification step of the FASText detector is a connectivity test, which
ensures the inner circle pixels Pi between the pixel p and the pixels Ps also satisfy the
intensity margin, i.e. Ip −m < Ix < Ip + m ∀x ∈ Pi (see Figure 5.2). The purpose
of the test is to eliminate false detections, because if the pixel p is placed on a stroke,
the pixels in the Ps partitioning(s) must be connected to it. Let us note that this test
does not represent any significant overhead, as in the worst case only 3 pixels have to
be examined.

57



0 50 100 150 200 250 300 350 400 450
Missed Letters

20

40

60

80

100

120

140

Im
p
re
ci
si
o
n

8.0

13.0

18.0

21.0
23.0

FASTex-16
FASTex

Figure 5.4 The margin parameter m controls the trade-off between imprecision (the number
of false and repeated detections) and the number of missed characters. The value used in
experiments marked by the red cross, the detector with the circle size of 16 pixels denoted
FASText-16.

In order to eliminate FASText keypoints which lie close to each other, a simple non-
maximum suppression is performed on a 3×3 neighborhood and only the keypoint with
the highest contrast (i.e. max(Ix − Ip) : x ∈ Pb respectively max(Ip − Ix) : x ∈ Pd) is
kept.

The optimal values of the detector parameters were found experimentally using the
ICDAR 2013 Training dataset [53], which contains 4784 characters in 229 images. A
character is considered as detected, if there is at least one keypoint whose position
intersects with the the character ground truth segmentation. The value of each param-
eter was chosen to obtain the best trade-off between the detector imprecision and the
number of missed characters (recall).

The detector imprecision is a precision-like metric designed to cater for repeated
detections of the same character and is calculated as |D|

|GT | , where |D| is the number

of detections and |GT | is the number of characters in the ground truth. For example,
the imprecision of 10 implies that a detector produces 10 times more detections than
characters in the ground truth, but it does not suggest what ratio of ground truth
characters is actually detected.

The circle size of 12 pixels is the first detector parameter. Its value is lower than the
original FAST [111] value of 16 pixels to allow detection of characters (strokes) which
are close to each other (see Figure 5.4). Let us note that a circle size smaller than 12
pixels is not possible because of the connectivity test.

The second detector parameter is the margin m, which controls the trade-off between
imprecision (the number of false and repeated detections) and the number of missed
characters (see Figure 5.4). The optimal margin value was found to be m = 13.

Because the FASText detector is only triggered by strokes whose width is comparable
to the pixel circle radius (i.e. two or three pixel wide), the keypoints are detected in
an image scale-space to allow detection of wider strokes. Each level of the pyramid is
calculated from the previous one by reducing the image size by the scaling factor f (in
our implementation, bilinear approximation was used for image resizing). The scaling
factor f is the third parameter of the detector and its optimal value was experimentally
found to be 1.6 (see Figure 5.5).

The last parameter of the detector is the maximum number of keypoints per image.
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Figure 5.5 The scaling parameter f controls the trade-off between imprecision and the number
of missed characters. The value used in experiments marked by the red cross.

An input image is partitioned into uniformly-sized cells (see Figure 5.3) and the number
of detected keypoints in each cell is limited by ordering the keypoints by their contrast
and eliminating the keypoints whose position in the ordered set is above the cell limit.
The value of 4000 keypoints per image was chosen as a value commonly used by standard
keypoint detectors [113].

5.2 Keypoint Segmentation

As successfully demonstrated by the methods based on MSERs [92, 144], individual
characters can be segmented from the background using a threshold value unique for
each character (in MSERs, the threshold value is found as the center of the region
stability interval).

In the proposed method, the threshold value is found directly from the FASText
keypoint. Given a positive FASText keypoint p and its associated set of darker pixels
Pd, the segmentation threshold θp is the intensity value just below the intensity of the
darkest pixel in Pd

θp = min(Ix)− 1 |x ∈ Pd (5.2)

Similarly, for a negative FASText keypoint, the segmentation threshold θp is the
intensity value just above the intensity of the darkest pixel in Pb

θp = max(Ix) + 1 |x ∈ Pb (5.3)

The threshold value θp is then effectively exploited by a standard flood-fill algo-
rithm [126] to generate a stroke for each FASText keypoint.

5.3 Segmentation Classification

In order to reduce the still relatively high false detection rate of the FASText detector
(the average imprecision is 25 segmentations to one ground truth character) and to
make the processing in the subsequent stages faster, an efficient classification stage is
inserted to filter the output of the proposed detector.

59



The classification uses the concept of text fragments, where a text fragment can be
a single character, a group of characters, a whole word or a part of a character. This
allows the classifier to discriminate between text and clutter, regardless of whether a
character is only partially detected, or whether a group of characters is detected as one
region. As a result, the common assumption of region-based methods (see Section 2.1.2)
that one region corresponds to one character is dropped, allowing for a higher recall.

5.3.1 Character Strokes Area

The Character Strokes Area (CSA) feature is based on the observation that a character
can be drawn by taking a brush with a diameter of the stroke width and drawing through
middle points of the character. In order to estimate the “strokeness” of a region we
introduce a novel feature based on Stroke Support Pixels (SSPs) which exploits the
observation that one can draw any character by taking a brush with a diameter of the
stroke width and drawing through certain points of the character (see Figure 5.7) - we
refer to such points as stroke support pixels (SSPs). The SSPs have the property that
they are in the middle of a character stroke, which we refer to as the stroke axis, the
distance to the region boundary is half of the stroke width, but unlike skeletons they
do not necessary form a connected graph.

Since the area (i.e. the number of pixels) of an ideal stroke is the product of the
stroke width and the length of the stroke, the “strokeness” can be estimated by the
Character Strokes Area (CSA) feature ς which compares the actual area of a region A
with the ideal stroke area calculated from the SSPs As

ς =
As
A

(5.4)

The feature estimates the proportion of region pixels which are part of a character
stroke and therefore it allows to efficiently differentiate between text regions (regardless
of how many characters they represent - see Figure 5.8) and the background clutter.
The feature is efficiently computed from a region distance map, it is invariant to scaling
and rotation and it is more robust to noise than methods which aim to estimate a single
stroke width value [29] as small pixel changes do not cause unproportional changes to
the estimate.

In order to estimate the character strokes area, a distance transform map is calculated
for the region binary mask and only pixels corresponding to local distance maxima are
considered (see Figure 5.6). These are the Stroke Support Pixels (SSPs), because the
pixels determine the position of a latent character stroke axis. In order to estimate the
area of the character strokes Ās, one could simply sum the distances associated with
the SSPs

Ās = 2
∑

i∈S
di (5.5)

where S are the SSPs and di is the distance of the pixel i from the boundary.

Such an estimate is correct for an straight stroke of an odd width, however it becomes
inaccurate for strokes of an even width (because there are two support pixels for a
unitary stroke length) or when the support pixels are not connected to each other as a
result of stroke curvature, noise at the region boundary or changing stroke width (see
Figure 5.6). We therefore propose to compensate the estimate by introducing a weight
wi for each SSP, which ensures normalization to a unitary stroke length by counting
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Figure 5.6 Character Strokes Area (CSA) ς calulation for a straight stroke of an odd (a) and
even (b) width and for a curved stroke - distance map di (c) and Stroke Support Pixel weights
wi (d). Stroke Support Pixels (SSPs) denoted red
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Figure 5.8 Examples of the Character Strokes Area (CSA) ς values for character (top row),
multi-character (middle row) and background (bottom row) connected components. Distance
map denoted by pixel intensity, Stroke Support Pixels (SSPs) denoted red

the number of pixels in a 3× 3 neighborhood

As = 2
∑

i∈S
widi wi =

3

|Ni|
(5.6)

where |Ni| denotes the number of SSPs within the 3× 3 neighborhood of the pixel of i
(including the pixel i itself). The numerator value is given by the observation that for
a straight stroke, there are 3 support pixels in the 3×3 neighborhood (see Figure 5.6a).

5.3.2 Approximate Character Strokes Area

The main drawback of the CSA feature introduced in Section 5.3.1 is its computational
complexity, given by the need to calculate a distance map and employ an iterative non-
maxima suppression over the whole region. We therefore also propose an approximate,
but significantly faster calculation of the Character Strokes Area feature.

Given a segmentation r, a set of Stroke Straight Keypoints (SSK) is found for each
Stroke Ending Keypoint (SEK) p which intersects with the segmentation r using the
following iterative algorithm (see Figure 5.9):

1. Take the Stroke Ending Keypoint p as the starting point
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Figure 5.9 Character Stroke Area (CSA) approximation by FASText keypoints. Initial Stroke
Ending Keypoint (a). First Stroke Straight Keypoint found (b). Next Stroke Straight Key-
point found (c). All Stroke Straight Keypoints found, stroke length illustrated by the red
line (d).

t / region [ms]

Full CSA (Section 5.3.1) 0.895
Approximated CSA (Section 5.3.2) 0.015

Table 5.1 Character Strokes Area calculation time comparison.

2. Move the point p to the darkest (brightest) pixel of the Ps pixels (always in the
direction away from the stroke ending)

3. The point p is a Stroke Straight Keypoint (SSK) if there are four contiguous par-
titionings Ps, P

′
s, Pd, P

′
d or (Ps, P

′
s, Pb, P

′
b) such that |Ps|, |P ′s| ∈ {1, 2, 3} and |Pd| >

3, |P ′d| = 12− |Pd| − |Ps| − |P ′s| (or |Pb| > 3, |P ′b| = 12− |P ′b| − |Ps| − |P ′s|)

4. If the point p is a SSK, repeat from the step 2, otherwise terminate

The character strokes area As(r) of the segmentation r is then calculated as

As(r) =
∑

p∈SSKr

3|Ps|p +
∑

p∈SSBr

3
(
|Ps|p + |Ps|′p

)
(5.7)

where SSKr and SBKr is the set of Stroke Straight respectively Stroke Bend Keypoints
intersecting with the segmentation r and |Ps|p (|Ps|′p) is the size of the partitioning Ps
(P ′s) associated with the keypoint p.

In the end, four rotation- and scale-invariant features are employed by a Gentle
AdaBoost classifier [34] to classify FASText segmentations as either a text fragment
(typically a character) or a background clutter: compactness, convex hull area ratio,
holes area ratio (all calculated as part of the segmentation process) and the Character
Strokes Area (CSA).

The proposed approximate algorithm is almost 60 times faster (see Table 5.1), yet
the impact on the classification accuracy is negligible (see Figure 5.10).
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Figure 5.10 The impact of the Character Strokes Area (CSA) feature in the segmentation
classification. The full CSA feature (blue), the approximated CSA feature (green), a classifier
without the CSA feature (red)

5.4 Text Clustering

In this stage, the unordered set of FASText segmentations classified as text fragments
is clustered into ordered sequences, where each cluster (sequence) shares the same text
direction in the image. In other words, individual characters (or groups of characters
or their parts) are clustered together to form lines of text.

Let us denote the set of text fragment segmentations as R. For each segmentation
ri ∈ R, all segmentations rj ∈ R are found, such that ri and rj are neighbors. The
segmentation ri is a neighbor of rj (denoted N(ri, rj), if they are sufficiently close to
each other (the distance is measured as the distance of their centroids - see Figure 5.11a)
and they have a comparable scale

N(ri, rj) =





1, ‖c(ri)− c(rj)‖ < α
√

max(A(ri), A(rj))

max
(
A(ri)
A(rj) ,

A(rj)
A(ri)

)
< β

0, otherwise

(5.8)

where c(r) is the centroid of the segmentation r and A(r) is the convex hull area of the
segmentation r. The parameter values α = 4 and β = 10 were chosen experimentally
and they provide sufficient tolerance for a vast majority of typographical models. Since
the segmentation neighbor search is a simple search in a 2D space of points (centroids),
it can be effectively implemented by partitioning the image into smaller cells and al-
ways considering segmentations just in the closest cells. Alternatively, one could use a
standard (approximate) nearest-neighbor algorithm.

Each pair of neighboring segmentations then casts a vote for their text direction,
where the text direction is given by the line which passes through the two centroids
of the neighboring pair (see Figure 5.11b). Drawing inspiration from the well-known
Hough transform [11], each vote for a text direction is represented in the polar system
ρ = x sin(θ) + y cos(θ), so that vertical text lines can also be detected.

The two-dimensional parameter space (ρ, θ) is quantized into a fixed-sized matrix, so
that small differences in the line parameters are eliminated and the text directions with
the highest number of votes (i.e. the directions with the highest number of supporting
pairs) can be easily found as local maxima in the matrix (see Figure 5.11c).
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Figure 5.11 Segmentations are clustered to form lines of text. A selected segmentation r and
the radius of neighbor search (a). All neighboring pairs of the segmentation r and their
corresponding text directions (b). Quantized text direction votes in the (ρ, θ) parameter
space (c). Final text line clusters (d).

Each local maxima with its parameters (ρ, θ) then unambiguously induces a text
cluster by simply taking all segmentations whose centroid lies on the line (ρ, θ) (or the
distance is smaller than the quantization error) and ordering them in the direction of
the line.

Since one segmentation can lie on multiple lines with different parameters (ρ, θ),
the local maxima are processed in a decreasing order of number of their votes and each
segmentation is allowed to be included only in a single text cluster. This process ensures
that longer text lines are preferred over shorter ones and that intra-line text clusters
are eliminated (see Figure 5.11d).

5.5 Experiments

5.5.1 Character Detection

In the first experiment, the character detection ability of the FASText keypoint detector
is compared with the existing detectors. The evaluation uses the standard ICDAR 2013
Test dataset (which is commonly used for text localization evaluation - see Section 5.5.2)
containing 6393 characters in 255 images annotated on the pixel level, i.e. ground truth
character segmentations are provided.

In Table 5.2, keypoints detected by the FASText and the FAST detector [111] are
compared by processing all images in the dataset and calculating keypoint statistics
for each detector (see Figure 5.13 for a visual comparison on a sample image). The
number of total detections is almost identical for both detectors, but the proposed
FASText detector detects 3 times more characters (only 111 characters are missed
against 328 missed characters by the FAST detector). A character is considered as
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Figure 5.12 Scene text images with different scripts, fonts and orientations. Source images (top
row), detected FASText keypoints (middle row) and resulting text segmentations (bottom
row). Best viewed zoomed in color.

Figure 5.13 Keypoints detected by the FAST (left) and by the FASText detector (right). The
size of the mark is proportional to the scale where the keypoint was detected.
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|D| |D|
|GT | |FN | t [ms]

FAST [111] 608992 105.1 328 29.62
FASText 574713 99.1 111 24.77

Table 5.2 Keypoints detected on characters in the ICDAR 2013 dataset. The number of de-

tected keypoints |D|, imprecision |D|
|GT | , the number of characters without a keypoint |FN |

and the average time per image t.

|D| |D|
|GT | |FN | t [ms]

MSER [80] 401972 69.4 1128 328.09
ER detector (Section 4.1) 636729 109.9 657 1068.41
FASText 215325 37.2 857 82.01
FASText+AdaBoost 62394 10.8 1240 122.10

Table 5.3 Detected segmentations in the ICDAR 2013 dataset. The number of segmentations

|D|, imprecision |D|
|GT | , the number of characters without a valid segmentation |FN | and the

average time per image t.

missed by a detector, if there is no keypoint whose position coincides with any pixel
in the character ground truth segmentation. The FASText detector is also 20% faster
than the FAST detector.

In Table 5.3, segmentations produced by the detectors commonly used in scene text
localization are compared with the segmentations produced by the proposed detector
on all images in the ICDAR dataset. Both the standalone FASText detector and the
FASText detector with the subsequent classification stage (see Section 5.3) are included,
whilst the FAST detector is not included as it does not provide segmentations. A char-
acter is considered as detected by a detector, if the detector produces a segmentation,
whose bounding-box overlap with the character ground truth bounding-box is above
60%. If no such segmentation exists, a character is considered as missed.

The FASText detector produces 2 times less segmentations and still detects 25% more
characters than the commonly exploited MSER [80] detector and at the same time it
is 4 times faster. The FASText detector with the proposed subsequent classification
phase produces 7 times less segmentations and is almost 3 times faster than the MSER
detector. The number of missed characters is 10% higher than the MSER detector,
where the characters incorrectly rejected by the classifier are typically thin letters such
as “i” or “l”.

5.5.2 Text Localization and Recognition

In order to evaluate scene text localization ability of the proposed detector, we have
adapted the ER-based pipeline from Section 4 and replaced the initial stages (ER detec-
tion, character classification and the text line formation) with the proposed detector.
The resulting experimental pipeline therefore consists of the FASText detector with
the proposed segmentation classification and the text clustering, followed by the local
iterative segmentation refinement and character recognition adapted from the original
pipeline.

In the first experiment, the pipeline was evaluated on the most cited ICDAR 2013
Robust Reading Dataset [53], which consists of 1189 words and 6393 letters in 255
images. There are many challenging text instances in the dataset (reflections, text
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Figure 5.14 Text localization and recognition examples from the ICDAR 2013 dataset.
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method R P F tl tr t

FASText pipeline 69.3 84.0 76.8 0.15 0.4 0.55
ER pipeline (Chapter 4) 72.4 81.8 77.1 ? ? 0.8
Zamberletti et al. [147] 70.0 85.6 77.0 0.75 N/A N/A
Yin et al. [144] 68.3 86.3 76.2 0.43 N/A N/A
ICDAR 2013 winner [53] 66.4 88.5 75.9 ? ? ?

Table 5.4 Text localization results and average processing times on the ICDAR 2013 dataset.
Recall R, precision P , f-measure F , localization time tl, recognition time tr and the total
processing time t (in seconds).

written on complicated backgrounds, textures which resemble characters), but on the
other hand the text is English only, it is mostly horizontal and the camera is typically
focused on the text area (see output examples in the Figure 5.14).

Using the same evaluation protocol as the latest ICDAR 2013 Robust Reading com-
petition [53], the text localization accuracy compares favorably to the state-of-the-art
methods (see Table 5.4), whilst the proposed method is significantly faster - in text
localization (tl), the proposed pipeline is 3 times faster than the best method.

In the second experiment, the pipeline (without the text recognition stage) was quali-
tatively evaluated on a dataset with a wide variety of scripts, fonts and text orientations.
As demonstrated in the Figure 5.12, the FASText keypoint detector is able to detect
many different scripts, fonts and orientations and it together with the subsequent steps
can be easily exploited to produce text line segmentations.
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6 Single Shot Text Detection and Recognition

In this chapter, we propose a novel end-to-end framework which simultaneously detects
and recognizes text in scene images. As the first contribution, we present a model which
is trained for both text detection and recognition in a single learning framework, and we
show that such joint model outperforms the combination of state-of-the-art localization
and state-of-the-art recognition methods [41, 38].

As the second contribution, we show how the state-of-the-art object detection meth-
ods [109, 110] can be extended for text detection and recognition, taking into account
specifics of text such as the exponential number of classes (given an alphabet A, there
are up toAL possible classes, where L denotes maximum text length) and the sensitivity
to hidden parameters such as text aspect and rotation.

The method achieves state-of-the-art results on the standard ICDAR 2013 [53] and
ICDAR 2015 [52] datasets and the pipeline runs end-to-end at 10 frames per second on
a NVidia K80 GPU, which is more than 10 times faster than the fastest methods.

Figure 6.1 The proposed method detects and recognizes text in scene images at 10fps on an
NVidia K80 GPU. Ground truth in green, model output in red. The image taken from the
ICDAR 2013 dataset [53]
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Figure 6.2 Method overview. Text region proposals are generated by a Region Proposal Net-
work [109]. Each region with a sufficient text confidence is then normalized to a variable-
width feature tensor by bilinear sampling. Finally, each region is associated with a sequence
of characters or rejected as not text.

6.1 Fully Convolutional Network

The proposed model localizes text regions in a given scene image and provides text
transcription as a sequence of characters for all regions with text (see Figure 6.2). The
model is jointly optimized for both text localization and recognition in an end-to-end
training framework.

We adapt the YOLOv2 architecture [109] for its accuracy and significantly lower
complexity than the standard VGG-16 architecture [120, 50], as the full VGG-16 archi-
tecture requires 30 billion operations just to process a 224×224 (0.05 Mpx) image [109].
Using YOLOv2 architecture allows us to process images with higher resolution, which is
a crucial ability for text recognition - processing at higher resolution is required because
a 1Mpx scene image may contain text which is 10 pixels high [52], so scaling down the
source image would make the text unreadable.

The proposed method uses the first 18 convolutional and 5 max pool layers from
the YOLOv2 architecture, which is based on 3 × 3 convolutional filters, doubling the
number of channels after every pooling step and adding 1 × 1 filters to compress the
representations between the 3 × 3 filters [109]. We remove the fully-connected layers
to make the network fully convolutional, so our model final layer has the dimension of
W
32 × H

32 × 1024, where W a H denote source image width and height [109].

6.2 Region Proposals

Similarly to Faster R-CNN [110] and YOLOv2 [109], we use a Region Proposal Network
(RPN) to generate region proposals, but we add rotation rθ which is crucial for a
successful text recognition. At each position of the last convolutional layer, the model
predicts k rotated bounding boxes, where for each bounding box r we predict 6 features
- its position rx, ry, its dimensions rw, rh, its rotation rθ and its score rp, which captures
the probability that the region contains text.

The bounding box position and dimension is encoded with respect to predefined
anchor boxes using the logistic activation function, so the actual bounding box position
(x, y) and dimension (w, h) in the source image is given as

x = σ(rx) + cx (6.1)

y = σ(ry) + cy (6.2)

w = aw exp(rw) (6.3)

h = ah exp(rh) (6.4)

θ = rθ (6.5)
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Figure 6.3 Anchor box widths and highs, or equivalently scales and aspects, were obtained by
k-means clustering on the training set. Requiring that each ground truth box had intersection-
over-union of at least 60% with one anchor box led to k = 14 boxes.

where cx and cy denote the offset of the cell in the last convolutional layer and aw and
ah denote the predefined height and width of the anchor box a. The rotation θ of the
bounding box is predicted directly by rθ.

We followed the approach of Redmon et al . [109] and found suitable anchor box
scales and aspects by k-means clustering on the aggregated training set (see Section 6.5).
Requiring the anchor boxes to have at least 60% intersection-over-union with the ground
truth led to k = 14 different anchor boxes dimensions (see Figure 6.3).

For every image, the RPN produces W
32 × H

32×6k boxes (there are 6 estimated param-
eters for every anchor - x,y,w,h,θ and the text score rp), which would make subsequent
computation too complex and it is therefore necessary to only select a subset.

In the training stage, we use the YOLOv2 approach [109] by taking all positive and
negative samples in the source image, where every 20 batches we randomly change the
input dimension size into one of {352, 416, 480, 544, 608}. A positive sample is the region
with the highest intersection over union with the ground truth, the other intersecting
regions are negatives.

At runtime, we found the best approach is to take all regions with the score rp
above a certain threshold pmin and to postpone the non-maxima suppression after
the recognition stage, because regions with very similar rp scores could produce very
different transcriptions, and therefore selecting the region with the highest rp at this
stage would not always correspond to the correct transcription (for example, in some
cases a region containing letters “TALY” may have slightly higher score rp than a region
containing the full word “ITALY”). We found the value pmin = 0.1 to be a reasonable
trade-off between accuracy and speed.
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Type Channels Size/Stride Dim/Act

input C - W × 32
conv 32 3× 3 leaky ReLU
conv 32 3× 3 leaky ReLU

maxpool 2× 2/2 W/2× 16
conv 64 3× 3 leaky ReLU

BatchNorm
recurrent conv 64 3× 3 leaky ReLU

maxpool 2× 2/2 W/4× 8
conv 128 3× 3 leaky ReLU

BatchNorm
recurrent conv 128 3× 3 leaky ReLU

maxpool 2× 2/2× 1 W/4× 4
conv 256 3× 3 leaky ReLU

BatchNorm
recurrent conv 256 3× 3 leaky ReLU

maxpool 2× 2/2× 1 W/4× 2
conv 512 3× 2 leaky ReLU
conv 512 5× 1 leaky ReLU

conv |Â| 7× 1 W/4× 1

log softmax

Table 6.1 Fully-Convolutional Network for Text Recognition

6.3 Bilinear Sampling

Each region detected in the previous stage has a different size and rotation and it is
therefore necessary to map the features into a tensor of canonical dimensions, which
can be used in recognition.

Faster R-CNN [110] uses the RoI pooling approach of Girshick [35], where a w ×
h × C region is mapped onto a fixed-sized W ′ × H ′ × C grid (7 × 7 × 1024 in their
implementation), where each cell takes the maximum activation of the w

W × h
H cells in

the underlying feature layer.
In our model, we instead use bilinear sampling [48, 50] to map a w × h × C region

from the source image into a fixed-height wH′

h ×H ′×C tensor (H ′ = 32). This feature
representation has a key advantage over the standard RoI approach as it allows the
network to normalize rotation and scale, but at the same to persist the aspect and
positioning of individual characters, which is crucial for text recognition accuracy (see
Section 6.4).

Given the detected region features U ∈ Rw×h×C , they are mapped into a fixed-height

tensor V ∈ R
wH′
h
×H′×C as

Vc
x′,y′ =

w∑

x=1

h∑

y=1

Uc
x,yκ(x− Tx(x′))κ(y − Ty(y′)) (6.6)

where κ is the bilinear sampling kernel κ(v) = max(0, 1 − |v|) and T is a point-wise
coordinate transformation, which projects co-ordinates x′ and y′ of the fixed-sized tensor
V to the co-ordinates x and y in the detected region features tensor U.

The transformation allows for shift and scaling in x- and y- axes and rotation and its
parameters are taken directly from the region parameters (see Section 6.2).
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4 × |Â| as the most probable class at given column (middle) and the

resulting sequence (bottom)

6.4 Text Recognition

Given the normalized region from the source image, each region is associated with a
sequence of characters or rejected as not text in the following process.

The main problem one has to address in this step is the fact, that text regions of
different sizes have to be mapped to character sequences of different lengths. Tra-
ditionally, the issue is solved by resizing the input to a fixed-sized matrix (typically
100 × 32 [47, 119]) and the input is then classified by either making every possible
character sequence (i.e. every word) a separate class of its own [47, 41], thus requiring
a list of all possible outputs in the training stage, or by having multiple independent
classifiers, where each classifier predicts the character at predefined position [45].

Our model exploits a novel fully-convolutional network (see Table 6.1), which takes a
variable-width feature tensor W ×H ′×C as an input (W = wH′

h ) and outputs a matrix
W
4 × |Â|, where A is the alphabet (e.g . all English characters). The matrix height is

fixed (it’s the number of character classes), but its width grows with the width of the
source region and therefore with the length of the expected character sequence.

As a result, a single classifier is used regardless of the position of the character in
the word (in contrast to Jaderberg et al . [45], where there is an independent classifier
for the character “A” as the first character in the word, an independent classifier for
the character “A” as the second character in the word, etc). The model also does not
require prior knowledge of all words to be detected in the training stage, in contrast to
the separate class per character sequence formulation [47].

The model uses Connectionist Temporal Classification (CTC) [40, 119] to transform
variable-width feature tensor into a conditional probability distribution over label se-
quences. The distribution is then used to select the most probable labelling sequence
for the text region (see Figure 6.4).

Let y = y1, y2, · · · , yn denote the vector of network outputs of length n from an
alphabet A extended with a blank symbol “–”.
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The probability of a path π is then given as

p(π|y) =
n∏

i=1

yiπi , π ∈ Ân (6.7)

Â = A ∪ {−}

where yiπi denotes the output probability of the network predicting the label πi at the
position i (i.e. the output of the final softmax layer in Table 6.1).

Let us further define a many-to-one mapping B : Ân 7→ A≤n, where Â≤n is the
set of all sequences of shorter or equal in length. The mapping B removes all blanks
and repeated labels, which corresponds to outputting a new label every time the label
prediction changes. For example,

B(−ww− al− k) = B(wwaaa− l− k−) = walk

B(−f− oo− o−−d) = B(ffoo− ooo− d) = food

The conditional probability of observing the output sequence w is then given as

p(w|y) =
∑

π:B(π)=w

p(π|y), w ∈ A≤n (6.8)

In training, an objective function that maximizes the log likelihood of target labellings
p(w|y) is used [40]. In every training step, the probability p(wgt|y) of every text region
in the mini-batch is efficiently calculated using a forward-backward algorithm similar to
HMMs training [107] and the objective function derivatives are used to update network
weights, using the standard back-propagation algorithm (wgt denotes the ground truth
transcription of the text region).

At test time, the classification output w∗ should be given by the most probable path
p(w|y), which unfortunately is not tractable, and therefore we adapt the approximate
approach [40] of taking the most probable labelling

w∗ ≈ B
(
argmax p(π|y)

)
(6.9)

At the end of this process, each text region in the image has an associated content
in the form of a character sequence, or it is rejected as not text when all the labels are
blank.

The model typically produces many different boxes for a single text area in the
image, we therefore suppress overlapping boxes by a standard non-maxima suppression
algorithm based on the text recognition confidence, which is the p(w∗|y) normalized
by the text length.

6.5 Training

We pre-train the detection CNN using the SynthText dataset [41] (800, 000 synthetic
scene images with multiple words per image) for 3 epochs, with weights initialized from
ImageNet [109]. The recognition CNN is pre-trained on the Synthetic Word dataset [45]
(9 million synthetic cropped word images) for 3 epochs, with weights randomly initial-
ized from the N (0, 1) distribution.

As the final step, we train both networks simultaneously for 3 epochs on a combined
dataset consisting of the SynthText dataset, the Synthetic Word dataset, the ICDAR
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Figure 6.5 End-to-end scene text recognition samples from the ICDAR 2013 dataset. Model
output in red, ground truth in green. Note that in some cases (e.g . top-right) text is correctly
recognized even though the bounding IoU with the ground truth is less than 80%, which would
be required by the text localization protocol [53]. Best viewed zoomed in color
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end-to-end word spotting speed
strong weak generic strong weak generic fps

Deep2Text [145] 0.81 0.79 0.77 0.85 0.83 0.79 1.0
FASText (Chapter 5) 0.77 0.63 0.54 0.85 0.66 0.57 1.0

StradVision [52] 0.81 0.79 0.67 0.84 0.83 0.70 ?
Jaderberg et al . [47] 0.86 - - 0.90 0.76 - *0.3

Gupta et al . [41] - - - - 0.85 - *0.4
proposed method 0.89 0.86 0.77 0.92 0.89 0.81 *10.0

Table 6.2 ICDAR 2013 dataset - End-to-end scene text recognition accuracy (f-measure), de-
pending on the lexicon size and whether digits are excluded from the evaluation (denoted as
word spotting). Speed reports for methods using a GPU marked with an asterisk

end-to-end word spotting speed
strong weak generic strong weak generic fps

FASText (Chapter 5) 0.35 0.20 0.16 0.37 0.21 0.16 1.0
Stradvision [52] 0.44 - - 0.46 - - ?

TextProposals [38, 47] 0.53 0.50 0.47 0.56 0.52 0.50 0.2
proposed method 0.54 0.51 0.47 0.58 0.53 0.51 *9.0

Table 6.3 ICDAR 2015 dataset - End-to-end scene text recognition accuracy (f-measure).
Speed reports for methods using a GPU marked with an asterisk

2013 Training dataset [53] (229 scene images captured by a professional camera) and
the ICDAR 2015 Training dataset [52] (1000 scene images captured by Google Glass).
For every image, we randomly crop up to 30% of its width and height. We use standard
Stochastic Gradient Descent with momentum 0.9 and learning rate 10−3, divided by 10
after each epoch. One mini-batch takes about 500ms on a NVidia K80 GPU.

Note that in preparation of this paper, we unfortunately did not have enough time
and available computing resources to let the training process run for more epochs and
to experiment with the traditional deep learning tricks; despite this, the model still
performs well and compares favorably to the state of the art.

6.6 Experiments

We trained our model once and then evaluated its accuracy on two standard datasets.
We follow the standard ICDAR Robust Reading Competition protocol [53, 52] for the
End to End task, where the objective is to localize and recognize all words in the image
in a single step.

In the ICDAR evaluation schema, each image in the test set is associated with a
list of words (lexicon), which contains the words that the method should localize and
recognize, as well as an increasing number of random “distractor” words. There are
three sizes of lists provided with each image, depending how heavily contextualized
their content is to the specific image:

• strongly contextualized - 100 words specific to each image, contains all words in the
image and the remaining words are “distractors”

• weakly contextualized - all words in the testing set, same list for every image

• generic - all words in the testing set plus 90k English words
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Figure 6.6 End-to-end scene text recognition samples from the ICDAR 2015 dataset. Model
output in red, ground truth in green. Best viewed zoomed in color
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Figure 6.7 All the images of the ICDAR 2013 Testing set where the proposed method fails to
correctly recognize any text (i.e. images with 0% recall)

A word is considered as correctly recognized, when its Intersection-over-Union (IoU)
with the ground truth is above 0.5 and the transcription is identical, using case-
insensitive comparison [52].

6.6.1 ICDAR 2013 dataset

The ICDAR 2013 Dataset [53] is the most-frequently cited dataset for scene text eval-
uation. It consists of 255 testing images with 716 annotated words, the images were
taken by a professional camera so text is typically horizontal and the camera is almost
always aimed at it. The dataset is sometimes referred to as the Focused Scene Text
dataset.

The proposed model achieves state-of-the-art text recognition accuracy (see Ta-
ble 6.2) for all 3 lexicon sizes. In the end-to-end set up, where all lexicon words
plus all digits in an image should be recognized, the maximal f-measure it achieves is
0.89/0.86/0.77 for strongly, weakly and generally contextualized lexicons respectively.
Each image is first resized to 544×544 pixels, the average processing time is 100ms per
image on a NVidia K80 GPU for the whole pipeline.

While training on the same training data, our model outperforms the combination
of the state-of-the-art localization method of Gupta et al . [41] with the state-of-the-
art recognition method of Jaderberg et al . [47] by at least 3 per cent points on every
measure, thus demonstrating the advantage of the joint training for the end-to-end task
of our model. It is also more than 20 times faster than the method of Gupta et al . [41].

Let us further note that our model would not be considered as a state-of-the-art text
localization method according to the text localization evaluation protocol, because at
least a 80% intersection-over-union with bounding boxes created by human annotators
is required. Our method in contrast does not always achieve the required 80% overlap,
but it is still mostly able to recognize the text correctly even when the overlap is lower
(see Figure 6.5).
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Figure 6.8 Main failure modes on the ICDAR 2015 dataset. Blurred and noisy text (top),
vertical text (top) and small text (bottom). Best viewed zoomed in color

We argue that evaluating methods purely on text localization accuracy without sub-
sequent recognition is not very informative, because the text localization “accuracy”
only aims to fit the way human annotators create bounding boxes around text, but it
does not give any estimates on how well a text recognition phase would read text post
a successful localization, which should be the prime objective of the text localization
metrics.

The main limitation of the proposed model are single characters or short snippets of
digits and characters (see Figure 6.7), which may be partially caused by the fact that
such examples are not very frequent in the training set.

6.6.2 ICDAR 2015 dataset

The ICDAR 2015 dataset was introduced in the ICDAR 2015 Robust Reading Compe-
tition [52]. The images were collected by people who were wearing Google Glass devices
and walking in Singapore, and then subsequently all images with text were selected and
annotated. The images in the dataset were taken “not having text in mind”, therefore
text is much smaller and the images contain a high variability of text fonts and sizes.
They also include many realistic effects - e.g . occlusion, perspective distortion, blur or
noise, so as a result the dataset is significantly more challenging than the ICDAR 2013
dataset (Section 6.6.1), which contains typically large horizontal text.

The proposed model achieves state-of-the-art end-to-end text recognition accuracy
(see Table 6.3 and Figure 6.6) for all 3 lexicon sizes. In our experiments, the average
processing time was 110ms per image on a NVidia K80 GPU (the image is first resized
to 608 × 608 pixels), which makes the proposed model 45 times faster than currently
the best published method of Gomez et al . [38]

The main failure mode of the proposed method is blurry or noisy text (see Figure 6.8),
which are effects not present in the training set (Section 6.5). The method also often
fails to detect small text (less than 15 pixels high), which again is due to the lack of
such samples in the training stage.
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7 Results

7.1 Applications

7.1.1 TextSpotter

The methods presented in Chapter 4 and Chapter 5 were implemented into a soft-
ware package TextSpotter. The package is implemented in C++ using STL libraries,
which makes the code easily portable to Windows, Linux and mobile devices (see Sec-
tion 7.1.2). The package uses OpenCV library [16] for low-level image processing and
classification tasks.

For demonstration purposes, an online demonstration website was set up1, so that
anyone can test methods’ capabilities using data of their own choice (see Figure 7.1).

Figure 7.1 Text Spotter on-line demo

On the website, the pipeline based on the ER detection (Chapter 4) is denoted as
TextSpotter 2013, and the FASText pipeline (Chapter 5) is denoted as TextSpotter 2015.

7.1.2 Mobile Application for Translation

Text Lens is a mobile application for Android devices which uses mobile phone camera
to capture images and then detects and recognizes text using the scene text recognition
method described in Chapter 4. Text Lens runs fully on the mobile device without any
need for an Internet connection (the only time Internet connection is required is when
offline dictionary is not sufficient and the user requires complex translation by an online
service).

1http://www.textspotter.org/
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(a)

(b) (c)

Figure 7.2 The mobile application for automated text translation. Initial screen (a), text
detection and recognition using our method (b) and its translation from English to Spanish
(c)

When launched, a user is presented with a video stream from the mobile phone
camera (in the same way that a standard photo-taking application works). When the
user touches the screen, a photo is taken and it is sent to the scene text recognition
algorithm. The algorithm detects all text areas present in the image, highlights them
with a green rectangle and outputs their textual content, which then a user can chose
to translate (see Figure 7.2).

This is significantly faster than typing in the text and it is especially useful in situ-
ations when a user is not familiar with the alphabet of the text which he is trying to
translate (for example a European tourist in China trying to translate Chinese text).

7.2 Available Code

7.2.1 FASText Detector

We have released the source code for the keypoint detector and the text clustering
algorithm presented in Chapter 5. The code is publicly available at GitHub 2, including
the trained classification model described in Section 5.3.

7.2.2 ER Detector

The Extremal Region (ER) detection and classification using incrementally computed
descriptors presented in Section 4.1.2 was re-implemented by Lluis Gomez into the
OpenCV 3.0 library [9, 16, 36], the most popular computer vision library, solely based

2https://github.com/MichalBusta/FASText
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on the method’s description [91]. Although the code is completely independent from the
one used in this thesis, the reported results [37] are comparable to the results presented
in this thesis. Note that the reported results are not completely identical, because
different training data and a different classifier was used.
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8 Conclusion

In this thesis, the problem of Scene Text Localization and Recognition was studied.
Three different methods were proposed in the course of the research, each one advancing
the state of the art and improving the accuracy.

The first method (see Chapter 4) detects individual characters as Extremal Regions
(ER), where the probability of each ER being a character is estimated using novel fea-
tures with O(1) complexity and only ERs with locally maximal probability are selected
across several image projections (channels) for the second stage, where the classifica-
tion is improved using more computationally expensive features. Each character is
recognized individually by an OCR classifier trained on synthetic fonts and the most
probable character sequence is selected by dynamic programming in the very last stage
of the processing, when context of each character in a text line is known.

To our knowledge, the method was the first published method [88] to address the
complete problem of scene text localization and recognition as a whole - all previous
work in the literature focused solely on different subproblems, such as only detecting
positions of text or only recognizing text previously found by a human annotator. The
method’s low complexity also allowed for real-time image processing, as the first method
in the literature [91]. The efficiency and the ability to automatically process an image
or a video in real time and to output text in a standard digital format allowed creation
of many practical applications, such as a mobile translation tool (see Chapter 7). The
ER detector itself became the de-facto standard component of scene text localization
methods - in the ICDAR 2015 Robust Reading Competition, 20 out of 22 participating
methods including the winner use the ER detector [52].

Observing that characters in virtually any script consist of strokes, a novel FASText
detector was proposed (see Chapter 5). The FASText detector finds text fragments
(characters, parts of characters or character groups) irrespective to text orientation,
scale or script and it is significantly faster and produces significantly less false detec-
tions than the commonly used ER detector. Additionally, an efficient text clustering
algorithm based on text direction voting is proposed, which as well as the previous
stages is scale- and rotation- invariant and supports a wide variety of scripts and fonts.

The third method exploits a deep-learning model (Chapter 6), which is trained for
both text detection and recognition in a single trainable pipeline. The method localizes
and recognizes text in an image in a single feed-forward pass, it is trained purely on
synthetic data so it does not require obtaining expensive human annotations for training
and it achieves state-of-the-art accuracy in the end-to-end text recognition on two
standard datasets, whilst being an order of magnitude faster than the previous methods
- the whole pipeline runs at 10 frames per second on a NVidia K80 GPU. We also
show the advantage of the joint training for the end-to-end task, by outperforming the
ad-hoc combination of the state-of-the-art localization and state-of-the-art recognition
methods, while exploiting the same training data.

The research has been supported by a prestigious Google PhD Fellowship, the con-
ference papers describing the methods have been awarded the ICDAR 2013 Best
Student Paper Award [93] and the ICDAR 2015 Best Paper Award [94]. The
presented work currently has over 1200 citations in Google Scholar and 500 citations in
the Web of Science.
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