639 research outputs found

    An Application of the Mobile Transient Internet Architecture to IP Mobility and Inter-Operability

    Get PDF
    We introduce an application of a mobile transient network architecture on top of the current Internet. This paper is an application extension to a conceptual mobile network architecture. It attempts to specifically reinforce some of the powerful notions exposed by the architecture from an application perspective. Of these notions, we explore the network expansion layer, an overlay of components and services, that enables a persistent identification network and other required services. The overlay abstraction introduces several benefits of which mobility and communication across heterogenous network structures are of interest to this paper. We present implementations of several components and protocols including gateways, Agents and the Open Device Access Protocol. Our present identification network implementation exploits the current implementation of the Handle System through the use of distributed, global and persistent identifiers called handles. Handles are used to identify and locate devices and services abstracting any physical location or network association from the communicating ends. A communication framework is finally demonstrated that would allow for mobile devices on the public Internet to have persistent identifiers and thus be persistently accessible either directly or indirectly. This application expands IP inter-operability beyond its current boundaries

    A Mobile Transient Internet Architecture

    Get PDF
    This paper describes a new architecture for transient mobile networks destined to merge existing and future network architectures, communication implementations and protocol operations by introducing a new paradigm to data delivery and identification. The main goal of our research is to enable seamless end-to-end communication between mobile and stationary devices across multiple networks and through multiple communication environments. The architecture establishes a set of infrastructure components and protocols that set the ground for a Persistent Identification Network (PIN). The basis for the operation of PIN is an identification space consisting of unique location independent identifiers similar to the ones implemented in the Handle system. Persistent Identifiers are used to identify and locate Digital Entities which can include devices, services, users and even traffic. The architecture establishes a primary connection independent logical structure that can operate over conventional networks or more advanced peer-to-peer aggregation networks. Communication is based on routing pools and novel protocols for routing data across several abstraction levels of the network, regardless of the end-points’ current association and state. The architecture also postulates a new type of network referred to as the Green Network. The Green Network has protocols to coordinate routing traffic and to allow for the identification and authentication of devices, services, users and content characterized as Digital Entities. Transmission is assumed to initiate and terminate at transient physical locations. The network implements every reasonable effort to coordinate a prompt delivery to the transient end-points using whatever means available. This paper is a conceptual logical model of the intended architecture and specifics about its particular components and their implementations will be discussed in future papers

    The InterMesh Network Architecture

    Get PDF
    The rapid spread of mobile devices, the emergence of key wireless technologies, and the nomadic user and computing lifestyles on current networks are continuously evolving in synergy. MANETs, WSNs, and WMNs are examples of self-organizing unstructured networks that have their local communication paradigms and are optimized to perform under their particular physical constraints. Wireless Mesh Networks (WMNs) are particularly interesting because of their ability to operate in a pure ad-hoc mode or to include some infrastructural components, making them suitable for a multitude of applications. Inter-networking among the heterogeneous access networks is currently offered by the Internet Protocol (IP). However, the evolution of and the innovation within these networks is greatly hindered by the rigidity of the current Internet implementation and its lag in efficiently supporting flexible unstructured communication paradigms. To broaden the user\u27s innovation space and to efficiently embrace the characteristics of emerging networks, clean-slate architectural approaches are being pursued. In this paper, we propose InterMesh, a novel iner-networking platform for wireless mesh networks. InterMesh enables heterogeneous access networks to converge at novel Persistent Identification and Networking Layer (PINL), providing a seamless service to individual network entities. This paper identifies the key concepts behind the InterMesh network platform, presents an interesting prototype implementation that can coexist with today\u27s Internet while still be able to evolve separately, and discusses some preliminary performance results of the prototype

    Efficient User Controlled Inter-Domain SIP Mobility: Authentication, Registration, and Call Routing

    Get PDF
    Over the past decade, multimedia services have gained significant acceptance and played an important role in the convergence of IP networks. Supporting mobility in IP (Internet Protocol) networks is a crucial step towards satisfying the nomadic communication paradigms on the current Internet. The Session Initiation Protocol (SIP) presents one approach towards supporting IP mobility. Additionally, SIP is increasingly gaining in popularity as the next generation multimedia signaling and session establishment protocol. It is anticipated that the SIP infrastructure will be extensively deployed all over the Internet. In this paper, we explore an efficient approach to inter-domain SIP mobility in an attempt to improve personal and terminal mobility schemes. We succeed in applying a persistent identification framework to application level SIP addressing by introducing a level of indirection on top of the traditional SIP architecture. We refer to our approach as the Handle SIP (H-SIP). H-SIP leverages the current SIP architecture abstracting any domain binding from users. Our approach to mobility is user-controlled. We experimentally prove the efficiency of H-SIP in achieving inter-domain authentication and call routing through modeling and real-time measurements

    A Dynamic Application Partitioning and Offloading Framework to Enhance the Capabilities of Transient Clouds Using Mobile Agents

    Get PDF
    Mobile cloud computing has emerged as a prominent area of research, a natural extension of cloud computing that proposes to offer solutions for enhancing the capabilities of smart mobile devices commonly plagued by resource constraints. As one of its promising models, transient clouds aim to address the internet connectivity shortfall inherent in most solutions through the formation of ad hoc networks by devices in close proximity, then the offloading some computations (Cyber Foraging) to the created cloud. However, transient clouds, at their current state, have several limitations, concerning their expansion on a local network having a large number of devices and the management of the instability of the network due to the constant mobility of the devices. Another issue is the fact code partitioning and offloading are not addressed to fit the need of such networks, thereby rendering the distributed computing mechanism barely efficient for the Transient Cloud. In this study, we propose a transient cloud-based framework that exploits the use of multi-agent systems, enabling a dynamic partitioning and offloading of code, and facilitating the movement and the execution of code partition packets in a multi-hop ad-hoc mesh network. When created and deployed, these intelligent mobile agents operate independently or collaboratively and adapt to the continual entry and exit of devices in the neighbourhood. The integration of these trending concepts in distributed computing within a framework offers a new architecture for resource-sharing among cooperating devices that addresses the varied issues that arise in dynamic environments

    Middleware Technologies for Cloud of Things - a survey

    Get PDF
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017

    Middleware Technologies for Cloud of Things - a survey

    Full text link
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017
    • …
    corecore