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Abstract

The rapid spread of mobile devices, the emergence of key wireless technologies, and the nomadic user and com-
puting lifestyles on current networks are continuously evolving in synergy. MANETs, WSNs, and WMNs are
examples of self-organizing unstructured networks that have their local communication paradigms and are opti-
mized to perform under their particular physical constraints. Wireless Mesh Networks (WMNs) are particularly
interesting because of their ability to operate in a pure ad-hoc mode or to include some infrastructural compo-
nents, making them suitable for a multitude of applications. Inter-networking among the heterogeneous access
networks is currently offered by the Internet Protocol (IP). However, the evolution of and the innovation within
these networks is greatly hindered by the rigidity of the current Internet implementation and its lag in efficiently
supporting flexible unstructured communication paradigms. To broaden the user’s innovation space and to effi-
ciently embrace the characteristics of emerging networks, clean-slate architectural approaches are being pursued.
In this paper, we propose InterMesh, a novel iner-networking platform for wireless mesh networks. InterMesh
enables heterogeneous access networks to converge at a novel Persistent Identification and Networking Layer
(PINL), providing a seamless service to individual network entities. This paper identifies the key concepts be-
hind the InterMesh network platform, presents an interesting prototype implementation that can coexist with
today’s Internet while still be able to evolve separately, and discusses some preliminary performance results of
the prototype.

Keywords

InterMesh, Wireless mesh networks, Ad hoc networks, inter-networking, persistent identification
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1 Introduction

The increased deployment cost and centralized architectures within structured networks are hindering innova-
tion for both users and service providers on current networks. This, compounded by the limitations of today’s
Internet and telecommunication networks, is pushing vendors and enterprizes to adopt decentralized network
architectures. For instance, wireless mesh networks WMNSs are evolving as an alternative to traditional wire-
less networks. Several reasons are favoring the deployment of WMNs including, but not limited to, their low
cost, self-organization independent of any infrastructure, robustness to link failures, and broader service cover-
age. WMNs support different connectivity paradigms ranging from infrastructure/backbone networks that include
quasi-static mesh router components, to pure ad-hoc client networks (or a hybrid of both), making them suitable
for a multitude of applications [5]. Currently, WMNs have been deployed for community networks, broadband
home networks, wireless metropolitan area networks, enterprize networks, transportation networks, and wireless
local area networks (WLAN). The mesh WLAN [13], for example, eliminates the need to wire access points
(APs) within a LAN by connecting the APs with a wireless mesh reducing deployment and configuration costs.
According to [5], WMNs are not a type of ad-hoc networks. On the contrary, ad-hoc networks can be viewed as
special forms of wireless mesh networks. This is mainly because of the introduction of mesh router components
into the mesh network. These routers can provide broad coverage, robustness to the overall network, integration
with other wireless access networks (e.g., WiMax, Wi-Fi, and cellular networks), reduction in requirements on
network clients (especially in terms of configuration and routing functionality), and mobility support.

There is an indispensable need for inter-networking of WPAN-, WLAN-, WMAN:- and cellular-based wire-
less mesh networks. Currently, the Internet protocol (IP) is employed to provide this functionality at the network
layer [17]. However, today’s Internet implementation, aside from its great success, has several limitations, in-
cluding: 1) the overloading of the IP address to simultaneously indicate network location and node identity, 2)
the absence of a trustworthy environment for users to communicate, and 3) the questionable availability of cen-
tralized infrastructure and services. The advent of ubiquitous computing paradigms and the success of emerging
access networks present an inflection point for introducing fundamental paradigm shifts towards designing a fu-
ture inter-network. Hence, inter-networking mesh networks over IP will potentially limit the innovation within
such networks for both the users and the service providers.

In this paper, we present the InterMesh architecture, a novel architecture with the goal of inter-networking
heterogeneous mesh networks to provide a seamless service to individual network entities. The following key
design concepts distinguish InterMesh:

Intrinsic support for unstructured networks;

persistent identification/naming and certification of network entities;

a novel approach to dynamic and extensible network management and service provisioning using mobile
agents; and

seamless mobility.

InterMesh achieves convergence through a uniform Persistent Identification and Networking Layer (PINL), al-
lowing mesh communities to form “on-the-fly” and merge with other networks. The PINL identifies network
entities with persistent identifiers (PIs), that are globally unique, secure and accountable by design. We present a
prototype implementation of InterMesh, and we demonstrate its successful operation over native mesh networks
(of pure ad-hoc clients), and as an overlay on top of traditional IP networks, thereby achieving inter-operability
with the current Internet.

The remainder of this paper is structured as follows. Section 2| discusses the principal design decisions that
guides the development of the architecture. Section 3 describes the complete InterMesh system model, as well
as its functionality. Mobility is briefly addressed in section ??. A prototype implementation of the model is
then presented in section |5 and the deployed test-bed is discussed in section ?? with the performance results.
Section ?? reviews related work before concluding in section (8.
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2 Design Guidelines

We have previously introduced a general architectural vision for a possible future Internet what we call the Tran-
sient Network Architecture TNA [4]. TNA represents an abstract vision from which InterMesh is instantiated. In
this section, we layout the principal design guidelines that pertain to TNA and that guided the development of
InterMesh.

2.1 Area of Influence - Aol

In this paper, whenever we speak of a local network, we are referring to what we call the Area of Influence
(Aol), i.e. the Aol captures the scope of “local” when trying to understand how local is “local”. Briefly, an
Aol is a local communication community that defines its own communication protocols and network architecture
implementations. Examples of local implementations include, but are not limited to, LANs, Cellular networks,
MANETS, sensor nets, and mesh networks. These networks implement their own communication mechanisms
and protocols and can survive independently of the global system. A sketch of how currently available networks
can fit into the Aol framework, is shown in Figure 1. The figure shows how the nodes of a mesh network, for
instance, may form into an Aol. The Aols themselves may define their own local communication implementation
such as Ethernet, RF or Bluetooth, and even their own local identification mechanisms. The basic constituents of
Aols are network entities which we formally define in section 3.1. Processes, services, devices are examples of
network entities which we refer to hereafter simply as entities.

Aol [PAN] B / Aol [satellite]
Pl CEHl
Aol [cell] \ Pwuse__ Plajsa Aol [LAN]
o

Aol [sensor N
Pil 1 PIL3

PI5 /

J—
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," = /17 =)
l Pi2/cell2 ﬂ S )
J

\ Aol [cell]
P2 - g‘;'éz;’}--f'f\d EhESH]

Pl : Persistent Identifier PI3
Aol : Area of Influence

Figure 1: Examples of different Areas of Influence that form TNA

2.2 Entities and Communication

A major design decision that we adopt is the persistent identification of individual network entities, whereby each
entity has its own PI that is globally unique, and secure by design. How is this different from the traditional Inter-
net and what advantages does it offer? To answer this question, it is instructive to understand the relation between
the entity and the attachment point to which the entity is bound. Traditionally, the Internet and particularly IP has
taken a location-oriented paradigm to naming entities, i.e. the most basic entity identifier expressed as a tuple {IP
address, port number} is directly dependent on the topological IP address. This approach is intuitive in wired net-
works where an IP address identifies the wire connected to some device interface. But, does the location-oriented
paradigm hold in wireless environments? So far, the IP address performed well as a location identifier since it
inherently embeds topological information and thus fosters routing scalability. However, when mobility is intro-
duced as in the case of wireless networks, IP looses any meaning of identity reference and degenerates into a pure
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routing identifier. Coupling the entity identifier to the routing identifier hinders mobility and poorly-identifies
the actual entity, which should exist independent of network location. Several proposals have focused on solving
the mobility problem by decoupling the host identity from the attachment point [18, 21, 25]. Most of the efforts
propose inserting a level of indirection on top of the network layer that manages the abstraction of host identi-
ties. These proposals share the overlay approach on top of IP whereby a high level address is translated to an IP
address at some point and routing is an end-to-end IP-based mechanism. The bottom-line is, it is extremely hard
and inconvenient to initiate communication with an arbitrary entity on the current Internet, unless that entity has
a public IPv4 (or an IPv6) address. Unfortunately, this is not the case with the mainstream adoption of Network
Address Translators (RFC 1631) at the borders of stub domains. Additionally, even when a public IP address is
available, inefficient mobility management schemes prevail requiring centralized infrastructure and continuous
end-to-end negotiations between the endpoints over a dumb core.

We take an entity-oriented approach to naming and communication, in which the entity becomes the first-
class network citizen. Contrasted to the traditional IP approach, our starting design point is an entity with a
globally unique PI that is independent of any topological information. Starting with that, we try to design a
practical and scalable network whose main currency is the PI. For example, the network should be intelligent
enough to be able to efficiently route traffic based on the PIs. Aside from being an illustrative exercise, our
approach natively supports mobility of entities and eliminates redundancy introduced by indirection on top of IP.
Within InterMesh, and entity (e.g., a process executing on a mesh node) can initiate communication to any other
persistently identified entity within the system without having to worry about delivery.

2.3 Naming and resolution

After reviewing the limitations of the IP address and introducing our entity-oriented approach to naming, its time
to answer the main question: How do we identify entities?

We start by asserting the importance of identifier persistence. Persistence of the identifier is an attractive
property in naming. It is essential when the attributes (e.g., state and location information) of the identified entity
change continuously, but the identifier itself persists i.e. remains unchanged.

Before delving into other details, we try to answer a fundamental question: how do entities get introduced
and how are namespaces composed? There are different approaches to solving this problem and these are mainly
classified as either “top-down” or “bottom-up”. The main difference between the two is the dependence on a third
party in the former case, versus the direct exchange of identifiers in the latter. Ostensibly, the “top-down” versus
“bottom-up” paradigm is tightly coupled with trust flow [7]. For example, when a third party naming/trust system
exists, identification flows “top-down” from the system towards the entity. To clarify our position, we separate
the two critical mechanisms attached to the persistent identifier, certification and resolution as follows.

[[Aside: A note about namespace composition: It is more efficient, socially and economically, to compose the
namespaces bottom-up. This means that local namespaces are formed first before any global namespace. This
allows two key properties of a future naming system:

e In real life, trust is not provided by a single system as is the trend in the current Internet. Many systems
should be able to provide trust and coexist, and it is up to the user to trust whichever suitable system,

e There can be many different naming schemes that should all be supported and respected instead of imposing
a single global scheme on everyone,

But bottom-up name composition is pretty hard to achieve while maintaining scalability. My preliminary re-
flections for solving this problem are based on the democratic political election analogy: people are the most
important part of the political system; a government is just a small set of people that are elected and trusted by
the people. Thus governments (certification authorities) are composed bottom up. A new set of people can over-
throw their government if they get enough people to elect them. The same analogy can be applied to the three
namespace abstraction levels above. ]].
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Certification

An identifier is used by the entity for interaction with the rest of the system provided the identifier can be chal-
lenged and certified within the environment of communication whenever this is necessary. We isolate three
certification realms, depicted in Figure 2, as follows:

e [nstance (Red Realm) is defined relative to the user. It represents the authoritative domain of the user to
which a set of entities belong. For example, Figure 2/ shows a user instance (the bottom red ellipse) on two
devices (Laptop, PDA) with several active entities (processes) certified by the user instance.

e Local (Yellow Realm) is defined relative to the local network, Aol. This realm represents the authoritative
domain of an Aol which is essential for local communication among the entities of the Aol. Figure 2/shows
this realm as the middle yellow layer that aggregates and certifies several Red Realms belonging to the Aol.

e Global (Green Realm) is perhaps the most challenging to create and maintain, simply because it has to
simultaneously guarantee global certification and scalability. The Green Realm represents globally trusted
authorities. Note that at this level, many globally trusted authorities can co-exist and inter-operate avoiding
the pitfalls of a single trust system as is the case with the current Internet.

Global (Green)

[ ]

=)

Figure 2: Naming abstraction levels

The colors of the realms indicate the degree of trust within each level. For example, certification by the Green
Realm represents the highest level of trust with respect to the overall system. Certification is performed “top-
down” as shown in Figure 2. For example, an identifier belonging to the Yellow Realm (the authority of an Aol)
may be used for interactions within the Aol, provided the identifier can be challenged and trusted by the Aol
if needed. The moment it is required that the identifier be used for interactions beyond the Aol (globally), the
identifier might need to be trusted within the Green Realm. The trust mechanisms involved will depend on the
particular architecture implementation.

Resolution

In general, the PI is resolved into some information useful for the interaction between the communicating entities.
The result of the identifier resolution requires certification by the respective realm. The level (and mechanisms)
of resolution depends on the particular architecture implementation. Our design decision is to perform resolution
in a bottom-up fashion as follows: First, try to resolve against the Red Realm. A failure here will percolate the
resolution one level up against the Yellow Realm and so on to reach Green Realm.

2.4 Distributed Network Management with Mobile Agents

Fully decentralizing and automating the network management tasks has been a topic of research in distributed
systems [9]. The concept of mobile agents provides a novel approach to flexible and scalable distributed network
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management by better utilizing the network resources and minimizing human intervention [12]. For example, an
agent can move the intelligence to the resource instead of moving the resource itself which can save bandwidth.
Technologies to support mobile agents (e.g., JINI, JAVA, and CORBA) are becoming more popular and are
moving closer to mainstream acceptance. A generic definition of the term “Mobile Agent” is: an autonomous
software agent comprised of code and state which may both be mobile. The agent makes its own decisions and
listens to external requests. It can execute custom business logic, move itself across the network, terminate itself,
etc. The agent resides on customized infrastructure of agent hosts.

Within our system, we refer to mobile agents as GHOSTs, and to mobile agent hosts as SHELLs. We identify
a minimal set of GHOSTS that are disseminated into the network to provide dynamic service provisioning and
resource management. Additionally, we define a neutral interface that SHELLs expose in order to host agents and
allow them to operate securely. We describe the GHOST/SHELL model in the context of InterMesh in section 3.1.

3 InterMesh System Model and Operation

We now introduce the InterMesh system model and functionality. To allow scalable inter-networking of the
private address spaces (Aols), InterMesh assumes the existence of a “core”, a globally known rendezvous point
for the Aols. In other words, we introduce a topology consisting of the edge Aols connected to a “core”. The
reason for this assumption is to enable practical and scalable routing mechanisms between the Aols which is hard
to achieve over a flat collection of private address spaces. With this in mind, an entity wishing to communicate
beyond its Aol must specify an entry point into its Aol that correspondent entities can forward towards. The entry
point is a routing GHOST as we shall see later.

A simplistic sketch of the model is shown in Figure 3. There are three essential components within the system:
entity, neutralization environment, and network substrate.

pi-rgl

. Gateway Node
. Entity ] Neglrahzmg ::-_—} message;
O Client Node Environment » Message

Figure 3: InterMesh reference model

3.1 Components
Entity

Based on the definition in [8], an entity is the end-point of communication. It is an abstract construct that can
represent different network elements including, but not limited to, a process, a thread, a device, a cluster of
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devices, or a service. The entity is the smallest indivisible element on the network that can be mobile. All entities
within InterMesh are persistently identified and addressed.

Neutralization Environment: The GHOST/SHELL virtualization Model

As mentioned earlier in the text, GHOSTs are necessary in our system to provide efficient and extensible ser-
vice provisioning and network management. A set of nodes within the mesh Aol network provides the SHELL
framework for GHOSTSs. Part of those nodes, usually referred to as the gateway nodes, connect the mesh Aol
to the “core” substrate (e.g. Internet). Obviously, a SHELL on a gateway node exposes at least two network
interfaces to the GHOST, an internal interface to the mesh and an external interface to the “core”. Another type
of a gateway node might directly bridge different Aols, a case we do not consider in this paper. There is noth-
ing that precludes any node within the mesh to provide a SHELL. The SHELL exposes a neutralizing interface
which in essence virtualizes the actual device’s hardware resources to the residing GHOSTSs. Figure 3 shows the
neutralizing interface in green exposed by the SHELLs of the gateway nodes within the mesh Aols. GHOSTs
are themselves entities, hence, they are persistently identified. Figure 3/shows the GHOST entities in red (pi-rg/,
pi-ngl, pi-rg2, pi-ng2) executing on top of SHELLs. The GHOSTs can move between SHELLSs for reasons of
resource optimization and fault tolerance. For example, in the latter case, a GHOST that detects lack/failure of
physical resources on the hosting SHELL (storage, processing) can seamlessly relocate itself (with its state) to a
different SHELL maintaining undisrupted service. This can happen, for example, during the course of a denial
of service attack, and so GHOSTSs provide a possible approach to recover from it. GHOSTs also relocate for
control reasons, particularly to optimize the limited network resources. We have specifically addressed the agent
relocation problem for the maximization of the network resources as an optimization problem [23].

As the SHELL and GHOST interfaces are beyond the scope of this paper, we just point out the essential
properties of these interfaces. Every GHOST has a self-certification module that acts like a passport which
the GHOST can present to the SHELL for authentication through the neutralizing interface. An administrator
ships the GHOSTSs from any point within the network after which they securely self organize on top of the
SHELLs. An administrator must provide the GHOST with the administrative privileges over the SHELL. Besides
the authentication operations, the SHELL’s neutralizing interface exposes I/O and Digital Rights Management
operations to the GHOSTS.

Note that the GHOSTs do not represent infrastructural components within the Aol, but on the contrary, they
provide dynamic on-the-fly services for the rest of the entities in the Aol. For example, in an emergency (first
responder) network, we envision a set of nodes rapidly forming into an Aol with the necessary GHOSTs auto-
matically initializing and relocating to optimize the network utility. The Routing GHOST, for instance, locates
the set of nodes with Internet connectivity bridging the emergency network to the Internet.

Network Substrate

In general, the network substrate is composed of the underlying communication infrastructure and services, as
well as the mesh nodes. The infrastructure includes the edge mesh networks (Aols), and a common “core” such
as the Internet, the cellular infrastructure, or any other access/distribution network. As to the mesh nodes, we
distinguish gateway nodes which specifically serve as entry/exit points between the the mesh network and the
“core”. Other types of nodes include client nodes or mesh routers. Usually mesh routers are quasi-static, have
multiple interfaces as well as router/gateway functionality that is not present in clients (simple devices).
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3.2 Functions
Entity Naming

With the proliferation of mobile devices and the anticipated large scale of the network, comes the challenge of how
to design a system that is capable of naming individual entities at a large scale. InterMesh takes some assumptions
in this regard in order to organize entities within the system. First, in order to participate in the system, an entity
must acquire a stamped P1, i.e., a Pl associated with a stamp. The latter is a credential acquired from a certification
authority (CA) to authenticate the owner(s) of a PI. For example, a stamp can be the private key of a public/private
key pair where the CA keeps the public key and only the owner(s) of the PI keeps the private key. Second, we
isolate two classes of entities: stand-alone and delegated. A stand-alone entity obtains a globally unique stamped
PI and can present the stamp on its own when necessary. On the other hand, a delegated entity exists within a
user’s execution environment. It is specifically introduced for scalability reasons by aggregating a set of entities
under one authority: the user. This follows from the observation that processes (and threads) within an operating
system normally run within an execution environment that includes ownership and rights information based on
the user [9]. We expand on this fact to formalize the delegated entity abstraction in terms of the User-Entity
Instance Model depicted in Figure 4:

o A User Instance (UI) represents the presence of a user on a set of devices. The Ul has a stamped PI.

o A User-Entity Instance (UEI) represents an activity/service that exists and is unique under the UI. The UEI
is a delegated entity certified by the User Instance.

o A particular UI can own multiple unique UEIs. The UEI can be instantiated at most once under a UI at any
given time. All the delegated UEIs share the the authority and management scope of the Ul

e The UEI can potentially become a stand-alone entity that can migrate for example to a device under a
different user instance. In this case, the UEI must be self contained and must carry a valid stamped PI.

User Instance Ul

c1an
souelsul Aiug-1esn

T13n
souelsul Aiug-1esn

=
a
=
=3
o

o
F
U

2#904d/Ipy
€#000/Ipy

A B.

Figure 4: A. Entity Model, B. Example of Ul on 2 devices with 3 UEIs.

Note that the User Instance is an instantiation of the Red Realm shown in Figure 2. Practically, one can think
of the UI being initialized by the operating system when a user logs into a device and provides a stamped PI
that persistently identifies the UIL. One scenario here might use RFID tags [14] provided by a third party CA
that stamps the actual tags. A user presents the tag to an RFID reader on the device and the OS automatically
initializes the Ul. Entities created on the device hereafter are managed by the UL

Protocol Stack

Figure 5.A shows the logical layered structure of the native protocol stack within InterMesh. We have as well
ported an overlay version of the stack that operates as an overlay on top of IP networks (Figure 5.B). The ported
version is necessary for inter-operability with current IP networks. We focus in this subsection on the native stack
operations.
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The lower physical and link layers are common to all mesh networks. Different mesh networks have differ-
ent physical constraints and performance requirements that necessitate proactive, reactive, hybrid, hierarchical,
geographic etc. routing protocols to establish mesh connectivity [5]. The Mesh Structuring Layer - MSL ab-
stracts these connectivity specifics and routing protocols from the upper layer enabling a wide range of emerging
ad-hoc/mesh networks to be part of our architecture. The Microsoft Mesh Connectivity Layer [11] is a perfect
example of a currently implemented MSL which we discuss later.

The PINL layer is an inter-networking layer that provides the necessary network services to foster evolution
and innovation of the network. Protocols related to mesh network establishment, self-configuration, discovery,
and packet delivery between persistently identified entities belong to this layer. Presented with a P, this layer is
intelligent enough to deliver a packet to its destination(s). Reliable delivery mechanisms can either be part of this
layer or of a separate upper layer, but their specification is beyond the scope of this paper. In this paper, we solely
focus on the PINL layer. What are the advantages of using the PI as the network address?

Application Layer Application Layer
. . . Persistent Identification Persistent Identification
Persistent identifier ) N
& Networking Layer & Networking Layer
e.g. MCL address,.. Mesh Structuring Layer < TCP/UDP/IP
e.g. MAC address Link Layer Mesh Structuring Layer
Physical Layer Link Layer
Physical Layer

A B

Figure 5: InterMesh logical protocol stack layering A. Native, B. Overlay

1. Persistence: The independence of the PI from its attributes is an attractive property for a network layer
identifier. The direct advantage of persistence is mobility since an entity that is persistently addressed
by the network layer is reachable on that address at all times. Consequently, mobility occurs natively
eliminating the network layer indirection introduced by other proposals [18, 26, 25].

2. Security: The PI address is stamped i.e. it is inherently associated with security information (e.g. pub-
lic/private keys) which can be used at all times by the communicating parties (and the network if necessary)
for accountability, authentication and confidentiality.

3. Distributed administration: The PI has an incorporated administrative model that assigns administrators
to PIs with access rights down to the level of the attribute. An administrator of a PI can securely self-
administer the PI at anytime, and from anywhere within the network.

On the other hand, the implication of using a PI as the network address is, obviously, a more complex routing
mechanism. Routing based on PIs is essential for our network to function properly. The routing mechanisms,
introduced in [15], are not the subject of this paper. However, we discuss our experiences with a preliminary PI
routing protocol in the context of the InterMesh prototype in section 5.

The application layer is basically the entity’s interface to the network through which the service is provided.
Finally, the cross layer interactions can improve network performance if applied cautiously [16].

Dynamic and Extensible Network Services

Routing across heterogeneous mesh networks is an example of a PINL layer service. To avoid ossification and to
embrace major paradigm shifts within the network, it is essential to design services that are easily extensible and
adaptable to change. We have so far identified two essential network services: naming and routing. InterMesh
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offers these services by utilizing the GHOST/SHELL model described earlier. As such, a minimal set of GHOST
types is required to operate the InterMesh network classified into Naming Ghost - NG, and Routing Ghost - RG.

e Naming Ghost: This agent is particularly disseminated into the network with the goal of implementing
the identification (name) service for the Aol. The GHOST appears as an entity to other entities in the Aol
and is identified with a PI. Managing the namespace including creating, removing, and updating persistent
identifiers within the Aol are operations of the name service which the GHOST implements. The nodes
within the Aol are oblivious of the actual implementation specifics. In our model of Figure 3, the naming
GHOSTs are represented by entities pi-ng/ and pi-ng2 providing the name service for Aol-1 and Aol-2
respectively.

e Routing Ghost: It is similar to the naming GHOST except for its functionality. The routing GHOST
implements the actual overlay routing protocol that delivers packets between the local Aol and the rest of
the network. Its operation is similar to the default gateway concept in the traditional Internet except that it
routes based on the PI instead of IP address. Routing GHOSTs usually run on gateway nodes to perform
packet routing beyond the Aol. Figure 3/ shows the routing GHOSTs represented by entities pi-rgl and
pi-rg2 providing the gateway service for Aol-1 and Aol-2 respectively.

Both GHOSTs provide a discovery interface that allows other entities within the network to automatically dis-
cover the suitable GHOST. An administrator of the Aol ships the GHOSTs from any point within the network to
the particular SHELL. After authenticating itself to the SHELL, a GHOST implements its intelligence indepen-
dent of the actual SHELL hardware that is abstracted through a neutralizing interface. For example, an upgrade
to the Aol routing algorithm simply requires shipping an upgraded GHOST to replace the old routing GHOST.
In another scenario, a hardware failure on the SHELL will cause the GHOST to automatically move to a backup
SHELL. In both scenarios, the routing service on the network is undisrupted and the administrator need not be
physically present in the Aol.

4 Seamless Mobility

We need to devise an efficient mobility management scheme here to handle all the possible cases of mobility.
Particularly, we need to efficiently cache PIs on the routing GHOSTs to minimize lookups, processing, and
storage on the agents by shifting as much intelligence as possible to the endpoints (e2e). For example, when
ghost2 in Fig. 3/ receives a packet over the external interface (Internet) destined to pi-b, should ghost2 resolve
pi-b or should it assume that pi-b is local since the message was received over external interface and thus forward
locally with no resolution? This should probably depend on whether reliability is required or not.

We start by clarifying some of the concepts. Note that the association with a routing GHOST is performed
by the device not the process i.e. all the entities on a particular device share the routing information in terms of
available GHOSTSs and their priorities. However, each process is responsible for updating its identifier binding in
the system, even though the processes might share the same naming daemon on the device.

Our mobility scheme introduces a mobility index u. The index will specify whether the mobility rate of the
entity participating in communication is very slow (static), slow (partially mobile) or fast (highly mobile). This
information is calculated by the entity (or per device shared among entities) and exchanged in communication
instructing the routing ghosts about caching decisions. So, for example, a GHOST is likely to cache an entity’s
PI for a short time in case the entity has a high mobility index.

Also study the inter-domain mobility for multi-homed mesh networks where there are more than one entry
points into the mesh [1].



UNM Technical Report: EECE-TR-07-007

5 Prototype Implementation

Having discussed the overall system design and functionality, we now present the implementation details of an
InterMesh prototype. We particularly focus on the implementation of the naming, the protocol stack, and the
mobile agents functionality.

5.1 Naming

We have implemented the entity identifier as a 2-tuple {PLrype} constituting a globally unique and persistent
identifier for the entity. The Type field serves a dual purpose. First, it differentiates between multiple entities
sharing the same PI as in the case of multiple delegated UEIs under the same Ul. The second purpose of type is
partly analogous to the port number concept in traditional IP networks used to demultiplex the packet from the
stack up to the entity abstraction. Particularly, it is useful for broadcast/multicast services (e.g. Discovery) on the
network. The rype is a I byte integer value. As to the PI part of the tuple, we have reused a current implementation
of a persistent identifier called the handle which is part of the Handle System [2].Briefly, the Handle System
provides a distributed, secure and global name service for administration and resolution of handles over the
Internet. A handle is a persistent identifier that can be associated with a set of attributes. Some of these attributes
describe location, permissions, administrators and state. The fact that handles are defined independently of any
of the attributes or public keys of the underlying objects, makes them persistent identifiers [28]. Consequently,
our PI implementation is a handle and we use the two terms interchangeably hereafter. For example, a possible
identifier for the entity pi-a in Figure [3|is the tuple {2118/a,5556} where 2118 /a is handle existing under the
2118 naming authority.

Additionally, the Handle System provides the Green Realm of certification within our prototype. Security is
a crucial property of the Handle System. All the Yellow Realms represented by the Naming GHOSTSs within the
Aols trust the Handle System as the top level certification authority. We note here that the Handle System allows
for secure name resolution and administration in a distributed fashion making it extremely scalable ! and suitable
to operate in highly mobile environments.

5.2 Protocol Stack

The logical stack layering was depicted previously in Figure 5. In Figure 6, the detailed stack composition of the
InterMesh prototype is shown. We note that the TCP/UDP/IP component of the stack (dotted box) is optional. It
is only required when a node needs to operate as an overlay on top of IP. For example, the entity pi-c in Figure 3
is operating as an overlay over the traditional Internet and is part of InterMesh. We now explain the role of each
of the components in the stack.

Microsoft Mesh Connectivity Layer - MCL

We have chosen to reuse the open-source Windows MCL driver implementation [3] as our Mesh Structuring
Layer. MCL is an ad-hoc routing framework [11] developed as a open-source loadable Windows driver logically
located between layer 2 (link layer) and layer 3 (network layer) within the traditional TCP/IP stack. On each
node, MCL implements a virtual network adapter that appears to the higher layer software as an ethernet link. At
the MCL layer, each node is addressed with a 48-bit virtual address. MCL routes packets through the network
interface cards (NICs) using the Multi-Radio Link Quality Source Routing (MR — LOSR) protocol. MCL handles
the underlying NICs as port interfaces through which it routes frames. To upper layers (i.e., PINL NDIS driver

IThe largest individual Handle System implementation to date is deployed at the Los Alamos National Laboratory LANL, which is
intended to support more than a half billion identifiers while providing internal resolution services to one of the largest archival collections in
the United States.
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and IP), MCL offers connectionless primitive services. So, to send a packet, the upper layer passes the packet
along with the MCL virtual address of the destination node.

ARP Forwgrdmg Discovery || Security
Application Layer Demultiplexing

PINL Layer :> l [m========- 1

User
Level

TCPIUDP/IP PINL NDIS Protocol Driver : TCP/UDP/IP :

Kernel
Level

Mesh Structuring
Layer |

Microsoft Mesh Connectivity Layer

Link Layer

Physical Layer

Figure 6: Detailed stack composition.

The PINL layer is implemented over the Windows XP operating system as a combination of user level and
kernel level processes as shown in Figure 6.

PINL NDIS Protocol Driver

In order to interface with MCL, we have implemented a NDIS protocol driver [19] that allows the upper layers
located at the user-level to directly send and receive raw MCL frames by interacting with the driver. That is, the
PINL NDIS driver establishes a binding to MCL and exposes its services to the upper layers.

ARP Module
Bits 0-7 8-15 16-23 24-31
0 Hardware Address Type Protocol Address Type
2 Hardware Src. Protocol Dst. Protocol Operation
Address Length Address Length Address Length P

64 Sender Hardware Address

Sender Protocol Address

Destination Hardware Address

Destination Protocol Address

Figure 7: Extended ARP packet format.

The ARP module is mainly based on RFC 826, but slightly extended to resolve PI addresses to 48-bit MCL
virtual addresses. The extended ARP packet format is illustrated in Figure7. Hardware Address Type and Proto-
col Address Type identify the types of addresses of the lower (e.g., MCL) and upper (e.g., PI) layers respectively.
Hardware Address Length gives the length in bytes of lower layer addresses. For MCL, it is set to 6. Similarly,
Src Protocol Address Length and Dst Protocol Address Length give the length of the source (sending ARP mod-
ule) and destination PI address (the one that is being resolved). It is important to highlight the need for defining
a different field for the length of Src and Dst protocol addresses (the PI addresses), since they can have different
lengths. The operation field indicates whether the packet corresponds to a request or to a reply.

We explain the mechanism with an example by referring to our model in Figure 3. When the PINL layer
at the sender stack receives a packet from a source entity srcPI (say pi-a) addressed to an unknown destination
entity dstPI (say pi-b), the ARP module broadcasts an ARP request for that PI address on the local network. If
the destination entity is located in the same mesh network (Aol-7) i.e. in the same broadcast domain, it responds
with its MCL virtual address and the arp process is completed. On the other hand, if the dstPI corresponds to an

11
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entity in a remote mesh network (as in the case of pi-b), the sending ARP module eventually timeouts causing the
PINL layer to send the data packet to a previously discovered Routing Ghost (pi-rgl), which acts as the default
gateway. The discovery process of the Routing Ghost is explained later in subsection 5.2.

Forwarding-Demultiplexing

The Forwarding-Demultiplexing module forwards the data received from the upper layer (application layer) send-
ing process and demultiplexes the incoming packets from the lower layer (either from NDIS or from standard IP
in the case of overlay mode) to the correct receiving application process. The format of the PINL layer packet
is illustrated in Figure 8. This is the most basic unit of communication that all entities within the InterMesh
prototype use to communicate. The source and destination PI addresses are variable length with a max size of

Bits 0-7 8-15 16-23 [ 24-31
Dst. PI Src. PI
Address Length Address Length

Payload Length

32 Src. Type Dst. Type

Src. Pl Address

Dst. Pl Address

Payload

Figure 8: PI packet format.

32 bytes. In order to send a packet to a destination entity, the sender entity addresses the packets to the 2-tuple
{DestinationPI, DestinationType}. Figure9illustrates the flow of a packet with payload size of 40 bytes between
the communicating entities. The packet will have to cross the boundary of the local mesh network only if the
destination entity belongs to a remote mesh network.
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Figure 9: Packet flow from the entity 2118/a, type 9, to 2118 /b, type 6.
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Discovery

As mentioned previously, it is necessary that the client device discovers the GHOSTSs organizing the network.
These include the Naming GHOST and the Routing GHOST. The Discovery modules implements this function-
ality keeping the device (and thus entities) initialized at all times within the network on which the device is
present. This module automatically detects the local network settings and initialize the device accordingly. For
example, when a node is operating as an overlay node with a public IP address (IPv4 or IPv6), the discovery
module will not try to discover a Routing GHOST since routing will be performed directly over the Internet.
However, in a native mesh network, the Routing GHOST needs to be discovered.

The Discovery module implements a proactive algorithm to discover the GHOSTs. Discovery messages
are broadcasted on a well-known Type. For example the routing GHOSTSs use Type 5678 whereas the naming
GHOSTSs use Type 5679. Once discovered, the algorithm keeps the GHOST bindings fresh by sending periodi-
cal refresh packets.

5.3 GHOST/SHELL model

We have implemented our own customized GHOST/SHELL model on top of the JINI [ref JINI] framework.
Alternative mobile agent frameworks such as IBM aglets, JADE, and Voyager exist. Figure 10/ shows how an
administrator can create a GHOST and ship it to a particular SHELL (red circle). The procedure includes four

Admin client

Figure 10: Mobile Agent framework (GHOST/SHELL).

steps. In step 1, the SHELL registers with a lookup server that can be located either locally or on the Internet. In
steps 2 and 3, the administrator discovers the SHELL and downloads a proxy to the SHELL which is basically the
service offered by the SHELL. The SHELL service allows hosting of GHOSTs provided the GHOST is shipped
with valid credentials so that it can be accepted by the SHELL. Step 4 shows the GHOST migrating to the SHELL
to provide a particular network service. We use this exact model in our prototype to disseminate routing GHOSTs
and naming GHOSTs within the Aols. Notice that the admin client (administrator) need not be present within the
Aol to send or replace a GHOST, providing an easier and more distributed network administration model.

6 Test-bed and Performance Results

Our implemented prototype is based on the model of Figure 3. We set up two distinct WMNs having SSIDs
meshl and mesh2 corresponding to Aol-1 and Aol-2 respectively. The WMNs are formed of pure client ad-hoc
networks with no infrastructure routers. One gateway client connects the mesh to the Internet and offers the
SHELL for the GHOSTs. All our entities are assigned handles under the same naming authority 27/1/8. Back to
our test-bed (Figure 3), the entity pi-a is identified with the tuple {2118/a,5556} and similarly for pi-b and pi-c.
The entities pi-rgl and pi-ngl have the tuples {2118/rg1,5678} and {2118/ng1,5679} respectively. Similarly,
for pi-rg2 and pi-ng2.

We have measured the average application end-to-end round trip time (RTT) between the sender (pi-a) and
the receiver (pi-b). Each of the results is averaged from /0,000 samples measured over 2 days. During the
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experiment, the 2 entities entities exchange traffic at the VoIP rate of 64 Kbps i.e. a 160 byte packet every 20
ms. pi-b just reflects all the received packets back to pi-a and packet delivery is best effort with no undertaken
reliability measures. The performance results are plotted in Figure |11/ showing 3 experiment scenarios. In the
first scenario, the sender and the receiver belong to the same network and are communicating locally in ad-hoc
mode. In the second and third scenarios, the sender and receiver belong to two different mesh networks, meshl
and mesh2 respectively. The gateway nodes are connected either over the same LAN (scenario 2), or over the
Internet (scenario 3). In scenario 3, one gateway node physically connects meshl to the Internet at the ECE
department - University of New Mexico (with IP address 7129.24.27.152 and bandwidth / Mbit/s up, 6 Mbit/s
down,), while another gateway node physically connects mesh2 to the Internet through a home DSL connection
(with IP 76.18.66.45 and bandwidth 384 Kbit/s up, 1500 Kbit/s down,). The communicating nodes as well as the
gateway nodes have similar device configurations (with 2Ghz processor speed and 512 Mbytes of RAM). We can
see from the results that the delay is mostly governed by the Internet delay. Several factors add to the depicted
RTT delay including the implementation of a large part of the PINL layer at the user level. Note that the change
in average RTT was negligible when the traffic exchange rate between the entities increased from 32 kbps to 64
kbps. This is intuitive since the end-2-end available bandwidth is much larger than both traffic rates. The results
depicted are very encouraging and comparable to RTT delays over current IP networks.
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Figure 11: Application end-2-end Round Trip Times between two entities when communicating over the same
mesh network (Local) or over different mesh networks that are connect through a LAN or through the Internet.

7 Related Work

We classify related work into two main categories. The first class of proposals addresses clean-slate architectures,
while the second class of proposals is based on overlays. The distinction between the two classes is relevant to
this work in terms of how much intelligence is injected into the network, and consequently, to what extent do the
proposals respect the end-to-end argument [24].

We start by relating our work to the FARA [8] class of architectures. The basic idea in FARA is to the separate
the network address (attachment point) from the entity’s address by a “red line” to allow evolution of functional-
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ity above and below the line and to foster mobility. M-FARA [22] is an instance of the FARA architecture. The
InterMesh prototype shares a lot with M-FARA: the idea of viewing the inter-network as a collection of private
address realms is related to (Aols), the “core” construct is also similar. Besides, an entity’s FDdown represents
the actual routing GHOST within the Aol. FDup information is obtained through the entity’s initialization pro-
cess. Communication between devices within the same realm needs no FDs, whereas communication between
processes in different realms requires FDup, FDdown information of realm boundary agents (our Ghosts). How-
ever, InterMesh assumes globally unique and persistent identifiers for entities and designs the network starting
from the entity down.

Recent work by Vicente etal. [29, [10] addresses the problem of creating distributed services over a flexible
overlay of wireless mesh networks. They take a network-centric approach that uses virtualization of the mesh
nodes to implement overlay services based on concepts from the PlanetLab framework. The paper is rather intro-
ductory and we assume it achieves the inter-connection of different mesh networks using IP (because of evolving
PlanetLab to WLAN networks). Another paper by Pangalos [20] proposes an inter-networking framework be-
tween mobile and broadcast networks. A gateway in each network is used to provide an interface to the network
and the Internet backbone is used to inter-connect the gateways via IP. In [1], an overlay structuring approach
is proposed to inter-connect multi-homed mesh networks using an inter-domain routing scheme. Mesh Internet
gateways from each mesh network organize into a full mesh overlay by exchanging IP addresses over a multicast
infrastructure (overlay) to inter-connect the networks. Also, the access points inside each mesh network (not the
Internet gateways) locally organize into an overlay using the wireless links.

In [27]], an IP-based heterogeneous framework is proposed to transparently interconnect 802.11 and Bluetooth
networks. The framework is implemented as a virtual interface between the layers 2 (MAC) and 3 (IP). The virtual
interface behaves similar to a 802.x bridge; i.e., it interconnects 802.x networks and hides the heterogeneity of the
used devices from the upper layers. The proposed framework only considers the interconnection of local 802.x
networks; therefore, it does not support vertical handoff, which should be implemented separately with some
pre-post registration protocol on upper layers to support vertical handoff and maintain ongoing communication
sessions.

As to the proposals that deal with overlay routing, we mention I3 [26], Tapestry [31, 30], and RON [6].
These architectures introduce more intelligence into the network in terms of identifying entities, locating them
and routing traffic to them.

8 Conclusion

To efficiently embrace the characteristics of emerging access networks, and to broaden the user’s innovation space
clean-slate architectural approaches are being pursued towards designing the future Internet. We have previously
introduced a general architectural vision for a possible future Internet which we call the Transient Network
Architecture from which InterMesh is instantiated. In this paper, we have presented the InterMesh platform
that achieves convergence of heterogeneous mesh networks through a novel PINL layer providing a seamless
service to individual network entities. We have identified the key concepts behind the InterMesh architecture and
presented an interesting prototype implementation that can coexist with today’s Internet. As part of our current
work, we are extending InterMesh to include generic mobile ad-hoc networks (MANETSs) and wireless sensor
networks (WSNs). We are also investigating a completely distributed naming system formed of the naming
GHOSTs that organize into a resilient P2P network.
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