34 research outputs found

    Sparse Classifier Fusion for Speaker Verification

    Full text link

    A monitoring and threat detection system using stream processing as a virtual function for big data

    Get PDF
    The late detection of security threats causes a significant increase in the risk of irreparable damages, disabling any defense attempt. As a consequence, fast realtime threat detection is mandatory for security guarantees. In addition, Network Function Virtualization (NFV) provides new opportunities for efficient and low-cost security solutions. We propose a fast and efficient threat detection system based on stream processing and machine learning algorithms. The main contributions of this work are i) a novel monitoring threat detection system based on stream processing; ii) two datasets, first a dataset of synthetic security data containing both legitimate and malicious traffic, and the second, a week of real traffic of a telecommunications operator in Rio de Janeiro, Brazil; iii) a data pre-processing algorithm, a normalizing algorithm and an algorithm for fast feature selection based on the correlation between variables; iv) a virtualized network function in an open-source platform for providing a real-time threat detection service; v) near-optimal placement of sensors through a proposed heuristic for strategically positioning sensors in the network infrastructure, with a minimum number of sensors; and, finally, vi) a greedy algorithm that allocates on demand a sequence of virtual network functions.A detecção tardia de ameaças de segurança causa um significante aumento no risco de danos irreparĂĄveis, impossibilitando qualquer tentativa de defesa. Como consequĂȘncia, a detecção rĂĄpida de ameaças em tempo real Ă© essencial para a administração de segurança. AlĂ©m disso, A tecnologia de virtualização de funçÔes de rede (Network Function Virtualization - NFV) oferece novas oportunidades para soluçÔes de segurança eficazes e de baixo custo. Propomos um sistema de detecção de ameaças rĂĄpido e eficiente, baseado em algoritmos de processamento de fluxo e de aprendizado de mĂĄquina. As principais contribuiçÔes deste trabalho sĂŁo: i) um novo sistema de monitoramento e detecção de ameaças baseado no processamento de fluxo; ii) dois conjuntos de dados, o primeiro ÂŽe um conjunto de dados sintĂ©tico de segurança contendo trĂĄfego suspeito e malicioso, e o segundo corresponde a uma semana de trĂĄfego real de um operador de telecomunicaçÔes no Rio de Janeiro, Brasil; iii) um algoritmo de prĂ©-processamento de dados composto por um algoritmo de normalização e um algoritmo para seleção rĂĄpida de caracterĂ­sticas com base na correlação entre variĂĄveis; iv) uma função de rede virtualizada em uma plataforma de cĂłdigo aberto para fornecer um serviço de detecção de ameaças em tempo real; v) posicionamento quase perfeito de sensores atravĂ©s de uma heurĂ­stica proposta para posicionamento estratĂ©gico de sensores na infraestrutura de rede, com um nĂșmero mĂ­nimo de sensores; e, finalmente, vi) um algoritmo guloso que aloca sob demanda uma sequencia de funçÔes de rede virtual

    Identifying Changes of Functional Brain Networks using Graph Theory

    Get PDF
    This thesis gives an overview on how to estimate changes in functional brain networks using graph theoretical measures. It explains the assessment and definition of functional brain networks derived from fMRI data. More explicitly, this thesis provides examples and newly developed methods on the measurement and visualization of changes due to pathology, external electrical stimulation or ongoing internal thought processes. These changes can occur on long as well as on short time scales and might be a key to understanding brain pathologies and their development. Furthermore, this thesis describes new methods to investigate and visualize these changes on both time scales and provides a more complete picture of the brain as a dynamic and constantly changing network.:1 Introduction 1.1 General Introduction 1.2 Functional Magnetic Resonance Imaging 1.3 Resting-state fMRI 1.4 Brain Networks and Graph Theory 1.5 White-Matter Lesions and Small Vessel Disease 1.6 Transcranial Direct Current Stimulation 1.7 Dynamic Functional Connectivity 2 Publications 2.1 Resting developments: a review of fMRI post-processing methodologies for spontaneous brain activity 2.2 Early small vessel disease affects fronto-parietal and cerebellar hubs in close correlation with clinical symptoms - A resting-state fMRI study 2.3 Dynamic modulation of intrinsic functional connectivity by transcranial direct current stimulation 2.4 Three-dimensional mean-shift edge bundling for the visualization of functional connectivity in the brain 2.5 Dynamic network participation of functional connectivity hubs assessed by resting-state fMRI 3 Summary 4 Bibliography 5. Appendix 5.1 ErklĂ€rung ĂŒber die eigenstĂ€ndige Abfassung der Arbeit 5.2 Curriculum vitae 5.3 Publications 5.4 Acknowledgement

    Perceptual Model-Driven Authoring of Plausible Vibrations from User Expectations for Virtual Environments

    Get PDF
    One of the central goals of design is the creation of experiences that are rated favorably in the intended application context. User expectations play an integral role in tactile product quality and tactile plausibility judgments alike. In the vibrotactile authoring process for virtual environments, vibra-tion is created to match the user’s expectations of the presented situational context. Currently, inefficient trial and error approaches attempt to match expectations implicitly. A more efficient, model-driven procedure based explicitly on tactile user expectations would thus be beneficial for author-ing vibrations. In everyday life, we are frequently exposed to various whole-body vibrations. Depending on their temporal and spectral proper-ties we intuitively associate specific perceptual properties such as “tin-gling”. This suggests a systematic relationship between physical parame-ters and perceptual properties. To communicate with potential users about such elicited or expected tactile properties, a standardized design language is proposed. It contains a set of sensory tactile perceptual attributes, which are sufficient to characterize the perceptual space of vibration encountered in everyday life. This design language enables the assessment of quantita-tive tactile perceptual specifications by laypersons that are elicited in situational contexts such as auditory-visual-tactile vehicle scenes. Howev-er, such specifications can also be assessed by providing only verbal de-scriptions of the content of these scenes. Quasi identical ratings observed for both presentation modes suggest that tactile user expectations can be quantified even before any vibration is presented. Such expected perceptu-al specifications are the prerequisite for a subsequent translation into phys-ical vibration parameters. Plausibility can be understood as a similarity judgment between elicited features and expected features. Thus, plausible vibration can be synthesized by maximizing the similarity of the elicited perceptual properties to the expected perceptual properties. Based on the observed relationships between vibration parameters and sensory tactile perceptual attributes, a 1-nearest-neighbor model and a regression model were built. The plausibility of the vibrations synthesized by these models in the context of virtual auditory-visual-tactile vehicle scenes was validat-ed in a perceptual study. The results demonstrated that the perceptual spec-ifications obtained with the design language are sufficient to synthesize vibrations, which are perceived as equally plausible as recorded vibrations in a given situational context. Overall, the demonstrated design method can be a new, more efficient tool for designers authoring vibrations for virtual environments or creating tactile feedback. The method enables further automation of the design process and thus potential time and cost reductions.:Preface III Abstract V Zusammenfassung VII List of Abbreviations XV 1 Introduction 1 1.1 General Introduction 1 1.1 Objectives of the Thesis 4 1.2 Structure of the Thesis 4 2. Tactile Perception in Real and Virtual Environments 7 2.1 Tactile Perception as a Multilayered Process 7 2.1.1 Physical Layer 8 2.1.2 Mechanoreceptor Layer 9 2.1.3 Sensory Layer 19 2.1.4 Affective Layer 26 2.2 Perception of Virtual Environments 29 2.2.1 The Place Illusion 29 2.2.2 The Plausibility Illusion 31 2.3 Approaches for the Authoring of Vibrations 38 2.3.1 Approaches on the Physical Layer 38 2.3.2 Approaches on the Mechanoreceptor Layer 40 2.3.3 Approaches on the Sensory Layer 40 2.3.4 Approaches on the Affective Layer 43 2.4 Summary 43 3. Research Concept 47 3.1 Research Questions 47 3.1.1 Foundations of the Research Concept 47 3.1.2 Research Concept 49 3.2 Limitations 50 4. Development of the Experimental Setup 53 4.1 Hardware 53 4.1.1 Optical Reproduction System 53 4.1.2 Acoustical Reproduction System 54 4.1.3 Whole-Body Vibration Reproduction System 56 4.2 Software 64 4.2.1 Combination of Reproduction Systems for Unimodal and Multimodal Presentation 64 4.2.2 Conducting Perceptual Studies 65 5. Assessment of a Sensory Tactile Design Language for Characterizing Vibration 67 5.1.1 Design Language Requirements 67 5.1.2 Method to Assess the Design Language 69 5.1.3 Goals of this Chapter 70 5.2 Tactile Stimuli 72 5.2.1 Generalization into Excitation Patterns 72 5.2.2 Definition of Parameter Values of the Excitation Patterns 75 5.2.3 Generation of the Stimuli 85 5.2.4 Summary 86 5.3 Assessment of the most relevant Sensory Tactile Perceptual Attributes 86 5.3.1 Experimental Design 87 5.3.2 Participants 88 5.3.3 Results 88 5.3.4 Aggregation and Prioritization 89 5.3.5 Summary 91 5.4 Identification of the Attributes forming the Design Language 92 5.4.1 Experimental Design 93 5.4.2 Participants 95 5.4.3 Results 95 5.4.4 Selecting the Elements of the Sensory Tactile Design Language 106 5.4.5 Summary 109 5.5 Summary and Discussion 109 5.5.1 Summary 109 5.5.2 Discussion 111 6. Quantification of Expected Properties with the Sensory Tactile Design Language 115 6.1 Multimodal Stimuli 116 6.1.1 Selection of the Scenes 116 6.1.2 Recording of the Scenes 117 6.1.3 Recorded Stimuli 119 6.2 Qualitative Communication in the Presence of Vibration 123 6.2.1 Experimental Design 123 6.2.2 Participants 124 6.2.3 Results 124 6.2.4 Summary 126 6.3 Quantitative Communication in the Presence of Vibration 126 6.3.1 Experimental Design 127 6.3.2 Participants 127 6.3.3 Results 127 6.3.4 Summary 129 6.4 Quantitative Communication in the Absence of Vibration 129 6.4.1 Experimental Design 130 6.4.2 Participants 132 6.4.3 Results 132 6.4.4 Summary 134 6.5 Summary and Discussion 135 7. Synthesis Models for the Translation of Sensory Tactile Properties into Vibration 137 7.1 Formalization of the Tactile Plausibility Illusion for Models 139 7.1.1 Formalization of Plausibility 139 7.1.2 Model Boundaries 143 7.2 Investigation of the Influence of Vibration Level on Attribute Ratings 144 7.2.1 Stimuli 145 7.2.2 Experimental Design 145 7.2.3 Participants 146 7.2.4 Results 146 7.2.5 Summary 148 7.3 Comparison of Modulated Vibration to Successive Impulse-like Vibration 148 7.3.1 Stimuli 149 7.3.2 Experimental Design 151 7.3.3 Participants 151 7.3.4 Results 151 7.3.5 Summary 153 7.4 Synthesis Based on the Discrete Estimates of a k-Nearest-Neighbor Classifier 153 7.4.1 Definition of the K-Nearest-Neighbor Classifier 154 7.4.2 Analysis Model 155 7.4.3 Synthesis Model 156 7.4.4 Interpolation of acceleration level for the vibration attribute profile pairs 158 7.4.5 Implementation of the Synthesis 159 7.4.6 Advantages and Disadvantages 164 7.5 Synthesis Based on the Quasi-Continuous Estimates of Regression Models 166 7.5.1 Overall Model Structure 168 7.5.2 Classification of the Excitation Pattern with a Support Vector Machine 171 7.5.3 General Approach to the Regression Models of each Excitation Pattern 178 7.5.4 Synthesis for the Impulse-like Excitation Pattern 181 7.5.5 Synthesis for the Bandlimited White Gaussian Noise Excitation Pattern 187 7.5.6 Synthesis for the Amplitude Modulated Sinusoidal Excitation Pattern 193 7.5.7 Synthesis for the Sinusoidal Excitation Pattern 199 7.5.8 Implementation of the Synthesis 205 7.5.9 Advantages and Disadvantages of the Approach 208 7.6 Validation of the Synthesis Models 210 7.6.1 Stimuli 212 7.6.2 Experimental Design 212 7.6.3 Participants 214 7.6.4 Results 214 7.6.5 Summary 219 7.7 Summary and Discussion 219 7.7.1 Summary 219 7.7.2 Discussion 222 8. General Discussion and Outlook 227 Acknowledgment 237 References 237Eines der zentralen Ziele des Designs von Produkten oder virtuellen Um-gebungen ist die Schaffung von Erfahrungen, die im beabsichtigten An-wendungskontext die Erwartungen der Benutzer erfĂŒllen. GegenwĂ€rtig versucht man im vibrotaktilen Authoring-Prozess mit ineffizienten Trial-and-Error-Verfahren, die Erwartungen an den dargestellten, virtuellen Situationskontext implizit zu erfĂŒllen. Ein effizienteres, modellgetriebenes Verfahren, das explizit auf den taktilen Benutzererwartungen basiert, wĂ€re daher von Vorteil. Im Alltag sind wir hĂ€ufig verschiedenen Ganzkörper-schwingungen ausgesetzt. AbhĂ€ngig von ihren zeitlichen und spektralen Eigenschaften assoziieren wir intuitiv bestimmte Wahrnehmungsmerkmale wie z.B. “kribbeln”. Dies legt eine systematische Beziehung zwischen physikalischen Parametern und Wahrnehmungsmerkmalen nahe. Um mit potentiellen Nutzern ĂŒber hervorgerufene oder erwartete taktile Eigen-schaften zu kommunizieren, wird eine standardisierte Designsprache vor-geschlagen. Sie enthĂ€lt eine Menge von sensorisch-taktilen Wahrneh-mungsmerkmalen, die hinreichend den Wahrnehmungsraum der im Alltag auftretenden Vibrationen charakterisieren. Diese Entwurfssprache ermög-licht die quantitative Beurteilung taktiler Wahrnehmungsmerkmale, die in Situationskontexten wie z.B. auditiv-visuell-taktilen Fahrzeugszenen her-vorgerufen werden. Solche Wahrnehmungsspezifikationen können jedoch auch bewertet werden, indem der Inhalt dieser Szenen verbal beschrieben wird. Quasi identische Bewertungen fĂŒr beide PrĂ€sentationsmodi deuten darauf hin, dass die taktilen Benutzererwartungen quantifiziert werden können, noch bevor eine Vibration prĂ€sentiert wird. Die erwarteten Wahr-nehmungsspezifikationen sind die Voraussetzung fĂŒr eine anschließende Übersetzung in physikalische Schwingungsparameter. Plausible Vibratio-nen können synthetisiert werden, indem die erwarteten Wahrnehmungs-merkmale hervorgerufen werden. Auf der Grundlage der beobachteten Beziehungen zwischen SchwingungsÂŹparametern und sensorisch-taktilen Wahrnehmungsmerkmalen wurden ein 1-Nearest-Neighbor-Modell und ein Regressionsmodell erstellt. Die PlausibilitĂ€t der von diesen Modellen synthetisierten Schwingungen im Kontext virtueller, auditorisch-visuell-taktiler Fahrzeugszenen wurde in einer Wahrnehmungsstudie validiert. Die Ergebnisse zeigten, dass die mit der Designsprache gewonnenen Wahr-nehmungsspezifikationen ausreichen, um Schwingungen zu synthetisieren, die in einem gegebenen Situationskontext als ebenso plausibel empfunden werden wie aufgezeichnete Schwingungen. Die demonstrierte Entwurfsme-thode stellt ein neues, effizienteres Werkzeug fĂŒr Designer dar, die Schwingungen fĂŒr virtuelle Umgebungen erstellen oder taktiles Feedback fĂŒr Produkte erzeugen.:Preface III Abstract V Zusammenfassung VII List of Abbreviations XV 1 Introduction 1 1.1 General Introduction 1 1.1 Objectives of the Thesis 4 1.2 Structure of the Thesis 4 2. Tactile Perception in Real and Virtual Environments 7 2.1 Tactile Perception as a Multilayered Process 7 2.1.1 Physical Layer 8 2.1.2 Mechanoreceptor Layer 9 2.1.3 Sensory Layer 19 2.1.4 Affective Layer 26 2.2 Perception of Virtual Environments 29 2.2.1 The Place Illusion 29 2.2.2 The Plausibility Illusion 31 2.3 Approaches for the Authoring of Vibrations 38 2.3.1 Approaches on the Physical Layer 38 2.3.2 Approaches on the Mechanoreceptor Layer 40 2.3.3 Approaches on the Sensory Layer 40 2.3.4 Approaches on the Affective Layer 43 2.4 Summary 43 3. Research Concept 47 3.1 Research Questions 47 3.1.1 Foundations of the Research Concept 47 3.1.2 Research Concept 49 3.2 Limitations 50 4. Development of the Experimental Setup 53 4.1 Hardware 53 4.1.1 Optical Reproduction System 53 4.1.2 Acoustical Reproduction System 54 4.1.3 Whole-Body Vibration Reproduction System 56 4.2 Software 64 4.2.1 Combination of Reproduction Systems for Unimodal and Multimodal Presentation 64 4.2.2 Conducting Perceptual Studies 65 5. Assessment of a Sensory Tactile Design Language for Characterizing Vibration 67 5.1.1 Design Language Requirements 67 5.1.2 Method to Assess the Design Language 69 5.1.3 Goals of this Chapter 70 5.2 Tactile Stimuli 72 5.2.1 Generalization into Excitation Patterns 72 5.2.2 Definition of Parameter Values of the Excitation Patterns 75 5.2.3 Generation of the Stimuli 85 5.2.4 Summary 86 5.3 Assessment of the most relevant Sensory Tactile Perceptual Attributes 86 5.3.1 Experimental Design 87 5.3.2 Participants 88 5.3.3 Results 88 5.3.4 Aggregation and Prioritization 89 5.3.5 Summary 91 5.4 Identification of the Attributes forming the Design Language 92 5.4.1 Experimental Design 93 5.4.2 Participants 95 5.4.3 Results 95 5.4.4 Selecting the Elements of the Sensory Tactile Design Language 106 5.4.5 Summary 109 5.5 Summary and Discussion 109 5.5.1 Summary 109 5.5.2 Discussion 111 6. Quantification of Expected Properties with the Sensory Tactile Design Language 115 6.1 Multimodal Stimuli 116 6.1.1 Selection of the Scenes 116 6.1.2 Recording of the Scenes 117 6.1.3 Recorded Stimuli 119 6.2 Qualitative Communication in the Presence of Vibration 123 6.2.1 Experimental Design 123 6.2.2 Participants 124 6.2.3 Results 124 6.2.4 Summary 126 6.3 Quantitative Communication in the Presence of Vibration 126 6.3.1 Experimental Design 127 6.3.2 Participants 127 6.3.3 Results 127 6.3.4 Summary 129 6.4 Quantitative Communication in the Absence of Vibration 129 6.4.1 Experimental Design 130 6.4.2 Participants 132 6.4.3 Results 132 6.4.4 Summary 134 6.5 Summary and Discussion 135 7. Synthesis Models for the Translation of Sensory Tactile Properties into Vibration 137 7.1 Formalization of the Tactile Plausibility Illusion for Models 139 7.1.1 Formalization of Plausibility 139 7.1.2 Model Boundaries 143 7.2 Investigation of the Influence of Vibration Level on Attribute Ratings 144 7.2.1 Stimuli 145 7.2.2 Experimental Design 145 7.2.3 Participants 146 7.2.4 Results 146 7.2.5 Summary 148 7.3 Comparison of Modulated Vibration to Successive Impulse-like Vibration 148 7.3.1 Stimuli 149 7.3.2 Experimental Design 151 7.3.3 Participants 151 7.3.4 Results 151 7.3.5 Summary 153 7.4 Synthesis Based on the Discrete Estimates of a k-Nearest-Neighbor Classifier 153 7.4.1 Definition of the K-Nearest-Neighbor Classifier 154 7.4.2 Analysis Model 155 7.4.3 Synthesis Model 156 7.4.4 Interpolation of acceleration level for the vibration attribute profile pairs 158 7.4.5 Implementation of the Synthesis 159 7.4.6 Advantages and Disadvantages 164 7.5 Synthesis Based on the Quasi-Continuous Estimates of Regression Models 166 7.5.1 Overall Model Structure 168 7.5.2 Classification of the Excitation Pattern with a Support Vector Machine 171 7.5.3 General Approach to the Regression Models of each Excitation Pattern 178 7.5.4 Synthesis for the Impulse-like Excitation Pattern 181 7.5.5 Synthesis for the Bandlimited White Gaussian Noise Excitation Pattern 187 7.5.6 Synthesis for the Amplitude Modulated Sinusoidal Excitation Pattern 193 7.5.7 Synthesis for the Sinusoidal Excitation Pattern 199 7.5.8 Implementation of the Synthesis 205 7.5.9 Advantages and Disadvantages of the Approach 208 7.6 Validation of the Synthesis Models 210 7.6.1 Stimuli 212 7.6.2 Experimental Design 212 7.6.3 Participants 214 7.6.4 Results 214 7.6.5 Summary 219 7.7 Summary and Discussion 219 7.7.1 Summary 219 7.7.2 Discussion 222 8. General Discussion and Outlook 227 Acknowledgment 237 References 23

    Precision Measurements of Higgs Boson Couplings in the Diphoton Decay Channel with Run-2 of the ATLAS Detector

    Full text link
    In the second run of the Large Hadron Collider, proton-proton collisions were recorded with the ATLAS detector at a center-of-mass energy of 13 TeV, almost twice that of the previous run. This dramatic increase in energy has enabled physicists to target and precisely measure rare interactions of the recently-discovered Higgs boson for the first time. The diphoton decay channel of the Higgs (H → γγ) offers one of the best probes of many such interactions due to its relatively clean decay signature and the ATLAS detector’s high-quality photon resolution. Two major physics analyses are discussed in this dissertation, both of which target this decay channel. Both use the full Run 2 dataset gathered by the ATLAS detector, collected during the 2015-2018 data-taking period and corresponding to a time-integrated luminosity of 139 fb−1 . The first of these analyses is a dedicated measurement of the CP properties of the top-Higgs Yukawa coupling, targeting Higgs production in association with a top quark pair (ttH) as well as Higgs production in association with a single top quark (tW H and tHjb). Two Boosted Decision Trees are developed, one to separate ttH + tWH + tHjb signal from QCD continuum diphoton background and another to separate CP-even-like signal events from CP-odd-like signal events. 20 categories are constructed using the outputs of these two decision trees, and a likelihood fit is performed across all categories. An upper limit is placed on the tH production cross-section of 11.6 times the Standard Model expectation, and the observed ttH significance is measured to be 5.2 σ, marking the first observation of the ttH process in a single Higgs decay channel. The fully CP-odd top Yukawa coupling scenario is excluded with a significance of 3.9 σ, while the CP mixing angle is constrained to be |α| ≄ 43◩ at 95% confidence level. In the second analysis, a variety of Higgs production modes are characterized using the Simplified Template Cross-Sections (STXS) framework. In total, the cross-section times the diphoton decay branching ratio is measured in 88 categories corresponding to 27 theoretically-motivated STXS kinematic regions. The inclusive Higgs boson production cross-section in the Higgs boson rapidity range |yH | < 2.5 times the diphoton decay branching ratio is measured to be 127 ± 10 fb. In addition, the ggF + bbH production cross-section is measured to be 104 ± 11fb, the VBF production cross-section is measured to be 10.7+2.1−1.9 fb, the WH production cross-section is measured to be 6.4+1.5−1.4 fb, the ZH production cross-section is measured to be −1.2−1.0 +1.1 fb , and the ttH + tH production cross-section is measured to be 1.2+0.4 −0.3 fb. The compatibility between the measurement and the expected value corresponds to a p-value of 3%, a 1.9σ deviation from the Standard Model. However, when the WH and ZH processes are combined into a single VH process, its cross-section times branching ratio is measured to be 5.9 ± 1.4fb, the compatibility between the measurement and the expected value corresponds to a p-value of 50%, and no significant deviation from the Standard Model is observed. In addition, an upper limit is placed on the tH production cross-section of 8.2 times the Standard Model expectation, the strictest limit placed on this process to date.PHDPhysicsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/169889/1/gwmerz_1.pd
    corecore