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Referat: 

Brain disorders are seen as one of the main health challenges of the 21st century due to high 

prevalence and their high burden on the patients and their social environment (Wittchen et 

al., 2011). In the past 30 years, structural brain imaging such as cranial Computed 

Tomography (CT) and Magnetic Resonance Imaging (MRI) have become diagnostic 

cornerstones of clinical neurology and psychiatry. However, lesions detected with these 

structural methods are usually already irreversible and therefore great hopes are put into 

techniques which may detect brain diseases already at an early level with only “functional” 

and thus reversible changes. Functional Magnetic Resonance Imaging (fMRI) is such a 

method, however, due to a number of shortcomings (dependence on patients’ cooperation 

and on specific tasks), its clinical utility is very limited. However, a recently developed variant, 

resting-state fMRI (rs-fMRI), seems to overcome these limitations providing promising results 

in health and disease (Reijneveld et al., 2007; Fox and Greicius, 2010) based on a single 

examination of only few minutes duration. In this thesis, I contribute some further 

methodological advances to rs-fMRI to estimate in-vivo changes of functional brain networks 

in health and disease. 

These functional brain networks can be analyzed using various methods. An overview over 

such methods is given in Study 1 (Margulies et al., 2010).  
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Functional brain networks are characterized by the synchronization of gray matter regions. 

These gray matter regions are connected and communicate through white matter fibers. In 

Study 2 (Schaefer et al., 2014b) we investigated the impact of small lesions in the white 

matter onto the communication between functional gray matter regions. We found a severe 

reduction of cerebral gray matter connectivity (synchronized signal) in subjects with white 

matter lesions using network centrality analysis. This effect was also reflected in the severity 

of the lesions. Behaviorally we found a psycho-motor slowing in the patients with white 

matter lesions.  

The excitability of neurons in the gray matter can be influenced by electrical stimulation. The 

method of transcranial Direct Current Stimulation (tDCS) is a non-invasive electrical brain 

stimulation technique which has been shown to influence cortical excitability and alter 

behavior and learning. In Study 3 (Sehm et al., 2012) we analyzed the effects of tDCS to 

whole brain functional connectivity before, during and after stimulation of the primary motor 

cortex using network centrality analysis. Besides effects to the functional connectivity of 

motor and pre-motor areas we also found widespread effects during stimulation as compared 

to the sham condition.  

One drawback of centrality approaches is their inherent reduction of spatial information. This 

reduction is often done for statistical reasons but also for reasons of visualization. The 

richness of the data makes it difficult to give a good display of all connections in the original 

anatomical space as they strongly overlap. A clear display in the anatomical space may be 

especially relevant in a neurosurgical context. In Study 4 (Böttger et al., 2014a) we 

addressed this limitation by bundling connections which connect similar areas in the brain. 

This approach is able to compress redundant information which reduces unnecessary clutter. 

As a consequence, this method might enhance the information gained for a human viewer of 

whole brain functional connectivity.  

While the previous studies addressed alterations of functional brain networks between scans, 

in Study 5 (Schaefer et al., 2014a) we investigated the ongoing changes during the scan. 

While these ongoing networks dynamics could be of interest for clinical applications, their 

non-artifactual origin needs to be validated using external measures (Hutchison et al., 

2013a). In our analysis we show a relationship between the dynamics of connectivity 

networks and self-generated-thoughts, as well as age. These results provide support for a 

non-artifactual origin of functional networks dynamics. 

Functional brain networks estimated by resting-state fMRI offer a tool to measure and 

investigate changes due to brain diseases and therapy. This thesis shows how to estimate 

these changes and relate them to the severity of the disease. Further, it comprises new 

methods to investigate changes on even short time scales. The amount of change on these 

short time scales might offer a new window to characterize and investigate brain diseases. 
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1 Introduction 

1.1 General Introduction 

Brain disorders, comprising mental and neurologic disorders, are described as one of the 

core health challenges for the 21st century (Wittchen et al., 2011; Collins et al., 2011). While 

functional Magnetic Resonance Imaging (fMRI) was expected to be a crucial method for the 

detection and prognosis of brain disorders (Thulborn et al., 1996), it has seen only few 

successful translations to the clinical realm (Matthews et al., 2006; Bullmore, 2012). fMRI 

was used for a long time in the framework of specifically designed experiments in which 

certain brain areas were expected to show atypical activations. This task-based fMRI stands 

in stark contrast to the significantly more successful structural neuroimaging (e.g. cranial CT, 

MRI) which provides whole brain images without any patient compliance. However, 

functional neuroimaging can be crucial for an early detection of pathological brain changes. 

This thesis will use fMRI and network theory to investigate clinically relevant functional 

changes of the human brain without regional constraints or the need of a specific task. 

1.2 Functional Magnetic Resonance Imaging 

While in-vitro studies have enhanced our general knowledge of the brain, a better 

understanding and detection of brain diseases in humans can only be achieved by in-vivo 

measurements. The in-vivo study of the human brain has been enabled by recent 

methodological advances. One very promising method for in-vivo neuroimaging, besides the 

well-established cranial Computed Tomography (CT) and Magnetic Resonance Imaging 

(MRI), is functional MRI (fMRI). 

Functional Magnetic Resonance Imaging is a widely applied form of non-invasive in-vivo 

imaging. It is an MRI procedure which aims to provide large-scale images of neuronal 

population activity. In this thesis it will be used to investigate the human brain and its 

alterations.  The main form of fMRI uses the blood oxygen level dependent (BOLD) contrast 

developed by Ogawa et al. (2000). fMRI BOLD is an indirect measure of neural activity which 

is based on the relationship between cerebral blood flow, energy demand and neural activity 

(Logothetis, 2002). fMRI BOLD uses strong magnetic fields to measure alterations of 

deoxyhemoglobin concentrations. The deoxyhemoglobin alterations are seen as a reflection 

of the blood oxygen level and indirectly energy consumption. However, blood oxygenation 

depends on the dynamics of oxygen consumption, cerebral blood flow and cerebral blood 

volume (Logothetis, 2002). Despite its indirectness, fMRI has been repeatedly shown to 

correlate with neuronal activity (Logothetis et al., 2001; Mukamel et al., 2005; Shmuel et al., 

2006). 

1.3 Resting-state fMRI 

Despite its success as a research tool, task-based fMRI has seen little translation into the 

clinic (Fox and Greicius, 2010). In general, fMRI abnormalities seen in clinical research 

populations have not translated into the ability to provide practically useful diagnostic or 

prognostic information in individual patients (Matthews et al., 2006). Vast promise for 

improving the clinical applicability of fMRI evolves from focusing on intrinsic spontaneous 

modulations in the BOLD signal that occur during the “resting-state” (Fox and Greicius, 

2010). 
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Intrinsic spontaneous slow oscillations, commonly captured during the resting-state in the 

BOLD signal, show correlated signal in functionally coupled networks (Biswal, 1995). These 

networks resemble task-based co-activation maps (Smith et al., 2009) and persist across 

various states, such as task performance, wakeful rest, sleep and loss of consciousness 

(Fox and Raichle, 2007). This property makes resting-state fMRI (rs-fMRI) a power tool to 

map multiple large-scale functional networks simultaneously. In this context rs-fMRI can 

serve multiple purposes, as the same dataset enables the investigation of various research 

questions. Compared to task-based-fMRI, rs-fMRI offers several advantages such as a short 

acquisition time, a simple acquisition process, a good signal-to-noise ratio, a high reliability 

(Shehzad et al., 2009) and easier standardization. In recent years, neuroimaging researchers 

have begun to build up large publicly available data collections to enable exploration and 

validation of brain networks (Van Essen et al., 2012; Nooner et al., 2012).  

Besides identifying the functional architecture of the brain, rs-fMRI has recently also been 

applied in the research of brain diseases (Fox and Greicius, 2010). The most prominent 

strategy to identify abnormalities is the comparison of two groups, patients with a 

neurological pathology and healthy individuals. The relation of an altered synchronization in 

intrinsic fluctuations with respect to relevant clinical variables provides evidence for the 

clinical relevance and confidence of the found abnormalities. We follow this idea in Study 2 

(Schaefer et al., 2014b). rs-fMRI also enables the clinically crucial identification of acute 

pathology on a single-subject level (Lv et al., 2013). 

1.4 Brain Networks and Graph Theory 

As rs-fMRI enables to map out the human brain in a single experiment it has also 

strengthened the view of the brain as a complex network. The organization of brain networks 

can and should be understood in the context of other complex systems as many of the open 

challenges for science in all disciplines ‒ whether meteorology, sociology or molecular 

biology ‒ involve understanding and forecasting complex systems. In general, the complexity 

of these systems does not arise directly from their units or agents (entities which are able to 

act) but from the dynamic interaction of those agents. While each interaction between a pair 

of agents might be simple, it opens up a sheer infinite amount of configurations for the 

system.  In the context of fMRI the agents can be brain regions and the interactions can be 

seen as functional synchronization between these regions.  

Graph theory opens up a unified framework to model and investigate complex systems. The 

interactions between the agents can be described as a graph or network, in which the 

interactions are formalized as edges and the agents as vertices. The structure of such a 

network can then inform about the behavior of the complex system.  

The functional structure of this large-scale network can be mapped using rs-fMRI (Yeo et al., 

2011; Power et al., 2011; Bellec et al., 2010). This network, as any network, can be analyzed 

with methods developed in the field of graph theory (Diestel, 2005). In graph theory, a graph 

is defined as a tuple G=(V,E) where V is a set of vertices and E is a set of edges. I will use 

the terms edges and connections interchangeably throughout the thesis. In the following 

section, I will explain the different possibilities of defining vertices and edges in graphs 

derived from fMRI data. The process of graph construction is illustrated in Figure 1.  
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1.4.1 Vertices of an fMRI connectivity graph 

The definition of vertices is the first crucial step in a network analysis. In the following 

section, the four most common approaches of vertex definition in macro-scale neuroimaging 

will be discussed. 

The most straightforward definition of vertices is a voxel-based parcellation. Here every voxel 

of an fMRI scan becomes a vertex (examples in Lohmann et al., 2010; Zuo et al., 2012). This 

allows for the highest possible resolution and provides good reliability, given a good 

registration between the individual images and a common template space. However, its 

validity as in the question of why the resolution of the MR scanner should be the most 

informative brain unit remains unclear.  

Furthermore, the high resolution of the vertex space makes the analysis computationally very 

intensive and only very efficient algorithms can be applied. The voxel-based parcellation was 

used in Studies 2 and 3 (Schaefer et al., 2014b; Sehm et al., 2012). 

A more coarse definition of vertices is an anatomical parcellation of the brain. Here every 

anatomical region of the brain becomes a vertex (Tzourio-Mazoyer et al., 2002). These 

parcellations are highly reliable and fast to compute given an anatomical atlas. Given the 

lower number of vertices also more computationally expensive algorithms can be applied. 

However, the lower resolution can also be regarded as a limitation as it reduces sensitivity. 

The validity is unclear as the functional brain organization might not be limited by its 

underlying structure (Koch et al., 2002; Deco et al., 2011). Furthermore, the strong variation 

in the volumetric size of the vertices might be confounding. 

Random parcellations split a brain into coherent regions of uniform size (Cammoun et al., 

2012). By iteratively splitting these regions they offer multiple resolutions of the same brain. 

While random parcellations reduce the vertex size variations their validity and reliability are 

 

Figure 1 Overview of graph construction. (a) Random parcellation of a human brain in 

463 cortical and subcortical areas (section 1.4.1). (b) Correlation of average signal from 

the areas results in a matrix. (c) Thresholded matrix where connections with low 

correlation values are eliminated. (d) Visualization of resulting network in anatomical 

space. Figure adopted from Study 4 (Böttger et al., 2014a), © 2014 IEEE. 
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unclear. A random parcellation was used in Study 4 (Böttger et al., 2014a) and is illustrated 

in Figure 1a. 

Functional parcellations aim to define functional units as vertices. The parcellation is based 

on prior functional information and can either be derived from a meta-analysis (Dosenbach et 

al., 2010) or from functional homogeneity analyses (Smith et al., 2009; Varoquaux et al., 

2011; Craddock et al., 2012). Functional parcellations offer good reliability and validity. 

However, they may miss some regions and are difficult to apply to structural data. A 

functional parcellation (Craddock et al., 2012) was used in Study 5 (Schaefer et al., 2014a). 

1.4.2 Edges of an fMRI connectivity graph 

To construct a graph the definition of the edges remains to be carried out. Currently the 

relationship between regions is often characterized by the synchrony of their temporal 

signals. However, the best way to define connectivity is still debated in the field (Smith et al., 

2011). In the following three different measures of connectivity will be discussed.  

The most common approach to define edges is the Pearson’s correlation coefficient r, which 

is defined as: 

𝑟 =
∑ (𝑋𝑖 − 𝑋)̅̅ ̅(𝑌𝑖 − 𝑌)̅̅ ̅ 𝑛

𝑖=1

∑ (𝑋𝑖 − 𝑋)̅̅ ̅2 ∑ (𝑌𝑖 − �̅�)2𝑛
𝑖=1  𝑛

𝑖=1

 

where Xi is the i-th timepoint in the timeseries of vertex x and �̅� is the mean of timeseries X. 

This holds for Y respectively. All edges in a network are estimated by computing the 

Pearson’s correlation coefficients between the time series of every pair of regions (Figure 

1b). Often only the highest correlation values are used as edges to construct a graph (Figure 

1c). The reasoning is that lower correlation values are noise as they show an overall lower 

test-retest reliability (Schwarz and McGonigle, 2011; Patriat et al., 2013). We followed this 

idea in Study 4 and 5 (Böttger et al., 2014a; Schaefer et al., 2014a). While Pearson`s 

correlation is simple to compute it performs surprisingly well (Smith et al., 2011). However, its 

major problem is to induce indirect edges, so called trianglular edges. For example, if A is 

connected with B and B is connected with C then there is a high likelihood that A and C will 

be connected. The edge between A and C can arise from the variance that is unique for B 

and is considered as a false positive. 

An approach to overcome this limitation is to exclude the unwanted variance using partial 

correlation: Before estimating the correlation between A and C, the variance from B will be 

subtracted out to remove indirect connections. However, regressing out a variable removes a 

degree of freedom and becomes problematic when the number of data points (degrees of 

freedom) in the rs-fMRI signal is smaller than the number of edges.  The degrees of freedom 

in the resting state signal are limited as the majority of the power is between 0.01‒0.05 Hz 

(Schölvinck et al., 2010) and the relatively short scanning time of 15 minutes or less. 

Therefore, partial correlation is often not applicable to networks with more than 50 vertices. 

The problem of high dimensional data with a low number of data-points is not unique to 

neuroscience.  One approach to address this problem is the assumption of a sparse network. 

In other words, only a few connections are necessary to explain the data. As it is difficult to 

find this sparse representation approximation algorithms are often employed (Friedman et 

al., 2008). In the neuroimaging community sparse approaches are beginning to be used but 

are far from being common (Varoquaux and Craddock, 2013). 
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For the analysis and comparison of the resulting fMRI networks we refer to the graph 

analysis section in Study 1 (Margulies et al., 2010) and to other more recent reviews 

(Varoquaux and Craddock, 2013; Fornito et al., 2013). 

1.5 White-Matter Lesions and Small Vessel Disease 

Functional brain networks are gray matter areas which communicate through white matter 

axons. Both white and gray matter can be damaged by vascular infarcts or lesions. MRI 

white matter abnormalities reflect lesions of subcortical and periventricular white matter as 

lacunes reflect cerebrospinal fluid (CSF)-filled cavities (Selnes and Vinters, 2006). White 

matter lesions may provide a good model to study the relationship between white matter 

connections and gray matter functional connectivity. In Study 2 (Schaefer et al., 2014b) we 

addressed the impact of white matter lesions on gray matter functional connectivity. 

Subsequently, we assessed the relevance of the connectivity changes to altered task 

performances in order to demonstrate the behavioral significance of our results. 

Vascular white and gray matter lesions are also highly relevant in the clinical context. White 

matter hyper-intensities and lacunar 

infarcts are considered as evidence for 

small vessel disease. It is known that white 

matter lesions can lead to cognitive 

impairment which worsens with increasing 

lesion load (Longstreth et al., 2005). 

Accordingly, the presence of white matter 

lesions doubles the risk of a later dementia 

(Vermeer et al., 2003). Until recently the 

effect of white matter lesions onto brain 

function has been mainly assessed using 

task-based activation studies 

(Venkatraman et al., 2010; Aizenstein and 

Andreescu, 2011). 

 

1.6 Transcranial Direct Current Stimulation  

Changes in functional brain networks cannot only occur as a result of vascular lesions; they 

can also be induced by external stimulation. tDCS is a non-invasive brain stimulation 

technique which uses low currents delivered directly to a brain area via surface electrodes. 

The effect of tDCS onto brain function depends on depolarization or hyperpolarization in the 

neuronal membrane potential (Creutzfeldt et al., 1962; Nitsche et al., 2003a). Unilateral tDCS 

can be used to facilitate motor learning (Nitsche et al., 2003b). Recently, bilateral or 

bihemispheric tDCS over M1 has been suggested (Vines et al., 2008) and employed as an 

additional therapeutic tool for neurorehabilitation in stroke patients with motor deficits 

(Lindenberg et al., 2010; Bolognini et al., 2011). Bilateral tDCS of M1 might not only facilitate 

neural activity in the damaged hemisphere but additionally help to rebalance maladaptive 

interhemispheric interactions by inhibition of the contralesional motor cortex.  

Figure 2 Example for markers of structural 

changes in small vessel disease in T2-

weighted images. Characteristic abnormality 

related to lacune (A) and white matter 

lession (B). Figure from Publication 2 

(Schaefer et al., 2014b). 
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Besides these clinical aspects, tDCS can 

also be used as a tool to investigate brain 

function in healthy humans. In this 

context prefrontal tDCS has been shown 

to modulate the connectivity between 

large scale functional brain networks 

(Keeser et al., 2011). In Study 3 (Sehm et 

al., 2012) we investigated the effects of 

such stimulation on the supplementary 

motor cortex (Figure 3). We have used a 

data-driven whole brain graph-theoretical 

approach to analyze the impact of 

bilateral and unilateral tDCS (Figure 3) 

applied to the motor cortex during resting-

state fMRI scans.  

1.7 Dynamic Functional Connectivity 

Until recently it was implicitly assumed 

that the functional connectivity during a task-free fMRI scan is constant. However, recent 

studies challenged this view by showing variations in the fMRI synchronization over the scan 

(Chang and Glover, 2010). These variations of connectivity were shown to be related to the 

electro encephalography (EEG) signal (Britz et al., 2010; Musso et al., 2010; Tagliazucchi et 

al., 2012) and are present in the absence of any head motion (Hutchison et al., 2013b). 

While dynamic connectivity could be a valuable tool for clinical applications its non artifactual 

origin needs to be validated by external measures (Hutchison et al., 2013a). Possible 

strategies are relating dynamic functional connectivity to ongoing electrophysiological 

measures (Tagliazucchi et al., 2012; Chang et al., 2013) or behavior (Thompson et al., 

2013). In our analysis in Study 5 (Schaefer et al., 2014a) we show a relationship between the 

dynamic functional connectivity and ongoing self-generated-thoughts, as well as age. 

In this thesis I want to show the applicability of the graph theoretic methods described in 

Publication 1 (Margulies et al., 2010) to investigate clinically relevant changes of functional 

brain networks. Further, we developed these methods further to enhance the relevance to 

the clinical realm and address changes of brain networks on even shorter time scales. 

 

 

 

 

 

 

 

 

 

Figure 3 Bilateral tDCS over primary 

sensorimotor cortex (SM1), the anode was 

mounted over the right SM1 while the 

cathode was mounted over the homologous 

left SM1. For unilateral SM1 tDCS, the anode 

was again placed over the right SM1, while 

the cathode electrode was mounted over the 

contralateral supraorbital region. Figure from 

Study 3 (Sehm et al., 2012). 
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2 Publications 

2.1 Resting developments: a review of fMRI post-processing methodologies for 

spontaneous brain activity 

Margulies D., Böttger J., Long X., Lv Y., Kelly C., Schäfer A., Goldhahn D., Abbushi A., 

Milham M., Lohmann G. and Villringer A., Resting developments: a review of fMRI post-

processing methodologies for spontaneous brain activity, Magnetic Resonance Materials in 

Physics, Biology and Medicine, 23(5‒6), 289‒307, 2010. The final publication is available at 

http://link.springer.com/article/10.1007%2Fs10334-010-0228-5.
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Clare Kelly · Alexander Schäfer · Dirk Goldhahn · Alexander Abbushi ·
Michael P Milham · Gabriele Lohmann · Arno Villringer

Received: date / Accepted: date

Abstract Analytic tools for addressing spontaneous

brain activity, as acquired with fMRI during the “resting-

state,” have grown dramatically over the past decade.

Along with each new technique, novel hypotheses about

the functional organization of the brain are also avail-

able to researchers. We review six prominent categories

of resting-state fMRI data analysis: seed-based func-

tional connectivity, independent component analysis,

clustering, pattern classification, graph theory, and two

“local” methods. In surveying these methods, we ad-

dress their underlying assumptions, methodologies, and

novel applications.

Keywords resting state · functional connectivity ·
brain networks

Introduction

Entering a cocktail party with three friends, each of

us might intermingle—meet new people, loiter by the

hors d’œuvres—but throughout the evening we would
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no doubt exchange glances, watch for indications that

all is well, or subtly communicate that it may be time

to leave.

Upon exiting, the traditional mapping of new social

connections might be discussed as we recount the peo-

ple we met and the new connections that were formed.

However, a much less tangible aspect of the social dy-

namic is the intermittent communication that main-

tained the link throughout the party.

These two facets of social connectedness find corre-

lates in models of brain connectivity, which have been

roughly categorized as either anatomical or functional.

While anatomical connectivity may be understood as

the concrete pathways of potential information exchange

(such as collected phone numbers and email addresses

in the social realm), functional connectivity may be bet-

ter defined as the intermittent interactions maintaining

those lines of communication.

But how would we summarize and describe these

dynamic connections? One early definition established

functional connectivity as “the temporal correlation of

a neurophysiological index measured in different brain

areas” [1]; however, over the past two decades, the shift

in focus beyond mere correlation has led to the devel-

opment of increasingly complex frameworks to describe

functional relationships between brain regions

In the case of our party, how would we describe the

dynamic interactions throughout the evening? Would

we chose an individual, perhaps a central figure such as

the host, and describe her interactions with each of the

guests (seed-based functional connectivity)? Would we

map out the predominant lines of conversation (inde-

pendent component analysis) or the cliques that formed

and disassembled throughout the evening(clustering)?

Would it be more appropriate to map and abstract the

lines of communication (graph theory) or search for de-
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lineating patterns of activity (pattern classification)?

Or would we disregard the question of connectivity and

simply describe the behavior of the guests individu-

ally (“local” approaches)? Each of these approaches re-

quires a unique methodology, each is based in specific

assumptions about the structure of social interactions,

and each implies an optimal description. Before begin-

ning an analysis, it would be advantageous to consider

these aspects—likewise, with respect to the brain.

Over the past decade, researchers examining func-

tional connectivity using “resting-state” functional

magnetic resonance imaging (fMRI) data have

witnessed a dramatic increase in the analytic options

for describing and summarizing the functional organi-

zation of the brain. Although, by convention, we will of-

ten use the term “resting-state” to denote the data for

which these analyses have been largely developed, we

also recognize the controversies surrounding this desig-

nation [2,3]. While other terms have been adopted to

supplant “resting-state” (e.g., “intrinsic” and “sponta-

neous” [4]), and, when contextually appropriate, have

become practically interchangeable, we will maintain

the convention of “resting-state” due to its referential

role within the field’s literature. Nevertheless, it is cru-

cial to recognize that the methods described here are

not limited to data acquired during a “resting” condi-

tion, and can equally be used as a model-free analysis

for any steady-state fMRI data set (e.g., [5]).

Numerous studies and reviews have explored the

implications of various pre-processing steps (e.g., [6–

11]); however, only a few to date have broadly ad-

dressed post-processing techniques (for a recent review

of functional connectivity methodologies with empha-

sis on the computational aspects, see: [12,13,?]; or for

emphasis on clinical applications, see: [14,15]). In the

following review, we will address the diverse array of

post-procesing techniques available, with a focus on the

theoretical presuppositions of each for exploring brain

organization and function (see Fig. 1).

We will identify six analytic categories as they are

applied to resting-state fMRI data:

1. seed-based functional connectivity

2. independent component analysis

3. clustering

4. pattern classification

5. graph theory

6. “local” methods1

We will discuss their different underlying theoretical as-

sumptions and provide a basic methodological review

1 We use the term “local” to denote methods that do not ad-
dress long-distance functional connectivity, but rather assess local

voxelwise activity.

for their implementation. Such a framework may also

help to highlight analytic techniques that could be fur-

ther explored and developed. Given the wide scope of

this review, we will only attempt a general intuition

for the different measures. Thus, the aim of the cur-

rent review will be to offer an introduction to analytic

methodologies of resting-state fMRI data.

1 Seed-Based Functional Connectivity

Seed-based functional connectivity analysis is the corre-

lation between activity in an a priori region-of-interest

(ROI), or “seed region”, and activity in all other vox-

els in the brain. Another widely used approach is to

correlate the activity of several distributed ROIs.

The technique was initially applied to resting-state

fMRI data by Bharat Biswal and colleagues in 1995 [16].

Using a seed region in the motor cortex, resting-state

functional connectivity was shown to replicate patterns

of motor task activation.

The straightforward statistics and comprehensible

results have made seed-based functional connectivity

a popular technique. But despite the statistical trans-

parency, the technique suffers from the primary draw-

back of requiring a priori selection of seed regions or

reduction to a limited number of ROIs. Among the

predominant techniques for determining functional con-

nectivity, seed-based procedures are the most explicitly

model-based [12].

1.1 Techniques

Seed-based analysis comprises two basic steps:

1. extraction of a model time-series from a specified

area; and,

2. quantifying the similarity between the model time-

series with the time-series from other voxels or ROIs.

In its simplest form, the correlation of an averaged

ROI time-series with all other voxels is clear-cut and

easily implemented. Long-facilitated by general fMRI

data processing software such as AFNI2 and SPM3,

other software packages have recently emerged focusing

specifically on streamlined processing of resting-state

functional connectivity using MATLAB in conjunction

with SPM: “REST”4 and “MATLAB Toolbox for Func-

tional Connectivity”5 [17]).

2 http://afni.nimh.nih.gov/afni/
3 http://www.fil.ion.ucl.ac.uk/spm/
4 http://sourceforge.net/projects/resting-fMRI/
5 http://groups.google.com/group/fc-toolbox
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Granger causalitycentralitysmall-world
analysis

seed-based
correlation

amplitude of
low-frequency fluctuations

independent
component analysis clusteringregional homogeneity

how efficient is
the network graph?

where are the
key nodes?

how directional
is the connectivity?

effective connectivity

how homogeneous
is local activity?

what are the
predominant frequencies?

what are the discrete
large-scale networks?

what is the network
of a specific region?

to the rest of the brain

to other specified regions

what is the nature of
local intrinsic activity?

what is the nature of
intrinsic connectivity?

is connectivity rooted in
temporal, spectral, or phasic information?

Given an fMRI dataset
of intrinsic brain activity:

Fig. 1 A flowchart of possible questions that could be addressed with current methodologies given a resting-state fMRI data set.

Over the past decade, assessing functional connec-

tivity with seed-based approaches has expanded to in-

clude assorted signal processing and statistical tech-

niques aimed at extracting more refined and considered

relationships between regions. The following overview

will address several of the innovations developed for

both steps of the seed-based analysis.

Time-series extraction for a seed region raises is-

sues regarding the most viable method to purify signal

from a set of contiguous voxels. The conceptually basal

method is averaging the value at each time point, thus

cancelling out extraneous noise. A novel interactive

implementation has recently been made available with

the aforementioned analysis package AFNI. InstaCorr

allows the selection of a seed region to be virtually si-

multaneous with the mapping of the correlation map.

It is possible to modify the radius of the seed region

and the degree of spatial smoothing (traditionally im-

plemented by defining the size of a Gaussian filter that

assigns a value to each voxel based on the weighted av-

erage of surrounding voxels), thus facilitating the explo-

ration of these decisions on resultant correlation maps.

The significance of seed size and spatial smoothing de-

cisions becomes relevant when considering the signal-

to-noise ratio of the data, assumptions about hemody-

namic response throughout the brain, and the desired

anatomical specificity of the resultant functional con-

nectivity maps.

More computationally advanced alternatives, such

as principal component analysis (PCA) have also

been implemented for time-series extraction. Essentially,

PCA transforms the seed region time-series into a set of

“components” that successively account for the greatest

amount of variance in the data. Zhong and colleagues

recently demonstrated that using PCA to extract the

signal from an ROI for regression-based functional con-

nectivity analysis could improve the accuracy and true

positive rate for detecting the default-mode6 and motor

networks, when compared to averaging over the seed re-

gion [21]. Their method has the advantage of combin-

ing data-driven optimization of the model time-series

with statistically straightforward model-driven regres-

sion, thus capitalizing on the strengths of both tech-

niques.

After a model time-series has been extracted, myr-

iad statistical techniques are available for quantify-

ing the relationship between the seed region and

other voxels or ROIs. As each addresses different as-

pects of the signal, each also implies specific hypotheses

about the mode of communication assessed with func-

tional connectivity. The blood oxygen-level depen-

dent (BOLD) signal reflects the response of deoxy-

hemoglobin (deoxy-Hb) concentration to changes

in local neuronal activity and is determined by vascu-

lar (blood velocity, blood volume: “neurovascular cou-

pling”) and metabolic (oxygen consumption: “neuro-

metabolic coupling”) factors. The analytic tool employed

inherently makes certain assumptions about the tempo-

ral dynamics of the deoxy-Hb response across the entire

brain.

6 The “default-mode network” consists of medial prefrontal,

posteromedial, and inferior lateral parietal cortex, and received
its name due to greater activity during the baseline “resting”

condition [18,19]. For a recent review, see: [20].
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For instance, temporal correlation (or covari-

ance) can describe synchronous fluctuations, whereas

cross-correlation can accommodate lags in communi-

cation between areas. These approaches would be ap-

propriate if neurovascular coupling were globally con-

sistent; however, if we cannot make that assumption,

then a statistical method which is insensitive to the

temporal domain might be more suitable.

While cross-correlation quantifies the relation be-

tween two signals in the time-domain, coherence op-

erates equivalently in the frequency-domain. Coherence

thus provides a means for assessing functional connec-

tivity that is insensitive to inter-regional differences in

neurovascular coupling dynamics [22,23]. Shifts in the

frequency spectrum do not alter the degree of coher-

ence (just as lags in the time-domain do not alter cross-

correlation coefficients), considering the low-frequency

spectral band in which functional connectivity is de-

tected [16,24,25], low-pass filtering at 0.1 Hz, or even

lower, is an essential preprocessing step for this method.

Higher frequencies due to cardiac or respiratory arti-

facts would otherwise interfere in coherence analyses.

Furthermore, different networks have been shown to

correlate at distinct low-frequency bands at rest [26,27],

and are modulated in the low-frequency domain during

motor task-involved [28] and cognitive effort [29].

Another approach, rather than looking at the mag-

nitude of the spectral information, is to explore the

phase-spectrum delay between regions. Sun and col-

leagues developed a novel method of addressing latency

between regions in conjunction with connectivity through

the combined analysis of phase-delay and coherence [30].

When more than one seed region is analyzed, the

specificity of functional connectivity to only one of the

regions is a critical issue. Partial correlation (or mul-

tiple regression) reveals the functional connectivity

between a pair of regions, removing influences from

others [31]. For example, partial correlation has been

used to parcellate the thalamus with respect to cor-

tical regions, by eliminating the influence of all other

cortical regions [32]. The influential role of the postero-

medial component of the default-mode network in the

networks functioning has also been demonstrated using

such methods [33].

The definition of functional connectivity is often de-

scribed within the neuroimaging literature in contrast

to effective connectivity, which addresses the direc-

tionality of influence between regions. While numerous

techniques have been developed to address causal inter-

actions in fMRI data, one popular approach in resting-

state analysis is Granger causality [34]. The analy-

sis assumes that better prediction is an indication of

influence, and tests whether past values of time-series

A better predict future values of time-series B than

past values of time-series B alone. It has been used

to address control of the default-mode network [35,

36] and the changing influences between networks with

respect to age [37]. Nonetheless, due in part to tem-

poral blurring induced by the hemodynamic response,

the potential utility of effective connectivity to resting-

state fMRI data, without experimental manipulation,

remains a source of debate (see the section Correlation

and Causality in [13]) and methodological innovation

(e.g., [38]). The rest of the current review, however, will

focus on methods for the analysis of functional connec-

tivity.

1.2 Applications

Early studies of resting-state functional connectivity fo-

cused on describing well-charted neural systems from

the cognitive neuroscience literature, such as the mo-

tor cortical network [39,40], visual network [41–43], a

language network, including Broca’s and Wernicke’s ar-

eas [44], a cerebellar-prefrontal network [45], and net-

works based in the amydgala and hippocampus [40]. Of

interest to the emergence of the“resting-state” fMRI re-

search field, Greicius and colleagues were the first to use

seed-based functional connectivity to map the default-

mode network in 2003 [46], thus effectively linking the

resting-state functional connectivity literature (whose

lineage is traced to Bharat Biswal et al., 1995 [16]) with

the “resting-state” of cognitive neuroscience (which emer-

ged from Shulman et al., 1997 [18] and several publi-

cations in 2001 by Marcus Raichle, Deborah Gusnard,

and colleagues [47,48]).

While a significant concern of these initial studies

was to establish the validity of studying functional con-

nectivity in the absence of an attributable cognitive

or behavioral state, more recent research into resting-

state functional connectivity has taken advantage of its

strengths in order to address topics that are beyond

the practical scope of task-based fMRI. For instance,

the detection of functional subdivisions within com-

plex regions usually requires large-scale meta-analysis

(e.g., striatum [49], anterior cingulate [50], and cere-

bellum [51]); however, systematic placement of seed re-

gions throughout such regions has revealed similar sub-

divisions in striatum [52,53], anterior cingulate [54],

and cerebellum [55,56], as well as amygdala [57,58], me-

dial temporal cortex [59], cross-modal auditory-visual

connectivity during rest [60], and the red nucleus [61].

Other studies have observed the presence of novel sub-

divisions with the precuneus [62] and the default-mode
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network [36], somatotopic organization within the mo-

tor cortex [63], differentiation of the dorsal and ventral

attention streams [64], a hippocampal-parietal memory

network [65], and a fronto-parietal control network [66].

The efficiency of these approaches for exploring func-

tional neuroanatomy with data sets comprising merely

dozens of participants, rather than a meta-analysis of

an equal number of studies, is evident.

Furthermore, these approaches have been fruitful in

cross-species animal research. The default-mode net-

work is found in the anesthetized macaque monkey [67],

as well as the posterior parahippocampal network [68],

and posteromedial subdivisions reflecting the anatomi-

cal tracing literature [62]. In the rat, the sensorimotor

and visual networks have been mapped [69,70]. The

general flexibility of resting-state scanning has enabled

rapid innovation for addressing cross-species questions

using parallel non-invasive techniques.

Amidst these advances, the issue of how to best op-

timize ROI-selection persists as the most evident weak-

ness of seed-based approaches. Meta-analyses have pro-

vided an effective strategy for probing specific distributed

systems. For instance, in order to examine the test-

retest reliability of resting-state data, Shehzad and col-

leagues [71] specified 3 sets of regions of interest (ROIs),

derived from four different and representative studies [72–

75]. However, the further development of computationally-

oriented, a priori -free selection criteria is still much

needed.

1.3 Discussion

In summary, seed-based approaches constitute one of

the primary analytic strategies for resting-state data,

and offer an unambiguous means of quantifying func-

tional connectivity. The limitations of a priori seed re-

gion selection, size, and shape, are a substantial draw-

back, as these choices can alter findings, and may bias

the results. Furthermore, proper delineation of subdivi-

sions becomes a methodological question in itself.

Potential solutions to these issues take the form of

several other prominent methodologies (ICA, cluster

analyses), which will be discussed in the following sec-

tions.

2 Independent Component Analysis

Assuming the brain is organized into a number of func-

tionally discrete networks, an optimal analytic tech-

nique would determine the signals unique to each net-

work from the data alone. Blind source separation

(or decomposition) techniques address the problem of

determining distinct components within a set of signals

with minimal a priori assumptions. Rather than requir-

ing the specification of seed regions to derive networks,

independent component analysis (ICA) has gained

prominence in resting-state fMRI data analysis as a

method to determine the spatial distribution of distinct

functional connectivity networks [76–79]. In comparison

with the aforementioned seed-based approaches, ICA

offers several advantages:

– It does not require assumptions about locations of

networks.

– Networks can be distributed, without a focal seed

region.

– It can be conducted with minimal preprocessing, as

noise is extracted as components during the analy-

sis.

Nonetheless, ICA is not the perfect answer to functional

connectivity analysis, as will become clear from a closer

inspection of the methods.

2.1 Technique

The aim of ICA is to delineate maximally independent

spatial or temporal components. As fMRI data gener-

ally consists of more spatial than temporal data points,

spatial ICA is more widely applied. Thus, ICA assumes

that an fMRI data set consists of a mix of independent

signals from a number of spatially distributed sources,

and decomposes the data into several such independent

components.

Many software tools are available to implement ICA.
For example, probablistic ICA with MELODIC7 is avail-

able with FSL; GIFT and FIT8 can be applied using

SPM; cortex-based ICA can be conducted in BrainVoy-

ager 20009; and ICASSO offers ICA reliability analy-

sis10 [80].

Although ICA claims to require no initial assump-

tions, the approach does require specification of the

number of components. While toolboxes such as MELO-

DIC can automatically estimate this number through

prior PCA-based estimation, in practice, the dimen-

sions are often estimated by the user.

In deriving independent components, ICA extracts

components due to “artifactual” signal such as scan-

ner noise, head movement, and physiological “artifacts”

(e.g., cardiac and respiratory signal) alongside function-

ally meaningful networks. While the extraction of these

7 www.fMRIb.ox.ac.uk/fsl/melodic/index.html
8 http://icatb.sourceforge.net/
9 http://www.brainvoyager.com/BrainVoyager.htm

10 http://www.cis.hut.fi/projects/ica/icasso/
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“noise” components is advantageous—such artifact ex-

traction has even been proposed as a preprocessing step

for seed-based correlation analysis [81]—it requires that

the user exercises judgment in separating meaningful

networks from noise components [82–85], or develop

classification techniques [86], [84]. Thus, while minimal

a priori assumptions are required, ICA does require

substantial a posteriori selection of valid components,

whether though visual inspection or automated meth-

ods.

Group-level ICA analysis is a substantially more

complicated issue due to the difficulty of selecting cor-

responding components across individuals [87,88]. The

order of ICA components is unconstrained, and can-

not be used for selection. One approach for classifying

a network consistently across individuals is template

matching [89,90]. Individual-level independent com-

ponents are first discarded based on temporal criteria

(e.g., valid components must consist of characteristic

low-frequencies). Then, all remaining individual-level

components are compared to a set of researcher-defined

spatial templates for “goodness of fit”. Although tem-

plate matching is an effective means for consistent selec-

tion of analogous networks across individuals, it relies

on assuming appropriate templates.

Group-level ICA would seem like the obvious choice

for their derivation; however, it too presents signifi-

cant complications. One proposed solution is to conduct

group-level ICA on co-registered and concatenated

individual datasets. The group-level results of tempo-

ral concatenation ICA (TC-ICA) can then be used

as templates in order to derive individual-level maps.

Such approaches have been fruitful in discerning dis-

tinct cortico-cerebellar networks [91].

Dual-regression ICA has recently been developed

as a method to derive more accurate group-level com-

parisons based on TC-ICA templates. After creating

the templates, spatial regression is conducted on the

individual level to extract a temporal model for a sec-

ond temporal regression. The resultant statistical maps

are then used for group-level analysis [92,25,93].

An alternative, proposed by Calhoun and collea-

gues [94], addresses the problem of combining compo-

nents across individuals. Rather than use a template-

matching scheme, the individual data sets are entered

into a single ICA analysis, and then back-reconstr-

ucted. This procedure ensures that the components are

consistently ordered across individuals.

Other automated group-level approaches aim to clus-

ter components across subjects based on spatial config-

urations (e.g., partner-matching [95]).

2.2 Applications

ICA has been responsible for a significant shift in un-

derstanding large-scale network structure in the brain.

Owing to its exploratory, data-driven procedure, sev-

eral networks were consistently classified across stud-

ies and subject groups [78,79,96,97]. ICA-derived net-

works are consistent across participants [79] and scan

sessions [98,99], with the default-mode network demon-

strating particularly robust reproducibility and cross-

research selection reliability [100,101]. ICA has been

applied to infants as young as 24 weeks [102] and has

also been widely used to study clinical populations (e.g.,

Alzheimer’s disease [89,103], mild cognitive impairm-

ent [104], depression [105], schizophrenia [106], Hunt-

ington’s disease [107], lateral sclerosis [108], temporal

lobe epilepsy [109], and non-communicative brain dam-

aged patients [110]).

The impact of data-driven approaches such as ICA

was demonstrated in a recent paper by Stephen Smith

and colleagues [111]: 20 ICA components were extracted

from resting-state data from 36 individuals, as well as

7,342 peak coordinates from the collection of functional

studies contained in the BrainMap database. The sets

of components were highly consistent, demonstrating

the structural persistence of these functional networks

at rest, and suggesting that these networks may provide

a foundation for discerning the modular building-blocks

of cognitive functions.

2.3 Discussion

Blind-source analysis methods are data driven, and do

not require specification of seed-regions. However, they

are nonetheless hypothesis driven, because the “true”

number of components present in the data is not known,

and has to be more or less empirically chosen (tech-

niques for the automatic calculation of the number of

components exist, and have demonstated high test-retest

reliability, but there is poor concordance across the var-

ious estimation algorithms [99]). The reproducibility of

ICA is another significant challenge. The ICA algorithm

begins with a random assumption with each iteration,

thus producing results that are variable across analyses.

Secondly, following component identification, the se-

lection of meaningful components remains a problem.

Manual selection through visual inspection is prone to

human error. While automated methods are promising,

they either rely on preexisting templates (i.e., template-

matching) or are computationally intensive (i.e., back-

reconstruction). Novel methods for automated ICA di-

mensionality and group-level analysis is an area of on-

going development. Nevertheless, the automaticity and
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model-independence of ICA makes it a convenient tool

for whole-brain functional connectivity analysis.

One fundamentally dubious assumption of ICA is

the independence of network signals in the brain. Con-

sidering the extraordinary degree of interconnectivity

between the entire brain, striving to derive independent

networks would not seem to be an effective method at

generating a physiological plausible model of functional

organization. Daubechies and colleagues have recently

suggested that the ICA algorithms used in fMRI data

analysis are tuned to detect sparsity, rather than inde-

pendence [112], a more likely model.

3 Clustering

Although model-free approaches to resting-state func-

tional connectivity, such as ICA, overcome one of the

greatest problems associated with model-based (i.e., seed-

based) approaches, namely, the dependence of findings

on the initial selection of seed ROIs, these model-free

approaches still entail a degree of subjectivity and hu-

man judgment both in dimensionality estimation and in

the selection of “meaningful” components or networks.

One approach that is gaining popularity in the attempt

to overcome these issues is the application of clustering

techniques to resting-state data.

Clustering is essentially a family of mathematical

techniques that searches for patterns in data. More spec-

ifically, clustering is the unsupervised partitioning (clas-

sification) of data into subsets (clusters) so that obser-

vations assigned to the same cluster are more similar to

one another than they are to observations assigned to

another cluster.

In the context of resting-state functional connectiv-

ity analysis, clustering algorithms have been used to

partition the brain into groups (clusters) of voxels or

regions that are functionally connected with one an-

other [113], or that exhibit similar patterns of func-

tional connectivity with the rest of the brain [115]. The

former represents a method akin to ICA, aimed at de-

tecting distinct large-scale resting state networks, while

the latter is an emerging approach aimed at break-

ing the brain down into its smallest detectable distinct

functional units. The main results of these studies are

briefly reviewed below, but it is worth noting that neu-

roimaging applications of clustering approaches are not

restricted to resting-state studies, as clustering has been

applied to structural connectivity (e.g., diffusion ten-

sor imaging), task activation and neurotransmitter re-

ceptor data with equally impressive results (e.g., [124–

129]).

3.1 Technique

As we have noted, clustering is a family of techniques,

and researchers face a plethora of options with regard to

the specific clustering approach to apply to their data.

In RSFC applications, those most commonly employed

include:

– hierarchical clustering approaches, which start

by treating each data point as a singleton cluster,

then, as K decreases, successively merge previously

established clusters (visualized as a dendrogram or

tree) (e.g., [115,130,131,114]);

– partitional clustering (such as k-means), which

determine all K clusters at once, typically by at-

tempting to minimize intra-cluster variance (e.g., [130,

132];

– spectral clustering approaches, which perform

an eigendecomposition of (the graph Laplacian of)

the similarity matrix as an initial data reduction

step, then use one of the more standard clustering

algorithms (e.g., k -means) to perform the final par-

tition of the data on the basis of the resultant matrix

of eigenvectors (the data’s spectrum) (e.g., [113]).

There are, of course, many other clustering techniques

(e.g., non-metric clustering [133]), and the development

and improvement of clustering methods is a topic of

intense research in fields such as machine learning

(e.g., [116]), which will be addressed in the following

section on pattern classification.

3.2 Applications

In the first application of clustering techniques to resting-

state functional connectivity data, Cordes and collea-

gues [131] applied hierarchical clustering using sin-

gle linkage to frequency-specific inter-voxel correlations.

Due to the computational complexity involved, the anal-

ysis was limited to four slices covering auditory, mo-

tor and visual cortex (1300-2400 voxels). They detected

several, mostly bilateral clusters that were readily iden-

tifiable as functionally distinct areas, including sensori-

motor cortex, auditory cortex, fusiform gyrus and pri-

mary visual cortex, as well as a number of “nuisance”

clusters corresponding to CSF or other artifacts. Fur-

thermore, they demonstrated that, for the majority of

clusters detected, cardiac, respiratory and motion-related

contributions to functional connectivity between the

voxels were minimal.

Salvador and colleagues [114] used hierarchical clus-

tering and multidimensional scaling to identify six

networks. However, their methods formed clusters that

grouped regions according to anatomical location (e.g.,
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Table 1 A digest of some representative “resting-state” research articles for each section.

Section References Desription

Seed-based Functional Connectivity Biswal et al. 1995 [16]

Margulies et al. 2007 [54]
Sun et al. 2005 [30]

Makes use of temporal correlation from a selected region-

of-interest, or “seed” region. Now termed “seed-based” func-
tional connectivity, the technique relies (and expands) on the

basic premise, which defines it as “the temporal correlation
of a neurophysiological index measured in different brain ar-

eas.”

Independent Component Analysis De Luca et al. 2006 [96]
Damoiseaux et al. 2006 [79]

Beckmann et al. 2005 [78]

Assumes that resting-state data is composed as a mixture
of unknown, but uncorrelated signals. Decomposes rs-fMRI

data into spatially or temporally independent components

(networks).

Clustering van den Heuvel et al. 2008 [113]

Salvador et al. 2005 [114]

Cohen et al. 2008 [115]

A family of statistical techniques that searches for patterns in

data. Unsupervised partitioning (classification) of data into

subsets (clusters).

Pattern Recognition Craddock et al. 2009 [116]

Zhu et al. 2008 [117]

Shen et al. 2009 [118]

Involves the application of multivariate pattern classification

algorithms. These algorithms use the characteristics of ob-

jects to identify classes to which they belong. In fMRI data,
these characteristics are generally brain activation or connec-

tivity patterns, and the classes are usually brain or cognitive

states.

Graph Theory Bassett & Bullmore 2007 [119]

Achard & Bullmore 2007 [120]

He et al. 2009 [121]

A mathematical tool whose aim is to characterize aspects of a

network structure using a variety of measurements. One such

approach characterizes the brain as a small-world network .

Local Methods Zang et al. 2004 [122]

Zou et al. 2008 [123]

Zuo et al. 2010 [25]

Two measures which quantify the function of the brain lo-

cally can be implemented in resting-state fMRI studies: re-

gional homogeneity (ReHo) and amplitude of low frequency
fluctuations (ALFF).

frontal, temporal, subcortical), and thus the resultant

networks differ from the resting-state networks with

which we are now more familiar. In contrast, Thirion

and colleaguees [134] clustered coherence measures of

resting-state data using Gaussian Mixture Models,

and observed several plausible networks, including me-

dial and lateral visual networks, and a bilateral fronto-

parietal network, although consistency across the small

subject sample was low.

Of course, many of these early clustering studies

were limited by the computational capabilities avail-

able at the time. As a result, researchers were required

to reduce the volume of data entered into their analy-

ses, either by acquiring data from only a limited num-

ber of slices, rather than the whole brain [131], or by

resampling the brain according to a parcellation scheme

(e.g., [114,134]).

More recently however, vast improvements in com-

putational resources have made it possible to perform

clustering analyses at the voxel level, permitting the

performance of analyses at a finer scale that remains

close to that of the original data. Consequently, there is

increasing sophistication in the methods employed and,

most important, increasing convergence with the results

of other resting-state analysis methods (e.g., ICA).

Two exemplars of this increased sophistication and

convergence are provided by Van den Heuvel and col-

leagues [113] and Bellec and colleagues [130]. The first

of these studies, by Van den Heuvel and colleagues, used

spectral clustering, specifically, the Ncut method de-

vised by Shi and Malik [135], to partition whole-brain

grey matter on the basis of voxelwise functional connec-

tivity (expressed as temporal correlation) in 26 partici-

pants. One notable methodological advance detailed in

their paper was the computation of a consistency ma-

trix, which quantifies the frequency with which vox-

els were assigned to the same cluster across partici-

pants. In order to determine group-level clustering solu-

tions, spectral clustering was performed on this consis-

tency matrix, the result being a set of cluster solutions

(networks) exhibiting the most consistent (stable) func-

tional connectivity across subjects. Their analysis pro-

duced seven networks, strikingly similar to those identi-

fied using both seed-based analyses and ICA, including

the default mode network, right and left fronto-parietal

networks, and a sensorimotor/visual network.
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In their paper, Bellec and colleagues [130] also made

use of consistency matrices, in the context of a boot-

strap approach to k -means clustering of resting state

time series, which sought to identify the most stable

large-scale networks (clusters) detectable at both the

single-subject and group levels. Interestingly, this ap-

proach, named “bootstrap analysis of stable clus-

ters (BASC),” also identified seven networks that were

remarkably similar to those identified in other studies,

including the default mode, sensorimotor, visual and

fronto-parietal networks. In addition, the authors drew

attention to the fact that good stability was observ-

able at finer spatial scales (i.e., larger numbers of clus-

ters), and the likelihood of good agreement between

solutions at these finer scales and the results of high

dimensional ICA analyses, such as that those of Smith

and colleagues [111] and Kiviniemi and colleagues [97].

Several other papers have directly focused on clus-

tering at finer spatial scales. These studies have demon-

strated the ability of clustering methods to identify the

organization of the brain at the local level, in terms

of its division into functionally distinct regions, rather

than at the global level of large-scale networks.

For example, Mezer and colleagues [132] applied the

k -means clustering algorithm to time-dependent mea-

sures of functional connectivity to identify clusters in

grey matter, white matter and thalamus that closely

matched known anatomical distinctions in terms of cy-

toarchitecture/microstructure (e.g., Brodmann’s areas)

and morphology. Interestingly, Mezer and colleagues

concluded that their results were primarily driven by

non-functional contributions to the BOLD signal, such

as head motion, a suggestion that seems overly-pessimistic

in the context of their consistency with the resting-state

literature.

A more optimistic tone is struck in work by Co-

hen and colleagues [115], who performed voxelwise hi-

erarchical clustering on the basis of the eta2 index,

which quantifies the pairwise similarity between voxels’

functional connectivity profiles. Cohen and colleagues

showed that, in a single participant, hierarchical clus-

tering was highly successful at partitioning regions ex-

hibiting different functional connectivity profiles, thus

likely constituting functionally distinct areas.

3.3 Discussion

In summary, clustering approaches applied to resting

state data have proved highly successful at detecting

known functional, anatomical and architectonic subdi-

visions in the brain. They are not without their flaws

however, with the most significant stumbling block be-

ing that almost all available techniques require the user

to define a number of clusters (K ) into which to par-

tition the data. Because the true number of clusters is

often unknown (referred to as the “cluster validity”

problem), researchers typically compute multiple solu-

tions, then use some metric of “goodness” to determine

the “optimal” cluster solution from those produced. Un-

fortunately, however, there is no single or best measure

of solution optimality, and different studies have em-

ployed different methods or sets of methods (e.g., sil-

houette distance; linkage threshold; between-group sim-

ilarity of clustering solutions; minimized Ncut cost; in-

formation criteria). Ultimately, it is unlikely that clus-

tering will escape the involvement of human judgment,

as users have to assess the suitability of the cluster-

ing results against known or hypothesized networks or

functional subdivisions. However, the advantage of clus-

tering approaches (as well as ICA approaches), is that

this human judgment is incorporated at a high percep-

tional cluster- or network-level, rather than during the

early-stage ROI selection, as is required in seed-based

approaches.

4 Pattern Classification

In recent years multivariate pattern analysis (MVPA)

(also referred to as multi-voxel pattern analysis)

has gained increasing importance in fMRI data analy-

sis (for reviews, see [136,137]). Like other multivariate

approaches (e.g., ICA, clustering) MVPA takes into ac-

count multi-voxel patterns of brain activity or connec-

tivity. Information contained in these patterns can then

be decoded by applying powerful pattern-classification
algorithms. This method thus incorporates spatially dis-

tributed patterns of activity into the analysis, unlike

univariate methods which treat every brain voxel inde-

pendently.

MVPA has become a valuable fMRI data analy-

sis method for classifying cognitive states and drawing

relationships between neural activity (or connectivity)

and these states. MVPA was mainly initiated in the do-

main of visual perception [138–140], but was extended

to other types of mental states as well [141]. MVPA has

also been applied to the study of neural coding [137,

142], and utilized in the field of memory research [143].

4.1 Technique

In MVPA, pattern classification algorithms assign

objects to classes using specific features. In the anal-

ysis of fMRI data, these characteristics are generally

patterns of brain activation or connectivity and the
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classes are brain states or cognitive states. Introduc-

tory guides are available [144,145], as well as easy to

use software [146].

In brief, application of the technique entails the fol-

lowing basic steps:

1. Choosing the features that are descriptive of the

objects and a way to represent them.

2. Selecting a subset of these features to be used for

classification.

3. Selecting the pattern classification algorithm.

4. Dividing of the data in two parts: a “training set’’

and a “testing set”.

5. Utilizing the training set to train the classifier with

the features and the prespecified classes of objects.

The classifier thus “learns” a functional relationship

between the features and the classes.

6. Testing of the classification algorithm for its gener-

alization capabilities with the testing set, and mea-

suring the percentage of correct classifications.

Effective feature selection is necessary to prevent

the classifier from overfitting the data or reducing com-

plexity. This can be done automatically by using mathe-

matical methods that select relevant discriminative fea-

tures [147]. Another possibility is manual feature se-

lection (e.g., the limitation to certain ROIs). This man-

ual method is of course application specific.

When choosing the proper classifier, certain issues

should be considered. In MVPA, a supervised machine

learning algorithm is usually used for pattern classifi-

cation. Examples of such algorithms are support vector

machines (SVM), neural networks, or linear discrimi-

nant analysis (LDA). They can be used to learn a func-

tional relationship between the features and the classes.

Rarely unsupervised machine learners (e.g., clustering)

are utilized. Unsupervised algorithms find structure on

data without prior knowledge about classes, but one

cannot be sure whether it is the desired structure that

is found, so supervised learners are normally applied. It

is important to state that there is no single algorithm

that works best on all problems. There are some clas-

sifiers like SVMs that achieve good results for a wide

range of problems, but caution is required when rely-

ing on this. One thing that can be incorporated when

choosing a classifier is knowledge about the functional

relationship between the features and the classes. If this

relation is assumed to be linear a linear classifier should

be used (e,g., LDA, linear SVM). In the non-linear case

a technique that can account for non-linearity (e.g.,

non-linear SVM, neural networks) is advised, although

this does not always lead to better results [139]. Finally

there are different ways to divide the data into “train-

ing set” and “testing set” for testing the generalization

capabilities of the classifier. One often-used possibility

is cross-validation (see [144] for advantages of this tech-

nique).

4.2 Applications

Multivariate pattern classification as applied to resting-

state fMRI data is still a young field of research. Similar

to its application in task-based studies, it has primarily

been used for disease-state prediction to discrimi-

nate between patients and healthy control groups on

the basis of resting-state functional networks.

In a study of attention-deficit / hyperactivity disor-

der (ADHD), Zhu and colleagues used principal com-

ponent analysis-based Fisher discriminative anal-

ysis (FDA) [117] and pseudo-FDA [148] for classi-

fication. On the basis of regional homogeneity as

features, they were able to discriminate between pa-

tients with ADHD and healthy subjects. The results

were also used to identify discriminative regions. They

also achieved a high generalization rate when compar-

ing results to linear support vector machines and

batch perceptrons.

Wang and colleagues examined patients with an early

stage of Alzheimer’s disease using a linear classifier based

on ICA and FDA [149]. They put particular empha-

sis on the choice of features for classification. Correla-

tion coefficients of two intrinsically anti-correlated net-

works were utilized as features to distinguish patients

with Alzheimer’s disease from healthy controls. When

comparing their classification results to features based

on whole-brain functional connectivity, their approach

outperformed the latter. They thus concluded that the

two anti-correlated networks play an important role in

early stages of Alzheimer’s disease.

Schizophrenia was investigated by Jafri and colleagues,

who used a three-layer feed-forward neural net-

work approach to analyze ICA components [150]. Shen

et al. utilized a nonlinear unsupervised-learning

classifier for discrimination and to map statistically

relevant regions [118]. They used a nonlinear learning

technique (locally linear embedding) to reduce di-

mensionality of the resting-state data. Then C-means

clustering was applied to discriminate between schizo-

phrenia patients and healthy controls. Classification er-

ror rate was very low and it performed better than lin-

ear classifiers it was evaluated against.

Major depressive disorder was also the subject of in-

vestigation. Craddock and colleagues used a support

vector machine classifier to distinguish healthy per-

sons from depressed ones [116]. Their focus was on

testing different feature selection methods. They incor-

porated filter and wrapper feature selection and
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also reliability information. This reliability measure im-

proved the results of classification significantly.

These approaches demonstrate that disease-related

differences in resting-state functional connectivity are

feasible for disease state prediction and for the identi-

fication of discriminative regions of the brain.

4.3 Discussion

In summary, the application of MVPA has been suc-

cessfully expanded to the field of resting-state fMRI.

While MVPA has been primarily used in the small do-

main of disease state prediction, it also has potential

for a wider applications in addressing differential func-

tional connectivity across general brain states. MVPA

have also prove promising in pharmacological studies

where medications and placebos are contrasted.

The small number of studies involving MVPA and

resting-state fMRI give rise to many open questions. For

instance there are a lack of comparative studies. While

a portion of the aforementioned studies do compare dif-

ferent features, feature selection methods or classifiers

in a very narrow context, this is far from sufficient to

assess various strengths and weaknesses for different ap-

plications. For example, it would be valuable to investi-

gate if or how involved features and methods could be

applied to diseases other than those included in each

respective study.

Another important issue that has not yet been in-

vestigated is the influence of spatial resolution. While

spatial resolution is a crucial factor for all fMRI ap-

proaches, it is of particular interest for pattern clas-

sification which aims to detect subtle patterns in the

data. Many analyses described here, particularly those

involving networks and pattern classification, are con-

ducted at a relatively low-resolution scale (50-100 units).

Significant efforts and methodological advances are need-

ed to understand how such findings may generalize to

higher resolutions.

5 Graph Theory

The mathematical field of graph theory has developed

over centuries to characterize various aspects of net-

work structure. Building on the functional connectivity

approaches previously discussed, graph theory can be

applied to the brain by positing that regions-of-interest

(or single voxels) constitute vertices, and the connec-

tions between them, edges. This insight makes it possi-

ble to exploit the already existing graph theory knowl-

edge to analyze functional brain networks. As the tech-

niques thus far presented have predominantly focused

on mapping the spatial extent of networks, graph the-

ory, in contrast, provides tools to describe and charac-

terize various intrinsic properties of network configura-

tion (e.g., efficiency and modularity).

5.1 Technique

Given a selected set of regions from a resting-state fMRI

data set, each ROI corresponds to a vertex, the

edges are defined by the functional connectivity

between vertices (see Figure 2). An edge can be as-

signed between two vertices if the correlation coefficient

exceeds a certain threshold, or each correlation coeffi-

cient itself can be used to weight each edge. A path

in a graph is a sequence of vertices in which all suc-

ceeding vertices are connected by edges, and the length

of a path is the number of edges traversed. The dis-

tance between two vertices of a graph is the minimum

length among all paths connecting them. The degree

of a vertex is the number of edges connecting to it. The

(open) neighborhood of a vertex is all vertices that are

connected to it by an edge.

functional connectivity 
between regions

A

C

B

a graph of
vertices and edges

A

C

B

Fig. 2 A schematic illustration depicting the transformation

from ROIs to graph representation. The distance between ver-
tices A and C is 4, as marked with the darkened line. The degree

of vertex B is 4, A is 2, and C is 1, as measured by the number

of edges connecting to each. Vertex A is part of vertex B ’s neigh-
borhood, but C is not, because it is not directly connected to B

by an edge.

Diestel offers a general introduction to graph the-

ory [151]. For an overview with respect to applications

to brain connectivity, see the recent review by Bullmore

and Sporns [152]. For implementation, a MATLAB-

based “Brain Connectivity Toolbox” is also freely avail-

able11.

5.2 Applications

Numerous measurements have been developed for the

characterization of graphs. We will describe local mea-

11 http://www.brain-connectivity-toolbox.net/
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sures (assigning values to each vertex individually) and

global measures (characterizing the graph as a whole).

One simple concept to measure the global structure

of a graph is the degree distribution P (k). This func-

tion gives the likelihood that a randomly chosen vertex

from a graph has degree k. fMRI data have been found

to have various degree distributions: power law [153],

exponential [154] and exponentially truncated power

law [155,156]. These three different findings could be

related to the different spatial scales employed by the

studies (ROIs vs. voxels).

Degree distribution offers information about the num-

ber of vertices which have a very high degree, termed:

“hubs”. Such hubs have been the topic of a recent study

by Buckner and colleagues [157], who found that regions

of high “hub-ness,” or centrality, were most prone to

deterioration in individuals with Alzheimer’s disease.

Eigenvector centrality has also recently been applied

to the analysis of fMRI data using both linear correla-

tion and spectral coherence as distance measures [158].

The computational advantage of eigenvector centrality

allows for the inclusion of all voxels in the brain.

Degree distribution can also be used to explore the

vulnerability of a graph with random error and tar-

get attacks [159]. In “random error”, a random ver-

tex is repeatedly deleted from the graph, while “target

attack” repeatedly deletes the vertex with the actual

highest degree. After each step, the vulnerability of the

graph to the attack is then measured using a variety of

tools, among them: clustering coefficient, average path

length, small-world properties, and local and global effi-

ciency, which will be further discussed below.

These concepts can be applied to probing the re-

silience or vulnerability of the brain’s functional orga-

nization. For instance, Achard et al. [155] showed that

networks observed in wavelet transformed resting-state

fMRI data are more resilient to target attacks than a

random scale-free network but equally resilient to ran-

dom error.

One concept used to measure the local structure of

a graph is the local clustering coefficient, which

checks whether the triangle between a vertex and two

connected vertices is closed by an existing edge. The

measurement counts all existing triangles in the neigh-

borhood and divides them by the number of theoret-

ically possible triangles. The clustering coefficient has

been interpreted as a measure of resilience to random

error [160], since if a vertex is deleted, its neighbors stay

connected. The local clustering coefficient can also be

used as a global local measurement by averaging over

all vertices of a graph.

Another measurement for the global topology is the

average path length of a graph, which is the mean of

all distances between any pair of vertices. The average

path length can be understood as a measurement of

how well integrated a graph is.

Measures of modularity describe how well a net-

work is divisible into separate components (“modules”)

with high internal connectivity, but sparse inter-module

connections. He and colleagues found that recognizable

sensory and cognitive systems a highly interconnected

modules with sparser intermodule connections [121].

Shen and colleagues [161] analyzed the modularity

function by Newmann [162]—which finds dense sub-

structures in a graph by taking the ratio of the num-

ber of existing to theoretically-possible edges within a

community— and two similar approaches called cut

and Ncut on resting-state fMRI data. They concluded

that whole-brain parcellation is feasible with the three

approaches, and that the Ncut algorithm is the appro-

priate way to do so.

Ferrarini and colleagues [163] described a different

approach. Their technique is based on a non-degree

biased cluster coefficient [164], and the subsequent

application of a hierarchical clustering algorithm [165].

Using this approach they showed modularity between

frontal, subcortical, parietal and temporal regions of

the brain.

Combining these measurements one can character-

ize a network as being a small-world network. This

term was first introduced by Watts and Strogatz in

1998 [166], who demonstrated that certain real-world

networks have a significantly higher clustering coeffi-

cient than their random counterpart, without a signifi-

cantly higher average path length. They proposed that

this could also be the case for many other real-world

networks—a hypothesis that was later confirmed by

findings ranging from road maps [167], food webs [168],

airplane passenger traffic [169], metabolite processing

networks [170], mobile call graphs [171], ownership links

among German companies [172], and, of course, brain

networks [173].

There are certain empirical and theoretical reasons

for understanding the brain as a small-world netwo-

rk [119]: the brain supports both modular and distributed

processing of information. Considering that network ar-

chitecture underlies cognitive processing, a network with

a small topology is most efficiently configured for vari-

ous scales of information exchange: high clustering sup-

ports modular processing, while short distances sup-

port distributed processing. Small-world networks thus

maximize efficient parallel processing, minimize wiring

costs, and are fault tolerant—all optimal properties of

a central nervous system.

Many studies have examined the small-world char-

acteristics of brain networks, and they will not all be
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reviewed in detail here. For a comprehensive review

of this particular topic, please see the superlative ar-

ticle by Bassett and Bullmore [119]. Small-world anal-

yses seem to have particular relevance for the study of

disease states. For example, Supekar et al. [174] per-

formed a study on wavelet transformed resting-state

fMRI data acquired from patients with Alzheimer’s dis-

ease. They observed a significantly reduced clustering

coefficient in patients with Alzheimer’s disease. Fur-

thermore, the clustering coefficient distinguishes par-

ticipants with Alzheimer’s from controls with high sen-

sitivity and specificity, suggesting the decreased small-

world property may be a viable diagnostic marker.

Nakamura et al. [154] used resting-state fMRI data

acquired at different time-points during recovery from

traumatic brain injury. They showed an increasing “small-

worldness” during the recovery process. Hayasaka and

Laurienti [175] made a comparison of small-world char-

acteristics between region-based and voxel-based brain

networks. They showed that voxel-based networks have

a higher clustering coefficient ratio than region-based

networks, suggesting that voxel-based networks are more

“small-world–like”.

In addition to the “classical” small-world parame-

ters, local and global efficiency can be used to mea-

sure the network’s ability for information transmiss-

ion [176]. Although these measurements are very simi-

lar, they have the conceptual advantage that they can

deal with disconnected graphs. Achard and Bullmo-

re [177] showed lower efficiency in frontal and temporal

cortical and subcortical regions in an elderly group of

participants. From a more methodological perspective,

Wang et al. [178] found different network efficiencies

depending on which atlas was used to determine ROIs.

5.3 Discussion

Graph theory offers a host of tools for characterizing

brain organization that extend beyond the network it-

self. While graph theory is effective at analyzing topol-

ogy, such as small-world or modularity and even chang-

ing topology (by deleting hubs), it is not appropriate

for the analysis of real-time dynamics. In a sense one

also has to pay for the generality of the various graph

theory metrics with a loss of specialization. Due to the

computational complexity of many of the described ap-

proaches, their application to the whole-brain set of

voxels is not feasible, and they are in practice applied

to groups of voxels of a set of ROIs. Since these re-

gions of interest have to be defined a priori, the same

problems of ROI selection outlined earlier apply. Unde-

niably, graph approaches require assumption in order

to reduce the complexity of the network. Analytic ap-

proaches are computationally difficult, and one must

often work with heuristics.

6 “Local” Methods

Although the majority of analytic techniques for resting-

state fMRI data address functional connectivity, ap-

proaches that address local activity are also possible.

Two such “local” measures are: the amplitude of

low frequency fluctuations (ALFF), which calcu-

lates the voxelwise magnitude of specific frequency bands

in the frequency domain, and regional homogene-

ity (ReHo), which is computed only from the direct

neighborhood of single voxels. The measures are con-

ceptually and practically straightforward, and are com-

plementary to the other resting-state post-processing

tools.12

6.1 Amplitude of Low Frequency Fluctuations

ALFF is defined as the total power within a defined

low-frequency range (for example: 0.01–0.1 Hz) [179,

25]. Fractional ALFF (fALFF), a measure with reduced

sensitivity to physiological noise, can be obtained by

taking the ratio of the low-frequency power to the sum

across the whole frequency range [123].

It should be noted that several physiological and

neural factors can impact low frequency fluctuations;

for example, Biswal and colleagues observed that low

frequency fluctuations were suppressed by hypercapnea

[180], and that ALFF was higher in gray matter than

in white matter [16]. Some studies showed that ALFF

measures are susceptible to possible artifactual findings

in the vicinity of blood vessels and cerebral ventricles

[123,25]. Special care has to be taken when reporting

results of ALFF calculation near these brain areas.

Areas within the default mode network have been

observed to exhibit higher ALFF during resting-state

than other areas [181,179,123,25]. ALFF of visual cor-

tices in eyes-open condition was reported to be signif-

icantly higher than in eyes-closed condition [181]. Zuo

and colleagues revealed significant and highly reliable

ranking orders of ALFF among anatomical parcellation

units [25]. The method has also been applied in stud-

ies which compared clinical populations to healthy con-

trols. Children with ADHD showed decreased ALFF in

inferior frontal cortex and increased ALFF in anterior

cingulate and left sensorimotor cortex [182]. Patients

12 Both techniques can be implemented using the MATLAB

toolbox REST: http://groups.google.com/group/fc-toolbox
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with schizophrenia showed reduced ALFF in lingual

gyrus, cuneus and precuneus and increased ALFF in

left parahippocampal gyrus [183].

6.2 Regional Homogeneity

Zang and colleagues [122] initially proposed ReHo to

measure the functional coherence of a given voxel with

its nearest neighbors based on the hypothesis that abut-

ting voxels within a functional brain area synchronize

their metabolic activity under certain conditions. Ho-

mogeneity is measured using Kendall’s coefficient

of concordance (KCC), a calculation of similarity

which uses ranking—a more stable measure—rather than

a linear statistical measure.

ReHo analysis is highly affected by the magnitude

of spatial smoothing and the size of the “neighborhood”

(7, 19, or 27 voxels, respectively) included in the anal-

ysis [122]. The pattern of resting-state brain activities

obtained using ReHo has been shown to be consistent

with the default mode network [122,184]. In a study of

cerebellar seed-based functional connectivity, He and

colleagues integrated ReHo into the seed-selection pro-

cess by using the areas of high ReHo to derive coordi-

nates for masks regions [185].

ReHo analysis has been widely applied to the study

of brain diseases. For instance, in a group of patients

with schizophrenia ReHo values are decreased in bi-

lateral frontal, temporal, occipital, cerebellar posterior,

right parietal and left limbic lobes. [186]. Boys with at-

tention deficit hyperactivity disorder showed decreased

ReHo in frontal-striatal-cerebellar circuits and increased

ReHo in occipital cortex [187]. A study also found sig-

nificant decreases of ReHo in the posteromedial cortex

of patients with Alzheimer’s disease [188]. Decreased

ReHo in frontal, temporal, parietal lobes and increased

ReHo in putamen, frontal, parietal lobes were found in

remitted geriatric depression patients [189]. Parkinson’s

disease (PD) patients showed decreased ReHo in puta-

men, thalamus and supplementary motor areas and in-

creased ReHo in cerebellum, primary sensorimotor cor-

tex and premotor areas [190]. Paakki and colleagues

have demonstrated decreased ReHo in right temporal,

frontal and bilateral cerebellar crus 1 areas and in-

creased ReHo in right thalamus, left frontal areas in

patients with autism spectrum disorders [191].

Another variation on the ReHo approach was imple-

mented by Uddin and colleagues to measure the net-

work homogeneity (NetHo), which is the KCC for

each voxel within a pre-defined network mask [192].

6.3 Discussion

In summary, ReHo and ALFF methods are both easily

implemented, straightforward techniques which can be

used to characterize spontaneous local brain activity.

While initial innovations have made use of such voxel-

wise techniques for subsequent functional connectivity

analysis, much room remains for exploration.

Conclusions

We hope that the above review has provided a flavor of

each of the many options for interrogating brain orga-

nization with resting-state fMRI data, the assumptions

and advantages of each, and the kinds of questions and

hypotheses that they can be employed to evaluate. The

release of the 1000 Functional Connectomes resting-

state data consortium13 leaves little want for analytic

fodder [193]. Thus, the challenge in study design may

rather shift to cross-polinating methodologies. An ex-

citing area of research has recently blossomed which

explores the effects of task and mental state on sponta-

neous “resting” brain activity [29,194–197] .

Looking forward, the most promising resting-state

approaches will successfully integrate multiple sources

of information concerning the connectivity of the brain,

for example: task-based functional localization provid-

ing information about co-activation, diffusion measures

of structural connectivity and known anatomical con-

nectivity, as well as data obtained with EEG or MEG,

and the simultaneous combination of EEG or optical

imaging with fMRI. Several studies have already made

considerable strides in these directions (e.g., [62,111,

198–204]), suggesting that researchers will soon witness

further exciting methodological advancements that will

elevate the field of resting-state functional connectivity

to the next level of excellence.
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Abstract 

Cerebral small vessel disease, mainly characterized by white matter lesions and lacunes, 

has a high clinical impact as it leads to vascular dementia. Recent studies have shown that 

this disease impairs fronto-parietal networks. Here, we apply resting-state magnetic 

resonance imaging and data-driven whole brain imaging analysis methods (eigenvector 

centrality) to investigate changes of the functional connectome in early small vessel disease. 

We show reduced connectivity in fronto-parietal networks, whereas connectivity increases in 

the cerebellum. These functional changes are closely related to white matter lesions and 

typical neuropsychological deficits associated with small vessel disease.  

 

Keywords: small vessel disease, microangiopathy, centrality, functional connectivity 
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Introduction 

Cerebral small vessel disease (SVD) or cerebral microangiopathy describes a state of 

impaired blood circulation in the arterioles of the brain and is an important cause of cognitive 

impairment and vascular dementia1,2. Magnetic resonance imaging (MRI) is successfully 

employed to identify lacunar infarcts, white matter lesions (WML, example in Supplementary 

Figure S1) and alterations in white matter diffusivity in this disease3. These indirect markers 

can be related to cognitive impairment1,3. It has been shown that white matter integrity affects 

functional connectivity4. However, the effects of small WML on functional connectivity remain 

widely unknown.  

Although patients in early SVD, a pre-stage of vascular dementia3, show behavioral 

differences, the underlying alterations of large-scale functional connectivity might provide us 

with a more objective measure of the effects of WML. Objective and early clinical diagnostics 

might aid and complement therapeutical interventions. 

In this study we aim to identify alterations in the functional connectome due to SVD using 

resting-state functional MRI (rs-fMRI). Alterations in connectivity have been reported for the 

posterior cingulate cortex5,6 and in the default mode network7. As recent investigations have 

demonstrated a cerebellar role in cognitive processes8 we also included the cerebellum in 

our analysis. Subsequently, we assess the behavioral relevance of the functional changes.  

For analyzing the human connectome network centrality analysis has become an important 

tool which captures the importance of each brain region by its connectedness9. We use this 

data-driven approach to investigate the relationship between whole-brain alterations, 

physiological scores and behavioral performance in patients suffering from early SVD. As our 

patients were mainly affected by WML in frontal and parietal areas we hypothesized 

reductions of particularly fronto-parietal connectivity in correlation with WML. White matter 

hyperintensities are consistently associated with neuropsychological impairments, namely 

psychomotor slowing1,2. We hypothesized a reduction of connectivity in areas particularly 

involved in attention processes such as the inferior frontal junction, and complex motoric 

actions such as premotor and supplementary motor area. 

 

Material & Methods 

rs-fMRI, T1- and T2-weighted anatomical data were acquired from all patients and controls. 

rs-fMRI data were acquired using echo-planar image pulse sequences (300 volumes, TR of 

2.3 s, voxel resolution of 3*3*4 mm3). T1 anatomical scans were obtained using a MPRAGE 

sequence (voxel resolution of 1 mm3).  

Twelve patients with early SVD were recruited among former patients of the Clinic for 

Cognitive Neurology of the University Hospital Leipzig. Twenty-five healthy individuals 

matched for age, intelligence, education, and gender (Supplementary Table S1) were 

included from the volunteer database of the MPI CBS, Leipzig. Four control individuals were 

excluded due to microangiopathic alterations (age-related white-matter changes10 (ARWMC) 

score >2) and one patient due to an cerebellar infarct. Patients had been diagnosed with 

SVD after thorough clinical examination and all had an ARWMC score >2. Further exclusion 

criteria for all subjects were a history of psychiatric or neurological disorders including stroke, 

craniocerebral injury or neurodegenerative disease or dementia. The research protocol was 

approved by the ethics committee of the University of Leipzig and was in accordance with the 

latest version of the Declaration of Helsinki. All participants gave informed written consent. 

T2-weighted and FLAIR images were rated independently by two experienced clinicians blind 

to the clinical data according to the ARWMC scale10. WML were defined as hyperintensities 

on both T2-weighted and FLAIR images of >5 mm in diameter. Lacunes were defined as 
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hypointense signal alterations on both T2-weighted and FLAIR images >2 mm in diameter 

and rated within the same regions. Alterations >15 mm in diameter were rated as infarcts and 

respective subjects excluded. Interrater agreement measured with intraclass correlation 

coefficient κ was high (WML score κ=0.98; lacunes score κ=0.89). The two ratings were 

averaged for further analyses. Neuropsychological testing was performed using the 

Consortium to Establish a Registry for Alzheimer’s disease (CERAD) test battery including 

tests of global functioning (Mini-Mental State Examination), executive function and speed3 

(Trail-Making-Test part A and B, phonemic and semantic fluency). Additionally, executive 

functions were assessed by a Stroop task2. Further subtests of the CERAD were included to 

control for memory abilities (word list immediate and delayed recall, recognition and figure 

recall), visuoconstructive abilities (figure copying) and word-finding (Boston Naming Test). A 

vocabulary test was administered to match groups for premorbid verbal intelligence 

(Supplementary Table S1). The testing was performed by two experienced psychology 

master students balanced across groups within 90 minutes. 

rs-fMRI data were preprocessed using FSL, AFNI and SPM. The steps comprised: 

discarding the first four volumes, slice-time correction, B0-fieldmap and motion correction, 6 

mm FWHM spatial smoothing, 4D mean-based intensity normalization, removing linear and 

quadratic trends, regressing out eight nuisance signals (white matter, cerebrospinal fluid and 

six motion parameters), band-pass temporal filtering (0.01-0.1 Hz). Spatial linear 

normalization to MNI space was performed using individual skull-stripped T1 as a prior. 

Supplementary Material contains a more detailed description. 

Eigenvector centrality (EC) is a network centrality analysis9 which reflects local connectivity 

and weights each connection by its importance. Connections to regions which are 

themselves highly connected receive a higher weight and vice versa. EC is computationally 

efficient which enables centrality mapping on the voxel level and does not require any initial 

thresholding of connections. We used the EC implementation in LIPSIA. 
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For statistical testing we used AFNI with age, gender and micro-movements as covariates. 

Micro-movements were measured in average frame displacement which is the average of 

rotation and translation differences across time-points in mm. We performed a two-sample t-

test for our group effect and whole-brain correlation analysis between the centrality of every 

voxel and the physiological and behavioral scores across all individuals (patients and 

controls). Changes in connectivity with respect to clinical symptoms were only evaluated in 

those behavioral tasks where patients showed significantly poorer performance in 

comparison with healthy controls (Supplementary Table S2). All centrality group results were 

thresholded with p<0.01 on a 

voxel and p<0.05 at a cluster 

level (39 voxels) using AlphaSim 

(AFNI). Visualization of the 

cerebrum was performed using 

SUMA, flat maps of the 

cerebellum were created with 

CARET and SUIT. 

 

 

Results 

The group comparison of 

functional connectivity yielded 

significant centrality changes in 

SVD (Figure 1A). Patients 

showed decreased connectivity 

in left ventromedial prefrontal 

cortex (vmPFC, d=0.95, r=0.43), 

bilateral midcingulate cortex 

(MCC, d=1.16, r=0.50) and right 

superior parietal lobe (SPL, 

d=1.27, r=0.54) as well as 

increased centrality in bilateral 

cerebellar regions I-VI (d=1.28, 

r=0.54). Correlation between 

WML scores and centrality maps 

(Figure 1B) over the whole 

sample revealed decreased 

centrality in bilateral vmPFC (r=-

0.59), posterior cingulate cortex 

(PCC, r=-0.66), left 

supplementary motor area 

(SMA, r=-0.64) and right SPL 

(r=-0.63) and increased 

centrality in bilateral inferior 

temporal gyrus (ITG, r=0.52) 

and left middle temporal sulcus 

(MTS, r=0.68). In the 

cerebellum, connectivity was 

increased in left lobules VIIb/VIII 

 

Figure 1 Functional connectivity changes are 
displayed on cerebral surface maps and cerebellar flat 
maps. Increases are marked in hot colors and 
decreases are marked in cold colors (p<0.05, cluster 
corrected). A Significant differences in eigenvector 
centrality between the group of small vessel disease 
patients and healthy controls. Increases are found in 
cerebellar regions I-VI, while decreases are found in 
ventromedial prefrontal cortex (vmPFC), midcingulate 
cortex (MCC) and superior parietal lobe (SPL). B 
Regions with a significant correlation to the white 
matter lesion score. Positive correlations are found in 
the middle temporal sulcus (MTS) inferior temporal 
gyrus (ITG), lobules Crus II, VIIb and VIII, negative 
correlations are found in vmPFC, supplementary motor 
area (SMA), posterior cingulate cortex (PCC) and SPL. 
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and Crus II in the patient group (r=0.67). Correlation of lacunar scores with centrality did not 

reveal significant results. 

 

Relevance of changes in connectivity to clinical symptoms is represented as significant 

correlations between task performance measures and the centrality measure (Figure 2). 

Patients showed a slower processing speed in the Trail-Making-Test part A (TMT-A), neutral 

and incongruent conditions of the Stroop task, and semantic and phonemic fluency 

measures (Supplementary Table 2). We found positive correlations between performance on 

the phonemic fluency task and centrality in bilateral SPL (r=0.63), SMA (r=0.64), premotor 

cortex (PM, r=0.66), MCC and posterior superior frontal sulcus (SFS, r=0.60; Figure 2A). For 

reaction time in the neutral condition of the Stroop task we found negative correlations to 

centrality in bilateral PM (r=-0.62), SFS (r=-0.71), left inferior frontal sulcus (IFS, r=-0.71), left 

SMA (r=-0.71), left MTS (r=-0.73) and right MCC (r=-0.68) and positive correlations with 

 

Figure 2 Cerebral surface maps and cerebellar flat maps show significant correlations 
between task performance and centrality for tasks with significant group differences. 
Positive correlations are displayed in hot and negative correlations in cold colors (p<0.05, 
cluster corrected). A Correlation between centrality and number of words produced in a 
phonemic fluency task. Positive correlations are found in premotor (PM), posterior 
superior frontal sulcus (SFS), midcingulate cortex (MCC), supplementary motor area 
(SMA), and superior parietal lobe (SPL). B Correlation between centrality and reaction 
time in the neutral condition of the Stroop task. Negative correlations were found in PM, 
SFS, inferior frontal sulcus (IFS), middle temporal sulcus (MTS) and MCC. Positive 
correlations were found in Crus II, VIIb and VIII of the cerebellum and the inferior parietal 
lobe (IPL). C Correlation between centrality and time needed to complete a visual 
attention task (TMT A – Trail-Making-Test part A). Negative correlations were found in 
PM, middle frontal gyrus (MFG), supplementary motor area (SMA), SPL, and inferior 
frontal IFS. D Correlation between centrality and reaction time in the incongruent condition 
of the Stroop task. Negative correlations were found in PM/posterior MFG. Positive 
correlations were found in VI, Crus I and II of the cerebellum. 
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inferior parietal lobe (r=0.65) and cerebellar lobules Crus II, VIIb and VIII (left r=0.69, right 

r=0.75, Figure 2B). For reaction time in the TMT-A we found negative correlation to centrality 

in bilateral PM (right r=-0.69, left r=-0.65), left posterior middle frontal gyrus (MFG, r=-0.65), 

left IFS (r=-0.69), right SPL (r=-0.56), and left SMA (r=-0.65) (Figure 2C). For reaction time in 

the incongruent condition of the Stroop task we found negative correlations to centrality in left 

PM/posterior MFG (r=-0.73) and positive correlations with cerebellar regions VI, Crus I and 

Crus II (r=0.58, Figure 2D). We found performance in the TMT-A and the phonemic fluency 

task to be linearly dependent (r=-0.47, p=0.007), the incongruent condition of the Stroop task 

was correlated with the TMT-A (r=0.59, p=0.0004) and the phonemic fluency task (r=-0.53, 

p=0.002). None of the other presented task parameters showed collinearity. For semantic 

fluency no significant association with centrality was observed. Supplementary Figures S2-

S7 present scatter plots of the corresponding results in Figures 1 and 2. Supplementary 

Figures S8-S9 represent the correlation between centrality and time needed in TMT-A and 

Stroop neutral condition without the respective slowest subject, who might be regarded as an 

outlier and suspected to have driven the results. Removing this subject did not change the 

analysis’ results substantially.  

 

 

Discussion 

In this study we investigated alterations of the functional connectome due to early SVD and 

evaluated their relevance to clinical symptoms. For the group difference we have shown a 

breakdown of fronto-parietal hubs in patients with early SVD, closely related to WML scores. 

Effects can be explained by the disruption of fronto-parietal white matter pathways due to 

WML which in our sample were mainly located in frontal and parietal areas (Supplementary 

Table S1) and gives further evidence for the hypothesis that fronto-parietal networks are 

primarily disrupted in SVD2,11. The reduction of centrality in the vmPFC and SPL are in line 

with results by Yi et al.7. We found fewer widespread group differences, which might be 

explained by the earlier disease-state of our patient cohort (MMSE of 27.6+-1.5 compared to 

MMSE of 25.7+-2.7) or the different centrality method (degree centrality) used. Reduced 

connectivity to the medial frontal cortex due to white matter hyperintensities was also found 

by Wu et al.6.  

While our cohort was not dement (Supplementary Table S1, S2) the subjects with more 

severe disease state showed reduced centrality in the PCC, an area which has been shown 

to have reduced metabolism and perfusion in Alzheimer’s disease and its prodromal 

syndrome mild cognitive impairment12. This finding is particularly interesting as Alzheimer’s 

disease is often associated with SVD. 

The relevance of our brain findings for clinical symptoms revealed that the lower the 

centrality in sensorimotor areas, the slower the reaction times in the TMT-A and the two 

conditions of the Stroop task. Together with positive correlations between centrality in 

secondary sensorimotor areas and phonemic fluency these findings reflect upon the concept 

that WML express itself in mild psychomotor slowing rather than a severe degree of specific 

cognitive impairments1,2. Although correlations between neuropsychological test scores and 

centrality measures identified additionally prefrontal areas, known to be related specifically to 

executive dysfunction2, the group and correlation analysis with WML scores did not confirm 

effects in these brain regions. 

Task-fMRI studies report increased and decreased activation in association with WML. 

Venkatraman et al.13 report a reduced activation in motor and premotor areas during 

psychomotor performance in individuals with more WML. However, Aizenstein et al.14 found 
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that patients with late life depression show a positive correlation between activation in 

prefrontal and limbic areas and WML using an affective reactivity task. Although we also 

found premotor and higher order regions to be affected by WML, the relationship between 

functional connectivity and activation is complex15 and difficult to interpret. 

The consistent inverse pattern of increased centrality in the cerebellum and decreased 

centrality in the cerebrum has to our knowledge not been reported in SVD yet. We found 

connectivity changes in cerebellar regions which are connected to fronto-parietal cognitive 

networks (lobules Crus II, VIIb) as well as sensorimotor regions (lobules I-V, VIII)8. As WML 

occur mainly in fronto-parietal regions one might hypothesize that fronto-parietal 

hypoconnectivity might be compensated by cerebellar hyperconnectivity. 

Although SVD is a heterogeneous disease which makes group analysis and region-specific 

hypothesis testing difficult, the application of data-driven centrality analysis enabled us to 

identify affected network hubs.  

This cross-sectional human imaging study only provides correlational but no causal 

associations which might be approached by longitudinal study designs. Micro-movements 

represent another limitation of the current study. Although we could not find a significant 

group difference (Supplementary Table S1), we accounted for this potential bias by using 

average frame displacement as a covariate in our analyses. 

In conclusion, our study provides a link between the disruption of white matter pathways, 

behavioral impairment and functional interaction between gray matter regions in early small 

vessel disease. 
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Supplement 

 

Preprocessing Pipeline 

The preprocessing of T1 anatomical and rs-fMRI data were carried out using FMRIB 

Software Library (FSL)1, Analysis of Functional NeuroImages (AFNI)2, Freesurfer3 and 

Statistical Parametric Mapping (SPM)4. The preprocessing is based on the fcon1000 scripts, 

which can be downloaded from fcon_1000.projects.nitrc.org. We changed only steps 1), 3) 

and 4)  to improve skull-striping and to add field-map and slice-time correction. 

The preprocessing comprised the following steps, where brackets denote the function and 

software package used: 1) Skull-striping of initial anatomical T1 scan (recon all, Freesurfer). 

2) Discarding the first four volumes from each resting-state scan to allow for signal 

equilibration (3dcalc, AFNI). 3) Slicetime correction (slicetimer, AFNI). 4) Motion and b0 

fieldmap correction using realign & unwarp (SPM8). 5) 6 mm Full Width Half Maximum 

(FWHM) spatial smoothing (fslmaths, FSL). 6) 4D mean-based intensity normalization 

(fslmaths, FSL). 7) Removing linear and quadratic trends (3dDetrend, AFNI). 8) Segmenting 

skull striped T1 images into white matter (WM), grey matter (GM) and cerebrospinal fluid 

(CSF) masks (fast, FSL). 9) Linear registration of WM and CSF masks to native functional 

space (flirt, FSL). 10) 6 mm Full Width Half Maximum (FWHM) spatial smoothing (fslmaths, 

FSL). 11) Linear registration of WM and CSF masks to Montreal Neurological Institute (MNI)5 

space (flirt, FSL). 12) Multiplication of WM and CSF masks with MNI CSF and WM prior 

maps (fslmaths, FSL). 13) Registering WM and CSF maps back to native space (flirt, FSL). 

14) Thresholding WM mask at 0.66 and CSF mask at 0.4 (fslmaths, FSL). 15) Regressing 

out eight nuisance signals (white matter, cerebrospinal fluid and six motion parameters) 

using film_gls (FSL). 16) Band-pass temporal filtering (0.01-0.1 Hz, 3dFourier, AFNI). The 

spatial normalization of the functional volume was performed via linear normalization to MNI5 

space and the individual skull-stripped T1 as a prior (flirt, FSL).  
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Figure S1 FLAIR image with examples for markers of structural changes in small vessel 
disease. Characteristic abnormality related to lacune (A) and white matter lession (B). 

 

 

Figure S2 Plot of average centrality for significant clusters in the Group Difference (see 
Figure 1a and Supplementary Table S3). Red dots mark subjects in the small vessel disease 
group, blue dots mark healthy controls. 
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Figure S3 Plot for clusters with significant correlation between centrality and white matter 
lesion scores (see Figure 1b). For cluster locations see Supplementary Table S4. Red dots 
mark subjects in the small vessel disease group, blue dots mark healthy controls.  

 

 

Figure S4 Plot for clusters with significant correlation between centrality and number of 
words produced per minute in a phonemic fluency task (Figure 2a). For cluster locations see 
Supplementary Table S5. Red dots mark subjects in the small vessel disease group, blue 
mark healthy controls. 



43 

 

 

Figure S5 Plot for clusters with significant correlation between centrality and time needed in 
the neutral condition of the Stroop task (Figure 2b). For cluster locations see Supplementary 
Table S7. Red dots mark subjects in the small vessel disease group, blue mark healthy 
controls. 

 

 

Figure S6 Plot for clusters with significant correlation between centrality and time needed in 
a visual attention task (Figure 2c). For cluster locations see Supplementary Table S6. Red 
dots mark subjects in the small vessel disease group, blue mark healthy controls. 
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Figure S7 Plot for clusters with significant correlation between centrality and time needed in 
in the incongruent condition of the Stroop task (Figure 2d). For cluster locations see 
Supplementary Table S8. Red dots mark subjects in the small vessel disease group, blue 
mark healthy controls 

 

Figure S8 Correlation between centrality and time needed in the neutral condition of the 
Stroop task (compare to Figure 2b) after removing the slowest subject in this task (Figure 
S5). Cerebrum surface visualization (left) and cerebellum flat map (right). Blue colors indicate 
negative correlations and red colors positive correlation with time needed in the Stroop task 
neutral condition (p<0.05, cluster corrected).  
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Figure S9 Cerebrum surface visualization of Correlation between centrality and time needed 
in visual attention task (compare to Figure 2c) after removing the slowest subject in this task 
(Figure S6). Blue colors indicate negative correlations and red colors positive correlation with 
time needed in visual attention task (p<0.05, cluster corrected). 

Table S1 Demographic data of patients with small vessel disease and healthy control 
subjects (see Quinque et al.6). 

Characteristics 
Small vessel disease 
(n=11) 

Healthy control group 
(n=21) 

  

  Mean s.d. Mean s.d. P 
Age (years) 61.4 6.3 66.0 6.7 0.09 
Sex (male/female) 7/4 13/8 0.92 
Education (years) 13.8 3.0 14.3 2.4 0.79 
Premorbid intelligence (IQ) 105.3 10.1 110.1 8.7 0.17 
Mini-Mental State Examination 27.6 1.5 28.6 1.1 0.10 
Mean Frame Displacement 
(mm) 

0.30 0.13 0.22 0.81 0.09 

White matter lesion total score 8.3 4.0 0.5 0.7 <0.001 
 Frontal subscore 3.2 1.1 0.3 0.5 <0.001 
 Parieto-occipital subscore 3.0 1.5 0.1 0.3 <0.001 
 Temporal subscore 0.8 0.8 0.0 0.0 <0.01 
 Basal ganglia subscore 0.8 1.1 0.1 0.3 <0.05 
 Infratentorial subscore 0.2 0.6 0.0 0.0 0.41 
            
Lacunes total score 1.9 2.4 0.3 0.5 <0.02 
 Frontal subscore 0.1 0.3 0.0 0.0 0.70 
 Parieto-occipital subscore 0.0 0.2 0.0 0.0 0.70 
 Temporal subscore 0.2 0.6 0.0 0.0 0.70 
 Basal ganglia subscore 1.1 1.7 0.3 0,5 0.09 
 Infratentorial subscore 0.5 0.8 0.0 0.0 0.10 
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All group comparisons were performed using Mann–Whitney U-tests (χ2-test for sex). Mean 
values, standard deviations (s.d.), and P values are reported. Significant values are 
displayed in bold. 

Table S2 Cognitive performance in patients with small vessel disease and healthy control 
subjects (see Quinque et al.6). 

Cognitive function domain and 
subtest 

Small vessel disease 
(n=11) 

Healthy control group 
(n=21) 

  

  Mean s.d. Mean s.d. P 
Executive functions—processing speed 
 Trail-Making-Test part A—time 58.4 27.7 41.5 15.2 <0.03 
 Trail-Making-Test part B—timea 127.9 59.2 100.4 46.1 0.25 
 Stroop neutral—time 2.1 0.7 1.5 0.3 <0.03 
 Stroop incongruent—time 3.1 1.1 2.3 0.7 <0.03 
 Semantic fluency 19.8 5.7 25.6 4.7 <0.01 
 Phonemic fluency 10.5 6.3 15.4 3.9 <0.03 
            
Executive functions—planning, error monitoring 
 Trail-Making-Test part A—errors 0.2 0.4 0.2 0.4 0.73 
 Trail-Making-Test part B—errorsa 0.1 0.9 0.7 0.3 0.13 
 Stroop neutral—errors 1.8 2.9 1.9 4.2 0.76 
 Stroop incongruent—errors 6.5 7.7 4.7 4.6 0.88 
            
Executive functions—cognitive flexibility/inhibition adjusted for speed 
 Trail-Making-Test part B/A—time 2.4 1.4 2.6 1.5 0.64 
 Stroop incongruent/neutral—time 1.5 0.4 1.5 0.3 0.48 
            
Memory, figure copying, picture naming 
 Immediate recall 19.6 5.8 21.6 3.5 0.46 
 Delayed recall 7.1 1.8 7.8 1.5 0.43 
 Recognition 19.0 1.7 19.5 0.7 0.76 
 Figure recall 8.7 4.0 9.8 2.7 0.56 
 Figure copy 10.0 1.5 10.3 1.2 0.58 
 Boston naming test 14.6 0.7 14.7 0.6 0.56 

aTwo patients and one healthy control subject failed to complete the task. For these subjects 
Trail-Making-Test part B time is set to 240 seconds the maximum time allowed for 
completion; Trail-Making-Test part B errors could not be calculated for these subjects and 
Trail-Making-Test part B errors were therefore excluded from any further analysis. All group 
comparisons were performed using Mann-Whitney U-tests. Mean values, standard 
deviations (s.d.), and P values are reported. Significant values are displayed in bold. 

Table S3 Group difference for centrality between early small vessel disease and control 
subjects. Peak coordinates in MNI space. 

#Coordinate order = RAI (Right Anterior Inferior) 

#Volume RL AP IS 

#------ ----- ----- ----- 

53 -12.0 -6.0 36.0 

http://www.nature.com/jcbfm/journal/v32/n10/fig_tab/jcbfm201296t2.html#t2-fn1
http://www.nature.com/jcbfm/journal/v32/n10/fig_tab/jcbfm201296t2.html#t2-fn1
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51 0.0 -57.0 -21.0 

51 -18.0 66.0 60.0 

46 -6.0 57.0 -12.0 

 

Table S4 Correlation between centrality and white matter lesion score. Peak coordinates in 
MNI space. 

#Coordinate order = RAI (Right Anterior Inferior) 

#Volume RL AP IS 

#------ ----- ----- ----- 

222 54.0 27.0 -27.0 

150 -51.0 45.0 42.0 

87 30.0 51.0 -51.0 

75 0.0 -54.0 -3.0 

53 -51.0 12.0 -39.0 

53 30.0 69.0 30.0 

49 12.0 0.0 72.0 

44 -15.0 24.0 39.0 

40 12.0 39.0 42.0 

 

Table S5 Correlation between centrality and phonemic fluency. Peak coordinates in MNI 
space. 

#Coordinate order = RAI (Right Anterior Inferior) 

#Volume RL AP IS 

#------ ----- ----- ----- 

154 -18.0 9.0 69.0 

103 -30.0 33.0 51.0 

65 24.0 54.0 66.0 

63 33.0 0.0 57.0 

52 9.0 -3.0 60.0 

 

Table S6 Correlation between centrality and Trail Making Test (TMT) A 

#Coordinate order = RAI (Right Anterior Inferior) 

#Volume RL AP IS 

#------ ----- ----- ----- 

154 -18.0 9.0 69.0 

103 -30.0 33.0 51.0 

65 24.0 54.0 66.0 

63 33.0 0.0 57.0 

52 9.0 -3.0 60.0 
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Table S7 Correlation between centrality and Stroop task performance – Neutral condition. 
Peak coordinates in MNI space. 

#Coordinate order = RAI (Right Anterior Inferior) 

#Volume RL AP IS 

#------ ----- ----- ----- 

610 24.0 -18.0 39.0 

171 -27.0 -6.0 57.0 

91 -12.0 0.0 42.0 

69 -36.0 51.0 -48.0 

55 12.0 69.0 -45.0 

41 57.0 42.0 9.0 

40 -57.0 45.0 18.0 

 

Table S8 Correlation between centrality and Stroop task performance – Incongruent 
condition. Peak coordinates in MNI space. 

#Coordinate order = RAI (Right Anterior Inferior) 

#Volume RL AP IS 

#------ ----- ----- ----- 

89 36.0 84.0 -18.0 

71 33.0 0.0 60.0 

56 21.0 75.0 -27.0 
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Sehm B, Schäfer A, Kipping J, Margulies D, Conde V, Taubert
M, Villringer A, Ragert P. Dynamic modulation of intrinsic func-
tional connectivity by transcranial direct current stimulation. J Neu-
rophysiol 108: 3253–3263, 2012. First published September 19, 2012;
doi:10.1152/jn.00606.2012.—Transcranial direct current stimulation
(tDCS) is a noninvasive brain stimulation technique capable of mod-
ulating cortical excitability and thereby influencing behavior and
learning. Recent evidence suggests that bilateral tDCS over both
primary sensorimotor cortices (SM1) yields more prominent effects
on motor performance in both healthy subjects and chronic stroke
patients than unilateral tDCS over SM1. To better characterize the
underlying neural mechanisms of this effect, we aimed to explore
changes in resting-state functional connectivity during both stimula-
tion types. In a randomized single-blind crossover design, 12 healthy
subjects underwent functional magnetic resonance imaging at rest
before, during, and after 20 min of unilateral, bilateral, and sham
tDCS stimulation over SM1. Eigenvector centrality mapping (ECM)
was used to investigate tDCS-induced changes in functional connec-
tivity patterns across the whole brain. Uni- and bilateral tDCS over
SM1 resulted in functional connectivity changes in widespread brain
areas compared with sham stimulation both during and after stimula-
tion. Whereas bilateral tDCS predominantly modulated changes in
primary and secondary motor as well as prefrontal regions, unilateral
tDCS affected prefrontal, parietal, and cerebellar areas. No direct
effect was seen under the stimulating electrode in the unilateral
condition. The time course of changes in functional connectivity in the
respective brain areas was nonlinear and temporally dispersed. These
findings provide evidence toward a network-based understanding
regarding the underpinnings of specific tDCS interventions.

centrality; graph-based analysis; noninvasive brain stimulation; pri-
mary sensorimotor cortex; resting-state fMRI

TRANSCRANIAL DIRECT CURRENT stimulation (tDCS) is a noninva-
sive brain stimulation technique known to modulate cortical
excitability in a polarity-specific manner (Nitsche et al. 2008).
For example, anodal tDCS applied over the primary sensori-
motor cortex (SM1) increases corticospinal excitability even
beyond the stimulation period, whereas cathodal tDCS de-
creases it (Nitsche and Paulus 2000). Studies using excitability
measurements of the living human brain with transcranial
magnetic stimulation (TMS) as well as pharmacological inter-
ventions suggested that an increase of excitability induced by
anodal stimulation and a decrease of excitability induced by
cathodal stimulation depend on changes in the neuronal mem-
brane potential (Nitsche et al. 2003a, 2005). More specifically,

anodal tDCS has been shown to result in a depolarization while
cathodal stimulation leads to a hyperpolarization of the resting
membrane potential. Furthermore, at least for anodal stimula-
tion, a study using magnetic resonance spectroscopy provided
evidence that anodal tDCS leads to locally reduced GABA
while cathodal stimulation causes reduced glutamatergic neu-
ronal activity with a highly correlated reduction in GABA
(Stagg et al. 2009).

In light of these findings, the application of tDCS has
reemerged in the last decade as a tool to effectively modulate
brain function. Until now, behavioral effects of tDCS have
been extensively studied in motor control and motor learning
(for review, see Reis et al. 2008). For example, anodal tDCS
delivered over SM1 has been consistently shown to transiently
improve performance and/or learning of various motor tasks in
both healthy subjects (Nitsche et al. 2003c; Stagg et al. 2011)
and chronic stroke patients (Hummel et al. 2005; Lindenberg
et al. 2010). Furthermore, when applied in multiple sessions on
5 consecutive days, long-term improvements in a sequential
pinch force task for up to 3 mo were observed (Reis et al.
2009). These results, together with findings in animal studies
showing that tDCS acts upon brain-derived neurotrophic factor
(BDNF)-dependent synaptic plasticity, further strengthen its
potential as an adjuvant tool in neurorehabilitation (Fritsch
et al. 2010).

One important yet open question relates to the optimal
arrangement of the tDCS electrodes in order to achieve max-
imum stimulation effects. In the motor domain, a commonly
used tDCS setup consists of a unilateral anodal tDCS electrode
over SM1 contralateral to the moving/learning extremity (uni-
lateral tDCS), while the other electrode is applied to the
contralateral supraorbital region. More recently, a new tDCS
electrode arrangement, which uses simultaneous anodal tDCS
of one SM1 and cathodal tDCS of the homologous SM1
(bilateral tDCS), yielded more prominent behavioral effects in
healthy subjects during a finger sequence task (Vines et al.
2008) and led to an improvement of the motor deficit in chronic
stroke patients (Lindenberg et al. 2010). The more powerful
effects of bilateral tDCS over SM1 have been assumed to be
related to a more pronounced interference with interhemi-
spheric information processing compared with unilateral tDCS
over SM1 (Vines et al. 2008). However, the exact underlying
neural mechanisms still remain elusive and certainly require
further investigation.

The concurrent use of neuroimaging techniques such as
functional magnetic resonance imaging (fMRI) and noninva-
sive brain stimulation has the potential to uncover neural
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mechanisms of both uni- and bilateral SM1 tDCS effects as
proposed for concurrent TMS and fMRI (see Bestmann et al.
2008 for review). Likewise, a number of studies have investi-
gated tDCS-induced changes of functional activation with both
fMRI and positron emission tomography during performance
of a motor task (Antal et al. 2011; Baudewig et al. 2001;
Holland et al. 2011; Kwon and Jang 2011; Lang et al. 2005;
Venkatakrishnan and Sandrini 2012). Unlike task-evoked
fMRI changes, resting-state fMRI (rs-fMRI) measures sponta-
neous fluctuations of the BOLD signal in the absence of task
engagement. These fluctuations are not random but temporally
coherent, thus providing a measure of the brain’s intrinsic
functional architecture (Fox and Raichle 2007). Recently, a
longitudinal learning study provided compelling evidence that
patterns of rs-fMRI are persistently modulated by a complex
motor skill training over several weeks (Taubert et al. 2011).
Furthermore, with the use of unilateral tDCS over SM1, it was
demonstrated that rs-fMRI measurements (pre-post design) are
capable of depicting tDCS-induced aftereffects on functional
connectivity (Pena-Gomez et al. 2012; Polania et al. 2011b).

In the present study, we aimed to investigate changes in
intrinsic functional connectivity elicited by both unilateral and
bilateral tDCS over SM1 during and after stimulation without
any task engagement. Only recently, a first proof-of-concept
study validated the technical feasibility of concurrent tDCS and
rs-fMRI measurements (Alon et al. 2011). Here the authors
investigated changes in functional connectivity between both
SM1, using a region of interest approach during short blocks of
anodal tDCS (7 min) over right SM1. Despite a highly variable
response to tDCS, most likely due to the small sample size of
five subjects, the aforementioned study revealed a decrease in
functional connectivity from the right to the left SM1 during
tDCS.

In this study we aimed at extending these findings by various
important factors. First, we aimed at tracking changes in
functional connectivity during the course of 20 min of tDCS.
This stimulation duration has been most commonly used in
studies of motor behavior and learning (Reis et al. 2009; Vines
et al. 2008). Second, in order to obtain information regarding
potential aftereffects of the stimulation, we continued scanning
for a further �15 min. Third, we compared two different
stimulation setups (bilateral and unilateral tDCS over SM1)
with sham stimulation to better understand the neurophysio-
logical underpinnings. Fourth, we aimed at investigating the
effects of both stimulation approaches on large-scale brain
networks by using eigenvector centrality mapping (ECM).
ECM is a graph-based measure for centrality in functional
brain networks that attributes a value to each voxel in the brain
such that a voxel receives a large value if it is strongly
correlated with many other nodes that are themselves central
within the network. Thus it allows for the exploratory tracking
of changes in network architecture across the whole brain
(Lohmann et al. 2010; Zuo et al. 2012).

Using this experimental setup, we tested the hypothesis that
bilateral and unilateral tDCS over SM1 relative to sham stim-
ulation result in differential time-dependent engagements of
intrinsic functional connectivity networks in human subjects.

METHODS

Subjects. We enrolled a total of 12 healthy young volunteers in the
study (mean � SD age 25.8 � 3.2 yr; 4 women, 8 men). All subjects

gave written informed consent to participate in the experiment ac-
cording to the Declaration of Helsinki, and the ethics committee of the
University of Leipzig approved the study. Prior to participation, all
subjects underwent a comprehensive neurological examination to
screen for potential exclusion criteria. They were not taking any
medication. Subjects that did not meet the protocol criteria and/or had
contraindications for tDCS or MRI measurements were excluded from
participation. In each subject, handedness was assessed based on the
Edinburgh Handedness Inventory (Oldfield 1971). Patients reported
their hand preference (i.e., right, left, or ambidextrous) in response to
10 questions (e.g., Which hand do you use to light a match? Use
scissors? Write?). Responses to the 10 questions were converted to a
laterality quotient (LQ) with the formula (R � L)/(R � L) � 100. LQ
scores thus might range from �100 (corresponding to strong left-
handedness) to �100 (corresponding to strong right-handedness). For
our study, only moderately to strongly right-handed subjects, e.g.,
subjects with an LQ of at least �60 (92.08 � 11.64; mean � SD)
were included (see, e.g., Isaacs et al. 2006).

Experimental design. Each subject participated in a total of three
sessions that comprised concurrent tDCS over SM1 and rs-fMRI in a
crossover design. The only difference between each session was the
type of tDCS: unilateral tDCS (with the anode placed over the right
SM1 and the cathode placed over the contralateral orbit), bilateral
tDCS (with anodal stimulation of right and cathodal stimulation of left
SM1), or sham stimulation (here, the setup of the unilateral or bilateral
tDCS condition was randomly chosen). The order of the sessions was
randomized between and within subjects. Sessions were separated by
at least 1 wk to avoid any carryover effects.

Transcranial direct current stimulation. tDCS was delivered by a
battery-driven DC current stimulator (Neuroconn, Ilmenau, Germany)
with a pair of electrodes in a 5 � 7-cm saline-soaked sponge. The
electrodes were manufactured to be compatible with the MR scanner
environment (Neuroconn) and equipped with �5-k� resistors in each
wire to avoid sudden temperature increases due to induction currents
from radio frequency pulses, as described previously (Antal et al.
2011). The electrode cables ran through the MR room and passed a
radio frequency filter in the MR cabin wall in order to reduce potential
artifacts during image acquisition. The cables were connected to a
MR-compatible DC stimulator that was placed outside the scanner
room. Two filter boxes (Neuroconn) were placed between electrodes
and stimulator.

Before MRI scanning, the electrodes were attached to the subject’s
head with elastic bands. We deployed different electrode montages for
each session in accordance with a previously published study (Vines
et al. 2008). For unilateral right SM1 stimulation, the anode was
centered over C4 according to the International 10-20 System while
the cathode was attached to the forehead above the contralateral orbit.
For bilateral SM1 stimulation, the anode was centered over C4
(corresponding to right SM1) while the cathode was centered over C3
(corresponding to the left SM1; see also Fig. 1A).

For all experimental conditions (unilateral and bilateral tDCS over
SM1 and sham stimulation), the current was increased in a ramplike
fashion over the first 30 s of stimulation to a maximum of 1 mA,
eliciting a transient tingling sensation on the scalp. tDCS was deliv-
ered for 20 min in the uni- and bilateral tDCS conditions and for up
to 30 s in the sham stimulation condition. During stimulation, a
continuous monitoring of the impedance revealed no changes
throughout the experiment. The current density at the stimulation
electrodes at our maximum setting of 1 mA for uni- and bilateral
tDCS over SM1 was 0.028 mA/cm2. Total charge as expressed by
current density � total stimulation duration (s) was 0.034 C/cm2.
Thereafter, currents were turned off slowly over a few seconds,
precluding sensory differences between conditions (Nitsche et al.
2003b). This strategy has been shown to be efficient in blinding of the
procedure (Gandiga et al. 2006; Ragert et al. 2008).

Scanning protocol. fMRI data were acquired under eyes-closed
conditions on a Siemens Magnetom Tim Trio 3 Tesla scanner
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equipped with a standard eight-channel head coil. During each ses-
sion, a total of 6 blocks of echo-planar imaging (EPI) were acquired
with 200 whole-brain volumes, each using the following parameters:
acquisition matrix � 64 � 64, slice thickness � 3 mm (1-mm gap),
voxel dimensions � 3 � 3 � 4 mm, 34 slices, TR � 2,300 ms, TE �
30 ms, flip angle � 90°, bandwidth � 1,825 Hz. The total time for
each fMRI session was �55 min. Before scanning, tDCS electrodes
were attached to the scalp of each subject outside of the scanner room
(see also tDCS procedures above). Subsequently, subjects were
brought into the scanner room, and one EPI sequence (duration �7.6
min) was acquired before tDCS application (rs-fMRI at baseline).
Subsequently, the respective tDCS condition (unilateral, bilateral, or
sham tDCS over SM1) was started and applied for 20 min for the
verum conditions during the next three blocks (total of 600 volumes,
duration of �23 min) followed by two additional EPI blocks (total of
400 volumes, duration of �15.3 min) that were acquired directly after
the stimulation (also see Fig. 1B). The same procedure applied for the
sham stimulation condition except that the tDCS was only delivered
for �30 s.

Preprocessing and statistical analysis of fMRI data. In brief, as
described previously (Lohmann et al. 2010; Taubert et al. 2011),
preprocessing of fMRI data was performed with LIPSIA (Lohmann
et al. 2001) and included motion correction, band-pass filtering
(1/90–1/10 Hz), and spatial smoothing [6-mm full-width half-maxi-
mum (FWHM) smoothing]. Preprocessed data sets were registered
into standard MNI152 (Montreal Neurological Institute) brain space
and resampled to an isotropic voxel grid with a resolution of 3 � 3 �
3 mm. ECM (Lohmann et al. 2010) was used to map changes in
network architecture induced by tDCS. ECM is a graph-based method
that aims to map the central hubs of functional connectivity networks.
ECM specifically weights nodes based on their degree of connection
within the network. It does so by counting both the number and the
quality of connections so that a node with relatively few connections
to some high-ranking other nodes may outrank one with a larger
number of mediocre contacts. Google’s “PageRank” algorithm is a
variant of eigenvector centrality. Compared with other centrality
measures, ECM is computationally fast and does not depend on a
preselected set of nodes (Zuo et al. 2012). This measure may be

applied to all voxels in the brain, thereby avoiding any selection bias.
Here we performed voxelwise analyses of rs-fMRI data. This requires
in our study a large region of interest of �63,000 voxels covering the
whole brain including the cerebellum, rendering other centrality
measures, such as betweenness centrality, computationally intractable
(Lohmann et al. 2010). ECM enabled us to obtain whole-brain
centrality maps and use them in a manner similar to contrast maps
obtained in standard regression analyses. Furthermore, ECM does not
depend on a prespecified threshold for correlation values and captures
small-world characteristics of the human brain in contrast to other
measures such as, e.g., degree centrality (Bonacich 2007; Lohmann et
al. 2010). One of the strengths of ECM compared with other related
analysis techniques [such as independent component analysis (ICA)]
is that ECM captures the centrality of each voxel in a given network
while methods such as ICA rather identify subnetworks on a whole-
brain level. Thus only voxels changing their network association
would be identified with ICA analyses. In light of this knowledge, we
decided to use ECM instead of ICA in the present study.

Changes in eigenvector centrality of functional connectivity are
described as “eigenvector centrality changes” or “centrality changes
in functional connectivity” for the sake of simplicity throughout the
text.

After preprocessing, single-subject eigenvector centrality maps
were computed for each condition (bilateral, unilateral, and sham
SM1 stimulation) and each scanning block (baseline, blocks 1–5).
Subsequently, ECM maps were used for group-level analysis using
general linear regression. z-Maps were thresholded at z � 3.3 on a
voxel level. Furthermore, corrections for multiple comparisons were
implemented at the cluster level with alphasim (cluster significance
P 	 0.05, corrected), which is a cluster size-based Monte Carlo
simulation (Forman et al. 1995).

Changes in eigenvector centrality during stimulation were analyzed
as follows: z-Maps of the stimulation period (e.g., average of blocks
1, 2, and 3; refer to Fig. 1B) were contrasted against baseline for each
condition separately and compared with sham stimulation, in line with
a recently published study (Keeser et al. 2011): (bilateral � baseline) �
(sham � baseline); (unilateral � baseline) � (sham � baseline).

In a next step, we performed an additional linear regression
analysis (see above) comparing differences in eigenvector centrality
between bilateral and unilateral tDCS over SM1 during stimulation
(blocks 1–3): (bilateral � baseline) � (unilateral � baseline); (uni-
lateral � baseline) � (bilateral � baseline).

The aftereffects of the stimulation on eigenvector centrality were
analyzed in a similar way by averaging blocks 4 and 5 contrasted with
baseline for both conditions (bi- and unilateral tDCS over SM1)
relative to sham stimulation. Subsequently, we performed stepwise
comparisons for each block (blocks 1–5) against baseline compared
with sham stimulation in order to detect potential dynamic changes in
eigenvector centrality over time.

As an additional analysis step, differences in eigenvector centrality
between stimulation conditions at baseline were analyzed by contrast-
ing the baseline block of each condition (sham, unilateral, bilateral
tDCS over SM1) with each other: baseline (sham) vs. baseline
unilateral; baseline sham vs. baseline bilateral; baseline unilateral vs.
baseline bilateral.

RESULTS

Differences in eigenvector centrality between conditions at
baseline. First, we performed baseline comparisons between
conditions (bilateral, unilateral, and sham tDCS over SM1).
This analysis revealed differences in eigenvector centrality
between the three stimulation conditions in several subcortical
and cortical areas (Fig. 2).

Fig. 1. Experimental setup showing the different electrode montages used (A)
and the time course of 1 experiment (B). A: for bilateral transcranial direct
current stimulation (tDCS) over primary sensorimotor cortex (SM1), the anode
was mounted over the right SM1 while the cathode was mounted over the
homologous left SM1. For unilateral SM1 tDCS, the anode was again placed
over the right SM1, while the cathode electrode was mounted over the
contralateral supraorbital region. B: during each experimental session, an
initial baseline scan was acquired before tDCS application. Subsequently, the
respective tDCS (unilateral, bilateral, or sham SM1 tDCS) was applied for 20
min during the next 3 blocks (total of 600 volumes, duration of �23 min),
followed by 2 additional echo-planar imaging (EPI) blocks (duration of �15.3
min) that were acquired directly after tDCS. The same procedure applied for
the sham stimulation condition except that the tDCS was only applied for �30
s. For details, see METHODS. rs-fMRI, resting-state fMRI.
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Changes in eigenvector centrality during bi- and unilateral
SM1 stimulation. Twenty minutes of bilateral tDCS over SM1
(blocks 1–3) resulted in increased eigenvector centrality in
networks that included motor-related regions such as right
primary motor cortex (M1), dorsal premotor cortex (PMd), and
bilateral supplementary motor area (SMA) compared with
sham stimulation. Furthermore, prefrontal regions were also
modulated, such as right superior frontal gyrus (SFG), inferior
frontal gyrus (IFG), and left middle frontal gyrus (MFG).

In contrast, during unilateral tDCS only left fronto-temporal
and bilateral parietal areas showed a significantly increased
centrality in functional connectivity compared with sham stim-
ulation. Furthermore, we found an increase within the right
cerebellum (lobule VIIa), ipsilateral to the site of stimulation
(P 	 0.001, corrected; see Fig. 3 and Table 1). Interestingly, no
change in eigenvector centrality was found in the cortical area
below the stimulating tDCS electrode: the right SM1.

Differential effects on eigenvector centrality during bi- and
unilateral SM1 stimulation. A direct comparison between
eigenvector centrality changes during 20 min of bi- and uni-
lateral tDCS over SM1 (blocks 1–3) revealed differential ef-

fects between stimulation types. Bilateral tDCS over SM1
resulted in significantly larger eigenvector centrality changes
predominantly in primary and secondary motor areas (includ-
ing right M1, PMd, and left SMA/pre-SMA), bilateral prefron-
tal areas (SFG), and subcortical regions compared with unilat-
eral tDCS over SM1. On the other hand, unilateral compared
with bilateral tDCS over SM1 resulted in significantly larger
increases in right prefrontal (SFG), left parieto-temporal, and
subcortical areas including the globus pallidum (P 	 0.001,
corrected, see Fig. 4; for details see Table 2).

Aftereffects of uni- and bilateral stimulation over SM1 on
eigenvector centrality. After bilateral tDCS over SM1 (blocks
4 and 5), we observed an increase of centrality in functional
connectivity in motor-related brain regions such as right M1,
PMd, as well as bilateral SMA. Since these regions also
showed a significant modulation during stimulation, this result
indicates that the increase in eigenvector centrality in these
regions persisted for at least 15 min after termination of
stimulation. Furthermore, we observed additional alterations in
bilateral prefrontal areas that developed after the stimulation
period (P 	 0.001, corrected; see also Table 3 and Fig. 5).

Fig. 2. Baseline comparisons between conditions (bilat-
eral, unilateral, and sham SM1 tDCS). A: significant clusters
of the comparison bilateral � sham are displayed in red and the
inverse contrast (sham � bilateral) in blue. B: significant
clusters of the comparison unilateral � sham are dis-
played in red and the inverse contrast (sham � unilateral)
in blue. C: significant clusters of the comparison bilateral �
unilateral are displayed in red and the inverse contrast
(unilateral � bilateral) in blue. For the analysis, only the
1st scanning block (baseline, see Fig. 1) of each condition
was used. All clusters are presented on axial slices at a
threshold of z � 3.3 (P 	 0.05, corrected on cluster
level).
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After unilateral tDCS (blocks 4 and 5) we observed an
increase of eigenvector centrality within the right prefrontal
cortex, left middle temporal lobe, right fusiform and middle
temporal gyrus, as well as bilateral cerebellum (P 	 0.001,
corrected). See Table 3 for a detailed list of all clusters as well
as Fig. 5.

Stepwise comparison of stimulation-induced connectivity
changes over time versus baseline. We further assessed
changes in eigenvector centrality in each single scanning block
(see Fig. 1) compared with baseline, which in turn enabled us
to continuously track changes over time, e.g., during (blocks
1–3) as well as after (blocks 4 and 5) tDCS (for an overview
refer to Fig. 6). As described above, bilateral and unilateral
tDCS over SM1 resulted in a differential modulation of neu-
ronal networks both during and after stimulation. Moreover,
we observed diverse, nonlinear patterns of changes in central-

ity of functional connectivity within different brain areas over
time (see Fig. 6). For example, the bilateral SM1 tDCS con-
dition resulted in a significant change in eigenvector centrality
within the cluster of right M1 during the first stimulation block
compared with baseline. This effect decreased in blocks 2 and
3 and subsequently increased again in blocks 4 and 5 (after
stimulation). In contrast, we observed a different pattern over
time within right SFG. Here, a steady increase in eigenvector
centrality during bilateral SM1 tDCS (blocks 1–3) was
followed by a decrease after termination of stimulation.
Similar diverse patterns are observed in other brain areas for
uni- as well as bilateral SM1 tDCS as shown in Fig. 6. In
general, these results disclose a temporally and spatially
dispersed nonlinear pattern of tDCS-induced centrality
changes of whole-brain functional connectivity for both
conditions.

Fig. 3. Brain areas that showed a significant
increase in eigenvector centrality during bilateral
tDCS over SM1 (A) and unilateral tDCS over
SM1 (B) compared with sham stimulation. Sig-
nificant clusters are presented on axial slices at a
threshold of z � 3.3 (P 	 0.05, corrected on
cluster level). Color bars indicate z score in a range
of 3.3–6. M1/PMd, primary motor cortex/dorsal
premotor cortex; SMA, supplementary motor area;
SFG, superior frontal gyrus; MFG, middle frontal
gyrus; Ins, posterior insula; MB, midbrain; IFG,
inferior frontal gyrus; Hipp, hippocampus; BS,
brain stem; IPC/OC, inferior parietal/occipital cor-
tex; MTG, middle temporal gyrus; Cb, cerebellum
lobule VIIa hemisphere.

Table 1. Brain regions that show significant increases in
eigenvector centrality during bilateral and unilateral tDCS over
SM1 compared with sham stimulation

Brain Area H BA

Coordinates (tal)

z Max Clx y z

Bilateral tDCS
M1/PMd R 4/6 26 �18 49 4.95 837
SMA L 6 �3 0 52 4.34 486
anterior SFG R 10 20 51 19 6 3,726
MFG L 10 �38 57 5 4.99 1,161

11 �35 48 �11 3.95 621
IFG (p. orbit.) R 47 26 24 �14 5.54 1,080
Posterior insula L 13 �38 �24 3 5.72 756
Midbrain R 9 �24 �8 4.42 459
Hippocampus L �32 �12 �19 4.82 648
Brain stem L �17 �21 �25 4.41 513

Unilateral tDCS
SFG L 8 �17 18 44 4.32 459
IPC/OC L 19/39 �35 �78 41 5.29 999
IPC/OC R 19/39 32 �72 38 4.78 783
MTG L 21 �64 �15 �14 4.92 513
Cb Lob VIIa Hem R 46 �51 �27 5.02 405

tDCS, transcranial direct current stimulation; SM1, primary sensorimotor
cortex; H, hemisphere; BA, Brodmann area; tal, Talairach space; z max,
maximum z value; Cl, cluster size; M1, primary motor cortex; PMd, dorsal
premotor cortex; SMA, supplementary motor area; SFG, superior frontal
gyrus; MFG, middle frontal gyrus; IFG (p. orbit.), inferior frontal gyrus, pars
orbitalis; IPC, inferior parietal cortex; OC, occipital cortex; MTG, middle
temporal gyrus; Cb, cerebellum.

Fig. 4. Differential effects of bilateral vs. unilateral tDCS over SM1 on
eigenvector centrality. Bilateral tDCS results in stronger eigenvector centrality
increases in primary and secondary motor areas (including right M1, PMd, and
left SMA/pre-SMA), bilateral prefrontal areas (SFG), and subcortical regions
when directly compared to unilateral SM1 tDCS (bilateral � unilateral tDCS,
clusters shown in red). Significant clusters of the inverse contrast (unilateral �
bilateral tDCS) are shown in blue. The corrected threshold was set to z � 3.3.
Color bars indicate z score in a range of 2.8–6 (P 	 0.05, corrected on cluster
level). Pre-SMA, pre-supplementary motor area; Ins, insula; Pt, putamen; S1,
primary somatosensory cortex; STG, superior temporal gyrus; GP, globus
pallidum.
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DISCUSSION

Here we provide novel evidence that tDCS over SM1 is
capable of modulating functional whole-brain resting-state
network connectivity during as well as after stimulation (Zheng
et al. 2011). The experimental setup with concurrent tDCS and
fMRI allowed us to continuously track tDCS-induced effects
on resting-state functional connectivity over time. We showed
that bilateral tDCS over SM1 resulted in widespread connec-
tivity changes such as in primary and secondary motor as well
as prefrontal cortex. In contrast, unilateral tDCS over SM1
predominantly modulated functional connectivity in prefrontal,
parietal, and cerebellar areas. Furthermore, we observed for
both stimulation types differential effects not only during but
also after tDCS that persisted for at least 15 min. The time
course of changes in functional connectivity in the respective
brain areas was nonlinear and temporally dispersed.

The combination of noninvasive brain stimulation and mod-
ern neuroimaging techniques enables investigation of not only
local but also global effects of tDCS on brain networks, e.g., by
combining noninvasive brain stimulation and fMRI or EEG
measurements (Bestmann et al. 2008; Kirimoto et al. 2011;
Neuling et al. 2012). However, until now, only a small number
of studies have investigated the effect of noninvasive brain
stimulation protocols such as repetitive (r)TMS (e.g., van der
Werf et al. 2010) on resting-state networks. Even less is known
regarding the effects of tDCS on resting-state functional con-
nectivity. In a first proof of concept on five healthy subjects,
the technical feasibility of concurrent tDCS and rs-fMRI mea-
surements could be demonstrated (Alon et al. 2011). Data
analysis was restricted to both SM1 (region of interest ap-
proach), showing that a decrease in functional connectivity
from right to left SM1 was induced by 7 min of anodal tDCS

delivered over right SM1. In the present study, we used ECM
analysis to identify changes in functional connectivity on a
whole-brain level. The use of a centrality measure such as
ECM is based on the assumption that important brain regions
(hubs) interact with many other regions and facilitate integra-
tive processes (Rubinov and Sporns 2010). The neurobiologi-
cal interpretation of this measure is that nodes with a high
value are interacting functionally with many other nodes in the
network. Thus changes in centrality represent reorganizational
processes within this functional network architecture.

In contrast to other centrality measures such as betweenness
or degree centrality, ECM is parameter free and computation-
ally fast and does not depend on prior assumptions (a priori
information) (Lohmann et al. 2010). Previous studies com-
monly used an anatomical template of 90 regions of interest
(Achard et al. 2006; He et al. 2009). However, we aimed to
perform voxelwise analysis with our functional data. This
required a large region of interest of �63,000 voxels in our
study, which makes measures such as betweenness centrality
computationally intractable. The computational speed of ECM
enabled us to obtain whole-brain centrality maps and use them
in a manner similar to contrast maps obtained in standard
regression analyses. Furthermore, in contrast to degree central-
ity, ECM does not depend on a prespecified threshold for
correlation values and captures small-world characteristics of
the human brain that degree centrality does not (Bonacich
2007; Lohmann et al. 2010). This method has been used before
to detect reorganizational processes in functional connectivity
induced by complex motor skill learning (Taubert et al. 2011).
In our study, the use of ECM was motivated by findings of
concurrent fMRI-TMS experiments showing that noninvasive
brain stimulation over SM1 modifies the BOLD signal not only
locally within the stimulated or adjacent cortical regions but

Table 2. Differential effects of bilateral and unilateral tDCS over
SM1 on eigenvector centrality during stimulation

Brain Area H BA

Coordinates (tal)

z Max Clx y z

Bilateral tDCS � unilateral
tDCS

PMd R 6 26 �12 69 4.29 594
M1 R 4 35 �23 58 3.31
Pre-SMA L 6 �3 15 69 4.73 486
SMA L 6 �3 �18 58 4.87 783
SFG R 10 29 51 11 4.79 1,458
SFG L 10 �32 60 16 3.88 945
ACC L 32 �3 39 14 4.35 783
OFC R 11 23 30 �16 4.19 432
Insula L 13 �35 �15 16 4.23 405
OC R 18 6 �78 25 4.43 486
Putamen R 29 �15 14 5.13 432
BS L �12 �15 �8 5.71 594
Cb Lob VIIb Vermis L �3 �72 �25 5.85 837

Unilateral tDCS � bilateral
tDCS

SFG R 8 17 21 49 4.62 432
S1 L 1 �46 �27 60 4.83 729
IPC/OC L 39/19 �38 �66 33 5.69 3,267
STG L 22 �58 �57 14 4.86 1,512
STG L 22 �52 �12 �3 5.58 1,026
GP L �26 �18 �5 4.49 675

ACC, anterior cingulate cortex; OFC, orbitofrontal cortex; BS, brain stem;
S1, primary somatosensory cortex; STG, superior temporal gyrus; GP, globus
pallidum.

Table 3. Aftereffects of bilateral and unilateral tDCS over SM1
on eigenvector centrality

Brain Area H BA

Coordinates (tal)

z Max Clx y z

Bilateral tDCS
M1/PMd R 4/6 26 �18 49 5.29 1,809
SMA R 6 6 �24 66 4.16 621

L 6 �6 �3 49 4.31 459
R 6 9 �12 49 4.89 405

Pre-SMA R 6 3 24 66 4.71 567
MFG R 9 12 39 33 5.98 7,101

R 9 43 21 36 4.22 459
OFC L 11 �23 57 �11 5.1 3,834
IFG (p. orbit.) R 47 29 24 �19 4.64 459
MTG R 21 61 �21 �14 5.77 1,134
ITG L 20 �52 �12 �25 5.24 729
Posterior insula L �38 �3 �11 4.18 513
TTG L 41 �35 �27 8 4.99 594
Cb Lob VIIa Hem R 38 �75 �27 4.54 702

Unilateral tDCS
SFG R 8 20 42 41 5.3 1,971
PHC L 36 �38 �33 �8 5.43 2,430
FG R 19 35 �66 �5 4.38 540
MTG R 21 55 �15 �14 4.3 459
Cb Lob VI Hem R 9 �66 �16 4.41 729
Cb Lob VIIa Hem L �43 �66 �16 3.67 405
Cb Lob VIIa Hem R 46 �51 �25 5.5 594

ITG, inferior temporal gyrus; TTG, transverse temporal gyrus; PHC, para-
hippocampal gyrus; FG, fusiform gyrus.
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also in remote interconnected brain areas (Bestmann et al.
2004).

Other graph-theoretical analyses have been previously ap-
plied to investigate tDCS-induced neuroplastic changes. With
the use of EEG (Polania et al. 2010) as well as fMRI (Polania
et al. 2011b), it has been demonstrated that tDCS evokes intra-
and interhemispheric connectivity changes after 10 min of
stimulation over left M1. These effects were seen not only over

the stimulated M1 but also in bilateral frontal, parietal, and
premotor cortical regions (Polania et al. 2010). Furthermore,
with the help of the higher spatial resolution in fMRI, it was
demonstrated that 10 min of anodal tDCS over left SM1
increased short-range connections from M1 to premotor and
parietal cortical regions, while concomitantly increasing inter-
connectedness in prefrontal cortex in resting brain dynamics
(Polania et al. 2011b). Compared with our study, there are

Fig. 5. Brain areas that showed a significant increase in
eigenvector centrality after bilateral (A) and unilateral
(B) tDCS over SM1 compared with sham stimulation.
Significant clusters are presented on axial slices at a
threshold of z � 3.3 (P 	 0.05, corrected on cluster
level). See also Table 3 for a detailed cluster list. OFC,
orbitofrontal cortex; ITG, inferior temporal gyrus; TTG,
transverse temporal gyrus; CB, cerebellum; PHC, para-
hippocampal cortex; FG, fusiform gyrus.

Fig. 6. Dynamic progression of changes in eigen-
vector centrality during (blocks 1–3) and after
(blocks 4 and 5) bilateral (A) and unilateral (B)
tDCS over SM1 compared with sham stimulation.
Color-coded fields represent the z values resulting
from the contrasts of a single block (1–5) and the
baseline at a threshold of z � 3.3. During both
conditions (A and B), distributed brain areas are
modulated by tDCS. Note that the pattern of
changes for both stimulation types seems to be
nonlinear and temporally dispersed. The small line
plots on green background represent continuous
eigenvector centrality mapping (ECM) changes
throughout the time course of the experiment and
include below-threshold z values. Color bars indi-
cate the z score in a range of 3.3–6.3; n.s., not
significant. aSFG, anterior part of superior frontal
gyrus; pIns, posterior insula; Cb, cerebellum, lob-
ule VI.
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some essential differences regarding the stimulation setup:
Polania and colleagues used unilateral anodal tDCS of the left
SM1, while in our study anodal tDCS was applied over the
right SM1. Furthermore, the stimulation duration differed re-
markably between the aforementioned studies (10 min in the
study of Polania et al. vs. 20 min in our study). Despite
methodological differences in these studies, tDCS in general
seems to modulate widespread changes not only in local but
also in distant brain areas.

Here we further extend previous work on tDCS-induced
brain network changes by investigating two important issues.
First, we provide novel evidence regarding dynamic online
effects on large-scale networks during 20 min of tDCS. We
chose this timescale to be consistent with relevant studies
investigating behavioral effects of tDCS (e.g., Reis et al. 2009;
Vines et al. 2008). Second, we provide evidence regarding
differential tDCS effects induced by uni- and bilateral tDCS
over SM1.

Effects of tDCS on functional connectivity during stimulation.
During bilateral tDCS over SM1, we detected increases within
a cluster covering right M1/PMd, e.g., the cortical area under
the anodal electrode. Since a tDCS-related change in right
M1/PMd was only elicited by bilateral (right anodal and left
cathodal) and not unilateral (only right anodal) SM1 stimula-
tion, it seems likely that not only the local facilitatory effect of
the right anodal stimulation but also the additional cathodal
(inhibitory) stimulation of the left SM1 contributed to this
effect. As shown previously, cathodal tDCS leads to a decrease
in corticospinal excitability, most likely through a hyperpolar-
ization of the resting membrane potential, and/or through a
modification of synaptic efficacy (Nitsche et al. 2005; Stagg
and Nitsche 2011). Thus it is tempting to speculate that
downregulation of left SM1 by cathodal tDCS results in a
disinhibition of the interhemispheric inhibitory drive from the
left to the right M1, which in turn causes the observed increase
of eigenvector centrality of the homologous SM1. Alterna-
tively, as shown recently in the somatosensory domain, a
modulation of interhemispheric inhibitory interactions between
primary somatosensory cortices might as well account for this
effect (Ragert et al. 2011).

Since all subjects were right-handed, we cannot rule out that
this effect might be due to a modulation of lateralized inter-
hemispheric interactions between both M1 (Baumer et al.
2007). To elucidate this, further studies should investigate the
effects of a converse stimulation setup. Nonetheless, our results
raise the hypothesis that the previously reported superior ef-
fects of bilateral compared with unilateral right SM1 stimula-
tion (Vines et al. 2008) are at least partly mediated by a
modulation of functional connectivity in the right primary
motor cortex.

Apart from eigenvector centrality changes in right SM1,
bilateral tDCS over SM1 resulted in significant changes in
secondary motor areas such as the premotor cortex (right PMd)
and SMA. Previous animal and human studies showed that
both areas are tightly interconnected with the stimulated SM1
(Civardi et al. 2001; Strick et al. 1998). Therefore, bilateral
tDCS over SM1 might also result in changes within intercon-
nected brain areas that are reflected by ECM. Similarly, remote
effects of noninvasive brain stimulation in SMA have been
successfully identified with the use of concurrent TMS over
M1 and fMRI measurements (Bestmann et al. 2008).

In contrast to bilateral tDCS over SM1, no online changes in
eigenvector centrality were found in SM1 or premotor areas
during unilateral tDCS over SM1. The absence of unilateral
tDCS effects in these areas was surprising and certainly re-
quires further investigation. One important aspect of our ex-
perimental design is the fact that in the unilateral SM1 tDCS
condition the right, nondominant motor cortex was the target
area of anodal tDCS. This stimulation setup is consistent with
the study by Vines and colleagues (Vines et al. 2008) that
compared the effects of uni- and bilateral tDCS over the motor
cortex on motor performance. With our experimental design
we cannot rule out that different effects on functional connec-
tivity would be observed if tDCS were applied over M1 of the
dominant (left) hemisphere (Nitsche et al. 2003c), an issue that
requires further investigation. In this vein, a recent study
suggests that the dominance of the targeted motor cortex does
differentially contribute to stimulation-induced aftereffects
(Schade et al. 2012). Another important point with respect to
this experimental condition pertains to the attachment of the
cathodal electrode over the left supraorbital region. With our—
well-established—stimulation setup it is not unlikely that a
modulation of frontal activity by this electrode also contributes
significantly to changes in functional connectivity that we
observed on the whole-brain level.

Apart from the divergent results in SM1 and secondary
motor areas, we observed changes in centrality in prefrontal
areas during both uni- and bilateral tDCS over SM1. Studies
in primates suggested that the prefrontal cortex is involved
in motor control such as context-dependent movement se-
lection (Matsumoto et al. 2003), supported by anatomical
findings in macaques showing multisynaptic connections be-
tween prefrontal and premotor/motor cortex (Miyachi et al.
2005). Nevertheless, it still remains elusive whether centrality
changes in prefrontal areas are directly related to a modulation
of SM1 or rather reflect a general effect of tDCS on the
resting-state network per se. Furthermore, as discussed above,
in the unilateral SM1 tDCS condition it might be that the
“reference” electrode attached to the contralateral supraorbital
region also contributed at least partially to centrality changes
within prefrontal areas that are in close spatial proximity to the
electrode. At least for the bilateral SM1 tDCS condition, it is
reasonable to assume that tDCS is capable of modulating the
connectivity not only within adjacent, but also remote, brain
areas such as the prefrontal cortex.

Interestingly, only unilateral facilitatory stimulation over
right SM1, but not bilateral tDCS, with facilitatory right and
inhibitory left SM1 stimulation induced an increase of central-
ity within the ipsilateral right cerebellum. Only recently could
it be demonstrated that tDCS applied over the cerebellum
modulates the overall inhibitory tone that exerts the cerebellum
over the motor cortex (Galea et al. 2009). In our study it is
tempting to speculate that the increase in centrality of the
cerebellum during ipsilateral facilitation of SM1 might be
mediated via facilitatory cerebrocerebellar interactions (Kelly
and Strick 2003).

What is the potential meaning of the present study for future
applications of tDCS in patient populations such as those with
chronic stroke? The present data on healthy individuals cer-
tainly do not allow us to speculate as to whether one or the
other setup might be more efficient in motor rehabilitation
(Hummel et al. 2005; Lindenberg et al. 2010) but might help to
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generate hypotheses for future studies. Given that we observed
very different patterns of changes depending on the stimulation
setup, it might be that patients who differ, e.g., in their lesion
location might also differentially benefit from one stimulation
setup or the other. Future studies need to address these ques-
tions in patient populations in order to identify benchmarks for
the establishment of individualized adjuvant tDCS protocols in
motor rehabilitation.

It remains noteworthy that a considerable part of the areas
modulated by tDCS are not specifically related to motor plan-
ning or execution. Furthermore, in the unilateral SM1 stimu-
lation condition we did not detect changes in eigenvector
centrality within the stimulated cortex. Our results showing
changes in remote regions induced by tDCS are in line with
previous studies combining TMS and fMRI or PET. With this
methodological approach, changes in activation (BOLD signal)
in remote but interconnected regions have consistently been
observed, even in the absence of significant changes in activity
at the stimulation site (Bestmann et al. 2003, 2004; Bohning
et al. 1999; Denslow et al. 2005). However, we applied
well-established stimulation parameters (electrode size, stimu-
lation intensity, stimulation duration; e.g., Vines et al. 2008).
Thus we are confident that our results are, even though not
specific to the motor system, specific to the tDCS conditions
that were applied: bilateral and unilateral tDCS over primary
sensorimotor cortices.

Dynamics of stimulation-induced centrality changes. Our
study design using concurrent tDCS and high-resolution
fMRI enabled us to continuously track changes in functional
connectivity not only during but also after stimulation in
order to unravel the dynamic processes of tDCS-induced
neuroplasticity.

Here, covering both online effects and aftereffects of stim-
ulation, we provide novel evidence that the pattern of tDCS-
induced engagements of different neural networks is tempo-
rally dispersed. Previously, it was suggested that neuroplastic
changes after the application of noninvasive brain stimulation
protocols do not necessarily appear directly after the stimula-
tion but may arise with a temporal delay. For example, after
paired-associative stimulation (PAS), a specific form of non-
invasive brain stimulation, functional changes in corticospinal
excitability have been reported to appear after an interval of
20–30 min postintervention (Missitzi et al. 2011). The authors
speculated that only after a latent interval might the optimal
strengthening of the synaptic efficacy be consolidated and
become apparent. It is tempting to translate this observation
into the dynamic and diverse temporal onsets of functional
resting-state changes as seen in our study. Along these lines,
recent neuroimaging studies suggested that other plasticity-
inducing interventions like motor sequence learning (Steele
and Penhune 2010) or complex motor skill learning (Taubert et
al. 2011) may result in not only steadily increasing (linear)
brain alterations but, at least to some extent, also diverse,
nonlinear dynamic changes within different brain areas.

Finally, the present study has some limitations. First, our
method (ECM) relies on resting-state measurements of the
BOLD signal; thus we do not have a behavioral measure that
could prove the relevance of our stimulation protocols. Hence,
we cannot directly claim that the effects that we observed are
linked to behavioral consequences of tDCS. However, we used
an established and frequently tested stimulation setup known to

improve motor performance and learning (see e.g., Nitsche
et al. 2003c; Vines et al. 2008). Here we aimed to study
changes in functional connectivity elicited by these established
stimulation protocols. Therefore, our study should be consid-
ered in line with previous studies that explored neurophysio-
logical effects of tDCS in the absence of a behavioral task (e.g.,
Nitsche et al. 2003a; Nitsche and Paulus 2000; Polania et al.
2011b; Zheng et al. 2011). Second, by using rs-fMRI and a
data-driven analysis approach (ECM), we certainly cannot
claim to provide a complete picture of tDCS-induced connec-
tivity changes. However, the scope of the present study was to
obtain a global picture of tDCS-induced functional connectiv-
ity changes without hypotheses about special brain regions. To
further elucidate the specific involvement of certain brain
regions, such as the stimulated M1, more hypothesis-driven
approaches should address these issues in future studies. Third,
to avoid any potential bias from baseline differences in ECM
between conditions (sham, bilateral, and unilateral tDCS over
SM1) we normalized the ECM maps during and after tDCS
against baseline. This analysis is in line with a recently pub-
lished study investigating aftereffects of tDCS over the dorso-
lateral prefrontal cortex. Since we found in an additional
analysis that baseline ECM maps were in fact different be-
tween conditions, the possibility remains that baseline differ-
ences per se might have influenced the tDCS-induced ECM
changes. Similar findings have been reported in recent nonin-
vasive brain stimulation studies, a phenomenon known as
homeostatic plasticity (Ziemann and Siebner 2008). More
specifically, we cannot entirely rule out the possibility that the
individual preinterventional state might have had an impact on
subsequent tDCS-induced ECM changes. The impact of ho-
meostatic plasticity on ECM changes should therefore be of
interest in future investigations.

In the present study, we did not record respiration and
heartbeat to model physiological noise. Therefore, we cannot
rule out the possibility that these parameters might influence
our research findings. However, a previous study investigated
the influence of these parameters on rs-fMRI data and high-
lighted that default-mode network changes cannot be explained
by cardiorespiratory processes alone and are likely related to
cognitive neuronal processing (van Buuren et al. 2009). There-
fore, we are confident that the observed tDCS-induced ECM
changes are not contaminated by physiological noise.

In summary, we have demonstrated that tDCS over SM1
induces widespread and dynamic changes in resting-state func-
tional connectivity both during and after stimulation. The
pattern of network connectivity changes is temporally and
spatially dispersed and critically depends on the stimulation
setup (unilateral and bilateral tDCS over SM1).
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Bundling for the Visualization

of Functional Connectivity in the Brain
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Abstract—Functional connectivity, a flourishing new area of research in human neuroscience, carries a substantial challenge for

visualization: while the end points of connectivity are known, the precise path is not. Although a large body of work already exists on

the visualization of anatomical connectivity, the functional counterpart lacks similar methods. To optimize the clarity of whole-brain and

complex connectivity patterns in 3D brain space, we develop mean-shift edge bundling, which reveals the multitude of connections as

derived from correlations in brain activity of cortical regions.

Index Terms—Visualization applications, information visualization, visualization techniques and methodologies
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1 INTRODUCTION

A core challenge in understanding brain organization is
the visualization of its connectivity. Sophisticated

visualizations of anatomical tracts based in diffusion
weighted imaging (DWI) have proven essential to elevating
the methodology. However, functional connectivity, an
emerging approach based in the correlations of sponta-
neous brain activity, lacks effective visualization methods to
clarify the inherent complexity of the connectivity graph.

Visualization of connectivity has almost exclusively
focused on depicting spatially constrained anatomical
tracts. However, functional connectivity [1] presents a novel
problem for visualization. Functional connectivity is based
on the statistically determined similarity between time-
courses of activity in different brain areas. Since the first
description of this method using data acquired “at rest” in
1995 [2], it has grown into a flourishing field of research
(for a review, see [3]). Although it represents connections
between brain regions, the precise anatomical path is
unknown. This poses an exciting opportunity for visualiza-
tion, as the representation of connections is constrained
only by the optimization of visual clarity, and not the
requirement to represent anatomical paths.

We describe our development of an edge bundling method
to obtain a clearer picture of functional brain connectivity.
To our knowledge, this is the first application of a
visualization method to show high-resolution functional
connectivity data across functional networks in its native
anatomical space. Our method does not require selection
of seed regions of interest, subdivision of the data into
supposedly independent components, or other reduction

steps such as spatial downsampling. Although the edge-
bundling algorithm we use is an adaption of previous work,
it contributes a stable and straightforward implementation
for brain connectivity data. In this paper, we first introduce
the data, and then describe our method to visualize full
graphs of functional brain connectivity in anatomical 3D
brain space.

2 BACKGROUND

2.1 Connectomics

The defining feature of the nervous system has long been
recognized as its interconnectedness, but the tools to
actually map such connections noninvasively have only
become feasible in the past decade. Notably, Francis Crick,
codiscoverer of the molecular structure of DNA, lamented
the dearth of knowledge on the connectivity of the human
brain, and outlined an agenda for pursuing this line of
research [4]. Twenty years later, this research agenda is at
the forefront of the neuroscience communities current
concerns, and several major initiatives have brought further
support to this research (e.g., Human Connectome Project1

and International Neuroimaging Data-Sharing Initiative2).

2.2 Types of Connectivity

Anatomical and functional connectivity are related, but also
capture distinct aspects of brain organization [5]. Brain
function relies on networks consisting of spatially distrib-
uted areas. Although the anatomical connections are the
primary feature defining white matter, the computational
units are neurons, lying in the gray matter. The latter are the
basis of functional connectivity.

2.2.1 Anatomical Connectivity

The anatomical structure of white-matter tracts can be
noninvasively mapped using DWI. This method takes
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advantage of the nonisotropic movement of water mole-
cules, which is impeded to various extents by the
organization and trajectory of white-matter tracts.

The success of this method is partly attributable to
advanced visualization methods, which are widely ac-
cepted and applied in research as well as in clinical settings
(for a review, see [6]). The most basic methods to visualize
diffusion data are voxel-based coloring schemes for local
measures such as fractional anisotropy, maximum diffu-
sion, or the direction of the largest eigenvector (for example,
[7]). Higher-dimensional measurements are visualized with
glyph-based approaches (for example, [8]).

Diffusion data can also be used to trace the likely paths
of underlying connections between gray matter areas,
resulting in deterministic [9], [10], [11] reconstructions of
white-matter tracts. The visualization of these tracts can
then be clarified, for example, by using similarities between
tracts to schematize and colorize bundles [12], or using
nonphotorealistic rendering techniques [13]. Instead of
deterministic paths, the likelihood of the existence of
anatomical connections can be calculated using probabilistic
tractography, though visualization of the probability maps
is more challenging [14], [15], [16], [17].

2.2.2 Functional Connectivity

Functional MRI (fMRI) is traditionally used to measure
task-evoked activity in gray matter. In addition to the
activation of areas in response to a task stimulus, fMRI
data contain spontaneous fluctuations. Although this task-
unrelated activity was long assumed to be noise, evidence
now indicates that this activity is functionally meaningful
for describing large-scale networks. Most easily acquired
in the absence of task demands, “resting-state functional
connectivity” uses correlations between the activity fluc-
tuations across the brain to calculate connection strengths.
Brain activity is sampled in regions of 3D space with sizes
ranging upwards from single raw voxels (several cubic
millimeters) to averaging signal over whole lobes (several
cubic centimeters). The strength of functional connectivity
is then calculated by correlating the different time-courses
of activity.

The visualization of the resulting data is much less well
developed than for anatomical connectivity. So far, the
focus in the field lay on the development of a multitude of
analytic methods. Local measures of functional connectivity
exist, and are visualized with standardized color schemes.
The standard “seed”-based method calculates the connec-
tivity of a single selected region, which can then be
visualized using standardized color scales. Interactive and
explorative software using this approach exist, and allow
for movement of the seed with simultaneous observation of
the changing connectivity patterns [18], [19], [20], [21], but
they can show only a fraction of the whole connectivity data
in a single image. Showing all the available information at
once is impossible due to overlapping connectivity from
different seed points. There are many other sophisticated
methods for the analysis of functional connectivity (for a
review of analysis methods, see [22]), most of which would
profit from the development of equally sophisticated
visualization methods of the results in the anatomical
space. One such family of analysis methods is the attempt to

decompose resting-state data into distinct components,
using methods like independent component analysis or
principal component analysis (ICA/PCA). These compo-
nents are postulated to represent distributed functional
networks, but partially overlap spatially. Worsley et al. [23]
visualized PCA components in conjunction with thre-
sholded connections between voxels in anatomical space.
As Worsley et al. [23] note, the overlap makes ICA/PCA
components ill-suited for simultaneous display of multiple
components. Color coding has been proposed to visualize
the three most prominent PCA components in a data set
[24]. Graph-theory-based analysis has been the basis for
sophisticated visualizations of whole-brain functional con-
nectivity (for examples, [25], [26]), where the distances
between nodes reflect functional connectivity strengths.
However, these graph representations sacrifice anatomical
information. For the purpose of representing both con-
nectivity graphs and underlying anatomical space, manu-
ally illustrated abstract schematics have been used (for
examples, see [27, Fig. 4], or [28, Fig. 6]). Nevertheless,
similar clarity has not yet been achieved for the rendering of
real connectivity data.

Our interest lies in visualization of functional connec-
tivity on a level that parallels its anatomical counterpart in
showing the multitude of connections in a single image.
We believe such visualization methods can aid in the
clarification and unification of the different modalities used
in brain research: the anatomical and the more abstract
functional knowledge. First steps to combine these two
complementary aspects have recently been undertaken:
both functional and anatomical connectivity have unique
advantages. For instance, functional connectivity is more
accurate for describing the precise termination areas of
long distance connectivity, while anatomical connectivity
can describe the paths between those areas [5], [29], [30].
Calamante et al. [31] take advantage of the strengths of
each method to visualize the functional connectivity-
informed anatomical paths by combining whole-brain
probabilistic tractograms with the information from single
seed-based or ICA derived functional connectivity net-
works. After summing the FC-values along the tracts, they
create renderings that show specifically the anatomical
tracts connecting the functional areas.

What sets functional connectivity apart from anatomical
connectivity is that white-matter tracts have not only a
defined beginning and end position, but also a well-defined
shape of the connections between them, while functional
connectivity lacks this connection with a well-defined
shape. The termination points of functional connectivity
have anatomical positions, but only the strength of the
connection can be assessed from the data, as there is no
knowledge of the path shape. The connectivity can be
expressed through a square matrix with connectivity values
for each pair of termination points, and their associated
anatomical positions. This data should be visualized,
ideally in connection with additional spatial information
to indicate anatomical location.

2.3 Edge Bundling

The problem of visualizing functional connectivity is, at its
foundation, the issue of visualizing a complex graph. With
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high-resolution information, graphs of connectivity can
easily contain many thousands of edges. The approach of
drawing straight edges for all connections suffers from
heavy clutter, and yields visualizations that resemble a ball
of wool, and are not able to clearly convey the structure of
the connections between different parts of the brain (Fig. 1d).

Similar visualization problems for data such as airline
traffic or migration patterns have been successfully im-
proved using edge bundling approaches [32], [33], [34], [35],
[36], [37], [38], [39], [40]. Pioneered by Holten [32], these
methods strive to change the shape of the connections
visually so that related edges are grouped together, while
leaving the terminal points of the connections unchanged.

The original approach, which requires a preexisting
hierarchical partition of the anatomy, has recently been
used for the visualization of functional connectivity [21],
[33], [34]. Mapping the different parts of the brain to an
abstract two-dimensional circular layout before application
of the bundling algorithm has yielded beautiful visualiza-
tions of whole-brain functional connectivity. One problem
with this approach, however, is that the brain is not clearly
subdivided into an anatomically distributed hierarchical
structure. Also, understanding the anatomical placement of
the regions in the abstract layout requires the viewer to
learn a new standardized layout.

Both abstract and anatomically faithful layouts have
advantages and disadvantages depending on the context.
For our main interest, the high-resolution voxel-level
mapping of anatomical areas on the cortex, visualization
of functional connectivity in the native brain space would
be advantageous. Using the anatomical space is also an
advantage in the clinical setting, where pathologies may
alter brain structure and make the use of standardized
parcellations impossible.

In contrast to methods requiring a hierarchical partition
[32], [35], newer methods do not [36], [37], [38], [39], [40],
[41], [42]. Holton and Wijk [36] have improved upon his
original method, and presented a nonhierarchical edge
bundling method for general graphs, force-directed edge
bundling (FDEB). This elegant method is applicable to the
visualization of connectivity in the anatomical space with-
out previous calculation of a hierarchical subdivision.

However, as Hurter et al. [37] have noted, the method has
several heuristically determined parameters, and relies on
an unstable equilibrium between forces. Other works have
addressed improvements on scalability [38], and the
application to three-dimensional space [39]. However, all
of these methods either require relatively complicated
implementation for the required control structures [40], or
possess an algorithmic element, such as sampling to image
space, which makes application to three-dimensional data
difficult or impossible [41], [42]. One of the latter methods is
kernel density estimation edge-bundling (KDEEB) [37], which
calculates the gradient of the density of the edges in that
space by summation of kernels based at the subdivision
points or around the edges, and then iteratively moves
subdivision points into regions with higher density.

Our approach, which is described in the next section,
combines FDEBs straightforward applicability in 3D space
and its concept of compatibility with the numerical stability
and ease of use of KDEEB.

3 MEAN-SHIFT EDGE BUNDLING FOR THE

VISUALIZATION OF FUNCTIONAL CONNECTIVITY

Our approach to advance the visualization of functional
connectivity is to apply edge bundling to improve the
clarity of the data in the 3D anatomical brain space. Our
method is strongly inspired by FDEB and KDEEB, and we
present here its first application to functional connectivity.

3.1 Data

We visualize resting-state connectivity from two data sets.
First, a whole-brain data set derived from a group of
participants for an overview of large-scale connectivity.
Second, a detail data set of the left hemisphere derived from
a single participant, to show the feasibility of our approach
even for single cases, and to be able to show the details
present in such data, which potentially get lost in group
level analysis.

Both data sets consist of binary graphs with the nodes
consisting of subdivisions of the brain (voxels or small
parcels of cortex), and edges between strongly connected
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Fig. 1. Whole-brain functional connectivity data. The data that we visualize are derived from fMRI time-courses in cortical areas (a), and calculation
of a correlation matrix between every pair of these regions (b). The matrix is, then, thresholded (c), and transformed into a binary graph. Shown is our
whole-brain group-level connectivity data set; this example of connectivity between 463 cortical nodes is derived from 122 individual resting-state
fMRI scans over 10 minutes each, which are then registered to a common standard coordinate system. In the unbundled graphs using straight lines,
(d) almost no structure is visible. We apply edge bundling to alleviate this problem.



nodes. For the whole-brain group data, 122 data sets from
healthy participants between the ages of 18 and 60 were
downloaded from fcon_1000.projects.nitrc.org, and prepro-
cessed as previously described [43]. All data sets were
collected by the Nathan Kline Institute and made available
by the International Data Sharing Initiative [44]. Part of
the preprocessing was the parcellation of the data sets into
463 cortical and subcortical parcels [45]. For each data set, a
connectivity matrix was then calculated using Pearson
correlation between the average time series of these parcels.

After Fisher’s r-to-z transformation, the correlation
values were averaged across subjects and the connections
further thresholded to only leave the top 7.5 percent (z >
0.432). We use a binary graph because inclusion of all
weighted connections would not be feasible due to current
memory and computational limitations. Thresholding also
has the neuroscientific advantage of excluding nonsignifi-
cant and negative correlations, whose anatomical signifi-
cance is ambiguous [46], [47]. We selected our threshold for
visual clarity of known anatomical structures in the result.
The influence of the binarization threshold on the resulting
bundlings is shown in Fig. 6. After binarization, short
edges (<20 mm) were removed, resulting in 6,630 connec-
tions (Fig. 1).

To clarify how sensitive the method is to the application
to different data sets, we also picked 20 randomly picked
single cases and 20 groups of 20 subjects each (Figs. S1-S4,
which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org 10.1109/
TVCG.2013.114 available online). To further show the
transferability of the method, we derived and spatially
aligned an independent connectivity graph from a DWI
example data set (Fig. 5 and S6, available in the online
supplemental material).

Our detail data set from a healthy participant was
acquired and preprocessed as previously described [48]. To
show the detail inherent in connectivity, two ROIs were
defined in the left frontal and temporal lobe after extracting
the surface of the cortex. Then, only connections between
these ROIs were thresholded (z > 0.35), and short edges
(<20 mm) were removed to create a second binary graph
consisting of 7,799 edges (Fig. 2).

3.2 Algorithm

Our bundling algorithm combines steps from FDEB [36]
and KDEEB [37]. We first calculate a measure of similarity
between edges, which guarantees that only compatible edges
are bundled together. We iteratively subdivide the edges,
and move subdivision points to areas with higher density.

3.2.1 Compatibility

We use the definition of pairwise similarity between edges
from FDEB. Compatibility is defined as a product of four
geometrical criteria: similarities of angle and length,
distance between midpoints, and the visibility. These
criteria are mapped to ranges between 1 for identical edges,
and 0 with growing dissimilarity. We refer to the original
paper for the details [36].

3.2.2 Iteration and Subdivision Scheme

We iteratively subdivide the edges. Similar to FDEB, we use
a scheme of k cycles consisting of i iterations. Between

cycles, we subdivide the edges by insertion of subdivision
points p1 to pn at regular intervals along the edges. FDEB
doubles the number of line segments with each cycle. We
chose to use a noninteger factor for the increase of
subdivision points per cycle, such as in the implementation
of FDEB available in JFlowMap.3 We set the number of
segments to 1:3c, with c being the number of the current
cycle. Compared with doubling, this results in a slower
growth of the number of subdivision points. In addition, the
connections are smoothed between cycles, since new
subdivision points are created between the subdivision
points from the old cycle. We found that a linear reduction
of iterations over cycles leads to good results. Our iteration
scheme consists of 10 cycles, starting with 10 iterations, and
ending with one.

3.2.3 Mean-Shift of Subdivision Points

To calculate the new position for each subdivision point
in each iteration, we use a method similar to mean-shift
clustering [49], a nonparametric method that does not
require the explicit number of clusters as input. We move
each point to a weighted mean of all compatible surrounding
control points. Like in FDEB, we consider subdivision
points compatible, if they occupy the same position along
the edges, and the compatibility between the edges is above
a user-defined threshold cthr.

The weights for the calculation of the new position are
determined using a Gaussian kernel KðdÞ ¼ e�d2 = 2�2

on the
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Fig. 2. Detail data of connectivity between 1,000 nodes in two ROIs (in
green and blue) in left-lateral prefrontal and temporal areas in a single
brain, which are, among others, involved in language processing and
production. As in Fig. 1, in the unbundled graph the structure is not
apparent before our application of edge bundling.

3. http://code.google.com/p/jflowmap.



distance d between subdivision points. The width of the
Gaussian kernel �, and the aforementioned compatibility
threshold cthr influence the results globally: cthr influences
how many distinct bundles emerge. Similarly, � influences
whether the bundling is coarser or more fine grained. To
determine optimal parameters, we calculated solutions for
different compatibility thresholds and Gaussian kernel
widths (see Fig. S5, available in the online supplemental
material). We picked a solution that was not underbundled
or overbundled by visual inspection of all results; although
the decision of optimal parameters remains subjective, we
based it on clarity of the known connectomic structures. The
result of changing the parameters is well predictable;
changing the compatibility threshold influences the number
of distinct bundles, while changing the kernel width
influences the curvature of the resulting bundles. Although
both parameters also influence each other, this makes it
possible to iteratively refine a result until the desired
granularity and appearance are reached. We heuristically
determined the following parameters for our visualizations:
cthr ¼ 0:8 for the detail data set, and 0.7 for the whole-brain
data set, and � ¼ 5 mm for both data sets.

3.2.4 Bundle Clustering

The mean-shift method is used for clustering, and in our
case moves compatible groups of subdivision points toward
their common center of gravity. Since the points in the
middle of the connections are moved through more
iterations compared with the ones closer to the termination
points, these parts of the connections are pulled together
especially close, which makes the connections bundle into
distinct bundles. It seems, therefore, natural to use the
distance of the connections after the bundling process to
find such a subdivision algorithmically to be able to colorize
the individual bundles differently.

We, therefore, detect such bundles after the bundle
process as follows: We iterate through the connections, and
assign them to a new bundle if they are not closer than a
small radius r ¼ 0:5 mm to a connection that is already
assigned to a bundle. If connections inside that radius are
already assigned to a bundle, we assign the connection to
the bundle of the closest connection inside the radius r.

3.2.5 Implementation and Efficiency

We implemented the algorithm in C++, and make our
source code available on GitHub.4 The calculation of the
two examples takes 16 and 8 s, for the whole-brain and the
detail data set, respectively. Note that the more complex
data set takes less time to compute, since the higher cthr
reduces the number of required interactions between
edges. The computations were performed on an 8-core
CPU with 3.4 GHz.

3.2.6 Rendering

For the visualization of the resulting connectivity bundles in
connection with anatomical surface features, we believe
transparent rendering, high-quality lighting, shadow, and
depth cues play an important role. For our renderings of
the results of the bundling process in connection with the

anatomy of the brain, we exported cortical surfaces derived
with Freesurfer, a software that is able to perform extraction
of this surface from MRI data [50], and the edge bundles to
Cinema 4D, a cinematic rendering software package
(MAXON Computer GmbH).

3.3 Results

The result of our method are spline-like bundles of similar
connections, which avoid clutter by sharing screen-space in
their middle section, and this way taking up less overall
space than the straight lines. In the context of visualizing
brain connectivity, our method has the advantage that the
shape of the resulting bundles is independent from the
density of connections in different parts of the space (Fig. 3).

Functional connectivity data consist of heterogeneous
groups of connections between brain areas with different
sizes. Therefore, some of the resulting bundles consist only
of a few edges, while others consist of hundreds or
thousands. We found that with the original simulation of
electrostatic forces the large bundles tend to get bundled too
quickly, while smaller bundles are still unbundled. The
result of application of FDEB for an artificial example of two
bundles with extremely different density is shown in
Fig. 3a. The problem is compounded by the extreme
differences in bundle size in brain data, and the fact that
the bundles also influence each other.

The effect of our method is that bundles with different
density converge evenly, and without the numerical issues
that arise with the simulation of physical forces in FDEB.
The result of the application of our adapted method is
shown in Fig. 3b. KDEEB has a similar independence from
the bundle density, but the calculation of a global density
field for all subdivision points prohibits the incorporation of
a pairwise compatibility measure, which we found neces-
sary to avoid unsatisfactory bundlings in three dimensions.

In the group data (Fig. 4), our method shows networks of
long-range connectivity that are well established in the
neuroimaging literature (for example, [51]). These include
the default-mode network, as well as visual, sensorimotor,
and the dorsal fronto-parietal networks. The most obvious
feature in the visualizations is the wide-scale lateral
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Fig. 3. This artificial example shows the difference of force-directed edge
bundling and our method in the application to bundles with different
densities. FDEB (a) bundles denser bundles faster than bundles
containing only few connections. This leaves the latter underbundled
in comparison with the denser bundles (green arrow). Our algorithm
bundles all bundles evenly (b).

4. https://github.com/NeuroanatomyAndConnectivity/brainbundler.



symmetry in the connections between the two hemispheres,

especially in the sensorimotor system.
That our bundling method is stable with regard to the

application to different data sets is shown by the high

similarity between the bundlings of the group data and the

randomly selected individual data sets and subgroups

(Figs. S1-S4, available in the online supplemental material).

Even for an independent data set with connectivity derived

from DWI data, bundling with identical parameters yields a

satisfying bundling (Fig. 5 and S6, available in the online

supplemental material).
There is substantial precedence in the literature on

structural and functional connectivity to account for the

differences observed between the two sets of bundling

results. One reason for the lack of a one-on-one correspon-

dence between structural and functional connectivity lies in

indirect functional connections between areas, thus demon-

strating functional connectivity in the absence of a direct

structural connection [5]. In addition, the dynamics of

functional connectivity indicate that they may be guided by

anatomical connections, but not determined by them [52].
Robustness with regard to the binarization threshold and

the associated change in number of edges can be seen in

Fig. 6. These results support the possibility of using our

method for a wide range of brain data without requiring

drastic changes to the parameters.
In the detail data set (Fig. 7), the visualization is able to

clearly show that the chosen frontal and temporal areas

consist of several interconnected centers. These areas on the

left hemisphere are among others associated with language

processing and production, as reported in the literature

[28]. For the latter example, the data were subdivided into
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Fig. 4. Whole-brain group-level connectivity: While in the unbundled graph (see Fig. 1d), nearly no structure is visible, our visualization exhibits
several well-known functional networks, wide-scale lateral symmetry of brain organization, as well as fine details in functional organization. The four
labeled networks (top right) were manually selected and colored for clarification of their embedding in the overall visualization.

Fig. 5. Comparison between functional (blue) and anatomical (red) connectivity. The anatomical connectivity data are a binary graph derived from
DWI data, using probabilistic fiber tracking. We bundled both data sets with the same parameters (cthr ¼ 0:7, � ¼ 5 mm). Both bundlings do not
necessarily follow anatomical fiber tracts, but are abstract visualizations of connectivity in anatomical space.



17 distinct bundles by the procedure described in Section
3.2. We colored the bundles with arbitrarily chosen distinct
colors, which help to determine the connections between
the different centers by facilitating the visual differentiation
of independent clusters of connections (Fig. 7).

4 CONCLUSION

We have presented here the first application of an edge
bundling technique to functional connectivity graphs in
native 3D brain space. The result of our technique, which is
based on FDEB and KDEEB, is visualizations that are able to
show full graphs of functional connectivity as well as fine
details in high-resolution single-brain data.

Although for an overview of global connectivity patterns
and their changes, more abstract layouts might be more
appropriate, the anatomical faithfulness of our method
makes it a valuable tool in the exploration of the human
connectome, for example, for illustrating results from

statistical comparisons of connectivity differences between
groups. Due to the same property, the application to clinical
contexts especially neurosurgery is also promising, offering
a quick overview over distorted connectivity patterns. From
a practical standpoint, rs-fMRI has numerous advantages
over task-based approaches for clinical application [20],
[53], [54], mainly due to its short acquisition time and post
hoc versatility. The method could be especially helpful for
presurgical planning prior to tumor resections. Information
about the localization of functional areas in relation to a
lesion can potentially influence the decision to intervene,
the surgical approach, and the degree of resection; resolu-
tion, neighborhood, and distance relations are essential for
such applications.

Edge bundling may also provide a valuable modeling
tool for the development of white-matter tracts in conjunc-
tion with morphometric constraints. A comparison of the
results from edge bundling and the anatomical shape of the
white-matter tracts are promising. In the future, inclusion of
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Fig. 7. Single-case connectivity detail: While the unbundled graph (see Fig. 2) makes it hard to discern any structure, after bundling, our visualization
shows several functionally connected areas. The colorization of the distinct bundles is the result of our bundle clustering technique described in
Section 3.2.

Fig. 6. Influence of binarization threshold on the bundling results, using the functional connectivity whole-brain group average data. Identical values
for compatibility threshold and Gaussian kernel width (cthr ¼ 0:7, � ¼ 5 mm). The structure of the bundlings remains similar.



anatomical constraints (interhemispheric fibers have to pass
through the corpus callosum, etc.) may bring us closer to a

simulation of white-matter fiber behavior and, therefore,
inform us about their organization. It is important to keep in

mind that we visualize abstract connectivity information,
which is related to, but does not necessarily coincide with

the underlying anatomical connections. For the aforemen-
tioned applications, however, the correspondence with the
anatomical space is crucial. Calamante et al. [31] (see

Section 2.2.2) have proven that combining the two con-
nectivity modalities can yield informative and aesthetically

impressive renderings of functionally informed anatomy. A
similar combination of edge bundling with structural data

could also lead to highly informative visualizations.
However, our method currently facilitates the visualization

of functional connectivity independently from diffusion
data. We believe the differences between functional and

anatomical connectivity patterns presented in Fig. 5 further
underline the caution that should be taken in attempting to

superficially drive the results of one form of connectivity
using the other.

Exploratory connectivity visualization may benefit from

following even more radically different paths than nature.
Mapping anatomy and connections to topology-preserving

partially or fully inflated brains, or flatmaps [55], as well as
forcing connections to run outside of the cortical surface in
the manner of annotations, may facilitate visual compre-

hension, while also informing about underlying anatomy
(for example, see [56, Fig. 5]).

As Dixhoorn et al. [21] have pointed out, the problem of
the visualization of functional connectivity is located at the
nexus of scientific and information visualization. They

consequentially adapted techniques from visual analytics,
such as multiple coupled anatomical and abstract views to

aid the iterative explorative selection of interesting parts
from the entire data set. Similar methods are frequently

used in the analysis of DWI data, and we plan to incorporate
them in future development of interactive software.

Visual analytics strives to incorporate a back and forth

between visualization and analytic techniques. We believe
the distinction between methods to computationally extract

information, and the methods to visualize it, is often
arbitrary, and an integrated solution is necessary to make

exploration of the data successful. Edge bundling offers a
method from the visualization community to help clarify

the combined complexity of integrating graph information
with three-dimensional space—a problem at the heart of
understanding the brain. Future elaboration of these

approaches will no doubt facilitate research into the
intricate organization of neural connections.
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Abstract 
 
Network studies of large-scale brain connectivity have demonstrated that highly connected 
areas, or ‘hubs’, are a key feature of human functional and structural brain organization. We 
use resting-state functional MRI data and connectivity clustering to identify multi-network 
hubs and show that while hubs can belong to multiple networks their degree of integration 
into these different networks varies dynamically over time. The extent of the network 
variation was related to the connectedness of the hub. In addition, we found that these 
network dynamics were inversely related to positive self-generated thoughts reported by 
individuals and were further decreased with older age. Moreover, the left caudate varied its 
degree of participation between a default mode subnetwork and a limbic network. This 
variation was predictive of individual differences in the reports of past-related thoughts. 
These results support an association between ongoing thought processes and network 
dynamics and offer a new approach to investigate the brain dynamics underlying mental 
experience.  
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1. Introduction 
 
One of the computational principles underlying behavior is that neuronal networks interact in 
a highly dynamic fashion (Dickinson, 1995; Marder and Bucher, 2001, 2007). While single 
neurons have been found to participate in multiple networks by means of the modulation of 
their synaptic connectivity (Hooper and Moulins, 1989; Weimann and Marder, 1994), it is an 
open question whether these dynamic events have an equivalent at the macroscopic, 
interregional level. Recent neuroimaging research in humans supports this hypothesis by 
demonstrating correspondence between large-scale brain networks and EEG microstates 
(Britz et al., 2010; Musso et al., 2010), which are transient, quasi-stable patterns in the EEG 
signal (Musso et al., 2010); as well as varying correlations between regions in the default-
mode and task-positive networks (Chang and Glover, 2010). The existence of different large-
scale brain states (Smith et al., 2012; Allen et al., 2012) suggests a spatially overlapping 
organization of specific areas. It is therefore conceivable that the dynamics of these regions 
allow brain areas to be members of multiple networks by varying their degree of membership 
over time.  
 
One question facing cognitive neuroscience is how the full repertoire of cognitive capacities 
can be managed in a flexible manner. The finding of dynamic connectivity raises the 
possibility that temporal changes in brain connectivity may influence both mental states and 
behavior (Hutchison et al., 2013b; Allen et al., 2012). For example, the observation of a 
relationship between connectivity dynamics and heart rate variability provides support for a 
association to the current mental state (Chang et al., 2013). Other work has demonstrated 
that dynamic physiological measures such as pupillometry (Smallwood et al., 2012), the 
electroencephalogram (Barron et al., 2011), and changes in fMRI (Christoff et al., 2009; 
Smallwood et al., 2013) have all been linked to variations in mental state. A recent study 
found that alterations in current task performance are predicted by the extent of anti-
correlation between the average signal of networks shortly preceding the task (Thompson et 
al., 2013). Furthermore, the flexibility of functional network configuration during a learning 
task has been shown to be predictive of later learning performance (Bassett et al., 2011). 
Given these findings, the hypothesis is that the dynamic interplay of different brain networks 
modulates ongoing thoughts or the current mental state. Ongoing thoughts during the 
resting-state can be assessed by a subsequent introspective self-report. Here, we want to 
examine if there is a relation between ongoing dynamics of functional connectivity and later 
self reported thoughts.  
 
Highly connected brain areas or hubs, which can be detected using structural (Hagmann et 
al., 2008; Gong et al., 2009) and functional (Buckner et al., 2009; Lohmann et al., 2010; Zuo 
et al., 2012) neuroimaging, have been shown to play a central role in whole brain 
communication (Sporns et al., 2007; van den Heuvel and Sporns, 2013). Here, we 
hypothesized that multi-network-hubs at the intersection of different networks may serve as 
dynamic relay stations to support communication between these networks as indicated by 
animal studies (Dickinson, 1995; Marder and Bucher, 2001, 2007). To examine this dynamic 
hypothesis, we tested if multi-network hubs keep their participation in each network at a 
constant level over time or rather dynamically change their degree of membership. We 
applied an edge clustering approach (Ahn et al., 2010) to cluster connectivity itself, thereby 
allowing regions to participate in multiple networks. The advantage of using this connectivity 
clustering algorithm is that we can directly assess the dynamically changing degree of 
participation of multi-network hubs in their networks. To address the relationship between 
changes in network dynamics and ongoing cognition, we tested whether the dynamics of hub 
participation varied across individuals with respect to the contents of thought that they 
reported at the end of the resting-state experiment.  
 
In the context of resting state connectivity dynamics, recent reports about the importance of 
BOLD signal variability (Garrett et al., 2011, 2013) are of relevance. As Garrett et al. could 
show the signal variability is not only reduced in poorer performing (Garrett et al., 2013), but 
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is also further diminished in older subjects (Garrett et al., 2011, 2013). Here, we also tested 
for a link between aging and a reduction of network dynamics. 
 
 
2. Materials and methods 
 
2.1 Data and subjects: Data was acquired using a Siemens 3 Tesla Trio scanner and 
included resting state functional magnetic resonance imaging (rs-fMRI) and a T1 anatomical 
scan. The rs-fMRI data were acquired over 900 volumes with 40 slices, a TR of 0.645 
seconds and a resolution of 3 mm isotropic. Further, the sequence (Xu et al., 2012) 
comprised the following parameters TE= 30ms, flip angle of 60 degrees and a multiband 
factor of 4. Subjects were instructed to keep their eyes open and fixate a crosshair. T1 
anatomical scans were obtained using a MPRAGE sequence with a resolution of 1mm 
isotropic. 
From the initial 231 subjects we excluded 7 due to imaging artifacts and 44 for having 
maximum motion of more than 3 mm. To reduce potential micro motion artifacts we further 
removed 72 subjects with summed micro movements (Van Dijk et al., 2012) above the group 
mean (0.1152 mm/volume). In addition, in the further analysis we still accounted for micro 
movements as a covariate.  

The resulting 108 subjects had a mean age of 37.71 (std. 18.4) including 47 male and 61 
female subjects. All data sets used in this study are part of the NKI Enhanced dataset 
(Nooner et al., 2012) and are publicly available by the international neuroimaging data 
sharing initiative (Biswal et al., 2010). Institutional Review Board Approval was obtained at 
the Nathan Kline Institute and Montclair State University. Written informed consent was 
obtained for all study participants. 

 
2.2 Preprocessing: The preprocessing of resting state fMRI data was carried out using FSL 
(Jenkinson et al., 2012), AFNI (Cox, 1996) and FreeSurfer (Dale et al., 1999). The steps 
comprised: 1) discarding the first four EPI volumes from each resting-state scan to allow for 
signal equilibration, 2) 3D motion correction, 3) slice time correction 4) 4D mean-based 
intensity normalization, 5) removing linear trends, 6) regressing out eleven nuisance signals 
(six motion parameters and five top components from a principal components analysis of 
high variance signals (CompCor (Behzadi et al., 2007; Chai et al., 2012)) and 7) band-pass 
temporal filtering (0.01-0.1 Hz). The output of these preprocessing steps is one 4D residual 
functional volume for each participant. In order to reduce partial volume effects no spatial 
smoothing was performed. We did not use global signal regression as the global signal is 
tightly coupled to the underlying neuronal signal (Schölvinck et al., 2010). 
A nonlinear transformation from T1 to a 3 mm isotropic MNI template (created from 152 
subjects, provided with FSL) was calculated for individual T1 images using ANTs (Avants et 
al., 2011). This transformation was combined with the EPI to T1 transformation (bbregister 
(Greve and Fischl, 2009)) to warp the EPI volumes to standard MNI space.  
The preprocessing pipelines used for this manuscript can be downloaded from 
https://github.com/alexschaefer83/DynamicHubs and used together with BIPS 
(https://github.com/INCF/BrainImagingPipelines) which is based on nipype (Gorgolewski et 
al., 2011). 
 
2.3 Graph construction: A graph is an abstract representation of a network. A graph G 
consists of a set of vertices V and a set of edges E. An edge indicates the presence of a 
relationship between two vertices, which in case of this study is functional connectivity. We 
will also refer to edges as connections. To account for different strength of functional 
connectivity we use an edge weighted graph. 
For the graph construction we parcellated the functional images into 200 cortical and 
subcortical regions. The parcellation is based on spatially constrained spectral clustering 

https://github.com/alexschaefer83/DynamicHubs
https://github.com/INCF/BrainImagingPipelines
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(Craddock et al., 2012) which aims to create spatially coherent regions of functional 
homogenous connectivity. The parcellation is publicly available 
(www.nitrc.org/projects/cluster_roi). In the proposed analysis we used the version derived 
from the best performing clustering in the publication by Craddock et al. (2012) (two-level 
clustering with the rt similarity metric).  Each parcel is one unique vertex in our graph. To 
estimate the relationships between the vertices, the average signal within each parcel was 
extracted and its pairwise correlation with the signals (spatial averages over all voxels of a 
parcel) of all other parcels computed. The resulting correlation values were Fisher z-
transformed in order to allow for an unbiased analysis in the further steps. We then averaged 
the z-values over all subjects. For the graph we assigned an edge (or connection) between 
two vertices (or parcels) if their respective correlation value belonged to the highest 10% 
(2000 edges) in the group average. Furthermore we weighted the edge by the corresponding 
z value. This technique shows good reliability (Schwarz and McGonigle, 2011) as it 
incorporates only strong connections with relatively high reliability (Patriat et al., 2013). 
Visualization of brain graphs was performed using braingl (Böttger et al., 2014) and conview 
(http://conview.googlecode.com). 
 
2.4 Connectivity clustering: An efficient way to cluster connections has been proposed by 
Ahn et al. (2010). We used an implementation of this idea by Kalinka and Tomancak (2011). 

In order to cluster connections one 
requires a measurement of their 
similarity. Ahn et al. (2010) proposed 
the Jaccard coefficient to estimate the 
similarity between connections eik and 
ejk that share a vertex k: 
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where n(i) and n(j) is the first order 
neighborhood of vertex i and j 
respectively. An example for two 
connections with low similarity is 
illustrated in Fig. 1A. The similarity is 
S=1/3 as the common neighborhood of 
vertices i and j is only vertex k. An 
example for two connections with high 
simarity (S=1) is illustrated in Fig. 1B as 
i and j have the same neighborhood. To 
better account for the different strength 
of connections we use a weighted 
version called Tanimoto coefficient: 
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where wi is a vector describing the 
weights of the connections between 
vertex i and the vertices in the first 
order neighborhood of i and j. After 
calculating the pairwise Tanimoto 
coefficients between all links in the 
network, a hierarchical clustering is 
performed using McQuitty`s similarity 
method (McQuitty, 1966). The optimal 
cut off for the resulting dendrogram 
(tree diagram, Fig. 1C) is determined by 
maximizing the partition density (Ahn et 
al., 2010). This is the density within the 

 
Fig. 1 Connectivity clustering approach. (A) 
Example for two connections with low similarity. 
The common neighborhood of vertices i and j is 
only k therefore the similarity is S=1/3. (B) An 
example for two connections with high 
similarity. As vertices i and j have the same 
neighborhood the similarity is 1. (C) 
Dendrogram (left) based on calculated 
similarities together with a plot of estimated 
partition densities (right). Red dotted line 
indicates the cutoff of the dendrogram 
estimated by maximizing partion density. (D) 
Zoomed view of the top of the dendrogram 
from Fig. 1C together with network numbers 
from Fig. 3.  
 

http://www.nitrc.org/projects/cluster_roi
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clusters, normalized for the maximum and minimum number of possible connections within 

each network. More explicitly, for a network with M connections, {𝑃1, … , 𝑃𝐶} is a partition of 

the connections into C subsets. A subset 𝑃𝑐 has 𝑚𝑐=|𝑃𝑐| connections and 𝑛𝑐= |⋃ (𝑖, 𝑗)𝑒𝑖𝑗∈𝑃𝑐
| 

vertices. Then Ahn et al. define the partition density of a subset C: 

𝐷𝑐 =
𝑚𝑐 − (𝑛𝑐 − 1)

𝑛𝑐(𝑛𝑐 − 1)
2

− (𝑛𝑐 − 1) 
 

This is 𝑚𝑐  normalized by the minimum and maximum numbers of connections possible 
between 𝑛𝑐   vertices. The partition density, D, is the average of 𝐷𝑐, weighted by the fraction 
of present connections: 

𝐷 =
2

𝑀
∑ 𝑚𝑐

𝑚𝑐 − (𝑛𝑐 − 1)

(𝑛𝑐 − 2)(𝑛𝑐 − 1)
𝑐

 

 
The maximum partition density gives the optimal cutoff for the dendrogram which determines 
the number of connectivity clusters in our solution (Fig. 1C). 
 
2.5 Reliability of clustering: To evaluate the reliability of the new clustering method we use 
a split half test. In order to not compare clustering over different elements (connections) we 
used the same connections as in the full group for both clusterings (see 2.3 Graph 
Construction). To evaluate reliability of the cluster results we divided our subjects into two 
groups, one of subjects with odd index and one of subjects with even index, and performed 
the clustering for both of them separately. As distance between the two found clustering 
solutions (even and odd index) we computed the so-called cophenetic correlation coefficient 
(Sokal and Rohlf, 1962). To compute confidence intervals for the results we performed a 
mantel statistic using 999 permutations (Mantel, 1967) which creates a permutation baseline. 
The two found clustering solutions correlated with r=0.8954 (p<0.001, 95% CI=0.001185). 
The similarity of the results across subgroups implies a certain generalizability of our cluster 
results across a larger population. 
 
2.6 Windowing of temporal dynamics:   To investigate the underlying dynamics of the 
resulting connectivity clusters instead of correlating signals over the whole scan session, a 
shifting time window is used: 

      11:11:  w+twty,w+twtxcorr=rt  

where t is the timepoint with t=1:11, w is the window with w=77 (or 49,7 sec) and x, y are the 
time series of two (out of 200) parcels.  All estimated r values are Fisher’s z transformed, 
resulting in eleven z values per connection and subject. Each of these eleven values is 
adjusted to a within subject baseline by subtracting from the estimated z value for the 
complete scan time. These normalized values reflect, for each subject, the temporal change 
of the connection strength over the eleven time intervals. 
 
2.7 Analysis of temporal dynamics: To investigate if the connections within a connectivity 
cluster change, over time, more similarly than over connectivity clusters we measured the 
variance of connectivity change within (var1, var2 in Fig. 2B) and without clusters (var3 in Fig. 
2B).  Timepoints were not averaged over subjects as subjects are likely in a different state of 
dynamic functional connectivity and therefore not comparable. We tested whether the within 
cluster variance was significantly smaller to the variance over clusters using a Wilcoxon test. 
 
To analyze if regions in multiple networks show a dynamically varying degree of membership 
between its belonging networks we used the following strategy. To test if a region changes 
the degree of membership between its networks, we estimated the average strength of 
connections assigned to one network and compared it to the average strength of connections 
belonging to another network using a dynamic windowing (50 sec) approach. These 
“variation” events are illustrated as State B and State D scenario in Fig. 2C and can be well 
captured by the mean squared error (MSE) between the average correlation strengths. To 
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test the significance of our results we used permutation testing based on random clustering. 
In this clustering we chose randomly connections from the same hub regions without caring 
about assigned cluster values. The number of connections was equal to the original clusters. 
We created 10,000 times two corresponding random clusters and computed the MSE 
between them. The results are plotted in Fig. 5C. 
For the whole brain analysis we aimed at ensuring that networks tested included enough 
connections for a stable signal. Therefore we chose only regions where the second largest 
network included at least two connections (151 of 200 regions, Fig. 4C). The MSE was then 
averaged over all of pairs of networks which shared participation of the particular hub. 
 
2.8 Experiment: self-generated thoughts 
 
To assess thoughts and feelings during the scan the subjects were interviewed directly after 
MRI session using the New York Cognition Questionnaire (NYC-Q). The beginning of the 
interview was approximately 45 minutes after the resting state scan that we analyzed.  The 
NYC-Q is a self-report tool consisting of two sections, the first containing questions about the 
content of thought (23 questions), the second containing questions about the form that these 
thoughts take (8 questions). In each question subjects were asked to indicate how well a 
statement described their thoughts on a scale from 1 (“Completely did not describe my 
thoughts”) to 9 (“Completely did describe my thoughts”). Therefore a high score on a 
component relates to the subjective experience of mind-wandering which also implies that 
one strong thought yield a similar score as multiple seemingly insignificant thoughts. We 
used the data and code available online 
(https://github.com/NeuroanatomyAndConnectivity/NYC-Q) provided and described in 
greater detail by (Gorgolewski et al.). The 23 answers about the content of thought collected 
from 166 subjects were factorized into five categories. The factorization was performed using 
principal axis factor analysis together with an oblimin rotation (Revelle, 2011) to increase 
interpretability. The number of factors was estimated using Parallel Analysis (Horn, 1965). 

 
Fig. 2 Illustration of research ideas. (A) One region as part of two connectivity clusters 
(red and green). (B) Green crosses mark connectivity change of connections within the 
green cluster, the red crosses of connections within the red cluster. The y-axis gives the 
amount of change of the respective connections. Var1, var2 are the variances within the 
red and green cluster, while var3 gives the variance over all connections. (C) Four 
possible scenarios of changing connectivity: State A: reduction of both clusters, State B: 
reduction of red cluster and increase of green cluster, State C: increase of both clusters 
and State D: reduction of green cluster and increase of red cluster. 
 

https://github.com/NeuroanatomyAndConnectivity/NYC-Q
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Individual-level scores were computed applying the method by Ten Berge et al. (1999). We 
used the names and interpretation of these categories as described in the original study, 
namely thoughts about the past (Past), the future (Future), positive thoughts (Positive), 
negative thoughts (Negative) or thoughts about relationships (Social Cognition). The eight 
questions about the form of thought were factorized into three factors as described above. 
The factors were named as in the original study: in form of words (Words), in form of images 
(Images) and specificity of words (Vague). As the factorization employed does not enforce 
orthogonality of the components, we performed for each component a partial correlation 
analysis with the respective other seven components as covariates. A more detailed 
description about NYC-Q and the factorization employed can be found in the study by 
(Gorgolewski et al.). 
 

 
Fig. 3 Connectivity networks. All thirty-three connectivity networks found in the 
hierarchical cluster analysis of time and group averaged connectivity. Networks can also 
be inspected interactively and in three dimensions online 
(http://openscience.cbs.mpg.de/schaefer). 

 

http://openscience.cbs.mpg.de/schaefer


80 
 

3. Results 
 
3.1 Hub regions belong to multiple 
networks. Using the edge clustering 
approach described above (Ahn et al., 2010) 
we found 33 networks (Fig. 3), several of 
which are well-characterized networks 
typically observed in fMRI resting-state 
experiments. The clusters can be downloaded 

from 
https://github.com/alexschaefer83/DynamicHu
bs and interactively viewed online 
http://openscience.cbs.mpg.de/schaefer. The 
number of connections and regions in each 
network can be found in Table 1. We found 
that the majority of regions (174 of 200) 
participated in more than one network. An 
overview of the amount of multi-network 
participation is given in Fig. 4 B. In contrast 
Fig. 4A gives the degree of connectivity of 
these regions. The relation of the two 
measures connectivity and multi-network 
participation is given in Fig. 4D.  
 
3.2 Hub regions vary degree of 
membership between networks. As an 
example Fig. 5 presents the results for the 
analysis on the anterior cingulate cortex 
(ACC).  While an overview for whole brain 
results is given in Fig. 4C, we chose the ACC 
as a representative area to illustrate the 
typical results for a single area. We found the 
ACC to participate in two spatially separated 
networks: a temporal network and a frontal-
parietal network (Fig. 5A). 
To test if connectivity changes occur more 
within clusters than between clusters we 
estimated the variance of connectivity change 
across timepoints and subjects. We found the 
variance of change within the red cluster 
(p=0.0181) and within the blue cluster 
(p=1.156*10-23) to be smaller than the 
variance of connectivity change over both 
clusters.  
To test if a region changes the degree of 
membership between its networks, we 
estimated the average strength of ACC 
connections assigned to one network and 
compared it to the average strength of ACC 
connections belonging to another network. As 

shown in Fig. 5B, we found changes in the degree of membership, which we quantified by 
the mean squared difference in participation. We used permutation tests to show that these 
changes between networks were statistically significant, see Fig. 5C. We found there were 
significantly stronger changes in the degree of participation between specific clusters than 
would be expected between randomly selected clusters (Fig. 5C). 

Network Vertices 
(Regions) 

Edges 
(Connections) 

1 5 8 

2 6 6 

3 6 8 

4 5 4 

5 16 33 

6 18 46 

7 8 18 

8 6 8 

9 19 105 

10 16 36 

11 14 35 

12 24 109 

13 31 92 

14 34 49 

15 21 30 

16 33 369 

17 16 16 

18 32 41 

19 59 147 

20 19 20 

21 20 64 

22 21 42 

23 28 41 

24 26 217 

25 38 111 

26 7 7 

27 34 106 

28 4 3 

29 14 23 

30 19 26 

31 25 41 

32 31 114 

33 20 25 

Average 20.5 60.6 

Table 1 Descriptive information of 
connectivity networks (Fig. 3). 
Connectivity networks together with their 
respective number of vertices (regions) 
and number of edges (connections). 
 

https://github.com/alexschaefer83/DynamicHubs
https://github.com/alexschaefer83/DynamicHubs
http://openscience.cbs.mpg.de/brainnetworks/schaefer
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A whole-brain overview of the amount of variation in network participation can be seen in Fig. 
4C. We also investigated if there is a relation between dynamic (Fig. 4C) and connectivity-
hubness (Fig. 4A) or network-hubness (Fig. 4B). We found a positive correlation (Spearman 
r=0.44, p=2*10^-8, n=151) between variation of network participation and the degree of 
connectivity (Fig. 4E) while we accounted for the number of networks. Further, we also found 
a weaker correlation (Spearman r=0.16, p=0.049, n=151) between the dynamics of a region 

 
Fig. 4 Whole brain regional overview. (A) Brain areas colored by their degree of 
connectivity. Areas with more connections are displayed in red, whereas regions with 
fewer connections are in green. (B) Brain areas colored by the number of networks they 
are part of. Regions participating in a higher number of networks are displayed in red. 
Regions which are part of fewer networks are depicted in green. (C) Brain areas colored 
by their variation of network participation. Areas with higher variation are colored in red, 
whereas regions with lower variation are shown in yellow and green. (D) Relation 
between number of connections and number of networks each brain region is part of. In 
the further analysis we only included regions which are part of at least two networks and 
for which the second largest belonging network consisted of at least two connections.  
These regions are colored in red. (E) Relation between number of connections (Fig. 4A) 
and variation of network participation (Fig. 4C) measured across brain areas included in 
analysis. (F) Relation between number of networks (Fig. 4B) and variation of network 
participation (Fig. 4C) measured across brain areas included in analysis. 
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and the amount of networks the region participates in (Fig. 4F) while accounting for the 
number of connections. 
 
3.3 Association between variation of network participation and self-generated 
thoughts.  
We found a reduction of whole brain averaged variation of network participation in subjects 
which reported to have more positive thoughts during the scan (Fig. 6C, Spearman r=-0.47, 
p=0.0001 (corrected for 8 comparisons), n=78). An overview of whole brain participation 
variation is also given in Fig 4D. We further investigated if the variation of network 
participation of a specific region correlates with a domain of self-generated thoughts. We 
found an increased variation of network participation of the left caudate in subjects which 
reported to have more thoughts about the past during the scan (Fig. 7, Spearman r=0.47, 
p=0.02 (corrected for 1600 comparisons (8 categories * 200 regions)), n=78).  
 
3.4 Decrease of dynamics in age. As the variability of the fMRI signal has been found to 
decrease in ageing (Garrett et al., 2011, 2013), we tested whether similar effects can be 
found for the dynamic of network participation of brain regions between networks. Critically, 
we found a significant age effect on connectivity changes across the whole brain (spearman 
r=-0.24, p=0.011, n=106, Fig. 6A). While we used micro-movements as a covariate we also 
tested for a relationship between network dynamics and micro-movements. However, we did 
not find a relation between whole brain dynamics and micro-movements (r=0.03, p=0.747, 
n=106, Fig. 6B). We found no significant correlation between age and positive self-generated 

 
Fig. 5 Representative region for variation of network participation. (A) Anterior 
cingulate cortex (ACC) participating in two networks (networks 24 and 27). (B) Example 
plot of ACC participation in the two networks in a 50 second interval. Timepoint 2 and 7 
are good examples of a variation in network participation (State B or State D, Figure1 C). 
(C) Permutation test shows that variation behavior measured by mean squared error is 
more pronounced in the found clustering than in a random clustering. 
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thoughts (SGT) corrected for micromovements (r=0.111, p=0.338, n=78, Fig. 6D). However, 
when we added positive SGT as a covariate the negative correlation between age and 
participation remained similar (spearman r=-0.24, p=0.033, n=78, Fig. 6E). 
The impact of different initial graph thresholds onto the three main results of this paper are 
shown in Table 2. In this manuscript we used a threshold of 10% or 2000 connections. All 
results remained significant for thresholds from 7.5% (1500 connections) to 15% (3000 
connections). For a threshold of 17.5% (3500 connections) the caudate finding became 
insignificant. The clustering of connectivity for sparsity thresholds of 20% and higher resulted 
in a single network, whereas for sparsity threshold of 5% and lower the left Caudate was part 
of a single network. In this context no effect sizes were calculated. 
 
4. Discussion 
 
We have shown that multi-network hubs vary their degree of participation into different 
networks over time. In addition, we found that these network dynamics were inversely related 
to age and to positive self-generated thoughts reported by subjects. These results 
demonstrate a novel analytic approach which enables a testable framework for quantifying 
dynamic network interaction across regions on an individual-level. 
 
To facilitate this analysis we used an algorithm to cluster connectivity itself rather than brain 
regions based on their connectivity profiles (Power et al., 2011). This approach offers the 
advantage to maintain whole brain information in connectivity space rather than reducing it to 
the regional space. This is important as we are interested in functional brain networks which 
includes connections and regions rather than only regions (Damoiseaux et al., 2006; Power 
et al., 2011). This domain shift also includes the conceptual advantage that brain regions can 
participate in multiple networks. While the later advantage is shared by other network 

 
Fig. 6 Whole Brain Variation of Participation.  (A) Partial correlation between average 
variation of participation and age corrected for micro-movements. (B) Correlation between 
average variation and average micro-motion. (C) Partial correlation between average 
variation of participation and positive self-generated thoughts (SGT) corrected for micro-
movements, age, gender and the respective other four factors of SGT. (D) Correlation 
between age and positive self-generated thoughts (SGT), micro-movements. (E) Partial 
correlation between average variation of participation and age corrected for positive self-
generated thoughts (SGT), micro-movements. 
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decomposition methods which allow networks to 
overlap like independent component analysis (ICA, 
(Calhoun et al., 2001; Beckmann et al., 2005)), non-
negative matrix factorization (NMF, (Lee et al., 2011)) 
and Latent Dirichlet Allocation (LDA, (Yeo et al., 
2014)) it is still conceptually different as these 
networks exist in the spatial location but not in the 
connectivity space.  
 
One of the limitations of connectivity clustering is that 
an initial arbitrary threshold onto the connectivity has 
to be applied. While we found that the effect sizes of 
our main results are comparable at a range of 
thresholds 7.5% to 15% (Table 2) we also found that 
for a threshold of the 17.5% the relation between 
caudate switching and past self generated thoughts 
got insignificant. One reason for this might be the 
higher connectedness of the left Caudate at this 
threshold which makes the left Caudate a part of ten 
networks, in contrast to two networks at 10% sparsity. 
For even higher thresholds the network clustering 
resulted in a single network. In this context a 
threshold between 7.5% and 15% seems 
recommendable for similar future analyses.   
 
While brain regions in our framework are allowed to 
participate in multiple networks we tested the 
hypothesis that this participation is not necessarily 
static over time. To illustrate this using the example 
of the ACC, Fig. 5 shows a region in the ACC which 
takes part in two networks (networks 24 and 27). The 
[blue] network is spatially similar to the medial 
temporal lobe subsystem of the default mode 
networks (DMN), as described by (Andrews-Hanna et 
al., 2010) and the [red] network is spatially similar to 
the dorsal medial prefrontal cortex subnetwork of the 
DMN (Andrews-Hanna et al., 2010). However, we 
found that the participation of the ACC region in 
these two subnetworks is not static over time (Figure 
5B). This offers further interpretation of how these 
two subnetworks may interact in the DMN: the 
affiliation of this portion of ACC varies between them 
over time. Additionally, the variation network 
participation in single brain regions may in part 
account for the diversity of functions often associated 
with hub regions (Cole et al., 2013) like the ACC 
(Devinsky et al., 1995). 
  

While a recent primate study has shown dynamic of functional connectivity even in the 
absence of consciousness (Hutchison et al., 2013b), more recent human studies show 
relations of dynamic functional connectivity and physiology (Chang et al., 2013) as well as 
task performance (Thompson et al., 2013). Here we expand this picture by showing a 
relationship between dynamic functional connectivity and ongoing thought processes. 
 

 
Fig. 7 Left Caudate region and 
self-generated thoughts about 
past events. (A) Left Caudate 
region is part of two connectivity 
networks, a sub cortical network 
(network 10) and a subnetwork of 
the default mode network 
(network 31). Red arrow indicates 
the position of the Left Caudate 
region. (B) Increased correlation 
between variation of network 
participation of the Left Caudate 
region and self-generated 
thoughts about past events. 
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We found that variation in network participation was correlated with self-generated thought 
content across individuals; specifically it was related to thoughts about the past and those 
with a positive tone. Neurobiological studies suggest that there exist at least two different 
memory systems, one more cognitive system which relies upon medial temporal lobe and 
hippocampus areas and a stimulus-response system which banks in the basal ganglia 
(Poldrack and Packard, 2003). The default-mode network is a cortical network that connects 
middle temporal with the posterior cingulate and prefrontal areas, the subcortical network 
associated with the left caudate connects subcortical regions such as thalamus, putamen 
and caudate. Here we found that the left caudate is a hub involved in varying its degree of 
participation between these two networks and its specific behavior was correlated with self-
generated thoughts about past events. 
 
Self-generated thoughts about the past are known correlates of unhappiness (Smallwood 
and O’Connor, 2011) and may mark the temporal precursor of negative mood (Ruby et al., 
2013). Self-generated thoughts of the past are also accompanied by greater disengagement, 
or decoupling, from external processes, as indexed by worse task performance (Smallwood 
et al., 2009, 2007). Altogether these studies illustrate that retrospective self-generated 
experiences may at times be both intrusive and unpleasant. The heightened variation in 
network participation of the caudate nucleus with increasing retrospective focus could 
therefore reflect the greater competition that accompanies especially repetitive or intrusive 
self-generated thoughts. Broadly consistent with this account we found that positive thoughts 
were associated with less variation in network participation at a whole brain level. In contrast 
to retrospective thoughts, pleasant experiences were associated with more consistent 
network dynamics, possibly reflecting the relatively calm form that positive experiences may 
take. 
 
Variability of the fMRI signal, an univariate measure of brain dynamics, has been found to 
play an important role in behavioral performance (Garrett et al., 2013; McIntosh et al., 2010). 
One crucial observation is its reduction in older individuals or those who performing poorly in 
a variation of cognitive tasks (Garrett et al., 2013). While the biological reason for the loss of 
variability might arise from a dysregulation of dopamine and glutamate (Hong and Rebec, 
2012), the behavioral implications might be explained by computational models (Deco et al., 
2011). These models suggest that variability of brain signal is important for exploring the 
repertoire of possible brain states (Deco et al., 2011), while lower variability will raise the 
potential for remaining in a single state—resulting in inflexible behavior. Here we have shown 
a decline of variation in network participation during aging. Aging is therefore not only 
associated with decreased signal variability but also reduced interplay between networks, 
suggesting that dynamic network participation may underlie behavioral flexibility. However, 
the interaction of dynamics and age was not linear, indicating a more complex relation 
between dynamics and age which might be investigated in future studies. 
 
Interactions of networks have been studied to date with respect to their average signal. The 
anticorrelation between the average signal of the DMN and the average signal of the task 

Threshold whole brain VNP / 
positive SGT (r) 

whole brain 
VNP / age (r) 

Caudate VNP / past 
SGT (r) 

17.5 % (3500 edges) -0.46 -0.21 0.14 

15% (3000 edges) -0.43 -0.26 0.41 

12.5% (2500 edges) -0.49 -0.20 0.38 

10% (2000 edges) -0.47 -0.24 0.47 

7.5 % (1500 edges) -0.46 -0.21 0.40 

Table 2 Impact of different initial graph thresholds for the main results of the 
manuscript. The threshold of 10% (2000 edges) was used in this study. Main results are 
partial correlation between whole brain averaged Variation of Network Participation (VNP) 
and positive Self Generated Thoughts (SGT), whole brain averaged VNP and age, VNP 
of left Caudate and SGT about the past. 
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positive network has been found to be predictive of individual behavior during task and rest 
(Kelly et al., 2008). Recently it has been shown that this relationship changes during the task 
based on the current performance (Thompson et al., 2013). A relationship between this 
anticorrelation and variation in network participation is possible, but not straightforward. As 
anti-correlation is based on the average signals of all vertices in respective networks the 
variation in network participation describes the varying integration of single regions into the 
networks.  
 
In the analysis of dynamic network participation we only included regions which belonged to 
two or more networks and where the second largest consisted of at least two connections 
(Fig. 4D). While this property is fulfilled by all highly connected regions (Fig. 4D) there were 
also few sparsely connected areas included into the analysis. In this context we focused 
stronger on multi-network hubs then their pure connectedness, while we also found a 
correspondence between these two properties (Fig. 4D).  
 
While we hypothesized that dynamic network interaction takes place in highly connected 
areas we also found that the extent of these dynamics is related to the extent of the hubness 
(Fig. 4E). This evidence further supports our hypothesis that hub areas might serve as relay 
stations which enable information integration. However, the effect of multi-network hubness 
was much weaker (Fig. 4F) and more connections could just improve the detectability of the 
underlying dynamic process. 
 
The description of dynamic organization in resting state connectivity (Chang and Glover, 
2010; Britz et al., 2010; Majeed et al., 2009; Musso et al., 2010; Smith et al., 2012; 
Handwerker et al., 2012) raised concerns about the potential artifactual origin of these BOLD 
synchrony fluctuations. Studies using EEG-fMRI data, however, have established a neuronal 
origin of dynamic resting state connectivity (Tagliazucchi et al., 2012; Britz et al., 2010; 
Musso et al., 2010). Another recent functional connectivity study in anesthetized macaques 
demonstrated dynamic functional connectivity in the absence of any motion (Hutchison et al., 
2013b). In order to avoid potential confounds in our study, we selected datasets with minimal 
motion and tested for remaining influences. We did not find that subject motion accounted for 
the increased variation in network participation (Fig. 6B).  
 
A limitation of the current study is the fixed window length of 50s which we chose based on 
the size of our bandpass filter (10sec to 100sec). This length might not always coincide with 
the dynamic of ongoing cognitive processes. To give evidence for the robustness of our 
findings we reanalyzed the data with window lengths of 65s (100 volumes). All our main 
results remained significant. However, a data-driven approach to detect temporal change 
points as described recently by Cribben et al. (2012) gives an adaptive window length which 
could further enhance sensitivity to dynamic processes. A potentially confounding influence 
is the variation of node sizes which could affect the extracted time series differently by noise. 
While the parcellation used in this study aimed to reduce the variation of node sizes 
(Craddock et al., 2012, Table1) a potential influence cannot be ruled out. A limitation in the 
current study design is the correlational approach to relate behavior and resting-state 
dynamics. We cannot rule out that an unknown third variable may have caused the observed 
effects. To what extent a manipulation of the content of self-generated thoughts could affect 
the dynamics of functional connectivity requires further research. 
 
Understanding the dynamics of brain (Smith et al., 2012; Allen et al., 2012; Hutchison et al., 
2013a) and mental states (Smallwood, 2013) is thought to be important as it may explain the 
flexible way that cognition unfolds over time. We identified dynamics in network participation 
for brain regions that occurred at multi-second time-scales which are correlated with 
alterations in self-reported experience. Although traditional functional connectivity 
approaches have until recently often ignored fluctuations over time, our findings suggest that 
understanding the dynamics of cognition may depend upon methods that interrogate the 
complexity and flexibility of brain dynamics. Our demonstration of a relation between the 
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dynamic variation in network participation of brain regions and psychological measures of 
experience, therefore, indicates that understanding the temporal brain dynamics could 
illuminate the processes through which different characteristics of self-generated experience 
arise. 
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Brain disorders are described as one of the core health challenges for the 21st century 

(Wittchen et al., 2011) as their prevalence in developed countries surpasses those of 

cardiovascular diseases and cancer (Collins et al., 2011). While functional Magnetic 

Resonance Imaging (fMRI) was expected to be a key method for the diagnosis and 

prognosis of brain disorders (Thulborn et al., 1996), it has seen very little success in 

translations to the clinical realm (Matthews et al., 2006; Bullmore, 2012). For a long time 

fMRI experiments focused on specific brain areas which were expected to show atypical 

activation in experiments with specific task designs. This task-based fMRI stands in stark 

contrast to the more successful structural neuroimaging methods (e.g. CT, MRI), which 

provide whole brain images without the need for patient compliance. However, functional 

neuroimaging is crucial to detect pathologic changes at an early stage. In this thesis, I have 

described the possible usage of resting-state fMRI (rs-fMRI) and network theory to 

investigate clinically relevant functional changes in the human brain without regional 

constraints or the need for a specific task.  

The present thesis reviewed graph theoretic approaches to analyze brain network properties 

using rs-fMRI data (Study 1). I applied a centrality measure to investigate the relation of 

widespread white matter lesions and associated behavioral impairments to changes in 

whole-brain functional networks (Study 2). However, changes in functional brain networks 

can not only occur in pathology but can also be externally induced for therapeutic reasons. 

We investigated the impact of an electrical stimulation on functional whole-brain networks 
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during and after tDCS stimulation using a centrality measure (Study 3). Centrality 

approaches reduce the information of networks. One of the reasons for this reduction is a 

lack of good visualization methods.  We addressed this limitation by bundling connections 

that connect similar areas in the brain (Study 4). This method enhances the information 

gained for a human viewer and may prove relevant in a neurosurgical context. While the 

previous studies implicitly assumed functional brain networks to be static within an fMRI 

scan, in Study 5 we also investigated the ongoing dynamic changes within an fMRI scan. We 

could show a relationship to ongoing cognitive processes which is evidence for the non-

artifactual origin of these changes.  These ongoing changes open up a new window for rs-

fMRI to further elucidate brain function and pathology.  

 

In Publication 1 we capitalized on resting-state fMRI which is based on the effect that intrinsic 

spontaneous low frequency fluctuations in the fMRI BOLD signal show correlated signal in 

functionally coupled networks (Biswal, 1995). These networks persist across various states 

and resemble task-based co-activation maps (Smith et al., 2009). rs-fMRI is well-suited for 

clinical applications as it offers several advantages compared to task-based fMRI: it requires 

minimal patient compliance, can be performed under anesthesia, is easy to standardize (Fox 

and Greicius, 2010), provides a good signal to noise ratio and enables the study of multiple 

brain networks simultaneously. In the current work, we investigated functional brain networks 

in the well-defined framework of graph theory. We showed the usability and applicability of 

this framework to the clinical realm at the example of concrete and clinically relevant cases, 

such as network centrality to detect changes in functional networks of patients with small 

vessel disease. As there is a large and further increasing number of tools and methods to 

analyze rs-fMRI data we reviewed this important topic in Publication 1 (Margulies et al., 

2010). The review provides an introduction and general overview of tools to analyze rs-fMRI 

data, including seed-based functional connectivity, independent component analysis, 

clustering, pattern classification, local methods and the main topic of this thesis: graph 

theory.   

The aim of this thesis is to demonstrate the applicability of measures from graph theory 

described in Publication 1 to investigate changes in functional brain networks captured by rs-

fMRI. These changes can occur due to brain pathology such as vascular lesions which can 

disrupt or alter the structural connections of the brain.  One prominent disease that can lead 

to vascular lesions is small vessel disease. To investigate the impact of early small vessel 

disease on gray matter functional connectivity we performed Study 2 (Schaefer et al., 

2014b). Early cerebral small vessel disease is mainly characterized by small white matter 

lesions.  While white matter lesions are also common in otherwise asymptomatic individuals, 

the presence and severity of white matter lesions doubles the risk of a later dementia 

(Vermeer et al., 2003). Furthermore, white matter lesions can lead to cognitive impairment 

which worsens with increased lesioning (Longstreth et al., 2005). To measure changes in 

whole brain connectivity due to vascular lesions we applied graph theoretical eigenvector 

centrality, a voxel-based network centrality analysis. We found reduced connectivity in 

cerebral gray matter networks and at a concurrent increase of cerebellar connectivity in 

patients with early small vessel disease. Furthermore, we found a very similar picture when 

we related the severity of the disease with whole-brain eigenvector centrality maps. Small 

vessel disease often leads to a behavioral psychomotor slowing. In our patient cohort we 

also found an increase in reaction times across various cognitive tests. Specifically, we found 
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reduced connectivity of premotor areas and increased cerebellar connectivity in slower 

performing subjects.  

The reduction of cerebral gray matter connectivity in the context of white matter lesions might 

not be surprising but it offers a mechanistic link between the two modalities.  In the future, 

this link could be further examined using a prediction model that predicts the connectivity 

reduction based on the location and size of the individual lesion. However, to evaluate and 

validate such a model, a larger sample size is required with lesions in similar locations.  Such 

a single-subject model can then be directly translated into a clinical application.  

Another clinically relevant application, especially in the context of therapeutic rehabilitation, is 

electrical stimulation of specific brain areas. In Study 3 (Sehm et al., 2012) we actively 

manipulated gray matter connectivity using electrical brain stimulation. More precisely, we 

analyzed the impact of anodal and bilateral tDCS over the motor cortex during and after the 

stimulation while participants underwent fMRI. Here, we again used the method of 

eigenvector centrality to investigate connectivity alterations. We found that a bilateral tDCS 

leads to an increase of functional connectivity in primary and secondary motor as well as 

frontal areas in comparison to the sham stimulation. These effects were present during 

bilateral tDCS and persisted after the stimulation. As suggested by researchers using other 

modalities (Bestmann et al., 2004; Denslow et al., 2005), the effects were widespread and 

not limited to the motor cortex. We can thus conclude that electrical brain stimulation not only 

alters the connectivity within the stimulated sub-network (motor network) but also to other 

interconnected sub-networks.  

tDCS and other electrical brain stimulation methods show a large inter-individual variability in 

their ability and efficacy to enhance behavioral performance (Datta et al., 2012). Therefore, a 

growing interest exists to test protocols in order to optimize the stimulation performance 

(Sehm et al., 2013). Estimating the change in functional brain networks during electrical 

stimulation not only improves our understanding of the stimulation process, as we have 

shown here, but may also provide a basis to control efficacy of a particular stimulation setting 

on the single-subject level.  

While we could observe whole brain alterations of connectivity using eigenvector centrality, 

the investigation also revealed one limitation of centrality analysis. By measuring and 

representing the amount of connectivity of each region (voxel) to the rest of the brain, we 

lose the spatial information of the connections. By this the connectivity information gets 

reduced to the sheer amount of connections without any spatial information. In other words, 

the connectivity is mapped from the network space to the region space. To address the 

specific spatial connectivity information to the stimulation side, we conducted a study (Sehm 

et al., 2013) using a seed-based analysis targeting specifically the motor cortex and its 

changes in connectivity to the rest of the brain. While this approach preserves the spatial 

connectivity information of the specific area, it hides the connectivity changes of all other 

areas. 

An ideal approach might not perform any reduction at all. Other than some statistical 

considerations (Zalesky et al., 2010) one of the main problems is visualizing so many 

connections (Margulies et al., 2013). Many current neuroimaging visualization tools, 

especially in the context of fMRI, are designed to map out areas and not connections. In 

contrast to structural connections functional connectivity is not a determined track but rather 

a connection between two points. The visualization of high-resolution connectivity as straight 
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lines in anatomical space can clutter heavily. To overcome this limitation we proposed a 

method to bundle connections with similar start and end points (Study 4:  (Böttger et al., 

2014a) ). Our method is especially valuable in any setting where the anatomical context of 

the functional connectivity is important, for example neurosurgical planning or a refined 

psychiatric diagnostics. The method has also recently been implemented into an open-

source brain visualization software (Böttger et al., 2014b) to make it usable to a wider public. 

Both the shift from the regional to the connectivity space as aimed in Study 4 (Böttger et al., 

2014a) as well as the dynamical aspect of brain networks (Study 3) were incorporated in 

Study 5 (Schaefer et al., 2014a).  

In the connectivity space we did not aim to bundle similar connections for visualization 

purposes but grouped edges that connect similar areas into networks. This is in contrast to 

other methods which aim to cluster regions based on their connectivity profile (Bellec et al., 

2010; Power et al., 2011; Yeo et al., 2011) and thereby reduce networks to the regional 

space. In the framework of connectivity networks regions can belong to multiple networks. 

Further, the method performs no reduction from the connectivity space to the regional space.   

In the context of recent studies on functional connectivity dynamics (Allen et al., 2014; Smith 

et al., 2012) we also addressed the question of how stable the network constellations are 

during the period of a single scan. To investigate whether such ongoing dynamics are 

artifactual or indeed meaningful they need to be related to ongoing physiological or 

behavioral measurements (Hutchison et al., 2013a). To this end, we investigated the 

dynamics of functional networks during an rs-fMRI scan and its relation to ongoing self-

generated thought processes. In contrast to Study 2 and 3 (Schaefer et al., 2014b; Sehm et 

al., 2012) we assessed the changes of functional networks related to internal processes 

without external manipulation. We found a relation between ongoing dynamics and the 

content of ongoing self-generated thoughts (SGT). Subjects who reported more positive SGT 

showed a reduction in overall dynamics. Furthermore, we found that the variation of 

connectivity of the left caudate between a subcortical and a default mode subnetwork was 

increased when individuals reported to have thought about the past. This observation is 

especially interesting in the context of earlier findings of competing cortical and subcortical 

memory systems with a heavy involvement of the caudate area (Poldrack and Packard, 

2003). We found that the dynamics on a whole-brain level was further reduced in older 

subjects. These results shed new light onto earlier findings of reduced fMRI signal variability 

in older subjects (Garrett et al., 2011). In general our findings give further evidence for a non-

artifactual origin of dynamic resting state functional connectivity. This is important, as 

dynamic functional connectivity methods might become a very valuable tool for clinical 

purposes (Hutchison et al., 2013a). In this context, these methods might enable to increase 

the reliability and or sensitivity of future diagnostic tools. This additional benefit will come 

without additional costs, as the same dataset can be analyzed with both, static and dynamic 

functional connectivity methods. Thus, the investigation of differences in the dynamics of 

pathologically changed brains might substantially enhance our understanding of brain 

diseases but also of healthy brain function. 

This thesis gives an overview on how to estimate changes in functional brain networks using 

graph theoretical measures. It explains the assessment and definition of functional brain 

networks derived from fMRI data. More explicitly, this thesis provides examples and newly 

developed methods on the measurement and visualization of changes due to pathology, 

external electrical stimulation or ongoing internal thought processes. These changes can 
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occur on long as well as on short time scales and might be a key to understanding brain 

pathologies and their development. Furthermore, this thesis describes new methods to 

investigate and visualize these changes on both time scales and provides a more complete 

picture of the brain as a dynamic and constantly changing network.  
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Trampel R., Anwander A., Knösche T., and Grigutsch M. Analysis of 

structural and functional imaging data and brain connectivity. 

Lecture Series, Summer Term 2013 
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5.2.5 Summer School 

2012 European Campus of Excellence / MPS-UCL Symposium and 

Advanced Course on Computational Psychiatry and Ageing, 

Ringberg Castle, Bavaria, Germany, September 16–22, 2012 

 

5.2.6 Conference Posters and Abstracts 

2013 Can serotonin put your mind at rest?, Schäfer A., Burmann I., Ralf 

R., Arélin K., Pampel A., Villringer A., Margulies D., and Sacher J., 

Poster presented at 51st Annual Meeting of the American College of 

Neuropsychopharmacology, Hollywood, FL, USA 

 

OpenCL Accelerated Connectome Analysis in Python, Schäfer A., 

and Hellrung L., Poster Presented at Neuroinformatics 2013, 

Stockholm, Sweden 

 

Obesity and ageing related changes in brain structure and function, 

Kharabian S., Horstmann A., Arelin K., Müller K., Schäfer A., 

Neumann J., Schroeter M., Riedel-Heller S., Sturmvoll M., and 

Villringer A., Abstract at 29th Anual Meeting of the German 

Adipositas Society, Hannover, Germany 

 

A probabilistic atlas of cerebello-cerebral functional connectivity, 

Kipping J., Schäfer A., Villringer A., and Margulies D., Abstract at 

43rd annual meeting of the Society for Neuroscience, San Diego, 

USA 

 

The Neural Basis of Emotion Regulation: Plastic Effects Following 

Training of Executive Control, Cohen N., Margulies D., Taubert M., 

Schäfer A., Ashkenazi S., Henik A., Villringer A., and Okon-Singer 

H., Poster presented at 3rd IMPRS summer school, Leipzig, 

Germany 

 

Early small vessel disease affects fronto-parietal and cerebellar hubs 

in close correlation with clinical symptoms – A resting state MRI 

study, Schäfer A., Quinque E., Kipping J., Arélin K., Roggenhofer E., 

Frisch S., Villringer A., Mueller K., and Schroeter M., Poster 

presented at 19th Annual Meeting of the Organization for Human 

Brain Mapping, Seattle, USA 

 

A single dose of escitalopram decreases resting-state functional-

connectivity, Burmann I., Schäfer A., Regenthal R., Arélin K., 

Villringer A., Margulies D., and Sacher J., Poster presented at 19th 

Annual Meeting of the Organization for Human Brain Mapping, 

Seattle, WA, USA 

 

2012 Communities of Connectivity Change in rs-fMRI, Schäfer A., 
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 Margulies D., Böttger J., Kipping J., Kiebel S., Lohman G., and 

Villringer A., Poster presented at 3rd Biennial Conference on Resting 

State Brain Connectivity, Magdeburg, Germany 

 

Functional dissociation of cerebello-frontal and cerebello-parietal 

networks – individual and group-level data of intrinsic functional 

connectivity, Kipping J., Schäfer A., Villringer A., and Margulies D., 

Poster presented at 3rd Biennial Conference on Resting State Brain 

Connectivity, Magdeburg, Germany 

 

Connectivity Clusters show dynamic participation of brain regions in 

multiple networks, Schäfer A., Margulies D., Lohman G., and 

Villringer A., Poster presented at 18th Annual Meeting of the 

Organization for Human Brain Mapping, Beijing, China 

 

A cerebellocentric approach to brain parcellation, Kipping J., Schäfer 

A., Villringer A., and Margulies D., Poster presented at 18th Annual 

Meeting of the Organization for Human Brain Mapping, Beijing, 

China 

 

Connectivity concordance for characterizing consistent subregions of 

the prefrontal cortex, Margulies D., Schäfer A., and Petrides M., 

Poster presented at 18th Annual Meeting of the Organization for 

Human Brain Mapping, Beijing, China 

 

Force-directed edge-bundling for the visualization of functional 
connectivity, Böttger J., Schäfer A., Lohman G., Villringer A., and 
Margulies D., Poster presented at 18th Annual Meeting of the 
Organization for Human Brain Mapping, Beijing, China 2011 
 

2011 Classification of ADHD in children using graph theoretic features 

derived from resting state fMRI, Schäfer A., Margulies D., Villringer 

A., Craddock C., and Lohmann G., Poster presented at Annual 

Scientific Meeting of the European Society for Magnetic Resonance 

in Medicine and Biology (ESMRMB), Leipzig, Germany. 

 

s-Club: Consistent density patterns in functional brain networks, 

Schäfer A., Margulies D., Lohman G., and Villringer A., Poster 

presented at 17th Annual Meeting of the Organization for Human 

Brain Mapping (HBM), Quebec City, QC, Canada 
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5.3 Publications 

2014 Early small vessel disease affects fronto-parietal and cerebellar 

hubs in close correlation with clinical symptoms – A resting state 

MRI study, Schaefer A., Quinque E., Kipping J., Arélin K., 

Roggenhofer E., Frisch S., Villringer A., Mueller K., and Schroeter 

M., Journal of Cerebral Blood Flow and Metabolism, 34(7), 1091-

1095 2014, Feature Article 

 

Dynamic network participation of functional connectivity hubs 
assessed by resting-state fMRI, Schaefer A., Margulies D., 
Lohmann G., Gorgolewski K., Smallwood J., Kiebel S., and Villringer 
A., Frontiers in Human Neuroscience, 8(15), 2014 
 
Connexel Visualization: A software implementation of glyphs and 
edge-bundling for dense connectivity data using brainGL, Böttger J., 
Schurade R., Jakobsen E., Schaefer A., and Margulies D., Frontiers 
in Human Neuroscience, 8(15), 2014 
 
Three-dimensional mean-shift edge bundling for the visualization of 
functional connectivity in the brain, Böttger J., Schäfer A., Lohmann 
G., Villringer A., and Margulies D., IEEE Transactions on 
Visualization and Computer Graphics, 20(3), 471-480, 2014 
 

2013 A comparison between uni- and bilateral tDCS effects on functional 
connectivity of the human motor cortex, Sehm B.∗, Kipping J.∗, 
Schäfer A., Villringer A., and Ragert P., Frontiers in Human 
Neuroscience, 7(183), 2013 
 

2012 Dynamic modulation of intrinsic functional connectivity by 
transcranial direct current stimulation, Sehm B., Schäfer A., Kipping 
J., Margulies D., Conde V., Villringer A., and Ragert P., Journal of 
Neurophysiology, 108(12), 3253‒3263, 2012 
 
Parameterized computational complexity of finding small-diameter 
subgraphs, Schäfer A., Komusiewicz C., Moser H., and Niedermeier 
R., Optimization Letters, 6(5), 883‒891, 2012 
 

2010 Resting developments: a review of fMRI post-processing 
methodologies for spontaneous brain activity, Margulies D., Böttger 
J., Long X., Lv Y., Kelly C., Schäfer A., Goldhahn D., Abbushi A., 
Milham M., Lohmann G., and Villringer A., Magnetic Resonance 
Materials in Physics, Biology and Medicine, 23(5‒6), 289‒307, 2010 
 

under review Serotonergic modulation of intrinsic functional connectivity, 
Schaefer A., Burmann I., Regenthal R., Arélin K., Barth C., 
Margulies D., and Sacher J., under review 
 
Mapping Functional Connectivity Transitions in the Individual Brain, 
Margulies D., Gorgolewski K., Haueis P., Schaefer A., Bernhardt B., 
Bazin P., Petrides M., Lohmann G., and Böttger J., under review 
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