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Abstract
Advancing Blazar Science with Very-High-Energy Gamma-Ray Telescopes

Aryeh Louis Brill

Blazars, active galactic nuclei with relativistic jets pointed almost directly at Earth,

are powerful and highly variable sources of nonthermal electromagnetic radiation, including

very-high-energy gamma rays. We can detect these gamma rays with arrays of imaging at-

mospheric Cherenkov telescopes (IACTs), including the Very Energetic Radiation Imaging

Telescope Array System (VERITAS) and the upcoming Cherenkov Telescope Array (CTA).

After reviewing the science of blazars and the methods used by IACTs, we investigate how

gamma-ray variability can provide insight into blazars’ physical properties while also com-

plicating efforts to understand these sources as a population. We first present a study of

three flaring blazars observed with VERITAS and analyze these sources’ spectral and vari-

ability characteristics, taking into account data at other wavebands, including that of the

Large Area Telescope aboard the Fermi space telescope (Fermi-LAT). Next, after laying out

how observing biases and intrinsic variability can confound blazar population studies with

IACTs, we propose methods to account for these effects, and use simulated data to report ex-

pectations for a blazar luminosity function measurement with VERITAS. Sophisticated new

instruments and data analysis methods can further expand the frontier of gamma-ray blazar

science. To that end, we design a camera software system to enable safer and more efficient

operations of a next-generation IACT being developed for CTA, the prototype Schwarzschild-

Couder Telescope (pSCT). Finally, we develop methods to apply deep neural networks to

the analysis of IACT data and employ these methods to reject background events detected

by simulated arrays of IACTs.
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Chapter 1: Introduction

1.1 Very-High-Energy Astrophysics

Very-high-energy (VHE; between roughly 30 GeV and 300 TeV, often referred to simply

as TeV) gamma rays are a window into the Universe’s most extreme environments, provid-

ing a vital probe of astrophysics, cosmology, and fundamental physics. Gamma rays in this

energy band can be indirectly detected on the ground using arrays of imaging atmospheric

Cherenkov telescopes (IACTs), which detect the Cherenkov light emitted from air showers

produced by VHE gamma rays when they are absorbed by the atmosphere. Indirect detec-

tion of VHE gamma-ray emission with ground-based instruments is complemented by direct

detection in the high-energy (HE; between roughly 30 MeV and 300 GeV, often referred to

simply as GeV) band with space-based telescopes. VHE astrophysics began in earnest with

the detection by Weekes et al. (1989) of the brightest steady TeV source, the Crab nebula.

The Crab is now used as a “standard candle” in VHE astrophysics, with fluxes often reported

in Crab Units, that is, as a percentage of the Crab nebula flux. With current-generation

IACTs, the Crab nebula can be detected at five standard deviations in about one minute.

The known TeV gamma-ray sources are reported in the TeVCat catalog1, and as of this

writing, over 230 TeV sources have been detected, comprising numerous source classes and

enabling a wide variety of scientific studies (e.g. CTA Consortium, 2019). Figure 1.1 shows

a map of the known TeV sources and their classifications.

The majority of extragalactic TeV sources are blazars, a class of active galactic nu-

clei (AGN) characterized by luminous, rapidly variable, non-thermal broadband emission,
1http://tevcat.uchicago.edu/
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Figure 1.1: A map of the known TeV sources in Galactic coordinates, from TeVCat.

thought to originate in relativistic jets that are oriented nearly along our line of sight. Most

TeV blazars belong to the class of BL Lac objects, although several flat spectrum radio

quasars (FSRQs) have also been detected. IACTs often try to conduct blazar observations

during flares, or short periods of elevated flux often observed at multiple wavelengths, which

have been associated with high-energy neutrino production and can provide high signal-to-

noise datasets enabling probes of AGN structure and searches for new fundamental physics.

Blazars typically appear in the gamma-ray band as point sources with no resolvable spatial

structure. A handful of detected radio galaxies (Archer et al., 2020) and starburst galaxies

(VERITAS Collaboration et al., 2009) round out the extragalactic TeV source catalog.

Gamma-ray observatories play a key role in the emerging era of multimessenger astro-

physics (for a review, see Mészáros et al., 2019), combining signals associated with the four

forces of nature: electromagnetic radiation, gravitational waves, neutrinos (weak force), and

cosmic rays (strong force). Cosmic rays have been observed at energies of over 1020 eV, and

while the highest-energy cosmic rays are believed to be extragalactic in origin, their sources

are unknown (Aab et al., 2020). Gamma-ray observations can help identify the sources of

ultra-high-energy cosmic rays, which are charged particles and are therefore deflected by

electromagnetic fields en route to the Earth. One recent discovery exemplifying the multi-
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messenger paradigm is the coincident detection of gravitational waves and multiwavelength

electromagnetic radiation produced by a short gamma-ray burst and subsequent kilonova

caused by a binary neutron star merger (B. P. Abbott et al., 2017). IACTs have recently

made the groundbreaking detections of gamma-ray emission from a flaring blazar associated

with a highly energetic neutrino detected by the IceCube Neutrino Observatory (M. G. Aart-

sen et al., 2018; Abeysekara et al., 2018) and of TeV emission produced by a gamma-ray

burst (Acciari et al., 2019).

Observations of blazars in the VHE band, especially in a multiwavelength and multi-

messenger context, can help answer numerous scientific questions. Due to their head-on

orientation, blazars produce relativistically beamed emission, presenting an opportunity to

study AGN at the highest energies, greatest apparent luminosities, and fastest variability

timescales. VHE blazar observations can help answer key open questions, including:

• Where is the gamma-ray emission region located, and what is its size and shape?

• How is the central black hole’s energy transported to the emission region?

• What particle acceleration and radiative processes give rise to gamma-ray and multi-

wavelength emission, and are blazar flares neutrino sources?

• What causes blazars’ extreme variability on all observed timescales?

• Can blazar flares be predicted on any timescale, and what is their duty cycle?

• Do flares originate from different physical processes than quiescent emission?

• What physical mechanisms explain the observed differences between FSRQs and BL Lac

objects? Do these blazar classes have an evolutionary relationship?

We can further use VHE gamma-ray emission from blazars at cosmological distances as a

laboratory to study cosmology and particle physics, taking advantage of the fact that VHE
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gamma rays may be absorbed via photon-photon interactions with intergalactic radiation

fields. Measuring the extent and products of these absorption processes provides a probe of

the extragalactic background light and intergalactic magnetic field, giving insight into how

stars and large-scale magnetic fields formed over the history of the Universe. We can also use

these measurements to constrain new physics, including potential interactions with axion-

like particles (de Angelis, Galanti, and Roncadelli, 2011) and energy-dependent Lorentz

invariance violation predicted by theories of quantum gravity (Abdalla et al., 2021).

Closer to home, Galactic TeV sources come in a diversity of types, including supernova

remnants, pulsar wind nebulae, and gamma-ray binaries, often displaying complex morpholo-

gies; in addition, complex structures and large-scale diffuse emission are present throughout

the Galactic plane and in the Galactic ridge in particular (Abdalla et al., 2018; Archer

et al., 2016). The Crab nebula is a pulsar wind nebula. In addition to detections of TeV

sources, constraints have been placed on hypothesized sources of TeV gamma-ray emission,

such as gamma rays produced by the annihilation or decay of dark matter in dwarf galaxies

(Archambault et al., 2017a).

1.2 Ground-Based Very-High-Energy Gamma-Ray Detectors

The first atmospheric Cherenkov telescope was built by Galbraith and Jelley (1953), who

by placing a photomultiplier tube (PMT) at the focus of a parabolic mirror were able to

observe pulses caused by cosmic-ray-induced Cherenkov showers. Although it was quickly

realized that Cherenkov telescopes could also be used to observe gamma-ray showers, over

three decades would elapse until the Crab nebula was successfully detected using the Whipple

10 m telescope by Weekes et al. (1989). This breakthrough was made possible by introducing

imaging, allowing gamma-ray and cosmic-ray showers to be efficiently separated based on

their morphology. The next major improvement to be introduced, by the current generation
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of observatories, was the use of arrays of IACTs, dramatically improving event reconstruction

and enabling the cosmic-ray background to be cut down still further. A history of the field

of VHE astrophysics from the early days through the current generation of instruments is

given by Hillas (2013).

Three major IACT observatories are currently in operation: the High Energy Stereoscopic

System (H.E.S.S.), located in Namibia (F. Aharonian et al., 2006); the Major Atmospheric

Gamma Imaging Cherenkov (MAGIC) telescope array, located on the island of La Palma in

the Canary Islands, Spain (Aleksić et al., 2016); and the Very Energetic Radiation Imaging

Telescope Array System (VERITAS), located at the Fred Lawrence Whipple Observatory

(FLWO) in southern Arizona (Holder et al., 2006; Holder, 2011). H.E.S.S. has four 12 m

telescopes as well as one 28 m telescope, which provides enhanced low-energy sensitivity,

while MAGIC has two 17 m telescopes. VERITAS, the successor to Whipple, has four 12 m

telescopes. Figure 1.2 shows a photograph of the VERITAS observatory.

Figure 1.2: A photograph of the VERITAS Observatory.

Building on the experience gained from these instruments, the next-generation observa-

tory for VHE gamma-ray astronomy, the Cherenkov Telescope Array (CTA), is currently

under development (Actis et al., 2011). CTA, with approximately 100 telescopes located in
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two separate arrays in the Northern and Southern Hemispheres, will improve on the capa-

bilities of the current-generation observatories by an order of magnitude. The CTA project

includes the development of a novel dual-mirror IACT design, the Schwarzschild-Couder

Telescope (SCT). A prototype SCT (pSCT) has been constructed at the VERITAS site. In

addition to the major observatories, the First G-APD Cherenkov Telescope (FACT), located

on La Palma, operates as a single telescope to perform automated monitoring of bright

blazars (Dorner et al., 2019).

Observations with IACTs are complemented by data from water Cherenkov detector

arrays, which detect air showers using the Cherenkov light emitted as shower particles pass

through water tanks. Observatories using this technique include the High-Altitude Water

Cherenkov (HAWC) observatory (Abeysekara et al., 2017) and the Large High-Altitude Air

Shower Observatory (LHASSO; Bai et al., 2019). While these instruments have much higher

duty cycles and larger fields of view compared to IACTs, they are less efficient at rejecting

background cosmic-ray showers and are only sensitive to gamma rays with energies greater

than about 10 TeV.

1.3 Space-Based High-Energy Gamma-Ray Detectors

Above the Earth’s atmosphere, direct gamma-ray detection is possible. Typical astro-

physical gamma-ray sources have steeply falling power-law spectra, making observations

with space telescopes (with collection area limited to ∼1 m2) feasible only for the relatively

higher photon fluxes in the HE band. The first high-energy gamma-ray source was the quasar

3C 273, which was detected by the COS-B satellite (Swanenburg et al., 1978). Following that

discovery, a large-scale survey in the HE band was conducted with the Energetic Gamma

Ray Experiment Telescope (EGRET) instrument aboard the Compton Gamma Ray Obser-

vatory (CGRO) satellite, which was sensitive to gamma rays between 30 MeV and 30 GeV.
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Tracker

Calorimeter

ACD

Figure 1.3: Left: Artist’s rendition of the Fermi spacecraft. Right: Diagram of the LAT detector,
with cutouts for illustration. ACD means anticoincidence detector. Both images are from NASA.

EGRET detected 271 sources, including over 60 blazars, during its operations from 1991 to

1996 (Hartman et al., 1999).

EGRET’s successor is the Large Area Telescope (LAT) aboard the Fermi Gamma-ray

Space Telescope (Fermi-LAT; Atwood et al., 2009). Since its launch on June 11, 2008, Fermi-

LAT has been highly successful, having detected over 5700 gamma-ray sources (Abdollahi

et al., 2020; Ballet et al., 2020), including approximately 3000 blazars (Ajello et al., 2020;

Lott, Gasparrini, and Ciprini, 2020). Fermi-LAT is sensitive to gamma rays from 20 MeV to

over 300 GeV and is capable of observing the entire sky in about three hours when operated

in survey mode. The Fermi telescope and LAT instrument are illustrated in Figure 1.3.

The LAT is a pair-conversion telescope that detects the e+e− pairs produced by gamma

rays incident on the detector (Ackermann et al., 2012). The LAT has three detector sub-

systems. First, a tracker, consisting of 18 silicon detector planes alternating with tungsten

converter layers, promotes the conversion of gamma rays to e+e− pairs and enables recon-

struction of the arrival directions of the incident particles. Next, a calorimeter, consisting of

cesium iodide scintillation crystals stacked in eight layers, measures the particle energies and
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facilitates background rejection by providing three-dimensional shower profiles. Finally, an

anticoincidence detector consisting of scintillating tiles surrounds the tracker and calorimeter,

used for rejection of showers caused by charged cosmic rays.

Building on Fermi’s success in the GeV band, a number of MeV-scale gamma-ray de-

tectors have been proposed, promising to open up a new era of medium-energy gamma-ray

astronomy (e.g. McEnery et al., 2019; Buckley et al., 2019).

1.4 About This Thesis

This thesis pursues two objectives. First, we aim to improve our understanding of the

physical processes driving the luminous, variable gamma-ray emission from blazars by using

data from IACTs, as well as from space-based telescopes. Second, we develop new instrumen-

tation and data analysis methods to maximize the effectiveness of observations with IACTs.

In Chapter 2, we discuss the taxonomy and observational properties of blazars, focusing

on the gamma-ray context, and review the physical processes at work in these sources. In

Chapter 3, we describe how IACTs perform gamma-ray observations, focusing primarily on

VERITAS and on CTA, and on the SCT in particular.

In Chapter 4, we examine three luminous, highly variable FSRQs observed by VERITAS

and Fermi-LAT, 3C 279, PKS 1222+216, and Ton 599. We constrain physical characteristics

of these sources including the timescales of processes in their accretion disks, the jet Doppler

factors and gamma-ray emission region locations, and the potential for these sources to

produce PeV-scale neutrinos during TeV flares. Next, in Chapter 5, we consider population

studies of TeV blazars. Such studies are challenged by variability and observational biases.

In order to evaluate the prospects for measuring the TeV luminosity function of BL Lac

objects with VERITAS, we develop methods to address some of these challenges.

In Chapter 6, we describe the design of a control and monitoring software system to
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enable safe and efficient operation of the camera of the pSCT, a prerequisite for any scientific

measurement. In order to improve IACT performance in general, in Chapter 7, we develop

methods to apply deep neural networks to the analysis of data from IACT arrays. By

making full use of the rich information present in IACT images, deep neural networks have

the potential to improve the sensitivity of IACT observatories, particularly to the highly

background-dominated soft spectra typical of blazars. Finally, we conclude with thoughts

on future research directions flowing from this work.
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Chapter 2: Blazars

2.1 Active Galactic Nuclei

AGN are energetic phenomena in the central regions of a few percent of galaxies, powered

not by stars, but by accretion onto a supermassive black hole (SMBH). VHE gamma-ray

blazars are the most extreme form of AGN, exhibiting highly relativistically beamed emission

and offering the possibility to study fundamental physics. As a subclass of AGN, blazars

belong to a complex taxonomy classifying objects based on historical observational acci-

dents, apparent differences due to orientation, and true intrinsic differences between types

of objects. Figure 2.1 shows a chart of the observational classifications of AGN.

At a high level, AGN can be divided into radio-quiet and radio-loud objects, with about

90% of all AGN being radio-quiet. The two subclasses of radio-quiet AGN are Seyfert

galaxies and quasars. Seyfert galaxies have bright nuclei and strong emission lines in their

optical spectra (Seyfert, 1943) and can be divided into two classes based on the presence

or absence of broad lines, in addition to narrow lines, in their optical spectra. Quasars are

highly variable objects that resemble stars in the optical band due to the relative faintness of

the surrounding galaxy; for this reason, quasars are also referred to as quasi-stellar objects

or QSOs. In general, quasars may be defined observationally as objects with a very broad

spectral energy distribution (SED) explainable only by non-thermal processes (Peterson,

1997). Although most quasars are radio-quiet, about 10% are radio-loud. The bolometric

luminosity of a typical quasar is about 100 times greater than that of a typical Seyfert

galaxy. Despite their historical division into two discrete classes, it is now believed that
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Figure 2.1: Chart of observational classifications of AGN, from Dermer and Giebels (2016). QSO
are quasi-stellar objects; Sy 1 and Sy 2 are Seyfert 1 and 2 galaxies; FR 1 and FR 2 are Fanaroff-
Riley 1 and 2 galaxies.

Seyfert galaxies and radio-quiet quasars probably form a continuous sequence in luminosity.

Radio-loud AGN, while making up a minority of AGN, include almost all of the gamma-

ray-emitting objects. Observationally, radio-loud AGN fall into two main categories, radio

galaxies and blazars. Fanaroff and Riley (1974) observed that radio galaxies can be divided

into two classes: low-luminosity sources in which the luminosity decreases going outwards

from the center (FR-I), and high-luminosity sources in which the luminosity increases going

outwards (FR-II). Blazars are AGN displaying very rapid variability in flux and polarization,

extremely high luminosities, and apparent superluminal velocities of compact radio cores

(Urry and Padovani, 1995). Like radio galaxies, blazars can be divided into two classes:

low-luminosity BL Lac objects and high-luminosity FSRQs. An FSRQ can be identified by

its broad optical spectral lines and flat radio spectrum, with a spectral index α ≈ 0, while

the optical spectra of BL Lac objects are practically featureless. Radio-loud AGN typically
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occur in elliptical galaxies, unlike Seyfert galaxies, which are mostly spiral galaxies.

AGN can be understood as consisting of a number of discrete structures, pictured in

Figure 2.2 (Urry and Padovani, 1995). An accretion disk surrounds the SMBH at the center.

The broad and narrow spectral lines are associated with separate regions of ionized gas,

referred to as the broad-line region (BLR) and narrow-line region. These regions are ringed

by a dusty molecular torus, which occludes the BLR when the AGN is viewed off-axis. In

radio-loud AGN, a relativistic jet is also present, with the jet axis perpendicular to the

plane of the torus. However, the low-luminosity BL Lac objects and FR-I radio galaxies are

believed to lack most of these structures besides the accretion disk and jet. To put these

AGN components in context, Table 2.1 summarizes their approximate length scales with the

sizes of other astronomical structures for comparison.

Black Hole

Accretion Disk

Jet

Narrow Line 
Region

Broad Line 
Region

Dusty 
Torus

Figure 2.2: Schematic diagram of an AGN (not to scale), adapted from Urry and Padovani, 1995.

The unified model of AGN makes sense of this assortment of classifications and subtypes

(Urry and Padovani, 1995). In this model, schematically represented in Figure 2.3, the
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Structure Approximate Sizea Comparison
SMBH event horizon ∼ 0.01 – 10 AU Earth-Sun distance, 1 AUDisk inner radius ∼ 0.01 – 60 AU
Disk outer radius ∼ 1 – 1000 AU Outer radius of Kuiper belt, 50 AUb

Broad-line region ∼ 0.01 – 1 pc Distance to Alpha Centauri, 1.34 pccMolecular torus ∼ 1 pc
Narrow-line region ∼ 102 – 104 pc Distance to Galactic Center, 8× 103 pcdJet & 105 pc

Table 2.1: Approximate sizes of AGN component structures. aBeckmann and Shrader (2012).
bStern and Colwell (1997). cBailer-Jones et al. (2018). dBinney and Merrifield (1998).

appearance of an AGN depends essentially on three parameters: the presence or absence of

a relativistic jet, the power of the central engine, and the orientation of the observer. Radio-

loud AGN are defined by the presence of a relativistic jet. Another real difference exists

between the high-power and low-power radio sources, which may be caused by a transition

from retrograde to prograde spin of the central SMBH (Garofalo, Evans, and Sambruna,

2010). The remaining apparent differences are explained by the contingent orientation of

the object with respect to the observer, which produces two effects. First, narrow-line objects

result when we view them at large inclination angles so that the BLR is occluded by the

molecular torus. Second, we observe a blazar when the jet is aligned with our line of sight,

producing relativistically beamed emission. In this paradigm, BL Lac objects and FSRQs

are the aligned counterparts of FR-I and FR-II radio galaxies, respectively.

2.2 Physical Processes in AGN

2.2.1 Accretion Power

An AGN is ultimately powered by the gravitational energy of a SMBH at the center of

its host galaxy. The kinetic energy of a test particle of mass m falling onto a compact object

from infinity can be estimated in the classical limit as (Longair, 1994)
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Figure 2.3: Schematic representation of the unification scheme of AGN, from Beckmann and Shrader
(2012). The type of object observed depends on the presence or absence of a jet, the power of the
central engine, and the orientation of the observer.
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E ≈
(
rS
2R

)
mc2, (2.1)

where rS ≡ 2GM/R is the Schwarzschild radius. Letting ṁ be the accretion rate onto the

central object, the luminosity of the source is

L ≈
(
rS
2R

)
ṁc2 = ξṁc2, (2.2)

where ξ is the efficiency of release of the accreting matter’s rest-mass energy. For a non-

rotating Schwarzschild black hole, the innermost stable orbit occurs at R = 3rS, giving

ξ ≈ 0.1. A relativistic calculation yields ξ = 0.057 for a Schwarzschild black hole and

a whopping ξ = 0.426 for a maximally rotating Kerr black hole. These are very high

efficiencies. For comparison, the fusion of hydrogen into helium yields only ξ = 0.007.

However, black holes have no surface on which to actually dissipate the energy of in-

falling matter into heat. To see how this energy can be released, we observe that because

of conservation of angular momentum, matter cannot fall directly into the black hole. In-

stead, infalling matter forms an accretion disk about the black hole’s rotation axis. Viscous

frictional forces in the disk then act to dissipate the angular momentum of infalling matter,

while also heating the disk. At the same time, the luminous non-thermal emission observed

in quasars is believed to be produced by a relativistically outflowing jet ejected from the

black hole (Blandford and Königl, 1979). The energy to power the jet can be extracted

from a rotating black hole via the mechanism of Blandford and Znajek (1977), in which the

twisting of ambient magnetic fields by the black hole’s rotation extracts energy and angular

momentum, producing an energetic outflow.

As the luminosity due to accretion of ionized plasma increases, so does the resulting

radiation pressure, until the outward force balances the inward pull of gravity. The resulting

luminosity upper bound is called the Eddington luminosity, and is given by
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LE = 4πGMmpc

σT
≈ 1.3× 1038

(
M

M�

)
erg s−1, (2.3)

where mp is the proton mass and σT is the Thomson cross section (Eq. 2.12). The Eddington

luminosity limit is only applicable for a steady state.

2.2.2 Particle Acceleration

Particle acceleration mechanisms transfer the energy extracted from the central engine

into a population of relativistic particles. Two main such mechanisms have been proposed

to be at work in blazars: shock acceleration and magnetic reconnection.

Shock acceleration has its basis in a model proposed by Fermi (1949). In this model,

particles repeatedly collide with magnetic fields randomly moving with speed V , gaining

or losing energy with each collision, before exiting the collision zone on some characteristic

timescale. The energy gains from head-on collisions slightly outweigh the losses from over-

taking collisions because head-on collisions occur more often. The average fractional energy

increase with each collision is given by

〈
∆E
E

〉
= 8

3

(
V

c

)2
. (2.4)

Because the average energy increase is second order in V/c, this mechanism is referred

to as second-order Fermi acceleration. As a result, the acceleration is somewhat slow and

inefficient. A first-order Fermi acceleration model in which all collisions are effectively head-

on was proposed by Bell (1978), called diffusive shock acceleration. In this model, relativistic

particles repeatedly cross a shock front, with turbulence isotropizing the particle velocities

on both sides. As a result, the particles gain energy when they cross in either direction, with

the average energy increase per round trip now given by
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〈
∆E
E

〉
= 4

3

(
V

c

)
. (2.5)

In either case, we can calculate the spectrum expected from this process, following Lon-

gair (1994). Suppose that a population of N0 particles is accelerated such that E = βE0 is

the energy after one collision and each particle remains in the acceleration zone with prob-

ability P after each collision. Then after k collisions, we have E = E0β
k and N = N0P

k.

Eliminating k between these expressions and taking the derivative yields

dN

dE
∝
(
E

E0

)−1+ lnP
ln β

. (2.6)

In diffuse shock acceleration, lnP ≈ −4V/3c and ln β = ln (1 + 4V/3c) ≈ 4V/3c, so

lnP/ ln β ≈ −1 and we have p = 2 for the spectral index.

The fact that the Blandford and Znajek (1977) mechanism produces jets that are mag-

netically dominated at their base suggests an alternative scenario in which the dissipation of

magnetic fields rather than a shock transfers energy to particles. In this model, called mag-

netic reconnection, magnetic field lines of opposite polarity annihilate in an electron-position

plasma, forming magnetic islands or “plasmoids” where particles are efficiently accelerated

to produce a power-law spectrum with index 1 . p . 4 that hardens with increasing mag-

netization (Guo et al., 2015; Sironi and Spitkovsky, 2014). Reconnection is most efficient in

a highly magnetized plasma. However, because reconnection dissipates magnetic fields and

shocks concentrate them, both processes tend to produce downstream emission regions in

a rough equipartition between magnetic and particle energy densities, UB/Ue ∼ 1 (Sironi,

Petropoulou, and Giannios, 2015). Particles can be accelerated when two plasmoids collide,

producing fast flares accompanied by polarization swings (Hosking and Sironi, 2020).
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2.2.3 Radiative Processes

Next, the accelerated particles generate the electromagnetic radiation that we detect

with our telescopes. The most important radiative processes in blazars are synchrotron

radiation and inverse Compton scattering, in which, as we will see, leptons (i.e. electrons

and positrons) play the dominant role. However, there are several mechanisms by which

relativistic protons may also radiate, in so-called hadronic processes.

Synchrotron radiation is emitted when a relativistic charged particle is accelerated by

a magnetic field. A particle of mass m and charge e moving with Lorentz factor γ in a

magnetic field B will exhibit helical motion about an axis parallel to B and emit radiation

in a narrow cone of opening angle 1/γ, as illustrated in Figure 2.4. The gyration frequency

of the helical motion is

νg = eB

2πγmc, (2.7)

and the emitted power is

P = 2
3

e4

m2c3β
2γ2B2 sinα2, (2.8)

where α in this context is the pitch angle between the particle velocity vector and B. Since

P ∝ m−2, we immediately see that the emission from electrons will dominate that from

protons. We therefore take m and e to refer to the electron mass and charge, respectively.

Averaging over all pitch angles yields

P = 4
3σTcβ

2γ2UB, (2.9)

where UB = B2/8π is the energy density of the magnetic field and the Thomson cross section

σT is defined below. This expression is valid for a single particle, but in an astrophysical
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Figure 2.4: Diagram of a charged particle moving in a magnetic field and emitting synchrotron
radiation, from Kembhavi and Narlikar (1999).

source, we expect the electron energies to have a power-law distribution with spectral index

γ. In that case, the emitted spectrum will also have a power-law form,

P (ν) ∝ ν−α, α = p− 1
2 , (2.10)

where α is now the energy spectral index. It is conventional in high-energy astrophysics to

report spectra in terms of photon counts, in which case the photon spectral index is equal

to Γ = α + 1.

The synchrotron cooling timescale can be estimated by setting dE/dt = −P , giving

t1/2 = 6πmc
σTγB2 ≈ 7.74× 108 γ−1

(
B

1 G

)−2
s, (2.11)

where t1/2 is the time needed for the electron to lose half of its energy.

Another important radiative process in blazars is inverse Compton scattering, in which a
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relativistic electron can transfer energy to a photon. In the nonrelativistic limit, this process

reduces to Thomson scattering, in which the photon is elastically scattered with no change

in energy. The Thomson scattering cross section is frequency-independent, and is given by

σT = 8πe4

3m2c4 ≈ 6.65× 10−25 cm2. (2.12)

In the general case, the cross section is given by the Klein-Nishina formula,

σKN = 3σT

4

{
1 + x

x3

[
2x(1 + x)

1 + 2x − ln (1 + 2x)
]

+ ln (1 + 2x)
2x − 1 + 3x

(1 + 2x)2

}
, (2.13)

where x ≡ ε/mc2, with ε being the energy of the incident photon. For ε � mc2, the Klein-

Nishina cross section falls rapidly to zero, and for ε� mc2, it reduces to the Thomson cross

section. The Compton power is given by

P = 4
3σTcβ

2γ2Urad, (2.14)

where Urad is the energy density of electromagnetic radiation. Comparing Eq. 2.14 to Eq. 2.9,

we see that these expressions have the same form, with

PComp

Psynch
= Urad

UB
. (2.15)

This similarity can be explained by interpreting synchrotron radiation as a scattering

process with the virtual photons of the magnetic field (Kembhavi and Narlikar, 1999). The

ratio PComp/Psynch is known as the Compton dominance, generally measured as the ratio of

peak Compton to synchrotron luminosities from the SED (Section 2.3.1). If the electron

energy distribution is a power law, the result of Eq. 2.10 holds for inverse Compton emission

as well (Blumenthal and Gould, 1970).
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In hadronic models, some or all of the radiation is due to relativistic protons emitting via

photohadronic processes, proton synchrotron radiation, or other mechanisms. In hadronic

processes, relativistic neutrinos may be emitted in addition to electromagnetic radiation. One

such process is the synchrotron radiation of high-energy protons, which has been used to ex-

plain the high-energy emission from blazars (e.g. F. Aharonian, 2000; Mücke and Protheroe,

2000). Alternatively, neutrinos may be produced by the photohadronic interaction of a pro-

ton with a photon, producing pions that quickly decay to gamma rays and neutrinos (Dermer

and Menon, 2009). The dominant photopion production channel occurs via the ∆+(1232)

resonance:

p+ γ → ∆+ →


p+ π0 → p+ 2γ

n+ π+ → n+ e+ 3ν → p+ 2e+ 4ν.
(2.16)

The pπ0 and nπ+ rates occur in a 1:2 ratio via the ∆+ resonance, but when the direct

production channel of pγ → pπ0 is also included, the rates become roughly equal. The

secondary neutrino energies are about 5% of the initial proton energy, with the proton losing

about 20% of its energy to the decay products. The resonance occurs when the invariant

energy of the interaction is εpγ,th ∼ 0.3 GeV. When this energy is higher, the main decay

channel is multipion production, with π+, π0, and π− particles produced in equal numbers.

Photopion production of PeV-scale neutrinos requires a target photon population in the X-

ray band. The pγ process may co-occur with leptonic gamma-ray emission, and under this

scenario, FSRQs may be sources of relativistic neutrinos at PeV or even EeV energies (e.g.

Gao, Pohl, and Winter, 2017; Righi et al., 2020).
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2.2.4 Relativistic Motion

The jet’s bulk relativistic motion strongly modifies the observed emission from blazars.

Relativistic Doppler boosting of the jet along an axis close to our line of sight is needed to

explain many observational characteristics, with the apparent superluminal motions observed

in radio jets and the ability of strong gamma-ray fluxes to escape compact emission zones

without being absorbed via pair production being two of the most striking.

Many blazars display superluminal motion in their jets when observed using very-long-

baseline interferometry (VLBI), often with apparent velocities of ∼5–10c or more (e.g.

Jorstad et al., 2001). For example, the VLBI measurements of the FSRQ 3C 279 shown

in Figure 2.5 reveal a radio structure moving twenty-five light-years in only seven years.

This phenomenon was predicted by Rees (1966), who explained it as a geometrical relativis-

tic effect resulting when a jet is moving with a substantial component of its velocity towards

the observer so that it almost catches up with its emitted light.

Figure 2.6 shows the setup in which apparent superluminal motion can occur. Consider

a source (“blob”) at a distance D from the observer, moving relativistically with velocity βc

at an inclination angle θ with respect to the observer’s line of sight. In a time interval ∆τ ,

the blob moves a distance ∆x = βc∆τ sin θ tangential to the observer’s line of sight, which is

the apparent distance traveled, and a distance ∆y = βc∆τ cos θ towards the observer. The

time measured by the observer for the blob to traverse the distance ∆x is

∆τapp =
(

∆τ + D −∆y
c

)
− D

c
= ∆τ(1− β cos θ). (2.17)

The apparent velocity measured by the observer is then

βapp = ∆x
c∆τapp

= β sin θ
1− β cos θ . (2.18)
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Figure 2.5: Apparent superluminal motion in the radio jet of 3C 279, from Wehrle et al. (2001).
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Δx

Δy
(βc)Δτ
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βapp =
Δx

cΔτapp

=
βsinθ

1 - βcosθ

Figure 2.6: Diagram showing the setup leading to apparent superluminal motion. A radiating
relativistic source moves distances ∆x and ∆y tangential and parallel to the observer’s line of
sight, respectively, in the time interval ∆τ .

This expression is maximized when cos θ = β, or θ ≈ 1/Γ, where Γ = 1/(1 − β2)1/2 is

the Lorentz factor corresponding to the bulk motion of the jet. At this inclination angle,

apparent superluminal motion will be observed for any β > 1/
√

2.

Other evidence for relativistic motion in blazars comes from observations of gamma-

ray emission with both high luminosity and fast variability. This is surprising because

gamma rays naturally undergo absorption by pair production (γ + γ → e+ + e−) with

target photons of energy hνtarget ∼ (mec
2)2/hνγ. The optical depth to pair production is

given by τγγ . σTnγR, where R is the size of the source and nγ is the number density of

gamma rays, which can be estimated as Lγ/4πR2mec
3. Associating the source’s variability

timescale (assuming no beaming) with its light-crossing time, we have R ∼ ctvar. Defining

the dimensionless compactness parameter (Guilbert, Fabian, and Rees, 1983),

` ≡ Lγ
R

σT

mec3 , (2.19)
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gamma rays can escape the source only if (Urry and Padovani, 1995),

τγγ ∼
`

40 � 1. (2.20)

A bright blazar (e.g. 3C 279, Maraschi, Ghisellini, and Celotti, 1992) can have a typical

HE gamma-ray luminosity of L ∼ 1048 erg s−1 with variability observed on daily or shorter

timescales, yielding an optical depth of

τγγ ≈ 3× 102
(

Lobs

1048 erg s−1

)(
tvar,obs

1 day

)−1

, (2.21)

clearly in conflict with the large observed gamma-ray flux! Relativistic beaming resolves this

tension by altering both the required intrinsic luminosity and variability timescale. First,

the observed luminosity produced by relativistically beamed emission, L, is related to the

intrinsic luminosity L by

L = δpL, (2.22)

where the Doppler factor δ is given by

δ = 1
Γ(1− β cos θ) , (2.23)

where θ is the viewing angle between the velocity vector and the observer’s line of sight.

The exact value of the exponent p depends on the physical processes in the source. For the

basic case of jet emission from a relativistic blob radiating isotropically in its rest frame,

p = 3 + α, which can be interpreted as a factor of δ2 amplification of the flux by relativistic

aberration, a factor of δ increase in the number of photons arriving per unit time caused by

time dilation, and a factor of δα increase in energy caused by the blueshifting of the emitted

spectrum (Urry and Shafer, 1984). For a symmetrical two-sided relativistic jet with Γ ∼ 10,
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θ ∼ 1/Γ, and β ∼ 1, the ratio of observed luminosities of the approaching and receding

components is &109, so the contribution of the receding component can be safely neglected.

When relativistic beaming is accounted for, the size of the source can be estimated from

the observed variability timescale as

R ∼ δ

1 + z
ctvar, (2.24)

where the effect of the cosmological redshift z is also included in Equation 2.24. The optical

depth due to pair production is thus reduced by a factor of δp+1, with (p + 1) ∼ 5, and the

observed gamma-ray emission can be satisfactorily explained.

2.3 Observed Characteristics of Blazars

2.3.1 Spectral Energy Distribution

Figure 2.7 illustrates the basic properties of blazar SEDs. An SED plots the energy flux

(Section 3.4.5) as a function of frequency, or equivalently, of energy. A blazar SED has a

double-humped structure, with a low-energy component caused by synchrotron radiation

emitted by relativistic electrons and a high-energy gamma-ray component that may be pro-

duced by one or more different mechanisms. Modeling a blazar SED can give insight into

its physical structure and multiwavelength emission mechanisms. In leptonic models, the

gamma-ray component is explained by relativistic electrons scattering via the inverse Comp-

ton process off of a population of lower-energy seed photons. One possibility is that the seed

photons are the same synchrotron photons that the electrons themselves emitted, in what is

called the synchrotron self-Compton process (SSC; Maraschi, Ghisellini, and Celotti, 1992).

Alternatively, the seed photons may be radiation from an external structure, such as accre-

tion disk radiation reprocessed in broad-emission-line clouds, in what is called the external

inverse Compton process (EIC; e.g. Ghisellini and Madau, 1996). The EIC seed photons are
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commonly taken to be radiation fields in the BLR, although this picture has been challenged

by the lack of characteristic BLR absorption features in the average gamma-ray spectra of

Fermi-LAT FSRQs (Costamante et al., 2018). The presence or absence of EIC emission

can give inform our understanding of the gamma-ray emission region location relative to

radiating structures in the AGN.

Figure 2.7: Sample-averaged blazar SEDs with model fits, from Donato et al. (2001), using the
blazars studied by Fossati et al. (1998). The double-humped structure and anticorrelation of peak
frequency with luminosity are clearly visible.

Another important property, known as the blazar sequence, is the inverse relationship of

the peak frequencies of the humps with the bolometric luminosity (Section 2.3.3). The SED

of an FSRQ is typically dominated by its gamma-ray emission component, which peaks in

the HE band – in other words, FSRQs are Compton-dominated. On the other hand, BL Lac

objects are usually less luminous overall as well as less Compton-dominated, but have a

gamma-ray emission component that peaks in the VHE band.
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2.3.2 Variability

Blazars exhibit extreme variability on all observed timescales, limited only by the duration

and sensitivity of the observations, down to several minutes in both the GeV and TeV gamma-

ray bands (Ackermann et al., 2016; F. Aharonian et al., 2007). The physical mechanisms that

drive this variability are not well understood. It is possible that different processes, possibly

originating at different locations in the AGN, drive variable emission occurring at different

timescales. While short variability timescales observed in blazars suggest that the emission

may be connected to processes in the central engine or accretion disk, the ability of TeV

gamma rays to escape the AGN without being absorbed implies that the emission originates

further out in the jet, such as in the molecular torus, as recently suggested by Harvey,

Georganopoulos, and E. T. Meyer (2020). The observed variability directly constrains the

size of the emission region (Eq. 2.24). Blazar power spectral densities in the gamma-ray

band can usually be described as a power law with an index of ∼1-3 (Finke and Becker,

2014), indicating that their flux variability is at least partly stochastic in origin.

Variability at the intermediate (∼days–months) timescale is of particular importance for

modeling the size, shape, location, and dynamics of the emission region (or regions). It

therefore plays a key role in disentangling the sources of the emission observed at multiple

wavelengths and with different astrophysical messengers. Notably, at this timescale blazars

undergo “flares” in which their optical, X-ray, or gamma-ray flux can increase by as much as

an order of magnitude. Blazar flares may last for just a few days or weeks, but observing them

is critical to coordinate multiwavelength observations, obtain high signal-to-noise spectra

and light curves, and probe the unique physics that may be occurring during these events.

Knowledge of the flare duty cycle in blazars, or fraction of time these sources spend in a

flaring state, is critical for planning observations with pointed telescopes and relating these

sources’ electromagnetic emission to other messengers. The duty cycle of elevated flux states
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has been estimated to be about 5-10% in Fermi AGN (Ackermann et al., 2011).

Despite their prime observational importance, flares are vaguely defined and poorly un-

derstood physically. While flares can be thought of intuitively as rare, bright events lasting

for a few days or weeks, they do not have a standard objective definition in the community.

Flares display a diversity of structures, durations, and luminosities. They are difficult to

separate from the supposed quiescent background level, and it is an open question whether

such a separation is physically meaningful at all. It is not clear whether flares are generated

by a physical process distinct from the source of the quiescent emission, or whether they are

merely upward fluctuations resulting from a continuous stochastic process. Naturally, these

fundamental difficulties complicate the calculation of the flare duty cycle as well.

Observations of blazar variability on other timescales are important as well. Observations

of rapid (∼minutes–hours) variability can put strong constraints on the Doppler factor and

the particle acceleration processes producing the emission due to the strong constraints

placed on the size of the emission region. Various models have been proposed to explain

this fast variability, including relativistic magnetic reconnection (Petropoulou, Giannios, and

Sironi, 2016) and red giant stars interacting with the jet close to the central SMBH (Barkov

et al., 2012). Over long (∼annual) timescales, blazar variability can be studied using the

flux distribution, which describes the relative frequencies of different flux levels. Blazar flux

distributions exhibit long tails, and have been fit using log-normal models (e.g. Giebels and

Degrange, 2009; Sinha et al., 2017; Shah et al., 2018), which could indicate evidence of an

underlying multiplicative physical process. Light curves with a log-normal flux distribution

have the property that their amplitude of variability is linearly proportional to their mean

flux (Uttley, McHardy, and Vaughan, 2005; but see Scargle, 2020). M. Meyer, Scargle,

and Blandford (2019) studied six bright FSRQs and modeled their flux distributions using

a broken power law, though a log-normal distribution was also compatible with their data.

As we will discuss in Chapter 4, Tavecchio, Bonnoli, and Galanti (2020) have proposed an
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alternative model to describe the flux distributions of those same objects, which is based on

a stochastic differential equation. Gamma-ray observations may also be used to search for

evidence of periodic or quasi-periodic processes in blazars, such as OJ 287, which displays

optical outbursts with an approximately 12 year period (Kushwaha, Sahayanathan, and

Singh, 2013; O’Brien, 2017).

2.3.3 Populations of Gamma-ray Blazars

Blazars can be classified according to the peak frequency of their synchrotron emis-

sion. The conventional definitions are high-synchrotron-peaked (HSP) objects with νsynch >

1015 Hz, intermediate-synchrotron-peaked (ISP) objects with 1014 Hz < νsynch < 1015 Hz,

and low-synchrotron-peaked (LSP) objects with νsynch < 1014 Hz. FSRQs virtually all be-

long to the LSP class. BL Lac objects are found in all of the synchrotron peak classes, and

following Padovani and Giommi (1995), we refer to HSP, ISP, and LSP BL Lac objects as

HBLs, IBLs, and LBLs, respectively.

Empirically, a blazar’s synchrotron peak frequency is inversely correlated with its lumi-

nosity. This anti-correlation has been interpreted as a continuous blazar sequence (FSRQ –

LBL – IBL – HBL) parameterized by the decreasing intrinsic luminosity of the jet (Fossati

et al., 1998; Ghisellini et al., 2017). More recent work has disfavored the intrinsic validity of

the blazar sequence, explaining it as an artifact of Doppler boosting (Nieppola et al., 2008).

In particular, the apparent blazar sequence may in fact be merely the high-luminosity enve-

lope of two separate strong-jet and weak-jet populations, shown in Figure 2.8 (E. T. Meyer

et al., 2011; Keenan et al., 2021). Regardless of its physical interpretation or lack thereof,

the blazar sequence remains a good empirical description of the average characteristics of

blazar populations.

Accordingly, while FSRQs typically have bolometric luminosities greater than those of

BL Lac objects, they are rarely detected at TeV energies. Instead, HBLs are the dominant
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Figure 2.8: The “blazar envelope” of E. T. Meyer et al. (2011). The effect of orientation on two
separate strong-jet (A) and weak-jet (B) populations is shown with black arrows. The apparent
blazar sequence results from viewing only the high-luminosity envelope of the two populations.

VHE source population. Figure 2.9 shows the skymap and counts by source class of the

82 AGN that have been detected by IACTs at TeV energies to date. Over 60% of the

objects are HBLs, with FSRQs making up only about 10%. By contrast, FSRQs are more

commonly detected at GeV energies, comprising approximately 700 of 3100 AGN seen by

Fermi-LAT (Ajello et al., 2020; Lott, Gasparrini, and Ciprini, 2020), and dominating the

blazar population detected by EGRET (Mukherjee, 2001).

Figure 2.10 shows the redshift distribution of the TeV-detected blazars. 90% of the

detected blazars have z < 0.5, with 65% of the objects having z < 0.2. By contrast, Fermi-

LAT has detected multiple blazars with redshifts of z > 3 (Ajello et al., 2020). Part of this

discrepancy can be attributed to the fact that the BL Lac objects that dominate the TeV

source catalog have become more common at recent cosmological times, which we discuss

further in Section 5.1, as well as to the larger sample size available to Fermi. However, the
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Figure 2.9: Left: Skymap in Galactic coordinates of the TeV-detected AGN reported in TeVCat.
Right: Counts of TeV-detected AGN by source class.

absence of TeV-detected objects at high redshifts also results from an important selection

effect, which we discuss next: the absorption of VHE gamma rays by intergalactic radiation

fields.

Figure 2.10: Redshift distribution of the TeV-detected blazars reported in TeVCat.
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2.4 Blazars as a Cosmological Probe

2.4.1 Extragalactic Background Light

The star formation history of the Universe is encoded in the extragalactic background

light (EBL), a radiation field consisting of all light ever emitted by stars. The EBL comprises

an optical/ultraviolet component from unprocessed starlight and an infrared component from

starlight absorbed and reradiated by interstellar dust. Gamma-ray photons can undergo

absorption via pair production with the EBL, leaving an energy- and redshift-dependent

imprint on blazar spectra (for a review, see Dwek and Krennrich, 2013). Figure 2.11 shows

a schematic of the spectral energy distribution of the EBL along with that of the cosmic

microwave background (CMB).

Figure 2.11: Spectral energy distributions of the EBL, including its cosmic optical background
(COB) and cosmic infrared background (CIB) components, as well as the CMB, from Dole et al.
(2006). The approximate intensity of each background in nW m−2 sr−1 is written in the boxes.

Multiple theoretical models have been developed to predict the EBL intensity as a func-
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tion of wavelength and redshift (Finke, Razzaque, and Dermer, 2010; Domínguez et al.,

2011; Gilmore et al., 2012; Franceschini, Rodighiero, and Vaccari, 2008; Franceschini and

Rodighiero, 2017), taking into account star and galaxy formation and evolution, models of

the dust distribution in galaxies, and radiative transfer. These models provide the expected

optical depth of pair production with the EBL for a gamma ray of a given energy and source

redshift. Directly measuring the EBL is difficult due to interplanetary and Galactic fore-

grounds, but lower limits can be placed on it by summing the expected light from resolved

galaxies, and upper limits can be set by measuring the attenuation of gamma-ray spectra

from a conservatively assumed intrinsic spectrum, particularly for a large sample of sources

at different redshifts (e.g. Fermi-LAT Collaboration et al., 2018; Abeysekara et al., 2019).

2.4.2 Intergalactic Magnetic Field

An intergalactic magnetic field (IGMF) is present on scales at least as large as galaxy

clusters, but its origin is unclear (for a review, see Durrer and Neronov, 2013). The IGMF is

believed to have been produced by the amplification of a seed magnetic field by gravitational

collapse during cosmological structure formation. The origin of the seed field is an open

question, and it may have been formed during the early universe or by astrophysical processes

contemporaneous with the amplification during structure formation. These scenarios can be

told apart by constraining the IGMF strength and coherence length, although no direct

measurements of these quantities exist. Observations of gamma-ray blazars can be used to

probe the IGMF. When TeV gamma rays are attenuated by the EBL, they produce e+e−

pairs that can inverse Compton scatter CMB and EBL photons, inducing an electromagnetic

cascade (Protheroe and Stanev, 1993). Due to this process, TeV blazars would have an excess

at GeV energies observable by Fermi-LAT unless the pairs are deflected by a sufficiently

strong IGMF or dissipated by some other means such as plasma instabilities (Broderick, P.

Chang, and Pfrommer, 2012; but see Sironi and Giannios, 2014). If the IGMF strength is
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only moderate, the GeV emission could show up as a halo around TeV blazars. The non-

detection of such excess GeV emission on or around TeV blazars has been used to place

lower limits on the IGMF field strength (Finke et al., 2015; Ackermann et al., 2018). IACTs

have excluded IGMF field strengths around 10−15 to 10−14 G through the non-detection of

magnetically broadened emission from extremely hard-spectrum blazars where the cascade

emission would appear in the VHE range (e.g. Archambault et al., 2017b), with the limits

likely to improve further in the CTA era (M. Meyer, Conrad, and Dickinson, 2016).
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Chapter 3: Imaging Atmospheric Cherenkov Telescopes:

VERITAS and CTA

VHE gamma rays decay in the Earth’s atmosphere into extensive air showers. Measuring

these air showers with IACTs allows us to reconstruct the properties of the primary gamma

rays that produced them. In this chapter, we introduce the concepts behind the imaging

atmospheric Cherenkov technique, review how IACT data is analyzed, and describe the

VERITAS and CTA observatories, including the development of the prototype SCT.

3.1 Extensive Air Showers

3.1.1 Gamma-ray Air Showers

VHE gamma rays decay via interactions with the nuclei in air, forming an extensive

air shower. Above the critical energy E0 ≈ 84 MeV, the dominant decay process is pair

production occurring in the electromagnetic field of a nucleus, γ → e+ + e−. The presence of

a nucleus is necessary to conserve energy and angular momentum. Ionization losses become

dominant below E0. The secondary particles split the energy of the primary particle. The

secondary electrons radiate primarily through Bremsstrahlung radiation in the presence of

air nuclei to produce secondary gamma rays. These processes alternate until the secondary

particle energy drops below E0. The particles also undergo Coulomb scattering, which causes

the shower to take on a small lateral extent. The only particles produced are photons,

electrons, and positrons. The characteristic length scale of energy loss by these processes in

a given material is given by the radiation length, which has units of density times distance.
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One radiation length is the distance required for an electron to lose all but 1/e of its energy

by Bremsstrahlung, and is 7/9 of the mean free path for pair production. The radiation

length in air for an electron is X0 ≈ 37 g cm−2.

Figure 3.1: Schematic illustration of a gamma-ray-initiated air shower in the atmosphere, from
Gammell (2004).

Figure 3.1 illustrates the development of an electromagnetic air shower. A simple model

of electromagnetic air shower development was proposed by Heitler (1954). The process

starts with a primary gamma ray of energy E, which enters the atmosphere and reaches

its height of first interaction after an average of one radiation length. After every radiation

length, each particle in the shower splits into two secondary particles, each with half as

much energy, until the particle energy falls below E0. The maximum number of particles

generated in the shower is Nmax = E/E0 and the point of maximum shower development

is Xmax = log2 (E/E0)X0. The Heitler model tells us that Nmax ∝ E and Xmax ∝ logE,

suggesting that these observable variables can be used to reconstruct the shower energy.
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3.1.2 Cosmic-ray Air Showers

Cosmic rays also create extensive air showers when they enter the atmosphere. In fact,

the vast majority of all air showers detectable by IACTs are initiated by cosmic rays, ex-

cept at the highest energies. Cosmic rays are predominantly hadrons, mostly protons, along

with some heavier nuclei. A subdominant population of cosmic-ray electrons is also present.

Figure 3.2 illustrates the development of hadronic air showers, which is much more complex

than that of electromagnetic showers. Interactions with nuclei in the air produce secondary

nucleons and many pions. The pions subsequently decay into gamma rays, neutrinos, and

muons (cf. Eq. 2.16). While low-energy muons quickly decay into electrons, high-energy

muons can survive long enough to reach the ground because of time dilation. The transverse

momenta of secondary particles in hadronic showers can be much larger than in electromag-

netic showers, and hadronic showers may produce multiple electromagnetic sub-showers. Due

to these diverse possible interactions, the appearance of cosmic-ray showers can vary greatly

from event to event. Hadronic showers are initiated at lower altitudes than electromagnetic

showers, as the mean free path for a proton in air is X0 ≈ 80 g cm−2.

3.1.3 Cherenkov Radiation

The energetic charged particles in extensive air showers move faster than the speed of light

in air and therefore emit Cherenkov radiation. This phenomenon is illustrated in Figure 3.3.

A charged particle passing through a dielectric medium excites the surrounding particles,

which emit photons upon returning to the ground state. If the particle moves slowly, the

emitted radiation is spherically symmetric and cancels itself out, but if the particle is moving

faster than the speed of light in the medium, the emission interferes constructively, producing

a strong, narrow wavefront in the direction of the particle’s motion. The Cherenkov radiation

appears as a narrow cone with opening angle θ = 1/βn, where the particle velocity is βc and

38



Figure 3.2: Schematic illustration of a hadronic air shower in the atmosphere, from Gammell (2004).

n is the refractive index of the medium. At sea level, θ ≈ 1.3°.

The charged particles in an extensive air shower have nonzero transverse momenta, and

their collective Cherenkov light forms a light pool on the ground. The refractive index of air

scales with density, causing the Cherenkov opening angle to increase as the particle descends.

As a result, the lateral size of the Cherenkov light pool is roughly fixed at all altitudes, with

a radius on the ground of about 130 m, as demonstrated using Monte Carlo simulations

in Figure 3.4. The Cherenkov light arrives on the ground mostly within the span of a few

nanoseconds, with a spectrum peaking in the ultraviolet, at about 350 nm, once atmospheric

extinction is taken into account. A image of the Cherenkov shower taken from within its

light pool resembles an ellipse, with major and minor axes determined by the longitudinal

and lateral development of the shower, respectively, modified by the position and orientation

of the shower relative to the telescope.
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Figure 3.3: Conceptual diagram of Cherenkov radiation, from Cogan (2006). Left: Destructive
interference from a non-relativistic particle. Middle: Constructive interference from a relativistic
particle. Right: Geometric representation of the wavefront produced by Cherenkov radiation.

Figure 3.4: Left: Cherenkov photon density as a function of distance from the shower core derived
from simulations, showing an approximately constant density within 130 m and a rapid decrease
beyond that. Right: Simulated positions on the ground of Cherenkov photons generated by a 300
GeV primary. Figures by Gernot Maier.
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3.2 The Imaging Atmospheric Cherenkov Technique

In the IACT technique, a mirror is used to focus Cherenkov light onto a pixelated camera

which captures an image of the shower. In one sense, IACTs are essentially optical telescopes,

and operate in a similar manner. Observations must be conducted at night, under clear, dark

skies. Clouds or rain prevent observations, as does bright moonlight. However, IACTs also

have very different design requirements from standard optical telescopes. In particular, in

order to image Cherenkov showers, nanosecond time resolution is required, as is a very large

field of view (FoV) of several degrees or more. On the other hand, the angular resolution

demanded of the mirrors and camera is much less than for an optical telescope, as shower

fluctuations place a fundamental limit of about a few arcminutes on the useful optical an-

gular resolution1 (Hofmann, 2006). For more information on the methods used by imaging

atmospheric Cherenkov telescopes, the reader is referred to the review by Holder (2015).

In measuring an air shower event with an IACT, the key observable properties of the

primary particle are the particle type, arrival direction, core position, and energy. Figure 3.5

shows an example image taken by a VERITAS telescope. We discuss in Section 3.4.4 how the

shower morphology can be used to characterize the primary particle type. The telescope’s

physical position relative to where the shower landed on the ground (the shower core position)

determines where the image is located in the camera. At the same time, the coordinates

in the camera plane correspond to angular coordinates on the sky. The major axis of an

elliptical parameterization of the image should pass through the angular coordinates of the

shower origin. A single shower image therefore constrains the shower arrival direction to a

track along the sky.

Triangulating the images taken by multiple telescopes breaks this degeneracy (Hofmann

et al., 1999). The principle of stereoscopic event reconstruction is illustrated in Figure 3.6.
1This fundamental limit is approximately matched by the pixel spacing of the SCT (Section 3.6).
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Figure 3.5: An example shower image from a VERITAS telescope. The image has been cleaned to
remove the signal in pixels without any Cherenkov light, and a simple moment-based elliptical fit
is overplotted in light blue.

With multiple telescopes capturing different views of the same event, the intersection points

of the images’ major axes determine the event arrival direction and core position when the

intersection is performed in camera coordinates and in physical coordinates, respectively.

The brightness of an image increases with shower energy and decreases with distance to the

shower core position. A good estimate of the core position is therefore needed to accurately

measure the shower energy, which is proportional to the primary particle energy. If the

shower core position is far from the telescopes, the images will be close to parallel. In

this case, or when doing single-telescope analysis, the arrival direction can be estimated

from the shower morphology using the displacement method, which exploits the geometrical

relationship between the shower’s elongation and the angle at which it is viewed (Lessard

et al., 2001).

The more telescopes in an IACT array, the better. Studies on the design and layout

of IACT arrays have found that the sensitivity increases roughly as the square root of the
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Figure 3.6: Illustration of event reconstruction with an array of IACTs, from Holder (2015).

number of telescopes, and that the optimal spacing depends on the energy, with a wider

spacing preferred for higher energies (Hofmann et al., 1999; Bernlöhr et al., 2013). It is

important to realize that because a shower can be imaged from anywhere within its light

pool, the effective area of an IACT array is not limited by the total mirror area, but rather

by the characteristic size of the Cherenkov light pool along with the number and layout of

telescopes in the array. IACTs therefore have effective areas of order π(130 m)2 ∼ 105 m2,

compared to ∼1 m2 for space telescopes! This fact allows IACTs to remain sensitive to

astrophysical sources that have steeply falling power-law spectra. However, the mirror area

is also important, as it determines the minimum energy threshold of the detector.

3.3 VERITAS

The VHE gamma-ray data analyzed in this work was collected using the VERITAS array

of IACTs. The four 12-meter VERITAS telescopes at FLWO (+31° 40′ 30.21′′,−110° 57′ 7.77′′)
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have a Davies-Cotton optical design (Davies and Cotton, 1957). The optical system of each

telescope consists of 350 identical, hexagonal, aluminum-coated glass mirror facets aligned

to produce an approximately spherical reflector. This design is relatively inexpensive to pro-

duce, but has the downside of inducing spread in the arrival time of the Cherenkov photons

on the order of a few nanoseconds. Each telescope’s camera consists of a hexagonally spaced

array of 499 photomultiplier tubes (PMTs). The empty space between PMTs is recovered

with Winston light cones (Winston, 1970), shown in Figure 3.7. The VERITAS camera has

a 3.5° FoV with a pixel spacing of 0.15°. Data readout is performed using flash analog-to-

digital converters that sample the signals from the PMTs at a 500 MHz rate. In the standard

operating mode, 24 samples, corresponding to 48 ns, are read out for each event, with an

8-bit dynamic range per sample.

Figure 3.7: A view of the Winston light cones on top of the PMTs in the VER-
ITAS camera. In normal operation, all PMTs are covered with light cones.
From the VERITAS webpage, https://veritas.sao.arizona.edu/about-veritas/
atmospheric-cherenkov-technique-and-veritas-technologies.

Fluctuations in the night sky background level as well as Cherenkov light radiated by

high-energy cosmic-ray muons close to the ground can produce spurious background signals
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in individual telescopes. VERITAS uses a three-level hardware trigger system to eliminate

these backgrounds, referred to as L1, L2, and L3 triggers. The L1 trigger is a pixel-level

trigger, in which each PMT is connected to a constant-fraction discriminator (CFD) that

issues a trigger if the charge depositied in the PMT passes a pre-determined threshold.

The CFD threshold is optimized for sensitivity to the faintest possible Cherenkov showers

while still ignoring night sky background fluctuations (a similar procedure is performed

for the pSCT; see Section 6.1.1). The L2 trigger further cuts down on noise by requiring

three neighboring pixels to trigger within a coincidence window of about 5 ns (Zitzer and

VERITAS Collaboration, 2013). In order to eliminate the background from local muons,

the L3 trigger requires that a signal be present in at least two telescopes for an event to be

recorded (Weinstein, 2008).

VERITAS is sensitive to gamma rays from about 100 GeV to over 30 TeV, although the

energy threshold increases for sources observed at low elevation. The energy resolution is

about 20%, and the gamma-ray angular resolution, defined as 68% containment radius, is

about 0.08° at 1 TeV, increasing to 0.13° at 200 GeV. The sensitivity of VERITAS as a

function of exposure time is shown in Figure 3.8. VERITAS is located at an altitude of

1268 m and, given its latitude of about 31°, is able to observe sources with declinations

between approximately −10° and 70°. VERITAS typically acquires about 70-100 hours of

data per month, totaling approximately 1000 hours per year. The observatory does not

operate during Arizona’s summer monsoon season. About 20% of the data that is normally

collected annually is taken with a higher energy threshold under partial moonlight conditions.

VERITAS regularly monitors known and candidate TeV blazars and follows up flaring

events seen in its own and multiwavelength observations (e.g. Benbow, 2019). In particular,

VERITAS preferentially performs observations of FSRQs when they exhibit an elevated flux

in other wavebands, as a flare at TeV energies might also be occurring. VERITAS also carries

out short monitoring observations of FSRQs. Because these sources are not believed to be
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Figure 3.8: Sensitivity of the VERITAS array as a function of exposure time, from the VERITAS
webpage, https://veritas.sao.arizona.edu/about-veritas/veritas-specifications.

strong emitters of TeV gamma rays except during flares, the primary aim of these monitoring

observations is to self-trigger on serendipitous flares.

3.4 Analyzing IACT Data

IACT data analysis can be factorized into independent stages. Each stage can be thought

of as transforming the data from a lower to a higher data level (Deil et al., 2017): raw traces or

waveforms (DL0); calibrated images and, usually, extracted parameters (DL1); reconstructed

showers (DL2); gamma-ray event lists (DL3); science products such as sky maps, spectra,

and light curves (DL4); and source catalogs (DL5).

The analysis of VERITAS data is performed using two different software packages, Event-

Display (Maier and Holder, 2017) and the VERITAS Gamma-ray Analysis Suite (VEGAS;

Cogan, 2008). The VERITAS analysis presented in this work was performed using Event-

Display. It has been cross-checked with independent analyses using VEGAS. EventDisplay

consists of three tools, evndisp, mscw_energy, and anasum, that perform different stages of
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the analysis. Table 3.1 breaks down the analysis stages, giving their corresponding Event-

Display tools and data levels. For CTA data analysis, the ctapipe software package is being

developed (Kosack et al., 2020b).

Analysis stage EventDisplay tool Data level
Calibration evndisp DL0 → DL1

Image Analysis evndisp DL1
Event Reconstruction mscw_energy DL1 → DL2
Background Rejection anasum DL2 → DL3
Results Extraction anasum DL3 → DL4

Table 3.1: Stages of an IACT data analysis.

3.4.1 Calibration

Each pixel’s raw digitized samples are converted into an integrated charge. This is done

using a trace integration algorithm, which must be optimized to extract as much signal as

possible without excessive dilution by background electronics noise (e.g. Cogan, 2006). This

stage also involves applying relative gain corrections, which are determined by uniformly

illuminating the camera with pulses from an LED “flasher” (Hanna et al., 2010), as well as

timing corrections required due to differences in the cabling path length in each channel.

Broken or noisy pixels are also excluded from the analysis at this stage.

3.4.2 Image Analysis

Next, the calibrated camera images are processed to extract relevant features for the

analysis. In a standard analysis, the images are first cleaned and then parameterized. In the

standard two-level cleaning method, a pixel is retained if its charge exceeds either a specified

image threshold (making it an image pixel) or a lesser border threshold if it is adjacent to

an image pixel (Hillas et al., 1998). Next, a number of parameters (Hillas parameters)

are derived from each image (Hillas, 1985). The Hillas parameters, pictured in Figure 3.9,
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include the second moments of the image - its length and width - along with measures of the

shower’s total size and its orientation and position in the camera.

Figure 3.9: Hillas parameterization of a shower image, from D. J. Fegan (1997).

Hillas parameterization is a simple and computationally efficient way to summarize the

basic characteristics of an IACT image, but it has shortcomings. Most importantly, it

discards most of the detail in the image, potentially wasting information. This is particularly

relevant when using a high-resolution camera. The image moments depend strongly on the

cleaning level, potentially introducing a tradeoff between optimizing for event reconstruction

and background rejection. Also, moment-based parameterization cannot handle incomplete

images that are cut off at the edge of the camera, although this is less of an issue for likelihood-

based fitting methods. For these reasons, it is worth studying methods potentially able to

extract more useful information from the images. In particular, deep learning methods can

operate directly on calibrated camera images, going straight from DL1 to DL3 data and

skipping parameterization entirely. We explore these techniques in Chapter 7.
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3.4.3 Event Reconstruction

Event reconstruction using telescope-level parameters can be done using stereoscopic

reconstruction or the displacement method, as described in Section 3.2. Due to intrinsic

shower fluctuations and measurement errors, the best reconstruction is not uniquely deter-

mined. The arrival direction and core position can be estimated in several ways, such as by

finding the point that minimizes the distance to the image axes of all of the telescopes, or

by taking the mean of pairwise intersection points. The contribution from each telescope

or pair of telescopes should be weighted to favor telescopes with brighter, more informative

images, as well as pairs of telescopes whose image axes are perpendicular.

3.4.4 Background Rejection

The sensitivity of IACTs depends strongly on efficiently rejecting the background of much

more numerous cosmic-ray showers, which resemble those produced by gamma rays but tend

to have a more complex morphology. Particle classification is therefore based on the image

shape. Hadronic showers can be distinguished from gamma-ray showers by their larger and

more irregular overall lateral extent, the possession of multiple electromagnetic sub-showers,

and the presence of rings emitted by high-energy muons close to the telescope. Paramet-

rically, the images of these showers tend to have a larger width. More subtle properties

that could potentially be exploited by a high-resolution detector and sophisticated analysis

method are illustrated in Figure 3.10, including low-intensity Cherenkov light emitted by

the hadronic particles in the showers and direct Cherenkov emission from the primary par-

ticle emitted before the actual shower development (de Naurois and Rolland, 2009). Most

cosmic-ray showers are initiated by protons, and the showers initiated by heavier nuclei are

typically easier to distinguish from gamma-ray showers (Archer et al., 2018). Cosmic-ray

rejection can therefore be approximated by the task of gamma/proton classification.
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Figure 3.10: Illustration of features distinguishing hadronic from gamma-ray showers, from de
Naurois and Rolland (2009). Left: image clusters corresponding to electromagnetic sub-showers.
Middle: low-intensity Cherenkov light emitted by the hadronic portion of the shower. Right:
Cherenkov emission emitted when the primary particle enters the atmosphere prior to the actual
shower development.

Although most cosmic-ray showers are hadronic, at very high cut efficiencies, the showers

initiated by cosmic-ray electrons can become a relevant population. These showers are purely

electromagnetic, and therefore very difficult to distinguish from gamma-ray showers. Two

subtle differences theoretically enable some statistical separation: first, electron-initiated

showers start emitting Cherenkov light about one radiation length higher in the atmosphere,

and second, these showers contain an additional component due to the Cherenkov radiation

emitted by the primary electron (Hofmann, 2006). However, with current instruments, this

background is usually considered irreducible.

Like event reconstruction, background rejection is generally performed using stereo vari-

ables constructed from the telescope parameters. In EventDisplay, the shower morphology

is described using the mean reduced scaled width (MRSW ) and length (MRSL), defined as

(Krause, Pueschel, and Maier, 2017)

MRSW = 1
Nimages

Nimages∑
i=1

(
wi − ŵMC(Ri, si)

σwMC(Ri,si)

)(
ŵMC(Ri, si)
σwMC(Ri,si)

)2

, (3.1)

and
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MRSL = 1
Nimages

Nimages∑
i=1

 li − l̂MC(Ri, si)
σlMC

(Ri, si)

 l̂MC(Ri, si)
σlMC

(Ri, si)

2

, (3.2)

where for each telescope i, w and l are the Hillas width and length parameters, R is the dis-

tance to the shower core position, and s is the size, the total charge deposited in the camera,

which is a proxy for shower energy. The ŵMC and l̂MC parameters are the medians of the

width and length distributions derived from simulations, and σwMC
and σlMC

are the stan-

dard deviations of those distributions. Other useful parameters include the weighted mean

height of maximum shower development, determined using the parallax distance calculated

with all pairs of telescopes, and the size of the largest or second-largest image.

The simplest classification method using these parameters is to apply box cuts by plac-

ing an independent selection threshold on each parameter without taking into account any

possible nonlinear interactions or correlations. To go beyond box cuts, a number of different

classification methods based on machine learning have been developed, and are reviewed in

Section 7.1. The cut thresholds that maximize the sensitivity depend on the strength and

spectrum of the source. In EventDisplay, separate cuts are provided that are optimized for

sources expected to have soft, medium, and hard spectra.

3.4.5 Results Extraction

We can now assess if the data contain a signal. In gamma-ray astronomy, the night sky

background varies depending on the weather, telescope elevation, and positions of the Moon

and stars. We must therefore estimate the background rate from the data and take the

uncertainty on this estimation into account when calculating the statistical significance of

the signal. If we measure Non counts from the source region and Noff counts from a control

region, the observed signal is
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NS = Non − αNoff , (3.3)

where α = ton/toff is the ratio of exposure taken on each region. In practice, one usually

estimates the “on” and “off” counts from the same run, using different regions of the FoV.

Two commonly used background models are ring background and reflected regions,

demonstrated in Figure 3.11. In the ring background model, the control region is taken

to be a ring around the source region, while in the reflected regions model, it consists of a set

of separate regions at the same distance from the camera center as the source region. The

camera acceptance is radially dependent, so energy-dependent acceptance corrections must

be applied when using the ring background model. For this reason, the reflected regions

model is a better choice when measuring energy spectra. When using these models, the

regions surrounding any other potential gamma-ray sources in the FoV are excluded, as are

the positions of bright stars that could produce spurious signals.

Figure 3.11: Schematic illustration of the ring background (left) and reflected regions (right) back-
ground models, from Berge, Funk, and J. Hinton (2007).
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The significance can now be estimated using Equation 17 of T.-P. Li and Ma (1983),

S =
√

2
{
Non ln

[1 + α

α

(
Non

Non +Noff

)]
+Noff ln

[
(1 + α)

(
Noff

Non +Noff

)]}1/2
. (3.4)

A approximation to this formula, valid when the numbers of on and off counts are not

too small, is Equation 9 of T.-P. Li and Ma (1983),

S = Non − αNoff√
α(Non +Noff)

. (3.5)

If the significance meets the threshold for detection of S = 5 standard deviations, we

can now estimate the flux of the source and derive high-level data products, such as a light

curve, spectrum, and skymap. The effective area of the detector derived from simulations is

used to convert the measured number of counts into a photon flux (cm−2 s−1) or energy flux

(erg cm−2 s−1). Fluxes are sometimes also reported in Crab Units, where 1 Crab is the flux

of the Crab Nebula in the energy range being considered.

3.5 Cherenkov Telescope Array (CTA)

CTA, the next-generation observatory for VHE gamma-ray astronomy, will improve on

the sensitivity of current-generation instruments by an order of magnitude and cover energies

from 20 GeV to more than 300 TeV using large arrays of telescopes in three sizes: large-

sized telescopes (LSTs), medium-sized telescopes (MSTs), and small-sized telescopes (SSTs),

designed to access gamma rays at low, medium, and high energies, respectively (e.g. Acharya

et al., 2013; Hassan et al., 2017; Acharyya et al., 2019). The telescopes being developed for

CTA are illustrated in Figure 3.12, and the expected sensitivity of CTA compared to current-

generation instruments, including VERITAS and Fermi-LAT, is shown in Figure 3.13.
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The CTA Observatory will consist of two separate arrays, allowing it to operate in both

the Northern and Southern Hemispheres. The Northern site will be located at the Roque

de los Muchachos Observatory on the island of La Palma in the Canary Islands, Spain, and

will contain 4 LSTs and 15 MSTs in the baseline array configuration. The Southern site will

be located near the Paranal Observatory in the Atacama Desert in Chile, and will contain 4

LSTs, 25 MSTs, and 70 SSTs in the baseline array configuration. The CTA Observatory will

be operated as a open observatory, accepting guest observer proposals and publicly releasing

data once a CTA Consortium proprietary period has elapsed.

The CTA telescopes feature upgraded technology compared to current-generation tele-

scopes. The LST has a 23-meter-diameter parabolic mirror and a camera with 1855 PMTs,

providing a 4.3° field of view (FoV). With its large mirror area, the LST is well suited to

capture images from low-energy gamma rays that produce little Cherenkov light, making it

the primary driver of the full system sensitivity to gamma rays between 20 and 150 GeV.

Several designs are being developed for the MST, CTA’s “workhorse” telescope driving

the sensitivity in the core energy range of 150 GeV – 5 TeV. An 11.5 m single-mirror tele-

scope is being developed with two possible camera systems, NectarCam and FlashCam, each

containing approximately 1800 PMTs and providing a FoV of approximately 7.5°. The other

candidate MST for CTA is the Schwarzschild-Couder Telescope (SCT), which features an

innovative dual-mirror optical system and high-resolution camera based on silicon photo-

multipliers (SiPMs). The SCT and its component technologies are discussed in detail in

Section 3.6 below.

Finally, the SST will be both the smallest and most numerous of the CTA telescopes,

making it the most suitable to detect the extremely bright but rare showers initiated by

gamma rays of energies between 5 and 300 TeV. While the research described in this work

was being conducted, three SST designs were being developed for CTA: ASTRI-Horn, GCT-

CHEC, and SST-1M. SST-1M is a conventional single-mirror design using a PMT-based
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Figure 3.12: Rendering of the telescopes being developed for CTA, from Diaz (2020). Left to right:
SST, SCT, single-mirror MST, LST.

Figure 3.13: Differential flux sensitivity of CTA, compared to current-generation instruments, from
CTA Observatory (2019). The differential sensitivity is defined as the minimum flux needed by
CTA to obtain a 5σ detection of a point source. The CTA performance curves are derived from
simulations similar to those presented in Bernlöhr et al. (2013).
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camera. ASTRI-Horn, the telescope design of the Astrofisica con Specchi a Tecnologia Repli-

cante Italiana (ASTRI) Project (Lombardi et al., 2020), and GCT-CHEC, a telescope using

the Gamma Cherenkov Telescope (GCT) optical system (Blanc et al., 2018) and the Com-

pact High-Energy Camera (CHEC) camera (Zorn et al., 2018), are dual-mirror designs using

SiPM-based cameras, similar to the SCT. In June 2019, it was decided that a single SST

design will be developed for CTA combining the ASTRI optical system and CHEC camera,

taking into account the experience gained from all designs.

3.6 Schwarzschild-Couder Telescope (SCT)

The SCT has an optical system with two aspheric mirrors, in which light reflects off of

the larger (9.7 m) primary mirror onto the smaller (5.4 m) secondary mirror and is in turn

reflected onto the camera focal plane (Vassiliev, S. Fegan, and Brousseau, 2007). The optical

system is segmented. The primary mirror is divided into an inner ring with 16 panels and

an outer ring with 32 panels, and the secondary mirror is similarly composed of an 8-panel

inner ring and a 16-panel outer ring. The alignment of these mirrors is a complex operation

which is enabled by a system of stepper motors and edge sensors connected to the mirror

panels (C. Adams et al., 2020a,b).

The Schwarzschild-Couder design has several advantages over Davies-Cotton telescopes.

First, the optical system is aplanatic, or free of spherical and coma aberrations, which

widens the potential FoV of the camera. In addition, the plate scale at the focal plane is

greatly reduced, allowing the SCT to use a finely-pixelated camera composed of an array of

high density SiPMs, which have higher photon detection efficiency compared to PMTs. The

camera’s 0.067° pixelation allows it to record images of Cherenkov showers at high resolution,

improving the instrument’s energy estimation, angular resolution, and background rejection,

while maintaining a large 7.6° FoV. The improved angular resolution increases the sensitivity
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to point sources, and in combination with the wide FoV, enables detailed mapping of spatially

extended sources. The wide FoV also enhances the efficiency of survey observations and

follow-up searches for poorly localized transient events, such as gamma-ray bursts, high-

energy neutrinos, and gravitational waves. In particular, the off-axis performance of the

SCT is greatly improved compared to the single-mirror MST. Replacing all MSTs in CTA

with SCTs would improve the off-axis angular resolution of the array by 40% and halve the

observation time required to achieve a given off-axis sensitivity, especially at low energies.

Figure 3.14: The prototype Schwarzschild-Couder telescope installed at the Fred Lawrence Whipple
Observatory, from C. B. Adams et al. (2021).

A prototype SCT (pSCT) has been constructed alongside VERITAS at FLWO. Fig-

ure 3.14 shows a picture of the pSCT, which is situated about 35 meters from the nearest
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VERITAS telescope. The pSCT was inaugurated and took first light data in January 2019,

and detected the Crab Nebula during observations in January and February 2020 (C. B.

Adams et al., 2021).

The SCT camera has a modular, hierarchical design, in which the focal plane is divided

into nine sectors. Each sector contains either 25 modules or, in the corner sectors, 13 modules,

for a total of 177. The modules are divided into two parts, separated by insulating foam:

the focal plane module (FPM) holding the SiPM tiles and the front-end electronics (FEE)

housed in an aluminum cage. Each FPM contains 64 image pixels, for a total of 11,328

pixels. For purposes of triggering, the pixels are grouped into fours, so that each FPM has

16 trigger pixels. To reduce astigmatism, the focal plane surface is curved. Figure 3.15

illustrates the hierarchical design of the SCT camera. A full description of the design and

performance of the pSCT camera is given by Taylor (2021).

Figure 3.15: Diagram of the SCT camera showing its hierarchical design, from Taylor (2021).
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In addition to the modules, the camera system also includes backend electronics and

auxiliary subsystems. The modules in each sector are controlled for purposes of triggering

and data readout through a backplane, which is a printed circuit board. The backplane

contains two field-programmable gate arrays (FPGAs), consisting of a housekeeping FPGA

that provides slow control and monitoring functions and a trigger FPGA that sends signals

to the modules to trigger based on coincidence logic or an external command. Two custom

data acquisition (DACQ) boards for each sector handle data acquisition by routing the data

from the front-end electronics in the modules to a data server.

In the current pSCT camera, only the central sector is populated with modules, for a

total of 25 modules and 1600 image pixels2. The backend electronics therefore consist of one

backplane and two DACQ boards. The FEE of each module in the pSCT camera contains

four custom TARGET 7 (seventh generation TeV Array Readout with GSa/s sampling and

Event Trigger) application-specific integrated circuits (ASICs) for digitization and triggering

(Funk et al., 2017). Figure 3.16 shows a block diagram of the pSCT camera subsystems.

2As of this writing, the central module is not installed in order to enable procedures for optical alignment,
leaving 24 modules.
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The camera system includes a number of auxiliary subsystems:

• Power Supplies: The power supplies for the camera components are mounted on

a rack in a cabinet on the telescope, behind the camera. An Acopian power supply3

provides power to the camera fans, while a Wiener PL506 power supply4 powers the

other components, including each module’s FPM and FEE. The PL506 unit provides

a main supply current and a high voltage (HV) current in two separate channels.

• Chiller: The module electronics and camera power supplies are cooled via heat ex-

change with a chilled coolant line supplied by a Dimplex SVO-5001M 60000 BTU chiller

unit. From the chiller unit, the chilled coolant is sent through a manifold containing

a pressure regulator which reduces the pressure to approximately 3 psi, compensating

for differing pressures at different elevations of the telescope. The coolant tempera-

ture and pressure are monitored by sensors in the manifold, which are connected to

a ControlByWeb X-320 web-based instrumentation module. The coolant then passes

through heat exchangers connected to the FPMs and to the camera power supplies.

The FPM temperatures are stabilized and monitored by Peltier micro-controllers.

• Fans: In addition to the cooling provided by the chiller, the camera is also cooled by

eight Pabst EBM 6314 fans.

• Shutter: When not in use, the camera is protected from weather and daylight by a

motorized commercial rollup shutter. The shutter is connected to a motor controller

which can be controlled via a ControlByWeb X-301 WebRelay-Dual remote relay con-

troller, as well as manually by using a remote control.

• Flashers: In order to calibrate the throughput of the camera and relative gains of the

pixels, three LED flashers are installed on an optical table located at the center of the
3https://www.acopian.com/single-s-1u-m.html
4http://www.wiener-d.com/sc/power-supplies/pl500/pl506.html
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secondary mirror. Each flasher has ten LEDs. The flashers are programmable, so that

the pulse rate and LED activation pattern can be changed dynamically.

An upgrade to fully populate the camera with 9 backplanes and all 177 modules is planned

for December 2022 (Meures, 2019). As part of this effort, many camera components will be

redesigned and upgraded, including the backplane; the modules, encompassing both the

SiPMs and the TARGET ASICs; and multiple auxiliary subsystems including the camera

fans, shutter, and flashers.
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Chapter 4: Variability and Spectral Characteristics of Three

Flaring Gamma-ray Quasars Observed by VERITAS and

Fermi-LAT

Flat spectrum radio quasars (FSRQs) are the most luminous blazars at GeV energies,

but only rarely emit detectable fluxes of TeV gamma rays, typically during bright GeV flares.

In this chapter, we explore the gamma-ray variability and spectral characteristics of three

FSRQs that have been observed at GeV and TeV energies by Fermi-LAT and VERITAS,

making use of almost 100 hours of VERITAS observations spread over 10 years: 3C 279,

PKS 1222+216, and Ton 599, including VERITAS detections of PKS 1222+216 and Ton 599

during Fermi-LAT flares. Using these datasets, we study the variability of these FSRQs over

long and short timescales and their behavior at GeV and TeV energies during fast flares. The

contents of this chapter are based on a journal article led by the author, conducted jointly

within the VERITAS and Fermi-LAT collaborations, that has been prepared for submission

to the Astrophysical Journal (Brill et al., 2021). All figures and tables in this chapter, other

than those in Section 4.2.1, have been taken from that work.

In Section 4.1 we describe the observations of the three FSRQs that we study in this chap-

ter, and in Section 4.2 we report on the data analysis. In Section 4.3, we explain the GeV flux

distributions of the sources in terms of a model derived from a stochastic differential equa-

tion and estimate the timescales of magnetic flux accumulation and stochastic instabilities

in their accretion disks. In Section 4.4, we identify distinct flares using a procedure based on

Bayesian blocks, and in Sections 4.5 and 4.6, we analyze their daily and sub-daily variability

and gamma-ray energy spectra, respectively. In Section 4.7, using observations from VERI-
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TAS as well as Fermi, Swift, and the Steward Observatory, we model the broadband spectral

energy distributions of PKS 1222+216 and Ton 599 during VHE-detected flares in 2014 and

2017, respectively. This modeling places strong constraints on the jet Doppler factors, which

we use in Section 4.8 to further constrain the gamma-ray emission region locations during

these events. In Section 4.9, we place theoretical constraints on the potential production

of PeV-scale neutrinos during these VHE flares. Finally, in Section 4.10, we describe the

contributions of others to the work presented in this chapter.

Throughout this chapter, a flat ΛCDM cosmology was used, with H0 = 69 km s−1 Mpc−1,

ΩM = 0.286, and ΩΛ = 0.714.

4.1 Observations of Three FSRQs

In this work, we investigate strong gamma-ray flares from three FSRQs at intermediate

redshifts. 3C 279, at z = 0.536 (Lynds, Stockton, and Livingston, 1965), is one of the most

well-studied blazars. It is among the brightest and most variable extragalactic objects in the

gamma-ray sky, giving rise to one of the first large amplitude gamma-ray flares measured

by EGRET in 1996 (Wehrle et al., 1998). In recent times, it underwent multiple bright

gamma-ray flares in 2014, 2015, and 2018. Notably, during a flare beginning on June 16,

2015, it was detected by H.E.S.S., and Fermi-LAT observed minute-scale variability (Romoli

et al., 2017; Ackermann et al., 2016). H.E.S.S. again detected 3C 279 during flaring states

in January and June 2018 (Emery et al., 2019).

PKS 1222+216, at z = 0.432 (Osterbrock and Pogge, 1987) and also known as 4C +21.35,

has exhibited periods of extreme variability in the VHE gamma-ray band, with VHE detec-

tions occurring during gamma-ray flares in June 2010 (Aleksić et al., 2011) and February

and March 2014 (Holder, 2014).

Finally, Ton 599, at z = 0.725 (Schneider et al., 2010; see also Burbidge, 1968) and
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Fermi-LAT

Source z Date Range Energy Time No. Flare Threshold
Range Binning Bins (No. Flares)

[UT] [GeV] [day] [ph cm−2 s−1]

3C 279 0.5362 2008-08-04 – 2018-12-07 0.1-500 1 3471 4× 10−6 (10)
PKS 1222+216 0.432 2008-08-04 – 2018-12-07 0.1-500 3 1158 5× 10−7 (11)
Ton 599 0.725 2008-08-04 – 2018-12-12 0.1-500 7 512 5× 10−7 (5)

VERITAS

Source z Energy Threshold Exposure No. Obs.
[GeV] [hr]

3C 279 0.5362 200 54.4 139
PKS 1222+216 0.432 110 34.7 95
Ton 599 0.725 140 8.8 20

Table 4.1: Overview of the Fermi-LAT and VERITAS datasets presented in this work. For VER-
ITAS, the energy threshold varies for different observations. A typical value is quoted for 3C 279
and the values during the VHE-detected flares are quoted for PKS 1222+216 and Ton 599.

also known as 4C +29.45 and B1156+295, entered a months-long HE high state in October

2017 (Cheung, Gasparrini, and Buson, 2017), leading to VHE detections on the nights of

December 15 and 16 2017 (Mirzoyan, 2017; Mukherjee, 2017).

These three sources were continuously monitored by Fermi-LAT during the ten-year

period from 2008 to 2018, and observed during periods of high gamma-ray activity by VER-

ITAS. The VERITAS observations of 3C 279, PKS 1222+216 and Ton 599 that were si-

multaneous with the HE flares considered here were taken in response to the elevated fluxes

reported by Fermi-LAT. For 3C 279 and PKS 1222+216, additional monitoring observations

provided VERITAS data corresponding to low states observed by Fermi-LAT. Table 4.1 gives

an overview of the gamma-ray data analyzed in this work. The Fermi-LAT light curves of

the three sources and the periods of the VERITAS observations are shown in Figure 4.1.

The LAT time binnings, reported in Table 4.1, were chosen for each source depending on its

typical strength to avoid having an excessive number of bins with no detection.
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Figure 4.1: Fermi-LAT light curves of 3C 279 (top), PKS 1222+216 (middle), and Ton 599 (bot-
tom). The flux points (red squares) are shown for 1, 3, and 7 day time bins for the three sources,
respectively. 5σ Bayesian blocks are shown with blue lines. The time intervals in which VERITAS
observed the sources are marked in magenta. For 3C 279, time intervals in which the Sun is less
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(see Section 4.6) is marked with a dashed line.
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4.2 Data Analysis

4.2.1 VERITAS

The total exposure taken by VERITAS on each of the sources is reported in Table 4.1.

The VERITAS data were inspected for data quality and the time intervals affected by weather

or instrumental issues were excluded from the analysis. The data were analyzed using Event-

Display (Maier and Holder, 2017) and independently cross-checked using VEGAS (Cogan,

2008). Boosted decision trees with soft selection cuts (appropriate for sources with a spectral

index softer than Γ ≈ 3.5) were used for separating gamma rays from background cosmic rays

(Krause, Pueschel, and Maier, 2017). The reflected regions background model was used. The

upper limits were calculated using the method of Rolke, López, and Conrad (2005). Pre-

liminary analysis results of the VERITAS observations of 3C 279 and PKS 1222+216 in

2013 and 2014 were reported by Errando, 2014. These are superseded by the more updated

analysis reported here.

Because VERITAS did not detect 3C 279, we defined discrete time periods to analyze

based on the flares observed with Fermi-LAT. In Section 4.4, we describe the algorithm we

used to define ten flare intervals and a “quiescent” non-flaring period. The time periods of

these intervals are given in Table 4.7. Of the ten flares, five had corresponding VERITAS

observations. The results of the VERITAS analyses for each flare of 3C 279 and the quiescent

period are reported in Table 4.2. A representative sky map and significance distribution from

one of the flares, Flare 3, is shown in Figure 4.2. The sky map is a correlated (smoothed)

significance map, such that the significance at each point is calculated also using events

in neighboring spatial bins, with the smoothing radius set equal to the size of the source

exclusion region. The significance distribution (histogram of sky map bins) is well represented

by a normal distribution with a mean of zero and a standard deviation of one, consistent

with the background distribution expected for an empty field.
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Event tobs tlive Non Noff α σ Avg. El. Ethresh,obs
[hr] [hr] [deg] [GeV]

Flare 3 8.07 5.94 225 2014 0.1 1.55 50.1 200
Flare 4 1.51 0.91 24 341 0.1 -1.75 40.4 500
Flare 6 1.80 1.19 27 223 0.1 0.92 51.2 250
Flare 8 1.00 0.74 18 135 0.1 1.11 51.1 200
Flare 10 4.00 3.51 109 769 0.1 3.26 49.3 250
Quiescent 42.23 35.23 1160 11620 0.1 -0.06 50.3 200

Table 4.2: VERITAS analysis results for 3C 279. tobs is the total exposure taken on the source,
while tlive is the total exposure minus deadtime (typically ∼10%) and time cuts for data quality,
generally necessitated by adverse weather. Ethresh,obs is the approximate energy threshold of the
observations, which tends to increase at lower average elevations.
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Figure 4.2: Left: sky map for a representative flare of 3C 279 (Flare 3). Right: significance
distribution for the same event. Distributions are shown for all bins (red), the source and other
exclusion regions excluded (black), and just the source region excluded (blue), along with a normal
distribution with mean 0 and standard deviation 1 (green).
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Source tobs tlive Non Noff α σ Avg. El. Ethresh,obs
[hr] [hr] [deg] [GeV]

PKS 1222+216 7.90 5.87 370 2602 0.1 6.06 75.1 110
Ton 599 2.50 2.15 203 780 0.1 11.0 70.3 140

Table 4.3: VERITAS analysis results for PKS 1222+216 and Ton 599 during their VHE flares. tobs
is the total exposure taken on the source, while tlive is the total exposure minus deadtime (typically
∼10%) and time cuts for data quality, generally necessitated by adverse weather. Ethresh,obs is the
approximate energy threshold of the observations.

Ebin Emin Emax E2 dN/dE
[GeV] [GeV] [GeV] [10−12 erg cm−2 s−1]
141 112 178 6.3± 3.2
224 178 282 1.8± 1.0
531 282 1000 < 0.95

Table 4.4: VERITAS spectrum of PKS 1222+216 during its VHE flare. The last point is an upper
limit at the 95% confidence level.

For PKS 1222+216 and Ton 599, we report the analysis results during their detections

by VERITAS, which occurred between February 26 and March 10, 2014, and December 15

and December 16, 2017, respectively. The analysis results for the two sources are reported

in Table 4.3. The sky map, significance distribution, and spectral points are given for

PKS 1222+216 in Figure 4.3 and Table 4.4, and for Ton 599 in Figure 4.4 and Table 4.5.

Ebin Emin Emax E2 dN/dE
[GeV] [GeV] [GeV] [10−12 erg cm−2 s−1]
168 141 200 28.1± 9.8
237 200 282 14.1± 3.1
335 282 398 5.3± 1.9
631 398 1000 1.3± 0.7

Table 4.5: VERITAS spectrum of Ton 599 during its VHE flare.
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Figure 4.3: Left: sky map for PKS 1222+216 during its VHE flare. Right: significance distribution
for the same event. Distributions are shown for all bins (red), the source and other exclusion regions
excluded (black), and just the source region excluded (blue), along with a normal distribution with
mean 0 and standard deviation 1 (green).
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Figure 4.4: Left: sky map for Ton 599 during its VHE flare. Right: significance distribution for the
same event. Distributions are shown for all bins (red), source and other exclusion regions excluded
(black), and just the source region excluded (blue), along with a normal distribution with mean 0
and standard deviation 1 (green).
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4.2.2 Fermi-LAT

We performed an unbinned likelihood analysis of the data using the LAT Fermitools

1.0.3 and instrument response functions P8R3_SOURCE_V2. We analyzed the data in the

10.3 year period starting on August 4, 2008 (MJD 54682.7), the start of the Fermi-LAT

all-sky survey, as reported in Table 4.1. The energy range from 0.1 GeV to 500 GeV was

analyzed, and photons with zenith angle > 90° were excluded to reduce contributions from

the Earth’s limb. For each source, the region of interest (ROI) considered was the circle

of radius 10° surrounding the catalog source position. The background model consisted of,

along with galactic (gll_iem_v06.fits) and isotropic (iso_P8R3_SOURCE_V2.txt) diffuse

emission models, all sources in the FL8Y catalog1 within a 20° circle surrounding the source.

This is to ensure that the model would include gamma-ray emission from sources outside

the ROI that could extend into the ROI due to the size of the point spread function of the

LAT, especially at low energies.

When performing the likelihood fit, we iteratively fixed the parameters of the least sig-

nificant sources until convergence was reached. Sources with TS less than zero were removed

from the model. When fitting individual light curve and SED points, the spectral parameters

were kept fixed, either to their catalog values for global analyses or to values determined

by analyzing the entire flare duration for flare analyses, with the diffuse background model

normalization parameters left free. We checked that the background model we used is con-

sistent with the 4FGL-DR2 catalog (Abdollahi et al., 2020; Ballet et al., 2020), finding no

new bright, variable sources in the ROI of each of the three FSRQs that could significantly

impact the analysis of our sources. We excluded time ranges corresponding to solar flares

and gamma-ray bursts in the ROI from the analysis.

Since 3C 279 lies close to the ecliptic, the Sun and Moon contribute diffuse foreground
1https://fermi.gsfc.nasa.gov/ssc/data/access/lat/fl8y/
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emission in the ROI of this source during certain periods (Abdo et al., 2011, 2012). We

checked using a likelihood analysis containing extended templates for the Sun and Moon

emission that the flux of 3C 279 does not change significantly for time bins in which the Sun

or Moon is more than 5◦ from the source. Since both the Sun and Moon were more than

20° from 3C 279 during all of the flare states identified in Section 4.4, no contamination is

expected during any of these periods.

4.2.3 Swift-XRT

The X-Ray Telescope (XRT) on the Neil Gehrels Swift observatory is a grazing-incidence

focusing X-ray telescope, and is sensitive to photons with the energies between 0.2 and

10 keV (Gehrels et al., 2004; Burrows et al., 2005). Swift-XRT observed PKS 1222+216 and

Ton 599 during the VHE flares of those sources.

The Swift-XRT data were extracted from the Swift data archive and analyzed using

HEASoft v6.24. The fluxes and flux errors were deabsorbed using the fixed total column

density of Galactic hydrogen NH = 2.29×1020 cm−2 for PKS 1222+216 and 1.89×1020 cm−2

for Ton 599 (Kalberla et al., 2005; Willingale et al., 2013) and the photoelectric cross section

σ(E) to account for the effects of neutral hydrogen absorption. The deabsorbed X-ray

spectrum was fitted with a broken power law model for PKS 1222+216 and a power law

model for Ton 599.

4.2.4 Swift-UVOT

The ultraviolet/optical telescope (UVOT) on the Neil Gehrels Swift observatory is a

photon counting telescope sensitive to photons with energies ranging from about 1.9–7.3 eV

or 170 - 550 nm (Roming et al., 2005). Swift-UVOT observed PKS 1222+216 and Ton 599

approximately concurrently with Swift-XRT.

The UVOT data were extracted from the Swift data archive and analyzed using HEASOFT
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v6.28. The counts from the sources and the background were extracted from regions of

a radius of 5.0′′ centered on the position of the sources and nearby positions without any

bright sources, respectively. The magnitude values of the sources were computed using

uvotsource, and converted to fluxes using the zero-points given by Poole et al. (2008).

Extinction corrections were applied following Roming et al. (2009), using the reddening

values E(B − V ) = 0.0199 and 0.0171 (Schlafly and Finkbeiner, 2011) for PKS 1222+216

and Ton 599, respectively.

4.2.5 Steward Observatory

During the first decade of the Fermi mission, the Steward Observatory of the University of

Arizona obtained optical polarimetry, photometry, and spectra of the LAT-monitored blazars

and Fermi targets of opportunity (ToOs) using the SPOL CCD Imaging/Spectropolarimeter

(Smith et al., 2009). We used the reduced photometric Johnson V and R band data, which

are available online2. Six observations were taken of Ton 599 and two of PKS 1222+216

during their respective VHE flares. There was no significant variability during either event.

4.3 Fermi-LAT Flux Distributions

The distribution of the LAT fluxes observed from each of these FSRQs may provide a

clue to the origin of the gamma-ray emission. The observed flux distributions of the three

sources (scaled to form probability density histograms) are shown in Figure 4.5. Time bins

that have a test statistic (TS) less than 9 or that occur when the Sun is less than 20◦ from

the source were excluded.

To account for uncertainties from both the flux binning and the finite observation length,

the flux histogram bin errors were calculated using a bootstrapping approach. 2,500 boot-

strap samples were used, each consisting of the same number of flux points as the actual
2http://james.as.arizona.edu/~psmith/Fermi/
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Figure 4.5: Flux distributions of the three FSRQs, scaled as probability densities. The distributions
are fit with a log-normal PDF (dashed orange) and the stationary-state PDF corresponding to the
SDE of Tavecchio, Bonnoli, and Galanti (2020) (solid blue). In all three cases, the SDE provides a
better fit.

light curve. Each bootstrap sample was obtained by sampling from the set of actual flux

points with replacement, so that a given flux point might be sampled multiple times or not

at all. To include the uncertainties of the individual flux points, an error term was added

to each sampled point in each bootstrap sample, determined by sampling from a Gaussian

distribution with standard deviation equal to the measurement uncertainty of the respective

sampled point. The bin errors were then defined as the standard deviations of the bin fluxes

over all of the bootstrap samples binned using the same bins as the original dataset.

As discussed in Section 2.3.2, blazar flux distributions are often described using a log-

normal distribution. An alternative model has been proposed by Tavecchio, Bonnoli, and

Galanti (2020), based on a stochastic differential equation (SDE) with two terms modeling a

deterministic tendency to return to equilibrium and stochastic fluctuations with amplitude

proportional to the absolute flux level. The form of the SDE is motivated by an astrophysical

scenario of stochastic disturbances perturbing a magnetically arrested accretion disk. In this

model, the flux distribution is asymmetrical about a peak, falling off as a power law at

high fluxes and exponentially at low fluxes, with the relative importance of the deterministic

and stochastic components dictating the shape of the distribution. Figure 4.5 shows a
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comparison between the best-fit probability density functions (PDFs) corresponding to a

log-normal distribution and the stationary state of the SDE proposed by Tavecchio, Bonnoli,

and Galanti, 2020.

The stationary-state PDF corresponding to the SDE (Tavecchio, Bonnoli, and Galanti,

2020, Appendix A) is

p(X) = (λµ)1+λ

Γ(1 + λ)
e−λµ/X

Xλ+2 , (4.1)

where X is a dimensionless random variable proportional to the flux, µ is a parameter

representing the equilibrium value of X, λ is a parameter representing the relative weight of

the deterministic and stochastic terms, and Γ is the gamma function. Here, X was related

to the flux by a proportionality constant of 1× 10−7 ph cm−2 s−1. The distribution peaks at

Xmax = µλ/(λ + 2). The stationary-state PDF is valid on timescales much longer than the

timescale for the system to return to equilibrium, which is certainly the case for the ten-year

periods considered here.

The PDFs were fit to the histogram bins with a nonlinear least-squares algorithm using

SciPy (Virtanen et al., 2020). The best-fit parameters and reduced χ2 values of the two

models are reported in Table 4.6. In all three cases, the SDE PDF provides a better fit than

the log-normal PDF. Both models have two free parameters. We verified that the preference

for the SDE model is preserved if the histogram bins at the lowest fluxes, which might be

affected by requiring light curve bins to have TS > 9, are excluded from the fit.

The SDE model PDF is parameterized by the shape parameter λ ≡ 2θ/σ2, where θ

and σ are the coefficients of the deterministic and stochastic terms. These parameters can

be interpreted by associating 1/θ with the timescale of magnetic field accumulation in the

accretion disk, while σ is related to the dynamics of the perturbative processes. A large

value of λ therefore represents a high relative importance of the deterministic variability
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Source Log-normal SDE
µ σ χ2

red µ λ Xmax χ2
red

3C 279 1.65±0.02 0.73±0.01 14.7 8.63±0.28 1.01±0.06 2.90±0.21 2.95
PKS 1222+216 1.07±0.03 0.92±0.03 4.44 6.27±0.60 0.54±0.08 1.33±0.23 1.75
Ton 599 0.21±0.04 0.75±0.03 1.76 2.11±0.19 0.94±0.15 0.68±0.13 0.73

Table 4.6: Best-fit parameters and goodness of fit (χ2
red) for the log-normal and SDE PDF fits to

the LAT flux distributions. The values of µ and σ for the log-normal distribution and µ for the
SDE distribution have been normalized to 1× 10−7 ph cm−2 s−2. For the SDE PDF, the peak flux
is determined by Xmax = µλ/(λ+ 2).

component compared to the stochastic one, while a small value indicates the opposite. To

relate these timescales to the gravitational radii of the central supermassive black holes,

rg = GM/c2, we adopt values of ∼5 × 108, 6 × 108, and 3.5 × 108M� for the black hole

masses of 3C 279, PKS 1222+216, and Ton 599, respectively (Hayashida et al., 2015; Farina

et al., 2012; Liu, Jiang, and Gu, 2006).

One can estimate σ2 from the light curve using the expression (Tavecchio, Bonnoli, and

Galanti, 2020):

σ2 ' 1
n

n∑
i=0

(Xi −Xi−1)2

X2
i−1(ti − ti−1) , (4.2)

where Xi is the scaled flux at time step i. Using this expression, we obtain σ2 equal to 0.354,

0.158, and 0.0616 day−1, or 100, 185, and 820 rg/c, for 3C 279, PKS 1222+216, and Ton 599,

respectively. These values are consistent with the &100 rg/c variability timescale injected

into the jet by magneto-rotational instability in the accretion disk estimated in theoretical

work (Giannios and Uzdensky, 2019). Using the relation 1/θ = 2/λσ2, we can then constrain

the physics of accretion flow in 3C 279, PKS 1222+216, and Ton 599 by estimating their

magnetic flux accumulation timescales to be 200, 690, and 1750 rg/c, respectively, within

the magnetically-arrested disk scenario.
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4.4 Flare Selection

Flare states were identified in the Fermi-LAT data using the following procedure:

1. Segment the data using Bayesian blocks. We set the false positive rate p0 to the value

equivalent to 5σ using Equation 13 of Scargle et al. (2013).

2. Choose a flux threshold above which the blocks are designated as flaring.

3. Designate each contiguous set of flare blocks as an individual flare state and all non-

flare blocks as the quiescent state.

This empirical procedure reflects a picture of individual flares superimposed on a constant

quiescent background, but identifies them purely as states of elevated flux, making no explicit

assumptions about the flares’ shape or spectra. Due to its basis on Bayesian blocks, it

guarantees that states identified as flares have flux significantly greater than the states

surrounding them. The flux threshold to identify flares must be tuned on a source-by-source

basis. Choosing the flux threshold to identify flares involves a tradeoff between ensuring

that dimmer flares are selected and avoiding misidentifying fluctuations in the quiescent

background as flares. In addition, because the sources differ in average flux, the threshold

must necessarily vary on an absolute level from source to source. Performing the flare

selection procedure with the flare selection thresholds listed in Table 4.1 results in 10 flares

selected for 3C 279, 11 for PKS 1222+216, and 5 for Ton 599, listed in Table 4.7.

Because the flux distributions are best fit by the single-component SDE model PDF, it

is not natural to calculate a duty cycle of flares based on a division into baseline and flaring

components (e.g. Resconi et al., 2009). The amount of time spent in the highest-flux states

can be estimated directly from the flux distribution by defining the “typical” flux as the peak

of the PDF, given in Table 4.6. 3C 279, PKS 1222+216, and Ton 599 have flux greater than

5 (10) times the typical flux 12% (4%), 19% (8%), and 13% (4%) of the time, respectively.
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# Date Range (MJD) Approx. Date Blocks VHE Exp.
3C 279

1 56645.66 - 56647.66 Dec 2013 1 -
2 56717.66 - 56718.66 Mar 2014 1 -
3 56749.66 - 56754.66 Apr 2014 1 6.79 hr
4 57186.66 - 57190.66 Jun 2015 3 1.00 hr
5 58116.66 - 58119.66 Dec 2017 1 -
6 58130.66 - 58141.66 Jan 2018 4 1.38 hr
7 58168.66 - 58173.66 Feb 2018 1 -
8 58222.66 - 58230.66 Apr 2018 5 0.83 hr
9 58239.66 - 58247.66 May 2018 1 -
10 58268.66 - 58275.66 Jun 2018 2 3.95 hr

PKS 1222+216
1 55096.66 - 55114.66 Sep-Oct 2009 3 -
2 55144.66 - 55201.66 Nov-Dec 2009 5 -
3 55231.66 - 55594.66 2010 27 -
4 55603.66 - 55639.66 Feb-Mar 2011 4 5.38 hr
5 55777.66 - 55783.66 Aug 2011 1 -
6 56494.66 - 56500.66 Jul 2013 1 -
7 56536.66 - 56665.66 Sep 2013 5 -
8 56680.66 - 56752.66 Jan-Apr 2014 3 15.53 hr
9 56926.66 - 57004.66 Sep-Dec 2014 5 -
10 58243.66 - 58249.66 May 2018 1 -
11 58321.66 - 58327.66 Jul 2018 1 -

Ton 599
1 55417.66 - 55445.66 Aug-Sep 2010 1 -
2 57342.66 - 57356.66 Nov 2015 1 -
3 57944.66 - 57958.66 Jul 2017 1 -
4 58042.66 - 58140.66 Oct-Jan 2017/18 5 8.30 hr
5 58217.66 - 58266.66 Apr-May 2018 1 2.00 hr

Table 4.7: Fermi-LAT flares selected using the algorithm given in Section 4.4. For each enumerated
flare, the date range in MJD, approximate calendar date, number of Bayesian blocks, and amount
of VHE gamma-ray exposure taken by VERITAS (if any) are provided. All of the times in the date
ranges given in Table 4.1 but not listed here are considered to be quiescent.
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Our flare selection flux thresholds for 3C 279 and Ton 599 are comparable at 13.8 and 11.8

times their typical fluxes, consistent with their similar values of the PDF shape parameter

λ ≈ 1. For PKS 1222+216, our threshold is 3.8 times the typical flux. This source has a

lower value of λ ≈ 0.5, with a correspondingly harder power law of the flux distribution at

high fluxes. This is perhaps reflected in the long epochs of high flux seen in this source’s

light curve, such as its Flare 3 in 2010 which is approximately a year in duration (Table 4.7).

A relatively low threshold was therefore needed to also capture the smaller flares of the

approximately weekly timescales that typically trigger VERITAS observations, consistent

with the other two sources.

4.5 Daily and Sub-daily Variability

In order to deduce the smallest variability time around the rising and decaying periods of

each flare selected according to the algorithm described in Section 4.4, we extracted sub-daily

light curves of the three sources down to the smallest significant time-bin sizes. The bins

ranged from 12 hours down to 1.5 hours for the brightest source, 3C 279. For PKS 1222+216

and Ton 599, the minimum bin sizes were 12 and 6 hours, respectively.

To characterize the flares with multiple peaks we used a sum of exponential profiles

(Valtaoja et al., 1999; Abdo et al., 2010a), Fi, where each one has the form

Fi(t) =


F0i e

(t−tpeaki )/trisei , t ≤ tpeaki

F0i e
−(t−tpeaki )/tdecayi , t > tpeaki .

(4.3)

For flares with a single peak we used:

F (t) =


F0 e

(t−tpeak)/trise + Fconst, t ≤ tpeak

F0 e
−(t−tpeak)/tdecay + Fconst, t > tpeak,

(4.4)
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including a constant term to avoid biasing the fit towards large rise and decay timescales.

The fitting procedure started by considering a single peak characterized by Equation

(4.4). In order to evaluate the possibility of adding a second peak, a fit to the sum of

two exponential profiles, as given by Equation (4.3), was performed and compared against

the one-peak scenario using the reduced χ2 method. The two-peak model was taken when a

clear preference was observed over the one-peak function. More peaks were added following a

similar procedure until a reasonable reduced χ2 value was reached, or when the best fit values

obtained no longer provided relevant information for constraining the variability timescales

of the sources under study. The peaks were not required to match the Bayesian blocks used

for flare selection, which were defined using the coarsely binned light curves.

The flare profiles of the three sources are shown in Figure 4.6. Two selected flares of

3C 279 are shown, as are the two flares each of PKS 1222+216 and Ton 599 that were

observed by VERITAS. Profiles of all ten flares of 3C 279 are provided in Appendix A. In

order to illustrate when VERITAS observed the source relative to the LAT flare peaks, the

VERITAS daily-binned light curves for each of the flares are also shown in Figure 4.6.The

fit results for the three sources are reported in Tables 4.8 and 4.9.

For 3C 279, each flare lasted between one and eleven days and consisted of between one

and four separately resolved components, modeled using exponential profiles. Twenty-four

distinct components are resolved within the ten flares. The rise and decay times range from

timescales of days to less than one hour. The smallest resolved variability timescale was

36± 13 minutes, which occurred around MJD 58227.945, during the rising period of Flare 8

(MJD 58222.655 – 58230.655), indicated in boldface in Table 4.8.

For PKS 1222+216 and Ton 599, the variability timescales were of the order of days.

Notably, for both sources, the fastest variability did not occur during the detected VHE flares.

The shortest variability timescale observed by LAT during the VHE flare of PKS 1222+216

was 10.4± 6.2 days, which was the decay timescale of the coincident flare component. The
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Amplitude (F0) tpeak trise tdecay
[10−9 erg cm−2 s−1] [MJD] [min] [min]

Flare 4 (MJD 57186.655 – 57190.655): χ2/d.o.f.= 77.31/19 = 4.07

12.07 ± 0.67 57187.446 ± 0.031 378 ± 46 1784 ± 147
9.79 ± 2.29 57188.425 ± 0.028 216 ± 101 155 ± 64

21.72 ± 1.59 57189.069 ± 0.008 137 ± 18 512 ± 55
12.41 ± 1.30 57189.532 ± 0.010 220 ± 63 77 ± 25

Flare 8 (MJD 58222.655 – 58230.655): χ2/d.o.f.= 177.25/106 = 1.67

5.29 ± 1.29 58224.773 ± 0.105 1996 ± 716 5899 ± 4035
17.70 ± 2.01 58227.945 ± 0.004 36 ± 13 329 ± 131
16.42 ± 1.87 58228.323 ± 0.012 140 ± 54 115 ± 48
5.59 ± 1.69 58227.139 ± 0.133 3816 ± 1450 4077 ± 2080

Table 4.8: Results of the LAT flare profile fits for 3C 279. The smallest variability time found is
indicated in boldface.

shortest variability timescale of Ton 599 observed by LAT during its VHE flare was 11.8±1.1

days, which also was the coincident flare component’s decay timescale. In the case of Ton 599,

the VERITAS detection occurred over a period of 2 days, after which the observed VHE

flux became insignificant. No significant intra-flare variability was observed by Fermi-LAT

or VERITAS during either event. Therefore, in the remainder of this work, we take the most

constraining variability timescales during the VHE flares of PKS 1222+216 and Ton 599 to

be 10 and 2 days, respectively.

The symmetry or asymmetry of flares can provide information on the timescales of the

particle acceleration and cooling processes in the emission region (e.g. Abdo et al., 2010a).

If the cooling time is longer than the light travel time through the emission region, the decay

time will be longer than the rise time, producing an asymmetric flare. If the cooling time is

shorter than the light travel time, the flare will appear more symmetrical.

Figure 4.7 shows the fitted rise and decay times for each of the exponential flare compo-

nents of 3C 279. No clear trend in the flare asymmetry is observable, whether overall, among

components within a single flare, or between the components belonging to different flares.
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Figure 4.6: LAT daily and sub-daily light curves (blue points) around selected flaring episodes
(light shaded areas). The dotted blue lines show the fitted exponential profiles, with their sums
shown in solid blue. The dark shaded areas indicate the periods considered for the SED modeling
(Section 4.7). The VERITAS data points and 95% upper limits are shown as black squares and
downwards arrows.
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Amplitude (F0) tpeak trise tdecay
[10−9 erg cm−2 s−1] [MJD] [days] [days]

PKS 1222+216

Flare 4 (MJD 55603.7 – 55639.7): χ2/d.o.f.= 102.25/69 = 1.48

0.56 ± 0.09 55607.1 ± 0.3 1.5 ± 0.5 2.7 ± 0.8
0.48 ± 0.03 55629.9 ± 1.2 22.3 ± 3.5 12.1 ± 2.2

Flare 8 (MJD 56680.7 – 56752.7): χ2/d.o.f.= 166.40/104 = 1.60

0.72 ± 0.09 56692.9 ± 0.1 13.6 ± 2.7 0.4 ± 0.3
1.75 ± 0.17 56702.8 ± 0.2 3.6 ± 0.6 1.5 ± 0.3

* 0.43 ± 0.05 56721.9 ± 1.6 19.9 ± 8.5 10.4 ± 6.2
0.41 ± 0.10 56732.0 ± 0.4 0.9 ± 0.8 8.6 ± 3.6
0.44 ± 0.06 56746.9 ± 0.1 0.3 ± 0.3 10.3 ± 2.5

Ton 599

Flare 4 (MJD 58042.7 – 58140.7): χ2/d.o.f.= 456.78/296 = 1.54

1.89 ± 0.29 58057.1 ± 0.2 1.1 ± 0.3 1.9 ± 0.6
1.06 ± 0.11 58065.4 ± 1.0 11.9 ± 2.6 9.0 ± 2.1

* 1.37 ± 0.06 58103.5 ± 0.8 47.0 ± 4.7 11.8 ± 1.1

Flare 5 (MJD 58217.7 – 58266.7): χ2/d.o.f.= 153.01/96 = 1.59

0.57 ± 0.12 58219.2 ± 1.3 3.5 ± 2.8 7.3 ± 2.1
0.48 ± 0.03 58246.3 ± 0.7 6.6 ± 1.7 34.9 ± 5.6

Table 4.9: Results of the LAT flare profile fits for PKS 1222+216 and Ton 599. The flare components
coincident with VHE flares are marked with a *, with corresponding smallest variability times
indicated in boldface.
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Figure 4.7: Decay time vs. rise time for each of the resolved exponential components in the flares
of 3C 279. The points corresponding to all of the components are shown in gray. The dashed
reference line shows where the rise and decay times are equal.
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Figure 4.8: Fluence distributions of the twenty-four resolved flare components and ten flares of
3C 279.

Both longer decay times and longer rise times are observed, and many flares appear symmet-

ric. A Wilcoxon signed-rank test (Wilcoxon, 1945) finds no significant preference (p = 0.178)

for flares to have a faster rise time than decay time rather than the reverse. These findings

are consistent with previous studies of gamma-ray flares in bright Fermi blazars (e.g. Abdo

et al., 2010a; N. Roy et al., 2019).

Models of blazar flares powered by relativistic reconnection predict that flare components

produced by large, non-relativistic plasmoids should have similar fluences to components

produced by small, relativistic ones, so that flare components should have similar fluence re-

gardless of their variability timescales (Petropoulou, Giannios, and Sironi, 2016). Figure 4.8

shows the distributions of fluences of the components of the ten flares and the twenty-four

individual flare components of 3C 279. The fluence of a flare with exponential components

Fi is given by:

F =
∑
i

Fi(trise + tdecay). (4.5)

For 3C 279 Flares 1, 2, 5, and 7, the best fit is given by a single component plus a

constant baseline flux. In these cases, the baseline flux is included in the fluence estimate
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for consistency with the other flares, approximating the flare duration as trise + tdecay, so that

the fluence is given by:

F = (F0 + Fconst)(trise + tdecay). (4.6)

The median flare fluence is 2.1 × 10−3 erg cm−2 and the median component fluence is

0.85 × 10−3 erg cm−2. The observed component fluences range over about one order of

magnitude, as do the flare amplitudes, while the rise and decay timescales span about two

orders of magnitude. These dynamic ranges are generally compatible with the expectations

for plasmoid-powered flares derived from particle-in-cell simulations of relativistic magnetic

reconnection (Petropoulou, Giannios, and Sironi, 2016).

The long-term gamma-ray variability study of the three FSRQs presented here is com-

patible with the extensive flare characteristics study carried out recently by M. Meyer,

Scargle, and Blandford, 2019 on the brightest flares detected by Fermi-LAT. A similar

Bayesian blocks analysis was carried out to identify flares and look for variability on sub-

hour timescales. Consistent with their findings, we find sub-hour-scale variability in 3C 279,

where it was possible to resolve flares in finer time bins, suggesting that extremely compact

emission regions may be present within the jet.

4.6 Gamma-ray Spectra

Figure 4.9 shows the LAT energy spectra corresponding to the entire data sets of each

of the three sources, along with the VERITAS spectra for 3C 279. The best-fit spectral

parameters are reported in Appendix B. Since all three sources were best fit by a log-

parabola model in the 4FGL catalog (Abdollahi et al., 2020), we fit the LAT spectra with

this model, parametrized as
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dN

dE
= N0

(
E

Eb

)−(α+β(log(E/Eb))
, (4.7)

where Eb = 457.698 MeV.

We checked that the log-parabola model provides a better fit than a power-law model

using the likelihood ratio test. A power-law sub-exponential cutoff model was also preferred

over a power law, but we could not compare it directly to the log-parabola model using a

likelihood ratio test, since the two curved models are non-nested, with neither being a special

case of the other. We assumed a log-parabola spectrum for all subsequent LAT analyses. To

facilitate comparison with the VERITAS points, the LAT model fits and butterfly contours

were extended beyond the LAT maximum energy of 500 GeV, and extragalactic background

light absorption was applied to them using the model of Franceschini and Rodighiero, 2017.

The global spectral shapes of the three sources are similar, with an index α of ∼2.1–2.3

and a curvature parameter β of ∼0.04–0.06, and they differ primarily by their normalization.

Using the data from 3C 279, we compared several methods to determine a baseline

non-flaring spectrum. First, we defined a low state lasting from MJD 56230 – 56465 (see

Figure 4.1), during which the flux was quiescent and stable in HE gamma rays, R-band

optical, and X-rays. We checked publicly available Tuorla3 data for the R-band light curve.

For the X-rays, we analyzed the Swift-XRT light curve using the online data products gen-

erator4. To ensure low, stable gamma-ray emission, we selected the interval to span the

Bayesian blocks with the lowest flux while excluding intervals with the sun in the ROI. The

low-state LAT SED is shown in Figure 4.9. Only one VERITAS observation occurred during

this interval, on MJD 56417. The corresponding VERITAS upper limits are not constraining

and are not shown.

Next, using the algorithm described in Section 4.4, we designated all epochs of the LAT
3https://users.utu.fi/kani/1m/3C_279_jy.html
4https://www.swift.ac.uk/user_objects/
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light curve other than the flaring episodes as quiescent. From those epochs, we extracted

those LAT data strictly simultaneous with the VERITAS observations, integrating a total of

43.6 hours of observations. The resulting strictly simultaneous LAT and VERITAS spectra

are shown in Figure 4.9. We then performed the same procedure for four flaring epochs

during which a significant Fermi-LAT detection could be obtained strictly simultaneous

with the VERITAS observations, which occurred on the nights of April 3, 2014; June 16,

2015; April 19, 2018; and June 3, 2018. These strictly simultaneous LAT and VERITAS

SEDs are shown in Figure 4.10.

The spectral shapes of the 3C 279 low and quiescent states are similar to each other

and to the global state, although the fit parameters have high uncertainties due to the low

significance. The spectra differ primarily in flux normalization. The normalization of the low

state is lower than that of the global state by design, while the normalization of the strictly

simultaneous quiescent state is higher. This could result from the timing of the VERITAS

monitoring and triggered observations which often follow up on Fermi flares and may tend

to catch mildly elevated activity in Fermi-LAT even if the source is not actually flaring.

Finally, we derived LAT SEDs for all of the ten identified flares of 3C 279, using the entire

flare time periods, irrespective of strict simultaneity with VERITAS, shown in Figure 4.11.

The average flare spectrum is more strongly curved than the global spectrum, with α =

2.02± 0.01 and β = 0.093± 0.008, compared to α = 2.228± 0.004 and β = 0.061± 0.003 for

the global state.

4.7 SED Modeling

Multiwavelength SED modeling can shed light on the mechanisms of gamma-ray produc-

tion during TeV flares. TeV detections of FSRQs are particularly interesting because these

sources possess external radiation fields that might be expected to produce increased Comp-
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Figure 4.9: Left: Global Fermi-LAT spectra for 3C 279, PKS 1222+216, and Ton 599. The LAT
spectra are extrapolated to the VERITAS energy range, incorporating EBL absorption. Right:
Two baseline states of 3C 279. The Fermi-LAT spectrum corresponding to the multiwavelength
low state (MJD 56230–56465; see Figure 4.1), is shown by filled squares. The strictly simultaneous
Fermi-LAT and VERITAS spectra during the quiescent state are shown by black filled and unfilled
circles and contours. The symbol “†” indicates that the LAT spectrum corresponds to data strictly
simultaneous with VERITAS observations.
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Figure 4.10: Fermi-LAT and VERITAS spectra of 3C 279 during four flares, strictly simultaneous
with the VERITAS observations. For comparison, the quiescent spectrum (gray circles and contour)
is shown in the four panels. The strictly simultaneous quiescent state LAT data and VERITAS
upper limits are represented with filled and unfilled markers, respectively. The LAT spectra are
extrapolated to the VERITAS energy range, incorporating EBL absorption.
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Figure 4.11: Fermi-LAT spectra of 3C 279 during ten flares, for the intervals selected using the
algorithm proposed in this work and described in Section 4.4. For comparison, the LAT low state
spectrum is shown in gray squares in all of the panels. The four flares shown in color have a
corresponding spectrum in Figure 4.10.

ton cooling of electrons and to absorb energetic gamma rays by pair production, leading

to a cutoff in the gamma-ray spectrum above the GeV band (e.g. Ghisellini et al., 1998).

For 3C 279, we refer the reader to those works in the literature in which multiwavelength

SED modeling of the epochs considered here has been performed, and we do not perform

any additional modeling (see for example, Hayashida et al., 2015; Ackermann et al., 2016;

Prince, 2020; Yoo and An, 2020).

PKS 1222+216 was first detected at VHE energies by MAGIC during a flaring event in

June 2010 (Aleksić et al., 2011), and multiwavelength SED modeling of this event has been

performed by e.g. Tavecchio et al., 2011. We restricted our SED modeling of the source to

the duration of the second VHE detection by VERITAS in February and March 2014. We

considered data from all instruments taken from UT 2014-02-26 to 2014-03-10, inclusive.

Ton 599 has not been studied as extensively as the other two sources. Prince, 2019

and Patel and Chitnis, 2020 model its variability characteristics and multiwavelength SED,
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respectively, during the high state in December 2017, but do not have access to TeV data.

We therefore modeled the multiwavelength SED of Ton 599 during the VERITAS detection

in December 2017. We considered data from all instruments taken from UT 2017-12-15 to

2017-12-16, inclusive.

To assemble our multiwavelength SEDs, in addition to gamma-ray data from VERITAS

and Fermi, we incorporated X-ray and ultraviolet data from the XRT and UVOT instruments

aboard the Swift satellite and optical observations from the Steward Observatory.

We fit the multiwavelength SEDs of the two FSRQs using a multi-component synchrotron

self-Compton (SSC) blob-in-jet model, implemented using the framework of the “Bjet” code,

developed by Hervet, Boisson, and Sol, 2015 and based on Katarzyński, Sol, and Kus, 2001.

We modeled the radiative interactions of a compact leptonic emission zone (a blob), including

an EIC emission component resulting from the interactions of the blob particles with the

thermal accretion disk emission reprocessed by the BLR. Figure 4.12 shows a schematic

illustration of the components producing the blazar emission in this model.

In our model, we considered the blob position to be stationary in the rest frame of the

galaxy. This assumption can be interpreted as a relativistic particle flow crossing a standing

shock, with the blob radius representing the distance from the shock in the jet frame required

for the particles to cool, which is roughly equal to the size of the shock if the cooling time is

shorter than the shock-crossing time. However, we note that in a stationary SSC model this

scenario is formally indistinguishable from that of a relativistically moving blob.

We consider a simplified BLR model with a normalized density profile, based on Nalewa-

jko, Begelman, and Sikora, 2014, where ρBLR(r) is at a maximum at the characteristic BLR

radius r = rBLR and decreasing as r−2 with the distance to the core such that

ρBLR(r) = (r/rBLR)2

1 + (r/rBLR)4 , (4.8)
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with rBLR scaled to the bolometric disk luminosity Ld as rBLR = 0.1
√
Ld/1× 1046 erg s−1 pc

(Sikora et al., 2009; Ghisellini and Tavecchio, 2009). From SED modeling of PKS 1222+216

and Ton 599 we deduce a BLR radius of 0.17 pc and 0.15 pc respectively. We assume an

isotropic diffusion of the disk light by the BLR where the specific intensity of this field can

be expressed as

IBLR(ν, Td, r) = εBLRρBLR(r) Ld
4πr2

Ip(ν, Td)
(σSB/π)T 4

d

, (4.9)

where σSB is the Stephan-Boltzmann constant, Ip is the Planck intensity, and εBLR is the

covering factor. This equation is similar to Eq. 12 in Hervet, Boisson, and Sol, 2015 with

the addition of the BLR density profile. Only the extension of the BLR in front of the blob

plays a significant role in our modeling since it drives the number of gamma rays produced

by the blob that will be absorbed by pair production. The BLR is by default defined between

r = 0 and r = 100 rBLR. Given the fast convergence of the BLR opacity (IBLR ∝ r−4), the

maximum extension of the BLR does not play a significant role in the model. Although we

assume for simplicity that the BLR is isotropic, any anisotropy should have a small effect

on the opacity (e.g. Abolmasov and Poutanen, 2017, Figure 14).

Figures 4.13 and 4.14 show the multiwavelength SED models of PKS 1222+216 and

Ton 599. In these figures, the synchrotron and SSC emission are shown by solid blue lines.

The subdominant second-order self-Compton emission caused by the interactions of the

electrons with the self-Compton photons is shown by a dotted blue line. The thermal emission

from the accretion disk is modeled as a point source radiating as a black body, and is shown

by a heavy dashed green line. The inverse Compton emission due to the interaction of the

electrons with the disk photons reprocessed in the broad line region is shown by a dashed

green line. Table 4.10 gives the parameters characterizing the SED models.

Our model does not include any secondary radiation from pair cascades produced by the
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Parameter PKS 1222+216 Ton 599 Unit
θobs 1.0 1.0 deg

Blob
δ 40 53

N (1)
e 2.0× 104 2.7× 105 cm−3

n1 2.1 2.5 −
n2 3.9 3.0 −
γmin 5.5× 102 3.0× 102 −
γmax 3.0× 105 7.0× 104 −
γbrk 5.0× 103 1.5× 104 −
B 3.0× 10−2 3.0× 10−2 G
R 5.5× 1016 6.0× 1016 cm
DBH 3.56 2.33 pc

Nucleus
Ldisk 2.8× 1046 2.2× 1046 erg s−1

Tdisk 2.8× 104 1.1× 104 K
εBLR 2.0× 10−2 2.0× 10−2 −

Table 4.10: Parameters of the SED models. θobs is the angle of the blob direction of motion with
respect to the line of sight. The electron energy distribution between Lorentz factors γmin and
γmax is given by a broken power law with indices n1 and n2 below and above γbrk, with N (1)

e the
normalization factor at γ = 1. The blob Doppler factor, magnetic field, radius, and distance to the
black hole are given by δ, B, R, and DBH, respectively. DBH is reported in the host galaxy frame.
The disk luminosity and temperature are given by Ldisk and Tdisk, while εBLR is the covering factor
of the broad line region.

absorption of gamma rays in the BLR. While detailed modeling of this effect is beyond the

scope of this paper, we estimate that the potential contribution of such cascades would be

� 1% of the total bolometric luminosity for PKS 1222+216 and no more than 1.1% for

Ton 599, given the respective levels of absorption in our models, which are described below.

This effect may be noted as a source of systematic uncertainty when interpreting our results.

We note that our model requires that the dust torus luminosity be negligible compared

to the disk luminosity. As evidence of far-infrared dust torus thermal emission is lacking in

the SED, we consider this assumption to be reasonable in our study. Observing campaigns

with good microwave to IR coverage would be needed to fully confirm this approach. The
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Figure 4.12: A schematic illustration of the emission model used in this work (not to scale). The
green dashed arc represents the nominal BLR radius rBLR corresponding to the region of the
maximal BLR density. The observer measures the beamed emission from the blob interacting with
the BLR as well as the accretion disk’s thermal emission. The accretion disk is assumed to be a
point source.

presence of strong dust torus emission would require that the gamma-ray emission zone be

farther downstream in the jet so as not to produce too large an opacity by pair production.

4.7.1 PKS 1222+216 Modeling

In order to investigate the necessity of including an EIC component, we fit the multi-

wavelength SED of PKS 1222+216 with a one-zone pure SSC model, shown in Figure 4.13

(left). As can be seen by the similar amplitudes of the synchrotron and inverse Compton

peaks in the figure, the SED is only weakly Compton dominated, with the inverse Compton

luminosity about twice the synchrotron luminosity. The Swift-XRT spectrum contains a

well-resolved break showing the transition between synchrotron and inverse Compton dom-

inated emission, which sets a strong constraint on the model. Our best attempt does not

provide a satisfying representation of the observed SED. The main issue is that the optical-

to-X-ray components of the SED have steep slopes which would require a narrow, sharp

synchrotron bump to achieve a good fit, while the X-ray-to-VHE needs a wide, flat inverse
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Figure 4.13: Broadband SED of PKS 1222+216 during the VERITAS detection from UT 2014-
02-26 to 2014-03-10. Left: Pure synchrotron self-Compton model. Right: Model considering an
external inverse Compton component at high energy from the interaction of blob particles with the
thermal accretion disk emission reprocessed by the BLR. The SED model components are described
in the main text. The EBL absorption is taken into account considering the model of Franceschini
and Rodighiero, 2017.

Compton bump. This is not compatible with the usual simple SSC framework, especially

when the SED is not heavily Compton dominated.

In our EIC model, the IR-to-UV SED is dominated by the blackbody big-blue-bump

emission of an accretion disk (see Figure 4.13, right), which resolves the tension by eliminat-

ing the constraint on the synchrotron spectral shape. This allows for a broad SSC component

matching the spectral break observed in the X-ray band. In this scenario, the VHE emission

is produced by the EIC process between a relativistic blob and the disk thermal emission re-

processed by the BLR. The blob is set to a distance of 3.56 pc from the SMBH, corresponding

to 21.3 rBLR. It should be noted that a thermal EIC process was favored in previous models

of PKS 1222+216 where clear disk emission and a strongly Compton-dominated SED were

observed during a major outburst in 2010 (Tavecchio et al., 2011).

Because the peak frequency of the EIC emission is directly proportional to the blob

Lorentz factor, this scenario imposes a strong constraint on the jet parameters. In the case

of PKS 1222+216, in order to match the VHE spectrum, the bulk Lorentz factor needs to
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be above approximately 23, which was achieved by assuming a Doppler factor δ = 40 and an

angle with the line of sight θobs = 1°. This assumption is consistent with the jet constraints

derived by Hervet, Boisson, and Sol (2016) from the fastest motion observed in the radio jet

of PKS 1222+216, which led to estimations of θobs = 1.3, δ = 41.3 and Γ = 29.2.

Our model predicts a possible minimal variability of 18 hours, relatively close to the

fastest variability observed during the full period of GeV flaring activity. The total power

of the jet is approximately 3.4 × 1045 erg s−1, in a particle-dominated regime with the

equipartition parameter UB/Ue = 1.7× 10−3.

4.7.2 Ton 599 Modeling

Contrary to PKS 1222+216, the SED of Ton 599 is heavily Compton dominated, with a

ratio of inverse Compton to synchrotron luminosity of approximately one order of magnitude.

This is a usual signature of an EIC component dominating the gamma-ray emission. We

therefore consider the same scenario as for PKS 1222+216. As shown in Figure 4.14, the

model provides a good fit to the data.

As in the case of PKS 1222+216, the thermal EIC emission imposes strong constraints

on the properties of the emitting region. The largest constraint comes from the gamma-

ray opacity by pair creation from the luminous thermal field surrounding the blob. We

found that only for a Doppler factor of &50 is the EIC emission at VHE strong enough to

produce the observed VHE gamma rays, given the BLR opacity. The solution presented in

Figure 4.14, with δ = 53, is consistent with a maximum VHE emission undergoing strong

BLR absorption (Emax = 630 GeV), with an opacity of τγγ,Emax = 2.8. In this scenario we

set the blob at a distance of 2.33 pc from the SMBH, corresponding to 15.7 rBLR.

By coincidence, the fastest possible variability of Ton 599 from the model is 18 hours, sim-

ilar to that of PKS 1222+216, consistent with the variability timescale of ∼2 days observed

with VERITAS. The jet is estimated to have a total power of approximately 1.2×1046 erg s−1,
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Figure 4.14: Broadband SED of Ton 599 during the VERITAS detection from UT 2017-12-15 to
2017-12-16. The SED model components are described in the main text.

and to be extremely particle-dominated with equipartition parameter UB/Ue = 3.8× 10−4.

4.8 Lorentz Factors and Locations of the Gamma-ray Emitting Regions

We determined constraints on the Lorentz factor Γ and distance r of the gamma-ray

emission region from the central black hole for PKS 1222+216 and Ton 599 following the

method and assumptions of Nalewajko, Begelman, and Sikora (2014). The constraints are

plotted in Figure 4.15. The parameters used to determine the constraints are given in

Table 4.11. In order to obtain a conservative SSC constraint, we set the SSC luminosity equal

to the observed gamma-ray luminosity Lgamma. For PKS 1222+216 the fastest variability is

observed with Fermi-LAT, while for Ton 599 it is observed with VERITAS. We therefore

set the maximum energy Ecool for the EIC cooling constraint equal to the geometric mean of

the energy ranges observed by Fermi-LAT and VERITAS for the two sources, respectively.
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Source z DL tvar Lsyn Lgamma Ld Ma
BH Ecool εbBLR εbIR

Gpc day erg s−1 erg s−1 erg s−1 M� GeV

PKS 1222+216 0.434 2.44 10.0 3.5× 1046 7.8× 1046 2.8× 1046 3.47× 108 7.07 0.02 0.2
Ton 599 0.725 4.54 2.0 4.4× 1046 1.2× 1048 2.2× 1046 6.8× 108 326 0.02 0.2

Table 4.11: Parameters used to calculate the parameter space. z and DL are the redshift and luminosity distance of the source.
tvar is the variability timescale of cooling derived from each flare’s fitted exponential decay. Lsyn, Lgamma, and Ld are the
synchrotron luminosity, gamma-ray luminosity, and disk luminosity from the SED model. MBH is the black hole mass. Ecool
is the maximum photon energy due to the external Compton cooling of relativistic electrons. εBLR and εIR are the covering
factors of the broad line region and IR-emitting torus region, respectively. aFarina et al. (2012) and Liu, Jiang, and Gu (2006).
bTavecchio et al. (2011).
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Figure 4.15: Constraints on the Lorentz factor Γ and distance r between the gamma-ray emission
location and central black hole, adapted from Nalewajko, Begelman, and Sikora, 2014. The allowed
region is filled in purple. The black vertical line shows the opacity constraint on r from the BLR
modeling. The values of Γ and r derived from the SED model are shown with dashed black lines.

Three constraints on Γ and r are calculated. The collimation constraint requires that the

emission region be smaller than the size of the jet at the emission region location such that

Γθ ≤ 1, where θ as defined by Nalewajko, Begelman, and Sikora (2014, Eq. 1) is the angle

subtended by the blob expanding while propagating. In our case, considering a stationary

shock, it would refer to the expansion of the relativistic flow passing through the shock.

A caveat of this constraint is the underlying assumption that the blob size is defined by

the observed variability such that R = cδtvar,obs/(1 + z). However, the observed variability

only gives an upper limit on the blob radius, meaning that the actual size of the emission zone

is likely smaller than that extrapolated from the observed variability. Indeed, our modeling

of PKS 1222+216 and Ton 599 predicts a minimal observed variability much shorter than

the one observed within the reconstructed SED periods. This discrepancy explains why the

parameters predicted by our model lie only just below the line Γθ = 1.

The SSC constraint requires that the SSC luminosity not exceed the total gamma-ray lu-

minosity, which includes contributions from external radiation fields (Nalewajko, Begelman,

and Sikora, 2014, Eq. 5). The cooling constraint requires that electrons radiatively emitting
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gamma rays at energies above Ecool cool through interactions with external radiation fields

faster than the flare decay timescale (Nalewajko, Begelman, and Sikora, 2014, Eq. 9).

These parameter spaces do not take into account the constraints given by the BLR

and dust torus opacity on the gamma-ray emission. We show with black vertical lines the

minimum distance r from the black hole in the SED models where the BLR would become

fully opaque for the maximum observed energy Emax (370 GeV for PKS 1222+216 and 630

GeV for Ton 599). We consider the BLR opaque when τBLR,Emax > 5, meaning that less than

1% of the gamma rays can escape. We can clearly see that considering the BLR opacity

significantly tightens the constraints on the gamma-ray emission location in Ton 599, as

mentioned in the previous section. The opacity constraint on PKS 1222+216 is weaker, as

in that case the blob does not have to be as deep inside the BLR to reproduce the observed

EIC emission.

4.9 Neutrino Emission During VHE Flares

Luminous gamma-ray flares of FSRQs are potential sources of PeV-scale (∼100 TeV –

∼10 PeV) neutrino emission (e.g. Mannheim, 1993; Dermer, Murase, and Inoue, 2014; Kadler

et al., 2016). It has been proposed that the first blazar associated with the production of

high-energy neutrinos, TXS 0506+056, may be an FSRQ masquerading as a BL Lac object

(Padovani et al., 2019). While the lack of point sources observed in IceCube data suggests

that FSRQs are not the dominant population of neutrino sources, the possibility of neutrino

emission during rare, bright flares has not been excluded (Murase andWaxman, 2016). While

Righi et al. (2020) have suggested that the bulk of the average neutrino emission from FSRQs

occurs in the sub-EeV – EeV energy range, their results do not exclude PeV-scale neutrino

emission during outlier states. In the SED modeling of the VHE flares of PKS 1222+216

and Ton 599 presented here, a purely leptonic model gives an adequate fit to the data, and
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performing full hadronic modeling is beyond the scope of this work.

However, we can place analytic constraints on the potential PeV-scale neutrino flux pro-

duced during these events by considering a lepto-hadronic scenario in which synchrotron

emission from secondary electrons produced by pion decay contributes a subdominant com-

ponent to the second peak of the SED, similar to models used to describe the flaring emission

of TXS 0506+056 coincident with the detection of a neutrino by IceCube (Gao et al., 2019;

Keivani et al., 2018; Reimer, Böttcher, and Buson, 2019). In this section, we make use of

the assumptions and methods of Gao, Pohl, and Winter (2017), particularly Appendix A of

that work. All quantities in the following equations are in the comoving frame of the blob,

unless explicitly noted with the superscript “ob”.

We consider neutrinos produced by the pγ interaction via the ∆+(1232) resonance with

threshold energy εpγ,th ∼ 0.3 GeV. The characteristic proton energy is Ep,char ∼ Eν/Kν ∼

2 PeV, where Eν = Eob
ν (1 + z)/Γ and Kν ∼ 0.05 (Murase, Inoue, and Dermer, 2014).

Therefore, to check whether these sources could in principle support PeV neutrino emission,

we first estimate the maximum energy to which protons can be accelerated in the source

without escaping, following Hillas (1984), as

Ep,max = ZeβcBR, (4.10)

where the atomic number Z = 1 for protons, e is the elementary charge, β = v/c ∼ 1 for

highly relativistic particles, c is the speed of light, B is the magnetic field in the source,

and R is the size of the source. Using the values in Table 4.10, the maximum energy to

which protons could have been accelerated in the gamma-ray emission regions for the flares

of PKS 1222+216 and Ton 599 is Ep ∼ 500 PeV, equivalent to an upper limit on the neutrino

energy of Eob
ν ∼ 400 PeV, so PeV-scale neutrino emission is certainly feasible.

A limit on the neutrino flux can be imposed by considering a steady state in which the
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synchrotron luminosity of the secondary electrons equals the power injected by pion decay.

The steady-state proton energy density at Ep,char is given by (Gao, Pohl, and Winter, 2017):

up(Ep,char) = αfsεpγ,th
cσpγKpγKπ→e

mpc
2

Ep,char

νF ob
ν,2

νF ob
ν,t
, (4.11)

where αfs = 4c/(3R) is the free-streaming escape rate, σpγ = 5.0× 10−28 cm2 is the pγ cross-

section, Kpγ ∼ 0.2 is the average inelasticity for the proton in the pγ interaction, Kπ→e ∼ 1/8

is the fraction of energy transferred to e± pairs from pion decay, νF ob
ν,2 is the observed flux due

to synchrotron emission from the secondary electrons, and νF ob
ν,t is the observed flux of the

target photons of the pγ interaction at Et ∼ εpγ,thmpc
2/Ep,char, which is directly constrained

by the Swift-XRT measurement at EtΓ/(1 + z) ∼ 2 keV. We can estimate νF ob
ν,2 from the

SED at the synchrotron peak of the secondary electrons at

νob
2 = ce(KpγKπ→e)2

2π(mec2)3
Γ

1 + z
BEp,char ≈ 1022

(
Γ
23

)(
B

30 mG

)(
Ep,char

2 PeV

)
Hz, (4.12)

for redshift z ∼ 0.5. The corresponding power in protons can be estimated as

Lp ∼ Γ2up(Ep,char)αescV (R), (4.13)

where for simplicity we assume the proton escape time αesc = 0.1αfs and let V (R) = 4πR3/3

for a spherical blob. Parameterizing this power by the Eddington luminosity boosted into

the jet frame yields

Lp ∼ 1
(

Γ
23

)2 (
R

6× 1016 cm

)(
M

5× 1010 M�

)−1 (
Ep,char

2 PeV

)−1 (νF ob
ν,2/νF

ob
ν,t

0.5

)
LEdd, (4.14)
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where νF ob
ν,2 . 0.5 νF ob

ν,t ∼ 1 × 10−12 erg cm−2 s−1 is a conservative estimate of the largest

energetically reasonable contribution5 to the SED at ∼1022 Hz. The contribution is clearly

subdominant. We can then estimate the observed neutrino energy flux, where Ṅpγ is the pγ

event rate per physical volume, using the relation

Ṅpγ ∼ cσpγ
uph(Et)
Et

up(Ep,char)
Ep,char

= αfsuν(Eν)
Eν

, (4.15)

where uph(Et) is the energy density of the target photons. As uν(Eν)/uph(Et) = νF ob
ν,ν/νF

ob
ν,t ,

we obtain the simple relation

νF ob
ν,ν = Kν

KpγKπ→e
νF ob

ν,2 ∼ 2 νF ob
ν,2. (4.16)

The number of PeV-scale neutrinos of any flavor expected to be detected by IceCube

during the VHE flare of PKS 1222+216 or Ton 599 is then

Nν . 0.001
(

νF ob
ν,ν

2× 10−12 erg cm−2 s−1

)(
∆T

5 day

)( Aeff

106 cm2

)
, (4.17)

where ∆T is the duration of the VHE flare, Aeff ∼ 106 cm2 is the IceCube effective area

for extremely high-energy real-time alerts in the PeV range (M. Aartsen et al., 2017), and

∆ν ∼ ln(10) is assumed for the width of the neutrino spectrum. We conclude that it is

plausible that PKS 1222+216 and Ton 599 could have produced PeV-scale neutrinos during

their TeV flaring activity at a flux consistent with a null detection by current instruments.

To reduce the model-dependence of our constraints, R could also be estimated using the

timescale of gamma-ray flare variability,

R ∼ δ

1 + z
c∆T, (4.18)

5This assumption requires about 5 × 10−3 protons for every electron, from Eq. 4.11 and the electron
energy distributions reported in Table 4.10.
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from which estimates of R ∼ 7× 1017 cm and 1× 1017 cm are obtained for PKS 1222+216

and Ton 599. For the two sources, the constraints on the maximum neutrino energy are

loosened to Eob
ν ∼ 5 EeV and 700 PeV, respectively, and the required proton luminosities

are increased by a factor of ∼10 and ∼2, or within a few times the Eddington luminosity for

both sources.

4.10 Contributors to this Work

The work presented in this chapter is summarized from the paper “Variability and Spec-

tral Characteristics of Three Flaring Gamma-ray Quasars Observed by VERITAS and Fermi-

LAT”, of which the author is a co-corresponding author (Brill et al., 2021, in prep. for

submission to ApJ). This paper represents a joint effort of members of the VERITAS and

Fermi-LAT collaborations. The author led the paper and wrote the bulk of the text, and

performed the VERITAS analysis (Section 4.2.1), study of the Fermi-LAT flux distributions

(Section 4.3), flare selection (Section 4.4), analysis of flare asymmetry and fluence (parts of

Section 4.5), and study of neutrino emission during VHE flares (Section 4.9).

Janeth Valverde performed the Fermi-LAT analysis (Section 4.2.2) and generated the

sub-daily Fermi-LAT light curves (parts of Section 4.5 and Appendix A) and Fermi-LAT

spectra (Section 4.6 and Appendix B). Olivier Hervet performed the SED modeling (Sec-

tion 4.7) and analysis of the constraints on the VHE emission region (Section 4.8). Qi

Feng performed the Swift-XRT and Swift-UVOT analysis (Sections 4.2.3 and 4.2.4). These

collaborators contributed to the text and figures, particularly in the sections noted.
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Chapter 5: Prospects for a Measurement of the Luminosity

Function of TeV Gamma-ray Blazars with VERITAS

Now that we have closely examined three individual blazars, we move on to considering

these objects as a population. The properties of TeV blazars as a population are still poorly

understood, largely due to observational biases intrinsic to the operation of IACTs. Because

of their low integration time and narrow field of view, IACTs have not generally performed

blind surveys, and as IACT observations are often triggered by flaring states of variable

objects, reported TeV fluxes may not accurately represent blazars’ true emission over time.

These biases pose challenges for conducting population studies with IACTs. For this study,

we focus on BL Lac objects, which make up the bulk of the steady extragalactic gamma-ray

sources detected at TeV energies.

In this chapter, we develop methods to address these challenges, and apply them to

evaluate the prospects for measuring the luminosity function (LF) of TeV-emitting HBLs with

VERITAS. In Section 5.1, we review existing measurements of gamma-ray blazar luminosity

functions at sub-TeV energies, and in Section 5.2, we discuss the scientific motivations for

extending these measurements to the TeV energy range. In Section 5.3, we review the

mathematical framework and some commonly used parametric models for calculating the LF.

In Section 5.4, we discuss the challenges faced by IACTs when conducting population studies,

including observing biases and the impact of variability. To deal with these challenges, in

Section 5.5, we propose methods to model observing biases in archival data from IACTs and

to correct them by relating the IACT observations to the unbiased measurements available

in the GeV band from Fermi-LAT. Next, in Section 5.6, we develop a procedure to select
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sources for a TeV survey using a multiwavelength catalog and investigate how variability can

influence source selection. Drawing on these methods and frameworks, VERITAS is currently

conducting a large-scale observing program to measure the LF of TeV-emitting HBLs which

will combine new observations with over a decade of archival data. In Section 5.7, we describe

this program and estimate using simulated data how well VERITAS can expect to resolve

the TeV blazar LF.

5.1 Blazar Luminosity Functions

Blazar population studies reveal how these objects are distributed in space and evolve

over cosmic time. A complete, flux-limited survey in a given waveband provides the flux and

possibly other source properties such as the spectral index for all sources in the survey region

down to a limiting flux determined by the sensitivity of the survey. Using the redshifts of the

surveyed objects as a distance measure, the space density of sources can be derived given a

cosmological model. The LF describes the number of sources per unit comoving volume per

unit luminosity, and may also be a function of redshift or other observable source properties

(see e.g. Kembhavi and Narlikar, 1999). If the LF increases with redshift, so that there were

more sources in the past, the population is said to exhibit positive evolution; the opposite

indicates negative evolution.

Extensive measurements of the blazar LF have been performed in the radio band (e.g.

Dunlop and Peacock, 1990; Mao et al., 2017) and in the soft and hard X-ray bands (e.g.

Beckmann et al., 2003; Ueda et al., 2003). These studies have consistently found that FSRQs

exhibit positive evolution up to a potentially luminosity-dependent redshift cutoff. On the

other hand, evidence has been found suggesting positive as well as negative evolution for BL

Lac objects, with possible factors contributing to this mixed picture being artifacts caused

by the substantial redshift incompleteness affecting this population and confusion of different
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source classes such as HBLs and LBLs.

In the gamma-ray band, the blazar LF and evolution were first directly measured us-

ing data from EGRET by Chiang and Mukherjee (1998), although earlier studies had been

conducted that assumed a direct scaling between the radio and gamma-ray luminosity func-

tions (e.g. Stecker and Salamon, 1996). Bhattacharya, Sreekumar, and Mukherjee (2009)

further considered the evolution of BL Lac objects and FSRQs separately, finding evidence

for (positive) evolution of FSRQs but none for BL Lac objects.

The larger sample of GeV blazars available in the Fermi era has allowed for a better de-

termination of the GeV blazar LF. Ajello et al. (2012) measured the LF of FSRQs detected

by Fermi-LAT, finding that it is well-described by a broken power-law model exhibiting

luminosity-dependent density evolution (LDDE), from which the intrinsic de-beamed LF

could be recovered. In the LDDE model, the FSRQ population evolves positively up to

a redshift peak that increases with luminosity, so that the brightest sources appeared at

the earliest times. Ajello et al. (2014) performed a similar study for Fermi BL Lac objects,

showing that their behavior differs by spectral class, with the low-luminosity HBLs exhibiting

negative evolution and the IBLs and LBLs behaving similarly to FSRQs. Intriguingly, the

number density of HBLs begins to increase at the same epoch as that of FSRQs decreases.

To calculate the LF for a large, effectively redshift-complete BL Lac sample even though

many objects lacked a spectroscopic redshift, Ajello et al. (2014) obtained a robust statis-

tical estimate of the redshift distribution that incorporated a variety of measured redshift

constraints. Building on this work, Ajello et al. (2015) calculated an overall Fermi blazar LF,

combining FSRQs and BL Lac objects, to get their total contribution to the extragalactic

gamma-ray background in order to place limits on the dark matter annihilation cross section.

However, the TeV blazar LF is not well understood. For reasons that will be discussed

below, existing IACT observatories have not performed any large, uniform surveys of the

extragalactic sky. CTA will perform an extragalactic survey covering a quarter of the sky to
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support making a determination of the TeV blazar LF, but it will be many years until this

survey is completed (CTA Consortium, 2019). As discussed in Chapter 2, the majority of

blazars detected at TeV energies are BL Lac objects, mostly HBLs. Using a sample of 23

TeV-detected HBLs and IBLs observed for a variety of reasons under different conditions,

Broderick, P. Chang, and Pfrommer (2012) estimated the LF of TeV blazars at low redshifts,

finding that it was well described by the bolometric quasar luminosity function of Hopkins,

Richards, and Hernquist (2007) shifted to lower luminosities and number densities. Using

a slightly larger sample of 28 objects, they inferred an empirical flux limit defining the

observations. However, the conclusions that can be drawn from this LF estimate are limited,

given that it was derived from a highly heterogeneous sample affected by multiple selection

effects and observational biases (Section 5.4), for which only very rough and incomplete

corrections were performed.

5.2 Scientific Motivations for a TeV Blazar Luminosity Function

5.2.1 Extragalactic Radiation Fields

The total flux expected from the entire source population can be obtained by integrat-

ing over the LF. The contribution made by blazars to the diffuse extragalactic gamma-ray

background (EGRB) at TeV energies can then be estimated by subtracting the flux from

resolved sources. Measuring the LF for different source classes such as FSRQs and BL Lac

objects allows these contributions to be resolved separately.

In addition, we can use the LF as a source-independent probe of the IGMF (Section 2.4.2).

Blazar emission above ∼50-100 GeV can pair produce and generate secondary cascade emis-

sion, which in the presence of a strong IGMF, would become isotropized and contribute to

the MeV-GeV EGRB (Coppi and F. A. Aharonian, 1997). We can convolve the TeV blazar

LF with an EBL absorption model to get the total emission fed into the intergalactic medium
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in gamma rays as a function of redshift. From this, the total cascade emission at 10-100 GeV

can be calculated and compared to the Fermi EGRB, giving a source-independent method

to constrain the IGMF. Understanding these radiation fields helps explain the diffuse back-

grounds detected by Fermi and may constrain hypothesized contributions from unresolved

astrophysical source populations and dark matter.

5.2.2 Relationships Among Astrophysical Source Populations

Blazars may contribute to the multi-TeV neutrino flux detected by IceCube. Direct

evidence for this link comes from the spatial and sometimes temporal coincidence between

neutrino and gamma-ray emission from the gamma-ray blazar TXS 0506+056 (M. G. Aartsen

et al., 2018). The TeV blazar LF can supplement studies of individual sources by providing

a source-independent, population-based measurement with which to estimate the extent

to which blazar jets produce high-energy neutrinos. The contribution of blazars to the

TeV EGRB, discussed above, directly constrains the analog of the diffuse neutrino flux

measured by IceCube. As shown in Figure 5.1, the energy density of this contribution can

be extrapolated and compared to that of the diffuse high-energy neutrino flux (Ahlers, 2019).

The paucity of point sources in IceCube data suggests that numerous, faint misaligned AGN

may be more likely sources than rare, bright blazars to produce the bulk of the diffuse

IceCube emission (Murase and Waxman, 2016; Hooper, Linden, and Vieregg, 2019). A

measurement of the TeV blazar LF could confirm or falsify this prediction.

Another outstanding puzzle in AGN physics is the nature of the connection, if any,

between FSRQs and BL Lac objects. These objects may have a genetic relationship in which

FSRQs transition into BL Lac objects as their accretion rate slows down (Cavaliere and

D’Elia, 2002; Böttcher and Dermer, 2002). This scenario predicts an inverse evolutionary

relationship between FSRQs and BL Lac objects, with BL Lac objects undergoing negative

evolution at late times. By measuring the LF of TeV BL Lac objects, we can investigate
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Figure 5.1: The diffuse astrophysical fluxes observed with three cosmic messengers, taken from
Ahlers (2019). The comparable energy densities suggest a common origin. Gamma rays and
neutrinos are linked by the common production mechanism of pion decay, marked in the figure as
relationship A, with relationships B and C showing connections between other messengers.

the existence of this pattern of evolution, although the redshift range that can be effectively

probed is limited by EBL absorption.

5.2.3 Blazar Physics

The shape of the LF depends on the physical processes that produce TeV gamma-ray

emission. Relativistic beaming amplifies or reduces the apparent luminosity, depending on

the orientation of the jet with respect to the observer. The observed LF is therefore spread

over a wider range of luminosities than the intrinsic one. We can recover information on jet

physics in blazars by fitting convolved beaming and intrinsic LF models to the observed LF

(Urry and Shafer, 1984; Urry and Padovani, 1991; Padovani and Urry, 1992). The intrin-

sic LF in turn informs our understanding of the parent population of relativistic particles

powering the emission in these sources (Mücke and Pohl, 2000).

Formally, following Urry and Shafer (1984), the dependence of the observed LF Φobs(L)
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on the intrinsic LF Φint(L) can be written as

Φobs(L) =
∫
P (L | L)Φint(L) dL. (5.1)

Recalling Equations 2.22 and 2.23, for a given Lorentz factor Γ, the observed luminosity

depends solely on the viewing angle θ, so we can write

P (L | L) dL = P (θ) dθ = sin θ dθ, (5.2)

for an isotropic distribution of viewing angles. From Equations 2.22, 2.23, and 5.2, we then

obtain

P (L | L) = 1
βγp
L

1
pL−

p+1
p . (5.3)

In the simplest realistic case, we can consider an intrinsic LF distributed as a power law,

Φint(L) = KL−q; q > 1,Lmin < L <∞. (5.4)

A given observed luminosity L can only result from intrinsic luminosities in the range
1

2ΓLmin ≤ L . 2ΓLmin, for viewing angles θ ∈ [0°, 180°]. Because of this constraint, the

integral in Eq. 5.1 has a piecewise form (Urry and Shafer, 1984):

Φobs(L) = K

βγpC



0, L < Lmin

L−CminL
− p+1

p , Lmin ≤ L < Lbr

(2Γ)pCL−q, L ≥ Lbr

(5.5)

where C = q − (1/p) − 1, Lmin = (2Γ)−pLmin, and Lbr = (2Γ)pLmin. Above the break, the

slope of the beamed LF reproduces that of the intrinsic LF. In the more complicated case
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in which the Lorentz factors are distributed as a power law, the beamed LF can still be

determined analytically for an isolated relativistic jet (Urry and Padovani, 1991).

5.3 Calculating the Luminosity Function

It is useful to consider two special cases of luminosity functions. In pure density evolution,

the space density of the population evolves identically for all source luminosities. We can

then separate the LF into two parts

Φ(L, z) = Φ0(L)ρ(z), (5.6)

where Φ0(L) is the local LF at z = 0 and ρ(z) is the evolution function. In pure luminosity

evolution, on the other hand, the form of the LF stays constant but the luminosities change

over time. In this case, the LF can be written as

Φ(L, z) = Φ0(L/ρ(z)), (5.7)

where ρ(0) = 1. It should be recognized that the evolution function describes statistical

changes in the blazar population over cosmic time, not changes to individual objects. If the

LF has the form of an unbroken power law, it can be shown that these two special cases are

equivalent. The evolution function ρ(z) can have any form, with one simple representation

being

ρ(z) = (1 + z)k. (5.8)

For more general patterns of evolution (such as LDDE), the LF can always be written as

Φ(L, z) = Φ0(L)ρ(z, L). (5.9)
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5.3.1 Luminosity-Volume Test for Evolution

The evolution of a complete, flux-limited sample can be measured without the need to

represent the LF with any particular functional form by means of the Luminosity-Volume,

or V/Vmax, test (Schmidt, 1968). To describe the test, we first consider a Euclidean universe

for simplicity, in which a source’s luminosity is determined from its measured flux F and

distance r by L = 4πr2F . Then, for an all-sky survey with limiting flux Flim, each source has

two corresponding volumes, V = 4π
3 r

3 and Vmax = 4π
3 r

3
max, where rmax =

√
L/(4πFlim) is the

farthest distance at which the source could have been and still be included in the sample.

More complicated scenarios are allowed, such as the coherent combination of separate survey

regions with different limiting fluxes, by taking V and Vmax to refer in general to the total

volumes enclosed by and accessible to the source (Avni and Bahcall, 1980). To model an

actual survey covering only part of the sky or having some estimated incompleteness, the

calculated volume may include a sky coverage factor 0 ≤ Ω(L, z) ≤ 4π. If there are multiple

limiting fluxes defining the sample in the same survey region, such as in a multiwavelength

survey, the most constraining one is used.

For an expanding universe, we define the luminosity distance DL(z) such that L =

4πD2
L(z)F . In this case, the accessible volume varies with redshift such that V = V (z) and

Vmax = V (zmax), with zmax being the maximum redshift at which the source could have been

detected. Then, if the sources are uniformly distributed, the mean value of V/Vmax is

〈V/Vmax〉 =
∫ Lmax
Lmin

dL
∫ zmax(L)

0 (V/Vmax)Φ(L, z) dV (z)∫ Lmax
Lmin

dL
∫ zmax(L)

0 Φ(L, z) dV (z)
= 1

2 , (5.10)

when the luminosity function Φ = Φ(L) is independent of z, i.e., there is no evolution.

Assuming that the sample is complete, a value of 〈V/Vmax〉 greater than 1/2 indicates

positive evolution, with the opposite indicating negative evolution. The uncertainty on the

〈V/Vmax〉 statistic is 1/
√

12N , where N is the number of sources in the sample (e.g. Peterson,
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1997). The V/Vmax test measures the presence and direction of evolution, but does not give

any information on its specific functional form.

In the TeV gamma-ray band we have the additional complication of EBL absorption

(Section 2.4.1), which must be included when inferring the luminosity from the measured

flux and redshift:

L = 4πD2
L(z)Feτ(z). (5.11)

One way to see that Eq. 5.10 still holds without modification is to define

D2
EBL(zmax) ≡ D2

L(zmax)eτ(zmax) = L

4πF , (5.12)

which we can solve numerically to obtain zmax(L).

5.3.2 Luminosity Function using Accessible Volumes

A similar approach to the V/Vmax test can be used to obtain an unbiased non-parametric

estimate of the LF (Schmidt, 1968). In this method, called the method of accessible volumes,

the value of the LF in each bin Li ∈ (L±∆L/2) is given by

Φ(Li) = 1
∆L

Ni

Vmax,i
. (5.13)

If evolution is present, redshift bins zj ∈ (z±∆z/2) may be used as well, in which case the

accessible volumes are the shells enclosed within each redshift bin. Alternatively, evolution

can be accounted for in the local (z = 0) LF by weighting Vmax using an assumed evolution

function (Schmidt and Green, 1983)

Vmax =
∫ zmax

zmin
Ω(Li, z)

ρ(z, Li)
ρ(zmin, Li)

dV

dz
dz, (5.14)

114



where ρ(z, L) is the evolution function as defined in Eq. 5.9 and dV/dz is the differential

comoving volume per unit solid angle (e.g. Hogg, 1999).

5.3.3 Luminosity Function using Maximum Likelihood

Another way to calculate the LF is to fit a parametric model by maximizing the expected

likelihood over the observed data (Marshall et al., 1983). This method can be used to

compare analytical representations of the LF and evolution functions, and is particularly

useful for smaller samples which cannot be finely binned in luminosity and redshift.

The simplest useful LF model is a power law,

Φ(L, z) = A

(ln 10)L

(
L

Lscale

)−γ
, (5.15)

whereA is the normalization amplitude, Lscale is the fixed scale luminosity, and γ is the power-

law index. A break in the slope, such as might be expected due to relativistic beaming, can

be modeled using a smoothly broken double power law such as

Φ(L, z) = A

(ln 10)L

[(
L

L∗

)γ1

+
(
L

L∗

)γ2
]−1

, (5.16)

where L∗ is the break luminosity, and γ1 and γ2 are the power-law indices before and after

the break, respectively. Following Marshall et al. (1983), the mean number of sources in the

differential element dLdz is given by

n(L, z) dLdz = Ω(L, z)
4π Φ(L, z) dLdV (z), (5.17)

where Ω(L, z) is the sky coverage (Section 5.3.1). The expected luminosity and redshift

distributions dN/dL and dN/dz can be obtained by marginalizing over n(L, z). Assuming

the sources are distributed independently, the observed number of sources in each element
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follows a Poisson distribution and is, for sufficiently small bins, either zero or one. The

likelihood function is then given by joint Poisson probabilities:

Γ =
∏
i

e−n(Li,zi) dLdzn(Li, zi) dLdz
∏
j

e−n(Lj ,zj) dLdz, (5.18)

where the first factor runs over all of the sources in the sample, and the second over all of

the differential elements with no sources. Introducing the log-likelihood S = −2 ln Γ and

dropping model-independent terms, we obtain

S = −2
∑
i

ln Φ(Li, zi) + 2
∫ Lmax

Lmin

∫ zmax

zmin
Ω(L, z)Φ(L, z) dLdV (z), (5.19)

where the integration runs over the ranges of luminosity and redshift seen in the data. A

parametric LF model can then be fit to the data using any optimization technique.

5.4 Challenges Facing Population Studies with IACTs

The methods in the previous section require a complete sample in the sense that every

source in the survey region with a flux higher than a well-defined flux limit is included. We

noted that incompleteness, if sufficiently well understood, can be handled by incorporating

a sky coverage factor Ω(L, z) into the model. However, performing a population study of

blazars with a pointed instrument such as an IACT array is especially challenging and subject

to multiple potential observing biases that do not affect all-sky instruments.

5.4.1 Observing Biases with Current Instruments

The typical observation strategy of VERITAS and other current-generation IACT ar-

rays when observing extragalactic sources results in several biases, illustrated in Figure 5.2.

First, VERITAS performs targeted observations, focusing on known and hypothesized TeV
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gamma-ray sources selected from GeV gamma-ray and X-ray source catalogs for a variety of

scientific motivations (Benbow, 2019). These observations, while extensive, do not constitute

a survey. While it is likely that TeV blazars will appear in multiwavelength catalogs, it is

not guaranteed. For example, selecting Fermi-LAT sources as targets may miss extreme TeV

blazars whose gamma-ray emission peaks in the TeV band (Tavecchio et al., 2011).

Second, the amount of data taken on each target varies, complicating any attempt to

derive an implicit flux limit from the observations. These biased exposures result from

the varying scientific objectives of the observations, as well as from variation imposed by

changing weather conditions, competition for visibility windows, and seasonal differences in

available observing time. Given the lack of a uniform flux limit, one might be tempted to

determine a flux limit independently for each source using its actual exposure. However,

such a source-specific flux limit may be misleading. For example, a deep exposure might

be taken on a bright source for reasons unrelated to merely detecting it, for example, to

perform regular monitoring or to resolve a detailed spectrum. The likelihood of performing

such observations clearly depends on source luminosity and redshift in a way that is difficult

to quantify, making any inferred accessible volume very hard to interpret. Conversely, if

sources are intentionally observed until detected, but not more, they will tend to fall near

the edge of their accessible volume more often that expected by chance, confounding the

measurement of evolution.

In principle, these biases can be avoided by conducting a uniform survey evenly tiling a

portion of the extragalactic sky. This is the strategy of the future CTA extragalactic survey,

which is expected to detect 30-150 blazars in a quarter of the sky in about 1000 hours of

observing time (CTA Consortium, 2019). Attempting a similar program with VERITAS,

which has an order of magnitude less sensitivity, is infeasible. The survey would be either

too narrow or too shallow, reducing the number of objects detected to a handful, unless

observing time comparable to the entire lifetime of VERITAS were allocated.
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(a) Targeted Observations (b) Biased Exposures

(c) Low Sensitivity (d) Unbiased Survey

Figure 5.2: Observing biases affecting extragalactic surveys performed with VERITAS and other
current-generation IACT arrays. An ideal unbiased survey is illustrated for comparison.
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5.4.2 Intrinsic Properties of TeV Blazar Emission

Even with future instruments, TeV blazars have intrinsic properties that can cause ob-

serving biases if not taken into account. These observing biases are illustrated in Figure 5.3.

First, EBL absorption causes a cutoff at high energies and redshifts, resulting in biased es-

timations of the intrinsic source luminosity and accessible volume unless properly modeled.

As discussed in Sections 2.4.1 and 5.3.1, this can be done using a theoretically or empirically

derived EBL model.

More significantly, blazars are highly variable at all wavelengths, further complicating

the issues already discussed. A multiwavelength catalog used for target selection may omit

TeV sources that by chance missed the threshold for inclusion when the catalog was created.

In addition, IACT observations often occur disproportionately during flares, which are in

some cases the only times in which a source can be detected, biasing the estimate of the

average luminosity.

Even in a completely uniform survey, some fraction of the sources will flare by chance

while the survey is being conducted, depending on the a priori unknown duty cycle of

variability. An individual source’s level of activity while being observed may greatly affect

its detection probability and measured luminosity. While variability should average out on

the population level, for the small to moderate samples expected in TeV blazar surveys it

presents a source of systematic uncertainty. The systematic impact of blazar variability

depends on the observing strategy, which can be quantified using simulated light curves

(Giomi, Gerard, and Maier, 2016). If flaring and quiescent states have different physical

origins, it may be desirable to calculate the LF for a particular state only.
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?

(a) EBL Absorption (b) Variability (c) Unbiased Survey

Figure 5.3: Observing biases affecting surveys performed with any IACT array. An ideal unbiased
survey is illustrated for comparison.

5.5 Modeling and Correcting Observing Biases

The best way to deal with potentially biased data is to avoid collecting it in the first place,

and as described below in Section 5.7, that is what an ongoing VERITAS observing program

dedicated to measuring the luminosity function is attempting to do. However, as noted

above, extragalactic surveys with current-generation IACT arrays operate in a statistics-

limited regime, and VERITAS has already collected thousands of hours of extragalactic

observations. It is worthwhile to explore methods to model and correct for observing biases

in order to greatly increase the size of the usable dataset at the cost of allowing some

systematic error. First, we develop a framework in which the observing biases discussed in

the previous section can be described mathematically and modeled in the likelihood function.

Next, we investigate a method to correct for biased observations of variable TeV blazars by

matching the TeV fluxes to flux states derived from the continuous coverage in the GeV band

provided by Fermi-LAT.
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5.5.1 Sky Coverage of a Biased Survey

The sky coverage Ω may be written as a function of luminosity, redshift, and other

parameters of a source, such as the spectral index, as in the case of Fermi-LAT (Abdo et al.,

2010b). For clarity in the discussion that follows, we suppress any potential dependence on

parameters other than luminosity and redshift. For a uniform survey, we can write

Ω(L, z) = Ω0pdet(L, z), (5.20)

where Ω0 is the solid angle covered by the survey (Ω0 = 4π for an all-sky survey) and

pdet(L, z) is the probability that a source of luminosity L and redshift z will be detected in

the survey, which could be quantified by analyzing simulated data.

For an ideal flux-limited survey,

Ω(L, z) = Ω0


0 F (L, z) < Flim

1 F (L, z) ≥ Flim,

(5.21)

where Flim is the limiting flux. If, rather than conducting a uniform survey, targets are

selected from a multiwavelength catalog, incompleteness resulting from target selection may

be modeled with an additional term:

Ω(L, z) = Ω0psel(L, z)pdet(L, z). (5.22)

As discussed in Section 5.6, the selection and detection probabilities can both be affected

by variability. We can model the emission from a variable source by replacing the luminosity

L with a probability density function (PDF) over luminosity, which we call a luminosity

distribution fL, which is directly proportional to the flux distribution. Each source’s con-

tribution to the LF is therefore spread over a range of luminosities given by its luminosity
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distribution. The luminosity distribution capturing the variability of an individual source

over time, which is typically no more than an order of magnitude in scale, is much narrower

than the variation in luminosity from source to source, which can span at least four orders

of magnitude in both the GeV band (e.g. Ajello et al., 2014) and TeV band (Section 5.7.3).

Methods to parameterize fL and estimate its value using Fermi-LAT data are discussed

below in Sections 5.5.2 and 5.5.3. We can then write:

Ω(L, z) = Ω0psel(fL, z)pdet(fL, z). (5.23)

It may be possible to model the impact of non-uniform, intermittent, or biased exposures

given the known observation strategy and cadence. For an unbiased but discontinuous survey,

the systematic error due to observation cadence can be modeled using simulated light curves

(Giomi, Gerard, and Maier, 2016), but for existing data, the observation strategy may

be more difficult to model. The simplest procedure is to simply exclude data known to

have been taken in response to an external flare trigger. This approach is conservative,

but has the drawbacks of potentially discarding the most informative high-flux data and

requiring judgment to determine what exactly constitutes “biased” data. Another option,

which we do not explore further, is to develop an “exposure function” giving the probability

distribution of exposure on a source as a function of its flux or luminosity. This could

be derived from historical VERITAS observations, although an estimate of the unknown

luminosity distribution of each source would be required.

5.5.2 Likelihood Function of a Luminosity Distribution

To adapt the likelihood function to account for variability, we must replace L with fL,

include an additional PDF for each parameter of fL, and replace Ω(L, z) with the sky coverage

expression defined by Eq. 5.23. As a simple example of a model for fL, suppose that a
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blazar emits TeV gamma rays in two discrete luminosity states: quiescent, which is the

predominant, low-luminosity state, and flaring, which a rare, high-luminosity state. In this

model, the luminosity is equal to either the quiescent luminosity Lq or the flaring luminosity

Lf , such that

fL(Lq, Lf , pf) = (1− pf)δ(L− Lq) + pfδ(L− Lf), (5.24)

where pf is the fraction of the time that the source is in the flaring state. Other models could

be chosen that are more realistic and may reflect different physical pictures of blazar emission.

For example, instead of discrete values, the luminosity during the two states may follow

normal or log-normal distributions (e.g. Valverde et al., 2020), or the assumption of multiple

discrete states may be dropped entirely, with the luminosity as a whole following a single

normal, log-normal, or other distribution, such as the SDE model studied in Section 4.3.

To perform the fit, we would also need a PDF to model the intrinsic distribution of

each parameter of fL. Considering without loss of generality the simple three-parameter

luminosity distribution proposed in Eq. 5.24, we could assume, for example:

Lq ∼ fLq = LogNorm(µLq , σLq)

Lf ∼ fLf = LogNorm(µLf , σLf )

pf ∼ fpf = Norm(µpf , σpf ).

(5.25)

The parameter distributions fLq , fLf , and fpf in Eq. 5.25 are independent, but this

assumption is not required, so that the flare probability may depend on the flare luminosity,

for example. In any case, the joint PDF is then

fN(Lq, Lf , pf , z) = Φ(L, z)fLfLqfLffpf

dV

dz
, (5.26)

123



and we can now adapt the standard expression for the number of blazars in the differential

element dLdz (Eq. 5.17) to account for variability:

n(Lq, Lf , pf , z)dLqdLfdpfdz = Ω(fL, z)
4π fNdLqdLfdpfdz. (5.27)

Following the logic of Eqs. 5.18 and 5.19, we obtain:

S =− 2
∑
i

ln fN(Lq, Lf , pf , z)

+ 2
∫ Lq,max

Lq,min

∫ Lf,max

Lf,min

∫ pf,max

pf,min

∫ zmax

zmin
n(Lq, Lf , pf , z)dLqdLfdpfdz.

(5.28)

In practice, some of these parameters may be poorly constrained. In particular, pf cannot

easily be obtained from irregularly sampled TeV data; for weaker sources, Lq may only be

constrained by upper limits; and since observations of rare flares may be difficult to acquire

(or excluded from the dataset), values of Lf may be missing as well. The distribution fpf

would need to be estimated using unbiased, fairly complete gamma-ray data, such as that

reported by FACT (Dorner et al., 2019) or Fermi-LAT, perhaps extrapolating from a subset

of particularly bright, well-sampled sources. This estimation would be similar to the study

reported below in Section 5.5.3.

Using a maximum likelihood approach allows us to deal with missing values of Lq and

Lf in a manner similar to the method developed by Ajello et al. (2014) to handle missing

redshifts in their determination of the LF of Fermi-detected BL Lac objects. Of the 211

objects in their sample, only 103 had a spectroscopic redshift measurement, with all but

five of the remaining sources having some redshift constraints. Ajello et al. (2014) used an

iterative approach to incorporate these constraints, which we can adapt for our purpose in

the following manner. Suppose some of the blazars in our sample lack a well-measured Lq
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or Lf , but may have constraints placed on these values. Start by assuming prior PDFs of

the observed values, fLq,obs and fLf ,obs. Then the PDFs specific to each source are

PDF(Ls) = fLs,obs ×
n∏
i

Ci(Ls), (5.29)

for s ∈ {q, f}, where the Ci(Ls) are the constraints on the relevant luminosity parameters.

Typically, each state would have at most one constraint, an upper limit, which would have

the form of a step function. One can then proceed by drawing redshifts for each source

from these PDFs; computing the LF using the sampled redshifts; calculating the predicted

fLq,obs and fLf ,obs from the LF; replacing the prior PDFs with the predicted distributions;

and repeating this entire process until the prior PDFs converge. The predicted luminosity

parameter distributions fLq,obs and fLf ,obs can be calculated by marginalizing over the LF:

fLq,obs =
∫ Lf,max

Lf,min

∫ pf,max

pf,min

∫ zmax

zmin
n(Lq, Lf , pf , z) dLfdpfdz

fLf ,obs =
∫ Lq,max

Lq,min

∫ pf,max

pf,min

∫ zmax

zmin
n(Lq, Lf , pf , z) dLqdpfdz.

(5.30)

5.5.3 Estimating the Luminosity Distribution with Fermi-LAT

If we knew the true TeV flux distributions of our sources, we could correct for biases in

observation timing and duration. Estimating the flux distribution is also a prerequisite for

applying the likelihood method developed in the previous section. One possible way to do this

is to extrapolate from the flux distribution observed in a different waveband with continuous

sky coverage, such as GeV gamma rays using data from Fermi-LAT, taking advantage of

long-term correlations between wavebands (e.g. Valverde et al., 2020). For this method

to work, the GeV and TeV fluxes of the sources under consideration (such as HBLs) must

be well-correlated in their overall distributions and in the timing of flux states at timescales
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down to the typical cadence of observations (days to months, depending on the source). This

assumption is motivated by considering that the GeV and TeV emission comes from a single

component such that the emission is well-correlated on the days-weeks timescales resolvable

by Fermi, justified, for example, by the compatible power spectral densities measured in this

frequency range (e.g. H.E.S.S. Collaboration et al., 2017). This method is only applicable

for observations taken after October 2008, when Fermi began collecting science data.

To investigate this approach, we modeled the TeV flux distribution by determining Fermi-

LAT flux states using the Bayesian blocks algorithm (Scargle, 1998; Scargle et al., 2013)

and extrapolating them into the TeV band. By weighting TeV data by block duration,

runs during short flares can be weighted less in the average flux than those during long low

states. This approach maximizes the use of VERITAS data and automatically nullifies biases

in the timing of data collection. While this study considered the time-averaged flux, this

method could also be used to fit a parametric flux distribution model or allow high and low

states across sources to be considered separately. It also provides an implicit estimate of the

duty cycle of flaring TeV blazars, a key input when estimating the rate of time-dependent

correlations between neutrino emission and gamma-ray flares (e.g. Palladino et al., 2019).

However, while this method is intended to provide a better estimate of the true average flux

of a detected TeV source, it does not address the effect of biased exposures in determining

whether a source is detected at all.

VERITAS performs nightly observations of the bright, nearby (z = 0.03) HBL Markarian

421 (Mrk 421), making this source an excellent test case for understanding how well GeV

flux states provided by Fermi-LAT can be used as a proxy for TeV variability. For this study,

a preliminary VERITAS light curve of Mrk 421 was used that covered the period from May

6, 2007 to June 27, 2019, containing about 400 daily bins (Park and Cervantes, 2019). The

data include observations during flares as well as regular monitoring, which was performed

nightly starting in Fall 2018. At each bin, the integral flux above 200 GeV was calculated
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with the spectrum fixed to the global average spectrum, with only the normalization left

free. The light curve was not calibrated to take into account long-term changes in the opti-

cal response and detector performance of VERITAS, and should be considered preliminary

(Nievas Rosillo, 2021).

To get the Fermi-LAT light curve of Mrk 421, we performed a likelihood analysis using the

LAT Fermitools 1.2.1 and P8R3_SOURCE_V2 IRFs with the FermiPy 0.17.4 analysis package

(Wood et al., 2017). The data were restricted to the period from October 27, 2008 to August

1, 2019. The energy range of 1-500 GeV was considered in order to maximize the energy

overlap with VERITAS while retaining sufficient statistical significance to support short time

bins. Photons with zenith angle greater than 90° were excluded to reduce contributions from

the Earth’s limb. For each source, the region of interest considered was a square of width

15° surrounding the catalog source position. The background model consisted of all sources

in the 4FGL catalog (Abdollahi et al., 2020) within a 30° box centered on the source. The

gamma-ray emission from Mrk 421 was fit using a log-parabola spectral model, which was

the best-fit model in the 4FGL catalog.

A Fermi-LAT light curve of Mrk 421 was generated with a bin size of three days, which

was chosen to achieve a sufficiently fine time resolution without incurring excessive compu-

tational cost. In each time bin, the parameters of the source model were freed while the

background model was kept fixed to the best-fit model of the baseline analysis. Out of 1312

light curve bins, 1267 (97%) were detected with a test statistic (TS) greater than 16. FermiPy

0.17.4 was found to crash if any time bin contained no events, which can occasionally occur

when using time bins shorter than about a month, depending on the observing mode of the

Fermi spacecraft. To deal with this issue, we developed a pipeline1 around FermiPy to split

the light curve analysis into sections, clean up and restart the analysis when an error occurs,

and reduce the incidence of errors by automatically skipping time intervals with no events.
1https://github.com/aribrill/fermipipe

127

https://github.com/aribrill/fermipipe


The light curve was split piecewise into segments of approximately constant flux using

the Bayesian blocks algorithm. The prior parameter p0, which is used to determine the

significance threshold needed to create a change point splitting two blocks, was set to the

value equivalent to 5σ using Equation 13 of Scargle et al. (2013). The average flux was

calculated separately within each block. The three-day binned Fermi-LAT light curve of

Mrk 421 overlaid with the Bayesian blocks is shown in Figure 5.4.
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Figure 5.4: Fermi-LAT light curve of Mrk 421 with three-day time bins. Bayesian blocks are shown
by pink lines.

The VERITAS flux corresponding to each block was calculated by computing the average

of the VERITAS flux points within that block, weighted by the reciprocal of the squared

error on the flux. A VERITAS flux was available for 13 of the 16 blocks, covering 95.7% of the

total time period analyzed with Fermi-LAT. Using the 13 blocks with VERITAS data only,

a scaling factor of 0.0008 between the VERITAS and LAT fluxes was estimated by taking

the average of the flux ratios between the two instruments, weighted by the reciprocal of

the squared relative error on the LAT flux. A comparison between the Fermi-LAT and

VERITAS fluxes during these blocks is shown in Figure 5.5. The overall trend appears
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roughly linear, with a dynamic range of about one order of magnitude for both VERITAS

and Fermi-LAT.
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Figure 5.5: Comparison between the VERITAS and Fermi-LAT fluxes during Bayesian blocks
defined by Fermi-LAT. A conversion factor of 0.0008 derived from the data points is shown with
a dashed black line. The error bars on the VERITAS points are the standard error on the average
flux determined using the observations within each block.

The Fermi-LAT and VERITAS flux distributions are compared in Figure 5.6. The VER-

ITAS data points prior to the start of Fermi observations have been excluded. A log-normal

model approximates the Fermi-LAT flux distribution well, with the best-fit normal distri-

bution also shown for comparison. The same models with their parameters scaled by the

conversion factor of 0.0008 are overplotted on the VERITAS flux distribution. The scaled

log-normal model gives a good apparent fit to the data, although the flux density at low

fluxes may be slightly underpredicted relative to that at high fluxes. The average flux of

VERITAS within each block and the flux estimated by scaling the Fermi-LAT flux by the

conversion factor are overplotted on the VERITAS light curve of Mrk 421 in Figure 5.7.

We can use these results to make preliminary estimates of the error induced by weighting

observed VERITAS fluxes by a flux distribution estimated from Fermi-LAT and using scaled
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Figure 5.6: Left: Fermi-LAT flux distribution of Mrk 421. The best-fit normal and log-normal
models are shown with a dotted red and dashed green line, respectively. Right: VERITAS flux
distribution of Mrk 421. The models from the left panel, scaled by a factor of 0.0008, are overplotted.

54000 55000 56000 57000 58000 59000
Time (MJD)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

VE
RI

TA
S 

flu
x 

[1
0

10
 p

h 
cm

2  s
1 ]

VERITAS 1-day bins
Scaled blocks
Mean flux
within blocks

Figure 5.7: VERITAS light curve of Mrk 421 overlaid with the VERITAS fluxes averaged within
the Fermi-LAT Bayesian blocks (orange) and the LAT fluxes scaled using a linear conversion factor
(pink).
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GeV observations to fill in gaps in TeV coverage. Considering only the time period of overlap

with Fermi, the average flux of the one-day VERITAS bins is 1.72× 10−10 ph cm−2 s−1. To

counteract biased exposures, one can weight the flux of each VERITAS observation by the

duration of its corresponding block, divided by the number of observations falling in that

block. Doing so in this case has a minimal effect, slightly increasing the mean daily flux to

1.75× 10−10 ph cm−2 s−1, suggesting that flare observations and low-state monitoring occur

roughly proportionately in this dataset. Estimating the mean VERITAS flux by scaling the

Fermi-LAT flux by the conversion factor yields 1.48 × 10−10 ph cm−2 s−1, 14% lower than

the mean VERITAS flux.

From this exploratory study, a correlation between the gamma-ray emission measured

by VERITAS and Fermi-LAT of the iconic HBL blazar Mrk 421 is clearly apparent. The

greatest discrepancy between VERITAS and Fermi-LAT occurred early in the dataset, cor-

responding to flaring activity observed by VERITAS in 2010 (Aleksić et al., 2015), while the

correlation is strongest in the most recent data, after VERITAS began regularly collecting

unbiased monitoring observations. While these correlations and discrepancies may reflect

real patterns in the GeV and TeV emission of Mrk 421 in the period studied, they may also

reflect systematic effects in the VERITAS data, including the uneven sampling of flux states,

a shorter time binning compared to Fermi-LAT, and seasonal offsets in flux calibration. A

more detailed investigation in future work would be needed to disentangle these factors.

5.6 Investigating the Impact of Variability on Source Selection

This section’s contents have been published in the proceedings of the 36th International

Cosmic Ray Conference (ICRC2019), where they were presented by the author (Brill, 2019).

As discussed in Section 5.4, constructing a valid TeV blazar LF requires emulating a

uniform, flux-limited survey. One method to do this is to consider subsets of targets in

131



a multiwavelength catalog that fulfill physically motivated selection criteria, which could

then be used to derive an approximate equivalent TeV flux limit. Assuming that all TeV

gamma-ray emitters of the relevant source class are in the underlying catalog, and that

the catalog itself provides an unbiased, complete sample, this process results in a complete,

uniform survey up to the flux limit. The chosen catalog and selection criteria must maximize

completeness while minimizing false positives. Multiple catalogs could be combined to select

targets of different source classes.

This method can be investigated using the objects selected by Costamante and Ghisellini

(2002, hereafter CG02), who produced a list of 33 candidate (and 5 already-known) TeV

BL Lac objects using selection limits on the X-ray and radio energy flux. Their sources

were selected from several samples of BL Lac objects for which radio, optical and X-ray

observations were all available. Of their 38 candidate and known sources, 30 now have TeV

detections and all have 4FGL associations (Abdollahi et al., 2020). Of these objects, 31 are

visible to VERITAS (defined as having a declination between −10° and +70°), which has

detected 20 and published upper limits on 8 of them (Archambault et al., 2016).

The CG02 TeV candidate BL Lac objects can be used to explore the potential, and

possible pitfalls, of this source selection approach for emulating a TeV blazar survey. To

be useful, a source selection method based on an external catalog must both allow for the

establishment of an effective TeV flux limit and provide a reasonably complete sample.

One way to obtain a predicted TeV flux given observed fluxes at other wavelengths is

to derive it from an SED model fitted to the multiwavelength data. Fortunately, this is

exactly what CG02 have already done. They apply two models, a one-zone Synchrotron

Self-Compton (SSC) model and a parameterization from Fossati et al., 1998 which is built

to describe sources with synchrotron and gamma-ray peaks of equal power, and use both to

predict the energy fluxes above 40 GeV, 0.3 TeV and 1 TeV without incorporating absorption

by the EBL. Figure 5.8 shows the distributions of the flux predictions above 0.3 TeV for the
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two models, with EBL absorption additionally applied using Model C of Finke, Razzaque,

and Dermer (2010). The redshift of each source was obtained from TeVCat or SIMBAD

(Wenger et al., 2000) if known, assuming z = 0.2 otherwise, and the average energy calculated

assuming a power-law spectrum with Eth = 0.3 TeV and Γ = 3.5.
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Figure 5.8: Distributions of the predicted TeV fluxes above 0.3 TeV of CG02, with EBL absorp-
tion applied using Model C of Finke, Razzaque, and Dermer (2010). The “low” and “high” flux
predictions refer to the SSC model and parameterization of Fossati et al. (1998), respectively.

A second way to obtain a TeV flux limit is to use a simple physically motivated relation-

ship between luminosities at different wavelengths, such as that of Stecker, de Jager, and

Salamon (1996), νTeV FTeV ∼ νXFX for X-ray selected BL Lac objects. An extrapolation

using this relationship of the X-ray selection flux limit of CG02, FX = 1.46 µJy, with

the same EBL absorption correction applied, is also shown in Figure 5.8. The predicted

fluxes span over three orders of magnitude, with the extrapolated X-ray limit over an order

of magnitude higher in flux than the lowest TeV prediction of each of the two models. For

these predictions and luminosity relation to provide a useful flux limit, the predicted fluxes

should cut off sharply at the low-flux end at a level consistent with the extrapolated flux

limit. However, this behavior is not evident.
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In addition, to take the selected sources as the basis for a flux-limited sample, the sen-

sitivity of actual observations must match the supposed flux limit. Figure 5.9 shows the

fluxes of the 33 BL Lac objects actually detected by VERITAS, as well as upper limits of

blazar discovery targets observed but not detected, overlaid on the predicted fluxes of CG02.

The reported blazar fluxes plotted in Figure 5.9 were calculated using fluxes in Crab Units

and spectral indices from TeVCat, assuming Γ = 3.5 for any source with no reported index

and FMrk 501 = 0.85 Crab2. The energy fluxes were calculated by converting the Crab fluxes

into photon fluxes above 0.3 TeV, assuming a Crab power-law spectrum with index 2.49 and

normalization 3.2× 10−11 cm−2 s−1 TeV−1. The photon flux was converted into energy flux

above 0.3 TeV using the spectral index, assuming a power law spectrum. These fluxes do

not necessarily come from similar emission states, limiting the physical interpretation of this

distribution, but are here intended for characterizing the sensitivity of VERITAS to these

sources. The distribution of VERITAS blazar upper limits was taken from Archambault

et al., 2016, with differential flux limits converted to energy flux assuming Eth = 0.3 TeV

and Γ = 3.5 for all sources. A rough drop-off in both the detected and constrained fluxes is

apparent around 1×10−12 erg cm−2 s−1. This value approximately matches the extrapolated

X-ray flux limit, but is significantly higher than the lowest fluxes predicted by CG02 using

spectral modeling.

Also shown is the empirical flux limit of Broderick, P. Chang, and Pfrommer (2012) at

4.19×10−12 erg cm−2 s−1, which was derived from a sample of 28 objects with publicly avail-

able well-defined SEDs observed by H.E.S.S., MAGIC, and VERITAS. This limit appears

too high to describe well the flux distributions from VERITAS or the predictions of CG02,

indicating that a careful consideration of the sample being used is necessary when defining

a TeV flux limit.

Finally, for the source selection method to be useful, not only should VERITAS have
2This estimated flux is somewhat high for this source, but may be taken as representing a flaring flux.
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Figure 5.9: Distributions of the reported fluxes of blazars detected by VERITAS (solid dark blue)
and VERITAS blazar upper limits (dotted-dashed light blue), compared to the flux predictions of
CG02 shown in Figure 5.8. Two estimated flux limits are also shown.

observed all of the selected sources, but the converse must also be true: the source selection

must be complete in the sense that all of the sources detected by VERITAS above the

effective TeV flux limit are included. In fact, this is not the case. Of the 33 BL Lac objects

detected by VERITAS, only 20 are CG02 known sources or candidates, and the other 13

are not in the catalog, a ∼ 40% incompleteness rate. Figure 5.10 shows the distributions of

these two subpopulations. Visually, the distributions do not differ substantially, particularly

at the critical low-flux end, showing that this incompleteness cannot be captured by a simple

difference in flux levels (such as excluded sources being dimmer).

Setting an effective flux limit and obtaining a complete sample are both found to be

challenging. The variability of blazars at all wavelengths can explain these difficulties. First,

sources in a low state when measured by multiwavelength surveys could fall below the selec-

tion criteria flux level but still be TeV emitters. The X-ray, optical, and radio data available

in the literature to CG02 to set selection cutoffs and assemble SEDs were not necessarily

simultaneous, which, in addition to uncertainties from their model choices and parame-
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Figure 5.10: Distribution of energy fluxes of BL Lac objects detected by VERITAS from Figure 5.9,
split into those included in the candidates or known sources of CG02 (solid green histogram) and
those that are not (dotted red histogram).

ters, likely played a role in incomplete source selection. For example, one VERITAS source

missed by CG02, W Comae, was identified as a promising candidate for TeV emission by

a study that performed detailed modeling of its simultaneous broadband SED and X-ray

variability (Böttcher, Mukherjee, and Reimer, 2002). Since simultaneous multiwavelength

measurements are not guaranteed to exist in the literature for every blazar, uncertainties in

predicted fluxes and selection thresholds are to some extent inherent in any selection method

for TeV blazar candidates relying on archival data.

In addition, the difficulty of predicting TeV fluxes reflects not only uncertainties in ex-

trapolating from lower wavelengths, reducible with simultaneous measurements and detailed

modeling, but also actual variability in the TeV emission. TeV blazar detectability thus

depends both on the limiting flux and the flux state when observed. A source might only

be detected if it by chance flared while being observed. These effects must be taken into

account as potential sources of systematic error when using a target selection method based

on a multiwavelength catalog.
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5.7 Prospects for a VERITAS Luminosity Function Observing Program

5.7.1 Observing Program

In Fall 2019, VERITAS began a program to study a complete sample of TeV-emitting

HBLs with a flux limit of approximately 1% Crab in order to measure the LF of these sources.

The LF program includes both the analysis of archival data and an ongoing high-priority

observing campaign to obtain a minimum unbiased exposure on each target. A uniform

TeV survey is emulated by selecting 36 targets from the multiwavelength 3HSP catalog, the

largest and most complete catalog of HBL blazars currently available (Y. .-L. Chang et al.,

2019). The strategy of the observing program is illustrated in Figure 5.11.

(a) VERITAS LF Program (b) Unbiased Survey

Figure 5.11: Concept of the VERITAS luminosity function observing program, with an unbiased
survey illustrated for comparison.

The 3HSP catalog cross-correlates sources with infrared spectra similar to those of known

TeV blazars with radio and X-ray data to calculate a figure of merit (FOM) that predicts

their TeV flux. FOM is defined in units of 2.5 × 10−12 erg cm−2 s−1, which is the peak
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synchrotron flux of the faintest HBL included in TeVCat (Y. .-L. Chang et al., 2019). We

selected sources that are likely TeV emitters (FOM > 2), visible at high elevation with

VERITAS (1.7° ≤ δ ≤ 61.7°), and outside the Galactic plane (|b| > 10°), resulting in 36

HBLs, 20 of which are in TeVCat, and all of which are in the 4FGL catalog (Abdollahi et al.,

2020). The 36 targets are listed in Appendix C. All but five of the sources have known

redshifts. For comparison, Schmidt (1968) derived the LF of quasars using 33 sources.

VERITAS can detect a steady source with a flux of 1% Crab in about 25 hours of

observations, so this program will require about 103 observing hours. To make it practical,

we must use archival data in addition to new observations. By default, we will exclude all

data judged to be potentially biased, such as target-of-opportunity observations, though as

discussed in Section 5.5, we are developing further techniques that may allow us to make

use of these data. Additional data will be taken only on those sources without enough

preexisting exposure to make a good measurement of their flux. To reduce this program’s

time requirements, after completing a source’s initial allocation of unbiased observations in

a season, if the significance of the accumulated signal is less than 2.5σ the source is assumed

to be below the intended sensitivity threshold and observations on it are terminated.

5.7.2 Simulating the Expected Data

While many of the LF program targets are known TeV sources, some are not, and all

of them may be variable sources. To model these uncertainties, we randomly generated 20

different simulated datasets following the same procedure for each. We began by selecting

the 36 sources listed in Appendix C from the 3HSP catalog using the selection criteria given

in the previous section. The sky coverage coefficient Ω0 resulting from the combined effect

of the declination and galactic latitude cuts was numerically estimated to be 0.349.

In Figure 5.12, we gauge incompleteness in our catalog by plotting the logN - logS curve

for the 3HSP sources, overlaid with the synchrotron flux limit equivalent to our FOM > 2
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selection criterion. The flattening of a logN - logS plot at the low-flux end may indicate

incompleteness in the sample, among other causes, such as evolution of the population and

cosmological expansion (e.g. Peterson, 1997). In any case, the flux limit from the FOM

cut clearly falls within the constant-slope portion of the curve, consistent with a complete

sample. We therefore take systematic error due to incompleteness in the source catalog to

be negligible compared to other sources of uncertainty in this study.

10 13 10 12 10 11 10 10

S [erg cm 2 s 1]

10 4

10 3

10 2

N(
>S

) [
de

g
2 ]

3HSP F
Flux limit from FOM cut

Figure 5.12: logN - logS plot for the 3HSP catalog, with the flux limit corresponding to FOM > 2
indicated. The synchrotron fluxes in the 3HSP catalog are reported to the nearest 0.1 dex.

Each source in our simulated dataset is defined by its observed flux F , power-law photon

spectral index Γ, and redshift z. If available, we obtained baseline values from TeVCat for the

flux in Crab Units and the spectral index, and used the redshift reported in either TeVCat

or SIMBAD. A flux of 0.23 Crab was assumed for Mrk 501 based on its estimated long-term

average flux measured by VERITAS (Hervet, 2020). We converted flux values from Crab

Units to photon flux using the Crab spectrum reported by Hillas et al. (1998) and fixing the

energy threshold to 0.2 TeV for every simulated source. To roughly account for the effect of
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excluding biased data, the usable VERITAS archival exposure on each source was estimated

to be 70% of the actual amount available. This estimate resulted in about 1600 hours of

usable data, of which 15-20% were dedicated unbiased LF observations.

We randomly simulated parameters for each source by drawing from distributions based

on the baseline values. For sources with TeVCat fluxes, the average flux was simulated by

sampling from the lower half of a normal distribution with mean equal to the TeVCat flux

and standard deviation equal to half that value. We allowed only negative deviations from

the TeVCat flux because many reported fluxes come from flares and should be taken as upper

bounds on the average flux. For sources not in TeVCat, the simulated flux was generated by

sampling from a normal distribution with mean and standard deviation equal to 0.01 Crab.

Negative fluxes were set to zero. Spectral indices were sampled from a normal distribution

with mean equal to the spectral index reported in TeVCat, or 3.5 if unavailable, and standard

deviation of 0.5, with a cutoff imposed at 1.5. Redshifts were fixed to the reported value,

if available, and otherwise sampled from a normal distribution with mean equal to 0.4 and

standard deviation of 0.1, with a cutoff at 0.

To determine the sky coverage, we needed to estimate the precision and sensitivity of

the VERITAS telescopes. We calculated the expected signal and background as a function

of flux and exposure by scaling constant values of the signal rate Rγ, background rate Rbg,

signal to background exposure ratio α, and flux normalization F0 estimated from an analysis

of a typical HBL blazar (Errando, 2020). The expected signal and background counts for a

source with flux F and exposure t are then given by:

Nγ = Rγ
F

F0
t

Nbg = Rbgt.

(5.31)
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We then have the on and off counts, Non = Nγ +Nbg and Noff = Nbg/α (T.-P. Li and Ma,

1983). Using Equation 9 of T.-P. Li and Ma (1983, Eq. 3.5) and some algebra, we obtain

the error on the flux,

σF = F0

√√√√Rbg

R2
γt

(
1 + α

(
1 + Rγ

Rbg

F

F0

))
, (5.32)

and the limiting flux,

Flim = αS2F0

2Rγt

1 +
√

1 + 4
(1 + α

α2

)(
Rbgt

S2

) , (5.33)

where we set the significance threshold to claim a detection to be S = 5 standard deviations.

We then simulated VERITAS observations as follows:

1. Determine the total first-pass exposure based on the prescription in Table 5.1.

2. Calculate the expected error on the flux using Eq. 5.32, and determine the “measured”

flux by sampling from a normal distribution with mean and standard deviation equal

to the expected flux and the error. The measured flux is used in the analysis.

3. If the measured flux is less than 1.2% Crab, stop.

4. Otherwise, if the total exposure is less than 20 hours, increase the total exposure to

24 hours to represent follow-up observations, and repeat Step 2.

Archival exposure [h] Additional LF exposure [h]
< 10 8

10 – 30 6
≥ 30 0

Table 5.1: Assumed exposures used to represent the observing strategy of the VERITAS LF pro-
gram. The total exposure on a source in the first pass is given by 70% of the archival exposure plus
the additional LF exposure.
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To account for EBL absorption, a power-law VHE spectrum was generated for each

source, defined by its spectral index, minimum energy fixed to 0.2 TeV, maximum energy

varying with redshift as Emax = (3z)−1 TeV, and overall normalization set by its flux. The

spectra were corrected for EBL absorption using the model of Domínguez et al. (2011) and

numerically integrated to obtain the total intrinsic energy flux. The intrinsic luminosity was

then calculated using

L = 4πFD2
L(z)

(1 + z)1−α (5.34)

where the term in the denominator is the K-correction, which which accounts for the appar-

ent decrease in brightness from the redshifting of the spectrum, and depends on the energy

index α, which is related to the photon index as Γ = α + 1. To calculate the luminosity

distance, a flat ΛCDM cosmology with H0 = 70 km s−1 Mpc−1, ΩM = 0.3, and ΩΛ = 0.7

was assumed. The synchrotron peak luminosities were also calculated using Eq. 5.34 from

the values of νFν in the 3HSP catalog and setting αsyn = 1. Distributions of the parameters

of one representative simulated dataset are shown in Figure 5.13.

5.7.3 Estimating the Expected Luminosity Function

After assembling a simulated sample, we calculated the limiting redshift of each object,

given as the minimum of the limiting redshifts defined by the sensitivity of the TeV obser-

vations (Eq. 5.33) and the selection threshold from the 3HSP catalog. The 3HSP FOM > 2

selection threshold was equivalent to a synchrotron flux limit of 6.31× 10−12 erg cm−2 s−1.

Figure 5.14 shows a diagram of the limiting redshifts for a representative simulated dataset.

If the simulated redshift was greater than the limiting redshift, the source was excluded from

the remainder of the analysis, as it would not have been detected.

Next, a parametric LF model was fit to the data, as described in Section 5.3.3. The
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Figure 5.13: Parameter distributions derived from a representative simulated dataset.
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Figure 5.14: Left: Limiting redshifts inferred from the 3HSP synchrotron fluxes and simulated TeV
gamma-ray fluxes in a representative simulated dataset. Right: The same plot zoomed in to show
z < 0.4.

fitting was performed using Markov chain Monte Carlo (MCMC) sampling to produce pos-

terior probability distributions over the model parameters, allowing both the optimal values

and their uncertainties to be recovered. The emcee package was used to perform the sam-

pling (Foreman-Mackey et al., 2013). The LF was modeled as a pure power law (Eq. 5.15)

exhibiting pure luminosity evolution (Eqs. 5.7 and 5.8). We used the simplest possible sky

coverage term (Eq. 5.21) that included no factors to account for incomplete, irregular, or

biased observations. To avoid introducing too many nuisance parameters into the fit, a single

flux limit was used for all objects in each sample, determined by calculating the sensitivity

of VERITAS to a source with the average exposure and spectral index for that sample.

The LF model contained three free parameters, the amplitude A, index γ, and evolution

parameter k. When a smoothly broken double power-law model was used (Eq. 5.16), an

adequate fit could not be achieved. The two power-law indices were highly correlated,

indicating that a single power-law slope gave a better description of the data. Similarly,

evolution functions more complex than Eq. 5.8 were found not to be well constrained.
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For each of the 20 simulated datasets, the MCMC sampling was run for 1750 steps with 10

walkers, with the first 250 steps discarded as a burn-in period. Samples were extracted from

the chain every 50 steps, equivalent to about half the autocorrelation time estimated from

a long chain with 1× 104 steps. Figure 5.15 shows a representative MCMC chain from one

of the simulated datasets. The sampled values from all 20 datasets were combined to obtain

the overall posterior distributions of the model parameters. Figure 5.16 shows the one and

two dimensional projections of these distributions, plotted using corner (Foreman-Mackey,

2016). The best-fit values with 1σ uncertainties are given in Table 5.2. The 1σ lower

bound, best fit, and 1σ upper bound were taken as the 16th, 50th, and 84th percentiles

of the parameter distributions, respectively. The evolution parameter k was found to be

negative, though with a large uncertainty, consistent with the negative evolution measured

in the GeV gamma-ray band for the subpopulation of HBL blazars (Ajello et al., 2014).

Aa γ k Lscale
b

7.6+7.4
−3.9 −0.46+0.13

−0.13 −5.7+5.5
−7.8 1046

Table 5.2: Best-fit LF parameters for a
power law with pure luminosity evolution.

a In units of 10−9 Mpc−3 erg−1 s.
b In units of erg s−1. Fixed parameter.

We also used the weighted 1/Vmax method (Eq. 5.14) to perform a semi-independent

calculation of the LF. The weighting was performed using Eq. 5.8 with the best-fit values of

k from the MCMC fit. The two estimated LF models are shown in Figure 5.17. The best-

fit parametric model and its 1σ error region were plotted using the 16th, 50th, and 84th

percentiles of the distribution of model values at each luminosity. The large error bars on the

1/Vmax points reflect the variance in the number of source detections in any given luminosity

bin over different realizations of the observing program. Figure 5.18 shows the distributions

of the number of detected sources and minimum measured flux over the simulated samples.
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Figure 5.15: Parameter values of the MCMC sampling as a function of step, demonstrating the
convergence of the model after a few hundred steps.

These simulations indicate that when the LF observing program is complete, VERITAS

can expect to detect 25 ± 2 out of 36 targets and to be sensitive to evolution by detecting

deviations of 〈V/Vmax〉 from 0.50 with an error of ±0.07. The use of archival data is critical

for making this measurement, as only 15-20% of the required exposure comes from dedicated

observations. With a determination by VERITAS of the TeV HBL LF similar to our simu-

lated measurement, the TeV gamma-ray emission of unresolved HBLs can be estimated and

compared to measurements in other wavelengths and messengers. However, as we cannot

resolve structure in the shape of the LF, it is not clear whether VERITAS will be able to

deconvolve the effects of relativistic beaming to measure the intrinsic LF.

This study can be continued in several ways. First, the increased sensitivity that will

be provided by the CTA extragalactic survey may enable a better estimation of the LF.

The quality of a LF measurement by CTA could be estimated using a simulation framework
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Figure 5.16: Distributions of the LF model parameters from the MCMC fit.
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(right) in the 20 simulated source samples.

148



similar to this one. CTA is expected to discover new TeV blazars, so the expected source

population could be estimated by extrapolating from, for example, a catalog of Fermi-LAT

blazars (e.g. 4LAC, Ajello et al., 2020). Since the CTA extragalactic survey will be uniform,

source selection using a multiwavelength catalog would not be required.

While we assumed a model-independent source population based on known TeV blazars

in this work, a complementary approach would be to simulate source populations based on

one or more assumed LF models in order to characterize the sensitivity of the reconstruction

to different LF parameterizations. As part of such a study, the systematic error on the mea-

sured flux due to variability could be more precisely quantified by simulating variable blazar

light curves and sampling them to represent different observation strategies. Expectations

for estimates of contributions to extragalactic radiation fields and distributions of beaming

parameters could be derived from the reconstructed LF, as well.
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Chapter 6: A Control and Monitoring Software System for the

Prototype Schwarzschild-Couder Telescope Camera

We now turn from scientific studies conducted with the current-generation VERITAS

telescopes to the development of new instruments and analysis techniques for CTA. We begin

with a contribution to the commissioning and improved operation of a prototype IACT, the

pSCT. In this chapter, we discuss the design of a new software system developed to control

and monitor the pSCT camera. The efficient and safe operation of the pSCT facilitated by

this software enables all of the scientific goals outlined in Section 3.6.

We begin by briefly describing the existing software that has been used to take data

with the pSCT camera, and the camera subsystems that it controls. We then explain the

motivation for developing a new software system and the functional requirements driving its

high-level design. We describe in detail the implementation of that design in the sctcamsoft

software package. We discuss an improved procedure for performing rate scans which has

been included in the software, and describe a system developed to automatically generate

a written log of runs taken with the pSCT camera. Finally, we acknowledge contributions

made by others to sctcamsoft.

6.1 pSCT Camera

The pSCT camera has primarily been operated using a suite of Python and Bash scripts

based around the psct_toolkit Python library, which was originally designed for performing

laboratory tests with the pSCT backplane (C. B. Adams, 2018). In the remainder of this

chapter, we refer to this suite of existing software collectively as “pSCT Toolkit”.
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6.1.1 Data Runs and Rate Scans

Two types of normal operations are supported in pSCT Toolkit: data runs and rate scans.

Data acquisition is performed in discrete data runs, in which one data file is produced per

run. In a rate scan, which is a calibration procedure, a sequence of measured trigger rates

is produced but not any data. However, both data runs and rate scans are considered to

be “runs” by the software and are assigned numerical run IDs in the same sequence. This

is done so that both run types can be treated identically for purposes of setup, monitoring,

logging, and file transfer.

In a rate scan, the trigger rate is measured at a sequence of trigger threshold values,

measured in digital-to-analog converter (DAC) counts. In the pSCT, the trigger threshold

value is called the thresh. A high thresh corresponds to a low threshold and results in a

high trigger rate. This is the case because the trigger signal in the TARGET chip passes

through three inverting amplifiers, inverting the output signal. Rate scans are therefore

performed from high to low thresh, equivalent to low to high threshold. Some example rate

scans performed with the pSCT are plotted in Figure 6.1. A rate scan plot is also known as

a bias curve.

In the current pSCT camera, the trigger rate is dominated by trigger noise produced by

the camera electronics. As this noise is correlated heavily with module temperature which

can vary from run to run, a rate scan must be performed before each run to ensure that

a manageable trigger rate is obtained. Events triggered by noise are discarded during the

data analysis. The camera upgrade mentioned in Section 3.6 is expected to produce nominal

performance. When electronics noise becomes subdominant, the trigger rate is expected to

decrease with increasing threshold as a broken power law, with the bias curve decreasing

sharply at first in the regime dominated by night sky background, followed by a flattening

in the regime dominated by cosmic ray triggers at higher thresholds. In that situation,
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Figure 6.1: Example rate scans performed with the pSCT, from Taylor (2021). Each curve is
plotted with a constant offset of 4.8 Hz. Scan “0121” (turquoise) contains a plateau caused by the
flasher running at 10 Hz. In scan “0324” (yellow), the shutter was closed to block external triggers.
The small resulting change indicates that most triggers are caused by internal electronics noise.

the trigger threshold should be set close to the transition point in order to set the energy

threshold as low as possible without introducing too much night sky background noise.

6.1.2 Camera Subsystems

Modules and Backplane

Communication with the modules is performed using the TargetDriver and TargetIO

libraries (Zorn et al., 2018). TargetDriver controls and monitors the modules, while

TargetIO handles data readout. These C++ libraries are accessed through a Python in-

terface built using SWIG1.

A Raspberry Pi computer2 is used to perform housekeeping on and communication with

the pSCT backplane. All monitoring and control of the backplane is done using a C program
1http://www.swig.org/index.php
2https://www.raspberrypi.org/
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installed on the Raspberry Pi which relies on the bcm2835 library3. The C program on the

Raspberry Pi is controlled from within the Python software over a network connection using

the Pexpect library4. A “trigger mask” file located on the Raspberry Pi is used to pause

triggering when needed and to prevent noisy trigger pixels from contributing to event triggers.

Some monitoring functionality, in addition to all data acquisition, is performed using the

module and backplane software. The FEE temperatures and pixel currents are read out from

MAX1230 analog-to-digital converter (ADC) units5 using TargetDriver. The temperature

and current data are recorded in text files. The FEE voltages and currents, and whether

or not they are detected as powered on by the backplane (“presence”), can be read out

using the software on the Raspberry Pi. While the SiPM temperatures are regulated and

monitored by a micro-controller, no software to access it is included in pSCT Toolkit or the

new software described in this chapter.

Auxiliary Subsystems

The camera fans, camera power supply, and network setup and monitoring are controlled

by Bash scripts which are independent of the main psct_toolkit Python library. There is

no capability to monitor the chiller temperature and pressure in pSCT Toolkit, although the

chiller ControlByWeb X-320 instrumentation module provides an SNMP6 interface which

may be accessed programmatically. These variables are also displayed on a web interface

and an analog gauge on the chiller.

The camera flashers are controlled using Python scripts that run on the Raspberry Pi.

For convenience, a graphical user interface to control the flashers has been built on top of

these scripts. This interface has not been modified in the new software system described in
3https://www.airspayce.com/mikem/bcm2835/
4https://pexpect.readthedocs.io/en/stable/
5Because the ADC units introduce noise into the trigger path when active, data-taking normally must be

paused to read out the FEE temperatures and pixel currents.
6Simple Network Management Protocol.
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this chapter, and is not discussed further.

The camera shutter cannot be operated automatically using pSCT Toolkit or the new

software system, but implementing automatic control or monitoring of the camera shutter

via its ControlByWeb X-301 sensor could be a subject of future work.

External pSCT Software

The pSCT incorporates a number of additional software systems that are beyond the

scope of the camera software described in this chapter. In particular, no software developed

to align the pSCT mirrors and camera is included in the system described here. The camera

software is also independent of the telescope positioner software, with the minor exception

that automatic run log generator described in Section 6.6 passively connects to that software

to read out the coordinates at which the telescope is pointing.

6.2 Motivation for a New Software System

The software described in Section 6.1 suffices for allowing experts on the camera system

to operate the telescope, conduct engineering tests, and collect data during commissioning,

but it is not suitable for performing regular scientific observations. A more complete software

system is needed for the SCT to become a mature instrument.

6.2.1 Monitoring

In many cases, pSCT Toolkit does not contain software to help the observer access

and interpret readouts from sensors in the pSCT camera. When this software is available,

the observer must often actively run a script to retrieve the readout. It is inefficient and

unrealistic for a human operator to do this continually throughout a data-taking session.

Also, it may take detailed knowledge of a subsystem to tell if a sensor’s readout is normal
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or problematic. Observers who join the project after the commissioning phase may lack this

knowledge. As a result of these deficiencies, critical issues might go undetected until too

late, threatening the safety of the instrument and the quality of the data.

6.2.2 Logging

When using pSCT Toolkit, observers manually log information about every run, such

as which modules were enabled, what the trigger threshold was, and whether auxiliary

subsystems such as the flashers and fans were turned on. This process is repetitive and error-

prone. Furthermore, there is no mechanism to record a stream of monitoring information, so

identifying and fixing errors after they occur must rely solely on these high-level descriptions.

For logging to be useful for the camera operator, information from a variety of devices

must be recorded, collected, and transformed into a useful format. Different uses and

timescales require different log formats. First, information can be displayed in real time

for monitoring purposes, as discussed above, in which case only short-term storage of logs is

required. Second, standardized information on the runs taken during each observing session

should be automatically recorded to inform data analysis and monitor data quality. The

automatically generated logs should be supplemented with notes from the scientists taking

the data. Third, for long-term, offline use, logging information should be permanently stored

in a structured archive such as a database.

6.2.3 Centralization

As pSCT Toolkit consists of a collection of separate, unconnected scripts, it can be

confusing for a non-expert observer to manage. Direct human intervention is needed when

coordinating different camera subsystems in a high-level procedure, logging information to a

centralized location, or ensuring that operations are performed in a safe order. Furthermore,

future SCT camera software may be required to implement a finite-state machine (FSM)
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model that exists in, and transitions between, well-defined states. Although the pSCT is

not required to implement a full FSM, a unified software system must be developed to make

progress towards this goal.

6.2.4 Graphical Interface

With pSCT Toolkit, the camera operators run scripts using a text-based command-line

interface (CLI). The scripts are easy to modify, allowing rapid code development during pSCT

commissioning. However, a more efficient and intuitive graphical user interface (GUI) would

be preferred for future regular operations conducted by scientists lacking detailed knowledge

of the camera software. The software described in this work is designed for compatibility

with GUIs developed by other researchers, as discussed below in Section 6.4.

6.2.5 Efficiency

Because pSCT Toolkit was originally designed for testing the modules on the laboratory

bench, it is not optimized for efficiently conducting astronomical observations. For example,

it is common in the laboratory to modify an aspect of the modules’ hardware or software,

turn them on to observe their performance, and turn them off again to try something else.

A full initialization of the modules is performed before every data run in pSCT Toolkit,

reflecting this mode of operation. For a mature instrument, a system in which the modules

are only initialized once and re-initialized if needed would increase the time available to

collect data during routine operations. Other potential efficiency gains include employing a

centralized server to support parallel operations and optimizing rate scans to achieve precise

readings in the shortest time possible.
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6.3 Software Design Considerations

To best achieve the operational goals described in Section 6.2, several key principles have

been developed for designing new software to control and monitor the pSCT camera.

6.3.1 Consolidation of Domain Logic

The first principle guiding the software design is consolidating the domain logic that

encodes the procedures and instructions for camera operation. This domain logic exists in

the scripts and programs of pSCT Toolkit and their documentation, as well as in the implicit

knowledge belonging to camera system experts. In order to support the goals of logging,

centralization, and efficiency, routine manually-performed procedures should be automated

and connected to the overall software system. The most straightforward way to implement

this principle is through a main program that executes all domain logic of the camera system,

potentially connecting with other programs to control the hardware and communicate with

the user. In this setup, the software programs running different parts of the system must be

compatible with each other and be able to be coordinated by the main program.

The principle of consolidation of domain logic further supports the goals of providing

monitoring and graphical user interfaces, thereby contributing to the system’s effectiveness,

reliability, and safety. Connecting subsystems into a common framework makes it easier to

obtain streams of monitoring data for display and logging. The main program is a natural

place to improve the safety of the system by automatically scanning these data streams for

possible problems and taking action, such as alerting the observer, if necessary. Consolidating

and encoding data-taking procedures in software also makes it easier to design and implement

useful graphical interfaces for these systems.

Furthermore, connecting together low-level subsystems into a higher-level framework can

help allow interactions between these subsystems to be automated. For example, the trig-
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ger mask must be set using the program on the Raspberry Pi before and after taking data

with the modules. This logic does not belong solely to either the modules or backplane

subsystems but involves them both. Safety or performance issues can also result from unde-

sirable interactions between low-level subsystems. For example, data readout must be paused

when reading the FEE temperatures, as that process introduces noise into the trigger path.

Higher-level logic is needed to coordinate the behaviors of these systems.

6.3.2 Separation of Functions

Within the consolidated system, the execution of domain logic should be separated into

discrete functions. This principle applies to the software’s high-level architecture as well as

to the implementation of specific low-level operations.

First, the main program and user interface should be separated, allowing the user interface

to be implemented as a standalone GUI. Separating the GUI from the main program has

several advantages. It ensures that an error related solely to the user interface does not

harm the operation of the camera. It makes it possible to run more than one GUI at a time,

and provides the option to run the GUI on a different computer from the main program.

Isolating specialized GUI functions and the code controlling the hardware from each other

makes the code simpler to write and maintain.

It is also advantageous to uncouple the parts of the code responsible for communicating

with each hardware subsystem from the main program and from each other. These sections

of code need not run as standalone programs but should at least be organized as distinct

sections within the main program. Doing so enables the logical structure of the main program

and the actual communication with hardware devices to be separated. This separation not

only clarifies the code of the main program by allowing it to be written at a higher level of

abstraction, but also supports the principle of modularity, discussed next.
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6.3.3 Modularity

The software controlling every camera subsystem or device uses different libraries and

communication protocols, depending on the requirements of the underlying equipment. How-

ever, the high-level logic of the camera’s operation is independent of these low-level software

details. The code controlling each device can be made modular by encapsulating these dif-

fering implementation details behind a common interface. A modular design simplifies the

main program because all devices can be handled in a similar way. It makes it easier to

augment the camera software by adding new devices. If a hardware or software upgrade

alters low-level implementation details, only the portions of the camera software directly re-

sponsible for those details need to be modified. A caveat to this principle is that a hardware

change may affect interactions between devices, as well as the operation of a single device.

In this case, the high-level logic of the main program would also need to be modified.

6.3.4 Slow Control

The requirement to monitor and log the status of camera subsystems can be satisfied

by developing slow control (SC) software for the camera. An SC system performs control

and monitoring that is not necessarily time-critical and that serves to maintain the safety

of the experiment or quality of the data. In addition to passively reporting the status of

the camera on a continual basis, the SC system may actively respond to detected errors

and malfunctions. In the system developed here, the only automatically triggered actions

we consider are issuing alerts to the user, but we note that these actions could in general

include anything, such as shutting down equipment if a safety limit is exceeded.

The SC system must support a GUI allowing the user to quickly view the status of all

subsystems, including any alerts. The GUI must also allow the user to send commands to

auxiliary camera subsystems to prepare the system for operation and shut it down when
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observing is complete. The SC system must also enable monitoring data to be logged at an

appropriate cadence. Every camera subsystem must by monitored and possibly controlled

by the SC system.

6.3.5 Run Control

In addition to the slow control system, a run control (RC) system must be developed

to control the data-taking operations of the camera using the main camera systems of the

modules and the backplane. While the SC system continuously monitors the camera and

only occasionally responds to a user command or triggers an automatic alert, by contrast, the

RC system performs discrete (but possibly complex) sequences of operations based on high-

level user commands, such as starting an observing run. The RC system must be compatible

with the potential future requirement to implement an FSM, as discussed in Section 6.2.3,

taking advantage of the principle of centralization.

The RC system must support a GUI that allows the user to quickly perform data-taking

operations, including defining, starting, and stopping data runs and rate scans, while dis-

playing the status of these operations to the user. The RC system must also provide support

for logging of run information in formats suitable for both human operators and automated

systems. Furthermore, the efficiency of data-taking operations can be improved in the frame-

work of an RC system, for example, by allowing the software to maintain a record of the

internal states of subsystems, rather than simply following procedural commands.

6.3.6 Camera Control Server

In accordance with the previously mentioned design principles, the camera software’s

main program should be implemented as a control server7 that maintains a constant con-
7In this context, “server” refers to a program that receives and handles communication from other pro-

grams, called “clients”, as opposed to the computer on which the server program runs.
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nection with the devices listed in Section 6.1.2 using a modular framework. The RC and

SC GUIs should be implemented as separate clients of this server. The control server is

responsible for executing data-taking operations and for communicating with, automatically

monitoring, and logging the status of the camera hardware.

Because the SC and RC systems require separate functionality and have only a limited

overlap in the devices they control, an alternative approach, which was initially adopted

when designing sctcamsoft, would be to implement them as two fully independent systems,

each with a separate main program implemented as a control server. This approach creates

several potential problems:

• Control conflicts: The TargetDriver library, which performs low-level operation of

the modules, is required for both data-taking operations and slow control monitoring.

However, the module software is designed such that only one program can possess the

connection to and control of the modules at any given time. Independent RC and

SC servers cannot both control the modules, leading to potential interruptions when

taking data or gaps in monitoring and logging.

• State machine: Although the camera software does not define an FSM, it should be

designed with this future requirement in mind. Defining the camera state involves both

the run state (run control) and the hardware state (slow control). Neither a separate

RC nor SC server alone would be able to define the full camera state.

• Complexity and duplication of effort: A system with two separate servers able

to solve the above problems, for example, by having a third server to manage the first

two, would risk becoming overly complex and unstable.

Having a single control server to perform both RC and SC functionality and accessing it

with separate user interfaces avoids these issues.
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6.3.7 Configuration and Logging

The camera software will need to interact with external data storage systems in at least

three ways. First, data files are generated and stored during data taking. This task is fully

handled by the TargetIO library and not considered further here. Second, the control server

may require external configuration to set up and operate hardware. Third, the system must

be able to record logging information in an external location. The data storage system used

may be a database, or simply text files, for ease of use during commissioning.

6.3.8 Command-line Interface

In order to test the software during development and to provide a fail-safe option during

normal operations, a CLI backup must be provided in addition to any GUIs. A CLI capable

of supporting SC and RC operations has therefore been provided with the software.

6.3.9 High-level Design

Figure 6.2: Diagram of the high-level design of the camera software.
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Figure 6.2 shows the high-level design concept of the camera software which fulfills all

of the principles discussed above. The domain logic of camera operation is implemented in

a central control server. The user interacts with the server via specialized run control and

slow control user interfaces. The actual operation of the telescope is performed for each

device separately by modular code within the control server, which may depend on external

configuration. The control server performs logging of run and monitoring data externally.

6.4 Software Implementation

6.4.1 sctcamsoft Package

The new camera control software has been implemented as a Python package called

sctcamsoft. Using an object-oriented framework, each main element of the design is im-

plemented as an object (generally a Python class) able to define methods, or object-specific

functions; to contain data as well as other objects; and to interact with other objects in a

defined manner. The code was developed and tested using Python 3.7.4. Instructions for

installing and running sctcamsoft are given in Appendix D.

In addition to the Python standard library, sctcamsoft depends on several external

libraries. First, data serialization for transfer between instances of the CameraControlClient

class (Section 6.4.3) and the ServerController class (Section 6.4.4) is performed using the

Protocol Buffers library8. The objects generated using this library for transferring commands

and information are described in Section 6.4.2.

CTA collaborators have developed SC and RC GUIs compatible with the framework

described here, which have been added to the sctcamsoft package. These programs are

based on the PyQt5 library9 for GUI programming and additionally rely on the Matplotlib

library (Hunter, 2007) for plotting.
8https://developers.google.com/protocol-buffers
9https://www.riverbankcomputing.com/software/pyqt/
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Configuration and logging are done using text files in comma-separated values (CSV) and

YAML10 formats. These files are parsed using the pandas (McKinney, 2010; Reback et al.,

2020) and PyYAML11 libraries. While not integrated into sctcamsoft proper, the automatic

run log generator described in Section 6.6 depends on the Astropy (Astropy Collaboration

et al., 2013, 2018) and Astroplan12 libraries for astronomical computations.

The code used to control the camera subsystems is heavily based on pSCT Toolkit and

depends on the same libraries described in Section 6.1.2. Since pre-existing code did not

exist to connect to the chiller sensor, new code using the Requests library13 was written to

connect to this device. NumPy is used throughout the software for performing array-based

numerical computation (Harris et al., 2020).

In Sections 6.4.2 through 6.4.6, we discuss each of the major classes implemented in

sctcamsoft. Diagrams are provided in Unified Modeling Language (UML) format that

visually represent each class as a box listing its attributes and methods. Class inheritance is

indicated by an open-headed arrow between two boxes, while a filled, diamond-headed arrow

indicates that one class is an attribute of another. All of the UML diagrams in this work

were created using pyreverse, a UML diagram generator shipped with the Pylint package14.

6.4.2 Command and Update Objects

The sctcamsoft software is built around a two-way, asymmetric communication process.

The user sends commands to ServerController class (Section 6.4.4) running the control server

through the CameraControlClient class (Section 6.4.3) embedded in the user interface15.

Two types of user commands are available. A “low-level” user command has a one-to-
10A recursive acronym standing for “YAML Ain’t Markup Language”.
11https://pyyaml.org/
12https://astroplan.readthedocs.io/en/latest/
13https://requests.readthedocs.io/en/master/
14https://github.com/PyCQA/pylint
15As described in Section 6.4.4, “user” commands may also be initiated autonomously within the server.
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one correspondence with a single command sent to a particular device. A “high-level” user

command consists of an ordered list of user commands, which may be either low-level or other

high-level commands. Upon receiving a high-level command, the server resolves it recursively

into a list of low-level commands. All commands are defined in a YAML configuration file,

commands.yml. The commands are defined in a language-independent format, as opposed

to a Python module, to allow a GUI compatible with sctcamsoft to be created using a

language other than Python, although this has not been done in practice. Appendix E lists

all low-level commands defined in commands.yml.

Upon receiving a user command, the server breaks it down into one or more low-level

commands to send to individual devices. A device may return an update in response to a

command. The server then collects all device updates and returns them to the client in a

batch. Table 6.1 lists the objects defined to transmit commands and updates at each step

of this process.

Sender Receiver Object Format
CameraControlClient ServerController UserCommand message

ServerController DeviceController DeviceCommand namedtuple
DeviceController ServerController Update class
ServerController CameraControlClient UserUpdate message

Table 6.1: Objects used for sending and receiving commands and updates in sctcamsoft. Objects in
the “message” format are defined using the Protocol Buffers library and those in the “namedtuple”
format are defined using collections.namedtuple from the Python standard library.

The UserCommand and UserUpdate objects are Protocol Buffers messages that encode

Python data structures into an efficient binary format. To provide maximum flexibility,

these objects encode all fields as strings, except where otherwise noted. UserCommand

stores a command name and an arbitrary number of pairs of argument names and values.

UserUpdate encodes a list of updates, where each update stores a device name, variable

name, and unit, along with an arbitrary number of (value identifier, value) pairs and an
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encoded timestamp16. In this way a UserUpdate can return updates from multiple devices

and each device update can in turn hold multiple values. This design allows devices that

have multiple components to report updates.

The server transmits commands to the DeviceController (Section 6.4.5) that controls each

device using a DeviceCommand object storing the device name, the command name, and a

dictionary of argument (name, value) pairs. All values are stored as strings. The relevant

DeviceController may cast values to another type, such as a numerical type, if needed.

camera_control_classes.Update

device
timestamp : datetime, NoneType
unit : NoneType, str
values : list
variable

add_value(value, value_id)
fill_protobuf(update_pb)

Figure 6.3: Diagram of the Update class in sctcamsoft. The timestamp has the
datetime.datetime type from the Python standard library.

After executing a command, a device may return an update back to the control server

using the Update class. A diagram of this class is given in Figure 6.3. The attributes of an

Update are the device name, the variable name, a unit, a timestamp, and a list of (value

identifier, value) pairs. If the Update only contains one value, the value identifier may be

omitted. Values can be added to the list of values, along with an optional identifier, using

the add_value() method. The fill_protobuf() method dumps the contents of the Update

into a UserUpdate Protocol Buffers message.
16Stored as a google.protobuf.Timestamp: https://developers.google.com/protocol-buffers/

docs/reference/google.protobuf/#timestamp
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6.4.3 CameraControlClient

camera_control_client.CameraControlClient

can_receive()
can_send()
close()
recv_updates()
send_command(cmd_string)

Figure 6.4: Diagram of the CameraControlClient class in sctcamsoft.

The CameraControlClient class is responsible for communication between the user inter-

face and the control server. CameraControlClient can be used as part of either a CLI or GUI

program. Multiple CameraControlClient instances may communicate with a single Server-

Controller. The implementation relies on two modules from the Python standard library,

socket for low-level networking and shlex for parsing input in a shell-like interface. Two

ports are used for network communication, one for the client to input commands and another

for the server to broadcast updates to the clients. Because CameraControlClient serializes

data using the language-neutral Protocol Buffers framework and it relies on low-level socket

communication for networking, its functionality is largely language-independent.

Figure 6.4 lists the methods belonging to the CameraControlClient. Socket commu-

nication with the server is set up when the class is initialized. The can_send() and

can_receive() methods indicate whether the client is configured to send commands and

to receive updates. The close() method closes the network connection to the server. The

send_command() and recv_updates() methods send commands to and receive updates from

the control server in the formats described in Section 6.4.2.

Two simple CLI programs are provided with sctcamsoft, called user_input.py and
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user_output.py, which are based on CameraControlClient. Separate programs are used for

input and output when using the CLI so that continual streams of monitoring data can be

printed to the screen without disrupting the ability of the user to enter commands. The SC

and RC GUIs mentioned in Section 6.4.1 are also built around CameraControlClient.

6.4.4 ServerController and Its Component Classes

sctcamsoft.camera_control_classes.DeviceController

config
device

execute_command(command)
write_multiple_update(variable, values, unit, timestamp)
write_update(variable, value, unit, timestamp)

selectors.EpollSelector

close()
fileno()
select(timeout)

selectors._PollLikeSelector

modify(fileobj, events, data)
register(fileobj, events, data)
select(timeout)
unregister(fileobj)

server.UserHandler

header_length
host
input_port
output_port

communicate_user(updates)

_selector

server.AlertManager

alerted : bool
device
lower_limit
upper_limit
variable

process_update(update)

server.ControlManager

name

process_update(update)

server.ServerController

execute_command(command)
run_server()

_alertman

server.RunManager

adc_interval : int
alpha : float
max_spacing : int
min_spacing : int
num_hitmaps : int
read_hitmaps : bool
run_id : NoneType
run_interval : int
run_type : NoneType, str
start_thresh : int
state : str
stop_thresh : int

process_update(update)

_runman

server.UserCommand

args
command

 

_user_command

_user_handler

Figure 6.5: Diagram of the ServerController class and its component classes in sctcamsoft. While
the actual UserHandler uses the selectors.DefaultSelector class from the Python standard li-
brary which provides the most efficient implementation for a given platform, for clarity, the diagram
shows a specific implementation, selectors.EpollSelector.
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ServerController

The ServerController class is the core of sctcamsoft. Figure 6.5 shows a diagram of

ServerController as well as its component classes. As described in more detail below, Server-

Controller contains a UserHandler instance, which handles communication with the client

user interfaces; a RunManager instance, which implements run control functionality; and any

number of AlertManager instances, each of which manages an alert on a particular variable.

RunManager and AlertManager are derived classes of the more general ControlManager.

In addition to those classes, ServerController contains a DeviceController subclass for each

device and a dynamically modified list of commands to be executed on automatic timers,

implemented using the threading.Timer object from the Python standard library.

The run_server() method of ServerController implements the server’s main loop, which

runs continuously until the program is ended. ServerController performs the following steps

on each iteration of the main loop:

1. Package and send the list of all updates to the client user interfaces and receive in

return up to one user command.

2. Clear the list of updates.

3. Resolve the user command (if one was received) into a list of device commands, as

described in Section 6.4.2.

4. Refer each device command to the proper DeviceController for sequential execution,

and in response to each command, add up to one update to the list of updates.

5. For each timer that has expired, resolve and execute its corresponding command as in

Steps 3 and 4, and reset the timer if specified to do so.
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6. For the RunManager and each AlertManager, examine every update in the list and

potentially trigger a command based on its value. Resolve and execute the command

as in Steps 3 and 4, if applicable.

ServerController derives from DeviceController and therefore emulates a device itself. It

executes commands using the execute_command() method. This design allows the server

to set alerts, send messages, and issue automatically repeating commands using the same

framework of commands and updates as any other device.

UserHandler

ServerController communicates with its user interface clients through its component User-

Handler class. UserHandler is designed to be compatible with CameraControlClient. In the

ServerController main loop, Step 1 is performed by UserHandler.communicate_user().

The server functionality of UserHandler is built around the selectors module from the

Python standard library. Serveral configuration settings are required to be set, including the

host, input port, and output port. A simple header encoding the length of the message in

bytes is appended to each message; the length of this header can be set as a configuration

option. This header helps ensure complete messages are received, as messages may be split

unpredictably into packets of different sizes when sent over the network. UserHandler also

defines a server.UserCommand class, into which the contents of the UserCommand object

described in Section 6.4.2 are copied. This is done to keep classes that are dependent on the

Protocol Buffers library isolated to the networking portions of the code.

ControlManager

Step 6 of the ServerController main loop allows it to initiate actions autonomously. All

autonomous actions are performed by subclasses of the ControlManager base class. On each
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iteration of the main loop, a ControlManager instance calls its process_update() method

on every update before it is sent to the user, which may cause a sequence of device com-

mands to be performed, depending on the contents of the update and the internal state

of the ControlManager. Each ControlManager has a name for identification by the Server-

Controller. Two ControlManager subclasses are defined in sctcamsoft: AlertManager and

RunManager.

AlertManager

An AlertManager checks the value of a specified variable on a particular device to de-

termine whether it falls within specified lower and upper limits. Only variables capable of

being cast into a floating-point number (Python float) are compatible with AlertManager.

If an update violates the limits, the AlertManager causes the ServerController to issue an

alert update, and the AlertManager enters an alerted state. While in the alerted state, sub-

sequent limit-violating updates will not generate further alerts. If a subsequent update is

examined that respects the limits, the AlertManager will exit its alerted state and cause the

ServerController to issue an update to clear the alert. The server may set, unset, or modify

an alert by creating, deleting, or modifying the corresponding AlertController.

RunManager

The server’s run control functionality is performed by a RunManager. Internally, Run-

Manager operates as an FSM. It maintains an internal state, a list of allowed states, and a

list of allowed transitions between those states. Note, however, that this behavior is consid-

ered an implementation detail and is not publicly guaranteed. It should also be noted that

the server as a whole does not operate as an FSM. A state diagram illustrating the allowed

states and transitions is shown in Figure 6.6.
17Diagram made with Creately, https://creately.com/
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Figure 6.6: State diagram of the RunManager in sctcamsoft17. The state diagram is identical for
data runs and rate scans, with the exception that the read_rate action applies only during rate
scans.
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A RunManager may exist in one of six states: Idle, Defined, Initialized, Active, Complete,

and Terminated. The initial state is Idle, in which the system is not performing anything

related to a run. From this state, the define_run action brings it to the Defined state

in which a run number is defined, but no hardware systems have been initialized. The

initialize_run action tells the system to initialize the modules to perform either a data

run or rate scan, and brings the RunManager to the Initialized state. Once initialized, the

run is started with the start_run action.

If the run is a rate scan, the read_rate action is performed repeatedly during the Active

state to instruct the system to read the next rate. This action is initiated autonomously.

The rates to scan and duration to collect trigger counts at each threshold are determined

using the procedure described in Section 6.5.

The end_run action ends the run, transitioning it from the Active to the Complete state.

This action is initiated autonomously when the run duration has elapsed, but can also be

commanded manually to end the run early. The end_run action can also be performed in

the Defined or Initialized states, in which cases the system transitions to the Terminated

state instead. In the Terminated state, the settings of the ended run are available, while

in the Complete state, the results of the data run or rate scan are available as well. From

either state, the clear_run action transitions the system back to the Idle state so that a

new run can be defined. This simple FSM has no built-in capability to transition to an

error state and therefore relies on the user to manually end a run if a problem is observed.

The state machine models only the high-level framework of taking runs, as the mechanics of

initializing and operating modules and collecting data are encapsulated in the TargetDriver

and TargetIO libraries wrapped by TargetController (Section 6.4.5).
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6.4.5 DeviceController

Following the principle of modularity articulated in Section 6.3.3, each camera subsystem

(or “device”) described in Section 6.1.2 is controlled by a class following a consistent modular

format defined by inheritance from the DeviceController base class. Figure 6.7 shows a

diagram of this class and each of its subclasses implemented in the camera software.

Each DeviceController is initialized with a string representing the device name and a

dictionary of device-specific configuration parameters. A DeviceController is required to

implement the execute_command() method, which accepts a command specified as a De-

viceCommand object, executes that command, and optionally returns an Update object

containing the results (see Section 6.4.2). DeviceController provides write_update() and

write_multiple_update() convenience methods for constructing these Update objects.

The commands implemented by each DeviceController subclass match those defined in

commands.yml, and are listed in Appendix E.

Each DeviceController subclass is implemented by refactoring, rewriting into Python,

or, where feasible, directly importing the existing low-level code that controls its respective

subsystem, described in Section 6.1. Except where otherwise noted, the attempt has been

made to preserve all essential functionality of the pSCT Toolkit software.

The refactoring into the DeviceController framework provides several advantages. Large

functions that perform complex operations are split into individual commands that each

perform a single task, with operations for different devices isolated in different classes, making

the code easier to maintain, extend, and test. In addition, DeviceController subclasses may

contain internal variables representing the hardware state and desired configuration, allowing

for recognition of invalid commands and efficient implementation of operations.
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BackplaneController

execute_command(command)

DeviceController

config
device

execute_command(command)
write_multiple_update(variable, values, unit, timestamp)
write_update(variable, value, unit, timestamp)

ChillerController

execute_command(command)

FEETemperatureController

execute_command(command)

FanController

execute_command(command)

NetworkController

execute_command(command)

PowerController

execute_command(command)

TargetController

execute_command(command)

Figure 6.7: Diagram of the DeviceController subclasses in sctcamsoft. ServerController, although it is also a DeviceController,
is shown separately in Figure 6.5.
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In addition to the DeviceController subclasses described below, which are meant for use

in real operations, sctcamsoft also provides a matching suite of “mock” DeviceController

subclasses for testing purposes.

BackplaneController

BackplaneController is responsible for communicating with the backplane via the Rasp-

berry Pi software. Commands are available to set the values of several settings on the

backplane needed to initialize it for data taking, such as opening and closing the trigger

mask. Modules are also powered through BackplaneController, which provides commands

to power on and off individual modules as well as convenience commands to power them all

on sequentially18 and to power them all off again. Commands are provided to monitor the

currents, voltages, and presence of the modules. The most recent trigger hit pattern can be

read out from the backplane, as can the count of Trigger Acknowledge (TACK) messages

received and the value of the backplane’s internal 1 ns precision timer. BackplaneController

provides commands to reboot the two DACQ boards.

ChillerController

ChillerController provides two commands that read out the temperature and pressure

from the chiller sensor, respectively. This class performs only monitoring, with no control

capabilities.

FanController

FanController provides commands to control and monitor the power supply of the camera

fan. Commands are provided to open, close, and check the status of the connection; turn

the power on and off; read the power supply current; and read the power supply voltage.
18Due to hardware limitations, the modules must be powered on one at a time.
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FEETemperatureController

FEETemperatureController reads the module FEE temperatures from log files. It pro-

vides two commands, one to get the run number corresponding to the most recent log file and

one to return the most recent temperature reading from the log file of a given run number.

FEETemperatureController, unlike the other DeviceController subclasses, exists only for

convenience, as it duplicates functionality that could be performed by TargetController, de-

scribed below. It is useful in practice to support an intermediate mode of operation in which

pSCT Toolkit is used for run control and sctcamsoft for slow control. In this case, active

temperature monitoring with TargetController would not be possible, but FEETemperature-

Controller could still be used to passively monitor the FEE temperatures from the log files

written out by pSCT Toolkit, with which it is compatible.

NetworkController

NetworkController is responsible for setting up and monitoring the network connections

between camera subsystems. It allows the activity on any one of the four network interfaces

connected to the two DACQ boards to be monitored19. There is a command to set up the IP

addresses corresponding to the modules on the camera server computer. Finally, a command

is provided to set up the IP addresses of the modules on the DACQ boards so that packets

are correctly forwarded.

PowerController

PowerController controls and monitors the power supply for the SiPMs and camera elec-

tronics. Commands are provided to turn the main switch on and off; to start and stop the

supply and HV power; to read the supply and HV currents; to read the supply and HV set
19Interfaces 6 and 7 connect to DACQ board 1 and interfaces 8 and 9 connect to DACQ board 2.
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(nominal) voltage; and to read the supply and HV actual (measured) voltage.

TargetController

TargetController, named after the TARGET ASICs which are the key components of the

modules, is responsible for controlling and communicating with the modules. It uses the

TargetDriver and TargetIO libraries to connect to, initialize, and tune the modules. It

provides commands for taking data and writing the results to a FITS (Pence et al., 2010)

file, and for performing rate scans. It also provides monitoring of the FEE temperatures and

pixel currents.

TargetController attempts to improve on pSCT Toolkit by maintaining the connection

to the modules so that the setup needs only to be done once, at the start of a data-taking

session; performing operations on multiple modules in parallel, when possible; and auto-

matically scaling the duration when reading the trigger rate in order to achieve a constant

precision, as described in Section 6.5. Note, however, that not all capabilities implemented

in pSCT Toolkit have been incorporated into TargetController, such as the automatic run

log generator described in Section 6.6.

TargetController implements many commands. Among others, commands are available

to initialize, ready, and ping the modules; to request new values of ASIC, readout, tuning,

ADC, and rate scan parameters; to set the requested ASIC, tuning, and readout parameters

on each module20; to get the values of the parameters that have been set; to read the

temperatures and currents from each module; to enable and disable data readout or triggering

from particular modules; and to initialize a run, write the trigger mask, begin and end

readout, read the trigger rate, and get the run result when complete. The full list of provided

commands is given in Appendix E.
20The ADC and rate scan parameters are software variables only and do not need to be set in the hardware.
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6.4.6 CameraControlError

A DeviceController may encounter errors in the course of its initialization and operation.

DeviceController subclasses are required to handle errors by raising a CameraControlError, a

custom Python Exception. ServerController handles any CameraControlError by transmit-

ting an Update containing the error message to its clients and printing the stack traceback to

the screen. Like DeviceController, CameraControlError is a base class from which a number

of specialized subclasses are derived. Figure 6.8 shows a diagram of the CameraControlError

base class and each of its subclasses implemented in sctcamsoft. Every CameraControlEr-

ror instance has as attributes the name of the device that generated it and an informative

message for the user, which varies depending on the subclass of CameraControlError.

A CommandArgumentError is raised if an argument to a command is invalid or missing.

A CommandExecutionError is raised if an error is encountered during command execu-

tion. If a DeviceController receives a command with a name that does not match any valid

command, a CommandNameError is raised. A CommandSequenceError is raised if a valid

command is received, but in an unsupported order given the status of the device. For ex-

ample, a command to open a network connection would cause this exception to be raised if

the connection is already open. A CommunicationError is raised for errors communicating

with a device. If a DeviceController encounters missing or invalid configuration parameters

during initialization, it raises a ConfigurationError. If the server receives a command for an

invalid device, a DeviceNameError is raised. Finally, if a variable is found to have an invalid

type or value during the operation of a DeviceController, a VariableError is raised.
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device
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command

CommandExecutionError
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DeviceNameError VariableError
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Figure 6.8: Diagram of the CameraControlError classes in sctcamsoft.
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6.5 Rate Scan Optimization

As discussed in Section 6.1.1, during the commissioning of the pSCT, a rate scan must be

performed to determine the temperature-dependent trigger threshold before each data run.

It is important to optimize both the speed and precision of this frequent, time-intensive oper-

ation. This can be accomplished by eliminating unnecessary operations, clustering scanned

thresholds on the most interesting parts of the rate curve, and optimizing the duration spent

at each threshold to achieve equal precision at all thresholds.

A rate scan as performed using pSCT Toolkit takes approximately 14 minutes, divided

into about 8 minutes to set up and tune the modules21 and 6 minutes to perform the rate

scan itself. TargetController has been designed to greatly reduce each run’s setup time by

initializing the modules at the start of the observing session and setting up and tuning the

modules in parallel.

6.5.1 Eliminating Unnecessary Operations

In rate scans conducted with pSCT Toolkit, the module temperatures and a sample of

trigger hit patterns are read out at each threshold. Since these operations dominate the

time to read the rate in pSCT Toolkit22 and are not required for data-taking operations,

they have been eliminated in sctcamsoft. Instead, the module temperatures are read out

once each at the start and end of the rate scan.
21This time includes five minutes spent idle after the system is initialized, as the module electronics only

work properly once they have warmed up to their normal operating temperature.
22At each threshold, as a rough approximation assuming typical settings, pSCT Toolkit takes about 6

seconds to read the module temperatures, 5 seconds to read the trigger hit maps, and 1 second to read the
rate.
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6.5.2 Optimizing Threshold Spacing

Quickly-changing transition regions in the rate curve in should be scanned densely, while

stable plateau regions should be scanned coarsely in order to save time. While pSCT Toolkit

allows the user to scan over a specified list of unevenly spaced thresholds, optimizing the

threshold spacing manually is impractical because the locations of breaks in the rate curve

are not necessarily known ahead of time. Instead, a “smoothed-derivative” algorithm has

been developed for sctcamsoft to accomplish this goal automatically.

In the smoothed-derivative algorithm, the spacing between each consecutive threshold

is computed dynamically based on the absolute value of the derivative of the rate with

respect to threshold. When the absolute value of the derivative is small, the spacing is

large, and when it is large, the spacing is small. Particularly considering the optimized rate

measurement duration (discussed next), the measured rates tend to vary smoothly and close

to monotonically with the threshold. The derivative can therefore be estimated locally as

the difference between the current and previous rate, divided by the difference between the

current and previous threshold. This local estimate of the derivative ∆ is converted to a

spacing s using a sigmoid smoothing function σ,

s = (smax − smin)σ(∆) + smin (6.1)

where the range of σ is (0, 1), and smin and smax (called min_spacing and max_spacing in

sctcamsoft) determine the asymptotically approached minimum and maximum spacings.

The sigmoid smoothing function is defined as a function of x ≡ −α ln |∆| as

σ(x) = 1
1 + e−x

= 1
1 + |∆|α (6.2)

where in the definition of x, the natural logarithm transforms the domain of the absolute
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value of the derivative from (0,∞) to (−∞,∞), the negative sign produces a large spacing

at small |∆| and vice-versa, and the α parameter (alpha) determines how sensitive σ is to

the value of |∆|.

Finally, the start_thresh and stop_thresh parameters23 determine the thresholds at which

to start and stop the rate scan. In the implementation in sctcamsoft, the final threshold

scanned is allowed to overshoot stop_thresh.

The smoothed-derivative algorithm has five configuration parameters (default values

in sctcamsoft): start_thresh (600 DAC), stop_thresh (0 DAC), min_spacing (10 DAC),

max_spacing (50 DAC), and alpha (1.5). The smoothed-derivative algorithm automatically

accommodates any number of transition regions, at any locations. By way of comparison,

obtaining a similar result manually for a rate scan with a structure consisting of a single tran-

sition region surrounded by two slowly-varying “plateaus” would require six configuration

parameters (start_thresh, stop_thresh, two thresholds to demarcate the transition region

start and stop, the plateau spacing, and the transition spacing), of which the transition

region start and stop thresholds could not be optimized without adjusting them by trial and

error for every rate scan. In fact, rate scans performed during the commissioning of the

pSCT with the flasher running may have multiple transition regions.

6.5.3 Optimizing Duration at Each Threshold

In order to reduce variability in the measurements at low trigger rates while minimizing

the time required to scan thresholds with high trigger rates, the duration spent measuring

the rate at each threshold can be varied to achieve a constant precision at each threshold.

The observed number of trigger counts N at a given threshold can be modeled as having

a Poisson distribution where the parameter µ is the expected number of counts,
23As mentioned in Section 6.1.1, rate scans with the pSCT camera are actually performed from high to low

thresh values, where a high thresh is equivalent to a low threshold and produces a high rate, and vice-versa.
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f(N ;µ) = µNe−µ

N ! (6.3)

The Poisson distribution has variance σ2 equal to µ, so the standard error on the expected

number of counts is
√
σ2 = √µ. We are interested in the expected rate of trigger counts

r = µ/t, where t is the measurement duration. The standard error on the expected rate is

then σr = √µ/t. Let the precision p = σr/r. We then have

p = σr
r

=
√
µ/t

µ/t
= 1
√
µ

(6.4)

Rearranging and substituting Eq. 6.4 into the definition of expected rate yields

r = µ

t
= 1
p2t

(6.5)

Rearranging Eq. 6.5, we obtain expressions for the expected number of counts µ and the

required duration t,

µ = 1
p2 , (6.6)

and

t = 1
p2r

. (6.7)

The required precision p is a constant which is set as a configuration parameter. The

expected trigger rate r can be estimated using the rate at the previously measured thresh-

old. Because the trigger rate during a rate scan decreases close to monotonically and, for

reasonable choices of spacing parameters, relatively slowly, using the previously measured

rate as an approximation will slightly underestimate the required duration. In practice, the
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resulting precision will therefore be slightly worse than the required precision, which should

be recognized when setting that parameter. The rate to assume at the first threshold scanned

is a configurable parameter in sctcamsoft with a default value of 5000 Hz.

The expected number of counts required to achieve a given precision at any threshold is

independent of the trigger rate. To achieve 10% precision, for example, 100 trigger counts

are needed at each threshold. In a typical pSCT rate scan, the measured trigger rates range

from a maximum of ∼5000 Hz down to the rate of triggers produced by the flasher (if it

is running), typically 10 Hz. At 5000 Hz and 10 Hz, measurement durations of 0.02 s and

10 s are required to achieve 10% precision. To avoid having excessively long measurement

durations at the lowest trigger rates, sctcamsoft includes a configurable timeout parameter

that sets a maximum duration to record trigger counts at each threshold.

6.6 Automatic Run Log

In addition to the development of sctcamsoft, a software system to automatically gen-

erate a nightly run log has been implemented in pSCT Toolkit. Integrating the automatic

run log generator with sctcamsoft and connecting it to a database should be the subject of

future work. The system records information about all runs in an observing session (usually

a night) and processes it into a text format suitable for copying into a written log.

When starting a run, the user is prompted to record the status of several camera sub-

systems, including the chiller, camera fans, shutter and flasher. The previous run’s settings

are saved as defaults. Manual entry is required because these subsystems are not monitored

in pSCT Toolkit. When a run ends, its settings and results are logged to a compressed file

using the pickle module from the Python standard library.

Before taking any runs in an observing session, the user is required to run a script called

start_night.py, which records a timestamp corresponding to the start of observations.
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Figure 6.9: An example of an automatically generated log for a rate scan.

After completing the observing session, the run log is generated by running a script called

write_confluence_log.py24. Only runs taken after the start-of-night timestamp are in-

cluded in the log.

Figures 6.9 and 6.10 show examples of automatically generated logs for a rate scan and

data run. Each log records the run type, run number, and timestamps at which the run was

defined and data readout was initialized. The module numbers of modules enabled to record

data and to produce triggers in the run are recorded, using user-friendly abbreviations such

as “all modules” if all modules are enabled. A note is made if any modules failed to connect.

For each module, the list of trigger pixels being masked (if any) and the temperature for

which its tuning parameters have been optimized are recorded.

If the shutter is open, the target name, right ascension, and declination are recorded. If

the Moon is up, the Moon illumination percentage is recorded, and if the Sun is up, it is

noted that the run occurred during the day. The status of camera subsystems including the
24The output of the script is formatted to have appropriate markup for copying into an Atlassian Conflu-

ence workspace: https://www.atlassian.com/software/confluence
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Figure 6.10: An example of an automatically generated log for a data run.

HV power, shutter, chiller, and camera fans are noted, as is information on the module FEE

temperatures. If any of the three flashers is on, its rate and LED pattern are recorded.

For a rate scan, the range of thresholds scanned is recorded. The threshold at which

a desired rate specified by the user is achieved is estimated from the measured thresholds

using linear interpolation. If a plateau at approximately constant rate (such as produced by

triggers from the flasher) is detected, that is noted as well.

For a data run, the run duration, estimated livetime, and threshold are recorded, where

the livetime is the run duration minus the time that data-taking was paused in order to

read the module temperatures. A note is made if certain non-standard run settings have

been used. The numbers of data packets received and lost and of events read are recorded.

Finally, the trigger rate is estimated by dividing the number of events read by the livetime.
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6.7 Contributors to this Work

Software development for the pSCT is a broad, collaborative undertaking involving the

work of numerous people. While this chapter is focused primarily on the author’s contribu-

tions, several others have made important contributions to sctcamsoft.

• Colin Adams created the Flasher GUI mentioned in Section 6.1.2.

• Colin Adams, Brent Mode, and Leslie Taylor created and extended psct_toolkit, on

which TargetController and BackplaneController are based.

• Qi Feng updated the automatic run log to report the tuning temperatures for each

module and wrote the script it uses to obtain the right ascension and declination.

• Weidong Jin created the Slow Control GUI mentioned in Section 6.4.1.

• Thomas Meures wrote the Bash scripts on which PowerController and NetworkCon-

troller are based.

• Brent Mode and Leslie Taylor took the runs used to produce Figures 6.9 and 6.10.

• Phil Moore and Richard Bose wrote the C program used by BackplaneController to

communicate with the backplane.

• Jake Powell created the Run Control GUI mentioned in Section 6.4.1; developed the

suite of “mock” DeviceController subclasses mentioned in Section 6.4.5; created Cam-

eraControlClient and ChillerController; and improved code throughout sctcamsoft.

• Marcos Santander coordinated overall development of the pSCT camera software.

• Justin Vandenbroucke wrote the Python script on which FanController is based and

the module used within RunManager to assign run numbers.
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Chapter 7: Applying Deep Learning to IACT Data Analysis

In this chapter, we develop a new analysis method applicable to all CTA telescopes, and

indeed, to IACTs in general. We investigate deep learning, a type of machine learning using

deep neural networks, that can make full use of rich data such as the high-resolution images

produced by the SCT camera, and we apply this method to the problem of reconstructing

particle shower events from IACT images. In Section 7.1, we begin by reviewing the funda-

mentals of machine learning and how it can be used to analyze IACT data. In Section 7.2,

we introduce the concepts of neural networks and deep learning, and discuss in particular

the deep neural network architectures studied in this work.

Next, we report on an exploratory study applying deep learning to simulated SCT data

in Section 7.3, and in Section 7.4, we derive from that study a set of major challenges

involved in applying deep neural networks to data from IACTs. In order to address these

challenges, we developed two software packages, DL1-Data-Handler (Section 7.5), with which

we tackle the challenge of processing hexagonally spaced IACT images (Section 7.6), and

CTLearn (Section 7.7). Using CTLearn, we develop neural networks to perform stereo event

reconstruction (Section 7.8), benchmark classification performance for all CTA telescopes

(Section 7.9), and investigate the impact of telescope ordering when performing stereo event

classification (Section 7.10). Finally, in Section 7.11, we discuss significant contributions

made by others to the work reported in this chapter.
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7.1 Machine Learning in the IACT Context

The traditional methods for classifying and reconstructing IACT events discussed in

Section 3.4 are simple, robust, and easy to understand, but they are far from optimal. Box

cuts, for example, cannot make use of nonlinear interactions between features or efficiently

partition a high-dimensional feature space. Machine learning techniques can be used to

improve on these methods. In the supervised machine learning approach, an algorithm

learns from a set of training data to automatically create a model for making predictions on

new data. The model parameters are automatically adjusted to reflect the latent structure

in the data, allowing complex models to be developed even when the lack of theoretical

guidance or excessive time required for trial-and-error makes it intractable to specify the

parameters manually.

7.1.1 Machine Learning Applications with IACTs

Machine learning has been applied to two main problems in IACT data analysis: particle

classification and event reconstruction. In particle classification, the aim is to determine the

type of particle that initiated a Cherenkov shower in order to select gamma-ray-initiated

showers while rejecting cosmic-ray-initiated ones. As discussed in Section 3.4, a good first

approximation to the problem of cosmic-ray rejection is gamma/proton classification. Event

reconstruction entails the estimation of physical properties of the primary particle, such

as its energy, arrival direction, depth of first interaction, and core location on the ground,

typically through the stereo combination of the telescope images.

One machine learning method that has achieved widespread use in gamma-ray astronomy

in recent years is that of boosted decision trees (BDTs). A decision tree makes predictions

by following a branching sequence of splitting criteria that together non-linearly partition

the feature space. When the boosting algorithm is applied to decision trees, a sequential
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ensemble of trees is trained in which each tree focuses on correcting the mistakes made by

the previous trees. BDTs were first applied to the problem of gamma/hadron classification

for the H.E.S.S. telescopes by Ohm, van Eldik, and Egberts (2009), and are currently being

applied for cosmic ray rejection by the VERITAS Collaboration (Krause, Pueschel, and

Maier, 2017). Another tree-based method in use in gamma-ray astronomy is the Random

Forest method, in which an ensemble of trees is trained in parallel on a collection of bootstrap

samples drawn from the training dataset, and the splitting criteria at each branch of each tree

are restricted to make use of a random subset of all available features. The Random Forest

method has been used by the MAGIC Collaboration to perform both particle classification

and arrival direction estimation (Albert et al., 2008; Aleksić et al., 2010).

The reliance of both decision trees and conventional analysis techniques on image param-

eters means that these methods throw away a significant amount of information contained in

the original images. Addressing this shortcoming requires the development of methods that

make use of the telescope images directly. One such method that has been developed for

IACT data analysis is the image template method (ITM), which was originally introduced

for the CAT telescope by Le Bohec et al. (1998). In ITM, the telescope images are fit us-

ing maximum likelihood estimation to a library of template gamma-ray shower images with

known physical parameters generated using a semi-analytic model or Monte Carlo simula-

tions. The shower is then reconstructed based on the best-fit physical parameters. ITM has

been applied with H.E.S.S. to perform particle classification based on the fit quality as well

as shower reconstruction (de Naurois and Rolland, 2009; Parsons and J. A. Hinton, 2014),

and with VERITAS for shower reconstruction (Christiansen and VERITAS Collaboration,

2017). Further improvements can be attained by training a BDT model with ITM-derived

parameters (Petrashyk, 2019).

In this chapter, we focus on gamma/proton particle classification, although the methods

we develop are also applicable to performing event reconstruction.
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7.1.2 Training and Evaluating Machine Learning Models

In general, applying a machine learning algorithm follows three main steps. First, relevant

input features may be manually derived from the raw data, taking advantage of domain

expertise, such as knowledge of the physical properties of gamma rays. This process is known

as feature engineering. The Hillas parameters discussed in Section 3.4 would be typical such

features for IACT data analysis. Using these features, a machine learning algorithm is used

to train a model on a dataset, sometimes also referred to as learning a model. Finally,

inference is performed in which the trained model is used to make predictions on new data.

In this chapter, we consider only supervised machine learning, in which the desired output

values are known for the training data.

In order to evaluate the performance of a machine learning model, it is critical that the

evaluation be performed on a test set entirely separate from the data on which the model

is trained. Evaluating on a test set helps ensure that a model is not simply overfitting, or

making predictions using memorized idiosyncrasies of the training data rather than mean-

ingful insights applicable to new data. Ultimately, a model can be useful only to the extent

that the training and test sets are representative of real-world data.

A number of metrics can be used to evaluate the performance of a model on a binary

classification problem. In general, the four possible outcomes of a binary classifier are de-

scribed by a confusion matrix, shown in Figure 7.1. Any particular example will yield either

a true positive, false positive, true negative, or false negative. The performance of a classifier

on a given test set can then be reported as a function of the relative proportions of these

four outcomes. In our context, a positive example might be a gamma-ray-initiated shower,

while a negative example might be one initiated by a cosmic ray.

One metric used in this work is accuracy, or the combined number of true positives and

true negatives divided by the total number of examples. However, accuracy can be misleading
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if the class proportions are highly imbalanced, since a high accuracy could be achieved by

simply predicting that every example belongs to the predominant class. Other important

metrics include the true positive rate, or the ratio of true positives to actual positives, and

the false positive rate, the ratio of false positives to actual negatives. The false negative rate

is 1 minus the true positive rate.

Actual Positive Actual Negative
Predicted Positive True Positive False Positive
Predicted Negative False Negative True Negative

Figure 7.1: A prototypical confusion matrix.

A binary classifier may output a score, for instance, ranging between 0 and 1 with higher

values representing increased confidence that an example is positive. The classification

threshold should be tuned depending on the needs of the problem at hand. One method to

visualize the performance of a binary classifier is a receiver operating characteristic (ROC)

curve, or a plot of the true positive rate versus false positive rate at different thresholds.

From the ROC curve, another metric of overall performance can be obtained, which is the

integrated area under the curve (AUC). An AUC of 1 represents a perfect classifier and a

random classifier would have an AUC of 0.5. While AUC is more difficult to interpret than

accuracy, it is not affected by imbalanced classes.

7.2 Neural Networks and Deep Learning

In this chapter, we study the analysis of IACT data using deep learning, a class of machine

learning methods based on deep artificial neural networks. Within the past decade, deep

learning methods have risen to prominence due to their unmatched success on problems such

as computer vision and natural language processing (LeCun, Bengio, and G. Hinton, 2015).

In particular, convolutional neural networks (CNN) and recurrent neural networks (RNN),

including long short-term memory (LSTM) networks, have achieved broad success.
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Artificial neural networks, which we refer to simply as “neural networks” from now on, are

so named because they are loosely inspired by biological neural networks. Neural networks

are algorithms consisting of discrete computational units, or neurons, that compute nonlinear

functions and are organized into a layered architecture. Deep neural networks, with many

layers of neurons, can hierachically extract highly abstract features directly from complex,

unstructured data, allowing them to, for example, distinguish a Norfolk Terrier from a

Norwich Terrier in the widely used ImageNet dataset composed of photos from the Internet

(Russakovsky et al., 2015). While the fundamentals of shallow neural networks were known

by the 1980s, deep neural networks appeared for several decades to be infeasible to train. It

was not until the breakthrough work of Krizhevsky, Sutskever, and G. Hinton (2012), which

combined an efficient CNN architecture, multiple training and regularization techniques, and

a fast parallelized implementation in order to halve the error rate on the ImageNet image

recognition challenge, that the power of deep learning for computer vision became widely

apparent.

Neural networks and deep learning have applications in many areas of high-energy astro-

physics and particle physics. In the early days of gamma-ray astronomy, Reynolds (1993)

trained a shallow neural network to classify events from the Whipple Observatory using im-

age parameters, and neural networks have been used to classify unassociated sources based

on parameters in the second Fermi-LAT source catalog (Doert and Errando, 2014). Feng and

Lin (2016), taking advantage of the recent rapid advancements in deep learning, applied a

CNN to the analysis of VERITAS muon images, which have a characteristic ring shape. This

CNN model was subsequently trained on 140,000 VERITAS muon rings identified by citizen

scientist volunteers, obtaining better test accuracy than standard muon-tagging algorithms

(Bird et al., 2020). CNNs have been used to classify events and localize particle interactions

in data from the MicroBooNE neutrino detector (Acciarri et al., 2017) and to reconstruct

simulated ultra-high-energy cosmic-ray air showers (Erdmann, Glombitza, and Walz, 2018).
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RNNs have been used to identify beauty-quark jets in the Large Hadron Collider (Radovic

et al., 2018) and detect low-luminosity gamma ray bursts in simulated CTA light curve data

(Sadeh, 2019).

Deep learning methods offer multiple advantages over the existing state-of-the-art IACT

image analysis methods. Unlike with BDTs, the images need not be parameterized, doing

away with feature engineering and providing access to information that the parameterization

may be discarding. While ITM does operate on telescope images, deep learning has the

potential to be more efficient, powerful, and flexible. Both ITM and deep neural networks

can make better predictions given more templates or training examples. However, template-

based methods have computational time and memory requirements that are linear with the

number of templates, while a deep learning model has constant prediction speed and memory

usage, regardless of the number of examples used to train it. Furthermore, deep learning

models can efficiently generalize beyond simply interpolating between known templates and

do not require complete, uniform coverage of the parameter space. Deep learning models

such as CNNs are able to obtain additional prediction power by efficiently incorporating

additional information, such as time channels, without significantly increasing computational

complexity (Spencer et al., 2021, see also Section 7.2.4). Finally, ITM cannot be applied

directly to irregular hadronic images that lack well-defined templates, but deep learning

models can, making them especially well suited for particle classification.

7.2.1 Neural Networks

We now review some of the most important concepts and techniques for building and

training deep neural networks. Much of the material and presentation of this section draws

from the excellent introduction to neural networks and deep learning of Nielsen (2015).

The fundamental building block of a neural network is the neuron. As illustrated in

Figure 7.2, a neuron accepts a vector of inputs a and produces one output, which then
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becomes an input to one or more other neurons. Each neuron first calculates the linear

combination z = ∑
j wjaj + b using a vector of weights w and a bias b associated with that

neuron, where z is referred to as the weighted input. A nonlinear activation function is then

applied to the weighted input to get the neuron’s output. The activation function applied at

each neuron is usually simple, but it is absolutely critical, as without it, the entire network

would reduce to a linear classifier no matter how many neurons it contained.

a1

σ(Σwiai + b)a2

a3

Figure 7.2: Diagram of a neuron.

The earliest neural networks used the perceptron activation function, which outputs 1 if

the weighted input is positive and 0 otherwise (Rosenblatt, 1958). However, this function is

discontinuous, which makes it impossible to train using the efficient backpropagation method

discussed below (Section 7.2.2). To remedy this, the sigmoid activation was introduced,

which has the form:

σ(z) = 1
1 + e−z

. (7.1)

Because σ(z)→ 1 when z →∞, and σ(z)→ 0 when z → −∞, the sigmoid function is es-

sentially a smoothed version of the perceptron. Other activation functions are in widespread

use as well. The rectified linear unit (ReLU) has become particularly popular. It has the
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form:

f(z) = max(0, z). (7.2)

ReLU results in empirically better performance with many networks. We will return to

some possible reasons for this later, after our discussion of backpropagation.

Next, a set of neurons are connected to each other to form a neural network. The neurons

are generally organized into discrete layers, in which each layer’s outputs become the next

layer’s inputs. A diagram of a multi-layer neural network is shown in Figure 7.3. The first

layer to the network, called the input layer, simply feeds in the input features to the first

layer of neurons. Computation is performed by one or more hidden layers, and the network’s

ultimate output is encoded in an output layer. In Figure 7.3, the layers are fully connected,

meaning that each neuron is connected to all of the neurons in the previous layer.

Figure 7.3: Diagram of a fully connected neural network, from Nielsen (2015).

Amazingly, it can be proved that for any continuous function, a neural network can be

constructed that can compute that function to arbitrary precision using just a single hidden

layer. This is the universal approximation theorem of neural networks (Cybenko, 1989). One

way to intuitively understand this theorem is to imagine that the weights of all of the neurons

are tuned so that the activation approximates a step function, which can be done for any

197



nonpolynomial activation function. Superimposing a positive and negative step function

by adjusting their biases makes a box. Any continuous function can then be partitioned

into small regions and approximated arbitrarily well with boxes given an arbitrary number

of boxes (and therefore neurons). For an illuminating discussion and visual proof of the

universality theorem, see Nielsen (2015, Chap. 4).

Despite this theoretical result that shallow neural networks can compute any function, in

practice it is the composition of multiple layers that allows deep neural networks to efficiently

compute highly complex functions and, in particular, to model hierarchical structure in data.

Heuristically, a “deep” network is one that contains more than a couple of hidden layers.

7.2.2 Training Neural Networks

So far, we have not discussed how the potentially enormous collection of weight and bias

parameters that neural networks use to make predictions are actually set. Fortunately, all of

these parameters can be learned from training data through the method of gradient descent,

in which the gradient is calculated using the efficient backpropagation algorithm.

Loss Function

To train a neural network, we need to quantify how good its predictions are. We do

this by defining a loss function, which compares the output of the network on a training

example to the known, correct output for that example, called its label. The loss can be

considered as a smooth proxy to the real metrics of interest, such as the performance metrics

for classification problems discussed in Section 7.1.2. We need a smooth function in order to

perform gradient descent. Many different loss functions may be used in practice.

For training our neural networks, we used the cross-entropy loss, which operates on a

softmax activation layer, in which the neurons have the form:
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aj = ezj∑
k ezk

(7.3)

where in the denominator we sum over all of the neurons in the layer. The outputs of the

softmax activation sum to 1, so it can be thought of as producing a probability distribution.

The cross-entropy loss then has the form:

Cj = −
∑
j

(yj ln aj) = − ln aj (7.4)

where C is the loss (or cost) and the second equation assumes that the label has the form

of a vector yj in which the entry that corresponds to the correct output is 1 and all others

are 0. Although in this work we consider only binary classification, the cross-entropy loss

with softmax activation extends naturally to multi-class classification problems, such as

distinguishing among Cherenkov showers initiated by gamma rays, protons, and electrons.

Next, we need to find the set of weight and bias parameters that minimizes the loss

function, which can be done using the method of gradient descent.

Gradient Descent

For a given (constant) input, a neural network can be thought of as a multivariate function

of the weight and bias parameters that outputs the loss. The direction that a small step

starting from the current set of parameters will decrease the loss the most is the one opposite

to the gradient of this function. On each iteration of the gradient descent loss-minimization

algorithm, then, the gradient is calculated and the parameters w are adjusted in the direction

opposite to it:

w → w′ = w − η∇C (7.5)
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where η is the step size, called the learning rate, which is a so-called hyperparameter that

must programmed when training the network. The gradient for the entire training dataset

is the average of the gradients for each example. Hopefully, the algorithm will converge to

a global minimum. In practice, neural networks rarely become trapped in suboptimal local

minima, perhaps because the parameter space is packed with many saddle points having

similar values of the loss function (LeCun, Bengio, and G. Hinton, 2015).

Averaging over the gradients for every example in a large training set is slow. Instead,

in practice, on each training step we can calculate the gradient using a small sample, or

mini-batch, drawn from the training set. This method is called stochastic gradient descent

(SGD). The batch size is a hyperparameter that is typically tuned to make the most efficient

use of computing resources. The duration of training can be measured in epochs, or full

passes through the training set.

A number of advanced optimization algorithms for neural networks have been developed

that extend the basic SGD method (for a review, see Ruder, 2016). Many of these algorithms

are based around the concept of “momentum” (Qian, 1999), in which the update at each

time step depends both on the current gradient and on v, the accumulation of updates made

in previous time steps:

v → v′ = µv − η∇C

w → w′ = w + v′
(7.6)

Intuitively, v can be thought of as a velocity built up when subsequent updates are made

in the same direction, speeding convergence and reducing oscillations. Although µ is called

the “momentum” parameter, a better physical analogy would be to friction. In this analogy,

1 − µ plays the role of coefficient of friction, such that for the maximum friction µ = 0,
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no velocity can build up, and for no friction µ = 1, velocity will be maintained indefinitely

unless modified by gradient updates. For 0 < µ < 1, the velocity will slowly decay.

An alternative approach to accomplish a similar goal is that of Adadelta (Zeiler, 2012) and

RMSProp (G. Hinton, Srivastava, and Swersky, 2012), which accumulate a decaying root-

mean-square (RMS) average of each parameter’s recently seen gradient components. The

update to each parameter is divided by its RMS, giving an adaptive learning rate for each

parameter. In these methods, updates to parameters with large oscillations die away, while

rarer parameter updates increase in importance. The Adaptive Moment Estimation (Adam)

method (Kingma and Ba, 2014) improves performance further by combining a momentum

term with an adaptive learning rate.

Backpropagation

In the above discussion, we skipped over a critical question - how do we calculate the gra-

dient? Early, naive approaches required a separate computation for each parameter, which

is incredibly slow for a large network. Instead, the backpropagation algorithm (Rumelhart,

G. E. Hinton, and Williams, 1986) takes advantage of the chain rule, allowing us to calculate

the gradient using only two passes through the network - one forwards and one backwards.

The basic idea, illustrated in Figure 7.4, is that a small change to a given parameter propa-

gates through all of the outputs of its corresponding neuron, and through all of their outputs,

until the sum of all those changes results in a change in the loss. Working backwards layer by

layer, then, we can associate a change in the loss with a change in any particular parameter,

using the chain rule.

When performing backpropagation, we start with the standard layer-by-layer feedforward

calculation of the weighted inputs al and activations zl for the neurons in each layer l. We

define the error δlj of neuron j in layer l as:
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Figure 7.4: An intuitive picture of backpropagation, from Nielsen (2015).

δlj ≡
∂C

∂zlj
. (7.7)

We calculate the error on the neurons in the output layer L as:

δL = ∇aC � σ′(zL) (7.8)

where � is the Hadamard (elementwise) vector product and σ is the activation function. We

then backpropagate the error layer by layer, using the formula:

δl = ((wl+1)>δl+1)� σ′(zl). (7.9)

The gradient component for each bias is simply the error associated with its corresponding

neuron,

∂C

∂b
= δ, (7.10)

and the component for each weight is the product of the activation of its input neuron and

error associated with its output neuron,
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∂C

∂w
= ainδout. (7.11)

The parameter can then be updated using gradient descent, as discussed above. Often,

the term “backpropagation” is used loosely to refer to the entire training procedure including

the gradient descent step.

We mentioned above that replacing the sigmoid activation function (Eq.7.1) with ReLU

(Eq. 7.2) can improve performance. The equations of backpropagation suggest some reasons

why. From Eq. 7.9, we see that the error for an early layer in a deep network will contain

many factors of the derivative of the activation function σ′. For the sigmoid activation,

0 < σ′ ≤ 0.25, so the gradients in a deep network will tend to quickly decay in what is

known as the vanishing gradient problem. Since the derivative of the ReLU activation1 is

always 0 or 1, it is not susceptible to this problem. Another potential issue affecting the

sigmoid activation is saturation when the magnitude of the weighted input is large. The

activation will be close to 0, so by looking at Eq. 7.11, we see that learning will be very slow.

ReLU never saturates on positive inputs, while on the other hand, no learning will occur at

all for negative inputs.

Hardware Acceleration

Both the feedforward and backpropagation calculations can be written as matrix op-

erations, allowing them to be trained 10 to 20 times faster when performed on hardware

designed to perform parallel computations, such as graphics processing units (GPUs; Le-

Cun, Bengio, and G. Hinton, 2015). In the studies reported in this chapter, we trained

our neural networks on two different computing systems featuring the similarly performing

Nvidia™ GeForce GTX TITAN X Pascal and Nvidia™ GeForce GTX 1080 Ti GPUs.
1Technically, ReLU is not differentiable at 0, but in practice the value of the derivative can be arbitrarily

set to either 0 or 1 there.
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7.2.3 Overfitting and Regularization

In the discussion above, we implicitly assumed that the optimal parameters were those

giving the lowest loss on the training set. What we really want, however, are the parameters

that provide the best predictions on new, unseen data. A number of regularization techniques

are available to help avoid overfitting and allow the network to better generalize. These

techniques may be applied separately or in combination.

One basic procedure is early stopping. In this procedure, one splits off a portion of the

training set to create a reserved validation set on which to periodically evaluate the model.

Training is stopped when the error (e.g. accuracy) on the validation set stops decreasing.

Deciding when to stop training can be non-trivial because the validation error may plateau

before decreasing again. We performed early stopping for all of the networks that we trained.

In addition, a network can be regularized by modifying its structure to encourage it to

learn distributed representations that do not rely on the fine-tuning of any one particular

neuron. In L1 and L2 regularization, a term is added to the loss function that penalizes the

sum of either the absolute values or squares of the weights, respectively. Dropout (Srivastava

et al., 2014) is another commonly-used method in which, for each mini-batch while training,

a fraction of neurons are randomly and temporarily deleted, helping ensure that the network

is learning meaningful features instead of simply memorizing activation patterns. Batch

normalization (Ioffe and Szegedy, 2015) is another technique that provides a regularization

effect. In this technique, the inputs to each layer are scaled to have zero mean and unit

variance within each mini-batch. The primary aim of this technique is to reduce saturation,

but it induces regularization as well, since the output for a given training example must be

robust to the different inputs occurring when that example is included in different random

mini-batches.

The larger the training dataset, the harder it is for the network to overfit. We can emulate
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the regularizing effect of enlarging the dataset by transforming existing training examples, a

technique known as data augmentation (for a review, see Shorten and Khoshgoftaar, 2019).

Transformations such as translations, rotations, flips, and crops can dramatically change

the pixel representation of an input image without altering its interpretation. Given our

already-large datasets, we did not apply data augmentation in this work, but it has been

used with IACT data (e.g. Mangano et al., 2018) and is promising for future exploration.

7.2.4 Convolutional Neural Networks

The fully connected networks we have considered so far treat images as mere collections

of pixels with no explicit spatial structure. Convolutional neural networks (CNNs; LeCun

et al., 1998) have achieved superb performance on image classification through a network

architecture the key properties of which reflect fundamental characteristics of typical im-

age data: local receptive fields, reflecting locality; shared weights, reflecting translational

invariance; and pooling, reflecting scale and distortion invariance.

Figure 7.5: Illustration of a convolutional layer operating on an input image, from F.-F. Li et al.
(2015).

In a CNN, we picture the neurons in a layer as being laid out in a grid, matching the

layout of pixels in an image. In addition to the spatial height and width dimensions, the grid
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may have depth, which allows the input to contain multiple channels of information at each

point. For example, a color image might contain red, green, and blue color channels. In a

convolutional layer, each neuron is only connected to a small local subset of the inputs, for

example, a 3x3 region. Most commonly, every channel is included. This region is called a

local receptive field. We obtain the values for all of the neurons in the output layer by sliding

the local receptive field over the input. Multiple features can be calculated for each local

receptive field using different parameters, and included as channels in the output. Figure 7.5

illustrates the operation of a convolutional layer on a 32x32x3 color image input, showing a

particular local receptive field with multiple input and output channels.

The second key property of a CNN is that the local receptive fields do not have arbitrary

parameters, but are constrained to use shared weights and biases. Using shared weights and

biases significantly reduces the number of trainable parameters and builds in resistance to

overfitting, since the parameters must be equally applicable at any location in the image.

Intuitively, we slide functions to detect generally useful features, such as vertical edges, over

the input. We call these functions feature maps. Convolutional networks are so named

because this operation is equivalent to a mathematical convolution.

Most commonly, the local receptive field is shifted over one pixel at a time, but a longer

so-called stride length can also be used. Another hyperparameter is the kernel size of the

local receptive field. Factorizing large receptive fields such as 5x5 and 7x7 into a stack of

3x3 convolutions reduces the number of parameters and enhances expressiveness through

the inclusion of more nonlinearities (Szegedy et al., 2016). For this reason, 3x3 convolutions

are generally preferred to larger sizes. It should also be noted that applying a convolution

reduces the spatial dimension in the next layer, which can be avoided if desired by padding

the input with a boundary of blank pixels.

The third key property of CNNs is the introduction of pooling layers. Pooling aggregates

the values of nearby neurons, reducing the dimension of the output. For example, max
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pooling with a 2x2 region size outputs the maximum activation seen in any of four inputs,

halving the overall height and width. Other types of pooling are also commonly used.

7.2.5 Recurrent Neural Networks

For some problems, such as speech recognition, the input has the form of a variable-length

sequence, such as a sentence. To understand a word in a sentence, one must remember all

of the previous words. However, the neural networks described so far have been entirely

feedforward, that is, they contain no loops. This property prevents unstable feedback loops

from occurring in which a neuron’s output depends on its input, but makes it impossible for

these networks to maintain an internal state or memory. Recurrent neural networks (RNNs)

solve this problem by containing loops that allow a neuron’s output from a given time step

to affect its input on subsequent time steps. Equivalently, an RNN can be pictured as an

unrolled sequence of identical sub-networks, or cells, each passing information to the next.

One of the most widely-used variants of RNN is the long short-term memory network

(LSTM), which is designed to be capable of learning long-term dependencies (Hochreiter

and Schmidhuber, 1997). The structure of an LSTM is illustrated in Figure 7.6. On each

time step, the network accepts an input and produces an output. The input is concatenated

with the previous time step’s output before processing.

In an LSTM, information flows easily from cell to cell via a hidden state, which the input

can only modify by tightly controlled linear interactions through three gates. The forget gate

multiplies each element of the hidden state by a number between 0 and 1, allowing selected

elements to be discarded. Next, the input gate can add to or subtract from elements of the

hidden state. Finally, the output gate selects elements of the hidden state to incorporate

into the output vector. Many variants on the LSTM exist, such as the gated recurrent unit,

which combines the input and forget gates, among other simplifications (Cho et al., 2014).
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Figure 7.6: Diagram of an LSTM, from Olah (2015). On each time step t, the network combines
information from the input xt (blue circles) and from its internal memory of the previous inputs
(black arrows) to produce the output ht (pink circles).

7.3 Exploring Deep Learning for CTA

Parts of this section have been previously published in the proceedings of the 35th Inter-

national Cosmic Ray Conference (ICRC2017; Nieto Castaño et al., 2017).

For our exploratory study, we performed gamma/proton particle classification using

Monte Carlo simulated Cherenkov air shower images detected by an array of SCTs. The

SCT camera has a high-resolution grid of square pixels, making SCT images a natural start-

ing point for understanding the power of deep learning techniques. We used simulations

because the true particle type is unknown for real data. We considered only single-image

classification, as opposed to event-level stereo classification using all images detected by the

telescopes in the array during an event. This study was the first demonstration that deep

learning models trained with IACT images can differentiate between Cherenkov showers

initiated by gamma rays and by cosmic rays.

7.3.1 Dataset

We generated the dataset for this study using the Monte Carlo simulation chain for

CTA described in Acharya et al. (2013), where the atmospheric showers are simulated with
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CORSIKA (Heck et al., 1998) and the telescope optics and camera readout are simulated with

sim_telarray (Bernlöhr, 2008). We simulated the response of an array of eight SCTs to

approximately 5×109 proton showers and 9×108 gamma-ray showers, assuming an altitude

and atmospheric profile describing the conditions in the Roque de los Muchachos Observatory

in La Palma, Spain, where the Northern installation of the CTA Observatory is located. The

simulated array had the most telescopes possible given the technical limitations of the image

converter software. Two telescope pointing positions were simulated, with the azimuth angle

split evenly between 0° and 180° and the zenith angle fixed to 20°.

Figure 7.7: Sample simulated images, corresponding to independent events, from Nieto Castaño et
al. (2017). Upper row: Images from gamma-ray-initiated showers. Lower row: Images from proton-
initiated showers. The left, center, and right columns contain representative events from the low,
medium, and high energy bins, respectively, as defined in the text. The images are normalized for
better visualization.

The energy distribution of the initial particles ranged from 3 GeV to 330 TeV for gamma

rays and 4 GeV to 600 TeV for protons. The arrival directions for both particle types were

homogeneously distributed inside a cone of 10° radius with axis co-linear with the pointing

position of the telescopes. The output of sim_telarray consists of the collection of digitized
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photodetector pulses, for each triggered telescope camera, on an event-by-event basis. We

used EventDisplay to convert the output of sim_telarray into ROOT format (Brun and

Rademakers, 1997), and extracted from that 120x120 16-bit depth portable network graphics

(PNG) shower images using custom code based on ROOT and the OpenCV library (Bradski,

2000). Relevant Monte Carlo parameters, including the particle type, particle energy, impact

parameter, and triggered telescope number, were stored in the image header.

For all events, the arrival direction of the shower was constrained to offsets between

0° and 3◦. The event multiplicity, or number of telescopes triggered during an event, was

required to be at least three. In order to allow for a consistent reference, the same cuts

used in standard BDT-based image classification in EventDisplay were applied to the data

(Krause, Pueschel, and Maier, 2017). Specifically, sanity cuts were placed on the mean-scaled

length and width (−2 < MSCW < 2, −2 < MSCL < 5); mean reconstructed energy, mean

energy resolution, and spread in reconstructed energy between telescopes (ERecS > 0 TeV,

dES ≥ 0 TeV, EChi2S ≥ 0); and emission height (0 km < emission height < 50 km).

Training was performed separately on three energy bins, corresponding to low (0.1 - 0.31

TeV), medium (0.31 - 1 TeV), and high (1 - 10 TeV) energies.

Within each bin, the data were randomly split into training, validation, and test sets,

comprising 80%, 10%, and 10% of each bin’s data, respectively. Only images in the training

sets were used to train the CNN, while those in the validation sets were used to measure

the network’s performance after each epoch of training. The images in the test sets were

reserved to obtain a final measure of the network’s accuracy after training was complete.

7.3.2 Methods

We trained our models using the high-level neural network library Keras (Chollet et

al., 2015) with Theano (Al-Rfou et al., 2016) as the computational backend. We explored

two well-known models that have achieved state-of-the-art accuracy on the ImageNet image
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recognition challenge (Russakovsky et al., 2015), Inception-v3 (Szegedy et al., 2016) and

ResNet50 (He et al., 2015). Both are available as applications within Keras. Inception-v3

incorporates a number of techniques to achieve high performance, including factorizing con-

volutional layers, balancing network width and depth, and employing batch normalization.

ResNet50, on the other hand, includes shortcut connections that skip over intermediate lay-

ers, allowing the network to model the residuals of the identity mapping between layers,

as opposed to the modeling the mapping directly. This residual learning approach permits

extremely deep networks to be trained, with fifty layers in the case of ResNet50.

We chose the optimizer by comparing the accuracy of both models using different opti-

mizers with a small subset of data. Using the default hyperparameters in Keras, we found

that Adadelta (Zeiler, 2012) provided the best performance on both models. We trained both

models on our dataset for ten epochs. The networks were not initialized with any pretrained

weights. The input images were resized to 240x240 arrays to meet the minimum input size

for these networks. Training on the full dataset required twelve hours per model and energy

bin, while classification on the test set was approximately three orders of magnitude faster.

7.3.3 Results

ROC curves (Section 7.1.2) on the test set for both models for the three energy bins are

shown in Figure 7.8, along with those of a BDT model trained on stereo events from the

same dataset for reference. Because the neural networks are classifying individual images,

they are not expected to match the performance of the BDT reference model. The ResNet50

and Inception-v3 models achieved comparable classification performance, with ROC curves

of the two models being almost identical for the medium and low bins. All of the models

achieved the best classification performance on the higher-energy bins. This is expected

because the brighter images corresponding to higher-energy particles should contain more

information content. For the Inception-v3 and BDT models, the performance on the high
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Figure 7.8: ROC curves on the test dataset classified with ResNet50 and Inception-v3 for the low,
medium, and high energy bins, from Nieto Castaño et al. (2017). ROC curves from a BDT model
trained on stereo events from the same dataset are shown for reference.

energy bin is about the same as on the medium energy bin, which could indicate that the

relatively small sample size at the highest energies could be limiting performance. Of the

three models, the reference BDT model performs the best on all three energy bins, showing

the importance of accessing stereo information.

7.4 Challenges for Using Deep Neural Networks with IACT Data

Based on the lessons we learned from our exploratory work, we identified a number of

challenges specific to applying deep neural networks to IACT array data.

7.4.1 Data Processing

Although storing IACT data as PNG images during our exploratory work allowed us to

take advantage of pre-existing machine learning libraries for storing and manipulating data,

the resulting datasets were memory-inefficient, inflexible, and difficult to search and filter. In
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order to efficiently train neural networks on large volumes of IACT data, a specialized data

framework should be developed providing compact storage and fast access when training

and testing. Data must be stored for events with varying numbers of triggered telescopes,

possibly of different telescope types. In order to maximize the usefulness of the data format,

it should be flexible enough to store data from CTA as well as existing IACT observatories

and to support efficient reading of both single-telescope images and entire events.

7.4.2 Hexagonally Spaced Images

CNNs conventionally operate on input tensors defined by their width and height in a

Cartesian basis. However, the pixels of IACT images will be spaced hexagonally if the

camera is composed of PMTs. In our exploratory work, we avoided this issue by using SCT

data, but in order to apply deep learning methods to all IACTs, methods must be developed

either to adapt the convolutional algorithm to accept hexagonally spaced pixels or more

simply to convert the hexagonal pixels to rectangular grids without meaningfully degrading

image quality in order that existing efficient CNN implementations can be applied.

7.4.3 Stereo Event Reconstruction

In order to use deep learning methods to perform IACT event reconstruction, images

from multiple telescopes providing different views of an air shower event must be combined.

As noted above, the resulting input data is somewhat heterogeneous. Each event triggers

multiple telescopes, and the number of triggered telescopes may vary from event to event. For

a large array, only a minority of telescopes may actually be triggered during any given event.

Knowledge of the relative positions of the telescopes on the ground must also be integrated

into the network in order to perform stereoscopic reconstruction. Performing stereo event

reconstruction requires the development of specialized neural network architectures able to

deal with all of these issues.
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For arrays like CTA that contain several telescope types, the images from each telescope

may have different shapes and relative calibrations, posing additional challenges for a neural

network design. We do not tackle this aspect of the challenge in this work, and perform

stereo reconstruction with homogeneous subarrays only. The software we have created is

able to store and load data containing telescopes of multiple types, however.

7.4.4 Transfer Learning from Simulations

Finally, in order for deep learning to be useful in practice, the knowledge gained by

a model trained on simulated data must be transferable to real data, as well. Significant

systematic uncertainties exist in the modeling of cosmic-ray air showers, which could degrade

the performance of models trained on simulations when applied to real data (e.g. Parsons

and Schoorlemmer, 2019). The strength of deep neural networks to detect subtle features

in IACT images is a weakness if those features are simulation artifacts. To understand the

performance of a deep learning model in a real-life setting, it is crucial to test it on actual

data. Techniques such as regularization and data augmentation (Section 7.2.3) may help

improve the generalization of a deep neural network. As CTA is still under development,

the studies in this work were conducted entirely using simulated data, leaving a thorough

investigation of performance using actual data for future research.

The sections that follow describe the software we have developed and studies we have

performed to address these challenges: to process IACT data into an efficient format for

machine learning; train deep neural networks using data from any CTA telescope; transform

hexagonally spaced into rectangularly spaced images; and create and study neural network

architectures able to perform stereo reconstruction.
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7.5 DL1-Data-Handler

In order to process IACT data into an efficient format for machine learning, including

coping with hexagonally spaced images, we developed the open-source DL1-Data-Handler

package2 which is able to load and preprocess calibrated IACT images and auxiliary data

from any major existing or next-generation IACT (Kim et al., 2021). DL1-Data-Handler

contains modules for writing data to a format with efficient storage, fast input/output, and

database-like search and selection capabilities; loading data stored in this format; applying

arbitrary transformations to the data; and mapping hexagonally spaced pixels to rectangular

matrices. DL1-Data-Handler is designed to store data from an array containing multiple

telescope types, and allows for reading data from single telescopes of a single telescope

type (mono), multiple telescopes of a single telescope type from the same event (stereo), or

multiple telescopes of multiple telescope types from the same event (multi-stereo).

DL1-Data-Handler is a publicly available project as part of the CTA Observatory, and

the code is available online3. DL1-Data-Handler v0.8.3 is described in this work.

7.5.1 DL1 Data Format

The data format defined by DL1-Data-Handler is built on the PyTables library (Alted,

Vilata, and PyTables Developers Team, 2002), which provides a flexible, efficient interface

to store data on disk organized into a hierarchical structure based on tables and arrays.

PyTables is based on the HDF5 high-performance data management library and file format

(The HDF Group, 1997). DL1-Data-Handler takes advantage of several HDF5 storage opti-

mizations provided by PyTables, including indexing for fast search queries, dataset chunking

for faster input/output, and compression for file size minimization.

In the DL1-Data-Handler data format, the dataset is split into a collection of files on the
2https://github.com/cta-observatory/dl1-data-handler
3https://github.com/cta-observatory/dl1-data-handler
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order of one gigabyte in size, each containing data from a list of events. Each file contains

data from a fixed array or subarray of telescopes. When working with simulated data, events

produced by different primary particle types are stored in separate files. In order to reduce

data redundancy, each file has a structure with multiple, related tables storing array-level,

event-level, and telescope-level information. Full documentation of the DL1-Data-Handler

data format is available online4. The structure of each file is as follows:

• / [Folder]

– Array_Information [Table]
– Telescope_Type_Information [Table]
– Events [Table]
– MC_Events [optional Table]
– <telescope type 1> [Table]
– <telescope type 2> [Table]
– ...

The Array_Information table describes the layout of the telescope array, including the

type of each telescope and its position in Cartesian coordinates. Each telescope is iden-

tified by a unique numerical telescope ID. The telescope type has the format “<optics

type>_<camera type>”, where “MST_NectarCam” would be an example. Specific infor-

mation on each telescope type is given in the Telescope_Type_Information table, including

the camera type, optics type, number of pixels, and an array storing the position of each

pixel in the camera, for plotting images.

The Events table contains a record for every event. Each event is uniquely identified by

the obs_id of the observation that produced it (for simulated data, this is the simulation run)

together with an event_id within that observation. For simulated data, the Events table also

contains multiple parameters useful as labels or auxiliary input for machine learning studies,
4https://github.com/cta-observatory/dl1-data-handler/wiki/CTA-ML-Data-Format

216

https://github.com/cta-observatory/dl1-data-handler/wiki/CTA-ML-Data-Format


including the primary particle type, the shower zenith and azimuth angles, the coordinates

of the shower core impact position, the heights of the first interaction in the shower and of

the shower maximum, and the primary particle energy. For each telescope type, the event

multiplicity is stored explicitly, to allow for efficient selection on this parameter.

The camera images are stored not in the Events table, but in separate tables denoted

by the name of the telescope type. Each image includes two one-dimensional arrays of data

storing each pixel’s integrated charge and the peak channel, which provides the peak arrival

time relative to the start of the event. The first entry in each image table (index 0) is a blank

dummy image. However, the Events and image tables are cross-indexed. For each telescope

type, the Events table contains a array of <telescope type>_indices with an entry for each

telescope of that type in order of ascending telescope ID. For each telescope that triggered,

its value in the array is its corresponding index in the telescope image table. If a telescope

did not trigger, its value is 0, which is the index of the blank dummy image. For lookup

in the opposite direction, each row in the image table stores the index of the corresponding

event in the Events table.

Separating the Events and image tables has three main advantages. First, the telescope

images can be efficiently stored in an array without needing to store a representation of the

images of non-triggered telescopes, greatly reducing the memory requirements. Second, the

images from a particular telescope type can be read directly from the telescope image table,

which is particularly useful when reading data in mono mode. Third, this setup is more

memory-efficient with multiple telescope types that may have different numbers of pixels.

When working with simulated (Monte Carlo) data, an additional MC_Events table may

optionally be created to store the parameters of all simulated events, even ones that did not

trigger the array. This increases the processing time and output file size, but can be useful

for making a calculation of the sensitivity of the array.

DL1-Data-Handler provides two classes for writing data into this format: DL1DataDumper
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and DL1DataWriter. Much of their underlying functionality, including data calibration, is

built around ctapipe, an open-source data processing pipeline for CTA (Kosack et al., 2020a).

To convert data from another format into the DL1-Data-Handler format, DL1DataWriter

reads in data using a ctapipe EventSource and a DL1DataDumper subclass specialized for that

format. DL1-Data-Handler includes a built-in CTAMLDataDumper subclass of DL1DataDumper

for processing CTA simulations generated using CORSIKA and sim_telarray (Heck et al.,

1998; Bernlöhr, 2008). Data from other observatories may be processed by defining custom

EventSource and DL1DataDumper subclasses.

7.5.2 Reading DL1 Data

DL1-Data-Handler provides the DL1DataReader class to read in the resulting data files.

DL1DataReader loads a list of data files, maps the images to multidimensional arrays, applies

preprocessing, and returns the full dataset as an iterator that can be fed into a machine learn-

ing model. In addition to the data, an example_description object is returned providing

the name, telescope type, shape, and data type of each element of the output.

Multiple parameters are available to configure the behavior of DL1DataReader. The most

important are the mode in which to return the data - mono, stereo, or multi-stereo - and the

telescope type or types to use. Specific telescopes may be selected by ID, as well. A PyTables

selection statement may be provided in order to efficiently filter events or images, as well

as custom filter functions if more complex selection operations are required. The events or

images may be shuffled using a specified random seed. In addition to the telescope images,

any specified contents of the Array_Information and Events tables can be returned as

auxiliary data. Finally, configuration parameters for ImageMapper and DL1DataProcessor

may be provided and are passed directly to their respective classes, discussed next.
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7.5.3 Processing DL1 Data

The image vectors must be converted to two-dimensional images before they can be used.

For cameras with square pixels, this operation is trivial, but for those with hexagonally spaced

pixels, as discussed in Section 7.4.2, the optimal method to do this is not obvious. DL1-

Data-Handler therefore provides the ImageMapper class implementing multiple methods to

map hexagonally spaced pixels to a square grid. These methods are discussed in detail in

Section 7.6. ImageMapper has a number of configuration options, including the mapping

method to use for each telescope type; the amount of blank padding to apply around the

resulting images, if any; the desired output image shape if applicable; and whether to mask

out blank pixels when applying interpolation-based mapping methods.

After image mapping is performed, arbitrary transformations may be applied to the

images and auxiliary data using the DL1DataProcessor class. Transformations are ap-

plied using the Transform class, a subclass of which is defined for each transformation.

DL1DataProcessor applies a specified sequence of Transform subclasses, each of which pro-

cesses the data and updates the example_description. A number of built-in Transform

subclasses are defined to perform various transformations, for example, to convert distances

from meters to kilometers, rename variables, and to sort telescopes according to a specified

order. The user may also define custom transformations.

7.5.4 Data Reduction and Reference Dataset

We used DL1-Data-Handler to create a benchmark dataset which we used for training

and testing in the work described in the rest of this chapter. The dataset was generated using

simulation files from the third large-scale Monte Carlo production for CTA, the main purpose

of which was to issue a final recommendation for the layout of telescopes that will define

both the Northern and the Southern Hemisphere arrays of the observatory (Acharyya et al.,
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Events/Images LST MST-F MST-N MST-SC SST-1M SST-C SST-A All
Training 89/187 259/770 279/891 231/626 206/440 198/440 192/472 392/3827
Test 18/39 54/160 58/185 48/130 43/92 41/92 40/98 82/796

Table 7.1: Size of our benchmark dataset broken down by telescope type. The numbers represent
thousands of triggered events and total number of images generated in those events.

2019). The data reduction with DL1-Data-Handler was performed on the European Grid

Infrastructure (EGI)5. We considered only the Southern array, containing 4 LSTs, 25 MSTs,

and 70 SSTs arranged in the baseline recommended layout “S8” (following the notation

in Acharyya et al. (2019)). Out of all of the simulated pointing positions, we selected runs

with a Zenith angle of 20° and an Azimuth angle of 0° (North pointing). Showers initiated

by gamma rays and protons were considered in equal proportions, with a diffuse arrival

direction distribution assumed for both particle types.

From the full dataset satisfying the above criteria, we randomly selected about 400,000

events totaling approximately 4 million images, 80% of which we designated for training and

20% for testing. Seven telescope types proposed for CTA were simulated in our dataset:

the only model for LST; the two MSTs with a Davies-Cotton optics design, equipped with

FlashCam or NectarCam cameras (MST-F and MST-N respectively); the Schwarzschild-

Couder MST, or SCT (MST-SC); the single-mirror SST equipped with DigiCam camera

(SST-1M); and two dual-mirror SST designs, SST-ASTRI (SST-A) and SST-CHEC (SST-

C). For more details on the different telescope designs for CTA, see Acharyya et al. (2019)

and references therein. Table 7.1 breaks down the size of the dataset by telescope type.

7.5.5 Extensions to DL1-Data-Handler

CTA collaborators have extended DL1-Data-Handler, adding to the capabilities in the

version described in this work. A DLMAGICEventSource has been added providing the ability

to read real and simulated events from the MAGIC IACT array. In addition, the CTA
5www.egi.eu
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Consortium has developed a DL1 data format based on PyTables which draws from the

design choices made and lessons learned during the design of DL1-Data-Handler and is

being put forward as a standard for the CTA Observatory. In this format, the images are

stored by individual telescope instead of by telescope type, making it more suitable for data

taken with real telescopes. DL1-Data-Handler is currently being upgraded to be compatible

with this format, which has been implemented in ctapipe (Kosack et al., 2020b).

7.6 Mapping Hexagonally Spaced Images with ImageMapper

7.6.1 Mapping Methods

As discussed in Section 7.4.2, one challenge when applying CNNs to IACT data is dealing

with images formed of hexagonally spaced pixels. There are two main approaches for doing

so. One can either modify the CNN algorithm to accept hexagonal images, or more simply

transform the images into a rectangular grid. An example of the former approach is the

indexed convolution operation implemented in the IndexedConv package, in which each

pixel’s neighbors are explicitly specified, allowing non-Euclidian pixel grids to be supported

(Jacquemont et al., 2019b; Jacquemont and Vuillaume, 2021). DL1-Data-Handler follows

the latter approach and contains a number of different image transformation, or mapping,

methods, which are implemented in the ImageMapper class (Nieto Castaño et al., 2019b).

We generally want a mapping method to minimize changes both to the overall image

shape and to the values of individual pixels, trading off between these two objectives de-

pending on the use case. The image shape contains critical information for analyzing the

event, and preserving the originally measured pixel values might matter in some cases, such

as if the mapping method is used a preprocessing step for further processing. DL1-Data-

Handler includes mapping methods optimized for both situations.

DL1-Data-Handler includes five approximately shape-preserving mapping methods: over-
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sampling, nearest-neighbor interpolation, bilinear interpolation, bicubic interpolation, and

resampling. These methods are illustrated in Figure 7.9. In the oversampling method, orig-

inally proposed by Feng and Lin (2016), all of the pixels are divided into 2x2 grids of square

pixels, which are then made to be aligned. The value of each oversampled rectangular pixel

is set to a quarter of the value of the original hexagonal pixel, so that the image’s overall

normalization is preserved. In oversampling, the number of square pixels is fixed to be four

times the number of hexagonal pixels.

(a) Oversampling (b) Nearest
interpolation

(c) Bilinear
interpolation

(d) Bicubic
interpolation

(e) Rebinning

Figure 7.9: Diagrams depicting the approximately shape-preserving mapping methods in DL1-
Data-Handler, from Nieto Castaño et al. (2019b).

In the other four methods, a rectangular grid of arbitrary dimensions is overlaid on the

hexagonal pixels. In nearest-neighbor interpolation, the value of each rectangular pixel is set

to that of the nearest hexagonal pixel. In bilinear interpolation, the value of each rectangular

pixel is interpolated over the three closest hexagonal pixels using Delaunay triangulation,

while in bicubic interpolation, it is interpolated over the twelve closest pixels. In the rebin-

ning method, the pixel values are numerically rebinned into a square grid by overlaying a

very fine grid over the hexagonal pixels with grid values set to the nearest hexagonal neigh-

bor and summing within the desired rectangular pixels. In all cases, the resulting images

are renormalized so that the total charge in all pixels matches that of the original image.

DL1-Data-Handler also includes several mapping methods that do not alter the pixel

values, but instead deform the image into a square grid by reindexing the pixels. These

methods are fast to perform, but significantly alter the image shape. In the image shifting
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Figure 7.10: Pixel-preserving mapping methods in DL1-Data-Handler, illustrated using the VERI-
TAS camera, with oversampling shown for comparison. The color scale tracks the pixel ID numbers.

method, pixels on alternate rows are shifted to the left and right in order to produce a square

grid that keeps adjacent pixels roughly nearby. In the axial addressing mapping method, the

pixels are reindexed along two of the hexagonal grid’s lines of reflection. The resulting image

has a highly warped shape, but allows the indices of neighboring pixels in the original image

to be easily recalculated. Figure 7.10 demonstrates these methods. An additional mapping

method is provided for use with the IndexedConv package which calculates the indices of

neighboring pixels but does not transform the image vector.

ImageMapper implements every mapping method as a matrix multiplication to minimize

the processing time per image. The initialization time needed to compute the mapping

matrix varies considerably among mapping methods, however. ImageMapper allows the

output grid to be padded with empty pixels, which can be useful to ensure it is square.

7.6.2 Performance of the Mapping Methods

Computational Feasibility

A good mapping method is fast while still allowing the network to achieve good per-

formance. A comparison of the ImageMapper initialization time for each of the mapping
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methods is given in Table 7.2. The most time-intensive method is bicubic interpolation,

followed by rebinning and bilinear interpolation, but all of the methods are computation-

ally feasible. Because the mapping is performed using a matrix multiplication, the time to

perform the mapping does not depend on the mapping method.

Mapping Method Initialization Time [ms]
Oversampling 251± 2
Nearest-neighbor Interpolation 295± 1
Bilinear Interpolation 525± 1
Bicubic Interpolation 3360± 8
Rebinning 1320± 12
Image Shifting 90± 0.5
Axial Addressing 105± 0.1

Table 7.2: Comparison of mapping method initialization times in ImageMapper for the LST camera.

Effect on Network Performance

The results in this section have been previously published in the proceedings of the 36th

International Cosmic Ray Conference (ICRC2019; Nieto Castaño et al., 2019b).

To determine the effect of mapping method on network performance, we trained a single-

telescope model with CTLearn (Section 7.7.2) on images mapped using each of the shape-

preserving methods. We trained three separate models for one telescope type of each size:

LST, MST with the FlashCam camera (MST-F), and the single-mirror SST (SST-1M). The

performance of each network is plotted in Figure 7.11. The error bars are the standard

deviation of the metrics obtained from ten identical models trained with parameters ini-

tialized using different random seeds. The performance of a similar model trained on the

same datasets with GammaLearn (Jacquemont et al., 2019a) using indexed convolution is

also shown. The accuracy and AUC on both the training and test sets are similar for all

of the mapping methods. There is a hint that the nearest-neighbor interpolation method

may be worse than the others. The best-performing method is bilinear interpolation, but
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the difference between it and the other methods is not significant. Image mapping does not

appear to play a significant role in network performance, at least for simulated data. Future

work could explore whether this conclusion still holds when applied to real data.
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Figure 7.11: Comparison of single-telescope network performance using different mapping methods,
from Nieto Castaño et al. (2019b).
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7.7 CTLearn

Building on the experience we gained from the exploratory work described in Section 7.3,

we have developed CTLearn, an open-source Python package for using deep learning to

analyze pixel-wise camera data from arrays of IACTs6 (Nieto Castaño et al., 2019a; Brill

et al., 2019b). CTLearn provides an application-specific framework for configuring and

training machine learning models and applying the trained models to generate predictions

on a test set. CTLearn remains under active development by the author and others. In this

work, CTLearn v0.4.0 is described, with major developments not included in that release

summarized in Section 7.7.3.

The motivations for developing CTLearn are threefold. First, the software is open source

and publicly available, enabling it to be used for any existing or future IACT array, including

both CTA and VERITAS. Second, the software is structured around a configuration file to

help encourage reproducible training and prediction. This design is similar to that of the

FermiPy package (Wood et al., 2017). Third, CTLearn is based around the widely used

TensorFlow deep learning library7 (Abadi et al., 2016), which provides convenient high-level

frameworks for loading data and training neural networks, as well as powerful low-level

capabilities for creating custom architectures.

Besides TensorFlow, another deep learning library in common use is PyTorch (Paszke et

al., 2019). A comparable package to CTLearn, called GammaLearn, has been built around

the PyTorch library (Jacquemont et al., 2019a). Both CTLearn and GammaLearn rely on

DL1-Data-Handler to load and preprocess IACT data.
6https://github.com/ctlearn-project/ctlearn
7https://www.tensorflow.org
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7.7.1 CTLearn Framework

CTLearn allows its user to focus on developing and applying new models using Tensor-

Flow while making use of functionality specifically designed for IACT event classification and

reconstruction. All settings, including those for loading and preprocessing data with DL1-

Data-Handler, are configured using a YAML configuration file, ensuring that the settings

used to train a model are explicitly set and automatically recorded.

CTLearn is organized around the run_model module, which parses the configuration

file, loads the data, and initializes the model, which may be a default model included with

CTLearn or a custom model created by the user using standard TensorFlow functions. Then,

depending on the mode set by the user, run_model either trains the model, uses the trained

model to generate predictions on a test set, or just displays properties of the dataset. The

trained model parameters are saved to a TensorFlow model checkpoints file, and run sum-

mary data are saved to an events file for display with the TensorBoard web application

included with TensorFlow. CTLearn also saves a log file for each run, along with a times-

tamped copy of the configuration file for documentary purposes. CTLearn includes a num-

ber of ancillary scripts for summarizing results and making plots. Figure 7.12 provides an

overview of the high-level design of CTLearn.

CTLearn v0.4.0 is based on Python 3.7.3 and TensorFlow 1.13. Other dependencies are

DL1-Data-Handler, NumPy (Harris et al., 2020), and PyYAML8, in addition to Matplotlib

(Hunter, 2007), pandas (McKinney, 2010; Reback et al., 2020), and scikit-learn (Pedregosa

et al., 2011), which are used only in the supplementary scripts.
8https://pyyaml.org/
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Figure 7.12: Diagram summarizing the design of the CTLearn v0.4.0 framework, from Nieto Cas-
taño et al. (2019a).

7.7.2 Configuration and Settings

As mentioned above, CTLearn stores run settings in a configuration file. All available

configuration options are documented online9, and the main options are described below.

Data

This section contains settings for loading and processing the dataset using DL1DataReader

and DL1DataProcessor. All of the settings and mapping methods described in Sections 7.5.2,

7.5.3, and 7.6 are available. Data can be loaded in mono, stereo, or multi-stereo modes.
9https://github.com/ctlearn-project/ctlearn/blob/v0.4.0/config/example_config.yml
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Input

The user can set parameters for data input using the TensorFlow Dataset and Estimator

APIs, including the number of samples to load into memory before shuffling, the random seed

for shuffling, the number of consecutive samples to combine into a batch, and the maximum

number of batches to be buffered when prefetching.

Model

CTLearn works with any TensorFlow model obeying the generic signature

logits = model(features, params, example_description, training)

where logits is a vector of raw, non-normalized values typically used as input to a softmax

layer, features is a dictionary of TensorFlow tensors (multidimensional arrays), params

is a dictionary of model parameters, example_description is a DL1DataReader example

description, and training is a Boolean that’s true when training and false when validating

or testing. The variables to use as labels and class names to use if applicable are also

specified in this section. A separate Model Parameters configuration section allows the

user to specify parameters for custom models.

CTLearn includes three built-in models for gamma/proton classification. The hyperpa-

rameters of these models can be customized using configuration parameters. The single-tel

model, which is a simple CNN, is provided to classify single telescope IACT images. By

default, this model consists of four convolutional layers with 32, 32, 64, and 128 filters and

a kernel size of 3 in each layer, interspaced by an activation layer followed by a max-pooling

layer with a kernel size (and stride) of 2. The output of the convolution block is then flat-

tened and fed to a fully connected layer with an output dimensionality of 2, the number of

classes. In addition, the CNN-RNN and Variable Input models are provided for performing

stereo reconstruction. These models are described in detail in Section 7.8.
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All three models are built on a configurable module called Basic. Basic features three

customizable functions. First, conv_block defines a CNN block given a number of convo-

lutional layers, number of filters and kernel size for each convolutional layer, and whether

to perform max pooling between convolutional layers. For use with the Variable Input

model, two network “heads”, or output layers, are provided: conv_head, which is similar to

conv_block except that instead of pooling between convolutional layers, there is an option

to perform a final average pooling over the CNN output, and fc_head, which defines a num-

ber of consecutive fully connected layers. All of the Basic functions provide the option to

perform batch normalization. ReLU is used as the activation function in all hidden layers.

Training

The user can customize training hyperparameters such as the fraction of data randomly

extracted from the training dataset for validation purposes, the number of validations to

run, how often to evaluate on the validation set, the optimizer, and the base learning rate

for the chosen optimizer. Several optimizers are available, including SGD, Adam, Adadelta,

and RMSProp. Optionally, each example’s loss can be weighted inversely proportionately to

the predominance of its class. This option can be useful when dealing with an unbalanced

dataset, such as one that is predominately protons.

Prediction

The user can specify settings such as the path to which to write the prediction file and

whether to save the labels and example identifiers along with the predictions.

Logging

The user can specify the directory for storing TensorFlow checkpoints and summaries, a

timestamped copy of the run configuration, and optionally a timestamped log file.
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TensorFlow

The TensorFlow debugger can be optionally invoked.

Multiple Configurations

CTLearn features a tool to train models using multiple configurations in series, sourcing

from a single configuration file. This tool can be used to optimize hyperparameters through

grid or random searches over discrete sets or linearly or logarithmically spaced ranges.

7.7.3 Extensions to CTLearn

CTLearn is an open-source project, and collaborators in CTA and the broader community

have made multiple extensions to it. Some of these contributions are described briefly below.

First, CTLearn Optimizer10 has been created as a standalone library enabling automated

hyperparameter optimization and model training with CTLearn. The supported search

algorithms include random search, tree Parzen estimators, Gaussian processes, and genetic

algorithms. The optimization can be performed in parallel if suitable hardware is available.

Next, while the studies described in this work focus on the problem of gamma-hadron

classification, the capability to perform event reconstruction including both energy and di-

rection estimation has been added to CTLearn. These tasks can be performed by separate

models, or all together in a multi-task learning approach (e.g. Ruder, 2017) in which inde-

pendent task-specific “head” layers are attached to a common backbone model. CTLearn

has been used to perform single-image event reconstruction with separate models using a

simulated array of LST telescopes (Nieto et al., 2021).

Support for several state-of-the-art architectural designs has also been added to CTLearn.

First, a configurable implementation of a residual neural network (ResNet) model has been
10https://github.com/ctlearn-project/ctlearn_optimizer
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added as a default model, similar to the ResNet50 model described in Section 7.3.2. In addi-

tion, support has been added for squeeze-and-excitation layers that use global spatial infor-

mation to emphasize the most important channels by recalibrating channel feature responses

(Hu, Shen, and Sun, 2018), or conversely use global channel information to emphasize spatial

locations (A. G. Roy, Navab, and Wachinger, 2018), or do both. Squeeze-and-excitation can

be thought of as a form of attention mechanism which focuses computational power on the

most informative inputs. Attention is an extremely powerful technique that on some tasks

can outperform recurrence and convolution entirely by itself (Vaswani et al., 2017).

7.8 Stereo Reconstruction with CTLearn

As discussed in Section 7.4.3, a particular challenge when applying neural networks to

data from IACT arrays is performing stereo event reconstruction. One simple way to deal

with this problem is to stack the telescope images, either by direct summation or by repre-

senting them as separate input channels. Mangano et al. (2018) used this method to predict

the particle type, energy, direction, and height of first interaction of particle showers imaged

by a simulated array of four LST telescopes.

However, this approach presents several issues. First, it is unclear how to deal with non-

triggered telescopes. In the work of Mangano et al. (2018), only events that triggered every

telescope were considered. However, this approach limits the applicability of the analysis

and is clearly unfeasible for the larger arrays of MSTs and SSTs under development for CTA.

An alternative approach is to represent the images of non-triggered telescopes as arrays of

all zeroes. However, models with this architecture have been found empirically to provide

degraded performance when subsequently applied to real data (Shilon et al., 2019). Another

issue with this method is that for large telescope arrays, since any given event will generally

trigger only a handful of telescopes, most inputs to the network will always be zero. This
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raises potential accuracy and convergence issues when training the network, and also raises

the possibility of overfitting caused by the network recognizing specific combinations of

triggered telescopes in the training data instead of learning generalizable features.

We have developed two purely deep-learning-based models for performing stereo recon-

struction and implemented them as built-in models in CTLearn. In these models, the prob-

lem is broken down into two stages. In the first stage, the images from the telescopes are

processed into vector representations by a CNN, using shared weights for each image. The

second stage combines the information from each telescope. These models can be trained

end-to-end, allowing them to make full use of the information in the telescope images and

model potentially complex interactions between images in different telescopes.

7.8.1 Variable Input Model
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Figure 7.13: Variable Input Network

In the first model, called a Variable Input network, the telescope features are combined

along with optional auxiliary event-level features using an array combination layer connected
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to a fully connected or convolutional network head. In the array combination layer, the

feature maps are flattened and concatenated (for a fully connected head) or stacked channel-

wise (for a convolutional head). Any auxiliary features, such as the telescope positions or

event-level parameters calculated using another machine learning method, are then appended

to the array vector or represented as additional channels, respectively.

Non-triggered telescopes are dealt with by multiplying their telescope feature vectors by

zero, essentially eliminating them as inputs to the network. We refer to this method as

“trigger dropout” in reference to the Dropout regularization technique (see Section 7.2.3),

which involves a similar operation. Unlike Dropout, which is applied only during training,

trigger dropout is a required component of the network accounting for the fact that only

certain telescopes trigger in an event, and is therefore applied at both training and test

time. Since the outputs of non-triggered telescopes are identically zero, their gradients are

too, and their weights are not updated in backpropagation. The representation of non-

triggered telescope images is therefore arbitrary. A potential downside of this design is that

array combination creates a memory bottleneck that could limit the maximum number of

telescopes. However, we have not been found this to be a major problem in practice.

7.8.2 CNN-RNN Model

In the second approach, referred to as a CNN-RNN model, an RNN (specifically, an

LSTM) is used to combine the telescope vectors to produce an output vector. The LSTM

output vector is fed into a set of densely connected layers to produce the final prediction.

The CNN-RNN architecture is very similar to the CRNN network which has been shown

to improve background rejection performance on real data from the H.E.S.S. IACT array

(Shilon et al., 2019; Parsons and Ohm, 2020).

In the CNN-RNN model, no auxiliary information is explicitly fed into the network,

but the order of the telescope images could hypothetically encode information about the
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relationships between telescopes. This hypothesis is explored in Section 7.10. Figure 7.14

shows a diagram of the CNN-RNN architecture.

DCN
[...]

[...]

LSTM

Dropout

Dropout

Dense

Dense

Dropout

Prediction

Dropout

Figure 7.14: Diagram of the CNN-RNN particle classification model implemented in CTLearn,
from Nieto Castaño et al., 2019a. The model uses a CNN (labeled as a deep convolutional network
or DCN) to derive a vector representation of each image and combines them using an LSTM.

In the CNN-RNN implementation in CTLearn, the CNN is defined as described in Sec-

tion 7.7.2. The output of each CNN is fed into a Dropout layer that in turn feeds into an

LSTM layer with a hidden state size of 2048. After flattening, the output of the LSTM layer

passes through three fully connected layers, each preceded by a Dropout layer, with 1024,

512, and 2 neurons respectively. The ReLU activation function is used throughout. The

default Dropout fraction is 0.5.

7.9 Benchmarking Model Performance with CTLearn

The contents of this section have been previously published in the proceedings of the

36th International Cosmic Ray Conference (ICRC2019; Nieto Castaño et al., 2019a).

We trained the single-tel and CNN-RNN models on all seven telescope designs proposed

235



for CTA in our benchmark dataset. We trained the single-tel model on 50,000 batches of

64 images each and the CNN-RNN model on 40,000 batches of 16 events each. Both were

validated every 2,500 batches. These settings were chosen to end training approximately

when the validation loss stopped decreasing. Hexagonally spaced images were mapped to

two-dimensional arrays using bilinear interpolation. Figure 7.15 shows the evolution of the

accuracy, AUC, and loss as a function of training samples for both models and all telescope

types. The accuracy and AUC values for the validation and test sets are summarized in

Table 7.3. We found an excellent match between the metrics obtained from the validation

and test sets, with the smallest and largest discrepancies being 0.6% and 1.2% in AUC for the

single-tel model, and 0.1% and 1.0% in AUC for the CNN-RNN model. Test AUC values for

the single-tel model range from 0.78 and 0.81 for the LST and SST-A telescopes, respectively,

up to the 0.84 – 0.87 range where the rest of the telescope designs are located. Test AUC

values for the CNN-RNN model are located around 0.90 for most telescope designs.

No quality cuts or data preselection were enforced during training, so the models were

fed with all images that triggered the telescopes, as opposed to the conventional analysis,

where data preselection and quality cuts are routinely performed. In order to illustrate how

data preselection cuts can affect performance we trained the CNN-RNN model imposing a

telescope multiplicity cut for both training and validation. As shown in Figure 7.16, the

validation AUC is boosted beyond 0.90 in all telescope designs after a multiplicity cut of

four triggered telescopes per event is applied, which is a standard multiplicity cut in the

analysis of simulated CTA data (Acharyya et al., 2019). The AUC values reach up to 0.98

for all MST designs and the SST-1M design.
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Figure 7.15: Evolution of the main learning metrics for the single-tel (top panels) and CNN-RNN
(bottom panels) models as a function of number of samples, from Nieto Castaño et al. (2019a).

Single-tel model LST MST-F MST-N MST-SC SST-1M SST-C SST-A
Validation Acc 0.701 0.762 0.784 0.795 0.781 0.753 0.733

AUC 0.786 0.849 0.869 0.878 0.862 0.828 0.818
Test Acc 0.697 0.757 0.778 0.785 0.776 0.748 0.725

AUC 0.778 0.842 0.863 0.866 0.853 0.822 0.808
CNN-RNN model LST MST-F MST-N MST-SC SST-1M SST-C SST-A
Validation Acc 0.740 0.802 0.816 0.820 0.817 0.801 0.771

AUC 0.819 0.896 0.912 0.912 0.900 0.902 0.861
Test Acc 0.732 0.800 0.816 0.812 0.809 0.796 0.771

AUC 0.815 0.890 0.909 0.902 0.893 0.898 0.862

Table 7.3: Accuracy and AUC values for the single-tel and the CNN-RNNmodels for both validation
and test datasets as reported in Nieto Castaño et al. (2019a).
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Figure 7.16: Validation accuracy (bright colors) and AUC (pale colors) for the CNN-RNN model,
broken down by telescope type and minimum multiplicity cut, from Nieto Castaño et al. (2019a).

7.10 Investigating Telescope Ordering in CNN-RNN Networks

Parts of this section have been published in the proceedings of the 2019 New York Sci-

entific Data Summit (NYSDS), where this work was presented by the author (Brill et al.,

2019a).

7.10.1 Telescope Ordering in CNN-RNN Networks

Since RNNs operate on sequential data, the ordering of telescope images in a CNN-RNN

network should be meaningful. In particular, it would be natural to encode the relative

positions of the telescopes in order to better estimate the shower energy through stereoscopic

reconstruction. In previous work using a CNN-RNN network for particle classification, the

telescope images were ordered by total image amplitude, or size. As size can be considered
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to be a proxy for proximity to the shower center, sorting on this parameter may provide an

ordering given the absence of temporal information (Shilon et al., 2019).

To understand the effect of this ordering on performance, we trained two CNN-RNN

networks to classify IACT images as produced by a gamma ray or a cosmic-ray proton,

changing only the ordering of the input images. As a control, in one network the images

were ordered by telescope ID number, an arbitrary but consistent ordering, while in the

other the images were ordered by size. The networks were trained using a sample of 250,000

simulated events from 25 CTA FlashCam telescopes (Gadola et al., 2015), using the dataset

described in Section 7.5.4. The hexagonally spaced telescope images were mapped to a grid

using the rebinning mapping method. Ten percent of the events in the sample were reserved

as a validation set, which was not used for training.

7.10.2 Results

The CNN-RNN models were trained using CTLearn v0.3.0. The Adam optimizer was

used with a learning rate of 0.0001. The training was performed in batches of 16 events.

The networks were trained on 37,500 events, or approximately 7 epochs.

The results of this experiment are shown in Fig. 7.17. The validation metrics of the two

models were approximately the same, with those of the control model being slightly higher.

The control model attained validation accuracy and AUC of 80.6% and 0.899, while the

model with images sorted by size reached 80.2% and 0.894. We therefore found no evidence

that sorting images by size improves classification performance with a CNN-RNN model.

This finding leaves open the possibility that a different ordering of telescope images could

result in improved performance. In particular, an ordering which provides sufficient infor-

mation about the telescopes’ position on the ground could help a CNN-RNN to perform

stereoscopic reconstruction of Cherenkov air showers. This is particularly important in the

context of event reconstruction, especially when estimating the energy of the originating
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(a) Accuracy (b) AUC

Figure 7.17: Validation accuracy and AUC of the CNN-RNN model with images ordered by ID
(dark blue) and size (light blue) as a function of number of training steps (batches of 16 events).
The model reached an accuracy and AUC of 80.6% and 0.899 when ordered by ID and 80.2% and
0.894 when ordered by size.

particle. Ensuring that telescope position information is effectively provided to neural net-

works may therefore not only improve their performance on background rejection but also

on additional tasks critical for IACT image analysis.

While ordering by size as a proxy for distance to the shower center should provide some

relative position information, it may be too incomplete to be useful to the network. Giving

the neural network complete access to all relevant stereoscopic parameters may require a

more fully physics-informed approach, in which the physics of Cherenkov air showers guides

the design of the model architecture, loss function, or model initialization (for a review, see

Willard et al., 2020).

7.11 Contributors to this Work

Developing DL1-Data-Handler and CTLearn was a highly collaborative effort, involving

the contributions of multiple people. The author made a significant contribution to all of the

work described in this chapter, except where otherwise noted, such as the extensions to the
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software described in Sections 7.5.5 and 7.7.3. The most important of these contributions

include designing the general framework of CTLearn and writing a significant portion of

the code; training, optimizing, and debugging many of the neural networks used to gener-

ate the results reported in this chapter; helping define the DL1-Data-Handler data format;

leading the effort to refactor DL1-Data-Handler into the classes described in this work and

writing the bulk of DL1DataReader and DL1DataProcessor; designing and implementing

the stereo reconstruction models discussed in Section 7.8; and initiating and performing the

investigation of telescope ordering reported in Section 7.10.

While we do not attempt to disentangle the part played by every collaborator, we high-

light here some particular major contributions made by others. Daniel Nieto initiated and

directed the studies described in Sections 7.3, 7.6.2, and 7.9; coordinated the overall de-

velopment of DL1-Data-Handler and CTLearn; and processed the datasets described in

Section 7.3.1 and 7.5.4. Bryan Kim made major foundational contributions to the design

and implementation of DL1-Data-Handler and CTLearn. Finally, Tjark Miener made sub-

stantial contributions to DL1-Data-Handler and CTLearn, and in particular, implemented

all of the image mapping methods described in Section 7.9.

Among the extensions to DL1-Data-Handler described in Section 7.5.5, Sahil Yadav

implemented DL1MAGICEventSource and Tjark Miener is upgrading DL1-Data-Handler to

conform to the CTA Consortium format. Among the extensions to CTLearn described in

Section 7.7.3, Juan Redondo created the CTLearn Optimizer library and Tjark Miener im-

plemented the support for multi-task learning and state-of-the-art architectures.

We acknowledge the support of NVIDIA Corporation with the donation of the Titan X

Pascal GPU used for this research.
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Conclusion

In this thesis, we began by studying three FSRQs using data from VERITAS and Fermi-

LAT, examining their long-term variability over 10 years, daily and sub-daily variability

during bright flares, and multiwavelength spectra and potential for neutrino emission during

VHE-detected flares. We identified the challenges posed by variability for performing blazar

population studies with IACTs and estimated the prospects for a measurement of the lumi-

nosity function of HBL blazars with VERITAS. In order to contribute to the development

of new instruments and analysis techniques, we described a control and monitoring software

system created to enable the operation of the next-generation pSCT, and investigated how

deep learning can be used for cosmic-ray background rejection in order to maximize the

scientific impact of the high-resolution data from next-generation IACTs.

We now look to the future. Deep learning, in addition to its applications in data analy-

sis, offers a novel tool for extracting scientific knowledge about blazar variability from rich

multiwavelength datasets. A predictive gamma-ray variability model derived using deep

learning from well-sampled, long-duration multiwavelength light curves would deepen our

physical understanding of the locations, mechanisms, and duty cycle of flares, and enable

TeV observatories to better plan both individual observations and surveys. For example,

such a model might, given observed data in a band observed at a high, regular cadence (such

as GeV gamma rays with Fermi-LAT), predict the expected future emission in the TeV band

or other wavebands which are typically observed by pointed instruments.

Can flares be predicted, and if so, in which sources, on what timescales, and in what

wavebands? A positive finding would provide key input for the development of theoretical

models, while at the same time could be of immediate practical use for planning observations.

242



Even a demonstration that such a model cannot be built, because, for example, on relevant

timescales the observed fluctuations are purely stochastic or uncorrelated between different

wavebands, would be in itself an important scientific finding. A flare prediction model would

also help pointed telescopes schedule observations, multiplying the scientific impact of both

the monitoring performed by space telescopes such as Fermi and the sensitive follow-up

observations carried out by ground-based IACT arrays including VERITAS and CTA.

The deep datasets collected by existing observatories and the improvements promised by

next-generation instruments have great potential to grow our understanding of the variable

emission from blazars, the most extreme form of AGN, and transformational state-of-the-art

machine learning methods can help unlock this potential.
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Appendix A: Complete set of Fermi-LAT flare profiles for 3C 279

Table A.1: LAT flare profile fits for 3C 279. The smallest variability time found is indicated in
boldface. The amplitude F0 and constant offset Fconst are reported in units of 10−9 erg cm−2 s−1.

F0 tpeak [MJD] trise [min] tdecay [min] Fconst

Flare 1 (MJD 56645.655 – 56647.655): χ2/d.o.f.= 12.05/8 = 1.51

9.56 ± 1.07 56646.330 ± 0.033 130 ± 45 674 ± 73 0.28 ± 0.06

Flare 2 (MJD 56717.655 – 56718.655): χ2/d.o.f.= 16.63/10 = 1.66

4.40 ± 0.70 56718.142 ± 0.043 445 ± 95 307 ± 86 0.55 ± 0.07

Flare 3 (MJD 56749.655 – 56754.655): χ2/d.o.f.= 69.98/34 = 2.06

7.27 ± 0.64 56750.382 ± 0.015 229 ± 25 267 ± 42 N.A.

2.78 ± 1.15 56751.238 ± 0.024 140 ± 82 69 ± 47 N.A.

4.80 ± 0.37 56752.532 ± 0.067 2001 ± 116 631 ± 136 N.A.

Flare 4 (MJD 57186.655 – 57190.655): χ2/d.o.f.= 77.31/19 = 4.07

12.07 ± 0.67 57187.446 ± 0.031 378 ± 46 1784 ± 147 N.A.

9.79 ± 2.29 57188.425 ± 0.028 216 ± 101 155 ± 64 N.A.

21.72 ± 1.59 57189.069 ± 0.008 137 ± 18 512 ± 55 N.A.

12.41 ± 1.30 57189.532 ± 0.010 220 ± 63 77 ± 25 N.A.

Flare 5 (MJD 58116.655 – 58119.655): χ2/d.o.f.= 54.70/29 = 1.89

Continued on next page
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3.72 ± 0.20 58118.171 ± 0.069 1278 ± 220 2521 ± 309 0.06 ± 0.11

Flare 6 (MJD 58130.655 – 58141.655): χ2/d.o.f.= 141.28/72 = 1.96

7.08 ± 1.01 58134.520 ± 0.055 3719 ± 390 421 ± 259 N.A.

10.95 ± 3.74 58135.229 ± 0.053 718 ± 232 3535 ± 1394 N.A.

11.78 ± 7.00 58136.266 ± 0.048 349 ± 160 1839 ± 1055 N.A.

3.44 ± 0.66 58139.546 ± 0.033 233 ± 175 6119 ± 1824 N.A.

Flare 7 (MJD 58168.655 – 58173.655): χ2/d.o.f.= 78.81/58 = 1.36

2.36 ± 0.50 58172.345 ± 0.242 8540 ± 4159 4458 ± 2319 0.45 ± 0.59

Flare 8 (MJD 58222.655 – 58230.655): χ2/d.o.f.= 177.25/106 = 1.67

5.29 ± 1.29 58224.773 ± 0.105 1996 ± 716 5899 ± 4035 N.A.

17.70 ± 2.01 58227.945 ± 0.004 36 ± 13 329 ± 131 N.A.

16.42 ± 1.87 58228.323 ± 0.012 140 ± 54 115 ± 48 N.A.

5.59 ± 1.69 58227.139 ± 0.133 3816 ± 1450 4077 ± 2080 N.A.

Flare 9 (MJD 58239.655 – 58247.655): χ2/d.o.f.= 46.25/34 = 1.36

2.96 ± 0.40 58241.258 ± 0.149 2546 ± 595 2226 ± 1088 N.A.

3.27 ± 0.25 58245.648 ± 0.133 3080 ± 1384 3028 ± 303 N.A.

Flare 10 (MJD 58268.655 – 58275.655): χ2/d.o.f.= 75.80/55 = 1.37

6.23 ± 9.46 58269.171 ± 0.182 73 ± 236 177 ± 102 N.A.

8.81 ± 0.84 58270.137 ± 0.107 2392 ± 243 2449 ± 956 N.A.

4.46 ± 1.91 58271.223 ± 0.088 477 ± 431 5824 ± 862 N.A.
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Figure A.1: 3C 279 LAT sub-daily light curves (blue points) around the flaring episodes selected as
described in Section 4.4 (shaded areas). The dotted blue lines show the fitted exponential profiles,
with their sums shown in solid blue. The VERITAS 95% upper limits are shown as black downwards
arrows. VERITAS did not observe 3C 279 around the times of Flares 1, 5, 7, and 9.

274



Appendix B: Fermi-LAT spectral fit parameters for three FSRQs

Table B.1: Fermi-LAT spectral fit parameters. The normalization N0 is in units of
10−10 MeV−1 cm−2 s−1 and the flux is in units of 10−6 ph cm−2 s−1.

State Epoch TS N0 α β Flux

[MJD] (× 10−2)

3C 279

Global 54682.66 –

58459.35

271945 3.33 ± 0.02 2.228 ± 0.004 6.1 ± 0.3 0.751 ± 0.004

Low state 56230.66 –

56465.66

1130 0.54 ± 0.03 2.38 ± 0.06 2.9 ± 3.1 0.14 ± 0.01

VER-LAT

quiescent

Various 322 5.7 ± 0.8 2.2 ± 0.1 1.8 ± 7.0 1.4 ± 0.2

LAT

Flares

simultane-

ous with

VER obs.

56750.27 –

56750.34

578 69 ± 10 2.1 ± 0.1 31 ± 13 11 ± 2

57189.17 –

57189.23

1141 173 ± 15 2.07 ± 0.07 14 ± 6 32 ± 3

58227.22 –

58227.27

355 79 ± 14 1.8 ± 0.2 21 ± 13 12 ± 4

58272.18 –

58272.22

235 62 ± 15 1.5 ± 0.3 42 ± 2 7 ± 3

Continued on next page
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State Epoch TS N0 α β Flux

[MJD] (× 10−2)

LAT

Flares

56645.66 –

56647.66

1633 22.0 ± 1.5 1.73 ± 0.07 9.6 ± 3.2 3.7 ± 0.3

56717.66 –

56718.66

900 23.2 ± 2.0 2.08 ± 0.08 11 ± 6 4.5 ± 0.5

56749.66 –

56754.66

7680 24.0 ± 0.8 2.20 ± 0.03 13 ± 2 5.0 ± 0.2

57186.66 –

57190.66

23623 77.9 ± 1.5 2.04 ± 0.02 11 ± 1 14.7 ± 0.5

58116.66 –

58119.66

3543 19.5 ± 0.9 2.06 ± 0.04 4.1 ± 2.2 4.0 ± 0.2

58130.66 –

58141.66

27256 53.3 ± 0.9 2.14 ± 0.02 8.5 ± 1.1 11.0 ± 0.2

58168.66 –

58173.66

4932 19.5 ± 0.7 2.10 ± 0.03 5.8 ± 2.0 4.1 ± 0.2

58222.66 –

58230.66

53745 59.4 ± 0.7 2.00 ± 0.01 9.6 ± 0.7 11.2 ± 0.1

58239.66 –

58247.66

7989 19.2 ± 0.6 1.90 ± 0.03 6.2 ± 1.4 3.6 ± 0.1

58268.66 –

58275.66

107456 47.8 ± 1.3 1.91 ± 0.02 14 ± 2 8.2 ± 0.2

PKS 1222+216

Continued on next page
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State Epoch TS N0 α β Flux

[MJD] (× 10−2)

Global 54682.66 –

58459.64

94556 1.66 ± 0.01 2.305 ± 0.007 3.8 ± 0.4 0.337 ± 0.002

Ton 599

Global 54682.66 –

58464.49

48176 6.55 ± 0.06 2.11 ± 0.01 5.5 ± 0.5 0.161 ± 0.002
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Appendix C: Selected 3HSP targets for the VERITAS luminosity

function observing program

Source 3HSP Name z FOM TeVCat

1ES 0120+340 3HSPJ012308.6+342048 0.270 6.31 N

B3 0133+388 3HSPJ013632.6+390559 6.31 N

RGB J0152+017 3HSPJ015239.6+014717 0.080 2.51 Y

1ES 0229+200 3HSPJ023248.6+201717 0.139 3.98 Y

RGB J0316+090 3HSPJ031612.7+090443 2.51 N

1FGL J0333.7+2919 3HSPJ033349.0+291631 2.51 N

GB6 J0540+5823 3HSPJ054030.0+582338 2.51 N

1ES 0647+250 3HSPJ065046.5+250259 0.203 7.94 Y

RGB J0710+591 3HSPJ071030.1+590820 0.120 7.94 Y

PGC 2402248 3HSPJ073326.8+515355 0.065 2.51 Y

1ES 0806+524 3HSPJ080949.2+521858 0.137 5.01 Y

87GB 083437.4+150850 3HSPJ083724.6+145820 0.278 3.98 N

RGB J0847+115 3HSPJ084712.9+113350 0.198 2.51 Y

RX J0910.6+3329 3HSPJ091037.0+332924 0.350 3.16 N

B2 0912+29 3HSPJ091552.4+293324 0.190 3.16 N

1ES 1011+496 3HSPJ101504.1+492600 0.200 7.94 Y

Continued on next page
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Source 3HSP Name z FOM TeVCat

1ES 1028+511 3HSPJ103118.5+505335 0.300 3.98 N

RGB J1037+571 3HSPJ103744.3+571155 0.330 3.16 N

RGB J1058+564 3HSPJ105837.7+562811 0.143 3.98 N

Mkn 421 3HSPJ110427.3+381231 0.030 79.43 Y

RXJ1117.1+2014 3HSPJ111706.3+201407 0.138 3.98 N

1ES 1218+304 3HSPJ122122.0+301037 0.180 6.31 Y

MS 1221.8+2452 3HSPJ122424.2+243623 0.218 2.51 Y

S3 1227+25 3HSPJ123014.1+251807 0.135 7.94 Y

RGB J1243+364 3HSPJ124312.7+362744 0.310 6.31 N

RBS 1366 3HSPJ141756.7+254325 0.240 3.16 N

H 1426+428 3HSPJ142832.6+424021 0.129 7.94 Y

PG 1437+398 3HSPJ143917.5+393242 0.344 2.51 N

1ES 1440+122 3HSPJ144248.2+120040 0.160 2.51 Y

PG 1553+113 3HSPJ155543.0+111124 0.443 15.85 Y

Mkn 501 3HSPJ165352.2+394536 0.030 25.12 Y

RGB J1725+118 3HSPJ172504.3+115215 0.180 5.01 Y

1ES 1727+502 3HSPJ172818.6+501310 0.055 6.31 Y

RGB J1838+480 3HSPJ183849.1+480234 0.300 3.16 N

RGB J2243+203 3HSPJ224354.7+202103 3.16 Y

B3 2247+381 3HSPJ225005.7+382437 0.119 2.51 Y
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Appendix D: Installing and running sctcamsoft

The sctcamsoft code can be accessed (with privileges) at https://forge.in2p3.fr/

projects/cta/repository/show/SCT/CameraSoftware/trunk/sctcamsoft.

All publicly-available dependencies for sctcamsoft can be installed using a conda-based

package manager such as Anaconda1. To create a conda environment containing the depen-

dencies of sctcamsoft using an existing Anaconda installation, run

conda env create -f environment.yml

in the root sctcamsoft directory. TargetDriver and TargetIO should then be installed

into that environment. Once all dependencies are installed, install sctcamsoft into the

same environment by running

source activate sctcamsoft

cd </installation/path>/sctcamsoft

pip install -e .

cd </installation/path>/sctcamsoft/sctcamsoft

protoc -I=. --python_out=. ./camera_control.proto

where the -e flag to pip install installs the package in editable mode, and can be omitted

for a production (non-development) installation.

To run sctcamsoft, the server must first be started by running

source activate sctcamsoft
1https://www.anaconda.com/
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cd sctcamsoft

sudo $PYTHON3 sctcamsoft/server.py config.yml commands.yml

where calling sudo is required to perform network monitoring commands implemented in

NetworkController. In sudo mode, it is necessary to explicitly invoke the Python installation

in the sctcamsoft conda environment (called $PYTHON3 above).

To start the command-line user interfaces, run in separate terminals:

source activate sctcamsoft

cd sctcamsoft

python sctcamsoft/user_input.py config.yml commands.yml

source activate sctcamsoft

cd sctcamsoft

python sctcamsoft/user_output.py config.yml

To start the graphical user interfaces, run in separate terminals:

source activate sctcamsoft

cd sctcamsoft

python sctcamsoft/slow_control_gui/main.py config.yml commands.yml

source activate sctcamsoft

cd sctcamsoft

python sctcamsoft/run_control_gui/main.py config.yml commands.yml

When observing is complete, the server and command-line interfaces (if active) can be

closed by pressing Ctrl+C.
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Appendix E: Low-level commands implemented in sctcamsoft

The commands in Table E.1 are organized by the DeviceController that implements them

and are generally named according to the pattern “command.device/command.command”.

For ServerController, command.device is “server” and command.command is the same as the

command name. The “Special Commands” have no direct implementation but are used

within ServerController to guide the control flow of high-level commands. In those cases,

command.device is None and command.command is the same as the command name. The

Args column lists in order the arguments required by each command (if any) and their default

values if the argument is not provided. If no default is listed, the argument is required.

Table E.1: Low-level commands implemented in sctcamsoft.

Name Args
BackplaneController

backplane/enable_tack
backplane/disable_tack
backplane/power_fee slot (0-31)
backplane/power_off_all_fees
backplane/power_on_all_fees
backplane/reboot_dacq_1
backplane/reboot_dacq_2
backplane/read_current
backplane/read_presence
backplane/read_voltage
backplane/read_hit_pattern display: False
backplane/read_tack_count
backplane/read_timer
backplane/reset_triggers_and_timer
backplane/send_sync
backplane/set_hold_off_time
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Table E.1 – continued from previous page
Name Args
backplane/set_trigger_mask
backplane/set_trigger_mask_closed

ChillerController
chiller/read_pressure
chiller/read_temperature

FanController
fan/open_connection
fan/close_connection
fan/check_connection
fan/turn_on
fan/turn_off
fan/read_voltage
fan/read_current

FEETemperatureController
fee_temperature/get_last_run_num
fee_temperature/read_temperature run_num: <last_run_num>

NetworkController
network/check_interface_activity interface (6-9)
network/set_camera_server_module_addresses
network/set_dacq_module_addresses

PowerController
power/turn_on_main_switch
power/turn_off_main_switch
power/start_supply
power/stop_supply
power/start_HV
power/stop_HV
power/read_supply_current
power/read_supply_measured_voltage
power/read_supply_nominal_voltage
power/read_HV_current
power/read_HV_measured_voltage
power/read_HV_nominal_voltage

ServerController
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Table E.1 – continued from previous page
Name Args

write_update variable
value

set_alert name
device
variable
lower_limit
upper_limit

unset_alert name
issue_alert name

value
value_id
lower_limit
upper_limit
unit: “”

clear_alert name
modify_repeating_command name

arg
value

stop_repeating_command name
no_command_is_error: True

TargetController
target/initialize module_id: “all”
target/connect module_id: “all”
target/close module_id: “all”
target/ready module_id: “all”
target/ping module_id: “all”
target/activate_adc module_id: “all”
target/deactivate_adc module_id: “all”
target/set_thresh module_id: “all”
target/set_asic_parameters module_id: “all”
target/set_tuning_parameters module_id: “all”
target/set_readout_parameters module_id: “all”
target/read_state module_id: “all”
target/read_temperature module_id: “all”
target/read_currents module_id: “all”
target/read_total_current module_id: “all”
target/request_asic_parameter parameter

value
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Table E.1 – continued from previous page
Name Args
target/request_readout_parameter parameter

value
target/request_tuning_parameter parameter

value
target/request_adc_parameter parameter

value
target/request_rate_scan_parameter parameter

value
target/get_asic_parameters
target/get_readout_parameters
target/get_tuning_parameters
target/get_adc_parameters
target/get_rate_scan_parameters
target/enable_module module_id
target/disable_module module_id
target/enable_trigger_module module_id
target/disable_trigger_module module_id
target/get_module_ids
target/get_trigger_module_ids
target/write_trigger_mask
target/initialize_run run_id
target/start_readout
target/stop_readout
target/read_trigger_rate
target/get_run_results
target/read_register register

Special Commands
enter_repeat_mode name

interval (seconds)
num_executions: 0 (repeat forever)
execute_immediately: False

exit_repeat_mode
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