4 research outputs found

    Bio-inspired multi-agent systems for reconfigurable manufacturing systems

    Get PDF
    The current market’s demand for customization and responsiveness is a major challenge for producing intelligent, adaptive manufacturing systems. The Multi-Agent System (MAS) paradigm offers an alternative way to design this kind of system based on decentralized control using distributed, autonomous agents, thus replacing the traditional centralized control approach. The MAS solutions provide modularity, flexibility and robustness, thus addressing the responsiveness property, but usually do not consider true adaptation and re-configuration. Understanding how, in nature, complex things are performed in a simple and effective way allows us to mimic nature’s insights and develop powerful adaptive systems that able to evolve, thus dealing with the current challenges imposed on manufactur- ing systems. The paper provides an overview of some of the principles found in nature and biology and analyses the effectiveness of bio-inspired methods, which are used to enhance multi-agent systems to solve complex engineering problems, especially in the manufacturing field. An industrial automation case study is used to illustrate a bio-inspired method based on potential fields to dynamically route pallets

    Ant colony optimization based simulation of 3d automatic hose/pipe routing

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.This thesis focuses on applying one of the rapidly growing non-deterministic optimization algorithms, the ant colony algorithm, for simulating automatic hose/pipe routing with several conflicting objectives. Within the thesis, methods have been developed and applied to single objective hose routing, multi-objective hose routing and multi-hose routing. The use of simulation and optimization in engineering design has been widely applied in all fields of engineering as the computational capabilities of computers has increased and improved. As a result of this, the application of non-deterministic optimization techniques such as genetic algorithms, simulated annealing algorithms, ant colony algorithms, etc. has increased dramatically resulting in vast improvements in the design process. Initially, two versions of ant colony algorithms have been developed based on, respectively, a random network and a grid network for a single objective (minimizing the length of the hoses) and avoiding obstacles in the CAD model. While applying ant colony algorithms for the simulation of hose routing, two modifications have been proposed for reducing the size of the search space and avoiding the stagnation problem. Hose routing problems often consist of several conflicting or trade-off objectives. In classical approaches, in many cases, multiple objectives are aggregated into one single objective function and optimization is then treated as a single-objective optimization problem. In this thesis two versions of ant colony algorithms are presented for multihose routing with two conflicting objectives: minimizing the total length of the hoses and maximizing the total shared length (bundle length). In this case the two objectives are aggregated into a single objective. The current state-of-the-art approach for handling multi-objective design problems is to employ the concept of Pareto optimality. Within this thesis a new Pareto-based general purpose ant colony algorithm (PSACO) is proposed and applied to a multi-objective hose routing problem that consists of the following objectives: total length of the hoses between the start and the end locations, number of bends, and angles of bends. The proposed method is capable of handling any number of objectives and uses a single pheromone matrix for all the objectives. The domination concept is used for updating the pheromone matrix. Among the currently available multi-objective ant colony optimization (MOACO) algorithms, P-ACO generates very good solutions in the central part of the Pareto front and hence the proposed algorithm is compared with P-ACO. A new term is added to the random proportional rule of both of the algorithms (PSACO and P-ACO) to attract ants towards edges that make angles close to the pre-specified angles of bends. A refinement algorithm is also suggested for searching an acceptable solution after the completion of searching the entire search space. For all of the simulations, the STL format (tessellated format) for the obstacles is used in the algorithm instead of the original shapes of the obstacles. This STL format is passed to the C++ library RAPID for collision detection. As a result of using this format, the algorithms can handle freeform obstacles and the algorithms are not restricted to a particular software package

    Use of bio-inspired techniques to solve complex engineering problems: industrial automation case study

    Get PDF
    Nowadays local markets have disappeared and the world lives in a global economy. Due to this reality, every company virtually competes with all others companies in the world. In addition to this, markets constantly search products with higher quality at lower costs, with high customization. Also, products tend to have a shorter period of life, making the demanding more intense. With this scenario, companies, to remain competitive, must constantly adapt themselves to the market changes, i.e., companies must exhibit a great degree of self-organization and self-adaptation. Biology with the millions of years of evolution may offer inspiration to develop new algorithms, methods and techniques to solve real complex problems. As an example, the behaviour of ants and bees, have inspired researchers in the pursuit of solutions to solve complex and evolvable engineering problems. This dissertation has the goal of explore the world of bio-inspired engineering. This is done by studying some of the bio-inspired solutions and searching for bio-inspired solutions to solve the daily problems. A more deep focus will be made to the engineering problems and particularly to the manufacturing domain. Multi-agent systems is a concept aligned with the bio-inspired principles offering a new approach to develop solutions that exhibit robustness, flexibility, responsiveness and re-configurability. In such distributed bio-inspired systems, the behaviour of each entity follows simple few rules, but the overall emergent behaviour is very complex to understand and to demonstrate. Therefore, the design and simulation of distributed agent-based solutions, and particularly those exhibiting self-organizing, are usually a hard task. Agent Based Modelling (ABM) tools simplifies this task by providing an environment for programming, modelling and simulating agent-based solutions, aiming to test and compare alternative model configurations. A deeply analysis of the existing ABM tools was also performed aiming to select the platform to be used in this work. Aiming to demonstrate the benefits of bio-inspired techniques for the industrial automation domain, a production system was used as case study for the development of a self-organizing agent-based system developed using the NetLogo tool. Hoje em dia os mercados locais desapareceram e o mundo vive numa economia global. Devido a esta realidade, cada companhia compete, virtualmente, com todas as outras companhias do mundo. A acrescentar a isto, os mercados estão constantemente à procura de produtos com maior qualidade a preços mais baixos e com um grande nível de customização Também, os produtos tendem a ter um tempo curto de vida, fazendo com que a procura seja mais intensa. Com este cenário, as companhias, para permanecer competitivas, têm que se adaptar constantemente de acordo com as mudanças de mercado, i.e., as companhias têm que exibir um alto grau de auto-organização e auto-adaptação. A biologia com os milhões de anos de evolução, pode oferecer inspiração para desenvolver novos algoritmos, métodos e técnicas para resolver problemas complexos reais. Como por exemplo, o comportamento das formigas e das abelhas inspiraram investigadores na descoberta de soluções para resolver problemas complexos e evolutivos de engenharia. Esta dissertação tem como objectivo explorar o mundo da engenharia bio-inspirada. Isto é feito através do estudo de algumas das soluções bio-inspiradas existentes e da procura de soluções bio-inspiradas para resolver os problemas do dia-a-dia. Uma atenção especial vai ser dada aos problemas de engenharia e particularmente aos problemas do domínio da manufactura. Os sistemas multi-agentes são um conceito que estão em linha com os princípios bio-inspirados oferecendo uma abordagem nova para desenvolver soluções que exibam robustez, flexibilidade, rapidez de resposta e reconfiguração. Nestes sistemas distribuídos bio-inspirados, o comportamento de cada entidade segue um pequeno conjunto de regras simples, mas o comportamento emergente global é muito complexo de perceber e de demonstrar. Por isso, o desenho e simulação de soluções distribuídas de agentes, e particularmente aqueles que exibem auto-organização, são normalmente uma tarefa árdua. As ferramentas de Modelação Baseada de Agentes (MBA) simplificam esta tarefa providenciando um ambiente para programar, modelar e simular, com o objectivo de testar e comparar diferentes configurações do modelo. Uma análise mais aprofundada das ferramentas MBA foi também efectuada tendo como objectivo seleccionar a plataforma a usar neste trabalho

    Ant colony optimization based simulation of 3d automatic hose/pipe routing

    Get PDF
    This thesis focuses on applying one of the rapidly growing non-deterministic optimization algorithms, the ant colony algorithm, for simulating automatic hose/pipe routing with several conflicting objectives. Within the thesis, methods have been developed and applied to single objective hose routing, multi-objective hose routing and multi-hose routing. The use of simulation and optimization in engineering design has been widely applied in all fields of engineering as the computational capabilities of computers has increased and improved. As a result of this, the application of non-deterministic optimization techniques such as genetic algorithms, simulated annealing algorithms, ant colony algorithms, etc. has increased dramatically resulting in vast improvements in the design process. Initially, two versions of ant colony algorithms have been developed based on, respectively, a random network and a grid network for a single objective (minimizing the length of the hoses) and avoiding obstacles in the CAD model. While applying ant colony algorithms for the simulation of hose routing, two modifications have been proposed for reducing the size of the search space and avoiding the stagnation problem. Hose routing problems often consist of several conflicting or trade-off objectives. In classical approaches, in many cases, multiple objectives are aggregated into one single objective function and optimization is then treated as a single-objective optimization problem. In this thesis two versions of ant colony algorithms are presented for multihose routing with two conflicting objectives: minimizing the total length of the hoses and maximizing the total shared length (bundle length). In this case the two objectives are aggregated into a single objective. The current state-of-the-art approach for handling multi-objective design problems is to employ the concept of Pareto optimality. Within this thesis a new Pareto-based general purpose ant colony algorithm (PSACO) is proposed and applied to a multi-objective hose routing problem that consists of the following objectives: total length of the hoses between the start and the end locations, number of bends, and angles of bends. The proposed method is capable of handling any number of objectives and uses a single pheromone matrix for all the objectives. The domination concept is used for updating the pheromone matrix. Among the currently available multi-objective ant colony optimization (MOACO) algorithms, P-ACO generates very good solutions in the central part of the Pareto front and hence the proposed algorithm is compared with P-ACO. A new term is added to the random proportional rule of both of the algorithms (PSACO and P-ACO) to attract ants towards edges that make angles close to the pre-specified angles of bends. A refinement algorithm is also suggested for searching an acceptable solution after the completion of searching the entire search space. For all of the simulations, the STL format (tessellated format) for the obstacles is used in the algorithm instead of the original shapes of the obstacles. This STL format is passed to the C++ library RAPID for collision detection. As a result of using this format, the algorithms can handle freeform obstacles and the algorithms are not restricted to a particular software package.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore