
ANT COLONY OPTIMIZATION BASED
SIMULATION OF 3D AUTOMATIC

HOSE/PIPE ROUTING

Gishantha I.F. Thantulage

A thesis submitted for the degree of Doctor of Philosophy

School of Engineering and Design
Brunel University, UK

March 2009

© Copyright Gishantha I.F. Thantulage, 2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OpenGrey Repository

https://core.ac.uk/display/40042487?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 i

ABSTRACT

This thesis focuses on applying one of the rapidly growing non-deterministic

optimization algorithms, the ant colony algorithm, for simulating automatic hose/pipe

routing with several conflicting objectives. Within the thesis, methods have been

developed and applied to single objective hose routing, multi-objective hose routing and

multi-hose routing.

The use of simulation and optimization in engineering design has been widely applied

in all fields of engineering as the computational capabilities of computers has increased

and improved. As a result of this, the application of non-deterministic optimization

techniques such as genetic algorithms, simulated annealing algorithms, ant colony

algorithms, etc. has increased dramatically resulting in vast improvements in the design

process.

Initially, two versions of ant colony algorithms have been developed based on,

respectively, a random network and a grid network for a single objective (minimizing

the length of the hoses) and avoiding obstacles in the CAD model.

While applying ant colony algorithms for the simulation of hose routing, two

modifications have been proposed for reducing the size of the search space and avoiding

the stagnation problem.

Hose routing problems often consist of several conflicting or trade-off objectives. In

classical approaches, in many cases, multiple objectives are aggregated into one single

objective function and optimization is then treated as a single-objective optimization

problem. In this thesis two versions of ant colony algorithms are presented for multi-

hose routing with two conflicting objectives: minimizing the total length of the hoses

and maximizing the total shared length (bundle length). In this case the two objectives

are aggregated into a single objective.

The current state-of-the-art approach for handling multi-objective design problems is to

employ the concept of Pareto optimality. Within this thesis a new Pareto-based general-

purpose ant colony algorithm (PSACO) is proposed and applied to a multi-objective

 ii

hose routing problem that consists of the following objectives: total length of the hoses

between the start and the end locations, number of bends, and angles of bends. The

proposed method is capable of handling any number of objectives and uses a single

pheromone matrix for all the objectives. The domination concept is used for updating

the pheromone matrix. Among the currently available multi-objective ant colony

optimization (MOACO) algorithms, P-ACO generates very good solutions in the central

part of the Pareto front and hence the proposed algorithm is compared with P-ACO. A

new term is added to the random proportional rule of both of the algorithms (PSACO

and P-ACO) to attract ants towards edges that make angles close to the pre-specified

angles of bends. A refinement algorithm is also suggested for searching an acceptable

solution after the completion of searching the entire search space.

For all of the simulations, the STL format (tessellated format) for the obstacles is used

in the algorithm instead of the original shapes of the obstacles. This STL format is

passed to the C++ library RAPID for collision detection. As a result of using this

format, the algorithms can handle freeform obstacles and the algorithms are not

restricted to a particular software package.

Keywords: Multi-objective hose routing, Ant system, Tessellated format, Freeform

CAD geometries, P-ACO, PSACO, MOACO, Multi-objective ant colony optimization,

Pareto strength ant colony algorithms, Domination, Refining, Collision detection,

RAPID, Multi-hose routing, Multi-colony ant system, Shared paths, Bundling, Foreign

pheromone

 iii

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor Dr. Tatiana Kalganova for
the continuous support of my PhD study and research, for her patience, motivation,
enthusiasm, and immense knowledge. Her guidance helped me in all the time of
research and writing of this thesis.

Besides my advisor, I would like to thank internal and external examiners of my thesis:
Prof. John Stonham, Prof. Malcolm Irving and Dr. Alex Freitas for their insightful
comments, and hard questions.

I would also like to thank Department of Electronic & Computer Engineering, School of
Engineering and Design of Brunel University and President’s Fund of Sri Lanka for the
award of scholarships, which have supported me during the period of my PhD research.

Further, I would like to express my sincere appreciation to my employer Vice
Chancellor, University of Sri Jayewardenepura, Sri Lanka for granting me the required
study leave during the period of this work.

Finally, I would like to thank my wife, Amanda whose constant encouragement and
love I have relied throughout the period of my research work.

Gishantha IF Thantulage

 iv

TABLE OF CONTENTS

ABSTRACT.. I

ACKNOWLEDGEMENTS ... III

TABLE OF CONTENTS ... IV

1 INTRODUCTION ..1

1.1 SUBJECT MATTER .. 1
1.2 SCOPE OF THE THESIS AND MOTIVATIONS ... 1
1.3 THESIS ACHIEVEMENTS AND CONTRIBUTIONS... 3
1.4 OUTLINE OF THE THESIS .. 6
1.5 PUBLICATIONS ... 6

2 LITERATURE REVIEW..8

2.1 AUTOMATIC HOSE/PIPE ROUTING: AN INTRODUCTION ... 8
2.2 PREVIOUS APPROACHES IN HOSE/PIPE ROUTING ... 10
2.3 SUMMARY OF CHAPTER 2 .. 20

3 MULTI-OBJECTIVE OPTIMIZATION ..25

3.1 THE MULTI-OBJECTIVE OPTIMIZATION PROBLEM ... 27
3.1.1 Domination Concept ..27
3.1.2 Non-dominated Set...28

3.2 ILLUSTRATIVE REPRESENTATION OF NON-DOMINATED SOLUTIONS.. 28
3.2.1 Scatter-Plot Matrix Method..28
3.2.2 Value Path Method...29
3.2.3 Bar Chart Method...31

3.3 METRIC OF PERFORMANCE .. 31
3.4 SEARCHING FOR PREFERRED SOLUTIONS... 34

3.4.1 Compromise Programming Approach..34
3.4.2 Pseudo-Weight Vector Approach...34

3.5 SUMMARY OF THE CHAPTER .. 35

4 ANT COLONY OPTIMIZATION ...36

4.1 ANT SYSTEM (AS) ... 37
4.2 ANT COLONY SYSTEM (ACS).. 39
4.3 MULTI-OBJECTIVE ANT COLONY OPTIMIZATION (MOACO)... 41

4.3.1 Pareto Ant Colony Optimization (P-ACO)...49
4.4 SUMMARY OF THE CHAPTER .. 53

5 AUTOMATIC HOSE/PIPE ROUTING IN 3D SPACE USING THE ACO
AND THE PROPOSED ACO ALGORITHMS.. 54

5.1 THE TESSELLATED FORMAT .. 55
5.2 COLLISION DETECTION LIBRARY – RAPID ... 55

5.2.1 Basic Usage of RAPID...56
5.3 HOSE ROUTING WITH ANT COLONY OPTIMIZATION .. 58
5.4 THE PROPOSED REDUCED SIZED SEARCH SPACE FOR ANT COLONY OPTIMIZATION 60
5.5 THE PROPOSED EXPLORER ANTS FOR AVOIDING STAGNATION (N_MAS) 61
5.6 THE PROPOSED MOACO ALGORITHM - PARETO STRENGTH ANT COLONY OPTIMIZATION

(PSACO) ... 63
5.7 MULTI-OBJECTIVE HOSE ROUTING WITH MOACO... 67

5.7.1 Modified Random-Proportional Rule ...69
5.8 THE PROPOSED MULTI-COLONY ANT SYSTEMS FOR MULTI-HOSE ROUTING 71

5.8.1 MCAS-MHR-1 with Single Pheromone Matrix...72
5.8.2 MCAS-MHR-2 with Multiple Pheromone Matrices ..75

5.9 SUMMARY OF THE CHAPTER .. 77

 v

6 RESULTS AND DISCUSSION...80

6.1 RESULTS OBTAINED FOR GRID-BASED AND RANDOM-BASED ANT SYSTEMS 81
6.1.1 Model 1 - Hose routing in an environment with a hole in a cube...82
6.1.2 Model 2 - Hose routing in an environment with a hole in a cube where the optimal path is blocked by

an obstacle..83
6.1.3 Model 3 - Hose routing in an environment with a U-shape obstacles ..84
6.1.4 Model 4 - Hose routing in an environment with parallel walls...85
6.1.5 Model 5 - Hose routing in an environment with a diagonal empty space...86
6.1.6 Discussion (Grid-Based and Random-Based Ant Systems) ...87

6.2 RESULTS OBTAINED FOR ANT COLONY OPTIMIZATION WITH A REDUCED SIZE SEARCH SPACE

.. 88
6.2.1 Quality of the best path obtained..89
6.2.2 Number of turns ...99
6.2.3 Total No of nodes in all contender node lists and average No of alternatives100
6.2.4 Time spent on a cycle...105

6.3 RESULTS OBTAINED WITH THE INTRODUCTION OF EXPLORER ANTS FOR AVOIDING

STAGNATION.. 106
6.4 RESULTS OBTAINED FOR MULTI-OBJECTIVE ANT COLONY OPTIMIZATION........................... 116

6.4.1 Illustrative Representation of the Non-Dominated Solutions for Model 1 (see Fig. 6.32)117
6.4.2 Metrics of Performance of the Non-Dominated Solutions for Model 1..121
6.4.3 Computation Times for Model 1 ..124
6.4.4 Illustrative Representation of the Non-Dominated Solutions for Model 2126
6.4.5 Metrics of Performance of the Non-Dominated Solutions for Model 2..129
6.4.6 Computation Times for Model 2 ..133
6.4.7 Final Solution ...134
6.4.8 Refining the solution ..135

6.5 RESULTS OBTAINED FOR THE PROPOSED MULTI-COLONY ANT SYSTEMS FOR MULTI-HOSE

ROUTING.. 139
6.5.1 Experiment 1: Demonstrating the potential of MCAS-MHR-1 and MCAS-MHR-2 on a test graph139
6.5.2 Experiment 2: Applying MCAS-MHR-1 and MCAS-MHR-2 to a complex 3D model...................144

6.6 SUMMARY OF THE CHAPTER .. 159

7 CONCLUSIONS AND FUTURE WORK..160

7.1 CONCLUSIONS.. 160
7.1.1 Pareto Strength Ant Colony Optimization for Multi-Objective Hose Routing.................................160
7.1.2 Proposed Ant Colony Algorithms for Multi-Hose Routing..162

7.2 RECOMMENDATIONS FOR FUTURE WORK.. 164

ACRONYMS..166

REFERENCES...168

 1

1 INTRODUCTION

This chapter introduces the thesis, emphasizing its objectives and its contributions to the

fields of Automatic Hose/Pipe Routing and Ant Colony Optimization. The chapter also

presents the outline of the thesis, and of published and planned papers based on the thesis.

1.1 Subject Matter

In the past few years nature-inspired techniques have been widely used for various

optimization problems in design, planning, scheduling, communication, etc.. One field,

which is receiving increasing interest from several researchers, is the automatic hose/pipe

routing of electrical and hydraulic equipment.

A variety of deterministic and non-deterministic (probabilistic) algorithms have previously

been applied to hose and pipe routing. The deterministic algorithms guarantee the same

solution at different runs with the same parameter values, and the non-deterministic

algorithms such as genetic algorithms and simulated annealing generate different solutions

due to their randomness (see Chapter 2 for details of previously applied approaches).

Among the non-deterministic algorithms, ant colony algorithms are increasingly being used

in various real-world applications such as the travelling salesman problem (TSP) [27, 28,

29], the quadratic assignment problem (QAP) [30], the Job Shop Scheduling Problem (JSP)

[27], telecommunication routing and load balancing [58], etc. and it has been shown that

they perform well compared to other non-deterministic algorithms such as genetic

algorithms, simulated annealing, etc [26].

1.2 Scope of the Thesis and Motivations

Hose and harness routing is a significant research area in assembly design. Many CAD and

solid-model manufacturers incorporate the ability to represent these components in their

products. However, the programs available are not always able to produce efficient routing.

Often, skilled personnel who understand the engineering requirements, the model

 2

representations and physical production issues fill this technical gap. This requires human

intervention to create assemblies and as CAD design tools allow rapid design and redesign

of products at speeds that exceed the current human capacity, hose and harness routing

cannot be done efficiently. There is an unacceptable bottleneck in meeting the customer's

demand when bringing products to the market. Hence, companies are required to create

timely innovative products to satisfy their customers’ demands and compete with other

companies.

Hose routing is a technique of developing collision-free routes for hoses between two

locations in a 3D environment that contains obstacles. It needs to be done under multiple

objectives and constraints. For example, hose routing must take into account: selection

from a pre-specified catalogue of angles for bends, avoiding collisions, minimizing the total

length of the hoses, minimizing the total number of bends, etc. For a human, this type of

work is very tedious and time consuming. Hose routing problems are highly non-linear and

discontinuous. The problem can be resolved, if an automatic approach for suggesting the

possible routing paths is adopted.

In this thesis, ant colony optimization based algorithms have been applied to simulate

automatic hose/pipe routing. The search space is represented as a network of paths in the

free space of the CAD model where the automatic hose/pipe routing needs to be done. It

has been shown that when applied to routing in networks, ant colony algorithms give better

results in terms of quality of results and computation time compared to other non-

deterministic algorithms [58]. Further, graph-based deterministic algorithms (Breadth First

Search, Depth First Search, Best First Search, A* algorithm, Dijstraka algorithm, etc.) are

not suitable for multi-objective optimization problems when all the objectives are equally

important. If these algorithms need to be run on a multi-objective optimization problem, the

objectives need to be converted into a single objective (e.g. weighted sum of objectives) or

priorities need to be assigned to the objectives (Goal programming) [63]. The major

weakness of these algorithms is the inability to produce solutions that are Pareto efficient.

 3

1.3 Thesis Achievements and Contributions

The significance of this research lies in the potential of the developed ant colony

optimization algorithms for automatic hose/pipe routing, removing human intervention and

the associated cost and time. Further, despite the recent advancements in the field of

automatic routing algorithms, the following issues have not been addressed by other

researchers (See Chapter 2 for details of previously applied approaches).

 None of the existing approaches have used Pareto-based ant colony optimization to

obtain the optimum layout of hoses/pipes.

 Most of the algorithms are restricted to basic shaped obstacles (e.g., rectangles) for

the routing domain.

 All of the algorithms use a classical multi-objective technique: weighted sum

approach or single-objective function to obtain the optimum solution. Since there is

more than one optimum solution for a multi-objective problem, previous algorithms

are not capable of generating these conflicting optimum solutions (or trade-off

solutions) in a single run. If all the trade-off solutions need to be found, these

algorithms must be run several times with different parameter values. Normally

these experiments are time consuming and if they need to be run several times, they

are even more time consuming.

 Moreover, multi-hose routing is another important part of this research area and

none of the algorithms are able to route multiple hoses/pipes in parallel.

In this thesis, the above issues are addressed. In addition to these issues, the thesis suggests

some modifications to ant colony optimization and a new Pareto strength ant colony

optimization algorithm for multi-objective optimization problems.

 4

The main contributions of the thesis can be stated as follows:

First Contribution

Initially, an ant colony algorithm is developed for automatic hose routing with a single

objective (minimizing the length of the pipes) (with the intention of extending it to multi-

objectives) and avoiding free-form obstacles. For the avoidance of free-form obstacles, the

current state of the art for collision detection, the STL (STereoLithography) format for the

obstacles and the C++ collision detection library RAPID, have been used. The ant colony

algorithm is based on networks generated using grid points and random points in the free

space of the CAD model.

While developing the ant colony algorithms for automatic hose/pipe routing, two

modifications have been proposed to improve the ant colony algorithms.

 The first modification reduces the size of the search space for the ant colony

algorithms using the current best path of each generation.

 One of the major problems in non-deterministic algorithms is that these algorithms

converge to local optimum solutions. This is called the stagnation problem. The

second modification has been introduced to avoid the stagnation problem in ant

colony algorithms.

Second Contribution

In a multi-objective optimization problem, there is more than one optimum solution that

optimizes the given objectives. In Pareto strength optimization methods, different

conflicting optimum solutions (or trade-off solutions) can be obtained within a single run.

A new Pareto strength ant colony optimization algorithm (PSACO) is proposed and has

been applied to multi-objective hose routing in 3D space. The algorithm updates the

pheromones according to the domination concept introduced in SPEA2 [55]. A single

pheromone matrix is used for all of the objectives in the problem.

 5

This algorithm (PSACO) also uses a network to find the optimum path between two points.

The network is created in the free space of the 3D space using randomly generated points.

The STL format of the original obstacle shapes is used for collision detection between a

hose pipe and the obstacles. The network is created before running the PSACO algorithm.

Thus, the collision detection algorithm is not required while running each generation or

cycle of PSACO as in the algorithm proposed in [11]. Further, as a result of using the STL

format, PSACO can handle freeform obstacles and is not restricted to a particular CAD

software package.

PSACO has been used to optimize three objectives: total length of the hoses between the

start and end locations, number of bends, and angles of bends. Results are compared with

the current best Pareto ant colony algorithm (P-ACO) [49].

Third Contribution

The ant colony algorithms introduced initially have also been extended to multi-path

problems. Two versions of multi-colony ant systems are proposed for the multi-hose

routing problem. In both versions, each colony of ants is required to search for an optimum

path between two end points (or commodities). While each colony searches for optimum

paths, it tries to maximize the use of other colonies’ paths (sharing paths, or bundling) for

easy handling of multiple paths. The first version uses a single pheromone matrix for all

colonies, whilst the second version uses a pheromone matrix for each colony and a

modified random proportional rule to attract ants towards foreign pheromones.

The multi-path problem has a wide area of applications such as hose/pipe harness, electrical

and hydraulic wiring. When harnessing multiple hoses in the electrical circuitry of a motor

vehicle or other equipment, it is also important to have the hoses bundled as much as

possible.

 6

1.4 Outline of the Thesis

Chapter 2 deals with the literature review of automatic hose routing. Chapter 3 discusses

multi-objective optimization in some detail. Chapter 4 presents ant colony algorithms and

multi-objective ant colony optimization. Chapter 5 discusses the simulation of automatic

hose/pipe routing, the STL format (tessellated format), the C++ collision detection

algorithm RAPID and basic steps required in automatic hose routing. It then discusses

modifications to the ant colony algorithms, namely, multi-objective ant colony

optimization, multi-objective hose routing with multi-objective ant colony optimization and

multi-hose routing with multi-colony ant colony optimization algorithms. Chapter 6

reports the results of the study and discusses these results. Finally, Chapter 7 presents the

conclusions and recommendations for future work.

1.5 Publications

Some results of this research have already been published in the peer-reviewed publications

below and are included in Appendix A.

Journal Publications

1. Thantulage, G., Kalganova, T. & Wilson, M. (2006). Grid Based and Random

Based Ant Colony Algorithms for Automatic Hose Routing in 3D Space.

Transactions on Engineering, Computing and Technology, Volume 14, International

Journal of Applied Science, Engineering and Technology (IJASET), Enformatika,

ISBN 1503-5313, ISBN 975-00803-3-5, Aug., 2006. pp. 144 – 150.

Conference Publications

1. Thantulage, G., Kalganova, T. & Fernando, W.A.C. (2006). A Grid-based Ant

Colony Algorithm for Automatic 3D Hose Routing. IEEE Congress on

Evolutionary Computation, CEC 2006, Vancouver, Canada, Jul., 2006. pp. 48 – 55.

 7

2. Thantulage G., T. Kalganova and M. Wilson (2006) “Grid Based and Random

Based Ant Colony Algorithms for Automatic Hose Routing in 3D Space” Proc. of

International Conference on Machine Intelligence (ICMI’2006).

 8

2 LITERATURE REVIEW
 2

This chapter describes various approaches implemented by other researchers for the

solution of the problem of automatic routing of hoses, pipes and cables. Further,

advantages and disadvantages, dimensions (2D or 3D), domains, obstacles, etc. of these

algorithms are discussed.

2.1 Automatic Hose/Pipe Routing: An Introduction

Automatic hose and harness routing includes selecting at least a pair of connection points,

including a start point and an end point, and determining a desired path between the start

and the end points. In real-world applications, the best possible path needs to be obtained

under multiple objectives and constraints. Furthermore, the hose routing method must

include a validity check on the desired path in order to decide whether the desired path is

valid. An example showing the desired path is illustrated in red in Fig. 2.1.

Fig. 2.1 Example: hose/pipe routing, where S is the start point and E is the end point

Previously, hose/pipe/cable routing was addressed by various approaches. These algorithms

have been developed from a stationary 2D workspace and simple objects to a more

 9

complex 3D environment involving dynamic, multi-constraint and multi-objective

problems. Methods for pipe routing can be traced back to techniques for robot path

planning that have been traditionally classified into four major categories: the Skeleton

Search (roadmap) [11], the Cell Decomposition approach [11, 20], the Potential Field

method [11] and the Mathematical Programming method [11, 20].

The Skeleton approach involves capturing the set of feasible motions in a network of one

dimensional lines and conducting a graph search of this network [21, 11]. The Cell

Decomposition approach consists of decomposing the free space into cells and connecting

the start and end configurations by a sequence of connected cells. In the Potential Field

method [11], a scalar mathematical function is constructed whose value is a minimum when

the robot is at the end configuration, and a maximum near the obstacles [22]. The path from

the start to the end is determined by putting a small marble at the start and following its

movement. The Mathematical Programming approach involves computing the path as a

mathematical objective function and trying to minimize it while satisfying constraints

(obstacle avoidance).

Mathematical Programming [11] techniques can be further classified into deterministic and

non-deterministic (probabilistic) methods based on the search algorithms employed.

Deterministic techniques guarantee the same solution for a problem when run at different

times with the same starting solution, while non-deterministic techniques generate different

solutions to the same problem at different runs due to the randomness involved in the

solution process. Deterministic methods such as linear and nonlinear programming methods

usually, in theory, find the optimal solution, but behave inefficiently with highly nonlinear

and possibly discontinuous problems like pipe routing and often result in a local optimum.

In contrast, non-deterministic algorithms [64], such as genetic algorithms, simulated

annealing and ant colony algorithms, cannot guarantee to find the optimal solution, but are

aimed at generating a set of globally good solutions (hopefully near-optimal). This feature

is of practical relevance in engineering applications.

 10

2.2 Previous Approaches in Hose/Pipe Routing

This section describes in some detail the various algorithms previously used in hose/pipe

routing.

Zhu et al. [1] described a system for designing pipe layouts automatically using robot path

planning techniques. This system, pipe routes are treated as paths left behind by rigid

objects or robots (disc in the 2D case and ball in the 3D case). The Cell Decomposition

approach described in [2, 3] is used to define the paths. As a result of this, the algorithm

generates only orthogonal (Manhattan-style) routes. Initially the algorithm was developed

for minimizing intrinsic factors such as pipe lengths and number of turns. Later, the

algorithm was extended in order to make it capable of dealing with a variety of extrinsic

factors such as location constraints and shape constraints. Location constraints specify

preferred locations, undesirable locations, and forbidden locations for a pipe. For examples,

a heat sensitive pipe should be kept sufficiently away from high-temperature equipment and

a pipe should go as much as possible through existing pipe racks. Shape constraints apply

to the shape of the pipe routes. For example, a drainage pipe should be non-ascending, a

pipe should not have a vertical drop of more than dmax feet to avoid being over-stressed.

The pipes are considered in sequence.

After having decomposed the free space, the algorithm generates the connectivity graph (G)

representing the adjacency relation among the generated cells. A channel is constructed by

searching the connectivity graph (G) for a path connecting the start and the goal nodes. The

search of the connectivity graph (G) is performed by an A* algorithm guided by an

admissible evaluation function f(N) = g(N) + h(N) defined over the set of nodes in the

connectivity graph (G). Here g(N) is defined as the weighted sum of the length l(N) of the

path constructed so far and its number of turns n(N). The function h(N) is simply computed

as the Manhattan distance between the centre of the current cell and of the terminal cell.

Here N is the number of nodes in the connectivity graph.

 11

A back-tracking algorithm is also implemented in the case where the search fails to produce

a channel for the k-th route. The back-tracking algorithm adjusts previous routes generated

to make room for the k-th route.

The location constraints are conceptualized as virtual obstacles and virtual sinks. A virtual

obstacle can be hard or soft. Forbidden regions are protected by hard virtual obstacles

which then act as real obstacles, while undesirable regions are protected by soft virtual

obstacles which can be traversed by pipes, but at some additional cost. Virtual sinks are

treated much in the same way as soft virtual obstacles, but with a bonus associated with the

corresponding cells. The bonus only applies if these cells are traversed in some pre-

specified directions.

In order to produce a channel containing paths satisfying the shape constraints, the A*

search algorithm of the pipe router is modified so that the cost of including a cell in a

channel depends on the channel generated so far.

This algorithm, however, was focused on piping layouts for power plants, chemical plants,

etc., and dealt only with orthogonal (Manhattan-style) routes. Such an approach is

unsuitable for the subtle, detailed, and highly optimized environment involving, for

example, heavy-weight equipments such as bulldozers, cranes. Thantulage et al. [12, 13]

have shown empirically, that the resolution of the cell decomposition plays an important

part in the determination of the optimal route and it affects the computational time. If none

of the cells falls on the optimal route during decomposition, the algorithm fails to obtain the

optimal route. Thus, selecting the right resolution is important in the cell decomposition

method.

Lee [15] proposed the Maze algorithm which generates the optimal path between two

locations with no interference with obstacles. Mitsuta et al. [16] applied Lee’s Maze

algorithm to generate the optimal route for pipes. This algorithm also uses the cell

decomposition approach to generate the paths as in [1]. However, this algorithm may

 12

require considerable computation time according to the amount of equipment and the

number of pipes when applied to real-world applications.

Kim et al. [17] explored the possibility of automated industrial pipe-route design on three

test problems defined in 2D space using stochastic hill-climbing, simulated annealing, and

genetic algorithms. The algorithm takes into consideration the minimization of the total

length of pipes and avoidance of obstacles. The problem is defined in terms of choices of

Steiner points [18] and rectilinear connections. Results demonstrated that genetic

algorithms are superior to either hill-climbing or simulated annealing for the problems

tested. Obstacles were restricted to basic shapes such as rectangles.

A genetic algorithm approach to support interactive planning of a piping route path in plant

layout design was presented by Ito [19]. The objective function is defined considering the

total length of the pipes, how close they are to the obstacles, whether the route goes along

the walls, and avoiding diagonal paths. The concept of spatial potential is used to quantify

the degree of access to the wall or the obstacles. The algorithm was tested on 2D space and

primitive shapes. The workspace is defined by using the cell decomposition approach. In

[25], Ito et al. added a rule-based inference (RBI) engine for selecting a path from the

results obtained by GA-based inspiration (GBI) [19, 25] as well as associative information.

The RBI contains both outputs from the GBI and rules derived from experts’ knowledge.

Kang et al. [23] proposed a method for generating the optimal route for pipes using a

knowledge-based expert system called ‘NEXPERT”. The system is defined using experts’

knowledge of the piping design of a ship. The knowledge consists of regulations of

classification societies and port authorities, design practices and experience of experts.

Three different knowledge-bases were constructed in this research storing 167 rules and

106 supporting methods, and were applied to the upper deck of a ship. However, this

research is not of practicable interest since it is hard to define quantitatively all design

knowledge and to maintain it when the practice of the designer for routing pipes changes.

 13

Park, J.H. et al. [24] proposed the “cell generation” method for generating the optimal route

for pipes which has the minimum length and least amount of bending and no interference

between pipes, and applied the method to the engine room of a ship. To make interference

checking easier, each obstacle is laid in a cubic box which is large enough to contain it. The

objective function is defined taking into account the material and installation cost of the

pipes, the maintenance cost according to the position of valves, etc. and then found the best

solution from a tree of combinations of possible pipe routes.

Counru [4] solved the pipe routing problem from a cable harness routing perspective. He

discusses the cable harness domain, defines the harness routing problem and presents an

adaptive solution methodology based on a genetic algorithm. Part of the cable harness

routing problem is to determine how well various candidate configurations map to the

available routing space. As the bundle lengths and the cost of the harness cannot be

determined until the routing has been done, it is necessary to try many different

configurations to find the best. While it is possible to test all the configurations when the

number of transitions is small, it becomes impractical as the number of configurations

increases with the number of transitions.

The cable harness problem has been divided into three parts: ports, transitions and bundles.

Ports connect the cable harness to the electrical assemblies. Each port is mapped to a graph

node in the environment representation. Transitions (or junctions) form branching points

among the bundles. A transition is represented as a graph node and three pointers to its

adjacent nodes in the configuration. Bundles are defined as segments of the cable harness

that connect any two adjacent nodes (ports or transitions).

The free space in which the harness is routed is abstracted by a sparse 3D graph. This graph

shares the basic topology of the free-space using a small number of nodes. A graph with

approximately 450 nodes was used for the experiments described in [4].

 14

The cable harness problem is defined as follows:

Given a bi-directional graph G of N nodes (N1, N2, …, NN), P ports (P1, P2, …, PP) and a list

of wires (W1, W2, …, WW), each connecting two ports (Pi, Pj), choose a subset, G′ of the

edges of G which minimizes an objective function based on the number of wires passing

through each edge while ensuring that there is a connected path in G′ for each of the wires.

This problem is further constrained by precluding cycles in G′ and requiring G′ to be fully

connected.

The objective function (representing the cost for wiring) is defined as follows:

 



Bundles

i
iiii LbgnWbfCostMin

#

1

)()(2.1

where nWbi is the number of wires in bundle i

 fi is the unit cost of bundle i

 Lbi is the length of bundle i

 gi is the adjusted length of bundle i

Thus, finding the best cable harness routing boils down to finding the configuration that has

the lowest cost when its transitions are placed in G. G′ is then the union of all the links in

the shortest paths between the end nodes of all the bundles.

In [4], the problem is divided into two procedures: transition locator and configuration

generator. The first takes a configuration and returns the transition locations that produce

the lowest cost routing. The second procedure intelligently uses the first procedure to prune

through the possible configurations to find low cost routing.

The transition locator starts by routing each wire in the wiring list W in the configuration

using Dijkstra’s shortest path algorithm [5] to determine the number of wires going through

each bundle and, hence, its cost per unit length. Once these costs are defined, a standard

genetic procedure is applied in the transition locator to locate the transitions.

 15

The goal of the configuration generator is to intelligently create test configurations to find

the one which maps well to the routing environment (minimizes the objective function

shown in eq. 2.1). This procedure has two tasks: creating an initial population of test

configurations and using fitness information of these test configurations to populate each

subsequent generation. A valid configuration must connect all the ports to one another

while having each transition connecting only three configuration nodes. At the end of each

generation, the transition locator is applied to the individuals of the new population.

However, this algorithm assumes that the cable is composed of rigid segments and the

number of segments can be adjusted by the user. Further, this algorithm is restricted to

minimization of a single objective: the bundle length of the wires.

Cable harness design is also addressed in [6, 7, 8, 9]. Park et al. [6] proposed the use of

agents to produce different cable configurations that satisfy the pin-to-pin connections of a

typical harness circuit layout and automate routine operations such as moving a section of

bundles from one position to another. The harness design system “Next-Link” proposed by

Petrie et al. [7] creates different harness layouts concurrently. It is a management tool that

uses software agents to coordinate, update and keep track of the work of individual

designers, evaluating all the routings developed by each designer based on satisfying global

constraints. Cerezuela et al.’s [8] study on cable harness design was carried out at a

helicopter manufacturing company. From the case study, it is understood that harness

design is an iterative process involving schematic, routing and component design and it is

not possible to automate it completely by computers. Ng et al. [9] describe the effectiveness

of immersive virtual reality for designing and routing cable harnesses by enhancing the

expertise of the cable harness designer rather than replacing the individual by an automated

system. The software tool described in this work assists users in performing cable routing

in a virtual environment. The system was successfully tested in pilot trials. Recently, a

route planning algorithm for cable and wire layouts in complex environments has been

presented by Kabul et al. [10]. This algorithm pre-computes a global roadmap of the

environment by using a variant of the probabilistic roadmap method (PRM) and performs

 16

constraint sampling near the contact space. The algorithm computes approximate paths

using the initial roadmap generated on the contact space, given the initial and final

configurations. The approximate paths are refined by performing constrained sampling and

using adaptive forward dynamics. The algorithm takes into account geometric constraints

like non-penetration and physical constraints like multi-body dynamics and joint limits.

However, this algorithm does not guarantee physically accurate motion at all times.

Sandurkar et al. [11] proposed a non-deterministic optimization approach based on Genetic

Algorithms (GAPRUS) to generate pipe routing solution sets. Objects are represented in

tessellated format and it offers huge benefits in computation as well as usage. This

approach can handle 3D free-form obstacles as the algorithm uses the tessellated format.

This approach is applicable to any geometry that can be generated using commercial CAD

packages.

The system accepts the tessellated file of the obstacles and the coordinates of the start and

end locations. In addition to this, other supporting parameters related to the genetic

algorithm such as the number of generations, population size, rate of mutation and cross-

over, etc. can be set according to the problem.

When generating a solution, GAPRUS follows three steps:

1. An .STL file (tessellated format) of the CAD model is generated using a CAD

package.

2. The .STL file is formatted into columns of vertices of facets suitable for the

collision checking software and introduced into the iterative process of

optimization.

3. Pipe routes generated by the optimizer are checked for collisions with the model

and the results are fed back to the optimizer for the iterative search (of the genetic

algorithm).

 17

At the end of the iterative process, the system generates an .STL file containing the obstacle

assembly and a set of pipe routes achieving objectives such as minimizing the total length

between the specified start and goal locations and satisfying constraints on collisions. An

optimal number of bends may also be generated as an output of this process.

A pipe route is modelled by the lengths of the pipes, their direction cosines and the angles

of pipe bends. The design variables consist of the length of the pipes (di), one of the

direction cosines of each pipe (mi), the angles of bends between successive pipes (i) and

the number of bends (N).

The objective function plays a major role in controlling the problem and in emphasizing the

objectives and constraints of the problem with respect to their relative importance. It

consists of two parts: the objective part and the penalty part (see eq. 2.2).

Penalty

N

N
R

Objective

NN

NN
W

d

SE
W

ZMin T

c
N

i
i










































 





minmax

min
21

1

1 1
 2.2

The objective part minimizes the length of the pipes and the number of bends. SE is the

length of the straight line joining the start and end points. This is the absolute minimum

length without considering the obstacles and is used to normalize the total length of the

pipes. The number of bends (N) is normalized using Nmax and Nmin such that the ratio

reaches unity when the number of bends is maximized and tends to zero when the number

of bends is minimum.

The second part (penalty) indicates the constraints on collisions that are treated as a penalty

to the objective function. This part is included in the objective function due to the fact that

the GA determines the quality of the solution according to a fitness function which includes

the degree of violation of constraints. The number of colliding triangles is taken to

 18

represent the degree of constraint violation. The penalty is defined as a ratio of the number

of colliding triangles (NC) to the total number of triangles in the model (NT).

W1 and W2 are the weighting factors associated with the objectives. Since they indicate the

relative importance being given to one objective over the other, their sum equals unity. The

assigning of values to W1 and W2 expresses the designer’s willingness in making tradeoffs

between multiple objectives. R denotes the coefficient of penalty for the constraint violation

term. A high value of R guides the solution away from the infeasible design space. The

values are set by the user according to the application.

However, this approach was applied only to one model and took 18-19 hours to obtain the

best layout of the pipes for a single run. Since stochastic algorithms such as GA usually

need to be run several times to obtain a better solution, the computation time would be

several days for running the algorithm several times. Furthermore, this algorithm needs to

call the collision detection algorithm for each path found in each generation. As a result of

this, the algorithm takes an additional computation time in each generation, in addition to

searching the paths in the search space. Selection of the right weights (W1 and W2) and the

penalty coefficient R is a critical factor of this algorithm.

Drumheller [14] proposed a method for generating the optimal route of pipes considering

constraints relating to the pipe bending. This research focuses on the generation of a route

of pipes having the minimum installation space in an aeroplane. This algorithm uses a

weighted sum approach to evaluate the combined effect of the various constraints and

objectives. Hence, a user can explore trade-offs between multiple optimal routes by running

the algorithm with different sets of weights. The designer should provide an initial path

from start and goal configurations, but it is not necessary that this path be a feasible

solution. A heuristic approach is used to find the node distribution of a route.

Fan et al. [76] proposed an automatic ship pipe route design (SPRD) using ACO. The

objective function is formed using the weighted sum of the objectives: avoiding obstacles,

shortest length of path and number of bends. This research is similar to the proposed “Grid-

 19

based Ant Colony Algorithm for Automatic 3D Hose Routing” in this thesis (published in

[12]). Each obstacle of the model [76] is simplified into a cuboid that is large enough to

contain the obstacle. The grid-based algorithm proposed in this thesis, however, can handle

free-form obstacles. Furthermore, the research in [76] has not used Pareto-based ACO to

obtain the various trade-off solutions in a single run.

Ma et al. [77] propose a structural method for a genetic algorithm (GA) for the optimization

problem of cable routing in which cables have to be laid optimally. The cable routing

problem is defined as follows: there exists a network of cable trays that link equipment and

facilities already set up. Cables are laid out in the tray network with facilities and

equipment as points of origin and destination. Each tray has an allowed capacity for cables,

and no more cables than that capacity can be laid in a tray. Given these constraint

conditions, a route from the point of origin to the destination for each cable is selected, and

a routing plan that minimizes the total routing length for all cables is found. Here, for the

sake of simplicity, the types of cable and tray ratings are unified, and the constraints are

deemed to be conditions related to the number of routes. A tray network is represented

using a tray graph as a discrete graph, with the junctions (branching) and end points of the

trays and the connecting points of equipment and devices as nodes, and the trays as edges.

The proposed GA is a two-level hierarchical GA that uses chromosome coding involving

two levels. In the first level GA, several good routes (shortest or approximately shortest

routes) are found for each cable, and then in the second-level GA, the optimum

combination of the good routes for each cable is found.

Liu et al. [78] proposed a method for pipe route design based on the grid method and

particle swarm optimization (PSO). This paper adopts a fixed-length encoding mechanism

based on grids and the following objectives and constraints are taken into consideration in

defining the evaluation function: avoiding obstacles, the shortest length of path, the least

number of bends and most pipes must go as much as possible through existing equipment.

The routing of pipes should meet various requirements [24], including a large number of

rules of physical constrains, economic constraints, safety constraints, production constrains,

 20

flexibility constraints, and so on. The traditional design approaches pay more attention to

physical constraints, and none or few other constraints can be satisfied. In free space

methods, some non-physical constraints can be described by virtual solids and can be

easely handled. But this brings another problem. The current AI algorithms for pipe-routing

arrangements do not adapt to free spaces. Because all of the existing algorithms consider

obstacles as the forbidden zone for the pipes, the routing must avoid such cells or area.

When free space is used, the terminals of the routings may be in the free spaces. A routing

must connect terminals of given locations and avoid obstacles. Huibiao et al. [79] proposed

the Hanging bridge algorithm to generate a bridge cell to translate an inside connect

terminal outside the free space, and found a solution for pipe-routing arrangements using

free space models.

2.3 Summary of Chapter 2

This chapter has reviewed the previous approaches to solving automatic hose routing and

similar problems and Table 2.1 briefly summarises previous work done on hose/pipe/cable

routing. The “knowledge-based” column states whether the algorithm is embedded or not

with a knowledge-based (e.g. rule-based, etc.) system for selecting a path from the solution

set. The last column shows the capability of the algorithm of producing multiple paths in

parallel.

Fig. 2.2 shows the classification of previous hose/pipe routing algorithms.

According to earlier algorithms developed for hose/pipe routing, one may notice that,

although the developed algorithms can route pipes according to multi-objective criteria and

with minimum use of expert knowledge (genetic algorithms, etc.), the computational

effectiveness of these algorithms is very low and in the real world they require many hours

of computational time to achieve a satisfactory solution.

Previously it has been shown that ant colony algorithms outperform genetic algorithms in

terms of computational time and quality of the solutions produced for a number of

 21

applications [58]. This thesis will look into the improvement of hose/pipe routing in terms

of computational effort and the quality of the solutions by development of ant colony

algorithms.

Further, all previous algorithms used a classical multi-objective technique: the weighted

sum approach or a single-objective function to obtain the optimum solution. Since there is

more than one optimum solution for a multi-objective problem, previous algorithms are not

capable of generating these conflicting optimum solutions (or trade-off solutions) in a

single run. If all the trade-off solutions need to be found, these algorithms must be run

several times with different parameter values. Normally these experiments are time

consuming and if they need to be run several times, they are even more time consuming.

Moreover, multi-hose routing is another important part of this research area and none of

these algorithms are able to route hoses/pipes in parallel.

 22

CD – Cell decomposition

Fig. 2.2 The taxonomy of hose/pipe routing algorithms

Hose/pipe routing algorithms

Deterministic Probabilistic

Lee Maze [16]

A* [1]

Dijkstra [4]

Genetic
Algorithms

[4, 11, 17, 19, 25]

3D space/CD

2D/3D space/CD

3D
space/Graph/Road

map

Simulated
Annealing [17]

Basic shapes

Single objective

Single path

Basic shapes

Multi-
objective/Weighted

sum

Single Path

Basic shapes

Single objective

Single path

2D/3D/CD/Graph/
Road map

Basic
shapes/Free-form

shapes

Multi-
objective/Weighted

sum

Single path

2D space/Steiner
points/Escape

graph

Basic shapes

Single objective

Single path

Hill Climbing
[17]

Basic shapes

Single path Single objective

2D space/Steiner
points/Escape

graph

23

TABLE 2.1 Previous work on hose/pipe/cable routing

Author(s) Year Dimensions Category Domain Obstacles Algorithm/Objective
function

Objectives/Constraints Knowledge-
based

Multi-
path

Mitsuta et al.
[16]

1986 3D CD General Basic shapes Lee Maze/Single
objective

Pipe lengths/Obstacle
avoidance

Yes No

Zhu et al. [1] 1991 2D/3D CD Power
plants,
Chemical
plants, etc.

Basic shapes
(Rectangles)

A*/Weighted Sum Pipe lengths, No of
turns/Location constraints,
Shape constraints

No No

Conru [4] 1994 3D Graph/
Roadmap

Cable
harness

Basic shapes Dijkstra, GA/Single
objective

Cable lengths/Obstacle
avoidance

No No

Kim et al. [17] 1996 2D Steiner
points/Escape
graphs

Industrial
plants

Basic shapes HC, SA, GA/Single
objective

Pipe lengths/Obstacle
avoidance

No No

Sandurkar et al.
[11]

1998 3D ND General Free-form GA/Weighted Sum Pipe lengths, No of
bends/Select angles from
catalogue angles, obstacle
avoidance

No No

Ito et al. [19,
25]

1998 2D CD General Basic GA/Weighted Sum Pipe lengths/Closer to the
obstacles, Go along the
walls

Yes No

Kang et al. [23] 1996 3D NA Ship
building

NA NA Pipe lengths/Placing pipes
away from onboard
equipments

Yes
No

Drumheller
[14]

2002 3D Graph/
Roadmap

Aeroplane
building

Free-form Heuristic/Weighted
Sum

Pipe lengths/Intrinsic and
extrinsic factors

No No

Park, J.H. et al.
[24]

2004 3D CG Ship
building

Free-form TC Material and installation
cost of pipes, maintenance
cost/No interference
between pipes, Obstacle
avoidance

No No

Proposed Grid-
based ACO
[12]

2006 3D CD General Free-form ACO/Single Pipe lengths/Obstacle
avoidance

No No

Proposed
Random-based
ACO [13]

2006 3D Network General Free-form ACO/Single Pipe lengths/Obstacle
avoidance

No No

Fan et al. [76] 2006 3D CD Ship
building

Cuboid ACO/Weighted sum Pipe lengths, no of
bends/Obstacle avoidance

No No

24

TABLE 2.1 Previous work on hose/pipe/cable routing (Contd.)

Author(s) Year Dimensions Category Domain Obstacles Algorithm/Objective
function

Objectives/Constraints Knowledge-
based

Multi-
path

Ma et al. [77] 2006 2D Graph/
Roadmap

Cable
Harness

NA GA/Single Cable lengths/capacity
of trays

No No

Liu et al. [78] 2008 2D CD General Basic PSO/Weighted sum Pipe lengths, no of bends,
most pipes go through
existing elements/Obstacle
avoidance

No No

Huibiao et al.
[79]

2008 2D/3D CD Ship
building

Basic Hanging Bridge
Algorithm

Pipe length/Physical,
economic, safety, etc.

No No

Proposed
MOACO

2009 3D Network General Free-form ACO/Pareto
optimization

Pipe lengths, No of bends,
Bend angles/Obstacle
avoidance

No No

Proposed
MCAS-MHR-1
and MCAS-
MHR-2

2009 3D Network General Free-form ACO/Weighted sum Pipe lengths, shared path
length (No limitations on
no of objectives)/Obstacle
avoidance

No Yes

CD – Cell Decomposition, ND – Non Deterministic, GA – Genetic Algorithm, HC – Hill-Climbing, SA – Simulated Annealing, CG – Cell Generation,
TC – Tree of Combination, ACO – Ant Colony Optimization, PSO – Particle Swarm Optimization. NA – Not Applicable

 25

3 MULTI-OBJECTIVE OPTIMIZATION
3

The work reported in this thesis has extensively used multi-objective optimization for

automatic hose/pipe routing. This chapter describes the multi-objective optimization in

detail. It describes the multi-objective optimization problem (section 3.1), the

domination concept (section 3.1.1), the non-dominated set (section 3.1.2) and the

illustrative representation of the non-dominated set (section 3.2), how to compare the

performances of two multi-objective optimization methods (section 3.3) and how to

select a preferred solution from the non-dominated solutions (section 0).

A multi-objective optimization problem (MOOP) deals with more than one objective

function. Many real-world problems require the simultaneous optimization of a number

of objective functions. Some of these objectives may be in conflict with one another. In

other words optimizing one of these objective functions makes it more difficult to

optimize the other objective functions. For example, consider finding optimal routes in

data communication networks, where the objectives may include minimizing routing

cost, minimizing route length, minimizing congestion, and maximizing the use of

physical infrastructure. There is an important trade-off between the last two objectives:

minimization of congestion is achieved by reducing the utilization of links; a reduction

in utilization, on the other hand, means that infrastructure, for which high installation

and maintenance costs are incurred, is under-utilized [37].

There exist many classical algorithms and application case studies involving multiple

objectives. The majority of these methods avoid the complexities involved in a true

multi-objective optimization problem and transform multiple objectives into a single

objective function by using some user-defined parameters (e.g., weighed sum method).

Finally, these algorithms treat the multi-objective optimization as a single-objective

optimization.

However, there is a fundamental difference between single and multi-objective

optimization which is ignored when using a transformation method [38]. In a single-

objective optimization problem, there exists only one optimal solution. In contrast, in

problems with more than one conflicting objectives, there is no single optimum

solution. There exists a number of solutions which are all optimal. The classical

 26

algorithms that convert a multi-objective optimization problem into a single-objective

optimization problem converge to one of these optimal solutions. Thus, a classical

approach needs to be run (with different parameter values) several times to obtain the

set of all optimal solutions of a multi-objective optimization problem. A multi-objective

optimization algorithm produces a set of solutions closer to the optimal solutions of the

MOOP in a single run.

Although the fundamental difference between these two optimizations lies in the

cardinality of the optimal set, from a practical standpoint a user needs only one solution,

no matter whether the associated problem is a single- or a multi-objective problem [38].

In the case of multi-objective optimization, the higher-level of information (non-

technical, qualitative and experience-driven) that is not incorporated into the model is

taken into consideration for selecting a solution.

The principles of an ideal multi-objective optimization procedure are shown in Fig. 3.1.

In step 1, multiple trade-off solutions are found. Thereafter, in step 2, a higher-level of

information is used to choose one of the trade-off solutions.

Fig. 3.1 Flowchart of a multi-objective optimization procedure [38]

Multi-objective
optimization

problem

Ideal multi-
objective
optimizer

Multiple trade-off
solutions found

Higher-level
information

Choose one
solution

Step 1

Step 2

 27

3.1 The Multi-Objective Optimization Problem

A multi-objective minimization problem with n parameters (also called decision

variables) and M objectives can be stated as follows:

 XxxxffffMin nM ),,()),(,),(),(()(2121  xxxxx 3.1

where x is a decision vector and X is the decision space.

One of the striking differences between single-objective and multi-objective

optimization is that in multi-objective optimization the objective functions constitute a

multi-dimensional space, in addition to the usual decision space. This additional space

is called the objective space, Z [38]. For each solution x in the decision space, there

exists a point in the objective space, denoted by z = f(x) = (z1, z2, …, zM), where zk =

fk(x) and k = 1, 2, …, M.

3.1.1 Domination Concept

Most multi-objective optimization algorithms use the concept of Pareto domination,

hereafter called domination for short. Two solutions are compared on the basis of

whether one dominates the other solution or not. A decision vector x  X dominates

another y  X (denoted by x  y) if, and only if:

1.  k = 1, 2, …, M, fk(x)  fk(y) and

2.  m = 1, 2, …, M s.t. fm(x) < fm(y)

 28

3.1.2 Non-dominated Set

Among a set of solutions P, the non-dominated set of solutions P are those that are not

dominated by any member of the set P.

When the set P is the entire search space, the resulting non-dominated set P is called

the Pareto-optimal set. The Pareto-optimal set therefore contains the set of solutions, or

balance trade-offs, for the MOOP. The corresponding objective vectors are referred to

as the Pareto-optimal front:

  PffffPF M  xxxxx))(,),(),(()(21  3.2

3.2 Illustrative Representation of Non-Dominated Solutions
3.2

In multi-objective optimization, there exists more than one objective and in the most

interesting cases they behave in a conflicting manner. In the case of two objectives, the

performance of the algorithm can be shown by illustrating the obtained non-dominated

solutions on a two-dimensional objective space plot. When the number of objective

functions is larger than two, such an illustration is difficult. There are number of ways

to illustrate the non-dominated solutions in such situations [39].

3.2.1 Scatter-Plot Matrix Method

In [40, 41], it was suggested plotting all 














2

M pairs of plots among the M objective

functions. Fig. 3.2 shows a typical example of such a plot with M = 3 objective

functions. With M = 3 objectives, there are a total of 













2

M × 2 = 3 × 2 or 6 plots. The

arrangement of the sub-plots is important. The diagonal sub-plots mark the axis for the

corresponding off-diagonal sub-plots. For example, the sub-plot in position (1, 2) has its

horizontal axis marked with f2 and the vertical axis marked with f1. If a user is not

comfortable in viewing a plot with f1 in the vertical axis, the sub-plot in position (2, 1)

shows the same plot with f1 marked in the horizontal axis.

 29

Fig. 3.2 The scatter-plot matrix method [38]

3.2.2 Value Path Method

In [42], the authors proposed this method for representing a set of non-dominated

solutions (See Fig. 3.3). The horizontal axis contains each of the objective functions.

The vertical axis marks the normalized objective function values. Two different types of

information are plotted on the figure. The vertical bar for the objective function k

represents the range covering the minimum and maximum values of the k-th objective

function in the Pareto-optimal set, not in the obtained non-dominated set. Each cross-

line, connecting all three objective bars, as shown in Fig. 3.3, corresponds to a solution

from the obtained non-dominated set. When all solutions from the non-dominated set

are plotted in this way, the plot provides a number of types of information:

1. For each objective function, the extreme function values provide a qualitative

assessment of the spread of the obtained solutions. An algorithm which spreads

f1

f2

f3

 30

its solutions over the entire bar is considered to be good in finding diverse

solutions.

2. The extent to which the cross-lines ‘zigzag’ shows the trade-off among the

objective functions associated with the obtained non-dominated solutions. An

algorithm having a large change of slope between two consecutive objective

function bars is considered to be good in terms of finding good trade-off non-

dominated solutions.

Fig. 3.3 The value path method [38]

f1 f2 f3

0.2

0

1

0.4

0.6

0.8

Objective Function

Normalized
objective
value

 31

3.2.3 Bar Chart Method

Fig. 3.4 The bar chart method

Another useful way to represent different non-dominated solutions is to plot the

solutions as a bar chart [38]. First, the obtained non-dominated solutions are arranged in

a particular order. Thereafter, for each objective function, the function value of each

solution is plotted with a bar, in the same order. Since the objectives can take different

ranges of values, it is customary to plot a bar chart diagram with the normalized

objective values. In this way, if there are N obtained non-dominated solutions, N

different bars are plotted for the objective functions. For example, Fig. 3.4 shows a

typical bar chart plot of three objective functions and three different non-dominated

solutions. Since bars are plotted, the diversity in different solutions for each objective

can be directly observed from the plot. However, if N is large, it becomes difficult to get

an idea of the trade-offs among different objective functions captured in the obtained

solutions.

3.3 Metric of Performance
3.3

Comparing two multi-objective optimization algorithms experimentally always involves

the notion of performance. In the case of multi-objective optimization, the definition of

quality is substantially more complex than for single-objective optimization problems,

because the optimization goal itself consists of the following multiple objectives [43].

Objective function

f1 f2 f3

0.2

0

1

0.4

0.6

0.8

Normalized
objective
value

1

2

3

1

2

3

1

2

3

 32

 The distance of the resulting non-dominated set to the Pareto-optimal front

should be minimized. In other words, solutions as close to the Pareto-optimal

solutions as possible are required.

 A good (in most cases uniform) distribution of the solutions found is desirable.

 The extent of the obtained non-dominated front should be maximized, i.e., for

each objective, a wide range of values should be covered by the non-dominated

solutions.

A multi-objective optimization method will be termed as a good one if the above goals

are adequately satisfied. Thus, a good multi-objective optimization method generates

solutions close to the true Pareto-optimal front, as well as solutions that span the entire

Pareto-optimal region uniformly.

Several individual metrics aiming at measuring the achievement of the previous goals

by the non-dominated solution set derived from a specific multi-objective algorithm

have been proposed in the literature [38, 43, 44]. Some of these are reviewed below.

Let Y′ and Y′′ be two sets of non-dominated objective vectors, Yp be a Pareto-optimal set

obtained from the true Pareto-optimal front Y, σ > 0 be a neighbourhood parameter

(chosen appropriately for the problem at hand) and ||.|| be a distance metric.

1. Function M1
* gives the average distance to the Pareto-optimal set Yp [43]:

  






Yy

ppp Yyyy
Y

YM min
1

)(*

1 3.3

2. Function M2
* takes into account the distribution in combination with the number

of non-dominated solutions found [43]:

  






Yy

yyYy
Y

YM
1

212

*

2 1

1
)( 3.4

3. Function M3
* considers the extent of the non-dominated set Y′ [43]:

 33

  



M

i

YyyiyiyYM
1

2121

*

3 ,][][max)(3.5

 where M is the number of objectives and y1
[i] is the i-th objective function

value of y1
.

While M1
* is intuitive, M2

* and M3
* need further explanation. The distribution metrics

give a value within the interval [0, |Y′|]. The higher the value of the metric, the better the

distribution for an appropriate neighbourhood parameter (e.g., M2
*(Y′) = |Y′| means that,

for each objective vector, there is no other objective vector within a σ-distance to it).

Function M3
* uses the maximum extent in each dimension to estimate the range to

which the non-dominated front spreads out. In the case of two objectives, this equals the

distance of the two outer solutions.

The previous metrics allows us to determine the absolute, individual quality of a

non-dominated front. On the other hand, other metrics whose aim is to compare the

performance of two different multi-objective algorithms by comparing the non-

dominated sets generated by each of them have also been introduced in the literature.

One of the most used among these metrics was proposed in [43], which compares a pair

of non-dominated sets by computing the fraction of each set that is dominated by the

other:

  
Y

yytsYyYy
YYC






..
),(3.6

where y′  y′′ indicates that the solution y′ dominates the solution y′′.

Hence, the value C(Y′, Y′′) = 1 means that all the solutions in Y′′ are dominated by

solutions in Y′. The opposite, C(Y′, Y′′) = 0, represents the situation where none of the

solutions in Y′′ are dominated by the set Y′. Note that both C(Y′, Y′′) and C(Y′′, Y′) have

to be considered, since C(Y′, Y′′) is not necessarily equal to 1 – C(Y′′, Y′).

 34

3.4 Searching for Preferred Solutions
0

Pareto multi-objective optimization algorithms are capable of finding multiple and

diverse Pareto optimal (or near Pareto-optimal) solutions in a single simulation run. The

next step is to select a solution among the obtained non-dominated solutions. Some

possible approaches are reviewed below.

3.4.1 Compromise Programming Approach

In this approach, the algorithm picks a solution which is minimally located from a given

reference point [45]. The user has to fix a distance metric d() and a reference point z for

this purpose. A couple of commonly used metrics are presented below:

lp – metric:
pM

m

p

mm zffd
1

1

)(),(





  



xz 3.7

Tchebycheff metric:
mmS

mmM

m zf

zf
zfd








)(max

)(
max),(1 x

x

x

 3.8

where S is the entire search space. The reference point z is usually comprised of the

individual best objective function values z = (f1
*, f2

*, …, fM
*)T. Since this solution is

usually a ‘non-existent solution’, the user is interested in choosing a feasible solution,

which is closest to this reference solution.

3.4.2 Pseudo-Weight Vector Approach

In this approach, a pseudo-weight vector is calculated for each obtained non-dominated

solution [38]. From the obtained set of solutions, the minimum fi
min and maximum fi

max

values of each objective function i are noted. Thereafter, the following equation is used

to compute the weight wi for the i-th objective function:

    
   








M

m
mmmm

iiii
i

ffff

ffff
w

1

minmaxmax

minmaxmax

)(

)(

x

x
3.9

 35

This equation assumes a minimization problem and calculates the relative distance of

the solution from the worst (maximum) value in each objective function. Thus, for the

best solution for the i-th objective, the weight wi is a maximum. The denominator in the

right side of the above equation ensures that the sum of all weight components for a

solution is equal to one.

Once the weight vectors for each solution in the non-dominated set are calculated, a

simple strategy would be to choose the solution closest to a user-preferred weight

vector.

3.5 Summary of the Chapter

This chapter firstly described the multi-objective optimization problem and how it is

important in real-world applications. It explained the differences between the two

approaches (classical and Pareto based algorithms) of solving the multi-objective

optimization problem. This chapter further explained how to compare two solutions of

the MOOP using the domination concept. In addition, it described the non-dominated

set, how to illustrate the non-dominated set graphically and how to compare the

performances of two multi-objective optimization algorithms. Finally, it explained the

selection of a solution from the non-dominated solutions obtained by a multi-objective

optimization algorithm.

The methods discussed in this chapter have been successfully applied to the design of a

new general purpose Pareto-strength ant colony optimization algorithm PSACO (see

section 5.6) for multi-objective optimization which may also be applied to multi-

objective automatic hose/pipe routing (see section 6.4). This algorithm has also been

compared with another multi-objective ant colony optimization algorithm P-ACO (see

section 4.3.1) using the illustrative representation and performance metrics (see section

6.4). Further, the methods described in section 0 have been used to select a solution

from the non-dominated solutions obtained in multi-objective ant colony optimization

algorithms (see section 6.4.7).

 36

4 ANT COLONY OPTIMIZATION
4

Initially, this chapter presents a brief introduction about ant colony optimization. Next

it describes the two most commonly used varieties of ant colony optimization: the Ant

System (AS) (section 4.1) and the Ant Colony System (ACS) (section 4.2). Section 4.3

briefly reviews the existing multi-objective ant colony algorithms and recent algorithms

that have been developed during our research work. Among these algorithms, Pareto

Ant Colony Optimization (P-ACO) could be considered as the best one (for compromise

solutions) and it is explained in detail in section 4.3.1.

Some ant species are able to find the shortest path between their nest and a food source.

While walking between their nest and a food source, these ants deposit a chemical

called pheromone. If no pheromone trails are available, ants move randomly, but in the

presence of pheromones they have a tendency to follow the trail. In practice, choices

between different paths occur when several paths intersect. Then, ants choose the path

to follow by a probabilistic decision biased by the amount of pheromones: the stronger

the pheromone trail, the higher the desirability. Over time, the pheromone trail

evaporates and it reduces intensity if no more pheromone is laid down by ants. In this

way, less promising paths progressively lose pheromone because of being visited by

fewer ants. This behaviour allows ants to identify the shortest paths between their nest

and the food source.

Ant colony optimization (ACO) algorithms imitate the behaviour of real ants to solve

difficult combinatorial optimization problems. They are based on a colony of artificial

ants (computational agents) that work cooperatively and communicate through artificial

pheromone trails [26]. In each cycle (or generation), some ants constructs a solution to

the problem by travelling on a network. Each edge of the network represents the

possible step that an ant can make and has associated two kinds of information that

guide the ant’s movement:

1. Heuristic information – measures the heuristic preference of moving from node i

to node j. This information is not modified by the artificial ants during the

algorithm run.

 37

2. Pheromone trail information (artificial) – mimics the real pheromone that

natural ants deposit. This information is modified during the algorithm run

depending on the solutions found by the ants.

In ant based systems, communication often takes place in the form of stigmergy.

Stigmergy is a term used to indicate interactions through the environment. This form of

communication does not require direct contact between the individual agents (ants).

Interaction occurs when one agent alters its environment in some way, and other

individuals later on respond to this change.

ACO algorithms imitate the foraging behaviour of natural ants and allow the application

of this search metaphor to the finding of the solutions of hard combinatorial

optimization problems like the Travelling Salesman Problem [27, 28, 29], the Quadratic

Assignment Problem [30], the Job Shop Scheduling Problem [27]. Later scientists have

applied them to many different discrete optimization problems [34, 35, 36, 65, 67, 69,

70, 71, 72, 73, 74, 75].

Several ACO algorithms have been proposed and are included within the ACO meta-

heuristic such as the Ant System (AS) [27], the Ant Colony System (ACS) [31], the

Max-Min Ant System [29], the Rank-based Ant System (rankAS) [33], and the Best-

worst Ant System [32].

Among these algorithms, the former two algorithms are commonly used in most

research work [65, 67, 68, 69, 70, 71, 74, 75] and are used in our approaches too. These

two ACO algorithms are briefly explained in the following sections.

4.1 Ant System (AS)

The Ant System (AS) was first proposed by Dorigo and his colleagues [27, 28] as a

multi-agent approach to difficult combinatorial problems such as the Travelling

Salesman Problem [27, 28, 29], the Quadratic Assignment Problem [30] and the Job-

Shop Scheduling problem [27].

 38

When applying AS to finding the optimal path between two vertices S (Start node) and

E (End node) of a network, a trail strength is associated with each edge to represent the

pheromone strength. Initially, all ants are set on the start node (S) and they construct

tours to the end node (E). At each node, the ants know the heuristic knowledge about its

position (e.g. the straight line distance to the end node), the trail strength (pheromone

strength) on the connecting edges, and which nodes have already been visited. Based on

this knowledge the ants choose the next node (turn) probabilistically (see eq. 4.1). A

global updating rule is implemented after the number of allocated turns (NT) (at the end

of the current cycle) using the quality of the solution produced by each successful ant

(ant that was able to reach the end node E): a fraction of pheromones evaporate on all

edges (edges that are not refreshed become less desirable); each ant that was able to

finish a complete tour deposits an amount of pheromone on edges which belong to its

tour in proportion to the quality of its tour (quality is defined according to the problem)

in other words, edges which belong to high quality paths receive the greater amount of

pheromone) (see eqs. 4.2 and 4.3).

The state transition rule used by the ant system, called a random-proportional rule, is

given by eq. 4.1 and gives the probability with which ant ‘i’ in node ‘r’ chooses to move

to neighbour node ‘s’ [27],










 


otherwise

rJsif
urur

srsr

srp
i

rJu
i

i

,0

)(,
)],(.[)],([

)],(.[)],([

),(
)(








 4.1

where τ(r, s) is the pheromone level on edge (r, s),

 η(r, s) is the inverse of the distance from node s to the end node (heuristic

information),

 Ji(r) is the set of neighbour nodes of r that remain to be visited by ant i

positioned on the node r,

  and  (> 0) are parameters which determine the importance of pheromone

and heuristic information, respectively.

 39

The global updating rule is implemented after the number of allocated turns (NT) (at the

end of the current cycle) using the quality of the solution produced by each successful

ant (ant that was able to reach the end node E) as in eqs. 4.2 and 4.3.





m

i
i srsrsr

1

),(),().1(),( 4.2

where



 


otherwise

iantbydonetoursrifiQ
sri ,0

),(),(
),( 4.3

 and 0 <  < 1 is a pheromone decay parameter. Q(i) measures the quality of an

ant’s solution (better solutions get a higher value for Q(i)) and m is the number

of successful ants within the stipulated number of turns NT.

Although the Ant System (AS) showed better performances than those of some general

purpose heuristic algorithms for smaller size problems, it does not converge to the best

known solution for the benchmark problems such as Travelling Salesman problem when

the number of cities involved increased [31]. However, in these larger problems, the Ant

System (AS) was able to find good solutions which are closer to the best known

solution [31].

4.2 Ant Colony System (ACS)

The Ant Colony System [31] is one of the first successors of AS and was introduced to

improve the performance of AS, that was able to find good solutions within a

reasonable time only for small problems. ACS is based on AS and it introduces three

major modifications into AS.

1. ACS uses a different transition rule, the pseudo-random proportional rule: an

ant i positioned on city r chooses to move to neighbour node s by applying the

rule given by eq. 4.4,

  











)(exp

)(exp)],(.[)],([
)(0

maxarg

lorationotherwiseS

loitationqqifurur
riJus

 
 4.4

 40

 where (r, s) is the pheromone level on the edge (r, s),

 (r, s) is the inverse of the distance from node s to the end node,

 Ji(r) is the set of neighbour nodes of r that remain to be visited by ant

i positioned on node r,

  and  are parameters indicating the importance of pheromone and

heuristic information, respectively,

 q is a random number uniformly distributed in [0, 1],

 q0 is a parameter (0  q0  1) indicating the relative weighting of

exploitation versus exploration,

 S is a random variable selected according to the probability

distribution given in eq. 4.1.

As it can be seen, the rule has a double aim: when q  q0, it exploits the available

knowledge, choosing the best option with respect to the heuristic information and the

pheromone trail. However, if q > q0, it applies a controlled exploration, as done in AS.

In summary, the rule establishes a trade-off between the exploration of new connections

and the exploitation of the information available at the moment.

2. Only the daemon (and not the individual ants) triggers the global pheromone

update, i.e., an off-line pheromone trail update is done. To do so, ACS only

considers a single ant, the one who generated the global best solution (global-

best-tour). The global pheromone update rule is given by eq. 4.5,

),(.),().1(),(srsrsr   4.5

 where



 


otherwise

tourbestglobalsrifiQ
sr b

0

),()(
),( 4.6

 and 0 <  < 1 is a pheromone decay parameter. Q(ib) measures the

quality of the best ant’s solution.

 41

3. While building a solution, ants visit edges and change their pheromone level by

applying the local updating rule given by eq. 4.7,

0.),().1(),(  srsr 4.7

 where ρ is the pheromone evaporation rate and τ0 is the initial pheromone

value.

4.3 Multi-objective Ant Colony Optimization (MOACO)
4.3

Previously, researchers have designed ACO algorithms to deal with multi-objective

problems [46, 47, 48, 49, 50, 51, 52]. Most of them are designed to solve a concrete

multi-objective problem such as scheduling, vehicle routing, and portfolio selection.

Furthermore, most of these algorithms are designed for bi-criterion optimization

problems and it is difficult to extend them to more general multi-objective ant colony

optimization algorithms.

Mariano et al. [52] described an Ant-Q algorithm called MOAQ that can solve multiple

objective optimization problems. MOAQ considers a family of agents for each objective

function involved. Each family of agents finds solutions that depend on solutions found

by the rest of the families, creating a negotiation mechanism and finding compromise

solutions for all the objectives involved. The compromise solutions are evaluated in the

Pareto sense, assigning rewards to the non-dominated solutions fitting all problem

constraints, and punishments to the solutions violating any of them.

Iredi et al. [51] studied the ACO methods for bi-criterion optimization when the

objectives cannot be ordered by importance. A multi-colony approach (BicriterionAnt)

is proposed where the ant colonies are forced to search different regions of the non-

dominated front. Two heterogeneous colonies are used where the ants in a colony

weight the relative importance of the two optimization criteria differently so that they

are able to find different solutions along the Pareto front. Cooperation among the

colonies is done by exchanging solutions in the global non-dominated front that are in

regions which belong to other colonies.

 42

Pareto Ant Colony Optimization (P-ACO), proposed in [49], was originally applied to

solving the multi-objective portfolio selection problem. It is based on classical ACS but

the global pheromone update is performed by using two different ants, the best ant and

the second-best solution generated in the current iteration for each objective m. In P-

ACO, several pheromone matrices are considered, one for each objective k. At each

iteration, each ant computes a set of weights w = (w1, w2, …, wM), and uses them to

combine the pheromone trails.

A multiple ant colony system (MACS-VRPTW) was developed in [50] to solve vehicle

routing problems with time windows. As in the P-ACO, it is also based on classical

ACS. MACS-VRPTW is based on setting up a preference to minimize one objective

(the number of tours) over the other (the travel time). This solution is defined as the first

of a lexicographic order on the values of the objectives. It defines two different

colonies, ACS-VEI and ACS-TIME, whose activities are coordinated by the global

MACS-VRPTW algorithm in order to optimize both objectives simultaneously. The

former colony tries to diminish the number of vehicles used while the latter optimizes

the feasible solutions obtained by the former. Each colony uses an independent

pheromone trail matrix for its specific objective, and colonies collaborate by sharing the

best solution found by their cooperative action. The global algorithm kills and runs

again the two colonies each time a new best solution containing fewer vehicles than the

previous one is obtained.

The Multiple Ant Colony System (MACS) [46] was proposed as a variation to the

MACS-VRPTW algorithm. It is also based on ACS but, contrary to its predecessor,

MACS uses a single pheromone matrix and several heuristic information functions.

Multi-objective Network ACO (MONACO) [47] was designed to optimize the dynamic

problem of message traffic in a network. In [53] this algorithm is changed for

implementation in a static environment. The algorithm takes the classical AS as the base

but uses multi-pheromone trail matrices. Each ant uses the multi-pheromone trail and

single heuristic information to choose the next node to visit.

In [48] the author introduced COMPETants to deal with bi-objective transportation

problems. The algorithm is based on rankAS and uses two ant colonies, each with its

 43

own pheromone matrix and heuristic information. The number of ants in each colony is

not fixed. When every ant has constructed its solution, the colony which has constructed

better solutions gets more ants for the next iteration.

In [53] previous multi-objective ant colony algorithms were reviewed and

experimentally tested in several instances of the bi-objective travelling salesman

problem, comparing their performance with that of two well-known multi-objective

genetic algorithms (MOGAs) NSGA-II [54] and SPEA2 [55]. According to the results

published in this paper, MOACO algorithms are very competitive compared to the

MOGAs implemented. MOACO algorithms offer good sets of non-dominated solutions

which almost always dominate the solutions returned by NSGA-II and SPEA2. In

addition, the Pareto fronts derived by the MOGAs do not dominate any of the fronts

given by MOACO algorithms. Among the MOACO algorithms [53], P-ACO could be

considered as the algorithm with the best global performance as fewer of its obtained

Pareto fronts are dominated by the remainder of the MOACO algorithms while they

dominate the remainder to some degree. Further, P-ACO generates extremely good

solutions at the central part of the Pareto front (or a good set of compromised solutions).

Recent research (during the period of the research carried out for this thesis) showed

that MOACO has been applied to different areas and new modifications have been

proposed to MOACOs. The following paragraphs briefly review the recent publications

relating to MOACO algorithms.

Alam et al. [65] applied MOACO to the problem of generating safe flight trajectories

under weather hazards. The problem of weather avoidance in a Free Flight environment

is formulated as: ‘given a start node and an end node in a three dimension mesh, find

routes which minimize interaction with bad weather cells, minimize heading changes

and minimize distance travelled’. In this paper, two different pheromone mechanisms

have been applied; one uses a dynamic weighted sum of three objective functions and

the other uses the concept of strength. In the second approach, the strength parameter

defined in SPEA2 [55] was used, where each individual i in the current set of solutions

is assigned a strength value S(i)  [0, 1]. S(i) is the number of ants that are dominated

by or equal to i, divided by the total number of ants plus one.

 44

In [66] the authors proposed four generic variants of ant colony optimization to solve

multi-objective optimization problems and compare the four versions when applied to

the multi-objective knapsack problem.

Variant 1: m-ACO1 (m+1, m)

For this variant, the number of colonies is set to m+1 and the number of pheromone

matrices is set to m, where m is the number of objectives that need to be optimized.

Each colony considers a single different objective, using its own pheromone matrix and

heuristic information to build solutions; an extra ant colony is added, that aims at

optimizing all the objectives. The ith pheromone factor considered by the ith objective,

fi, is defined with respect to the ith pheromone matrix, depending on the application.

The m+1th pheromone factor considered by the extra ant colony is the pheromone

factor of the rth single-objective colony, where r is randomly chosen. This colony

considers, at each construction step, a randomly chosen objective to optimize. The ith

heuristic factor considered by the ith single-objective colony that aims at optimizing the

ith objective function fi, is the ith heuristic information. The m+1th heuristic factor

considered by the extra multi-objective colony is the sum of the heuristic information

associated with all the objectives. For each single-objective colony, pheromone is laid

on the components of the best solution found by the ith colony during the cycle, where

quality of a solution is evaluated with respect to the ith objective, fi only. The multi-

objective colony maintains a set of solutions: a best solution for each objective. It lays

pheromone on each pheromone structure relatively to the correspondent objective with

the same formulae defined for the other colonies.

Variant 2: m-ACO2 (m+1, m)

This second variant is very similar to the first one, and considers m + 1 colonies and m

pheromone matrices: a single-objective colony is associated with every different

objective, and the behaviour of these single-objective colonies is defined as in variant 1;

there is also an extra multi-objective colony, that aims at optimizing all objectives. The

only difference between variants 1 and 2 lies in the way this multi-objective colony

exploits the pheromone structures of other colonies to build solutions. For this multi-

 45

objective colony, the m+1th pheromone matrix is defined as the sum of every

pheromone matrix of every colony.

Variant 3: m-ACO3 (1, 1)

The pheromone factor considered by the ants of the single colony is defined with

respect to the single pheromone structure, and the heuristic factor considered by the

single colony is the sum of heuristic information associated with all the objectives.

Once the colony has computed a set of solutions, every non-dominated solution

(belonging to the Pareto set) is rewarded. Every component belonging to at least one

solution of the Pareto set receives a same amount of pheromone. Indeed, these

components belong to non comparable solutions.

Variant 4: m-ACO3 (1, m)

In the last variant, there is only one colony but m pheromone matrices. At each step of

the construction of a solution, ants randomly choose an objective r  {1, ..., m} to

optimize. The pheromone factor is defined as the pheromone factor associated with the

randomly chosen objective r. The heuristic factor considered by the single colony is the

sum of the heuristic information associated with all the objectives. Once the colony has

computed a set of solutions, the m best solutions with respect to the m different

objectives are used to reward the m pheromone matrices.

Pinto et al. [67] proposed two modifications to the Ant Colony System (ACS) [31] and

the Max-Min Ant System [29] for handling multi-objective optimization problems. In

the first case, the proposed algorithm (MOACS) uses a colony of ants and a pheromone

matrix for the construction of solutions at every cycle. After completing the each cycle,

a known Pareto front Yknown is updated including the best non-dominated solutions that

have been calculated so far. If the state of the Pareto front Yknown is changed, the

pheromone matrix is reinitialized to improve exploration in the decision space X.

Otherwise, the pheromone matrix is globally updated using the solutions of Yknown to

better exploit the knowledge of the best known solutions. Note that only the links of the

solutions found in Yknown are used to update the pheromone matrix. The modification to

 46

the Max-Min Ant System (M-MMAS) uses the same general ideas used for the

MOACS.

In [68], the authors investigate the effect of elitism on multi-objective ant colony

optimization algorithms (MOACOs). Elitism is implemented through the use of local,

global and mixed non-dominated solutions. Further, an adaptation strategy is introduced

to control the effect of elitism. With this strategy, the solutions most recently added to

the global non-dominated archive are given a higher priority in defining the pheromone

information. For this adaptive technique, each solution in the archive is assigned an age

to indicate how long it has existed in the archive. This value is used to adjust the

amount of pheromone that an aging ant will deposit. The experimental work of this

research was conducted using a suite of multi-objective travelling salesman problems,

each with two objectives.

Chaharsooghi et al. [69] presented a modified ant colony optimization (ACO) algorithm

for solving the knapsack multi-objective problem to achieve the best layer of non-

dominated solutions. A new pheromone updating rule is proposed for the multi-

objective case which can increase the learning of the algorithm and consequently

increases effectiveness. This approach uses multi-pheromone matrices, where each

matrix represents the desirability of the solution components with respect to one

objective. The pheromone updating process is achieved in two phases. In the first phase,

each colony updates its own constructed solution according to the best-so-far strategy,

regardless of the other objective functions. In the second phase, the global updating is

accomplished for all the constructed solutions as follows: each constructed solution in

the current cycle is compared with all former non-dominated solutions; if it is a non-

dominated solution, the quantity of pheromone in all edges, which constructed it, will

be increased by t× where  is a small positive number and t is the number of the

current cycle, otherwise it is decreased by t×. In [72], the same authors (Chaharsooghi

et al.) applied the same approach to the problem of multi-objective resource allocation.

Yagmahana et al. [70] studied the flow shop scheduling problem with multi-objectives

of makespan, total flow time and total machine idle time. The ant colony optimization

 47

(ACO) algorithm was proposed for the solution of this problem which is known to be of

the NP-hard type.

The task of Supply Chain Management (SCM) is to deploy resources across a supply

chain to produce high-quality goods as inexpensively as possible when the customer

wants them. Taking the dependencies of the underlying production techniques into

account, the SCM presents itself as an NP-hard problem. Sun et al. [71] described a

multi-objective supply chain model including measurements of costs, customer service

fill rates and delivery flexibility and used Ant Colony Optimization (ACO) to solve this

multi-objective optimization problem. The performance of each echelon is optimized

considering customer demand, production lead-time, and supply lead times throughout

the supply chain.

Panahi et al. [73] considered an open shop scheduling problem that minimizes bi-

objectives, namely makespan and total tardiness. The authors proposed a method based

on multi-objective simulated annealing and ant colony optimization, in order to solve

the given problem. This proposed algorithm is based on the concept of the Pareto

dominancy. It uses an archive with a predefined size to store dominant solutions. A

multi-objective simulated annealing algorithm was used to initialize the first population

of the multi-objective ant colony optimization (MOACO) algorithm. At the end of each

generation of the MOACO, the pheromone trail matrix is updated by elitist agents.

Colson et al. [74] presented a framework for an intelligent supervisory controller that

utilizes ant colony optimization (ACO) methods for alternative energy distributed

generation (AEDG) micro-grid dispatch control. The novelty of this work is the

application of ACO to the rapid micro-grid power management problem given complex

constraints and objectives including environmental, fuel/resource availability, and

economic considerations. Given the compound nature of the multi-objective, multi-

constraint energy management problem for integrated AEDG systems, this paper

develops a constraint satisfaction problem (CSP) algorithm capable of finding Pareto

optimal dispatch solutions.

Airport Ground Service Scheduling (AGSS) problems can be formulated as Vehicle

Routing Problems with Tight time windows, Short travel time and Re-used Vehicles

 48

(VRPTSR). Du et al. [75] presented a model with multiple objectives to minimize the

number of vehicles used, the total start time of serving flights and the total flow time of

vehicles for VRPTSR. An ACO algorithm with MAX-MIN and a Rank-based Ant

System is proposed; an efficient heuristic called Earliest Due Date First (EDD) is

incorporated into ACO as a comparative ant in order to improve the performance of

ACO.

Table 4.1 shows the taxonomy for the previous MOACO algorithms and the proposed

PSACO algorithm.

TABLE 4.1 A taxonomy for MOACO algorithms

MOACO
Algorithm

Year Use of
domination
concept for
pheromone
updating

Use of
density
information
for
pheromone
updating

Single
pheromone
matrix for
all
objectives

Can be
extended to
multiple
objectives
(more than 2
objectives)?

Several
heuristic
matrices

MOAQ [52] 1999 No No No Yes Yes
BicriterionAnt [51] 1993 No No No No Yes
MACS [46] 2003 No No Yes No Yes
MONACO [47] 2003 No No No Yes No
COMPETants [48] 2003 No No Yes No Yes
P-ACO [49] 2004 No No No Yes No
Pinto et al. [67] 2005
Alam et al. [65] 2006 Yes No Yes Yes No

Alaya et al. [66] 2007 No No No Yes No

Bui et al. [68] 2008 Yes No No Yes No
Chaharsooghi et al.
[69]

2008 No No No Yes Yes

Panahi et al. [73] 2008 Yes No Yes Yes No
Colson et al. [74] 2009 No No Yes Yes No
Proposed
PSACO

2009 Yes Yes Yes Yes No

Since recent MOACO algorithms were not available during the period of this research

and the proposed MOACO algorithm (PSACO) was designed independently of the

recent publications, the proposed MOACO algorithm is compared according to the

conclusions discussed in [53]. Thus, P-ACO is selected for comparison with the

proposed multi-objective ant colony optimization algorithm – the Pareto Strength Ant

Colony Optimization (PSACO) algorithm (section 5.6). The following section describes

P-ACO in more detail.

 49

4.3.1 Pareto Ant Colony Optimization (P-ACO)
4.3.1

P-ACO uses several pheromone matrices τm (m = 1, 2, …, M), one for each objective m.

At every iteration, each ant generates a set of weights w = (w1, w2, …, wM) and uses

them to calculate the combined pheromone value from all the objectives.

The state transition rule used by P-ACO is given by eq. 4.8 and gives the probability

with which ant i in node r chooses to move to node s [49, 53],






















otherwiseS

qqifururw
riJus

M

m
mm 0

1

)],(.[]),(.[
)(

maxarg  
 4.8

where m(r, s) is the pheromone level on the edge (r, s) with respect to

objective m,

 (r, s) is the inverse of the distance from node s to the end node,

 Ji(r) is the set of neighbour nodes of r that remain to be visited by ant i

positioned on node r,

  and  are parameters indicating the importance of pheromones and heuristic

information, respectively,

 wm's are random weights selected from [0, 1],

 M is the number of objectives,

 q is a random number uniformly distributed in [0, 1],

 q0 is a parameter (0  q0  1) indicating the relative weighting of exploitation

versus exploration,

 S is a random variable selected according to the probability distribution given

in eq. 4.9.














  



 



otherwise

rJsif
ururw

srsrw

srp i

rJu

M

m
mm

M

m
mm

i

i

,0

)(,
)],(.[]),(.[

)],(.[]),(.[

),(

)(1

1









 4.9

 50

Every time an ant travels an edge (r, s) it performs the local pheromone update in each

pheromone matrix, i.e., for each objective m, as follows:

0.),().1(),(  srsr mm 4.10

where ρ is the pheromone evaporation rate,

 τ0 is the initial pheromone value.

The global updating rule is implemented after the number of allocated turns (NT) using

the best ant and the second-best ant with respect to each of the objectives as in eq. 4.11.

),(.),().1(),(srsrsr mmm   4.11

where


















otherwise

solutionbestondsrif

solutionbestsrif

solutionsbestondandbestsrif

srm

0

sec),(5

),(10

sec),(15

),( 4.12

During the process, the non-dominated solutions found are stored in an external set as

usually done in elitist (second generation) MOGAs.

 51

Algorithm P-ACO [49, 53]

Inputs

α, β, , q0, Initial pheromone level (τ0), Archive

size (NA), Number of ants (N), Maximum cycles (Nc),

Maximum turns or jumps ant can perform within a cycle

(NT), Start node (S), End node (E)

Output

Non-dominated set (A*)

Variables

Cycle no (t), Turns remained (turns_remain), Archive

(At), Population (Pt), Set of ants (Xt), Number of

successful ants in the current cycle (ns)

Initialize

t = 1, turns_remain = NT, At = Φ, Pt = Φ, Xt = Φ, ns =

0; Set pheromone level of each edge to τ0

Repeat

Release a new set of ants Xt(of size N) to the colony

from the start node (S)

Repeat

For each ant ‘a’ in Xt

If ant ‘a’ does not reach to the end node

(E)

If ant’s (‘a’) next set of feasible

nodes is not empty

Move to the next node using eqs. 4.8

and 4.9

Apply the local updating to the

visited edge using eq. 4.10

Store this node in ant’s (‘a’)

visited cities

Else // Ant ‘a’ lost

Start ant ‘a’ again from start node

(S)

 52

Else If ant ‘a’ reaches to the end node (E)

Mark ant ‘a’ as sussessful

Copy the solution produced by ant ‘a’

to Pt

Ant ‘a’ stops exploring

ns = ns + 1

If (ns = N) // All ants in current cycle reached

to (E)

Break // Exit from Repeat … Until

(turnsRemain == 0)

turns_remain = turns_remain - 1

Until (turns_remain == 0)

Apply the global pheromone updating (eqs. 4.11 and

4.12) using the best and second-best solution in Pt

Copy all non-dominated solutions in Pt and At to At+1

If |At+1| > NA

Reduce the size of At+1 to NA by removing crowded

solutions

Remove the current set of ants from the colony

(Ct = Φ)

Set At = Φ and Pt = Φ

t = t + 1

turns_remain = NT

ns = 0

Until (t <= Nc)

Return ANc as A*

 53

4.4 Summary of the Chapter

In this chapter, ant colony optimization has been described and the most commonly

used ACO algorithms the Ant System (AS) and the Ant Colony System (ACS), were

introduced. The chapter then reviewed the existing multi-objective ant colony

optimization algorithms. Finally, P-ACO, the best MOACO algorithm for generating a

good set of solutions in the central part of the Pareto front (compromised solutions) was

described.

 54

5 AUTOMATIC HOSE/PIPE ROUTING IN 3D SPACE USING
THE ACO AND THE PROPOSED ACO ALGORITHMS

 5

The research work reported in this thesis uses ant colony optimization algorithms for

simulation work carried out in finding the optimal layout of automatic hose/pipe

routing. Initially, this chapter explains the simulation of automatic hose/pipe routing in

a 3D CAD model using ant colony optimization. Artificial ants travel from a start point

to an end point on a randomly generated network of points or network of grid points.

For generating these networks, collision free edges must be obtained. In this research,

the C++ library RAPID was used for collision detection and this library needs the

tessellated model of the original CAD model. Section 5.1 introduces the tessellated

format of a CAD model. Next, the collision detection library and its use are discussed in

section 5.2. Next, the steps involved in hose routing with ant colony optimization are

discussed in section 5.3. Then two (proposed) modifications are explained for reducing

the size of the search space (section 5.4) and avoiding the stagnation problem of the ant

colony algorithm (section 5.5). Section 5.6 introduces a new multi-objective

optimization algorithm – the Pareto Strength Ant Colony Optimization algorithm

(PSACO). Section 5.7 explains the multi-objective hose routing problem and how P-

ACO and PSACO are applied to this problem. Finally, multi-colony ant systems are

proposed for (simultaneous) multi-hose routing in section 5.8.

Initially, an ant colony optimization algorithm (described in Chapter 4) is developed for

minimizing the total length of pipes and avoiding the obstacles. The proposed ant

colony optimization algorithm is tested on randomly generated networks of points and

networks of grid points located in the free space of 3D CAD models. Other ant colony

algorithms proposed in this chapter are tested on randomly generated networks. For

generating these networks, it is required to test whether a path between two points is

collision free. For this, the tessellated model of the original CAD model was obtained

and passed to the C++ collision detection library – RAPID.

 55

5.1 The Tessellated Format

The STL (STereoLithography) format or tessellated format [11] is an ASCII or binary

file used in manufacturing to represent 3D models. It is a list of triangular planes that

describes a computer generated solid model. This is the standard input for most

prototyping machines. The STL file defines an object’s surfaces as a set of adjacent

triangles as shown in Fig. 5.1. This file basically contains the X, Y and Z Cartesian

coordinates of each vertex of the triangles, as well as the coordinates of the vectors

normal to the triangles. With the tessellated format, each edge is shared only by two

triangles. The tessellated model is an approximation to the real model and the accuracy

of the tessellated model depends on the number of triangles used. In most CAD

packages the number of triangles generated for the tessellated model can be controlled.

Models used in this research were generated using the CAD package Pro/Engineer and

its programming toolkit Pro/Toolkit.

Original CAD Model Tessellated Model

Fig. 5.1 3D Model generated in tessellated format

Standard collision detection software (such as RAPID) requires polygonal models

composed entirely of triangles that are an approximated model of the original model.

Thus, the tessellated representation of a 3D model can be passed to the collision

detection program. Also, most CAD software support the tessellated format.

5.2 Collision Detection Library – RAPID

RAPID (Robust and Accurate Polygon Interface Detection) [59] is a C++ library

developed at the Department of Computer Science, University of North Carolina, for

 56

interference detection (or collision detection) of large environments composed of

unstructured models.

 It is applicable to polygon soups [59] - models that contain no adjacency

information and obey no topological constraints. The models may contain

cracks, holes, self-intersections, and non-generic (e.g., coplanar and collinear)

configurations.

 It is numerically robust - the algorithm is not subject to conditioning problems

and requires no special handling of non-generic cases (such as parallel faces).

 The RAPID library is free for non-commercial use. It has a very simple user

interface: the user needs to be familiar with only about five function calls.

RAPID accepts only polygonal models composed entirely of triangles, but does not

require the model to have any particular structure. For example, some collision

detection systems require the shapes to be well-formed solids – the surfaces must be

“closed” so that there are a well-defined inside and outside.

5.2.1 Basic Usage of RAPID

To use the RAPID library [60] in a C++ project, one must include the header file

“RAPID.H” that includes all necessary structures and functions. In addition, the

following header files need to be included in the C++ project: MATVEC.H,

MOMENTS.H, OBB.H, OVERLAP.H, RAPID_PRIVATE.H and

RAPID_VERSION.H.

In RAPID, a model is a collection of triangles; each triangle has three vertices; each

vertex has three coordinates. These coordinates are given with respect to the “model

coordinate system” or within the “model space”.

A model’s placement in world space is defined as the placement of the model’s

coordinate axes within the world space, which are specified as a rotation, R, followed by

a translation, T. Given the placement of a model with R and T, the location in world

space of a vertex of the model can be determined as follows:

 57

 TRXX mw  5.1

where Xm is a point in the model coordinate system, and Xw is the world coordinate of

the same point.

The basic function of RAPID is to indicate whether two objects m1 and m2 are in

physical contact in world space. The corresponding code is:

int RAPID_Collide (

double R1[3][3], double T1[3], RAPID_model* m1,

 double R2[3][3], double T2[3], RAPID_model* m2,

int flag)

Here R1 and T1 represent the orientation (rotation and translation) of model m1 in the

world space and R2 and T2 the orientation of model m2 in the world space. This

function returns “RAPID_OK”, which is 0, on success. A non-zero value indicates that

the call failed, and the returned value itself is the error code. After calling this function,

the number of pair-wise intersecting triangles can be found in the global variable

“RAPID_num_contacts”. If this variable is 0, the models m1 and m2 are not touching. If

it is non-zero, they are touching. The variable ‘flag’ can be set as

“RAPID_FIRST_CONTACT” or “RAPID_ALL_CONTACTS”. If it is set as

“RAPID_FIRST_CONTACT”, the collide routine searches for contacts until it locates

the first one. In the case of “RAPID_ALL_CONTACTS”, the function checks for all

contacts which is useful for complete knowledge about which triangles collide with

others.

RAPID acquires a model by adding its triangles to a RAPID_model object. For

example, the following code adds a pyramid to the RAPID_model ‘m’. Notice that the

square base of the pyramid must be built as two triangles.

double p0[3] = {0.0, 0.0, 1.0}; // top of pyramid

double p1[3] = {-.5, -.5, 0.0); // SW corner

double p2[3] = {+.5, -.5, 0.0); // SE corner

 58

double p3[3] = {+.5, +.5, 0.0); // NE corner

double p4[3] = {-.5, +.5, 0.0); // NW corner

RAPID_model* m = new RAPID_model;

m->BeginModel();

m->AddTri(p1, p2, p0, 0); // south face

m->AddTri(p2, p3, p0, 1); // east face

m->AddTri(p3, p4, p0, 2); // north face

m->AddTri(p4, p1, p0, 3); // west face

m->AddTri(p1, p4, p2, 4); // bottom face

m->AddTri(p2, p4, p3, 5); // bottom face

m->EndModel();

Notice that each triangle is given an id number, as it is added to RAPID's object. When

RAPID reports contacts, it is these id numbers that are inserted into the contact_pair

structures.

The m->BeginModel() tells RAPID to prepare the object ‘m’ for the addition of

triangles. Each subsequent m->AddTri(...) adds a triangle to the object ‘m’.

RAPID stores a copy of the triangles in ‘m’. When m->EndModel() is called,

RAPID knows that no further triangles will be added, and it then performs any

necessary pre-processing.

The RAPID_model object can be destroyed with the usual C++ syntax,

delete m1;

delete m2;

5.3 Hose Routing with Ant Colony Optimization
5.3

Hose routing with the ant colony optimization algorithm is implemented by the

following steps.

1. Generate the tessellated representation of the original 3D model.

 59

2. Generate a network of valid paths (edges) using randomly generated points

or grid points in the free space, from the start point to the end point.

3. Obtain the best layout of hoses (XG) between the commodities (start and end

point pairs) using the ant colony optimization algorithm.

4. Refine the solution (XG) obtained using the entire search space.

In the first step, the tessellated representation of the obstacles is obtained as a text file

from the CAD package. In the second step, this text file is passed to a program which

incorporates the collision detection library RAPID. The following inputs are also

supplied to this program:

 world size of the paths to be explored, given by the maximum and minimum of

each axis coordinate - Xmin, Xmax, Ymin, Ymax, Zmin, and Zmax,

 coordinates of the start (S) and the end (E) points,

 number of random points or grid points

 radius (r) of the hose pipes,

 text file containing the tessellated model of the original 3D model.

This program then generates a network of valid paths from randomly generated or grid

points from the world, and the start point and the end point (See Fig. 5.2). When

connecting two points, the program checks, with the aid of the C++ library, RAPID, that

the path between two points is collision free (the axis of the hose cylinder lies on the

line connecting the two points). For simplicity, a rectangular hexahedron is used that is

centred on the line segment between the two points such that the cylindrical hose could

be laid within it. This network data are stored in a text file for use in the next step.

 60

Fig. 5.2 A random point network generated in a CAD model

During the third step, the best layout of hoses (XG) between the start and the end points

is obtained using one of the proposed algorithms discussed in Chapter 4.

In the fourth step, the program refines the solution XG (obtained using the entire search

space). For this, the algorithm generates a network of random points near the

neighbourhood of solution XG and searches a better solution using again ant colony

optimization.

5.4 The Proposed Reduced Sized Search Space for Ant Colony Optimization
5.4

A new modification of the Ant System (MAS) is introduced to reduce the size of the

search space of the ant colony algorithms. This modification works very well when the

problem becomes more complicated, i.e., the number of edges is increased.

The motivation of this modification is to reduce the size of the search space while

generating the paths to the problem. For this, the algorithm tries to reduce the number of

possible edges that need to be explored during each turn.

In ant colony optimization Ji(r) (see eq. 4.1) is the set of neighbour nodes of r that

remain to be visited by ant i positioned on node r. This list may include some nodes for

which, if ant i were to visit them, the travel length would be greater than the current best

length (or the quality would be less than the current best quality) of the best solution

 61

found so far. The proposed modification throws out these unwanted nodes from Ji(r).

Assume that Lc is the current best length found by MAS and Li is the distance travelled

up to node r by ant i. Assume also that x is a node connected to node r that has not been

visited by ant i and the distance between nodes x and r is Lx. In MAS, the contender

node list Ji
*(r) is obtained as follows:

  cxii LLLxrJ )(* 5.2

In standard ant colony optimization, there is a possibility that ants can choose a node x

with Lk + Lx  Lc which increases the search space and reinforces pheromones on

unwanted edges.

5.5 The Proposed Explorer Ants for Avoiding Stagnation (N_MAS)
5.5

Stagnation [58] occurs when a network reaches its convergence (or equilibrium) state;

an optimal (local) path p0 is chosen by all the ants and this recursively increases an ant’s

preference for p0. In order to avoid this situation, the following two types of ants are

introduced into the algorithm:

a) Explorers – these ants negatively smell the high pheromone edges, i.e., these

ants are attracted towards low pheromone edges and hence search for new paths.

b) Followers – these ants tends to choose high pheromone edges, i.e., these ants

follow the paths found by previous ants.

In order for the proposed MAS algorithm to avoid the stagnation problem, it is

necessary to introduce a new state transition rule for explorers. Thus, the state transition

rule is changed for MAS as follows:










 


otherwise

rJsif
urur

srsr

srp
i

rJu
i

i

,0

)(,
)],()].[,(/1[

)],()].[,(/1[

),(
)(








 5.3

 62

where (r, s), (r, s), Ji(r) are defined as in eq. 4.1 and  is a parameter which

determines the relative importance of pheromone versus distance ( > 0).

Notice that, the reciprocals of pheromone values are used in eq. 5.3 for explorer ants. As

a result, these ants are attracted towards low pheromone edges. The objective of these

ants (explorers) is to try to explore new paths when the algorithm exhibits a stagnated

behaviour.

For the second type of ants (followers), the state transition rule remains unchanged as

given in the eq. 4.1.

 63

5.6 The Proposed MOACO Algorithm - Pareto Strength Ant Colony
Optimization (PSACO)

5.6

In this thesis, a new Pareto strength ant colony optimization algorithm (PSACO) is

proposed independently from [65, 66, 67]. The algorithm updates the pheromones based

on the domination concept introduced in SPEA2 [55]. A single pheromone matrix is

used for all of the objectives in the problem which is in contrast to P-ACO [49, 53].

Further, this algorithm is based on the classical ant colony algorithm AS [27, 28].

Most of the previous MOACO algorithms (except recently published) have not used the

domination concept in Pareto optimization to update the pheromones. For example, the

best and the second-best ants of the each objective are used for updating the pheromone

matrix corresponding to each objective in P-ACO. Further, this algorithm needs more

memory as the number of objectives is increased as it needs a separate pheromone

matrix for each of the objectives. Another problem with most of the earlier approaches

is that they were developed for bi-criteria optimization problems and cannot be

extended to any number of objectives. For example, MACS uses a single pheromone

matrix and two heuristic functions for bi-criteria optimization and the pseudo-random

proportional rule of MACS cannot be extended to multiple objectives.

In PSACO, when an ant selects the next move, it uses the random propositional rule as

in AS (Ant System) as defined in eq. 4.1. The major change of this algorithm is in the

pheromone updating procedure. In a multi-objective problem, one cannot evaluate the

quality of a solution according to just one objective as all the objectives are equally

important. The current state of the art in multi-objective optimization methods for

handling this type of problems is the domination concept: when assigning a quality

measurement to a solution the number of individual solutions that it dominates should

be considered together with the number of individual solutions by which it is

dominated. In addition, a multi-objective optimization algorithm must take into account

the diversity of the solutions, i.e., the final solutions produced by the algorithm must

represent the whole Pareto front.

As in SPEA2 [55], PSACO maintains two solution sets: population Pt (of size NP) and

archive At (of size NA) for each cycle t. Population Pt contains the set of solutions

 64

produced by the current set of ants (current cycle). Archive At is an external set that

includes a fixed number of solutions (NA) containing the best non-dominated solutions

that have been found from the beginning of a simulation run. Whenever the number of

non-dominated individuals is less than NA, the archive At is filled up by current best

dominated solutions.

When evaluating the quality of a solution, PSACO takes into account both dominated

and dominating solutions. More specifically, each individual solution i in the archive

and the population is assigned a strength value S(i) [55], representing the number of

solutions it dominates (see eq. 5.7):

  jiAPjjiS tt )(5.7

where |.| denotes the cardinality of a set and the symbol i  j indicates that solution i

dominates solution j. On the basis of the S values, the raw fitness R(i) of an individual

solution i is calculated as in eq. 5.8:

 




ij

APj tt

jSiR



)()(
5.8

It is important to note that R(i) = 0 corresponds to a non-dominated solution while a

high value of R(i) means that i is dominated by many solutions (which in turn dominate

many solutions). Furthermore, the raw fitness R(i) needs to be minimized.

In addition to the raw fitness value, additional density information is incorporated to

discriminate between solutions having identical raw fitness values. The density

information is calculated using the k-th nearest neighbour method [56] as in eq. 5.9.

2

1
)(




k

i

iD


 5.9

 65

where σi
k is the distance between the solution i and its k-th nearest neighbour in the

population Pt or the archive At. Usually k is equal to the square root of the sample size

(i.e. AP NN ). In the denominator, two is added to ensure that 0 < D(i) < 1.

The quality of a solution i in PSACO is evaluated as in eq. 5.10

)()(

1
)(

iDiR
iQ


 5.10

This Q(i) value of a solution is used for the pheromone updating of eqs. 4.2 and 4.3 in

AS.

The next important aspect in PSACO is the selection of solutions for the next cycle’s

archive At+1. The algorithm uses the same method adopted in SPEA2 [56]. The first step

is to copy all non-dominated solutions (i.e., those which have quality Q(i) more than

one) from the current archive At and the current population Pt to the next cycle’s archive

At+1:

 }1)({1  iQAPiA ttt 5.13

If the non-dominated front fits exactly into the archive (|At+1| = NA) the filling up of the

archive is completed. Otherwise, there can be two situations: |At+1| < NA or |At+1| > NA.

In the first case the best NA - |At+1| dominated solutions (with highest Q(i)) from At and

Pt) are copied into the new archive. In the second case, solutions are iteratively

removed from At+1 until |At+1| = NA. A solution with minimum distance to another

solution is chosen for removal at each stage. If there are several solutions with

minimum distance the tie is broken by considering the second smallest distances and so

forth.

 66

Proposed Algorithm - PSACO

Inputs
α, β, , Initial pheromone level (τ0), Archive size
(NA), Number of ants (N), Maximum cycles (Nc), Maximum
turns or jumps ant can perform within a cycle (NT),
Start node (S), End node (E)

Output
Non-dominated set (A*)

Variables
Cycle no (t), Turns remained (turns_remain), Archive
(At), Population (Pt), Set of ants (Xt), Number of
successful ants in the current cycle (ns)

Initialize
t = 1, turns_remain = NT, At = Φ, Pt = Φ, Xt = Φ, ns =
0; Set pheromone level of each edge to τ0

Repeat
Release a new set of ants Xt(of size N) to the colony
from the start node (S)
Repeat

For each ant ‘a’ in Xt
If ant ‘a’ does not reach to the end node
(E)

If ant’s (‘a’) next set of feasible
nodes is not empty

Move to the next node using eq.
4.1
Store this node in ant’s (‘a’)
visited cities

Else // Ant ‘a’ lost
Start ant ‘a’ again from start
node (S)

Else If ant ‘a’ reaches to the end node (E)
Mark ant ‘a’ as successful
Copy the solution produced by ant ‘a’
to Pt
Ant ‘a’ stops exploring
ns = ns + 1

If (ns = N) // All ants in current cycle reached
to (E)

Break // Exit from Repeat … Until
(turnsRemain == 0)

turns_remain = turns_remain - 1
Until (turns_remain == 0)
For each solution ‘i’ in Pt or At

Compute R(i), D(i) and Q(i) using eqs. 5.8, 5.9
and 5.10 respectively

Apply the global pheromone updating rule (eqs. 4.2 and
4.3) using the quality Q(i) of each solution ‘i’ in Pt

 67

Copy all non-dominated solutions in Pt and At to At+1
(eq. 5.13)
If |At+1| < NA

Copy the best NA - |At+1| solutions in Pt and At to
At+1

Else
Reduce the size of At+1 to NA by removing crowded
solutions

Remove the current set of ants from the colony (Ct =
Φ)
Set At = Φ and Pt = Φ
t = t + 1
turns_remain = NT
ns = 0

Until (t <= Nc)
Return ANc as A*

The following section describes a multi-objective optimization problem that arises in

hose/pipe routing with three objective functions with the addition of a new term to the

random proportional rule and the pseudo random proportional rule of P-ACO and

PSACO to fit the multi-objective problem.

5.7 Multi-Objective Hose Routing with MOACO
5.7

Initially an ant colony algorithm was proposed for single hose routing in 3D space and

was published in [12, 13]. The search space is defined by the set of grid points as well

as a set of random points in the free space defined in the CAD model. This problem is

converted into finding the shortest path between two points (start and end) in a network

generated by grid points or random points in the free space. There are many algorithms

(e.g. A* algorithm [61], Dijkstra's algorithm [5]) that can be used to solve this problem.

The major problem with the existing conventional path finding algorithms is that they

cannot be extended to multiple objectives problems. For such type of problems,

unconventional population-based algorithms such as ant colony algorithms or genetic

algorithms produce favourable results. The aim was to extend the ant colony algorithm

introduced in [12, 13] and summarized in this thesis to deal with multi-objective

problems. This type of problem has a wide range of applications such as hose/pipe

harness, electrical and hydraulic wiring.

 68

The proposed MOACO algorithms attempted to optimize the following objectives in

automatic hose/pipe routing:

1. Total length of the hoses between the start and the end nodes

2. The number of bends

3. The angles of the bends (the algorithm tries to keep the angle of each bend close

to those in a pre-specified catalogue of angles of bends).

This scenario can be modelled as follows. Let H = (V, E) be an edge-weighted

undirected graph representing a network in which the nodes represent terminating nodes

(start or end nodes) or intermediate nodes. Let S and E be the start and end nodes,

respectively. Then the algorithm needs to find a path (P) such that

))(min()min(),(min

1



BN

i
iB andNL  5.17

where L is the length of path P

 NB is the number of bends in path P

 i’s are the angles between adjacent edges (see Fig. 5.3)

 () is defined as follows:

  180/,,180/,180/min)(21 m   5.18

 where 1, 2, …, m are the pre-specified catalogue angles. Each component

is divided by 180 for normalizing the function and m is the number of

catalogue angles.

Fig. 5.3 A path between start (S) and end (E) nodes with bend angles

Then the multi-objective minimization problem can be stated as follows:

 69

Find a path P in H between S and E such that

B

N

i
i

B

N
f

N
f

L

SE
f

Min

B








1

3

2

1

)(

1
1

1



5.19

Function f1 deals with the minimization of the total length of the hoses. SE is the length

of the straight line joining the start and end nodes. This is the absolute minimum length

without considering the obstacles and is used to normalize the total length of the hoses

(L). Function f2 minimizes the number of bends (NB). The term (1 – 1/NB) is used

instead of NB for normalization such that the term reaches 0 when there is only one bend

and tends to unity as the number of bends increases. Here it is assumed that there is no

straight path between the start and end nodes. Function f3 minimizes the sum of the

absolute differences between angles of bends (i's) and the closest angle from the pre-

specified catalogue of angles of bends (see Fig. 5.3). (i) is defined as in eq. 5.18.

When defining (i), each component is divided by 180 to normalize the function as the

maximum absolute difference of  and  is 1800.

5.7.1 Modified Random-Proportional Rule

Since the experiments carried-out in this thesis for multi-objective optimization are

based on networks created from randomly generated points, the angles between two

connected edges are also not known and random. Therefore, angles between two

connected edges are not from the given catalogue of angles. As a result of this, the

algorithm must select an angle which is closer to one of the catalogue angles. For this, a

new term is added as the second heuristic function to the random proportional rule (eq.

4.1) and the pseudo-random proportional rule (eq. 4.4) for selecting edges with angles

which are closer to one of the pre-specified catalogue angles as follows:

 70

Random proportional rule:










 


otherwise

rJsif
srurur

srsrsr

srp
i

rJu
i

i

,0

)(,
]),,(1[)],(.[)],([

]),,(1[)],(.[)],([

),(
)(








 5.22

Pseudo-random proportional rule:

  











)(exp

)(exp]),,(1[)],(.[)],([
)(0

maxarg

lorationotherwiseS

loitationqqifsrurur
riJus

 
 5.23

In these formulae, the new term (r, s,) is defined as in eq. 5.18 and  is the angle

between the edge (r, s) and the edge visited immediately before by ant i.  is a parameter

that indicates the relative importance of how close the angle  is to one of the angles in

the pre-specified catalogue of angles of bends. If  is set to zero the ant calculates the

probability based on the problem heuristic (distance to the end node E) and the

pheromones laid by previous ants, just like in the original ant system. As  is increased,

the probability of choosing an edge that makes an angle (with the edge visited

immediately before) that is closer to an angle in the pre-specified catalogue of angles of

bends is increased.

The set Ji(r), the set of neighbour nodes of r that remain to be visited by ant i, was also

modified to suit our problem. First the algorithm filters neighbour nodes (say x) of r that

have not been visited by ant i such that the edge ‘rx’ makes an angle (with the edge

visited immediately before by ant i) that differs from one of the pre-specified catalogue

angles of bends by less than a certain small angle (e.g. 50). This set is defined as

follows:

   ),,()()1(xrxrJ i 5.24

where (r, x, ) is defined as in eq. 5.18 and  is the angle between the edge (r, x) and

edge visited immediately before by ant i.

 71

If the set Ji
(1)(r) is empty, the algorithms explore the other neighbouring nodes of r. i.e.,

   ),,()()2(xrxrJ i 5.25

Here  is a small value between 0 and 1. For example, if the designer selects the

maximum tolerance as 5 degrees,  is set as 5/180.

5.8 The Proposed Multi-Colony Ant Systems for Multi-Hose Routing
5.8

Two types of multi-colony ant systems (MCAS-MHR-1 and MCAS-MHR-2) are

proposed for multi-hose routing; both are extensions to the ant system (AS). In MCAS-

MHR-1, the task of each colony is to search for an optimal path between two points

such that it shares other colonies’ optimal paths (bundling) as much as possible. MCAS-

MHR-1 uses only a single pheromone matrix for all the colonies. Pheromone updating

is based on a weighted sum of total path lengths and shared path lengths between the

paths. MCAS-MHR-2 is very similar to MCAS-MHR-1, but it uses a separate

pheromone matrix for each colony and adds an additional term to the random

proportional rule defined in the original ant system (AS) so that ants prefer to select

paths that have been used by not only the same colony but also by the ants of other

colonies.

The combinatorial optimization version of this problem consists of finding the optimum

set of paths between the commodities and maximising the shared (or common) lengths

of these paths. i.e., solution needs to be found such that

   
  


n

c

n

c

n

cic
ccc PPlandPl

1 1 1,

)(max)(min 5.26

where Pc and Pc (c  c) are two paths between (Sc, Ec) and (Sc, Ec) respectively,

 l() represents the length of a path,

 Pc  Pc represents common edges (or shared edges) between Pc and Pc.

 72

The multi-colony ant systems proposed in this thesis use n colonies to explore paths

between n commodities. Each ant in a colony c explores paths between the start node Sc

and the end node Ec by cooperating with other ants in colony c. While the ants of colony

c are walking along edges, they try to maximize the use of common edges that are being

used by ants of other colonies. As there is no direct communication between ants, this is

obtained by the pheromone communication system of the proposed ant systems.

The following sections (sections 5.8.1 and 5.8.2) introduce the two versions of multi-

colony ant systems MCAS-MHR-1 and MCAS-MHR-2 proposed for multi-hose

Routing.

5.8.1 MCAS-MHR-1 with Single Pheromone Matrix

The problem in which we are interested is to identify the paths between the

commodities with maximum possible length of common edges. Therefore, in the

proposed algorithm, the common edges of the paths receive a higher amount of

pheromone when pheromone updating occurs. As a result, when an ant of a later cycle

encounters a shared edge, it has a higher probability of choosing it than choosing a non-

shared edge.

In this approach a single pheromone matrix is used for all the colonies. When an ant of

a colony is selecting the next move, it uses the random propositional rule as in the ant

system defined in eq. 4.1. However, the most noticeable change to this algorithm is the

pheromone updating procedure. The implementation of the pheromone updating of a

path Pck produced by an ant k of colony c is based on

 the length of the path Pck.

 the total shared length of the path Pck with each path Pck produced by each

successful ant k of each colony c (c  c and c = 1, 2, …, n).

 73

The global updating rule is implemented as follows. Ants which were able to complete

their tour within the number of allocated turns (NT) allow the updating of pheromone

levels of their visited edges according to the following equation:


 


n

c

m

k
ck

c

srsrsr
1 1

),(),()1(),( 5.28

where



 


otherwise

ccolonyofkantbydonetoursrifQ
sr ck

ck ,0

),(,
),( 5.29

where (0 <  < 1) is a pheromone decay parameter, n is number of colonies (or number

of commodities), mc is the number of ants in colony c that were able to complete their

tours within the stipulated number of turns NT and Qck is the pheromone contribution of

edges on path (Pck) produced by ant k of colony c and is defined as follows:

ck

ck

ck
ck L

s
w

L
wQ *

1
* 21  5.30

where Lck is the length of the path Pck and sck is the total shared length of path Pck with

paths produced by ants of other colonies (i.e., other than colony c) which is defined as

follows:



 


n

cc
c

m

k
kcckck

c

PPls

'
1' 1'

''

'

)(5.31

where l() is the length of the path, Pck  P ck represents common edges (or shared

edges) between Pck and Pck, mc’ is the number of ants in colony c’ that were able to

complete their tours within the stipulated number of turns NT, w1 and w2 (w1 + w2 = 1)

are two weights that measure the importance of the length of path Pck and the total

shared length sck, respectively.

 74

In eq. 5.30, the weighted sum approach is used for pheromone updating and hence this

algorithm uses weighted sum multi-objective optimization with the following

optimizing criteria:

1. Minimizing the length of each path

2. For each path, maximizing the path length shared with other paths produced by

ants in other colonies.

It is noticeable in eq. 5.28 that shared edges obtain more pheromones than non-shared

edges. For example, consider the following two paths P1 (S1ABE1) and P2

(S2ABE2) (See Fig. 5.4).

Fig. 5.4 Demonstration of pheromone strengths of shared and non-shared edges

For the simplicity of calculation, let us assume that there is only one ant in each colony

c1 and c2 (the ant from colony c1 travels from S1 to E1 and the ant from colony c2 travels

from S2 to E2). Then the pheromone contribution (Q11) on path P1 (S1ABE1) and

the pheromone contribution (Q21) on path P2 (S2ABE2) are calculated according

to eq. 5.30 with w1 = 0.99 and w2 = 0.01 as follows:

1275.0

8

3
*01.0

8

1
*99.011 F (with L11 = 2+3+3 = 8 and s11 = 3) 5.32

0850.0

12

3
*01.0

12

1
*99.021 F (with L21 = 4+3+5 = 12 and s21 = 3) 5.33

S1

S2

E1

E2

A B

2

3

3

4 5

Δτ (A, B) = 0.2125

Δτ (S2, A) = 0.0850 Δτ (B, E2) = 0.0850

Δτ (S1, A) = 0.1275 Δτ (B, E1) = 0.1275

 75

From eq. 5.28, the shared edge (AB) of paths P1 and P2 obtains combined pheromones

from both paths P1 and P2 that is calculated as 0.1275 + 0.085 = 0.2125, while the non-

shared edges of paths P1 and P2 receive 0.1275 and 0.0850 as pheromone values,

respectively.

5.8.2 MCAS-MHR-2 with Multiple Pheromone Matrices

Unlike MACS-MHR-1, this algorithm uses a separate pheromone matrix for each

colony (or commodity). This algorithm is similar to the multi-colony ant algorithm for

the edge disjoint path problem described in [57] where the algorithm attempted to find

disjoint paths between the commodities (the opposite of our approach). In this approach,

an ant that encounters a pheromone trail left by an ant of the same type still has a high

probability of following it. However, when it encounters an edge that was shared by

other paths, it is more attracted to that edge than to an edge of non-shared paths.

To implement the ants’ attraction towards foreign pheromones the random propositional

rule defined in eq. 4.1 has been modified appropriately as follows:










 


otherwise

rJsif
srurur

srsrsr

srp
k

rJu
cc

cc

ck
k

,0

)(,
)],([)],(.[)],([

)],([)],(.[)],([

),(
)(








 5.35

where c(r, s) is the pheromone trail left by colony c on the edge (r, s),

 (r, s) is the inverse of the distance from node s to the end node (Ec) of

colony c,

 Jk(r) is the set of neighbour nodes of r that remain to be visited by ant k

positioned on node r,

  and  are parameters indicating the importance of pheromones and heuristic

information, respectively,

 c(r, s) represents the amount of pheromone trail not belonging to colony c on

the edge (r, s) and is known as foreign pheromone, and is defined as the sum of

the pheromone trails left by all other colonies on the edge (r, s), i.e.,

 76






n

cc
c

cc srsr

'
1'

'),(),( 5.36

  is a parameter that indicates the relative importance of foreign pheromone

trails left by other colonies. If  is set to zero, the ant calculates the probability

based on the problem heuristic and the pheromones of its own colony in the

manner identical to the original ant system (see eq. 4.1). If  is increased, the

probability of choosing an edge with a large amount of foreign pheromone trail

is also increased and thus the ant tends to select the edges shared with the

previous paths.

The global updating rule is implemented as follows. The ants which were able to

complete their tour within the number of allocated turns (NT) allow the updating of

pheromone levels of their visited edges according to:





cm

k
ckcc srsrsr

1

),(),()1(),( 5.38

where mc is the number of ants in colony c that were able to complete their tours within

the stipulated number of turns NT and ck(r, s) is defined as in eqs. 5.29, 5.30 and 5.31.

In the ant colony algorithms presented above, it is necessary to compare two paths

produced by the same colony and compare the entire solution produced by all colonies

in the current cycle with the previously generated solution. The following methods are

used for comparing them.

A. Finding the best path of a colony in a cycle

The pheromone contribution Fck defined in eq. 5.30 is used to compare two paths in the

same colony, i.e., Qck > Qck means that ant k produces a better path than ant k.

 77

B. Updating the total solution

Once the best path for each colony c is identified, it is necessary to find whether or not

this solution is an improvement over the best solution produced in the previous cycles.

To do this, two metrics, strength_1 and strength_2, are defined for a solution {Pj | j = 1,

2, …, n} of the multi-path problem.

strength_1 is the reciprocal of the total length of the solution:

L
strength_1

1
 5.39

strength_2 is the weighted measure of the total length and total shared distance:

L

s
w

L
wstrength_2 *

1
* 21  5.40

where
j

n

j
j PtheoflengthlPlL 



,)(
1








n

i

n

ij
j

ji PPls
1 2

)(

 w1 and w2 (w1 + w2 = 1) are two weights that measure the importance of the

total length L and shared length s, respectively.

The solution produced by a cycle is considered to be better than the previous solution if

both strength_1 and strength_2 have improved or if one of the criteria has improved

whilst the other criterion has remained unchanged.

5.9 Summary of the Chapter

In this chapter, the tessellated model of a 3D CAD model and the C++ collision

detection library RAPID have been described. It was then explained how they are used

to check for edge collision with the given CAD model. A description was given of how

 78

the tessellated model, the RAPID library and ant colony optimization are used in hose

routing.

Fig. 5.5 shows the various steps involved in automatic hose/pipe routing suggested in

this thesis.

Fig. 5.5 Steps involved in automatic hose/pipe routing in a 3D CAD model using ACO

Next two modifications were introduced into ant colony optimization for reducing the

size of the search space while generating solutions to a given problem and for avoiding

the stagnation problem. Then this chapter briefly reviewed the existing multi-objective

ant colony optimization algorithms. In addition, a taxonomy of existing algorithms and

the proposed MOACO algorithm (PSACO) was presented. P-ACO, the best MOACO

 79

algorithm for generating a good set of solutions in the central part of the Pareto front

(compromised solutions) and the proposed algorithm (PSACO) for MOACO were

described in detail. How these two algorithms (P-ACO and PSACO) can be applied to a

multi-objective hose routing optimization problem was explained. Finally, two multi-

colony ant systems were proposed for simultaneous multi-hose routing.

The algorithms presented in this chapter have been successfully applied to obtain the

results of this thesis. Initially ant colony optimization algorithms have been applied to

single-objective optimization (minimizing the length of the path) in section 6.1. Results

of the proposed methods for reducing the size of the search space and avoiding the

stagnation problem were presented in sections 6.2 and 6.3, respectively. Results of the

proposed Pareto strength ant colony optimization (PSACO) and P-ACO were presented

in section 6.4. Finally in section 6.5, results of the proposed multi-hose routing

algorithms were presented.

 80

6 RESULTS AND DISCUSSION
6

This chapter shows the experimental results of the simulations carried out for the

automatic hose/pipe routing of 3D models using ant colony optimization. In section 6.1,

the results of the preliminary experiments are presented and the strengths and

weaknesses of the Ant System (AS) on grid-based and random-based networks are

discussed. In section 6.2, the results of the reduced size search space for ant colony

optimization (MAS) are presented and discussed. The results of the introduction of

explorer ants to solve the stagnation problem of the ant colony optimization algorithm

are presented and discussed in section 6.3. In section 6.4, the results of the multi-

objective ant colony optimization algorithm (PSACO) proposed in section 5.6 are

presented and discussed. In this section, the performance of PSACO is compared with

the current best Pareto ant colony optimization algorithm (P-ACO), using the

illustrative representation methods for the non-dominated sets (described in section

3.2), the performance comparison methods for two multi-objective optimization

algorithms (described in section 3.3), and the methods for selecting a solution from the

non-dominated solutions (described in section 3.4). Further, computation times for the

two algorithms (PSACO and P-ACO) are compared and refinement of the obtained

solution is discussed in section 6.4. Finally, results obtained by the proposed multi-

colony ant systems (see section 5.8) for multi-hose routing are discussed in section 6.5.

Initially, the Ant System (AS) was implemented for grid-based networks and random-

based networks and their strengths and weaknesses were investigated empirically.

Preliminary experiments were restricted to a single objective function (finding the

shortest path from start to goal) and avoiding the obstacles. The CAD software package

Pro/Engineer was used for generating the 3D models and its programming toolkit

Pro/Toolkit was used for obtaining the tessellated format (STL format) of the generated

model. The C++ library, RAPID, was used to generate a network of paths which are

collision-free with objects of the CAD model. The same procedure was followed for the

generation of the random networks of collision-free paths for the other experiments

carried-out in this thesis.

 81

6.1 Results Obtained for Grid-Based and Random-Based Ant Systems
6.1

Initially, a feasibility study was carried out for the application of the Ant System to

hose/pipe routing. The purpose of this experiment was to optimize a single objective

function (total length of the pipes) avoiding collision of the pipes with objects in the

CAD model.

The parameter settings for the ant systems were:

Number of ants (N) = 10

Initial pheromone level for each edge (0) = 100

Maximum number of turns an ant can perform within a cycle (NT) = 100

Maximum number of cycles (Nc) = 100

 = 1,  = 5 and  = 0.01

These parameter settings were selected based on earlier research carried-out for ant

colony optimization [30, 31], where it was found that these parameter settings achieve

good results in general.

All the simulations were conducted on a Pentium IV PC (Processor speed = 3.0 GHz,

Memory = 512 MB) in the Microsoft Windows XP environment using Microsoft Visual

C++ (Version 6.0).

The performance of the algorithms was defined by the time (seconds) taken by a run

and the length of the optimal path obtained.

The algorithms were tested on 5 models and for each model, the grid-based version was

tested on 3 different step sizes (increment values of x, y and z coordinates) 10, 25 and

50. The random-based version was tested for 100, 150, 200 and 500 random points. All

the simulations were carried out for 100 cycles and averaged over 10 trials varying the

random seed across the trials. In the figures below, the best paths obtained over 10 trials

are shown for each of the two versions.

 82

6.1.1 Model 1 - Hose routing in an environment with a hole in a cube

The proposed ant colony algorithm was tested in an environment consisting of a cube

containing a hole (see Fig. 6.1). Hose segments needed to be laid inside this hole in

order to obtain the optimal path.

Table 6.1 Comparison of grid-based and random-based - hole in a cube model

 Grid-based Random-based
Step Size 10 25 50 N/A N/A N/A N/A
No of points 18081 1377 225 100 150 200 500
Avg. Length 244.32 251.66 378.80 292.70 299.00 262.49 245.22
St. Dev. (Len.) 4.21 4.35 11.24 51.20 54.00 17.51 3.40
Best (Length) 237.79 247.23 367.96 256.80 257.70 241.32 238.85
Avg. Time (s) 993.70 49.40 3.50 8.90 21.40 32.00 220.10

(a) Grid-based (b) Random-based

Fig. 6.1 Model 1: Hole in a cube
{Xmin = -250, Xmax = 150, Ymin = -50,Ymax = 150, Zmin = -200,

Zmax = 0; S = (-200, 150, -100); E = (-100, -50, -150); Radius = 5}

Table 6.1 shows the comparison of the two versions over 10 trials for each value of the

step size (grid-based) and each number of random points (random-based). According to

Table 6.1, the best solution generated by the random-based version (with 500 random

points) is very close to the best solution generated by the grid-based version (with step

size = 10 and 18081 points). However, the average computational time taken by the

random-based version is comparatively less than for the grid-based version (220.1 sec.

against 993.7 sec.). The random-based version is more than 4 times faster.

 83

6.1.2 Model 2 - Hose routing in an environment with a hole in a cube where the
optimal path is blocked by an obstacle

In this simulation, the optimal path found in the earlier case was blocked by a cubic

obstacle and the target point was placed behind the obstacle (see Fig. 6.2 and Table 6.2).

Table 6.2 Comparison of grid-based and random-based - hole in a cube models
where the optimal path is blocked by a cubic obstacle

 Grid-based Random-based
Step Size 10 25 50 N/A N/A N/A N/A
No of points 18081 1377 225 100 150 200 500
Avg. Length 322.70 305.08 400.00 397.70 368.10 376.50 312.60
St. Dev. (Len.) 20.96 7.24 0.00 43.10 29.88 41.70 15.14
Best (Length) 290.55 299.34 400.00 339.40 329.54 324.40 291.51
Avg. Time (s) 952.20 64.40 5.00 12.30 27.30 49.90 318.30

(a) Grid-based (b) Random-based

Fig. 6.2 Model 2: Optimal path is blocked by a cubic obstacle
{Xmin = -250, Xmax = 150, Ymin = -50, Ymax = 150, Zmin = -200,

Zmax = 0; S = (-200, 150, -100); E = (-200, -100, -150); Radius = 5}

The best average length for the grid-based version is obtained with step size 25 (1377

points) (see Table 6.2). However, the best path was produced with the step size 10. The

average path length of the random-based version with 500 points (312.6) is relatively

close to the average path length of the grid-based version with step size 25 (305.08) and

the lengths of the best paths in both versions are very close.

 84

This experiment shows that when selecting the right grid (or step) size, the grid-based

version performs very well even with relatively large step sizes.

6.1.3 Model 3 - Hose routing in an environment with a U-shape obstacles

In this experiment, a U-shape obstacle was placed in the environment and the

environment was made more complex by introducing other objects. Furthermore, the

start and the target points were placed such that only one path existed between them.

Note that the z coordinates of the search space were restricted to the top and the bottom

of the obstacles (See Fig. 6.3 and Table 6.3).

Table 6.3 Comparison of grid-based and random-based models
with a u-shaped obstacle

 Grid-based Random-based
Step Size 10 25 50 N/A N/A N/A N/A
No of points 55451 4205 675 100 150 200 500
Avg. Length 596.28 1260.00 925.00 761.60 710.30
St. Dev. (Len.) 22.42 405.00 328.00 174.80 40.00
Best (Length) 551.31 698.00 654 619.10 608.9
Avg. Time (s)

Failed

173.25

Failed

13.20 38.10 89.70 804.60

(a) Grid-based (b) Random-based

Fig. 6.3 Model 3: U-shaped obstacle
{Xmin = -300, Xmax = 400, Ymin = 0, Ymax = 100, Zmin = -300,
Zmax = 400; S = (50, 25, -50); E = (350, 25, -50); Radius = 5}

In this experiment, the grid-based version failed in all the trials with the step sizes 10

and 50. The grid-based version failed for these two step sizes because none of the grid

 85

lines were laid in any part of the optimal path when generating the network of grid lines.

However, it was successful with step size 25 and generated the best average length

(596.28) and best optimal path length (551.31). This experiment demonstrates that if the

right resolution is selected, the grid-based version performs well in terms of both

optimal length and the computational time.

6.1.4 Model 4 - Hose routing in an environment with parallel walls

In this experiment, two 3D points were selected and the shortest path between them was

blocked by 5 parallel walls (see Fig. 6.4 and Table 6.4).

Table 6.4 Comparison of grid-based and random-based models
containing parallel walls

 Grid-based Random-based
Step Size 10 25 50 N/A N/A N/A N/A
No of points 40931 3125 507 100 150 200 500
Avg. Length 1096.90 1021.90 1025.40 986.20 963.61
St. Dev. (Len.) 91.30 41.60 57.20 45.90 9.07
Best (Length) 1007.70 968.90 963.00 938.00 948.09
Avg. Time (s)

Failed

133.67

Failed

11.10 28.30 59.40 316.70

(a) Grid-based (b) Random-based

Fig. 6.4 Model 4: Parallel walls
{Xmin = -300, Xmax = 300, Ymin = 0, Ymax = 100, Zmin = -300,
Zmax = 300; S = (-300, 25, 0); E = (300, 50, -25); Radius = 5}

Here also, the grid-based version failed for step sizes 10 and 50 as in the previous

experiment. Here also grid-based version failed because it is not possible to find a

 86

connected path between start point (S) and end point (E) in the network of grid lines

generated using the step sizes 10 and 50. Even though the grid-based version was

successful with step size 25, the average length and the best length are higher than the

respective values for the random-based version. The average computational time for the

random-based version is low for all cases except for 500 random points.

6.1.5 Model 5 - Hose routing in an environment with a diagonal empty space

 Random-based

Fig. 6.5 Model 5: Diagonal empty space
{Xmin = -50, Xmax = 350, Ymin = -50, Ymax = 150, Zmin = -200,
Zmax = 50; S = (25, 0, 0); E = (180, 100, -185); Radius = 5}

Table 6.5 Comparison of grid-based and random-based models
with a diagonal empty space

 Grid-based Random-based
Step Size 10 25 50 N/A N/A N/A N/A
No of points 22386 1683 270 100 150 200 500
Avg. Length 320.24 313.32 327.17 295.23
St. Dev. (Len.) 13.70 9.21 20.44 9.86
Best (Length) 302.38 299.14 303.08 275.39
Avg. Time (s)

Failed Failed Failed

7.60 16.60 27.50 155.70

In this simulation, a diagonal empty space was placed between two objects and the

straight path between the start point and the end point was blocked by a cubic shaped

object (see Fig. 6.5 and Table 6.5). The grid-based version failed for all 3 step sizes.

Here also the grid-based version failed because it is not possible to find a connected

path between start point (S) and end point (E) in the network of grid lines generated

 87

using the step sizes 10, 25 and 50. The random-based version was successful in each

case and produced reasonable results.

6.1.6 Discussion (Grid-Based and Random-Based Ant Systems)

The first phase of our research has been applied to automatic 3D hose/pipe routing

where the world is represented as two versions, grid-based and random-based for single

hose routing in 3D space. The search space is defined by a set of grid points as well as a

set of random points in free space. The problem is converted into finding the shortest

path between two points (start and end) in a network generated by the grid points or

random points in the free space. There are many algorithms (e.g., A* algorithm [61],

Dijkstra's algorithm [5]) that can be used to solve this problem. The major problem with

existing conventional path finding algorithms is that they cannot be extended to

multiple-objective problems. For such types of problem, unconventional algorithms

such as ant colony algorithms, genetic algorithms are preferable. The aim of the ant

colony algorithm introduced in this thesis was for it to be extendable to multiple-

objective problems. This type of problem has a wide area of applications such as

hose/pipe harness, electrical and hydraulic wiring.

The problem presented here and the travelling salesman problem (TSP) are quite

similar; however there are some differences. In the TSP, paths must be found such that

each ant must travel to each city once and must finally come back to the start city. In the

case described here, ants must start from the start point and need to finally reach the end

point. The constraints that each ant must travel to each point and that ants must finally

come back to the start point are not imposed. However, it must be guaranteed that when

an ant has visited a point, it must not visit that point again. To this end, cycles were

removed from the ants’ paths before applying the global updating rule. For the TSP, the

global updating rule is applied after all ants have completed a tour (i.e., each and every

ant must come back to the start city). Hence, for the TSP, the algorithm knows when to

apply the global updating rule. In the experiments described above, this is not always

possible, as some ants may get lost. Thus, a new parameter, NT, was introduced into the

algorithm. This parameter was set such that most of the ants of the current population

were able to reach the end point.

 88

The above simulation results show the strengths and weaknesses of the grid-based and

the random-based versions of the ant colony algorithm for automatic 3D hose routing.

The use of the RAPID library greatly helps the algorithm to detect collisions when

laying the hoses. The simulation study also indicates that the proposed grid-based and

random-based versions of the ant colony algorithms are of practical use because the

required computational times are reasonably low.

However, in the grid-based version, the resolution or the size of the grid plays an

important role in the determination of the optimal path and affects the computational

time. If none of the grid line falls on the optimal path when constructing the road map,

the algorithm fails to obtain the optimal path (See Tables 6.3, 6.4 and 6.5). Thus,

selecting the right size of grid (or step size) is important for the grid-based version.

The advantage of using the random-based version is that it did not fail for any of the

tested models and produced a reasonably good solution to the problem in comparably

lesser time. Furthermore, in the case of the grid-based version, as the step size is

decreased, the amount of memory needed to store the road map increases drastically as

does the computation time.

6.2 Results Obtained for Ant Colony Optimization with a Reduced Size Search
Space

6.2

In this section, results of the new modification (MAS) introduced in section 5.4 are

explored. AS (Ant system) and MAS were implemented and their strengths and

weaknesses were investigated experimentally. The performances of the two algorithms

were compared in terms of the quality of the best path obtained (see section 6.2.1), the

number of turns performed during the allocated time (see section 6.2.2), the total

number of nodes in all contender node lists Ji
*(r) during each cycle and the average

number of alternatives (see section 6.2.3) and the time spent on each cycle (see section

6.2.4).

 89

The parameter settings for both algorithms were:

Number of ants (N) = 10

Initial pheromone level for each edge (0) = 100

 = 1,  = 5 and  = 0.01

The stopping criterion for each of the experiments was set according to the problem and

the complexity of the network.

All the simulations were carried out on a Pentium IV PC (Processor speed = 3.0 GHz,

RAM = 512 MB) in the Microsoft Windows XP environment using Microsoft Visual

C++ (.Net version).

Both algorithms (AS and MAS) were tested on the following three Pro/Engineer models

(see Fig. 6.6).

(a) Model 1 (b) Model 2 (c) Model 3

Fig. 6.6 Tested Pro/Engineer Models

6.2.1 Quality of the best path obtained

6.2.1

For each model, both algorithms (AS and MAS) were tested with networks of 200, 400

and 800 random points. All the simulations were carried out for a specific time (T) over

100 trials with different random seeds in each trial. T was determined by running MAS

for 4000 turns (40 cycles) and the time elapsed to obtain the best length was recorded

 90

for each trial. T was then made roughly equal to the average time taken to obtain the

best solution with MAS over 50 trials.

For each trial, the best length given by AS or MAS, the list of nodes in the

corresponding best path and the number of turns (iterations) were recorded in text files.

In this section, the best lengths obtained for AS and MAS are compared statistically

over the results obtained from 100 trials. The following statistics are considered:

Avg. Len. – Average of the best lengths over 100 trials

Std. Dev. – Standard deviation of the best lengths

Minimum Len. – Minimum best length obtained

Maximum Len. – Maximum best length obtained

First Quartile – First quartile of best lengths

Median - Median of best lengths

Third Quartile – Third quartile of best lengths

Range – Difference between the maximum and minimum best lengths

A highlighted (in bold) statistical value in the tables (see Tables 6.6 – 6.8) indicates that

it exceeds the corresponding value of the other algorithm. Values are italicized when the

two algorithms obtained the same results.

Histograms are also used to compare the best lengths of AS and MAS (see Figs.

6.7 – 6.15).

Experimental results (Quality of the best path obtained)

Model 1

Both algorithms were tested on an environment consisting of a cube containing a hole

(See Fig. 6.6). The optimal path was first determined by laying pipe segments through

the hole. The optimal path was then blocked by a cubic obstacle and the end node was

placed behind this cubic obstacle.

 91

The following input parameters were supplied to the program:

Xmin = -250, Xmax = 150, Ymin = -100, Ymax = 150, Zmin = -200, Zmax = 0,

S = (-125, 150, -100), E = (-125, -100, -150), Radius (r) = 5,

Maximum number of turns an ant can perform within a cycle (NT) = 100

Table 6.6 Comparison of best lengths obtained in AS and MAS – Model 1

 AS MAS

No of points 200 400 800 200 400 800
Time T
(in Sec.)

5 6 50 5 6 50

Avg. Len. 365.61 317.79 349.43 365.06 315.14 342.03
Std. Dev. 6.34 6.47 11.84 6.60 1.84 10.04

Minimum Len. 355.97 310.62 322.71 355.97 310.62 316.27
Maximum

Len.
369.87 339.70 380.92 369.87 321.27 358.55

First Quartile 355.97 314.68 342.12 355.97 314.68 333.51
Median 369.87 314.68 353.45 369.87 314.68 343.97

Third Quartile 369.87 319.82 354.79 369.87 314.68 349.69
Range 13.90 29.08 58.21 13.90 10.65 42.28

(a) AS (b) MAS

Fig. 6.7 AS and MAS histograms for a 200-point network over 100 trials - Model 1

 92

(a) AS (b) MAS

Fig. 6.8 AS and MAS histograms for a 400-point network over 100 trials - Model 1

(a) AS (b) MAS

Fig. 6.9 AS and MAS histograms for an 800-point network over 100 trials - Model 1

Model 2

In this model, a U-shape obstacle was placed in the environment and the environment

was made more complex by introducing other objects. Furthermore, the start and the

end nodes were placed such that only one path existed between them. Note that the z

coordinates of the search space were restricted to the top and the bottom of the obstacles

(see Fig. 6.6).

 93

Xmin = -300, Xmax = 400, Ymin = 0, Ymax = 100, Zmin = -300, Zmax = 400,

 S = (50, 25, -50), E = (350, 25, -50), Radius (r) = 5, Maximum number of turns an ant

can perform within a cycle (NT) = 100

Table 6.7 Comparison of best lengths obtained in AS and MAS – Model 2

 AS MAS

No of points 200 400 800 200 400 800
Time T
(in Sec.)

10 25 150 10 25 150

Avg. Len. 1439.9 1359.6 1909.8 1262.0 1142.5 1193.1
Std. Dev. 325.4 331.3 644.4 253.1 227.3 353.3

Minimum Len. 752.8 782.5 714.8 796.7 799.1 682.9
Maximum

Len.
2225.2 2295.4 3433.7 1896.4 1816.9 2402.8

First Quartile 1170.3 1115.1 1424.1 1040.2 969.0 935.5
Median 1452.1 1312.0 1844.3 1246.8 1076.1 1117.5

Third Quartile 1683.8 1586.7 2364.7 1453.5 1310.2 1339.0
Range 1472.4 1512.9 2718.9 1099.7 1017.8 1719.9

(a) AS (b) MAS

Fig. 6.10 AS and MAS histograms for a 200-point network over 100 trials - Model 2

 94

(a) AS (b) MAS

Fig. 6.11 AS and MAS histograms for a 400-point network over 100 trials - Model 2

(a) AS (b) MAS

Fig. 6.12 AS and MAS histograms for an 800-point network over 100 trials - Model 2

 95

Model 3

In this model, there were two narrow passages for the routing of the optimum path

between the start and the end nodes (see Fig. 6.6) and the environment was made more

complex by introducing other objects. Note that the z coordinates of the search space

were restricted to the top and the bottom of the obstacles.

Xmin = -125, Xmax = 400, Ymin = 0, Ymax = 100, Zmin = -250, Zmax = 200,

S = (-75, 50, -60), E = (250, 50, -60), Radius (r) = 5, Maximum number of turns an ant

can perform within a cycle (NT) = 100

Table 6.8 Comparison of best lengths obtained in AS and MAS – Model 3

 AS MAS

No of points 200 400 800 200 400 800
Time T
(in Sec.)

1 5 20 1 5 20

Avg. Len. 437.66 489.07 447.55 440.23 475.96 444.13
Std. Dev. 57.73 33.24 12.10 62.58 14.58 10.56

Minimum Len. 423.27 463.37 432.96 423.27 463.37 432.96
Maximum

Len.
816.62 701.30 482.54 760.89 517.25 465.08

First Quartile 423.27 463.37 432.96 423.27 463.37 432.96
Median 423.27 485.49 450.43 423.27 468.15 450.43

Third Quartile 423.27 494.29 456.12 430.34 485.49 450.48
Range 393.35 237.93 49.58 337.62 53.88 32.12

(a) AS (b) MAS

Fig. 6.13 AS and MAS histograms for a 200-point network over 100 trials - Model 3

 96

(a) AS (b) MAS

Fig. 6.14 AS and MAS histograms for a 400-point network over 100 trials - Model 3

(a) AS (b) MAS

Fig. 6.15 AS and MAS histograms for an 800-point network over 100 trials - Model 3

Discussion (Quality of the best path obtained)

When comparing the results obtained in Tables 6.6 – 6.8, MAS outperforms AS

according to the statistics except in a small number of cases. Furthermore, it is

noticeable that MAS produces good results when the routing problem becomes more

complex. For example, MAS produces better statistics or equal results when networks

of 800 random points were used. When comparing the average lengths of the two

 97

algorithms, MAS produces better average results except in one case. In most cases, the

standard deviation obtained by MAS is low which implies that variation between the

solutions produced by MAS is low. This is also confirmed by the range statistic values.

When considering the minimum lengths obtained, AS produced the better value in one

case, MAS produced the better value in another case and in 5 cases the results were the

same for both algorithms. Normally it is difficult to compare single results as both

methods are stochastic and hence, for a particular trial, one algorithm may behave very

well by chance. Quartile values also indicate how the optimum lengths obtained from

the two algorithms are distributed. For example, the third quartiles of AS and MAS for

the 800-point network of Model 2, are 2364.7 and 1339.0 (see Table 6.7) respectively.

This implies that 75% of the lengths obtained for MAS are less than 1339.0, whereas

75% of the lengths for AS are below a much higher value of 2364.7.

When comparing the histograms of the obtained best lengths (see Figs. 6.7 – 6.15) for

AS and MAS, it is noticeable that in most cases, the percentages of the leftmost bars of

the histograms for MAS are higher than the corresponding percentages for AS. For

example, in Fig. 6.12, this value is nearly 71% for MAS and the corresponding value for

AS is about 15%. This indicates that MAS produces better solutions than AS. The

minimum value (782.5) for AS for the network of 400 points for Model 2 (see Table

6.7) is less than the corresponding value for MAS (799.1). However, when comparing

the corresponding histograms (see Fig. 6.11), the percentage of the leftmost bars for

MAS (about 28%) is higher than the respective value for AS (about 16%). It is evident

that MAS produces good results for these statistics when the number of points used is

higher or the problem becomes complex. Furthermore, it can be noted that the

percentages of the rightmost bars of the histograms of MAS are zero for most cases.

In addition to these results, a two-tailed t-test with a 95% confidence level was applied

to both methods for the following hypotheses:

 H0: MAS  AS Vs. H1: MAS < AS

where H0 is the null hypothesis, H1 is the alternative hypothesis, MAS and AS are the

mean best lengths of MAS and AS, respectively.

 98

Tables 6.9 – 6.11 show the test statistics for the two-tailed t-test for the 3 models. In

these tables, 95% confidence intervals for (MAS - AS) are also included. Negative

numbers in these intervals (highlight in bold) imply that the first mean (MAS) is smaller

than the second mean (AS) or the optimum lengths produced by MAS are smaller than

those for AS with a 95% confidence level.

Table 6.9 Two-tailed t-test and confidence interval – Model 1

No of points 200 400 800
95% Confidence Interval
(MAS - AS)

(-2.36, 1.25) (-3.98, -1.32) (-10.5, -4.3)

T value -0.61 -3.94 -4.77
Degree of freedom 197 114 192

Accept.
Interval

(0, 0.05) (0, 0.05) (0, 0.05)
Alternative
hypothesis

P value 0.27 0.0001 0.0000

Table 6.10 Two-tailed t-test and confidence interval – Model 2

No of points 200 400 800
95% Confidence Interval
(MAS - AS)

(-259, -97) (-296, -138) (-862, -572)

T value T = -4.31 -5.41 -9.75
Degree of freedom 186 175 153

Accept.
Interval

(0, 0.05) (0, 0.05) (0, 0.05)
Alternative
hypothesis

P value 0.0000 0.0000 0.0000

Table 6.11 Two-tailed t-test and confidence interval – Model 3

No of points 200 400 800
95% Confidence Interval
(MAS - AS)

(-14.2, 19.4) (-20.3, -5.9) (-6.6, -0.2)

T value 0.30 -3.61 -2.13
Degree of freedom 196 135 194

Accept.
Interval

(0, 0.05) (0, 0.05) (0, 0.05)
Alternative
hypothesis

P value 0.62 0.0002 0.017

 99

According to these results, there is sufficient evidence, at the 0.05 level of significance,

to conclude that the average best lengths for MAS is smaller than the corresponding

value for AS, in most cases. It is noticeable that these results are significantly better

when the complexity of the problem is increased.

6.2.2 Number of turns

6.2.2

In this section, the numbers of turns (iterations) performed within the specified time (T)
for AS and MAS are statistically analyzed. The following statistics are considered:

Avg. No of Turns – Average number of turns over 100 trials
Std. Dev. – Standard deviation of the turns
Min. No of Turns – Minimum number of turns
Max. No of Turns – Maximum number of turns

A highlighted (in bold) statistical value in the tables (see Tables 6.12 – 6.14) indicates

that it exceeds the corresponding value of the other algorithm.

Experimental results (Number of turns)

Table 6.12 Comparison of number of turns for AS and MAS – Model 1 (see Fig. 6.6)

 AS MAS
No of points 200 400 800 200 400 800
Time T (in Sec.) 5 6 50 5 6 50
Avg. No of Turns 886.33 428.41 1006.6 1135.5 690.12 1998.2
Std. Dev. 24.10 42.06 42.3 21.8 23.94 61.2
Min. No of Turns 807.00 202.0 902.0 1084.0 604.0 1800.0
Max. No of Turns 923.00 500.0 1100.0 1181.0 704.0 2104.0

Table 6.13 Comparison of number of turns for AS and MAS – Model 2 (see Fig. 6.6)

 AS MAS
No of points 200 400 800 200 400 800
Time T (in Sec.) 10 25 150 10 25 150
Avg. No of Turns 963.47 605.09 489.42 1823.4 1916.0 2247.6
Std. Dev. 35.46 11.98 45.29 102.4 249.7 607.9
Min. No of Turns 900.0 591.00 400.0 1605.0 1500.0 1109.0
Max. No of Turns 1020.0 700.00 600.0 2062.0 2502.0 3900.0

 100

Table 6.14 Comparison of number of turns for AS and MAS – Model 3 (see Fig. 6.6)

 AS MAS
No of points 200 400 800 200 400 800
Time T (in Sec.) 1 5 20 1 5 20
Avg. No of Turns 213.72 577.99 818.64 241.6 883.00 1565.6
Std. Dev. 6.44 28.44 36.55 12.92 27.57 50.2
Min. No of Turns 200.0 504.0 703.00 219.0 804.0 1404.0
Max. No of Turns 227.0 602.0 900.00 272.0 945.0 1673.0

Discussion (Number of turns)

According to these tables, it is evident that MAS performs a greater number of turns (or

iterations), and hence tends to give better solutions than AS, within the given fixed time.

In all cases, the average number of turns for MAS is higher than the corresponding

value for AS. For example, this value for MAS is 2247.6, for the network of 800 points

of Model 2 (see Table 6.13), while the corresponding value for AS is 489.42. This

implies that MAS is able to explore more good solutions within a given time. It is also

noticeable that the maximum number of turns taken by AS is less than the minimum

number of turns taken by MAS except in one case. This means that MAS almost always

performs a higher number of turns than AS within the given time. This also shows that

MAS has the ability to explore a greater scope of the search space.

6.2.3 Total No of nodes in all contender node lists and average No of alternatives

6.2.3

The total number of nodes in all the contender node lists [Ji
*(r)] (see section 5.4) during

each cycle is given by:

 
 


antsofno

i pathantthir
i ASforrJnASn

__

1

))((_ 6.1

and

 
 


antsofno

i pathantthir
i MASforrJnMASn

__

1

*))((_ 6.2

 101

where n(A) is the number of elements in set A.

For this experiment, Model 1 with the same parameter values as in the first 2

experiments (sections 6.2.1 and 6.2.2) was used. However, the stopping criterion was

changed: in this case, the program was run for 100 cycles (or 10,000 turns). The

program was set to find the best path by using AS and recording both n_AS and n_MAS.

When computing Ji
*(r), the current best value produced by AS rather than MAS is used

as the program is unable to run the two algorithms simultaneously.

Experimental results (Total No of nodes in all contender node lists)

0

500

1000

1500

2000

2500

3000

3500

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Cycle No

n_AS

n_MAS

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Cycle No

P
er

ce
n

ta
g

e
o

f
re

d
u

ct
io

n

(a) n_AS vs. n_MAS (b) Percentage of Node Reduction

Fig. 6.16 Comparison of number of nodes in contender node lists [Ji
*(r)]

per cycle for AS and MAS for a 200-point network - Model 1 (Typical run)

 102

0

1000

2000

3000

4000

5000

6000

7000

8000

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Cycle No

n_AS

n_MAS

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Cycle No

P
er

ce
n

ta
g

e
o

f
re

d
u

ct
io

n

(a) n_AS vs. n_MAS (b) Percentage of Node Reduction

Fig. 6.17 Comparison of number of nodes in contender node lists [Ji
*(r)]

per cycle for AS and MAS for a 400-point network - Model 1 (Typical run)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Cycle No

n_AS

n_MAS

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Cycle No

P
er

ce
n

ta
g

e
o

f
re

d
u

ct
io

n

(a) n_AS vs. n_MAS (b) Percentage of Node Reduction

Fig. 6.18 Comparison of number of nodes in contender node lists [Ji
*(r)]

per cycle for AS and MAS for a 800-point network - Model 1 (Typical run)

Discussion (Total No of nodes in all contender node lists)

According to Figs. 6.16 – 6.18, it is clear that n_MAS values are very much lower than

n_AS values. The right-hand side of each figure shows the percentage of node reduction

if MAS is used instead of AS. This shows that the total number of nodes in all

 103

contender node lists per cycle is reduced by more than 60% after 3 or 4 cycles. This is

also a good indication that MAS is able to search for good solutions and removes the

unwanted edges from the contender node lists and hence avoids reinforcing pheromone

values of unwanted edges. Note that during the first cycle, n_AS and n_MAS are the

same as no information of the best length is available.

Experimental results (Average No of alternatives)

Further, the average number of alternatives [62] that an ant has for choosing the next

node was computed for an 800-point network of Model 1. Although some edges may be

connected to a node, if the pheromone levels of these edges are smaller than a threshold

 after a number of cycles, the probability of the ants selecting such edges is negligible.

These edges were removed from the count.

For ant i that is placed on node r let

  )(,),()()(rJssrpsrD ii
i

AS   6.3

and

  )(,),()(*)(rJssrpsrD ii
i

MAS   6.4

be the numbers of possible next nodes (that have not yet been visited) that have a

probability > λ of being chosen, for AS and MAS, respectively. Then, the average

numbers of alternatives with probability > λ during a cycle are

ASfor
antsofno

rDn

ASD

antsofno

i pathantthir

i
AS

__

))((

_

__

1

)( 
 

6.5

and

 104

MASfor
antsofno

rDn

MASD

antsofno

i pathantthir

i
MAS

__

))((

_

__

1

)( 
 

6.6

where n(A) is the number of elements in set A.

50

60

70

80

90

100

110

120

130

140

150

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Cycle No

D_AS

D_MAS

-60.00%

-40.00%

-20.00%

0.00%

20.00%

40.00%

60.00%

80.00%

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Cycle No

P
er

ce
n

ta
g

e
o

f
re

d
u

ct
io

n

(a) D_AS vs. D_MAS (b) Percentage reduction of alternatives

Fig. 6.19 Comparison of average numbers of alternatives, D, for an 800-point network
of Model 1 (Typical run) (λ = 0.01)

Discussion (Average No of alternatives)

According to Fig. 6.19, the average number of alternatives for MAS is well below that

for AS in most of the cycles. The right-hand side of the figure shows the percentage

reduction in the average number of alternatives D for MAS with respect to AS.

Negative percentages indicate that the D values for AS are less than for MAS.

Furthermore, the average values of the D values for all cycles for AS and MAS are

98.57 (Std. Dev. 19.15) and 77.11 (Std. Dev. 9.61) respectively. According to these

average values, each ant has roughly 99 and 77 alternatives per cycle for AS and MAS,

respectively.

 105

6.2.4 Time spent on a cycle

6.2.4

In this experiment, time spent on each cycle was measured. For this, 200-, 400- and

800-point networks of Model 1 were used with the same parameters as for experiment 1

(See Section 6.2). The stopping criterion was changed such that the program was run for

100 cycles.

Experimental results (Time spent on a cycle)

0

50

100

150

200

250

300

350

1 9 17 25 33 41 49 57 65 73 81 89 97

Cycle No

C
yc

le
 T

im
e

(m
s)

AS

MAS

Fig. 6.20 Comparison of cycle times, for a 200-point network of Model 1
(Sample run)

0

200

400

600

800

1000

1200

1400

1 9 17 25 33 41 49 57 65 73 81 89 97

Cycle No

C
yc

le
 T

im
e

(m
s)

AS

MAS

Fig. 6.21 Comparison of cycle times, for a 400-point network of Model 1
(Sample run)

 106

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 9 17 25 33 41 49 57 65 73 81 89 97

Cycle No

C
yc

le
 T

im
e

(m
s)

AS

MAS

Fig. 6.22 Comparison of cycle times, for a 800-point network of Model 1
(Sample run)

Table 6.15 Comparison of average cycle time for AS and MAS – Model 1

No of Points 200 400 800
Algorithm AS MAS AS MAS AS MAS
Average Cycle Time
(ms)

220.47 118.13 765.15 335.63 3398.6 1288.75

Std. Dev. (Cycle
Time)

29.13 19.19 97.07 61.82 433.41 327.35

Discussion (Time spent on a cycle)

Figs. 6.20 – 6.22 show that cycle times for MAS are very low compared to those for AS

in all the three cases. Table 6.15 shows the average cycle time and its standard

deviation. These figures demonstrate that the average cycle time can be reduced

approximately by half when using MAS. Hence, for a given run time, it is possible to

run a higher number of cycles for MAS than for AS and thus achieve better results for

MAS than for AS.

6.3 Results Obtained with the Introduction of Explorer Ants for Avoiding
Stagnation

6.3

In this experiment, the introduction of two types of ants (explorers and followers) into

MAS (N_MAS) in order to avoid the stagnation behaviour is examined (see section 5.5

 107

also).

Each of the three models (see Fig. 6.6) was tested with a 200-, 400- and 800- random

point network for 100 trials. For each trial, 5 explorers and 5 followers were used.

Values for the other parameters and the stopping criterion were the same as for

experiment 1 in section 6.2.

Experimental results (Introduction of Explorer Ants for Avoiding Stagnation)

Table 6.16 Comparison of best lengths obtained by MAS and N_MAS – Model 1

 MAS N_MAS

No of
points

200 400 800 200 400 800

Time T
(in Sec.)

5 6 50 5 6 50

Avg. Len. 365.06 315.14 342.03 360.36 314.72 340.94
Std. Dev. 6.60 1.84 10.04 6.42 1.64 10.14
Minimum

Len.
355.97 310.62 316.27 355.97 310.62 318.92

Maximum
Len.

369.87 321.27 358.55 369.87 321.27 358.55

First
Quartile

355.97 314.68 333.51 355.97 314.68 332.49

Median 369.87 314.68 343.97 355.97 314.68 343.78
Third

Quartile
369.87 314.68 349.69 369.87 314.68 350.64

Range 13.90 10.65 42.28 13.90 10.65 39.63

 108

(a) MAS (b) N_MAS

Fig. 6.23 MAS and N_MAS histograms for a 200-point network over 100 trials -
Model 1

(a) MAS (b) N_MAS

Fig. 6.24 MAS and N_MAS histograms for a 400-point network over 100 trials -
Model 1

 109

(a) MAS (b) N_MAS

Fig. 6.25 MAS and N_MAS histograms for a 800-point network over 100 trials -
Model 1

Table 6.17 Comparison of best lengths obtained in MAS and N_MAS – Model 2

 MAS N_MAS

No of
points

200 400 800 200 400 800

Time T (in
Sec.)

10 25 150 10 25 150

Avg. Len. 1262.0 1142.5 1193.1 1098.0 1066.3 1104.5
Std. Dev. 253.1 227.3 353.3 208.9 180.7 322.7
Minimum

Len.
796.7 799.1 682.9 752.3 784.7 671.2

Maximum
Len.

1896.4 1816.9 2402.8 1691.9 1646.2 2533.5

First
Quartile

1040.2 969.0 935.5 958.4 952.8 863.4

Median 1246.8 1076.1 1117.5 1085.9 1032.0 993.9
Third

Quartile
1453.5 1310.2 1339.0 1219.2 1153.0 1360.4

Range 1099.7 1017.8 1719.9 939.6 861.5 1862.3

 110

(a) MAS (b) N_MAS

Fig. 6.26 MAS and N_MAS histograms for a 200-point network over 100 trials -
Model 2

(a) MAS (b) N_MAS

Fig. 6.27 MAS and N_MAS histograms for a 400-point network over 100 trials -
Model 2

 111

(a) MAS (b) N_MAS

Fig. 6.28 MAS and N_MAS histograms for a 800-point network over 100 trials -
Model 2

Table 6.18 Comparison of best lengths obtained in of MAS and N_MAS – Model 3

 MAS N_MAS

No of
points

200 400 800 200 400 800

Time T (in
Sec.)

1 5 20 1 5 20

Avg. Len. 440.23 475.96 444.13 423.27 470.34 440.89
Std. Dev. 62.58 14.58 10.56 0.00 11.34 9.59
Minimum

Len.
423.27 463.37 432.96 423.27 463.37 432.96

Maximum
Len.

760.89 517.25 465.08 423.27 517.25 465.08

First
Quartile

423.27 463.37 432.96 423.27 463.37 432.96

Median 423.27 468.15 450.43 423.27 463.37 432.96
Third

Quartile
430.34 485.49 450.48 423.27 484.91 450.43

Range 337.62 53.88 32.12 0.00 53.88 32.12

 112

(a) MAS (b) N_MAS

Fig. 6.29 MAS and N_MAS histograms for a 200-point network over 100 trials -
Model 3

(a) MAS (b) N_MAS

Fig. 6.30 MAS and N_MAS histograms for a 400-point network over 100 trials -
Model 3

 113

(a) MAS (b) N_MAS

Fig. 6.31 MAS and N_MAS histograms for a 800-point network over 100 trials -
Model 3

Discussion (Introduction of Explorer Ants for Avoiding Stagnation)

According to the Tables 6.16 – 6.18, the average values of the best lengths are improved

when the two types of ants (explorers and followers) are introduced into MAS. Standard

deviations of the best lengths are also reduced except in one case. Note that, the

standard deviation for the network of 200 points of Model 3 (see Table 6.18) is 0. In this

experiment, N_MAS converged to 423.27 for all 100 trials. In addition to these results,

the other statistics are also improved or remain the same.

When comparing the histograms of N_MAS and MAS (see Figs. 6.29 – 6.31), it can be

seen that the percentage values of the two lowest bars are always higher for N_MAS

than for MAS.

Further, the two-tailed t-test with a 95% confidence level was applied to N_MAS with

the following hypothesises:

 H0: N_MAS  MAS Vs. H1: N_MAS < MAS

 114

where N_MAS and MAS are the mean best lengths of N_MAS and MAS, respectively.

The following tables (see Tables 6.19 – 6.21) show the test statistics of the two-sample

t-test for the 3 models. In these tables, 95% confidence intervals for (N_MAS - MAS) are

also included.

Table 6.19 Two-Tailed T-Test and Confidence Interval – Model 1

No of points 200 400 800

95% Confidence Interval
(N_MAS - MAS)

(-6.51, -2.88) (-0.90, 0.07) (-3.9, 1.7)

T value -5.10 -1.69 -0.77
Degree of freedom 197 195 197

Accept.
Interval

(0, 0.05) (0, 0.05) (0, 0.05)
Alternative
hypothesis

P value 0.0000 0.047 0.22

Table 6.20 Two-Tailed T-Test and Confidence Interval – Model 2

No of points 200 400 800

95% Confidence Interval
(N_MAS - MAS)

(-229, -99) (-133, -19) (-183, 6)

T value -5.00 -2.62 -1.85
Degree of freedom 191 188 196

Accept.
Interval

(0, 0.05) (0, 0.05) (0, 0.05)
Alternative
hypothesis

P value 0.0000 0.0047 0.033

Table 6.21 Two-Tailed T-Test and Confidence Interval – Model 3

No of points 200 400 800

95% Confidence Interval
(N_MAS - MAS)

(-29.38, -4.5) (-9.3, -2.0) (-6.05, -0.4)

T value -2.71 -3.04 -2.27
Degree of freedom 99 186 196

Accept.
Interval

(0, 0.05) (0, 0.05) (0, 0.05)
Alternative
hypothesis

P value 0.0040 0.0013 0.012

 115

According to these results, there is sufficient evidence, at the 0.05 level of significance,

to conclude that the average best length for N_MAS is smaller than the corresponding

value for MAS in most of the cases.

 116

6 RESULTS AND DISCUSSION
6.4 Results Obtained for Multi-Objective Ant Colony Optimization
6.4

In this section, results of the application of multi-objective ant colony optimization

algorithms (P-ACO and the proposed PSACO) discussed in sections 4.3.1 and 5.6 for

the multi-objective hose routing problem described in section 5.7 are investigated. Both

algorithms (P-ACO and PSACO) have been tested on two Pro/Engineer models (see

Fig. 6.32). Model 1 consists of a cube containing a hole. Hose segments needed to be

laid inside this hole in order to obtain the optimal path, which is blocked by a cubic

obstacle, and the end point is placed behind this obstacle. In Model 2, a U-shape

obstacle is placed in the environment and the environment is made more complex by

introducing other objects. Furthermore, the start and the end points are placed on the

opposite sides of the U-shaped obstacle. Note that the z-coordinates of the search space

are restricted to the top and the bottom of the obstacles.

For each model, two methods (P-ACO and PSACO) are compared in terms of

illustrative representation methods of non-dominated solutions, performance

comparison methods described in sections 3.2 and 3.3, respectively. Further,

performances are compared using the computation times of the two algorithms. In

section 6.4.7 the application of the methods described in section 3.4 for selecting a final

solution from the non-dominated solutions obtained by MOACO algorithms is

discussed. Finally, a refining process is described and results of this process are

presented in section 6.4.7.

A network of 800 random points has been generated for each model as described in step

2 of section 5.3 and has been stored in a text file. 93198 and 67975 edges have been

generated for Model 1 and Model 2, respectively.

Both P-ACO and PSACO have been run twenty times on these networks for 40 cycles

(Nc = 40). Each cycle consists of 100 turns (NT = 100). All the simulations have been

carried out on a Pentium IV PC (Processor speed = 3.0 GHz, RAM = 512 MB) in the

Microsoft Windows XP environment using Microsoft Visual C++ (.Net version).

 117

(a) Model 1 (b) Model 2

Fig. 6.32 Tested Pro/Engineer Models

Model 1

The parameters for the two algorithms for Model 1 have been set as follows: Number of

ants N = 20, Archive size NA = 10, Initial pheromone level τ0 = 1, α = 1, β = 5,  = 0.01,

q0 = 0.9 (only for P-ACO), γ = 2, ε = 10/180 = 0.0556, Catalogue angles: 1 = 45º,

2 = 90º, 3 = 120º, 4 = 150º and 5 = 180º.

Overall, 13 and 20 non-dominated solutions have been generated by P-ACO and

PSACO, respectively out of 200 solutions generated in 20 runs.

6.4.1 Illustrative Representation of the Non-Dominated Solutions for Model 1
(see Fig. 6.32)

Figs. 6.33 – 6.35 illustrate the non-dominated solutions using the scatter-plot matrix, the

value path and the bar chart methods, respectively.

According to the scatter-plot matrix method both algorithms have a good spread of non-

dominated solutions within the objective function’s extreme values. Further, PSACO

has obtained smaller (better) objective values when compared with the objective values

obtained by P-ACO.

The value path method shows the spread of each of the non-dominated solutions in each

objective. The objective values of both algorithms do not span the entire range for each

S

E

S

S

E

 118

objective. This is expected as the objective space of our problem is discontinuous and

discrete. For example, for the second objective, f2 cannot achieve the value 0 as there is

no solution with the number of bends NB = 1 (see Fig. 6.32). However, it is noticeable

that both algorithms produce solutions with a good spread between the extreme values

of each objective. Further, both algorithms produce good trade-off solutions as most of

the solutions have a large change of slope between two consecutive objective function

bars.

The bar chart method (see Fig. 6.35) also shows the same results as the value path

method. The values of each objective function do not spread over their entire region

[0, 1] as the objective spaces are not continuous.

 119

Fig. 6.33 The scatter-plot matrix method for Model 1

f1

f2

f3

 120

The Value Path Method [PACO]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

f1 f2 f3

Objective function

N
o

rm
al

iz
ed

o
b

je
ct

iv
e

va
lu

e

The Value Path Method [PSACO]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

f1 f2 f3

Objective function

N
o

rm
al

iz
ed

o
b

je
ct

iv
e

va
lu

e

Fig. 6.34 The value path method for Model 1

The Bar Chart Method [PACO]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

f1 f2 f3

Objective function

N
o

rm
al

iz
ed

o
b

je
ct

iv
e

va
lu

e

The Bar Chart Method [PSACO]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

f1 f2 f3

Objective function

N
o

rm
al

iz
ed

o
b

je
ct

iv
e

va
lu

e

Fig. 6.35 The bar chart method for Model 1

 121

6.4.2 Metrics of Performance of the Non-Dominated Solutions for Model 1

As the true Pareto front of the Model 1 is not known, it is not possible to compute the

M1
* metric (see section 3.3). Thus it is not possible to discover how close each non-

dominated solution obtained by P-ACO and PSACO is to the true Pareto front.

P
S

A
C

O

P
A

C
O

9

8

7

6

5

4

3

M
2

_
S

T
A

R

Boxplots of M2_STAR [Sigma = 0.25]

Fig. 6.36 Boxplots of the results obtained for the M2

* metric with σ = 0.25 for Model 1

The second metric M2
* gives an idea about the distribution of the non-dominated

solutions obtained in each of the runs of the experiment. Higher M2
* values imply a

better distribution of the non-dominated solutions for the algorithm. Fig. 6.36 shows

boxplots of values of M2
* for P-ACO and PSACO with σ = 0.25. A boxplot graphically

represents the minimum, maximum and median values as well as the upper and lower

quartiles (upper and lower ends of the box). The boxplots show that PSACO has higher

values for each of these statistics. Table 6.22 also compares the descriptive statistics of

M2
* for P-ACO and PSACO over the twenty runs of the experiment. Bold values

indicate that they exceed the corresponding values of the other algorithm. It is

 122

noticeable that PSACO outperforms P-ACO for each statistics and hence PSACO

generates a better distribution of non-dominated solutions.

Table 6.22 Descriptive statistics of the M2
* metric with σ = 0.25 for Model 1

 P-ACO PSACO
Mean 6.725 7.142
Std. Dev. 1.168 0.916
Q1 6.111 6.595
Median 7.056 7.111
Q3 7.556 7.722
Minimum 3.600 5.333
Maximum 8.222 8.889

P
S

A
C

O

P
A

C
O

0.9

0.8

0.7

0.6

M
3

_
S

T
A

R

Boxplots of M3_STAR

Fig. 6.37 Boxplots of the results obtained for the M3

* metric for Model 1

M3

* estimates the maximum extent in each dimension of the spread of the non-

dominated solutions. Fig. 6.37 shows the boxplots of the M3
* metric for P-ACO and

PSACO of Model 1 for the non-dominated solutions obtained over the 20 runs of the

experiment. Table (6.23) compares the descriptive statistics of the M3
* metric for P-

 123

ACO and PSACO. According to these, it is noticeable that the maximum extent in each

dimension of the non-dominated solutions obtained by PSACO is better in most cases.

Table 6.23 Descriptive statistics of the M3

* metric for Model 1

 PACO PSACO
Mean 0.7556 0.7875
Std. Dev. 0.0663 0.0732
Q1 0.6935 0.7408
Median 0.7750 0.8019
Q3 0.8067 0.8459
Minimum 0.6502 0.6324
Maximum 0.8614 0.9090

P
S

A
C

O
)

C
(P

A
C

O
,

P
A

C
O

)
C

(P
S

A
C

O
,

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
 M

et
ri

c

Boxplots of C Metric

Fig. 6.38 Boxplots of the results obtained for the C metric for Model 1

The C-metric (defined in section 3.3) calculates the proportion of non-dominated

solutions obtained in one algorithm, which are dominated by non-dominated solutions

obtained in another algorithm. For example, C(A, B) = 0.7 means that 70% of solutions

in algorithm B are dominated by at least one of the solutions of algorithm A. Fig. 6.38

illustrates the boxplots of the C-metrics of one algorithm against the other. The left

 124

boxplot demonstrates the proportion of non-dominated solutions obtained in PSACO

that are dominated by non-dominated solutions obtained in P-ACO. Similarly, the right

boxplot displays the proportion of non-dominated solutions obtained in P-ACO that are

dominated by non-dominated solutions obtained in PSACO. Table 6.24 compares the

descriptive statistics of the C-metric values. From these, it is clear that, PSACO

generates better non-dominated solutions. For example, the mean value for C(PSACO,

P-ACO) is 0.2397 and hence 24% of non-dominated solutions of P-ACO are covered by

PSACO solutions on average whilst it is 0.1636 (or 16%) for C(P-ACO, PSACO).

Table 6.24 Descriptive statistics of the C Metric for Model 1

 C(PACO, PSACO) C(PSACO, PACO)
Mean 0.1636 0.2397
Std. Dev. 0.1516 0.1750
Q1 0.0000 0.1000
Median 0.2000 0.2222
Q3 0.2167 0.3000
Minimum 0.0000 0.0000
Maximum 0.5000 0.7000

6.4.3 Computation Times for Model 1

In each run of the experiment, each algorithm was run for 40 cycles (each cycle

consisting of 100 turns). The computation time of each run was recorded and stored in a

text file. Fig. 6.39 depicts the boxplots of the computation times for P-ACO and

PSACO and Table 6.25 compares the descriptive statistics of the computation times.

The average times are 26.919 (min.) and 18.997 (min.) for P-ACO and PSACO,

respectively. These results show that PSACO takes less computation time to perform a

single run.

 125

P
A

C
O

P
S

A
C

O

12

22

32
T

im
e

(M
in

.)

Boxplots of Computation Time (min.)

Fig. 6.39 Boxplots of computation time (min.) for Model 1

Table 6.25 Descriptive statistics of computation time (min.) for Model 1

 PACO PSACO
Mean 26.919 18.997
Std. Dev. 1.957 1.917
Q1 25.624 18.305
Median 26.932 19.237
Q3 28.365 20.107
Minimum 23.948 13.416
Maximum 31.274 22.646

Model 2

The parameters for the two algorithms for Model 2 have been set as follows: Number of

ants N = 10, Archive size NA = 5, Initial pheromone level τ0 = 1, α = 1, β = 5,  = 0.01,

q0 = 0.9 (only for P-ACO), γ = 2, ε = 10/180 = 0.0556, Catalogue angles: 1 = 45º, 2 =

90º, 3 = 120º, 4 = 150 º and 5 = 180 º.

 126

Overall, P-ACO and PSACO have generated 7 and 4 non-dominated solutions,

respectively, out of 100 solutions generated in 20 runs.

6.4.4 Illustrative Representation of the Non-Dominated Solutions for Model 2

Figs. 6.40 – 6.42 show the overall non-dominated solutions using the scatter-plot

matrix, the value path and the bar chart methods, respectively. According to the scatter-

plot matrix, PSACO has obtained smaller objective values compared to P-ACO. As for

Model 1, objective values are not spread over the entire range of each of the objectives

[0, 1] (see also the value path and bar chart methods) as the problem considered here is

also discontinuous and discrete. Both algorithms also produce good trade-off solutions

as witnessed by the large slope between two consecutive objective bars in the value path

method.

 127

Fig. 6.40 The scatter-plot matrix method for Model 2

f1

f2

f3

 128

The Value Path Method [PACO]

0

0.2

0.4

0.6

0.8

1

1.2

f1 f2 f3

Objective function

N
o

rm
al

iz
ed

o
b

je
ct

iv
e

va
lu

e

The Value Path Method [PSACO]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

f1 f2 f3

Objective function

N
o

rm
al

iz
ed

o
b

je
ct

iv
e

va
lu

e

Fig. 6.41 The value path method for Model 2

The Bar Chart Method [PACO]

0

0.2

0.4

0.6

0.8

1

1.2

f1 f2 f3

Objective function

N
o

rm
al

iz
ed

o
b

je
ct

iv
e

va
lu

e

The Bar Chart Method [PSACO]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

f1 f2 f3

Objective function

N
o

rm
al

iz
ed

o
b

je
ct

iv
e

va
lu

e

Fig. 6.42 The bar chart method for Model 2

 129

6.4.5 Metrics of Performance of the Non-Dominated Solutions for Model 2

As for Model 1, it is not possible to compute the M1
* metric since the true Pareto front

of the Model 2 is not known.

Fig. 6.43 illustrates boxplots of values of M2
* for P-ACO and PSACO with σ = 0.10.

Further, Table 6.26 also compares the descriptive statistics of M2
*. These results show

that PSACO has obtained a better distribution of non-dominated solutions for Model 2.

For P-ACO, the first quartile and the median are zero (Table 6.26) as M2
* was zero for

15 trials out of 20.

P
S

A
C

O

P
A

C
O

4

3

2

1

0

M
2

_
S

T
A

R

Boxplots of M2_STAR [Sigma = 0.10]

Fig. 6.43 Boxplots of the results obtained for the M2

* metric with σ = 0.10 for Model 2

 130

Table 6.26 Descriptive statistics of the M2

* metric with σ = 0.10

 PACO PSACO
Mean 0.425 1.675
Std. Dev. 0.783 1.304
Q1 0.000 0.250
Median 0.000 1.750
Q3 0.750 2.750
Minimum 0.000 0.000
Maximum 2.000 4.000

Fig. 6.44 shows the boxplots of the M3
* metric for P-ACO and PSACO for Model 2 for

the non-dominated solutions obtained over 20 runs of the experiment. Table (6.27)

compares the descriptive statistics of the M3
* metric for P-ACO and PSACO. According

to the boxplots and the descriptive statistics, it is clear that the maximum extent in each

dimension of the non-dominated solutions obtained is better in the case of PSACO.

P
S

A
C

O

P
A

C
O

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

M
3

_
S

T
A

R

Boxplots of M3_STAR

Fig. 6.44 Boxplots of the results obtained for the M3

* metric for Model 2

 131

Table 6.27 Descriptive statistics of the M3

* metric for Model 2

 PACO PSACO
Mean 0.3396 0.4383
Std. Dev. 0.0745 0.2212
Q1 0.2818 0.3920
Median 0.3374 0.4941
Q3 0.3784 0.5766
Minimum 0.2121 0.0000
Maximum 0.4823 0.7468

Fig. 6.45 illustrates the boxplots of the C-metrics of one algorithm against the other for

Model 2. Table 6.28 shows the descriptive statistics of the C-metric values. Since the

mean and other statistics of C(P-ACO, PSACO) are zero, none of the non-dominated

solutions obtained in P-ACO dominate the non-dominated solutions of PSACO. Since

the mean of C(PSACO, P-ACO) is 0.8225, 82% of non-dominated solutions obtained in

P-ACO are dominated by one of the non-dominated solutions of PSACO.

P
A

C
O

)
C

(P
S

A
C

O
,

P
S

A
C

O
)

C
(P

A
C

O
,

1.0

0.5

0.0

C
 M

e
tr

ic

Boxplots of C Metric

Fig. 6.45 Boxplots of the results obtained in the C metric for Model 2

 132

Table 6.28 Descriptive statistics of the C Metric for Model 2

 C(PACO, PSACO) C(PSACO, PACO)
Mean 0.0000 0.8225
Std. Dev. 0.0000 0.3381
Q1 0.0000 0.8000
Median 0.0000 1.0000
Q3 0.0000 1.0000
Minimum 0.0000 0.0000
Maximum 0.0000 1.0000

 133

6.4.6 Computation Times for Model 2

As for Model 1, each algorithm was run for 40 cycles (each cycle consisting of 100

turns). The computation time of each run was recorded and stored in a text file. Fig.

6.46 illustrates the boxplots of the computation times for P-ACO and PSACO and Table

6.29 compares the descriptive statistics of the computation times. The average times for

P-ACO and PSACO are 83.518 and 81.016, respectively. These results show that

PSACO requires a lower computation time for a single run.

P
S

A
C

O

P
A

C
O

90

85

80

75

T
im

e
 (

M
in

.)

Boxplots of Computation Time (min.)

Fig. 6.46 Boxplots of computation time (min.) for Model 2

Table 6.29 Descriptive statistics of the computation time (min.) for Model 2

 PACO PSACO
Mean 83.518 81.016
Std. Dev. 3.965 3.256
Q1 81.286 78.251
Median 84.103 80.191
Q3 86.030 82.437
Minimum 76.005 77.067
Maximum 88.947 87.771

 134

6.4.7 Final Solution
6.4.7

In the case of a multi-objective optimization procedure, the higher level of information

that cannot be incorporated into the optimization algorithm must be used for selecting a

suitable solution (see Fig. 3.1). The approaches discussed in section 3.4 have been used

for selecting a solution among the non-dominated solutions (overall) in both the

algorithms, P-ACO and PSACO. For the first two metrics (lp-metric and Tchebycheff

metric), a reference point z is required which is comprised of individual best objective

function values and thus (0, 0, 0)T is selected as the reference point z. Further, p = 2

(Euclidian distance) has been used for the lp-metric. Both metrics assume that there are

no priorities among the objectives. In the Pseudo-Weight Vector Approach, the

selection of the solution is subjective. Thus, the solution for this approach is selected

such that the weight for the third objective (f3) is the closer to zero. The purpose of this

is to minimize the deviation between the bend angles and the pre-specified catalogue

angles. Table 6.30 and Table 6.31 show the final solutions obtained using these

approaches for Model 1 and Model 2, respectively. The last column of these tables is

the sum of the deviations (absolute difference between the bend angle (θi) and the

closest catalogue angle to θi (ω)). These results also show that in most cases, the final

solution obtained for PSACO for these approaches is not dominated by the

corresponding solution for P-ACO.

Table 6.30 Final solution obtained using various methods for Model 1

 Method f1 f2 f3 Length #

Bends
 

i
i 

PACO 0.2814 0.5 0.0570 354.79 2 20.50 lp-Metric
PSACO 0.2814 0.5 0.0570 354.79 2 20.50
PACO 0.2814 0.5 0.0570 354.79 2 20.50 Tchebycheff-

Metric PSACO 0.2889 0.5 0.0551 358.55 2 19.83
PACO 0.3699 0.5 0.0119 404.61 2 4.29 Pseudo-

weight PSACO 0.4520 0.5 0.0080 465.25 2 2.86

 135

Table 6.31 Final solution obtained using various methods for Model 2

 Method f1 f2 f3 Length #

Bends
 

i
i 

PACO 0.7652 0.90 0.0580 1277.92 10 104.42 lp-Metric
PSACO 0.5415 0.75 0.0690 654.36 4 49.73
PACO 0.7652 0.90 0.0580 1277.92 10 104.42 Tchebycheff-

Metric PSACO 0.5415 0.75 0.0690 654.36 4 49.73
PACO 0.8039 0.95 0.0555 1529.91 21 209.74 Pseudo-

weight PSACO 0.5887 0.80 0.0488 729.47 5 43.89

6.4.8 Refining the solution

According to the solutions found in the previous section, it is noticeable that bend

angles are not much closer to the pre-specified catalogue of angles of bends. For

example, for the solution obtained by the lp-metric and the Tchebycheff-metric for

Model 2 for PSACO each bend deviates on average by approximately 12o (≈ 49.73/4)

from the closest catalogue angle (see second and fourth rows of Table 6.31). Thus, one

could refine the solution further near the solution XG (obtained using the entire search

space) as follows:

Assume that XG = (S, P1, P2, …, Pn, E) is the final solution obtained using the entire

search space where P1, P2, …, Pn are the intermediate points between S and E. Then the

refining algorithm creates a network using some random points in the neighbourhood of

each point Pi (i = 1, 2, …, n) (see Fig. 6.47). Next, the refining algorithm searches for

non-dominated solutions in this network using PSACO.

Table 6.32 shows the overall best non-dominated solutions found for Model 2 after the

refining of the lp-metric solution of PSACO (see second row of Table 6.31). Here the

refined network is generated using 200 random points (density = 200) in each point Pi’s

neighbourhood. Each neighbourhood i is defined as a cube (of size 2r) centred on the

corresponding point Pi. For this experiment r is set to 20. As in the previous

experiments, PSACO is run for 20 trials with 10 ants and an archive size (NA) of 5.

 136

Fig. 6.47 Creating the refined network

Table 6.32 Refined solutions obtained using PSACO for Model 2
(r = 20, Density = 200)

 f1 f2 f3 Length # Bends  

i
i 

Solution 1 0.5160 0.75 0.0104 619.79 4 7.52
Solution 2 0.4892 0.75 0.0277 587.27 4 19.93
Solution 3 0.5667 0.75 0.0093 692.41 4 6.67
Solution 4 0.5085 0.75 0.0260 610.37 4 18.73

According to Table 6.32, it is noticeable that all the refined solutions (except solution 3)

dominate the previous solution found searching the entire search space (compare the

solutions found in Table 6.32 with the second row of Table 6.31). In solutions 1, 2 and 4

both length and  
i

i  are improved even though the number of bends is still the

same. The average deviation from the catalogue angles is also improved. For example,

if solution 1 is selected, this value is approximately 20 (≈ 7.52/4) per bend and was 120

with the solution found using the entire search space.

 137

Fig. 6.48 shows the solutions obtained in the entire search space and in the refined

search space. Table 6.33 lists the actual bend angles, their closest catalogue angles and

the deviation from the closest catalogue angle. The bend angles of the refined solution

are much closer to the pre-specified catalogue angles.

(i) Solution obtained searching the entire

search space
(ii) Refined solution (Solution 1)

Fig. 6.48 Solutions obtained using the entire search space and the refined search
space for Model 2

Table 6.33 Bend angles of the solutions obtained in the entire search space and the
refined search space for Model 2

 Solution obtained using the entire

search space
Refined solution (Solution 1)

 Angle Closest
Catalogue

Angle

Deviation Angle Closest
Catalogue

Angle

Deviation

Bend 1 58.82 45 13.82 45.33 45 0.33
Bend 2 80.63 90 9.37 117.29 120 2.71
Bend 3 108.26 120 11.74 118.31 120 1.69
Bend 4 134.80 120 14.80 122.79 120 2.79

Fig 6.49 shows the boxplots of the computation times for searching non-dominated

solutions in the entire search space and the refined search space. Table 6.34 compares

the different descriptive statistics of the computation times for finding the solutions in

 138

the entire and refined search spaces. According to the boxplot and the table the

computation times for searching in the refined search space is well below the

computation time for searching in the entire search space.

Fig. 6.49 Boxplots of computation times using the
entire search space and the refined search space for Model 2

Table 6.34 Descriptive statistics of computation times using the

entire search space and the refined search space for Model 2

 Entire Search Space Refined Search Space
Mean 81.016 14.242
Std. Dev. 3.256 1.235
Q1 78.251 78.251
Median 80.191 14.371
Q3 82.437 14.936
Minimum 77.067 9.477
Maximum 87.771 15.433

 139

Thus, if the solution obtained using the entire search space is not satisfactory, it is

advisable to run the refinement algorithm to search for an acceptable solution near the

neighbourhood of the solution obtained using the entire search space.

6.5 Results Obtained for the Proposed Multi-Colony Ant Systems for Multi-Hose
Routing

6.5

In this section, the results of applying the proposed multi-colony ant systems

MCAS-MHR-1 and MCAS-MHR-2 described in section 5.8 are presented and

discussed and their strengths and weaknesses are investigated empirically.

The parameter settings for both algorithms are: number of ants for each colony = 5,

initial pheromone level on each edge = 1, pheromone decay parameter  = 0.01,  = 1

and  = 5. Other parameter settings are included in the relevant experiment results.

The termination criterion for each of the experiments was set to 100 cycles.

All the simulations were carried out on a Pentium IV PC (Processor speed = 3.0 GHz,

RAM = 512 MB) in the Microsoft Windows XP environment using Microsoft Visual

C++ (.Net version).

6.5.1 Experiment 1: Demonstrating the potential of MCAS-MHR-1 and MCAS-
MHR-2 on a test graph

6.5.1

The purpose of this experiment is to demonstrate on a graph the potential of the

proposed two algorithms MCAS-MHR-1 and MCAS-MHR-2 whose optimal solutions

between the given commodities (pairs of start and end points) are already known.

Test graph 1 (see Fig. 6.50) is used to find the best shared paths between the

commodities (S1, E1) and (S2, E2). There are 9 possible solutions for this simple graph

(see Table ble 6.35). When considering the shortest paths between the two commodities

(S1, E1) and (S2, E2), the choice would be solution 1. However, if paths need to be

shared as much as possible while the total length of the paths is minimized, the

algorithms should select solution 5.

 140

Table 6.36 shows the percentage of runs that obtain each solution over 100 runs after

100 cycles for different values of w1, w2 and  (only for MCAS-MHR-2).

Fig. 6.50 Test graph 1 – Finding the optimum paths between commodities (S1, E1) and
(S2, E2). Best solution:(S1EFE1, S2EFE2)

These results show that both algorithms obtain the disjoint solution (solution 1) when

the shared length between two paths is not considered for pheromone updating (see

Table 6.36, Fig. 6.51 and Fig. 6.52). However, both algorithms obtain solution 5 from

more than 70% of the runs (except in one case) when there is a contribution from the

shared length between two paths for the pheromone updating (see Fig. 6.51 and Fig.

6.52). The highest percentage obtained for MCAS-MHR-1 is 84% and it happened

when w1 = 0.9 and w2 = 0.1. Compared with MCAS-MHR-1, MCAS-MHR-2 gives

slightly better results for most of the  values. For example, when w1 = 0.9 and w2 = 0.1,

MCAS-MHR-2 obtains solution 5, from 91%, 88%, 89% and 93% of the runs for the 

values 1, 2, 4 and 5, respectively. Therefore, it possible to conclude, empirically, that

the performance of MCAS-MHR-2 is better as a result of using additional information

(foreign pheromones).

S1
E1

S2 E2

E F

C D

A B

S

E

 141

Table 6.35 Possible solutions for test graph 1

Solution No Path from S1 to E1 Path from S2 to E2

1 S1ABE1 S2CDE2
2 S1ABE1 S2EFE2
3 S1ABE1 S2ES1ABE1FE2
4 S1EFE1 S2CDE2
5 S1EFE1 S2EFE2
6 S1EFE1 S2ES1ABE1FE2
7 S1ES2CDE2FE1 S2CDE2
8 S1ES2CDE2FE1 S2EFE2
9 S1ES2CDE2FE1 S2ES1ABE1FE2

Table 6.36 Percentage of each solution found on test graph 1 for different values of w1, w2 and  (for MCAS-MHR-2 only)

MCAS-MHR-1
(w1, w2) (1, 0) (0.9, 0.1) (0.8, 0.2) (0.7, 0.3)
Solution 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

(%) 100 0 0 0 0 0 0 0 0 14 0 0 0 84 2 0 0 0 33 0 4 0 63 0 0 0 0 23 0 2 0 71 2 0 0 0
MCAS-MHR-2

(w1, w2) (1, 0) (0.9, 0,1) (0.8, 0.2) (0.7, 0.3)
Solution 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

 = 0 100 0 0 0 0 0 0 0 0 23 0 0 0 77 0 0 0 0 3 0 0 0 95 2 0 0 0 23 0 2 0 71 2 0 2 0

 = 1 100 0 0 0 0 0 0 0 0 9 0 0 0 91 0 0 0 0 0 0 0 0 94 6 0 0 0 16 0 2 0 78 2 0 2 0

 = 2 100 0 0 0 0 0 0 0 0 12 0 0 0 88 0 0 0 0 15 0 2 0 79 2 0 2 0 4 0 2 0 92 2 0 0 0

 = 3 100 0 0 0 0 0 0 0 0 18 0 0 0 80 2 0 0 0 20 0 0 0 78 0 0 2 0 14 0 2 0 78 6 0 0 0

 = 4 100 0 0 0 0 0 0 0 0 6 0 3 0 89 0 0 0 0 8 0 0 0 92 0 0 0 0 6 0 2 0 90 2 0 0 0

 = 5 100 0 0 0 0 0 0 0 0 3 0 0 0 93 2 0 2 0 5 0 2 0 93 0 0 0 0 18 0 0 0 82 0 0 0 0

 142

MCAS-MHR-1 for Test Graph 1

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9

Solution

P
er

ce
n

ta
g

e w1 = 1.0

w1 = 0.9

w1 = 0.8

w1 = 0.7

Fig. 6.51 Percentage of runs of MCAS-MHR-1 that obtain each solution of test graph 1

 143

MCAS-MHR-2 for Test Graph 1 (Gama = 0)

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9

Solution

P
er

ce
n
ta

g
e w 1 = 1.0

w 1 = 0.9

w 1 = 0.8

w 1 = 0.7

MCAS-MHR-2 for Test Graph 1 (Gama = 1)

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9

Solution

P
er

ce
n
ta

g
e w 1 = 1.0

w 1 = 0.9

w 1 = 0.8

w 1 = 0.7

MCAS-MHR-2 for Test Graph 1 (Gama = 2)

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9

Solution

P
er

ce
n
ta

g
e w 1 = 1.0

w 1 = 0.9

w 1 = 0.8

w 1 = 0.7

MCAS-MHR-2 for Test Graph 1 (Gama = 3)

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9

Solution

P
er

ce
n

ta
g

e w 1 = 1.0

w 1 = 0.9

w 1 = 0.8

w 1 = 0.7

MCAS-MHR-2 for Test Graph 1 (Gama = 4)

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9

Solution

P
er

ce
n

ta
g

e w 1 = 1.0

w 1 = 0.9

w 1 = 0.8

w 1 = 0.7

MCAS-MHR-2 for Test Graph 1 (Gama = 5)

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9

Solution

P
er

ce
n

ta
g

e w 1 = 1.0

w 1 = 0.9

w 1 = 0.8

w 1 = 0.7

Fig. 6.52 Percentage of runs of MCAS-MHR-2 that obtain each solution of test graph 1

 144

6.5.2 Experiment 2: Applying MCAS-MHR-1 and MCAS-MHR-2 to a complex
3D model

6.5.2

The purpose of this experiment is to apply the proposed two algorithms

MCAS-MHR-1 and MCAS-MHR-2 (see section 5.8) to a complex 3D environment and

to compare the results of the two algorithms.

Both algorithms were tested on the following Pro/Engineer 3D model (see Fig. 6.53)

using different values of w1, w2 and  (only for MCAS-MHR-2) for random networks of

200 points and 400 points. The other parameters of the algorithms are fixed as detailed

at the beginning of this section. Both algorithms were used for finding the best shared

paths of 4 commodities. All simulations were carried out for 100 cycles.

Fig. 6.53 Tested Pro/Engineer Model

For each trial, the final path length of each commodity, the connecting points of each

path, the time spent on running the trial (in seconds), the total shared length of paths and

strength_1 and strength_2 (defined in eqs. 5.39 and 5.40) were recorded in text files.

Consider

  4,3,2,1)(iQ j

i

to be the best solution produced in the jth trial (j = 1, 2, …, 100). Here)(j

iQ means the

S

E

 145

path of the ith commodity of the best solution of the jth trial. Further, consider {Ri | i =

1, 2, 3, 4} to be the overall best solution among the best solutions [ 4,3,2,1)(iQ j

i , j =

1, 2, …, 100] produced in 100 trials and ti (i = 1,2, ..., 100) to be the computation time

of the ith trial.

Tables 6.37 and 6.38 summarize the following descriptive statistics obtained for each of

the algorithms over 100 trials after 100 cycles for different values of w1, w2 and 

(MCAS-MHR-2 only) for 200 point and 400 point networks.

Statistic Description Mathematical Form

Q - Avg. total length Average total length of the
paths of the best solutions
over 100 trials









4

1

)(

100

1)(
100 i

j

ij

j j
QlQwhere

Q
Q

)(
jQSD - SD total length Standard deviation of the

total lengths of the paths of
the best solutions over 100
trials

)(
jQSD

S - Avg. shared length Average shared length of
the best solutions over 100
trials)(

100

4

1

4

1

)()(

100

1 











i

ik

k

j

k

j

ij

j
j

QQlSwhere

S

S

)(
jSSD - SD shared length Standard deviation of

shared lengths of the best
solutions over 100 trials

)(
jSSD

1P - % avg. shared length Percentage of the average
shared length to the average
total length

1001 
Q

S
P

R - Total length of the

overall best solution

Total length of the paths of
the overall best solution 

 
4

1
)(

i iRlR

R - Total shared length of

the overall best solution

Total shared length of the
paths of the overall best
solution

)(
4

1

4

1






 
i

ik

k
ki RRlR

2P - % shared length of the

overall best solution

Percentage of the shared
length of the paths of the
overall best solution to the
total length of the paths of
the overall best solution

1002 




R

R
P

T - Avg. Time Average time per trial

100

100

1

 i

it
T

The best solution out of 100 runs is selected using strength_2 (see eq. 5.40) i.e., the

solution with the highest value of strength_2 is selected as the best solution. Here l(.) is

the length of the argument and Ri  Rk is the set of common edges between paths Ri and

Rk.

Fig. 6.54 shows how the average total lengths and the average shared lengths of

 146

MCAS-MHR-1 change for different values of weights. The average shared length

increases as w1 decreases. Similarly, the average total length also increases with lower

values w1.

Fig. 6.55 and Fig. 6.56 show how the average shared lengths and average total lengths

of MCAS-MHR-2 differ for different values of w1, w2, and . As for MCAS-MHR-1,

the average shared length and average total length increase as w1 decreases. It can be

noted that for each value of , the average shared length and the average total length

increase as w1 decreases.

As, for both algorithms the average total length increases as w1 decreases, the designer

of the algorithm must select the values for w1 and w2 carefully. Lower values of w1

imply that both the total length and shared length of the solution increase and higher

values of w1 imply that both total length and shared length decrease. Hence the designer

should select w1 and w2 such that they balance the optimality of both the total length and

the shared length of the paths.

When comparing the average shared lengths for the different  values for specific

weights (see Fig. 6.55), it is noted that  = 2 gives the highest average shared length or

the closest to the highest average shared length in most of the cases of both the 200

point and the 400 point networks. Therefore, MCAS-MHR-2 with  = 2 is selected for

comparison with MCAS-MHR-1.

Fig. 6.57 compares the average shared lengths of MCAS-MHR-1 and MCAS-MHR-2

(with  = 2) for different weights for the 200 and 400 point networks. For the 200 point

network, it can be seen that MCAS-MHR-2 produces significantly larger average shared

lengths for weights w1 = 0.9999 and 0.999 when compared with the values of MCAS-

MHR-1. However, there is no significant difference for the average shared lengths for

MCAS-MHR-1 and MCAS-MHR-2 for the 400 point network. When comparing the

average total lengths (see Fig. 6.58), there is no significant difference between the two

versions.

 147

The total lengths and shared lengths of the overall best solutions of MCAS-MHR-1 and

MCAS-MHR-2 ( = 2) are compared in Figs. 6.59 and 6.60. For both the 200 and 400

point networks, MCAS-MHR-1 produces higher shared values than MCAS-MHR-2 in 4

out of 6 cases. However, when comparing the total lengths, MCAS-MHR-2 produces

smaller total length values in most cases.

When comparing the computational times of the two algorithms (see Fig. 6.61), the

computation time of MCAS-MHR-1 is less for the more complicated network (400

point network).

When comparing memory requirements, MCAS-MHR-2 uses a single pheromone

matrix for each colony and it needs more memory than MCAS-MHR-1. Indeed, the

memory requirement of MCAS-MHR-2 grows with the number of commodities used in

the algorithm.

 148

Table 6.37 Descriptive statistics of MCAS-MHR-1 for the 200 point network

 Q)(

jQSD S)(
jSSD 1P R

R 2P T (Sec.)

w1 = 1.0, w2 = 0.0 3568.9 30.6 119.6 192.5 3.35 3490.32 148.50 4.26 56.27

W1 = .9999, w2 = .0001 3584.3 37.4 238.7 264.3 6.66 3595.12 887.32 24.68 57.03

W1 = .999, w2 = .001 3735.6 126.4 588.7 230.4 15.76 3960.28 1209.94 30.55 63.66

Table 6.38 Descriptive statistics of MCAS-MHR-1 for the 400 point network

 Q)(

jQSD S)(
jSSD 1P R

R 2P T (Sec.)

w1 = 1.0, w2 = 0.0 3342.36 36.38 58.23 110.85 1.74 3238.01 241.34 7.45 128.61

W1 = .9999, w2 = .0001 3347.85 42.47 82.11 115.43 2.45 3238.44 241.34 7.45 129.52

W1 = .999, w2 = .001 3480.53 96.66 338.30 195.07 9.72 3577.07 828.75 23.17 128.28

 149

Table 6.39 Descriptive statistics of MCAS-MHR-2 for the 200 point network

Weights  Q)(

jQSD S)(
jSSD 1P R

R 2P T (Sec.)

0 3567.02 30.70 133.25 202.09 3.74 3488.68 0.00 0.00 56.10

1 3568.54 29.46 75.27 153.89 2.11 3489.08 518.03 14.85 56.20

2 3572.95 31.52 92.53 166.40 2.59 3390.99 0.00 0.00 55.94

3 3562.44 33.30 120.53 178.93 3.38 3460.98 104.40 3.02 55.56

4 3573.30 28.56 148.12 215.85 4.15 3514.67 0.00 0.00 55.47

w
1

=
 1

.0
, w

2
=

 0
.0

5 3567.67 35.66 121.38 188.76 3.40 3461.55 43.69 1.26 55.21

0 3588.27 43.37 239.78 251.01 6.68 3493.48 800.54 22.92 56.26

1 3587.12 45.09 259.04 233.30 7.22 3532.09 688.93 19.50 56.34

2 3591.61 42.89 293.69 248.87 8.18 3574.13 910.93 25.49 56.11

3 3587.27 43.32 282.10 247.06 7.86 3572.71 990.17 27.72 55.86

4 3581.76 37.96 236.63 227.05 6.61 3554.92 740.03 20.82 55.73

w
1

=
 .9

99
9,

 w
2

=
 .0

00
1

5 3593.44 38.78 310.84 243.90 8.65 3550.06 1004.85 28.31 55.56

0 3747.75 156.75 612.55 250.36 16.35 3812.51 1296.03 33.99 56.09

1 3735.79 128.62 616.77 229.78 16.51 4065.98 1369.88 33.69 55.82

2 3730.34 114.60 650.97 267.58 17.45 3609.02 1128.69 31.27 55.00

3 3741.96 107.70 615.63 238.94 16.45 3774.27 1141.45 30.24 55.29

4 3737.44 111.86 617.79 273.20 16.53 4084.38 1395.68 34.17 55.21

w
1

=
 .9

99
, w

2
=

 .0
01

5 3740.83 145.18 615.56 250.67 16.46 3548.82 1016.95 28.66 55.72

 150

Table 6.40 Descriptive statistics of MCAS-MHR-2 for the 400 point network

Weights  Q)(

jQSD S)(
jSSD 1P R

R 2P T (Sec.)

0 3339.39 38.59 34.80 81.36 1.04 3239.44 0.00 0.00 135.04

1 3342.62 40.62 41.78 92.60 1.25 3186.64 241.34 7.57 133.79

2 3345.17 35.52 24.50 70.98 0.73 3261.64 0.00 0.00 135.93

3 3342.08 35.89 44.93 94.09 1.34 3261.90 0.00 0.00 134.79

4 3340.79 37.23 53.81 96.21 1.61 3234.37 241.34 7.46 135.75

w
1

=
 1

.0
, w

2
=

 0
.0

5 3335.33 45.24 31.06 78.62 0.93 3197.35 412.80 12.91 135.47

0 3343.75 40.04 70.17 105.89 2.10 3264.22 380.03 11.64 135.97

1 3355.58 48.88 101.50 142.10 3.03 3244.43 516.50 15.92 135.30

2 3349.84 43.95 92.01 125.33 2.75 3267.76 402.77 12.33 134.09

3 3353.93 45.21 85.96 138.72 2.56 3232.26 241.34 7.47 136.08

4 3351.63 42.97 107.48 160.30 3.21 3334.68 456.43 13.69 136.87

w
1

=
 .9

99
9,

 w
2

=
 .0

00
1

5 3346.46 45.10 82.42 146.13 2.46 3196.40 241.34 7.55 135.22

0 3466.34 102.51 289.11 194.28 8.34 3528.09 768.50 21.78 135.19

1 3472.51 89.87 346.19 195.18 9.97 3542.69 857.55 24.21 134.47

2 3471.20 92.79 348.81 185.79 10.05 3482.27 747.83 21.48 133.85

3 3470.18 114.92 319.52 197.79 9.21 3532.38 1015.93 28.76 134.56

4 3477.17 102.54 355.33 187.84 10.22 3612.18 988.48 27.37 135.05

w
1

=
 .9

99
, w

2
=

 .0
01

5 3477.33 98.62 349.55 196.05 10.05 3475.93 840.10 24.17 133.75

 151

MCAS-MHR-1 for 200 points network

0

500

1000

1500

2000

2500

3000

3500

4000

1 0.9999 0.999

w1

A
ve

ra
g

e
va

lu
e

Avg. Shared Length

Avg. Total Length

MCAS-MHR-1 for 400 points network

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3

w1

A
ve

ra
g

e
va

lu
e

Avg. Shared Length

Avg. Total Length

Fig. 6.54 Average values of total lengths and shared lengths of MCAS-MHR-1 for the 200 and 400 point networks against different
values of weights

 152

MCAS-MHR-2 for 200 points network

0

100

200

300

400

500

600

700

0 1 2 3 4 5

Gama values

A
ve

ra
g

e
sh

ar
ed

le
n

g
th

w 1 = 1

w 1 = 0.9999

w 1 = 0.999

MCAS-MHR-2 for 400 points network

0

50

100

150

200

250

300

350

400

0 1 2 3 4 5

Gama values

A
va

ra
g

e
sh

ar
ed

le
n

g
th

w 1 = 1

w 1 = 0.9999

w 1 = 0.999

Fig. 6.55 Average shared lengths of MCAS-MHR-2 for the 200 and 400 point networks against different values of 

 153

MCAS-MHR-2 for 200 points network

3450

3500

3550

3600

3650

3700

3750

3800

0 1 2 3 4 5

Gama values

A
ve

ra
g

e
to

ta
l

le
n

g
th

w1 = 1

w1 = 0.9999

w1 = 0.999

MCAS-MHR-2 for 400 points network

3250

3300

3350

3400

3450

3500

0 1 2 3 4 5

Gama values

A
ve

ra
g

e
to

ta
l

le
n

g
th

s

w1 = 1

w1 = 0.9999

w1 = 0.999

Fig. 6.56 Average total lengths of MCAS-MHR-2 for the 200 and 400 point networks against different values of 

 154

Average shared lengths (MCAS-MHR-1 vs. MCAS-MHR-2) for 200
points network

0

100

200

300

400

500

600

700

1 0.9999 0.999

w1

A
v

e
ra

g
e

s
h

a
re

d
le

n
g

th

MCAS-MHR-1

MCAS-MHR-2 (Gama = 2)

Average shared lengths (MCAS-MHR-1 vs. MCAS-MHR-2)
for 400 points network

0
50

100
150
200
250
300
350
400

1 0.9999 0.999

w1

A
v

e
ra

g
e

s
h

a
re

d
le

n
g

th

MCAS-MHR-1

MCAS-MHR-2 (Gama = 2)

Fig. 6.57 Comparison of average shared lengths of MCAS-MHR-1 and MCAS-MHR-2 ( = 2) of
the 200 and 400 point networks against different values of weights

 155

Average total lengths (MCAS-MHR-1 vs. MCAS-MHR-2) for 200 points
network

3450

3500

3550

3600

3650

3700

3750

1 0.9999 0.999

w1

A
ve

ra
g

e
to

ta
ll

en
g

th

MCAS-MHR-1

MCAS-MHR-2 (Gama = 2)

Average total length (MCAS-MHR-1 vs. MCAS-MHR-2) for 400 points
network

3250

3300

3350

3400

3450

3500

1 0.9999 0.999

w1

A
ve

ra
g

e
to

ta
ll

en
g

th

MCAS-MHR-1

MCAS-MHR-2 (Gama = 2)

Fig. 6.58 Comparison of average total lengths of MCAS-MHR-1 and MCAS-MHR-2 ( = 2) of
the 200 and 400 point networks against different values of weights

 156

Shared lengths of the best solution for 200 points
network

0

200
400

600

800

1000
1200

1400

1 0.9999 0.999

w1

S
h

ar
ed

le
n

g
th

MCAS-MHR-1

MCAS-MHR-2 (Gama = 2)

Total lengths of the best solution for 200 points

3100
3200
3300
3400
3500
3600
3700
3800
3900
4000
4100

1 0.9999 0.999

w1

T
o

ta
l

le
n

g
th

MCAS-MHR-1

MCAS-MHR-2 (Gama = 2)

Fig. 6.59 Comparison of shared lengths and total lengths of the best solutions of MCAS-MHR-1 and MCAS-MHR-2 ( = 2)
for the 200 point network against different values of weights

 157

Shared lengths of the best solution for 400 points
network

0

200

400

600

800

1000

1 0.9999 0.999

w1

S
h

ar
ed

le
n

g
th

MCAS-MHR-1

MCAS-MHR-2 (Gama = 2)

Total lengths of the best solution for 400 points
network

3000

3100
3200

3300

3400

3500
3600

3700

1 0.9999 0.999

w1

T
o

ta
l

le
n

g
th

MCAS-MHR-1

MCAS-MHR-2 (Gama = 2)

Fig. 6.60 Comparison of shared lengths and total lengths of the best solutions of MCAS-MHR-1 and MCAS-MHR-2 ( = 2)
for the 400 point network against different values of weights

 158

Average time (MCAS-MHR-1 vs. MCAS-MHR-2) for 200 points network

50

52

54

56

58

60

62

64

66

1 0.9999 0.999

w1

A
vg

.T
im

e
(S

ec
.)

MCAS-MHR-1

MCAS-MHR-2 (Gama = 2)

Average time (MCAS-MHR-1 vs. MCAS-MHR-2) for 400 points network

124

126

128

130

132

134

136

138

1 2 3

w1

A
vg

.T
im

e
(S

ec
.)

MCAS-MHR-1

MCAS-MHR-2 (Gama = 2)

Fig. 6.61 Average time per trial of MCAS-MHR-1 and MCAS-MHR-2 ( = 2)
for the 200 and 400 point networks against different values of weights

 159

6.6 Summary of the Chapter

This chapter presented experimental results obtained for automatic hose/pipe routing of

3D models using ant colony optimization. Initially ant colony optimization was

restricted to a single objective (length of the hose) and was tested on two virtual

networks, grid and random, drawn in the CAD model. According to the initial

experiments (see section 6.1), the results showed that ant colony optimization based on

randomly generated networks was able to produce a reasonable solution in a reasonable

time. Further, the failure rate of the ACO based on random networks is low compared to

that for grid networks. The results of the two modifications MAS and N_MAS (sections

6.2 and 6.3) showed that they have improved the performance of the ant system (AS). In

section 6.4, the results of the multi-objective ant colony optimization were presented.

According to these results, the proposed multi-objective ant colony optimization

algorithm PSACO generates better solutions compared to the currently best MOACO

for compromised (trade-off) solutions. Finally, the results of the two multi-colony ant

systems (MCAS-MHR-1 and MCAS-MHR-2) for multi-hose routing were presented in

section 6.5. According to these results, there is no significant difference in the quality of

the solutions of the two algorithms. However, MCAS-MHR-1 takes less computation

time, has a smaller number of parameters and requires lower memory capacity.

6.3

 160

7 CONCLUSIONS AND FUTURE WORK
7

7.1 Conclusions

The research described in this thesis has covered the application of ant colony

optimization to finding the optimum layout of hose/pipe routing with several objectives

and parallel multi-hose routing.

Initially, two versions of an ant colony algorithm based on networks generated from

grid points and random points have been proposed for automatic 3D hose routing. These

two versions were restricted to minimizing the total length of pipes and avoiding the

obstacles. According to the results obtained it is clear that ant colony algorithms

executed on random-based networks were able to find good solutions in a competitive

time. For avoiding obstacles when generating the pipes, the C++ library RAPID was

incorporated into the program and the algorithms were able to handle complex models

and any shape that can be generated using a CAD package.

Two modifications (see sections 5.4 and 5.5) were introduced to the ant colony

optimization algorithm and were empirically shown to significantly improve the ant

colony algorithm, ant system (AS).

7.1.1 Pareto Strength Ant Colony Optimization for Multi-Objective Hose
Routing

In Section 5.6, a general purpose Pareto strength ant colony optimization algorithm

(PSACO) has been introduced and applied to automatic multi-objective hose routing in

3D space. A single pheromone matrix has been used for each of the objectives and the

algorithm updates its pheromones based on the domination concept.

The results were compared with the Pareto-based ant colony optimization algorithm

P-ACO. P-ACO is considered as the best Pareto based ACO algorithm that generates

good solutions at the central part of the Pareto front. This algorithm also uses separate

pheromone matrices for each of the objectives.

 161

The algorithms optimize three objectives: total lengths of the hoses, total number of

bends and the angles of bends. Further, a modification has been introduced to the

random proportional rule of both of the algorithms to attract ants towards the edges that

make bend angles closer to catalogue angles. In addition, the set of neighbour nodes that

remains to be visited by an ant has been modified such that the edges make bend angles

with the previous edge close to one of the catalogue angles.

As in the initial experiments, the tessellated format (STL format) of the original objects

and the C++ library, RAPID, have been used for collision detection. As a result of these,

the proposed algorithm can handle free-form obstacles and is not restricted to a

particular CAD package. Algorithms do not need to call the collision detection

algorithm during the execution, as the random network is created at the beginning of the

algorithm. As a result of this, Pareto ant colony algorithms can reduce the computation

time required.

Algorithms have been compared graphically (scatter-plot matrix, value path, and bar

chart) and in terms of metrics of performances (using M2
*, M3

* and C metrics) and

computation time. Graphically, there is not much difference between the two algorithms

for the first tested model - Model 1 (see Fig. 6.32). But the difference is significant for

Model 2 (see Fig. 6.32). According to the metrics M2
* and M3

*, PSACO generates better

distributions of non-dominated solutions and better maxima in each dimension of the

non-dominated solutions. From the C-metric, it can be concluded that PSACO is very

competitive compared to P-ACO. For Model 1, non-dominated solutions obtained by

the two algorithms do not show much difference in terms of the C-metric while the

former (PSACO) offers a good set of non-dominated solutions for Model 2, which in

most cases dominate the solutions returned by P-ACO. In addition, the non-dominated

solutions obtained by P-ACO for Model 2 have not dominated the non-dominate

solutions of PSACO.

In terms of computation time, the results showed that PSACO takes less computation

time for both of the models tested.

 162

Since PSACO uses a single pheromone matrix, it needs only a fixed amount of main

memory for all of the objectives whilst P-ACO’s memory requirement increases with

the number of objectives in the problem.

From a theoretical point of view, PSACO has a sound theoretical background in terms

of the current state of the art in multi-objective optimization. Furthermore, it can be

used as a general purpose multi-objective ant colony algorithm for other problems as

well.

Since a multi-objective optimization algorithm obtains more than one solution, three

metrics: lp-metric, Tchebycheff metric and Pseudo-Weight Vector Approach were used

for choosing a solution out of the non-dominated solutions returned by the algorithm.

These final results also showed that PSACO’s solution has not been dominated by the

corresponding solution of P-ACO.

The refinement algorithm was applied to the final solution obtained for the second

tested model - Model 2 (using lp-metric and Tchebycheff-metric). The results obtained

after refinement improved the former. Moreover, the computation time for a run of the

refinement algorithm is low compared to that for searching the entire search space.

Hence, it is recommended to run the refinement algorithm to improve the solution

obtained by using the entire search space.

7.1.2 Proposed Ant Colony Algorithms for Multi-Hose Routing

In Section 5.8, two versions of multi-colony ant systems (called MCAS-MHR-1 and

MCAS-MHR-2 respectively) have been introduced for routing multiple hoses/pipes in

parallel. The two versions use a separate colony for each commodity (pairs of start and

end points). The first version uses a single pheromone matrix for all colonies whilst the

second version uses a separate pheromone matrix for each colony. Thus, ants in the

second version (MACS_MHR_2) were able to smell different pheromones individually

laid by ants in other colonies. Ants in the first version cannot recognize pheromones

individually as all pheromones laid by ants from different colonies on an edge are

summed up to a single value. A further modification was introduced to the random

propositional rule in MCAS-MHR-2 to attract ants towards edges that were used by ants

 163

of other colonies. When pheromone updating, both methods evaluate the quality of a

solution according to not only the total lengths of paths but also the shared length of

paths.

An objective of this work is to apply these methods to multi-hose routing with

maximum use of common edges. Initially, the two methods were tested on a simple test

graph (see section 6.5.1) using two commodities. In Experiment 2 (see section 6.5.2),

the two methods have been applied to multi-hose routing in a complex 3D CAD model

using two randomly generated networks of size 200 points and 400 points and 4

commodities.

In both algorithms, the relative importance of the total length and the shared length must

be identified; accordingly respective weights (w1 and w2) must be selected. It is difficult

to select pre-defined values for w1 and w2 for all routing problems. The best way to

obtain a better result is to run the algorithms with different values of w1 and w2 and to

select the appropriate solution from solutions produced over different values of w1 and

w2.

When comparing the overall best solutions, MCAS-MHR-1 gives greater shared

lengths, whilst MCAS-MHR-2 produces greater total lengths in most cases.

When comparing the average shared lengths, MCAS-MHR-2 performs slightly better

than MCAS-MHR-1. Obviously this is a result of the use of foreign pheromones in the

random propositional rule used in MCAS-MHR-2. However, MCAS-MHR-2 uses an

additional parameter () and needs a separate pheromone matrix for each of the

commodities; this increases the memory requirement of the algorithm as the number of

commodities increases.

Computational times for the two algorithms do not show much difference for the simple

network (200 points network). However, MCAS-MHR-1 takes less computational time

for the 400 points network as it uses less memory access and fewer computations.

 164

According to the results found in both versions, there is no significant difference in the

quality of the solutions between the two versions: MCAS-MHR-1 and MCAS-MHR-2.

Thus, MCAS-MHR-1 is recommended for this type of problem as it takes less

computation time, requires a smaller number of parameters and has low memory

requirements.

7.2 Recommendations for Future Work

The following suggestions are put forward for future investigations.

1. When creating the contender node list Ji
*(r) of MAS (see section 5.4), the current

best value is obtained from previous cycles or generations. But this could be further

improved, if the best solutions generated in the current cycle are also taken into

consideration.

2. When introducing two types of ants into MAS (see section 5.5), the pheromone

values),(ur in the state transition rule of the explorer ants have been taken to the

power -1 (),(/1 ur). Other negative power values (integers and real values) could

be tested for the pheromone values, thereby controlling how much the explorer ants

are repulsed by the pheromone values.

3. In this thesis, the final solution of the Pareto ant colony optimization in multi-

objective hose routing was selected using the methods described in section 3.4 (see

also section 6.4.7). However, when selecting the final solution in this way, the

algorithm does not take into account problem-specific higher-level information

(non-technical, qualitative and experience-driven) that cannot be incorporated into

the model (see also Fig. 3.1).

Instead of relying on the experience of a skilled engineer for selecting the final

solution, an intelligent system could be designed which incorporates higher-level

information relating to hose/pipe routing and this system could then suggest the

final solution from non-dominated solutions obtained by Pareto ant colony

optimization algorithms (see Fig. 7.1).

 165

Fig. 7.1 Intelligent system which incorporates higher-level information for selecting a

solution

4. The multi-colony algorithms (MCAS-MHR-1 and MCAS-MHR-2) proposed in

section 5.8 were run on a single PC. The next step is to implement each colony on

different PCs (grid computing) and speed up the algorithms.

5. Finally, these two versions use the classical approach of multi-objective

optimization (weighted sum approach) and thus another possibility for improvement

would be to use Pareto optimization techniques.

Multi-objective
hose routing

problem

Pareto Ant Colony
Optimization

Algorithm

Multiple trade-off
solutions found

Intelligent
System

Choose one
solution

Step 1: Finding of multiple trade-
off solutions

Step 2: Use of higher
level information to select
a solution

 166

ACRONYMS

ACO Ant Colony Optimization
ACS Ant Colony System
AEDG Alternative Energy Distributed Generation
AGSS Airport Ground Service Scheduling
AI Artifitial Intelligence
AS Ant System
ASCII American Standard Code for Information Interchange
CAD Computer Aided Design
CD Cell Decomposition
CG Cell Generation
COMPETants Competing Ant Colonies
CSP Constraint Satisfaction Problem
EDD Earliest Due Date First
GA Genetic Algorithms
GAPRUS Genetic Algorithms based Pipe Routing Using Tessellated Objects
GBI GA-Based Inspiration
HC Hill Climbing
JSP Job Shop Scheduling
MACS Multiple Ant Colony System
MACS-VRPTW Multiple Colony System for Vehicle Routing Problems with Time

Windows
MAS The Proposed Reduced Sized Search Space for Ant Colony

Optimization
MCAS Multi Colony Ant System
MCAS-MHR-1 Multi Colony Ant System for Multi Hose Routing (Version 1)
MCAS-MHR-2 Multi Colony Ant System for Multi Hose Routing (Version 2)
M-MMAS Max-Min Ant System
MOACO Multi Objective Ant Colony Optimization
MOAQ Multi Objective Ant-Q
MOGA Multi Objective Genetic Algorithms
MONACO Multi-objective Network Ant Colony Optimization
MOOP Multi Objective Optimization Problem
N_MAS The Proposed Explorer Ants for Avoiding Stagnation
ND Non Deteministic
NP Non-deterministic Polynomial
NSGA Non-dominated Sorting Genetic Algorithm
P-ACO Pareto Ant Colony Optimization
PC Personal Computer
PRM Probabilistic Road Map
PSACO Pareto Strength Ant Colony Optimization
PSO Particle Swarm Optimization
QAP Quadratic Assignment Problem
RAPID Robust and Accurate Polygon Interference Detection System
RBI Rule-Based Inference
SA Simulated Annealing
SCM Supply Chain Management
SPEA Strength Pareto Evolutionary Algorithm
SPRD Ship Pipe Route Design

 167

STL Stereo Lithography
TC Tree of Combination
TSP Travelling Salesman Problem
VRPTSR Vehicle Routing Problems with Tight time windows, Short travel

time and Re-used Vehicles

 168

REFERENCES

[1] Zhu, D. & Latombe, J.C. (1991). Pipe Routing = Path Planning (With Many

Constraints). In Proc. IEEE, International Conference on Robotics and Automation,
Sacramento, California – April, 1996, pp. 1940 – 1947.

[2] Brooks, R.A. & Lozano-Perez, T. (1982). A Subdivision Algorithm in Configuration
Space for Findpath with Rotation. A1 Memo 684, A1 Lab., MIT, 1982.

[3] Zhu, D. & Latombe, J.C. (1989). New Heuristic Algorithms for Efficient Hierarchical
Path Planning. Rep. STAN-CS-89-1279, Computer Science Dept., Stanford, Aug. 1989.

[4] Conru, A.B. (1994). A Genetic Approach to the Cable Harness Routing Problem. In
Proc. Of the IEEE World Congress on Computational Intelligence, 27-29, June, 1994,
pp. 200-205.

[5] Dijkstra, E.W. (1959). A Note on Two Problems in Connexion with Graphs. Numerical
Mathematic 1, pp. 269-271.

[6] Park, H., Lee, H., & Cutkosky, M.R. (1991). Computational Support for Concurrent
Engineering of Cable Harnesses. Computers in Engineering, Proceedings of the
International Computers in Engineering Conference and Exhibit, Vol. 1, No. 1, San
Francisco, USA, 1992, pp. 261-268.

[7] Petrie, C.J., Webster, T.A., & Cutkosky, M.R. (1995). Using Pareto Optimality to
Coordinate Distributed Agents. Artificial Intelligence Engineering Design Anal
Manufacturing 9(4), 1995, pp. 269-281.

[8] Cerezuela, C., Cauvin, A. Boucher, X., & Kieffer, J.P. (1998). A Decision Support
System for a Concurrent Design of Cable Harnessed: Conceptual Approach and
Implementation, Concurrent Eng. Res. Appl. 6(1), 1998, pp. 43-52.

[9] Ng, F.M., Ritchie, J.M., Simmons, J.E.L., & Dewar, R.G. (2000). Designing Cable
Harness Assemblies in Virtual Environments. Journal of Materials Processing
Technology 107 (2000), pp. 37-43.

[10] Kabul, I., Gayle, R. & Lin, M.C. (2007). Cable Route Planning in Complex
Environments Using Constrained Sampling. ACM Symposium on Solid and Physical
Modelling, Proceedings of the 2007 ACM symposium on Solid and physical modelling,
Beijing, China, pp. 395-402.

[11] Sandurkar, S., & Chen, W. (1998). GAPRUS – Genetic algorithms based pipe routing
using tessellated objects. The Journal of Computers in Industry.

[12] Thantulage, G., Kalganova, T. & Fernando, W.A.C. (2006). A Grid-based Ant Colony
Algorithm for Automatic 3D Hose Routing. IEEE Congress on Evolutionary
Computation, CEC 2006, Vancouver, Canada, Jul., 2006. pp. 48 – 55.

[13] Thantulage, G., Kalganova, T. & Wilson, M. (2006). Grid Based and Random Based
Ant Colony Algorithms for Automatic Hose Routing in 3D Space. Transactions on
Engineering, Computing and Technology, Volume 14, International Journal of Applied
Science, Engineering and Technology (IJASET), Enformatika, ISBN 1503-5313, ISBN
975-00803-3-5, Aug., 2006. pp. 144 – 150.

[14] Drumheller, M. (2002). Constraint-Based Design of Optimal Transport Elements. ACM
Symposium on Solid and Physical Modelling, Proceedings of the seventh ACM
symposium on Solid modeling and applications, Saarbrücken, Germany: SESSION:
Engineering Applications, ISBN:1-58113-506-8, pp. 401-412.

[15] Lee, C.Y. (1961). An Algorithm for Path Connections and its Applications. IRE Trans
Electr Comp, 1961, pp. 346-365.

[16] Mitsuta, T., Kobayashi, Y., Wada, Y., & Kiguchi, T. (1986). A Knowledge-Based
Approach to Routing Problems in Industrial Plant Design. In Proceedings of the 6th
International Workshop on Expert Ststems & Their Applications, 28-30, April,
Avignon, France, 1986, pp. 237-256.

[17] Kim, D.G., & Corne, D. (1996). Industrial Plant Pipe-Route Optimization with Genetic
Algorithms. Parallel problem solving from nature IV, Berlin, Springer, 1996, pp. 1012-
1021.

 169

[18] Hesser, J., Maenner, R., and Stucky, O. (1989). Optimization of Steiner Trees Using
Genetic Algorithms. In D. Schaffer, Editor, Proceedings of the Third International
Conference on Genetic Algorithms, 1989, pp. 231-236.

[19] Ito, T. (1999). A Genetic Algorithm Approach to Piping Route Path Planning. Journal
of Intelligent Manufacturing (1999) 10, pp. 103-114.

[20] Ahuja, N. and Hwang Y.K. (1992). Gross Motion Planning - A Survey. ACM
Computing Surveys, 24(3), 219-291.

[21] Aurenhammer, F. (1991). Voronoi Diagrams - A Survey of Fundamental Geometric
Data Structure. ACM Computing Survey, 23(3) (Sept.), pp. 345-405.

[22] Koditschek, D. E. (1989). Robot Planning and Control via potential functions. Robotics
Review, Vol 1, MIT Press, Cambridge, Mass.

[23] Kang, S.S., Myung, S.H., & Han, S.H. (1999). A Design Expert System for Auto-
routing of Ship Pipes. J Ship Prod 1999: 15(1), pp. 1-9.

[24] Park, J.H. & Storch, R.L. (2002). Pipe-Routing Algorithm Development: Case Study of
A Ship Engine Room Design. Expert Systems with Applications Vol. 23, Issue 3, Oct 1,
2002, Science Direct, pp. 299-309.

[25] Ito, T. & Fuduka, S. (1998). Hybrid Approach to Piping Route Path Design Using GA-
Based Inspiration and Rule-Based Inference. Volume 6, Number 4, Sage Publications,
1998, pp. 323-332.

[26] Dorigo, M. & Stutzle, T. (2004). Ant Colony Optimization, MIT Press, Cambridge,
MA.

[27] Dorigo, M., Maniezzo, V., & Colorni, A. (1996). The Ant System: Optimization by a
Colony of Cooperating Agents. IEEE Transactions on Systems, Man, and Cybernetics-
Part B, Vol. 26, No. 1, pp. 1-13.

[28] Colorni, A., Dorigo, M., & Maniezzo, V. (1991). Distributed Optimization by Ant
Colonies. In proceedings of ECAL91 – European Conference on Artificial Life,
Elsevier Publishing, pp. 134-142.

[29] Stützle, T. & Hoos, H. (1997). MAX-MIN Ant System and Local Search for the
Travelling Salesman Problem, IEEE International Conference on Evolutionary
Computation, pp. 309- 314

[30] Maniezzo, V., Dorigo, M., & Colorni, A. (1994). The Ant System Applied to the
Quadratic Assignment Problem. Technical Report IRIDIA/94-28, Universit Libre de
Bruxelles, Belgium.

[31] Dorigo, M, Gambardella, L. (1997). Ant Colony System: A Cooperative Learning
Approach to the Travelling Salesman Problem, IEEE Transactions on Evolutionary
Computation, 1:1. pp. 53-66.

[32] Cordon, O., Fernandez de Viana, I. & Herrera, F. (2002). Analysis of the Best-Worst
Ant System and Its Variants on the TSP. Mathware & Soft Computing, 9:2-3. pp. 177-
192.

[33] Bullnheimer, B. Kotsis, G. & Struss, C. (1999). A New Rank-based Version of the Ant
System: A Computational Study. Central European Journal for Operations Research and
Econimics, 7:1. pp. 25-38.`

[34] Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). From Natural to Artificial Swarm
Intelligence. New York: Oxford University Press.

[35] Corne, D. Dorigo, M., & Glover, F. (Eds.). (1999). New Ideas in Optimization.
Maidnhead, UK: McGraw-Hill.

[36] Gambardella, L.M., & Dorigo, M. (1999). Ant Algorithms for Discrete Optimization.
Artificial Life 5: Massachusetts Institute of Technology. pp. 137-172.

[37] Engelbrecht, A.P. (2005). Fundamentals of Computational Swarm Intelligence. ISBN:
978-0- 470-09191-3.

[38] Deb, K. (2003). Multi-Objective Optimization using Evolutionary Algorithms. John
Wiley & Sons Inc., ISBN: 0-471-87339-X.

[39] Miettinen, K. (1999). Nonlinear Multiobjective Optimization. Boston: Kluwer.

 170

[40] Meisel, W.L. (1973). Tradeoff Decision in Multiple Criteria Decision Making. In J.L.
Cochrane and M. Zeleny (Eds), Multiple Criteria Decision Making. Columbia, SC:
University of South Carolina Press. pp. 461-476.

[41] Cleveland, W.S. (1994). Elements of Graphing Data. Murray Hill, N J: AT & T Bell
Laboratories.

[42] Geoffrion, A. M., Dyer, J.S. & Feinberg, A. (1972). An Interactive Approach for Multi-
criterion Optimization with an Application to the Operation of an Academic
Department. Management Science 19(4), pp. 357-368.

[43] Zitzler, E., Deb, L. & Thiele, L. (2000). Comparison of Multi-objective Evolutionary
Algorithms: Empirical Results. Evolutionary Computation, 8:2, 2000. pp. 173-195.

[44] Coello, C.A., Van Veldhuizen, D.A. & Lamant, G.B. (2002). Evolutionary Algorithms
for Solving Multi-objective Problems. Kluwer.

[45] Zeleny, M. (1973). Compromise Programming. In J.L. Cochrane and M. Zeleny (Eds.),
Multiple Criteria Decision Making, Columbia: SC: University of South Carolina Press.
pp. 262-301.

[46] Baran, B. & Schaerer, M. (2003). A Multi-objective Ant Colony System for Vehicle
Routing Problem with Time Windows, Proc. Twenty first IASTED International
Conference on Applied Informatics, Insbruck, Austria, Feb. 10-13, 2003. pp. 97-102.

[47] Cardoso, P., Jesus, M. & Marquez, M. (2003). Multi-objective Network Optimization
Based on an ACO. Proc. X Encuentros de Geometria Computational, Seville, Spain,
Jun. 16-17, 2003.

[48] Doerner, K., Hartl, R.F. & Teimann, M. (2003). Are COMPETants More Competent for
Problem Solving? – The Case of Full Truckload Transportation, Central European
Journal of Operation Research (CEJOR), 11:2, 2003. pp. 115-141.

[49] Doerner, K., Gutjahr, W.J. & Hartl, R.F. (2004). Pareto Ant Colony Optimization: A
Meta-heuristic Approach to Multi-objective Portfolio Selection. Annals of Operational
Research, 2004. pp. 79-99.

[50] Gambardella, L., Tailard, E. & Agazzi, G. (1999). MACS-VRPTW: A Multiple ACS
for Vehicle Routing Problems with Time Windows. In: D. Corne, M. Dorigo, F. Glover
(Eds.), New Ideas in Optimization, McGraw-Hill, 1999. pp. 73-76.

[51] Iredi, S. Merkle, M. & Middendorf, M. (2001). Bi-Criterion Optimization with Multi-
colony Ant Algorithms. Proc. First International Conference on Evolutionary Multi-
criterion Optimization (EMO’01), LNCS 1993, 2001. pp. 359-372.

[52] Mariano, C.E. & Morales, E. (1999). A Multiple Objective Ant-Q Algorithm for the
Design of Water Distribution Irrigation Networks. Technical Report HC-9904, Instituto
Mexicano de Tecnologia, Jun., 1999.

[53] Garcia-Martinez, C., Cordon, O. & Herrera, F. (2004). An Empirical Analysis of
Multiple Objective Ant Colony Optimization Algorithms for the Bi-criteria TSP.
LNCS, Volume 3172/2004, ISBN: 978-3-540-22672-7, Publisher: Springer
Berlin/Heidelberg, Nov., 2004. pp. 61-72.

[54] Deb, K., Pratap, A., Agarwal, S. & Meyarivan, T. (2002). A Fast and Elitist Multi-
objective Genetic Algorithm: NSGA-II, IEEE Transactions on Evolutionary
Computation, 6:2, 2002. pp. 182-197.

[55] Zitzler, E., Laumanns, M. & Thiele, L. (2001). SPEA2: Improving the Strength Pareto
Evolutionary Algorithm. In K. Giannakoglou et al. (Eds.) EUROGEN 2001,
Evolutionary Methods for Design, Optimization and Control with Applications to
Industrial Problems, Athens, Greece, September 2001. pp. 12-21.

[56] Silverman, B.W. (1986). Density Estimation for Statistics and Data Analysis. Chapman
and Hall, London.

[57] Nowe, A., Verbeeck, K. & Vrancx, P. (2004). Multi-type Ant Colony: The Edge
Disjoint Paths Problem. Ants 2004, LNCS 3172, Springer-Verlag Berlin Heidelberg,
2004. pp. 202-213.

 171

[58] Sim, K.M., & Sun, W.H. (2003). Ant Colony Optimization for Routing and Load-
Balancing: Survey and New Directions. IEEE Transactions, MAN, and
CYBERNETICS – Part A: Systems and Humans, Vol. 33, No 5, Sep. 2003. pp. 560-
572.

[59] Gottschalk, S., Lin, M.C., & Manocha, D. RAPID (Robust and Accurate Polygon
Interface Detection).

[60] RAPID User Manual, <http://www.cs.sunysb.edu/~algorith/implement/RAPID/
implement.shtml>

[61] A* Search Algorithm < http://en.wikipedia.org/wiki/A*_search_algorithm >
[62] Middendorf, M., Reischle, F. & Schmeck, H. (2002). Multi Colony Ant Algorithms.

Journal of Heuristics, 8: 305–320, 2002, Kluwer Academic Publishers. Manufactured in
The Netherlands. pp. 305 – 320.

[63] Goal Programming < http://en.wikipedia.org/wiki/Goal_Programming >
[64] Weise, T. (2007). Global Optimization Algorithms: Theory and Application,

http://www.it-weise.de/
[65] Alam, S., Bui, L.T., Abbass, H.A., & Barlow, M. (2006). Pareto Meta-Heuristics for

Generating Safe Flight Trajectories Under Weather Hazards. 6th International
Conference on Simulated Evolution and Learning (SEAL'06) , LNCS 4247, Hefei,
China. pp. 829-836.

[66] Alaya, I., Solnon, C., & Ghedira, K. (2007). Ant Colony Optimization for Multi-
Objective Optimization Problems. Proceedings of the 19th IEEE International
Conference on Tools with Artificial Intelligence - Volume 01 (ICTAI – 2007). pp. 450-
457.

[67] Pinto, D. & Baran, B. (2005). Solving multiobjective multicast routing problem with a
new ant colony optimization approach. Applications, Technologies, Architectures, and
Protocols for Computer Communication archive Proceedings of the 3rd international
IFIP/ACM Latin American conference on Networking table of contents. Cali, Columbia
SESSION: Multicast table of contents. pp. 11 – 19.

[68] Bui, L.T., Whitacre, J.M., & Abbass, H.A. (2008). Performance analysis of elitism in
multi-objective ant colony optimization algorithms. IEEE Congress on Evolutionary
Computation, 2008. CEC 2008. (IEEE World Congress on Computational Intelligence),
Hong Kong. pp. 1633-1640.

[69] Chaharsooghi, S.K. & Meimand Kermani, A.H. (2008). An intelligent multi-colony
multi-objective ant colony optimization (ACO) for the 0–1 knapsack problem. IEEE
Congress on Evolutionary Computation, 2008. CEC 2008. (IEEE World Congress on
Computational Intelligence), Hong Kong. pp. 1195-1202.

[70] Yagmahana, B. & Yanisey, M.M. (2007). Ant Colony Optimization for Multi-Objective
Flow Shop Scheduling Problem. Computers & Industrial Engineering, Science Direct,
Volume 54, Issue 3, April 2008, pp. 411-420.

[71] Sun, R., Wang, X, & Zhao, G (2008). An Ant Colony Optimization Approach to Multi-
Objective Supply Chain Model. Second International Conference on Secure System
Integration and Reliability Improvement, 2008. SSIRI '08, IEEE Computer Sociery. pp.
193-194.

[72] Chaharsooghi, S.K. & Meimand Kermani, A.H. (2008). An Effective Ant Colony
Optimization Algorithm (ACO) for Multi-Objective Resource Allocation Problem
(MORAP). Applied Mathematics and Computation, Volume 200, Issue 1, 15 June
2008, pp. 167-177.

[73] Panahi, H., Rabbani, M., Tavakkoli-Moghaddam, R. (2008). Solving an Open Shop
Scheduling Problem by a Novel Hybrid Multi-Objective Ant Colony Optimization.
Eighth International Conference on Hybrid Intelligent Systems, HIS '08, 10-12 Sept. pp.
320-325.

[74] Colson, C.M., Nehrir, M.H. & Wang, C. (2009). Ant colony optimization for microgrid
multi-objective power management. Power Systems Conference and Exposition, 2009.
PES '09. IEEE/PES, March 2009. pp. 1-7.

 172

[75] Du, Y, Zhang, Q. & Chen, Q. (2008). ACO-IH: An improved ant colony optimization
algorithm for Airport Ground Service Scheduling. IEEE International Conference on
Industrial Technology, 2008. ICIT 2008, 21-24 April 2008. pp. 1-6.

[76] Fan, X., Lin, Y., & Ji, Z. (2006). The Ant Colony Optimization for Ship Pipe Route
Design in 3D Space. The Sixth World Congress on Intelligent Control and Automation,
2006. WCICA 2006. pp. 3103-3108.

[77] Ma, X., Iida, K., Xie, M., Nishino, J., Odaka, T. & Ogura, H. (2006). A Genetic
Algorithm for the Optimization of Cable Routing. Systems and Computers in Japan,
Vol. 37, No. 7, 2006. pp. 21-30

[78] Liu, Q. & Wang, C. (2008). A Modified Particle Swarm Optimizer for Pipe Route
Design. 11th IEEE International Conference on Computational Science and Engineering
Workshops, 2008. CSEWORKSHOPS '08. pp. 157 – 161.

[79] Huibiao, L., Zhefu, Y. & Peiting, S. (2008). Hanging Bridge Algorithm for Pipe-
Routing Design in Ship Engine Room. International Conference on Computer Science
and Software Engineering, 2008. pp. 153-155.

.

	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	1 INTRODUCTION
	1.1 Subject Matter
	1.2 Scope of the Thesis and Motivations
	1.3 Thesis Achievements and Contributions
	1.4 Outline of the Thesis
	1.5 Publications

	2 LITERATURE REVIEW
	2.1 Automatic Hose/Pipe Routing: An Introduction
	2.2 Previous Approaches in Hose/Pipe Routing
	2.3 Summary of Chapter 2

	3 MULTI-OBJECTIVE OPTIMIZATION
	3.1 The Multi-Objective Optimization Problem
	3.1.1 Domination Concept
	3.1.2 Non-dominated Set

	3.2 Illustrative Representation of Non-Dominated Solutions
	3.2.1 Scatter-Plot Matrix Method
	3.2.2 Value Path Method
	3.2.3 Bar Chart Method

	3.3 Metric of Performance
	3.4 Searching for Preferred Solutions
	3.4.1 Compromise Programming Approach
	3.4.2 Pseudo-Weight Vector Approach

	3.5 Summary of the Chapter

	4 ANT COLONY OPTIMIZATION
	4.1 Ant System (AS)
	4.2 Ant Colony System (ACS)
	4.3 Multi-objective Ant Colony Optimization (MOACO)
	4.3.1 Pareto Ant Colony Optimization (P-ACO)

	4.4 Summary of the Chapter

	5 AUTOMATIC HOSE/PIPE ROUTING IN 3D SPACE USINGTHE ACO AND THE PROPOSED ACO ALGORITHMS
	5.1 The Tessellated Format
	5.2 Collision Detection Library – RAPID
	5.2.1 Basic Usage of RAPID

	5.3 Hose Routing with Ant Colony Optimization
	5.4 The Proposed Reduced Sized Search Space for Ant Colony Optimization
	5.5 The Proposed Explorer Ants for Avoiding Stagnation (N_MAS)
	5.6 The Proposed MOACO Algorithm - Pareto Strength Ant ColonyOptimization (PSACO)
	5.7 Multi-Objective Hose Routing with MOACO
	5.7.1 Modified Random-Proportional Rule

	5.8 The Proposed Multi-Colony Ant Systems for Multi-Hose Routing
	5.8.1 MCAS-MHR-1 with Single Pheromone Matrix
	5.8.2 MCAS-MHR-2 with Multiple Pheromone Matrices

	5.9 Summary of the Chapter

	6 RESULTS AND DISCUSSION
	6.1 Results Obtained for Grid-Based and Random-Based Ant Systems
	6.1.1 Model 1 - Hose routing in an environment with a hole in a cube
	6.1.2 Model 2 - Hose routing in an environment with a hole in a cube where theoptimal path is blocked by an obstacle
	6.1.3 Model 3 - Hose routing in an environment with a U-shape obstacles
	6.1.4 Model 4 - Hose routing in an environment with parallel walls
	6.1.5 Model 5 - Hose routing in an environment with a diagonal empty space
	6.1.6 Discussion (Grid-Based and Random-Based Ant Systems)

	6.2 Results Obtained for Ant Colony Optimization with a Reduced Size SearchSpace
	6.2.1 Quality of the best path obtained
	6.2.2 Number of turns
	6.2.3 Total No of nodes in all contender node lists and average No of alternatives
	6.2.4 Time spent on a cycle

	6.3 Results Obtained with the Introduction of Explorer Ants for AvoidingStagnation
	6.4 Results Obtained for Multi-Objective Ant Colony Optimization
	6.4.1 Illustrative Representation of the Non-Dominated Solutions for Model 1
	6.4.2 Metrics of Performance of the Non-Dominated Solutions for Model 1
	6.4.3 Computation Times for Model 1
	6.4.4 Illustrative Representation of the Non-Dominated Solutions for Model 2
	6.4.5 Metrics of Performance of the Non-Dominated Solutions for Model 2
	6.4.6 Computation Times for Model 2
	6.4.7 Final Solution
	6.4.8 Refining the solution

	6.5 Results Obtained for the Proposed Multi-Colony Ant Systems for Multi-HoseRouting
	6.5.1 Experiment 1: Demonstrating the potential of MCAS-MHR-1 and MCASMHR-2 on a test graph
	6.5.2 Experiment 2: Applying MCAS-MHR-1 and MCAS-MHR-2 to a complex3D model

	6.6 Summary of the Chapter

	7 CONCLUSIONS AND FUTURE WORK
	7.1 Conclusions
	7.1.1 Pareto Strength Ant Colony Optimization for Multi-Objective HoseRouting
	7.1.2 Proposed Ant Colony Algorithms for Multi-Hose Routing

	7.2 Recommendations for Future Work

	ACRONYMS
	REFERENCES

