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ABSTRACT 

 

This thesis focuses on applying one of the rapidly growing non-deterministic 

optimization algorithms, the ant colony algorithm, for simulating automatic hose/pipe 

routing with several conflicting objectives. Within the thesis, methods have been 

developed and applied to single objective hose routing, multi-objective hose routing and 

multi-hose routing. 

 

The use of simulation and optimization in engineering design has been widely applied 

in all fields of engineering as the computational capabilities of computers has increased 

and improved. As a result of this, the application of non-deterministic optimization 

techniques such as genetic algorithms, simulated annealing algorithms, ant colony 

algorithms, etc. has increased dramatically resulting in vast improvements in the design 

process. 

 

Initially, two versions of ant colony algorithms have been developed based on, 

respectively, a random network and a grid network for a single objective (minimizing 

the length of the hoses) and avoiding obstacles in the CAD model. 

 

While applying ant colony algorithms for the simulation of hose routing, two 

modifications have been proposed for reducing the size of the search space and avoiding 

the stagnation problem. 

 

Hose routing problems often consist of several conflicting or trade-off objectives. In 

classical approaches, in many cases, multiple objectives are aggregated into one single 

objective function and optimization is then treated as a single-objective optimization 

problem. In this thesis two versions of ant colony algorithms are presented for multi-

hose routing with two conflicting objectives: minimizing the total length of the hoses 

and maximizing the total shared length (bundle length). In this case the two objectives 

are aggregated into a single objective. 

 

The current state-of-the-art approach for handling multi-objective design problems is to 

employ the concept of Pareto optimality. Within this thesis a new Pareto-based general-

purpose ant colony algorithm (PSACO) is proposed and applied to a multi-objective 
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hose routing problem that consists of the following objectives: total length of the hoses 

between the start and the end locations, number of bends, and angles of bends. The 

proposed method is capable of handling any number of objectives and uses a single 

pheromone matrix for all the objectives. The domination concept is used for updating 

the pheromone matrix. Among the currently available multi-objective ant colony 

optimization (MOACO) algorithms, P-ACO generates very good solutions in the central 

part of the Pareto front and hence the proposed algorithm is compared with P-ACO. A 

new term is added to the random proportional rule of both of the algorithms (PSACO 

and P-ACO) to attract ants towards edges that make angles close to the pre-specified 

angles of bends. A refinement algorithm is also suggested for searching an acceptable 

solution after the completion of searching the entire search space. 

 

For all of the simulations, the STL format (tessellated format) for the obstacles is used 

in the algorithm instead of the original shapes of the obstacles. This STL format is 

passed to the C++ library RAPID for collision detection. As a result of using this 

format, the algorithms can handle freeform obstacles and the algorithms are not 

restricted to a particular software package. 

 

Keywords: Multi-objective hose routing, Ant system, Tessellated format, Freeform 

CAD geometries, P-ACO, PSACO, MOACO, Multi-objective ant colony optimization, 

Pareto strength ant colony algorithms, Domination, Refining, Collision detection, 

RAPID, Multi-hose routing, Multi-colony ant system, Shared paths, Bundling, Foreign 

pheromone 
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1 INTRODUCTION 
 

This chapter introduces the thesis, emphasizing its objectives and its contributions to the 

fields of Automatic Hose/Pipe Routing and Ant Colony Optimization. The chapter also 

presents the outline of the thesis, and of published and planned papers based on the thesis.  

 

1.1 Subject Matter 
 

In the past few years nature-inspired techniques have been widely used for various 

optimization problems in design, planning, scheduling, communication, etc.. One field, 

which is receiving increasing interest from several researchers, is the automatic hose/pipe 

routing of electrical and hydraulic equipment.  

 

A variety of deterministic and non-deterministic (probabilistic) algorithms have previously 

been applied to hose and pipe routing. The deterministic algorithms guarantee the same 

solution at different runs with the same parameter values, and the non-deterministic 

algorithms such as genetic algorithms and simulated annealing generate different solutions 

due to their randomness (see Chapter 2 for details of previously applied approaches). 

 

Among the non-deterministic algorithms, ant colony algorithms are increasingly being used 

in various real-world applications such as the travelling salesman problem (TSP) [27, 28, 

29], the quadratic assignment problem (QAP) [30], the Job Shop Scheduling Problem (JSP) 

[27], telecommunication routing and load balancing [58], etc. and it has been shown that 

they perform well compared to other non-deterministic algorithms such as genetic 

algorithms, simulated annealing, etc [26]. 

 

1.2 Scope of the Thesis and Motivations 
 

Hose and harness routing is a significant research area in assembly design. Many CAD and 

solid-model manufacturers incorporate the ability to represent these components in their 

products. However, the programs available are not always able to produce efficient routing. 

Often, skilled personnel who understand the engineering requirements, the model 
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representations and physical production issues fill this technical gap. This requires human 

intervention to create assemblies and as CAD design tools allow rapid design and redesign 

of products at speeds that exceed the current human capacity, hose and harness routing 

cannot be done efficiently. There is an unacceptable bottleneck in meeting the customer's 

demand when bringing products to the market. Hence, companies are required to create 

timely innovative products to satisfy their customers’ demands and compete with other 

companies. 

 

Hose routing is a technique of developing collision-free routes for hoses between two 

locations in a 3D environment that contains obstacles. It needs to be done under multiple 

objectives and constraints. For example, hose routing must take into account: selection 

from a pre-specified catalogue of angles for bends, avoiding collisions, minimizing the total 

length of the hoses, minimizing the total number of bends, etc. For a human, this type of 

work is very tedious and time consuming. Hose routing problems are highly non-linear and 

discontinuous. The problem can be resolved, if an automatic approach for suggesting the 

possible routing paths is adopted. 

 

In this thesis, ant colony optimization based algorithms have been applied to simulate 

automatic hose/pipe routing. The search space is represented as a network of paths in the 

free space of the CAD model where the automatic hose/pipe routing needs to be done. It 

has been shown that when applied to routing in networks, ant colony algorithms give better 

results in terms of quality of results and computation time compared to other non-

deterministic algorithms [58]. Further, graph-based deterministic algorithms (Breadth First 

Search, Depth First Search, Best First Search, A* algorithm, Dijstraka algorithm, etc.) are 

not suitable for multi-objective optimization problems when all the objectives are equally 

important. If these algorithms need to be run on a multi-objective optimization problem, the 

objectives need to be converted into a single objective (e.g. weighted sum of objectives) or 

priorities need to be assigned to the objectives (Goal programming) [63]. The major 

weakness of these algorithms is the inability to produce solutions that are Pareto efficient.  
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1.3 Thesis Achievements and Contributions 
 

The significance of this research lies in the potential of the developed ant colony 

optimization algorithms for automatic hose/pipe routing, removing human intervention and 

the associated cost and time. Further, despite the recent advancements in the field of 

automatic routing algorithms, the following issues have not been addressed by other 

researchers (See Chapter 2 for details of previously applied approaches). 

 

 None of the existing approaches have used Pareto-based ant colony optimization to 

obtain the optimum layout of hoses/pipes. 

 Most of the algorithms are restricted to basic shaped obstacles (e.g., rectangles) for 

the routing domain. 

 All of the algorithms use a classical multi-objective technique: weighted sum 

approach or single-objective function to obtain the optimum solution. Since there is 

more than one optimum solution for a multi-objective problem, previous algorithms 

are not capable of generating these conflicting optimum solutions (or trade-off 

solutions) in a single run. If all the trade-off solutions need to be found, these 

algorithms must be run several times with different parameter values. Normally 

these experiments are time consuming and if they need to be run several times, they 

are even more time consuming. 

 Moreover, multi-hose routing is another important part of this research area and 

none of the algorithms are able to route multiple hoses/pipes in parallel. 

 

In this thesis, the above issues are addressed. In addition to these issues, the thesis suggests 

some modifications to ant colony optimization and a new Pareto strength ant colony 

optimization algorithm for multi-objective optimization problems. 
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The main contributions of the thesis can be stated as follows: 

 

First Contribution 

 

Initially, an ant colony algorithm is developed for automatic hose routing with a single 

objective (minimizing the length of the pipes) (with the intention of extending it to multi-

objectives) and avoiding free-form obstacles. For the avoidance of free-form obstacles, the 

current state of the art for collision detection, the STL (STereoLithography) format for the 

obstacles and the C++ collision detection library RAPID, have been used. The ant colony 

algorithm is based on networks generated using grid points and random points in the free 

space of the CAD model. 

 

While developing the ant colony algorithms for automatic hose/pipe routing, two 

modifications have been proposed to improve the ant colony algorithms. 

 

 The first modification reduces the size of the search space for the ant colony 

algorithms using the current best path of each generation.  

 One of the major problems in non-deterministic algorithms is that these algorithms 

converge to local optimum solutions. This is called the stagnation problem. The 

second modification has been introduced to avoid the stagnation problem in ant 

colony algorithms. 

 

Second Contribution 

 

In a multi-objective optimization problem, there is more than one optimum solution that 

optimizes the given objectives. In Pareto strength optimization methods, different 

conflicting optimum solutions (or trade-off solutions) can be obtained within a single run. 

A new Pareto strength ant colony optimization algorithm (PSACO) is proposed and has 

been applied to multi-objective hose routing in 3D space. The algorithm updates the 

pheromones according to the domination concept introduced in SPEA2 [55]. A single 

pheromone matrix is used for all of the objectives in the problem. 
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This algorithm (PSACO) also uses a network to find the optimum path between two points. 

The network is created in the free space of the 3D space using randomly generated points. 

The STL format of the original obstacle shapes is used for collision detection between a 

hose pipe and the obstacles. The network is created before running the PSACO algorithm. 

Thus, the collision detection algorithm is not required while running each generation or 

cycle of PSACO as in the algorithm proposed in [11]. Further, as a result of using the STL 

format, PSACO can handle freeform obstacles and is not restricted to a particular CAD 

software package. 

 

PSACO has been used to optimize three objectives: total length of the hoses between the 

start and end locations, number of bends, and angles of bends. Results are compared with 

the current best Pareto ant colony algorithm (P-ACO) [49]. 

  

Third Contribution 

 

The ant colony algorithms introduced initially have also been extended to multi-path 

problems. Two versions of multi-colony ant systems are proposed for the multi-hose 

routing problem. In both versions, each colony of ants is required to search for an optimum 

path between two end points (or commodities). While each colony searches for optimum 

paths, it tries to maximize the use of other colonies’ paths (sharing paths, or bundling) for 

easy handling of multiple paths. The first version uses a single pheromone matrix for all 

colonies, whilst the second version uses a pheromone matrix for each colony and a 

modified random proportional rule to attract ants towards foreign pheromones. 

 

The multi-path problem has a wide area of applications such as hose/pipe harness, electrical 

and hydraulic wiring. When harnessing multiple hoses in the electrical circuitry of a motor 

vehicle or other equipment, it is also important to have the hoses bundled as much as 

possible. 
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1.4 Outline of the Thesis 
 

Chapter 2 deals with the literature review of automatic hose routing. Chapter 3 discusses 

multi-objective optimization in some detail. Chapter 4 presents ant colony algorithms and 

multi-objective ant colony optimization. Chapter 5 discusses the simulation of automatic 

hose/pipe routing, the STL format (tessellated format), the C++ collision detection 

algorithm RAPID and basic steps required in automatic hose routing. It then discusses 

modifications to the ant colony algorithms, namely, multi-objective ant colony 

optimization, multi-objective hose routing with multi-objective ant colony optimization and 

multi-hose routing with multi-colony ant colony optimization algorithms. Chapter 6 

reports the results of the study and discusses these results. Finally, Chapter 7 presents the 

conclusions and recommendations for future work. 

 

1.5 Publications 
 

Some results of this research have already been published in the peer-reviewed publications 

below and are included in Appendix A. 

 

Journal Publications 

 

1. Thantulage, G., Kalganova, T. & Wilson, M. (2006). Grid Based and Random 

Based Ant Colony Algorithms for Automatic Hose Routing in 3D Space. 

Transactions on Engineering, Computing and Technology, Volume 14, International 

Journal of Applied Science, Engineering and Technology (IJASET), Enformatika, 

ISBN 1503-5313, ISBN 975-00803-3-5, Aug., 2006. pp. 144 – 150. 

 

Conference Publications 

 
1. Thantulage, G., Kalganova, T. & Fernando, W.A.C. (2006). A Grid-based Ant 

Colony Algorithm for Automatic 3D Hose Routing. IEEE Congress on 

Evolutionary Computation, CEC 2006, Vancouver, Canada, Jul., 2006. pp. 48 – 55. 
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2. Thantulage G., T. Kalganova and M. Wilson (2006) “Grid Based and Random 

Based Ant Colony Algorithms for Automatic Hose Routing in 3D Space” Proc. of 

International Conference on Machine Intelligence (ICMI’2006). 
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2 LITERATURE REVIEW 
 2 

This chapter describes various approaches implemented by other researchers for the 

solution of the problem of automatic routing of hoses, pipes and cables. Further, 

advantages and disadvantages, dimensions (2D or 3D), domains, obstacles, etc. of these 

algorithms are discussed. 

 

2.1 Automatic Hose/Pipe Routing: An Introduction 
 

Automatic hose and harness routing includes selecting at least a pair of connection points, 

including a start point and an end point, and determining a desired path between the start 

and the end points. In real-world applications, the best possible path needs to be obtained 

under multiple objectives and constraints. Furthermore, the hose routing method must 

include a validity check on the desired path in order to decide whether the desired path is 

valid. An example showing the desired path is illustrated in red in Fig. 2.1. 

 
Fig. 2.1 Example: hose/pipe routing, where S is the start point and E is the end point 

 

Previously, hose/pipe/cable routing was addressed by various approaches. These algorithms 

have been developed from a stationary 2D workspace and simple objects to a more 
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complex 3D environment involving dynamic, multi-constraint and multi-objective 

problems. Methods for pipe routing can be traced back to techniques for robot path 

planning that have been traditionally classified into four major categories: the Skeleton 

Search (roadmap) [11], the Cell Decomposition approach [11, 20], the Potential Field 

method [11] and the Mathematical Programming method [11, 20]. 

 

The Skeleton approach involves capturing the set of feasible motions in a network of one 

dimensional lines and conducting a graph search of this network [21, 11]. The Cell 

Decomposition approach consists of decomposing the free space into cells and connecting 

the start and end configurations by a sequence of connected cells. In the Potential Field 

method [11], a scalar mathematical function is constructed whose value is a minimum when 

the robot is at the end configuration, and a maximum near the obstacles [22]. The path from 

the start to the end is determined by putting a small marble at the start and following its 

movement. The Mathematical Programming approach involves computing the path as a 

mathematical objective function and trying to minimize it while satisfying constraints 

(obstacle avoidance). 

 

Mathematical Programming [11] techniques can be further classified into deterministic and 

non-deterministic (probabilistic) methods based on the search algorithms employed. 

Deterministic techniques guarantee the same solution for a problem when run at different 

times with the same starting solution, while non-deterministic techniques generate different 

solutions to the same problem at different runs due to the randomness involved in the 

solution process. Deterministic methods such as linear and nonlinear programming methods 

usually, in theory, find the optimal solution, but behave inefficiently with highly nonlinear 

and possibly discontinuous problems like pipe routing and often result in a local optimum. 

In contrast, non-deterministic algorithms [64], such as genetic algorithms, simulated 

annealing and ant colony algorithms, cannot guarantee to find the optimal solution, but are 

aimed at generating a set of globally good solutions (hopefully near-optimal). This feature 

is of practical relevance in engineering applications. 
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2.2 Previous Approaches in Hose/Pipe Routing 
 

This section describes in some detail the various algorithms previously used in hose/pipe 

routing. 

 

Zhu et al. [1] described a system for designing pipe layouts automatically using robot path 

planning techniques.  This system, pipe routes are treated as paths left behind by rigid 

objects or robots (disc in the 2D case and ball in the 3D case). The Cell Decomposition 

approach described in [2, 3] is used to define the paths. As a result of this, the algorithm 

generates only orthogonal (Manhattan-style) routes. Initially the algorithm was developed 

for minimizing intrinsic factors such as pipe lengths and number of turns. Later, the 

algorithm was extended in order to make it capable of dealing with a variety of extrinsic 

factors such as location constraints and shape constraints. Location constraints specify 

preferred locations, undesirable locations, and forbidden locations for a pipe. For examples, 

a heat sensitive pipe should be kept sufficiently away from high-temperature equipment and 

a pipe should go as much as possible through existing pipe racks. Shape constraints apply 

to the shape of the pipe routes. For example, a drainage pipe should be non-ascending, a 

pipe should not have a vertical drop of more than dmax feet to avoid being over-stressed. 

The pipes are considered in sequence. 

 

After having decomposed the free space, the algorithm generates the connectivity graph (G) 

representing the adjacency relation among the generated cells. A channel is constructed by 

searching the connectivity graph (G) for a path connecting the start and the goal nodes. The 

search of the connectivity graph (G) is performed by an A* algorithm guided by an 

admissible evaluation function f(N) = g(N) + h(N) defined over the set of nodes in the 

connectivity graph (G). Here g(N) is defined as the weighted sum of the length l(N) of the 

path constructed so far and its number of turns n(N). The function h(N) is simply computed 

as the Manhattan distance between the centre of the current cell and of the terminal cell. 

Here N is the number of nodes in the connectivity graph. 
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A back-tracking algorithm is also implemented in the case where the search fails to produce 

a channel for the k-th route. The back-tracking algorithm adjusts previous routes generated 

to make room for the k-th route. 

 

The location constraints are conceptualized as virtual obstacles and virtual sinks. A virtual 

obstacle can be hard or soft. Forbidden regions are protected by hard virtual obstacles 

which then act as real obstacles, while undesirable regions are protected by soft virtual 

obstacles which can be traversed by pipes, but at some additional cost. Virtual sinks are 

treated much in the same way as soft virtual obstacles, but with a bonus associated with the 

corresponding cells. The bonus only applies if these cells are traversed in some pre-

specified directions. 

 

In order to produce a channel containing paths satisfying the shape constraints, the A* 

search algorithm of the pipe router is modified so that the cost of including a cell in a 

channel depends on the channel generated so far.  

 

This algorithm, however, was focused on piping layouts for power plants, chemical plants, 

etc., and dealt only with orthogonal (Manhattan-style) routes. Such an approach is 

unsuitable for the subtle, detailed, and highly optimized environment involving, for 

example, heavy-weight equipments such as bulldozers, cranes. Thantulage et al. [12, 13] 

have shown empirically, that the resolution of the cell decomposition plays an important 

part in the determination of the optimal route and it affects the computational time. If none 

of the cells falls on the optimal route during decomposition, the algorithm fails to obtain the 

optimal route. Thus, selecting the right resolution is important in the cell decomposition 

method. 

 

Lee [15] proposed the Maze algorithm which generates the optimal path between two 

locations with no interference with obstacles. Mitsuta et al. [16] applied Lee’s Maze 

algorithm to generate the optimal route for pipes. This algorithm also uses the cell 

decomposition approach to generate the paths as in [1]. However, this algorithm may 
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require considerable computation time according to the amount of equipment and the 

number of pipes when applied to real-world applications. 

 

Kim et al. [17] explored the possibility of automated industrial pipe-route design on three 

test problems defined in 2D space using stochastic hill-climbing, simulated annealing, and 

genetic algorithms. The algorithm takes into consideration the minimization of the total 

length of pipes and avoidance of obstacles. The problem is defined in terms of choices of 

Steiner points [18] and rectilinear connections. Results demonstrated that genetic 

algorithms are superior to either hill-climbing or simulated annealing for the problems 

tested. Obstacles were restricted to basic shapes such as rectangles. 

 

A genetic algorithm approach to support interactive planning of a piping route path in plant 

layout design was presented by Ito [19]. The objective function is defined considering the 

total length of the pipes, how close they are to the obstacles, whether the route goes along 

the walls, and avoiding diagonal paths. The concept of spatial potential is used to quantify 

the degree of access to the wall or the obstacles. The algorithm was tested on 2D space and 

primitive shapes. The workspace is defined by using the cell decomposition approach. In 

[25], Ito et al. added a rule-based inference (RBI) engine for selecting a path from the 

results obtained by GA-based inspiration (GBI) [19, 25] as well as associative information. 

The RBI contains both outputs from the GBI and rules derived from experts’ knowledge. 

 

Kang et al. [23] proposed a method for generating the optimal route for pipes using a 

knowledge-based expert system called ‘NEXPERT”. The system is defined using experts’ 

knowledge of the piping design of a ship. The knowledge consists of regulations of 

classification societies and port authorities, design practices and experience of experts. 

Three different knowledge-bases were constructed in this research storing 167 rules and 

106 supporting methods, and were applied to the upper deck of a ship. However, this 

research is not of practicable interest since it is hard to define quantitatively all design 

knowledge and to maintain it when the practice of the designer for routing pipes changes. 
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Park, J.H. et al. [24] proposed the “cell generation” method for generating the optimal route 

for pipes which has the minimum length and least amount of bending and no interference 

between pipes, and applied the method to the engine room of a ship. To make interference 

checking easier, each obstacle is laid in a cubic box which is large enough to contain it. The 

objective function is defined taking into account the material and installation cost of the 

pipes, the maintenance cost according to the position of valves, etc. and then found the best 

solution from a tree of combinations of possible pipe routes. 

 

Counru [4] solved the pipe routing problem from a cable harness routing perspective. He 

discusses the cable harness domain, defines the harness routing problem and presents an 

adaptive solution methodology based on a genetic algorithm. Part of the cable harness 

routing problem is to determine how well various candidate configurations map to the 

available routing space. As the bundle lengths and the cost of the harness cannot be 

determined until the routing has been done, it is necessary to try many different 

configurations to find the best. While it is possible to test all the configurations when the 

number of transitions is small, it becomes impractical as the number of configurations 

increases with the number of transitions. 

 

The cable harness problem has been divided into three parts: ports, transitions and bundles. 

Ports connect the cable harness to the electrical assemblies. Each port is mapped to a graph 

node in the environment representation. Transitions (or junctions) form branching points 

among the bundles. A transition is represented as a graph node and three pointers to its 

adjacent nodes in the configuration. Bundles are defined as segments of the cable harness 

that connect any two adjacent nodes (ports or transitions). 

 

The free space in which the harness is routed is abstracted by a sparse 3D graph. This graph 

shares the basic topology of the free-space using a small number of nodes. A graph with 

approximately 450 nodes was used for the experiments described in [4]. 
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The cable harness problem is defined as follows: 

 

Given a bi-directional graph G of N nodes (N1, N2, …, NN), P ports (P1, P2, …, PP) and a list 

of wires (W1, W2, …, WW), each connecting two ports (Pi, Pj), choose a subset, G′ of the 

edges of G which minimizes an objective function based on the number of wires passing 

through each edge while ensuring that there is a connected path in G′ for each of the wires. 

This problem is further constrained by precluding cycles in G′ and requiring G′ to be fully 

connected. 

 

The objective function (representing the cost for wiring) is defined as follows: 
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where nWbi is the number of wires in bundle i 

 fi is the unit cost of bundle i 

 Lbi is the length of bundle i 

 gi is the adjusted length of bundle i 

 

Thus, finding the best cable harness routing boils down to finding the configuration that has 

the lowest cost when its transitions are placed in G. G′ is then the union of all the links in 

the shortest paths between the end nodes of all the bundles. 

 

In [4], the problem is divided into two procedures: transition locator and configuration 

generator. The first takes a configuration and returns the transition locations that produce 

the lowest cost routing. The second procedure intelligently uses the first procedure to prune 

through the possible configurations to find low cost routing. 

 

The transition locator starts by routing each wire in the wiring list W in the configuration 

using Dijkstra’s shortest path algorithm [5] to determine the number of wires going through 

each bundle and, hence, its cost per unit length. Once these costs are defined, a standard 

genetic procedure is applied in the transition locator to locate the transitions. 
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The goal of the configuration generator is to intelligently create test configurations to find 

the one which maps well to the routing environment (minimizes the objective function 

shown in eq. 2.1). This procedure has two tasks: creating an initial population of test 

configurations and using fitness information of these test configurations to populate each 

subsequent generation. A valid configuration must connect all the ports to one another 

while having each transition connecting only three configuration nodes. At the end of each 

generation, the transition locator is applied to the individuals of the new population. 

 

However, this algorithm assumes that the cable is composed of rigid segments and the 

number of segments can be adjusted by the user. Further, this algorithm is restricted to 

minimization of a single objective: the bundle length of the wires. 

 

Cable harness design is also addressed in [6, 7, 8, 9]. Park et al. [6] proposed the use of 

agents to produce different cable configurations that satisfy the pin-to-pin connections of a 

typical harness circuit layout and automate routine operations such as moving a section of 

bundles from one position to another. The harness design system “Next-Link” proposed by 

Petrie et al. [7] creates different harness layouts concurrently. It is a management tool that 

uses software agents to coordinate, update and keep track of the work of individual 

designers, evaluating all the routings developed by each designer based on satisfying global 

constraints. Cerezuela et al.’s [8] study on cable harness design was carried out at a 

helicopter manufacturing company. From the case study, it is understood that harness 

design is an iterative process involving schematic, routing and component design and it is 

not possible to automate it completely by computers. Ng et al. [9] describe the effectiveness 

of immersive virtual reality for designing and routing cable harnesses by enhancing the 

expertise of the cable harness designer rather than replacing the individual by an automated 

system. The software tool described in this work assists users in performing cable routing 

in a virtual environment. The system was successfully tested in pilot trials. Recently, a 

route planning algorithm for cable and wire layouts in complex environments has been 

presented by Kabul et al. [10]. This algorithm pre-computes a global roadmap of the 

environment by using a variant of the probabilistic roadmap method (PRM) and performs 



 16

constraint sampling near the contact space. The algorithm computes approximate paths 

using the initial roadmap generated on the contact space, given the initial and final 

configurations. The approximate paths are refined by performing constrained sampling and 

using adaptive forward dynamics. The algorithm takes into account geometric constraints 

like non-penetration and physical constraints like multi-body dynamics and joint limits. 

However, this algorithm does not guarantee physically accurate motion at all times. 

 

Sandurkar et al. [11] proposed a non-deterministic optimization approach based on Genetic 

Algorithms (GAPRUS) to generate pipe routing solution sets. Objects are represented in 

tessellated format and it offers huge benefits in computation as well as usage. This 

approach can handle 3D free-form obstacles as the algorithm uses the tessellated format. 

This approach is applicable to any geometry that can be generated using commercial CAD 

packages. 

 

The system accepts the tessellated file of the obstacles and the coordinates of the start and 

end locations. In addition to this, other supporting parameters related to the genetic 

algorithm such as the number of generations, population size, rate of mutation and cross-

over, etc. can be set according to the problem. 

 

When generating a solution, GAPRUS follows three steps: 

 

1. An .STL file (tessellated format) of the CAD model is generated using a CAD 

package. 

2. The .STL file is formatted into columns of vertices of facets suitable for the 

collision checking software and introduced into the iterative process of 

optimization. 

3. Pipe routes generated by the optimizer are checked for collisions with the model 

and the results are fed back to the optimizer for the iterative search (of the genetic 

algorithm). 
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At the end of the iterative process, the system generates an .STL file containing the obstacle 

assembly and a set of pipe routes achieving objectives such as minimizing the total length 

between the specified start and goal locations and satisfying constraints on collisions. An 

optimal number of bends may also be generated as an output of this process. 

 

A pipe route is modelled by the lengths of the pipes, their direction cosines and the angles 

of pipe bends. The design variables consist of the length of the pipes (di), one of the 

direction cosines of each pipe (mi), the angles of bends between successive pipes (i) and 

the number of bends (N). 

 

The objective function plays a major role in controlling the problem and in emphasizing the 

objectives and constraints of the problem with respect to their relative importance. It 

consists of two parts: the objective part and the penalty part (see eq. 2.2).  
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The objective part minimizes the length of the pipes and the number of bends. SE is the 

length of the straight line joining the start and end points. This is the absolute minimum 

length without considering the obstacles and is used to normalize the total length of the 

pipes. The number of bends (N) is normalized using Nmax and Nmin such that the ratio 

reaches unity when the number of bends is maximized and tends to zero when the number 

of bends is minimum. 

 

The second part (penalty) indicates the constraints on collisions that are treated as a penalty 

to the objective function. This part is included in the objective function due to the fact that 

the GA determines the quality of the solution according to a fitness function which includes 

the degree of violation of constraints. The number of colliding triangles is taken to 
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represent the degree of constraint violation. The penalty is defined as a ratio of the number 

of colliding triangles (NC) to the total number of triangles in the model (NT). 

 

W1 and W2 are the weighting factors associated with the objectives. Since they indicate the 

relative importance being given to one objective over the other, their sum equals unity. The 

assigning of values to W1 and W2 expresses the designer’s willingness in making tradeoffs 

between multiple objectives. R denotes the coefficient of penalty for the constraint violation 

term. A high value of R guides the solution away from the infeasible design space. The 

values are set by the user according to the application. 

 

However, this approach was applied only to one model and took 18-19 hours to obtain the 

best layout of the pipes for a single run. Since stochastic algorithms such as GA usually 

need to be run several times to obtain a better solution, the computation time would be 

several days for running the algorithm several times. Furthermore, this algorithm needs to 

call the collision detection algorithm for each path found in each generation. As a result of 

this, the algorithm takes an additional computation time in each generation, in addition to 

searching the paths in the search space. Selection of the right weights (W1 and W2) and the 

penalty coefficient R is a critical factor of this algorithm. 

     

Drumheller [14] proposed a method for generating the optimal route of pipes considering 

constraints relating to the pipe bending. This research focuses on the generation of a route 

of pipes having the minimum installation space in an aeroplane. This algorithm uses a 

weighted sum approach to evaluate the combined effect of the various constraints and 

objectives. Hence, a user can explore trade-offs between multiple optimal routes by running 

the algorithm with different sets of weights. The designer should provide an initial path 

from start and goal configurations, but it is not necessary that this path be a feasible 

solution. A heuristic approach is used to find the node distribution of a route. 

 

Fan et al. [76] proposed an automatic ship pipe route design (SPRD) using ACO. The 

objective function is formed using the weighted sum of the objectives: avoiding obstacles, 

shortest length of path and number of bends. This research is similar to the proposed “Grid-
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based Ant Colony Algorithm for Automatic 3D Hose Routing” in this thesis (published in 

[12]). Each obstacle of the model [76] is simplified into a cuboid that is large enough to 

contain the obstacle.  The grid-based algorithm proposed in this thesis, however, can handle 

free-form obstacles. Furthermore, the research in [76] has not used Pareto-based ACO to 

obtain the various trade-off solutions in a single run. 

 

Ma et al. [77] propose a structural method for a genetic algorithm (GA) for the optimization 

problem of cable routing in which cables have to be laid optimally. The cable routing 

problem is defined as follows: there exists a network of cable trays that link equipment and 

facilities already set up. Cables are laid out in the tray network with facilities and 

equipment as points of origin and destination. Each tray has an allowed capacity for cables, 

and no more cables than that capacity can be laid in a tray. Given these constraint 

conditions, a route from the point of origin to the destination for each cable is selected, and 

a routing plan that minimizes the total routing length for all cables is found. Here, for the 

sake of simplicity, the types of cable and tray ratings are unified, and the constraints are 

deemed to be conditions related to the number of routes. A tray network is represented 

using a tray graph as a discrete graph, with the junctions (branching) and end points of the 

trays and the connecting points of equipment and devices as nodes, and the trays as edges. 

The proposed GA is a two-level hierarchical GA that uses chromosome coding involving 

two levels. In the first level GA, several good routes (shortest or approximately shortest 

routes) are found for each cable, and then in the second-level GA, the optimum 

combination of the good routes for each cable is found. 

 

Liu et al. [78] proposed a method for pipe route design based on the grid method and 

particle swarm optimization (PSO). This paper adopts a fixed-length encoding mechanism 

based on grids and the following objectives and constraints are taken into consideration in 

defining the evaluation function: avoiding obstacles, the shortest length of path, the least 

number of bends and most pipes must go as much as possible through existing equipment.  

 

The routing of pipes should meet various requirements [24], including a large number of 

rules of physical constrains, economic constraints, safety constraints, production constrains, 
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flexibility constraints, and so on. The traditional design approaches pay more attention to 

physical constraints, and none or few other constraints can be satisfied. In free space 

methods, some non-physical constraints can be described by virtual solids and can be 

easely handled. But this brings another problem. The current AI algorithms for pipe-routing 

arrangements do not adapt to free spaces. Because all of the existing algorithms consider 

obstacles as the forbidden zone for the pipes, the routing must avoid such cells or area. 

When free space is used, the terminals of the routings may be in the free spaces. A routing 

must connect terminals of given locations and avoid obstacles. Huibiao et al. [79] proposed 

the Hanging bridge algorithm to generate a bridge cell to translate an inside connect 

terminal outside the free space, and found a solution for pipe-routing arrangements using 

free space models. 

 

2.3 Summary of Chapter 2 
 

This chapter has reviewed the previous approaches to solving automatic hose routing and 

similar problems and Table 2.1 briefly summarises previous work done on hose/pipe/cable 

routing. The “knowledge-based” column states whether the algorithm is embedded or not 

with a knowledge-based (e.g. rule-based, etc.) system for selecting a path from the solution 

set. The last column shows the capability of the algorithm of producing multiple paths in 

parallel.  

 

Fig. 2.2 shows the classification of previous hose/pipe routing algorithms. 

  

According to earlier algorithms developed for hose/pipe routing, one may notice that, 

although the developed algorithms can route pipes according to multi-objective criteria and 

with minimum use of expert knowledge (genetic algorithms, etc.), the computational 

effectiveness of these algorithms is very low and in the real world they require many hours 

of computational time to achieve a satisfactory solution. 

 

Previously it has been shown that ant colony algorithms outperform genetic algorithms in 

terms of computational time and quality of the solutions produced for a number of 
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applications [58]. This thesis will look into the improvement of hose/pipe routing in terms 

of computational effort and the quality of the solutions by development of ant colony 

algorithms. 

 

Further, all previous algorithms used a classical multi-objective technique: the weighted 

sum approach or a single-objective function to obtain the optimum solution. Since there is 

more than one optimum solution for a multi-objective problem, previous algorithms are not 

capable of generating these conflicting optimum solutions (or trade-off solutions) in a 

single run. If all the trade-off solutions need to be found, these algorithms must be run 

several times with different parameter values. Normally these experiments are time 

consuming and if they need to be run several times, they are even more time consuming. 

Moreover, multi-hose routing is another important part of this research area and none of 

these algorithms are able to route hoses/pipes in parallel. 
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CD – Cell decomposition 
 

Fig. 2.2 The taxonomy of hose/pipe routing algorithms 
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TABLE 2.1 Previous work on hose/pipe/cable routing 
 

Author(s) Year Dimensions Category Domain Obstacles Algorithm/Objective 
function 

Objectives/Constraints Knowledge-
based 

Multi-
path 

Mitsuta et al. 
[16] 

1986 3D CD General Basic shapes Lee Maze/Single 
objective 

Pipe lengths/Obstacle 
avoidance 

Yes No 

Zhu et al. [1] 1991 2D/3D CD Power 
plants, 
Chemical 
plants, etc. 

Basic shapes 
(Rectangles) 

A*/Weighted Sum Pipe lengths, No of 
turns/Location constraints,  
Shape constraints 

No No 

Conru [4] 1994 3D Graph/ 
Roadmap 

Cable 
harness 

Basic shapes Dijkstra, GA/Single 
objective 

Cable lengths/Obstacle 
avoidance 

No No 

Kim et al. [17] 1996 2D Steiner 
points/Escape 
graphs 

Industrial 
plants 

Basic shapes HC, SA, GA/Single 
objective 

Pipe lengths/Obstacle 
avoidance 

No No 

Sandurkar et al. 
[11] 

1998 3D ND General Free-form GA/Weighted Sum Pipe lengths, No of 
bends/Select angles from 
catalogue angles, obstacle 
avoidance 

No No 

Ito et al. [19, 
25] 

1998 2D CD General Basic GA/Weighted Sum Pipe lengths/Closer to the 
obstacles, Go along the 
walls 

Yes No 

Kang et al. [23] 1996 3D NA Ship 
building 

NA NA Pipe lengths/Placing pipes 
away from onboard 
equipments 

Yes  
No 

Drumheller 
[14] 

2002 3D Graph/ 
Roadmap 

Aeroplane 
building 

Free-form Heuristic/Weighted 
Sum 

Pipe lengths/Intrinsic and 
extrinsic factors 

No No 

Park, J.H. et al. 
[24] 

2004 3D CG Ship 
building 

Free-form TC Material and installation 
cost of pipes, maintenance 
cost/No interference 
between pipes, Obstacle 
avoidance 

No No 

Proposed Grid-
based ACO 
[12] 

2006 3D CD General Free-form ACO/Single Pipe lengths/Obstacle 
avoidance 

No No 

Proposed 
Random-based 
ACO [13] 

2006 3D Network General Free-form ACO/Single Pipe lengths/Obstacle 
avoidance 

No No 

Fan et al. [76] 2006 3D CD Ship 
building 

Cuboid ACO/Weighted sum Pipe lengths, no of 
bends/Obstacle avoidance 

No No 
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TABLE 2.1 Previous work on hose/pipe/cable routing (Contd.) 
 

Author(s) Year Dimensions Category Domain Obstacles Algorithm/Objective 
function 

Objectives/Constraints Knowledge-
based 

Multi-
path 

Ma et al. [77] 2006 2D Graph/ 
Roadmap 

Cable 
Harness 

NA GA/Single Cable lengths/capacity 
of trays 

No No 

Liu et al. [78] 2008 2D CD General Basic PSO/Weighted sum Pipe lengths, no of bends, 
most pipes go through 
existing elements/Obstacle 
avoidance 

No No 

Huibiao et al. 
[79] 

2008 2D/3D CD Ship 
building 

Basic Hanging Bridge 
Algorithm 

Pipe length/Physical, 
economic, safety, etc. 

No No 

Proposed 
MOACO 

2009 3D Network General Free-form ACO/Pareto 
optimization 

Pipe lengths, No of bends, 
Bend angles/Obstacle 
avoidance 

No No 

Proposed 
MCAS-MHR-1 
and MCAS-
MHR-2 

2009 3D Network General Free-form ACO/Weighted sum Pipe lengths, shared path 
length (No limitations on 
no of objectives)/Obstacle 
avoidance  

No Yes 

 
 
CD – Cell Decomposition, ND – Non Deterministic, GA – Genetic Algorithm, HC – Hill-Climbing, SA – Simulated Annealing, CG – Cell Generation,  
TC – Tree of Combination, ACO – Ant Colony Optimization, PSO – Particle Swarm Optimization. NA – Not Applicable 
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3 MULTI-OBJECTIVE OPTIMIZATION 
3 

The work reported in this thesis has extensively used multi-objective optimization for 

automatic hose/pipe routing. This chapter describes the multi-objective optimization in 

detail. It describes the multi-objective optimization problem (section 3.1), the 

domination concept (section 3.1.1), the non-dominated set (section 3.1.2) and the 

illustrative representation of the non-dominated set (section 3.2), how to compare the 

performances of two multi-objective optimization methods (section 3.3) and how to 

select a preferred solution from the non-dominated solutions (section 0). 

 

A multi-objective optimization problem (MOOP) deals with more than one objective 

function. Many real-world problems require the simultaneous optimization of a number 

of objective functions. Some of these objectives may be in conflict with one another. In 

other words optimizing one of these objective functions makes it more difficult to 

optimize the other objective functions. For example, consider finding optimal routes in 

data communication networks, where the objectives may include minimizing routing 

cost, minimizing route length, minimizing congestion, and maximizing the use of 

physical infrastructure. There is an important trade-off between the last two objectives: 

minimization of congestion is achieved by reducing the utilization of links; a reduction 

in utilization, on the other hand, means that infrastructure, for which high installation 

and maintenance costs are incurred, is under-utilized [37]. 

 

There exist many classical algorithms and application case studies involving multiple 

objectives. The majority of these methods avoid the complexities involved in a true 

multi-objective optimization problem and transform multiple objectives into a single 

objective function by using some user-defined parameters (e.g., weighed sum method). 

Finally, these algorithms treat the multi-objective optimization as a single-objective 

optimization. 

 

However, there is a fundamental difference between single and multi-objective 

optimization which is ignored when using a transformation method [38]. In a single-

objective optimization problem, there exists only one optimal solution. In contrast, in 

problems with more than one conflicting objectives, there is no single optimum 

solution. There exists a number of solutions which are all optimal. The classical 
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algorithms that convert a multi-objective optimization problem into a single-objective 

optimization problem converge to one of these optimal solutions. Thus, a classical 

approach needs to be run (with different parameter values) several times to obtain the 

set of all optimal solutions of a multi-objective optimization problem. A multi-objective 

optimization algorithm produces a set of solutions closer to the optimal solutions of the 

MOOP in a single run. 

 

Although the fundamental difference between these two optimizations lies in the 

cardinality of the optimal set, from a practical standpoint a user needs only one solution, 

no matter whether the associated problem is a single- or a multi-objective problem [38]. 

In the case of multi-objective optimization, the higher-level of information (non-

technical, qualitative and experience-driven) that is not incorporated into the model is 

taken into consideration for selecting a solution. 

 

The principles of an ideal multi-objective optimization procedure are shown in Fig. 3.1. 

In step 1, multiple trade-off solutions are found. Thereafter, in step 2, a higher-level of 

information is used to choose one of the trade-off solutions. 

 

 
Fig. 3.1 Flowchart of a multi-objective optimization procedure [38] 
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3.1 The Multi-Objective Optimization Problem 
 

A multi-objective minimization problem with n parameters (also called decision 

variables) and M objectives can be stated as follows: 

 

 XxxxffffMin nM  ),,()),(,),(),(()( 2121  xxxxx  3.1 

 

where x is a decision vector and X is the decision space. 

 

One of the striking differences between single-objective and multi-objective 

optimization is that in multi-objective optimization the objective functions constitute a 

multi-dimensional space, in addition to the usual decision space. This additional space 

is called the objective space, Z [38]. For each solution x in the decision space, there 

exists a point in the objective space, denoted by z = f(x) = (z1, z2, …, zM), where zk = 

fk(x) and k = 1, 2, …, M. 

 
3.1.1 Domination Concept 
 

Most multi-objective optimization algorithms use the concept of Pareto domination, 

hereafter called domination for short. Two solutions are compared on the basis of 

whether one dominates the other solution or not. A decision vector x  X dominates 

another y  X (denoted by x   y) if, and only if: 

 

1.  k = 1, 2, …, M, fk(x)  fk(y) and 

2.  m = 1, 2, …, M s.t. fm(x) < fm(y) 

 



 28

3.1.2 Non-dominated Set 
 

Among a set of solutions P, the non-dominated set of solutions P are those that are not 

dominated by any member of the set P. 

 

When the set P is the entire search space, the resulting non-dominated set P is called 

the Pareto-optimal set. The Pareto-optimal set therefore contains the set of solutions, or 

balance trade-offs, for the MOOP. The corresponding objective vectors are referred to 

as the Pareto-optimal front: 

 

  PffffPF M  xxxxx ))(,),(),(()( 21   3.2 

 

3.2 Illustrative Representation of Non-Dominated Solutions 
3.2 

In multi-objective optimization, there exists more than one objective and in the most 

interesting cases they behave in a conflicting manner. In the case of two objectives, the 

performance of the algorithm can be shown by illustrating the obtained non-dominated 

solutions on a two-dimensional objective space plot. When the number of objective 

functions is larger than two, such an illustration is difficult. There are number of ways 

to illustrate the non-dominated solutions in such situations [39]. 

 

3.2.1 Scatter-Plot Matrix Method 
 
In [40, 41], it was suggested plotting all 
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



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2

M  pairs of plots among the M objective 

functions. Fig. 3.2 shows a typical example of such a plot with M = 3 objective 

functions. With M = 3 objectives, there are a total of 













2

M  × 2 = 3 × 2 or 6 plots. The 

arrangement of the sub-plots is important. The diagonal sub-plots mark the axis for the 

corresponding off-diagonal sub-plots. For example, the sub-plot in position (1, 2) has its 

horizontal axis marked with f2 and the vertical axis marked with f1. If a user is not 

comfortable in viewing a plot with f1 in the vertical axis, the sub-plot in position (2, 1) 

shows the same plot with f1 marked in the horizontal axis. 
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Fig. 3.2 The scatter-plot matrix method [38] 

 

3.2.2 Value Path Method 
 

In [42], the authors proposed this method for representing a set of non-dominated 

solutions (See Fig. 3.3). The horizontal axis contains each of the objective functions. 

The vertical axis marks the normalized objective function values. Two different types of 

information are plotted on the figure. The vertical bar for the objective function k 

represents the range covering the minimum and maximum values of the k-th objective 

function in the Pareto-optimal set, not in the obtained non-dominated set. Each cross-

line, connecting all three objective bars, as shown in Fig. 3.3, corresponds to a solution 

from the obtained non-dominated set. When all solutions from the non-dominated set 

are plotted in this way, the plot provides a number of types of information: 

 

1. For each objective function, the extreme function values provide a qualitative 

assessment of the spread of the obtained solutions. An algorithm which spreads 
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its solutions over the entire bar is considered to be good in finding diverse 

solutions. 

2. The extent to which the cross-lines ‘zigzag’ shows the trade-off among the 

objective functions associated with the obtained non-dominated solutions. An 

algorithm having a large change of slope between two consecutive objective 

function bars is considered to be good in terms of finding good trade-off non-

dominated solutions. 

 

 

Fig. 3.3 The value path method [38] 
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3.2.3 Bar Chart Method 
 

 

Fig. 3.4 The bar chart method 
 
Another useful way to represent different non-dominated solutions is to plot the 

solutions as a bar chart [38]. First, the obtained non-dominated solutions are arranged in 

a particular order. Thereafter, for each objective function, the function value of each 

solution is plotted with a bar, in the same order. Since the objectives can take different 

ranges of values, it is customary to plot a bar chart diagram with the normalized 

objective values. In this way, if there are N obtained non-dominated solutions, N 

different bars are plotted for the objective functions. For example, Fig. 3.4 shows a 

typical bar chart plot of three objective functions and three different non-dominated 

solutions. Since bars are plotted, the diversity in different solutions for each objective 

can be directly observed from the plot. However, if N is large, it becomes difficult to get 

an idea of the trade-offs among different objective functions captured in the obtained 

solutions. 

 

3.3 Metric of Performance 
3.3 

Comparing two multi-objective optimization algorithms experimentally always involves 

the notion of performance. In the case of multi-objective optimization, the definition of 

quality is substantially more complex than for single-objective optimization problems, 

because the optimization goal itself consists of the following multiple objectives [43]. 
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 The distance of the resulting non-dominated set to the Pareto-optimal front 

should be minimized. In other words, solutions as close to the Pareto-optimal 

solutions as possible are required. 

 A good (in most cases uniform) distribution of the solutions found is desirable. 

 The extent of the obtained non-dominated front should be maximized, i.e., for 

each objective, a wide range of values should be covered by the non-dominated 

solutions.  

 

A multi-objective optimization method will be termed as a good one if the above goals 

are adequately satisfied. Thus, a good multi-objective optimization method generates 

solutions close to the true Pareto-optimal front, as well as solutions that span the entire 

Pareto-optimal region uniformly. 

 

Several individual metrics aiming at measuring the achievement of the previous goals 

by the non-dominated solution set derived from a specific multi-objective algorithm 

have been proposed in the literature [38, 43, 44]. Some of these are reviewed below. 

 

Let Y′ and Y′′ be two sets of non-dominated objective vectors, Yp be a Pareto-optimal set 

obtained from the true Pareto-optimal front Y, σ > 0 be a neighbourhood parameter 

(chosen appropriately for the problem at hand) and ||.|| be a distance metric. 

 

1. Function M1
* gives the average distance to the Pareto-optimal set Yp [43]: 
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2. Function M2
* takes into account the distribution in combination with the number 

of non-dominated solutions found [43]: 
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3. Function M3
* considers the extent of the non-dominated set Y′ [43]: 
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 where M is the number of objectives and y1
[i] is the i-th objective function 

value of y1
. 

 

While M1
* is intuitive, M2

* and M3
* need further explanation. The distribution metrics 

give a value within the interval [0, |Y′|]. The higher the value of the metric, the better the 

distribution for an appropriate neighbourhood parameter (e.g., M2
*(Y′) = |Y′| means that, 

for each objective vector, there is no other objective vector within a σ-distance to it). 

Function M3
* uses the maximum extent in each dimension to estimate the range to 

which the non-dominated front spreads out. In the case of two objectives, this equals the 

distance of the two outer solutions. 

 

The previous metrics allows us to determine the absolute, individual quality of a  

non-dominated front. On the other hand, other metrics whose aim is to compare the 

performance of two different multi-objective algorithms by comparing the non-

dominated sets generated by each of them have also been introduced in the literature. 

One of the most used among these metrics was proposed in [43], which compares a pair 

of non-dominated sets by computing the fraction of each set that is dominated by the 

other: 
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where y′   y′′ indicates that the solution y′ dominates the solution y′′. 

 

Hence, the value C(Y′, Y′′) = 1 means that all the solutions in Y′′ are dominated by 

solutions in Y′. The opposite, C(Y′, Y′′) = 0, represents the situation where none of the 

solutions in Y′′ are dominated by the set Y′. Note that both C(Y′, Y′′) and C(Y′′, Y′) have 

to be considered, since C(Y′, Y′′)  is not necessarily equal to 1 – C(Y′′, Y′). 
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3.4 Searching for Preferred Solutions 
0 

Pareto multi-objective optimization algorithms are capable of finding multiple and 

diverse Pareto optimal (or near Pareto-optimal) solutions in a single simulation run. The 

next step is to select a solution among the obtained non-dominated solutions. Some 

possible approaches are reviewed below. 

 

3.4.1 Compromise Programming Approach 
 

In this approach, the algorithm picks a solution which is minimally located from a given 

reference point [45]. The user has to fix a distance metric d() and a reference point z for 

this purpose. A couple of commonly used metrics are presented below: 
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where S is the entire search space. The reference point z is usually comprised of the 

individual best objective function values z = (f1
*, f2

*, …, fM
*)T. Since this solution is 

usually a ‘non-existent solution’, the user is interested in choosing a feasible solution, 

which is closest to this reference solution. 

 

3.4.2 Pseudo-Weight Vector Approach 
 

In this approach, a pseudo-weight vector is calculated for each obtained non-dominated 

solution [38]. From the obtained set of solutions, the minimum fi
min and maximum fi

max 

values of each objective function i are noted. Thereafter, the following equation is used 

to compute the weight wi for the i-th objective function: 
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This equation assumes a minimization problem and calculates the relative distance of 

the solution from the worst (maximum) value in each objective function. Thus, for the 

best solution for the i-th objective, the weight wi is a maximum. The denominator in the 

right side of the above equation ensures that the sum of all weight components for a 

solution is equal to one. 

 

Once the weight vectors for each solution in the non-dominated set are calculated, a 

simple strategy would be to choose the solution closest to a user-preferred weight 

vector. 

 

3.5 Summary of the Chapter 
 

This chapter firstly described the multi-objective optimization problem and how it is 

important in real-world applications. It explained the differences between the two 

approaches (classical and Pareto based algorithms) of solving the multi-objective 

optimization problem. This chapter further explained how to compare two solutions of 

the MOOP using the domination concept. In addition, it described the non-dominated 

set, how to illustrate the non-dominated set graphically and how to compare the 

performances of two multi-objective optimization algorithms. Finally, it explained the 

selection of a solution from the non-dominated solutions obtained by a multi-objective 

optimization algorithm. 

 

The methods discussed in this chapter have been successfully applied to the design of a 

new general purpose Pareto-strength ant colony optimization algorithm PSACO (see 

section 5.6) for multi-objective optimization which may also be applied to multi-

objective automatic hose/pipe routing (see section 6.4). This algorithm has also been 

compared with another multi-objective ant colony optimization algorithm P-ACO (see 

section 4.3.1) using the illustrative representation and performance metrics (see section 

6.4). Further, the methods described in section 0 have been used to select a solution 

from the non-dominated solutions obtained in multi-objective ant colony optimization 

algorithms (see section 6.4.7). 
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4 ANT COLONY OPTIMIZATION 
4 

Initially, this chapter presents a brief introduction about ant colony optimization. Next 

it describes the two most commonly used varieties of ant colony optimization: the Ant 

System (AS) (section 4.1) and the Ant Colony System (ACS) (section 4.2). Section 4.3 

briefly reviews the existing multi-objective ant colony algorithms and recent algorithms 

that have been developed during our research work. Among these algorithms, Pareto 

Ant Colony Optimization (P-ACO) could be considered as the best one (for compromise 

solutions) and it is explained in detail in section 4.3.1. 

 

Some ant species are able to find the shortest path between their nest and a food source. 

While walking between their nest and a food source, these ants deposit a chemical 

called pheromone. If no pheromone trails are available, ants move randomly, but in the 

presence of pheromones they have a tendency to follow the trail. In practice, choices 

between different paths occur when several paths intersect. Then, ants choose the path 

to follow by a probabilistic decision biased by the amount of pheromones: the stronger 

the pheromone trail, the higher the desirability.  Over time, the pheromone trail 

evaporates and it reduces intensity if no more pheromone is laid down by ants. In this 

way, less promising paths progressively lose pheromone because of being visited by 

fewer ants. This behaviour allows ants to identify the shortest paths between their nest 

and the food source. 

 

Ant colony optimization (ACO) algorithms imitate the behaviour of real ants to solve 

difficult combinatorial optimization problems. They are based on a colony of artificial 

ants (computational agents) that work cooperatively and communicate through artificial 

pheromone trails [26]. In each cycle (or generation), some ants constructs a solution to 

the problem by travelling on a network. Each edge of the network represents the 

possible step that an ant can make and has associated two kinds of information that 

guide the ant’s movement: 

 

1. Heuristic information – measures the heuristic preference of moving from node i 

to node j. This information is not modified by the artificial ants during the 

algorithm run. 
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2. Pheromone trail information (artificial) – mimics the real pheromone that 

natural ants deposit. This information is modified during the algorithm run 

depending on the solutions found by the ants. 

 

In ant based systems, communication often takes place in the form of stigmergy. 

Stigmergy is a term used to indicate interactions through the environment. This form of 

communication does not require direct contact between the individual agents (ants). 

Interaction occurs when one agent alters its environment in some way, and other 

individuals later on respond to this change. 

 

ACO algorithms imitate the foraging behaviour of natural ants and allow the application 

of this search metaphor to the finding of the solutions of hard combinatorial 

optimization problems like the Travelling Salesman Problem [27, 28, 29], the Quadratic 

Assignment Problem [30], the Job Shop Scheduling Problem [27]. Later scientists have 

applied them to many different discrete optimization problems [34, 35, 36, 65, 67, 69, 

70, 71, 72, 73, 74, 75]. 

 

Several ACO algorithms have been proposed and are included within the ACO meta-

heuristic such as the Ant System (AS) [27], the Ant Colony System (ACS) [31], the 

Max-Min Ant System [29], the Rank-based Ant System (rankAS) [33], and the Best-

worst Ant System [32].  

 

Among these algorithms, the former two algorithms are commonly used in most 

research work [65, 67, 68, 69, 70, 71, 74, 75] and are used in our approaches too. These 

two ACO algorithms are briefly explained in the following sections. 

 

4.1 Ant System (AS) 
 

The Ant System (AS) was first proposed by Dorigo and his colleagues [27, 28] as a 

multi-agent approach to difficult combinatorial problems such as the Travelling 

Salesman Problem [27, 28, 29], the Quadratic Assignment Problem [30] and the Job-

Shop Scheduling problem [27]. 
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When applying AS to finding the optimal path between two vertices S (Start node) and 

E (End node) of a network, a trail strength is associated with each edge to represent the 

pheromone strength. Initially, all ants are set on the start node (S) and they construct 

tours to the end node (E). At each node, the ants know the heuristic knowledge about its 

position (e.g. the straight line distance to the end node), the trail strength (pheromone 

strength) on the connecting edges, and which nodes have already been visited. Based on 

this knowledge the ants choose the next node (turn) probabilistically (see eq. 4.1). A 

global updating rule is implemented after the number of allocated turns (NT) (at the end 

of the current cycle) using the quality of the solution produced by each successful ant 

(ant that was able to reach the end node E): a fraction of pheromones evaporate on all 

edges (edges that are not refreshed become less desirable); each ant that was able to 

finish a complete tour deposits an amount of pheromone on edges which belong to its 

tour in proportion to the quality of its tour (quality is defined according to the problem) 

in other words, edges which belong to high quality paths receive the greater amount of 

pheromone) (see eqs. 4.2 and 4.3). 

 

The state transition rule used by the ant system, called a random-proportional rule, is 

given by eq. 4.1 and gives the probability with which ant ‘i’ in node ‘r’ chooses to move 

to neighbour node ‘s’ [27], 
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where τ(r, s)  is the pheromone level on edge (r, s), 

 η(r, s) is the inverse of the distance from node s to the end node (heuristic 

information), 

 Ji(r) is the set of neighbour nodes of r that remain to be visited by ant i 

positioned on the node r, 

  and  (> 0) are parameters which determine the importance of pheromone 

and heuristic information, respectively. 
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The global updating rule is implemented after the number of allocated turns (NT) (at the 

end of the current cycle) using the quality of the solution produced by each successful 

ant (ant that was able to reach the end node E) as in eqs. 4.2 and 4.3. 
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 and 0 <  < 1 is a pheromone decay parameter. Q(i) measures the quality of an 

ant’s solution (better solutions get a higher value for Q(i)) and m is the number 

of successful ants within the stipulated number of turns NT. 

 
Although the Ant System (AS) showed better performances than those of some general 

purpose heuristic algorithms for smaller size problems, it does not converge to the best 

known solution for the benchmark problems such as Travelling Salesman problem when 

the number of cities involved increased [31]. However, in these larger problems, the Ant 

System (AS) was able to find good solutions which are closer to the best known 

solution [31].   

 
4.2 Ant Colony System (ACS) 
 

The Ant Colony System [31] is one of the first successors of AS and was introduced to 

improve the performance of AS, that was able to find good solutions within a 

reasonable time only for small problems. ACS is based on AS and it introduces three 

major modifications into AS. 

 

1. ACS uses a different transition rule, the pseudo-random proportional rule: an 

ant i positioned on city r chooses to move to neighbour node s by applying the 

rule given by eq. 4.4, 
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 where (r, s) is the pheromone level on the edge (r, s), 

  (r, s) is the inverse of the distance from node s to the end node, 

  Ji(r) is the set of neighbour nodes of r that remain to be visited by ant 

i positioned on node r, 

   and  are parameters indicating the importance of pheromone and 

heuristic information, respectively, 

  q is a random number uniformly distributed in [0, 1], 

  q0 is a parameter  (0  q0  1) indicating the relative weighting of 

exploitation versus exploration, 

  S is a random variable selected according to the probability 

distribution given in eq. 4.1. 

 

As it can be seen, the rule has a double aim: when q  q0, it exploits the available 

knowledge, choosing the best option with respect to the heuristic information and the 

pheromone trail. However, if q > q0, it applies a controlled exploration, as done in AS. 

In summary, the rule establishes a trade-off between the exploration of new connections 

and the exploitation of the information available at the moment. 

 

2. Only the daemon (and not the individual ants) triggers the global pheromone 

update, i.e., an off-line pheromone trail update is done. To do so, ACS only 

considers a single ant, the one who generated the global best solution (global-

best-tour). The global pheromone update rule is given by eq. 4.5, 

 

  ),(.),().1(),( srsrsr    4.5 

    

 where 



 


otherwise

tourbestglobalsrifiQ
sr b

0

),()(
),(  4.6 

   

  and 0 <  < 1 is a pheromone decay parameter. Q(ib) measures the 

quality of the best ant’s solution. 

 



 41

3. While building a solution, ants visit edges and change their pheromone level by 

applying the local updating rule given by eq. 4.7, 

 

  
0.),().1(),(   srsr  4.7 

    

 where ρ is the pheromone evaporation rate and τ0 is the initial pheromone 

value. 

 

4.3 Multi-objective Ant Colony Optimization (MOACO) 
4.3 

Previously, researchers have designed ACO algorithms to deal with multi-objective 

problems [46, 47, 48, 49, 50, 51, 52]. Most of them are designed to solve a concrete 

multi-objective problem such as scheduling, vehicle routing, and portfolio selection. 

Furthermore, most of these algorithms are designed for bi-criterion optimization 

problems and it is difficult to extend them to more general multi-objective ant colony 

optimization algorithms. 

 

Mariano et al. [52] described an Ant-Q algorithm called MOAQ that can solve multiple 

objective optimization problems. MOAQ considers a family of agents for each objective 

function involved. Each family of agents finds solutions that depend on solutions found 

by the rest of the families, creating a negotiation mechanism and finding compromise 

solutions for all the objectives involved. The compromise solutions are evaluated in the 

Pareto sense, assigning rewards to the non-dominated solutions fitting all problem 

constraints, and punishments to the solutions violating any of them. 

 

Iredi et al. [51] studied the ACO methods for bi-criterion optimization when the 

objectives cannot be ordered by importance. A multi-colony approach (BicriterionAnt) 

is proposed where the ant colonies are forced to search different regions of the non-

dominated front. Two heterogeneous colonies are used where the ants in a colony 

weight the relative importance of the two optimization criteria differently so that they 

are able to find different solutions along the Pareto front. Cooperation among the 

colonies is done by exchanging solutions in the global non-dominated front that are in 

regions which belong to other colonies. 
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Pareto Ant Colony Optimization (P-ACO), proposed in [49], was originally applied to 

solving the multi-objective portfolio selection problem. It is based on classical ACS but 

the global pheromone update is performed by using two different ants, the best ant and 

the second-best solution generated in the current iteration for each objective m. In P-

ACO, several pheromone matrices are considered, one for each objective k. At each 

iteration, each ant computes a set of weights w = (w1, w2, …, wM), and uses them to 

combine the pheromone trails. 

 

A multiple ant colony system (MACS-VRPTW) was developed in [50] to solve vehicle 

routing problems with time windows. As in the P-ACO, it is also based on classical 

ACS. MACS-VRPTW is based on setting up a preference to minimize one objective 

(the number of tours) over the other (the travel time). This solution is defined as the first 

of a lexicographic order on the values of the objectives. It defines two different 

colonies, ACS-VEI and ACS-TIME, whose activities are coordinated by the global 

MACS-VRPTW algorithm in order to optimize both objectives simultaneously. The 

former colony tries to diminish the number of vehicles used while the latter optimizes 

the feasible solutions obtained by the former. Each colony uses an independent 

pheromone trail matrix for its specific objective, and colonies collaborate by sharing the 

best solution found by their cooperative action. The global algorithm kills and runs 

again the two colonies each time a new best solution containing fewer vehicles than the 

previous one is obtained. 

 

The Multiple Ant Colony System (MACS) [46] was proposed as a variation to the 

MACS-VRPTW algorithm. It is also based on ACS but, contrary to its predecessor, 

MACS uses a single pheromone matrix and several heuristic information functions. 

 

Multi-objective Network ACO (MONACO) [47] was designed to optimize the dynamic 

problem of message traffic in a network. In [53] this algorithm is changed for 

implementation in a static environment. The algorithm takes the classical AS as the base 

but uses multi-pheromone trail matrices. Each ant uses the multi-pheromone trail and 

single heuristic information to choose the next node to visit. 

 

In [48] the author introduced COMPETants to deal with bi-objective transportation 

problems. The algorithm is based on rankAS and uses two ant colonies, each with its 
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own pheromone matrix and heuristic information. The number of ants in each colony is 

not fixed. When every ant has constructed its solution, the colony which has constructed 

better solutions gets more ants for the next iteration. 

 

In [53] previous multi-objective ant colony algorithms were reviewed and 

experimentally tested in several instances of the bi-objective travelling salesman 

problem, comparing their performance with that of two well-known multi-objective 

genetic algorithms (MOGAs) NSGA-II [54] and SPEA2 [55]. According to the results 

published in this paper, MOACO algorithms are very competitive compared to the 

MOGAs implemented. MOACO algorithms offer good sets of non-dominated solutions 

which almost always dominate the solutions returned by NSGA-II and SPEA2. In 

addition, the Pareto fronts derived by the MOGAs do not dominate any of the fronts 

given by MOACO algorithms. Among the MOACO algorithms [53], P-ACO could be 

considered as the algorithm with the best global performance as fewer of its obtained 

Pareto fronts are dominated by the remainder of the MOACO algorithms while they 

dominate the remainder to some degree. Further, P-ACO generates extremely good 

solutions at the central part of the Pareto front (or a good set of compromised solutions). 

 

Recent research (during the period of the research carried out for this thesis) showed 

that MOACO has been applied to different areas and new modifications have been 

proposed to MOACOs. The following paragraphs briefly review the recent publications 

relating to MOACO algorithms. 

 

Alam et al. [65] applied MOACO to the problem of generating safe flight trajectories 

under weather hazards. The problem of weather avoidance in a Free Flight environment 

is formulated as: ‘given a start node and an end node in a three dimension mesh, find 

routes which minimize interaction with bad weather cells, minimize heading changes 

and minimize distance travelled’. In this paper, two different pheromone mechanisms 

have been applied; one uses a dynamic weighted sum of three objective functions and 

the other uses the concept of strength. In the second approach, the strength parameter 

defined in SPEA2 [55] was used, where each individual i in the current set of solutions 

is assigned a strength value S(i)  [0, 1]. S(i) is the number of ants that are dominated 

by or equal to i, divided by the total number of ants plus one. 
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In [66] the authors proposed four generic variants of ant colony optimization to solve 

multi-objective optimization problems and compare the four versions when applied to 

the multi-objective knapsack problem. 

 

Variant 1: m-ACO1 (m+1, m) 

 

For this variant, the number of colonies is set to m+1 and the number of pheromone 

matrices is set to m, where m is the number of objectives that need to be optimized. 

Each colony considers a single different objective, using its own pheromone matrix and 

heuristic information to build solutions; an extra ant colony is added, that aims at 

optimizing all the objectives. The ith pheromone factor considered by the ith objective, 

fi, is defined with respect to the ith pheromone matrix, depending on the application. 

The m+1th pheromone factor considered by the extra ant colony is the pheromone 

factor of the rth single-objective colony, where r is randomly chosen. This colony 

considers, at each construction step, a randomly chosen objective to optimize. The ith 

heuristic factor considered by the ith single-objective colony that aims at optimizing the 

ith objective function fi, is the ith heuristic information. The m+1th heuristic factor 

considered by the extra multi-objective colony is the sum of the heuristic information 

associated with all the objectives. For each single-objective colony, pheromone is laid 

on the components of the best solution found by the ith colony during the cycle, where 

quality of a solution is evaluated with respect to the ith objective, fi only. The multi-

objective colony maintains a set of solutions: a best solution for each objective. It lays 

pheromone on each pheromone structure relatively to the correspondent objective with 

the same formulae defined for the other colonies. 

 

Variant 2: m-ACO2 (m+1, m) 

 

This second variant is very similar to the first one, and considers m + 1 colonies and m 

pheromone matrices: a single-objective colony is associated with every different 

objective, and the behaviour of these single-objective colonies is defined as in variant 1; 

there is also an extra multi-objective colony, that aims at optimizing all objectives. The 

only difference between variants 1 and 2 lies in the way this multi-objective colony 

exploits the pheromone structures of other colonies to build solutions. For this multi-
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objective colony, the m+1th pheromone matrix is defined as the sum of every 

pheromone matrix of every colony. 

 

Variant 3: m-ACO3 (1, 1) 

 

The pheromone factor considered by the ants of the single colony is defined with 

respect to the single pheromone structure, and the heuristic factor considered by the 

single colony is the sum of heuristic information associated with all the objectives. 

Once the colony has computed a set of solutions, every non-dominated solution 

(belonging to the Pareto set) is rewarded. Every component belonging to at least one 

solution of the Pareto set receives a same amount of pheromone. Indeed, these 

components belong to non comparable solutions. 

 

Variant 4: m-ACO3 (1, m) 

 

In the last variant, there is only one colony but m pheromone matrices. At each step of 

the construction of a solution, ants randomly choose an objective r  {1, ..., m} to 

optimize. The pheromone factor is defined as the pheromone factor associated with the 

randomly chosen objective r. The heuristic factor considered by the single colony is the 

sum of the heuristic information associated with all the objectives. Once the colony has 

computed a set of solutions, the m best solutions with respect to the m different 

objectives are used to reward the m pheromone matrices. 

 

Pinto et al. [67] proposed two modifications to the Ant Colony System (ACS) [31] and 

the Max-Min Ant System [29] for handling multi-objective optimization problems. In 

the first case, the proposed algorithm (MOACS) uses a colony of ants and a pheromone 

matrix for the construction of solutions at every cycle. After completing the each cycle, 

a known Pareto front Yknown is updated including the best non-dominated solutions that 

have been calculated so far. If the state of the Pareto front Yknown is changed, the 

pheromone matrix is reinitialized to improve exploration in the decision space X. 

Otherwise, the pheromone matrix is globally updated using the solutions of Yknown to 

better exploit the knowledge of the best known solutions. Note that only the links of the 

solutions found in Yknown are used to update the pheromone matrix. The modification to 
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the Max-Min Ant System (M-MMAS) uses the same general ideas used for the 

MOACS. 

 

In [68], the authors investigate the effect of elitism on multi-objective ant colony 

optimization algorithms (MOACOs). Elitism is implemented through the use of local, 

global and mixed non-dominated solutions. Further, an adaptation strategy is introduced 

to control the effect of elitism. With this strategy, the solutions most recently added to 

the global non-dominated archive are given a higher priority in defining the pheromone 

information. For this adaptive technique, each solution in the archive is assigned an age 

to indicate how long it has existed in the archive. This value is used to adjust the 

amount of pheromone that an aging ant will deposit. The experimental work of this 

research was conducted using a suite of multi-objective travelling salesman problems, 

each with two objectives. 

 

Chaharsooghi et al. [69] presented a modified ant colony optimization (ACO) algorithm 

for solving the knapsack multi-objective problem to achieve the best layer of non-

dominated solutions. A new pheromone updating rule is proposed for the multi-

objective case which can increase the learning of the algorithm and consequently 

increases effectiveness. This approach uses multi-pheromone matrices, where each 

matrix represents the desirability of the solution components with respect to one 

objective. The pheromone updating process is achieved in two phases. In the first phase, 

each colony updates its own constructed solution according to the best-so-far strategy, 

regardless of the other objective functions. In the second phase, the global updating is 

accomplished for all the constructed solutions as follows: each constructed solution in 

the current cycle is compared with all former non-dominated solutions; if it is a non-

dominated solution, the quantity of pheromone in all edges, which constructed it, will 

be increased by t× where  is a small positive number and t is the number of the 

current cycle, otherwise it is decreased by t×. In [72], the same authors (Chaharsooghi 

et al.) applied the same approach to the problem of multi-objective resource allocation. 

 

Yagmahana et al. [70] studied the flow shop scheduling problem with multi-objectives 

of makespan, total flow time and total machine idle time. The ant colony optimization 
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(ACO) algorithm was proposed for the solution of this problem which is known to be of 

the NP-hard type. 

 

The task of Supply Chain Management (SCM) is to deploy resources across a supply 

chain to produce high-quality goods as inexpensively as possible when the customer 

wants them. Taking the dependencies of the underlying production techniques into 

account, the SCM presents itself as an NP-hard problem. Sun et al. [71] described a 

multi-objective supply chain model including measurements of costs, customer service 

fill rates and delivery flexibility and used Ant Colony Optimization (ACO) to solve this 

multi-objective optimization problem. The performance of each echelon is optimized 

considering customer demand, production lead-time, and supply lead times throughout 

the supply chain. 

 

Panahi et al. [73] considered an open shop scheduling problem that minimizes bi-

objectives, namely makespan and total tardiness. The authors proposed a method based 

on multi-objective simulated annealing and ant colony optimization, in order to solve 

the given problem. This proposed algorithm is based on the concept of the Pareto 

dominancy. It uses an archive with a predefined size to store dominant solutions. A 

multi-objective simulated annealing algorithm was used to initialize the first population 

of the multi-objective ant colony optimization (MOACO) algorithm. At the end of each 

generation of the MOACO, the pheromone trail matrix is updated by elitist agents. 

 

Colson et al. [74] presented a framework for an intelligent supervisory controller that 

utilizes ant colony optimization (ACO) methods for alternative energy distributed 

generation (AEDG) micro-grid dispatch control. The novelty of this work is the 

application of ACO to the rapid micro-grid power management problem given complex 

constraints and objectives including environmental, fuel/resource availability, and 

economic considerations. Given the compound nature of the multi-objective, multi-

constraint energy management problem for integrated AEDG systems, this paper 

develops a constraint satisfaction problem (CSP) algorithm capable of finding Pareto 

optimal dispatch solutions.  

 

Airport Ground Service Scheduling (AGSS) problems can be formulated as Vehicle 

Routing Problems with Tight time windows, Short travel time and Re-used Vehicles 
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(VRPTSR). Du et al. [75] presented a model with multiple objectives to minimize the 

number of vehicles used, the total start time of serving flights and the total flow time of 

vehicles for VRPTSR. An ACO algorithm with MAX-MIN and a Rank-based Ant 

System is proposed; an efficient heuristic called Earliest Due Date First (EDD) is 

incorporated into ACO as a comparative ant in order to improve the performance of 

ACO. 

 

Table 4.1 shows the taxonomy for the previous MOACO algorithms and the proposed 

PSACO algorithm. 

 

TABLE 4.1 A taxonomy for MOACO algorithms 
 

MOACO 
Algorithm 

Year Use of 
domination 
concept for 
pheromone 
updating 

Use of 
density 
information 
for 
pheromone 
updating 

Single 
pheromone 
matrix for 
all 
objectives 

Can be 
extended to 
multiple 
objectives 
(more than 2 
objectives)? 

Several 
heuristic 
matrices 

MOAQ [52] 1999 No No No Yes Yes 
BicriterionAnt [51] 1993 No No No No Yes 
MACS [46] 2003 No No Yes No Yes 
MONACO [47] 2003 No No No Yes No 
COMPETants [48] 2003 No No Yes No Yes 
P-ACO [49]  2004 No No No Yes No 
Pinto et al. [67] 2005      
Alam et al. [65] 2006 Yes No Yes Yes No 

Alaya et al. [66] 2007 No No No Yes No 

Bui et al. [68] 2008 Yes No No Yes No 
Chaharsooghi et al. 
[69] 

2008 No No No Yes Yes 

Panahi et al. [73] 2008 Yes No Yes Yes No 
Colson et al. [74] 2009 No No Yes Yes No 
Proposed 
PSACO 

2009 Yes Yes Yes Yes No 

 
 

Since recent MOACO algorithms were not available during the period of this research 

and the proposed MOACO algorithm (PSACO) was designed independently of the 

recent publications, the proposed MOACO algorithm is compared according to the 

conclusions discussed in [53]. Thus, P-ACO is selected for comparison with the 

proposed multi-objective ant colony optimization algorithm – the Pareto Strength Ant 

Colony Optimization (PSACO) algorithm (section 5.6). The following section describes 

P-ACO in more detail. 

 



 49

4.3.1 Pareto Ant Colony Optimization (P-ACO) 
4.3.1 

P-ACO uses several pheromone matrices τm (m = 1, 2, …, M), one for each objective m. 

At every iteration, each ant generates a set of weights w = (w1, w2, …, wM) and uses 

them to calculate the combined pheromone value from all the objectives. 

 

The state transition rule used by P-ACO is given by eq. 4.8 and gives the probability 

with which ant i in node r chooses to move to node s [49, 53], 
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where m(r, s) is the pheromone level on the edge (r, s) with respect to 

objective m, 

 (r, s) is the inverse of the distance from node s to the end node, 

 Ji(r) is the set of neighbour nodes of r that remain to be visited by ant i 

positioned on node r, 

  and  are parameters indicating the importance of pheromones and heuristic 

information, respectively, 

 wm's are random weights selected from [0, 1], 

 M is the number of objectives, 

 q is a random number uniformly distributed in [0, 1], 

 q0 is a parameter  (0  q0  1) indicating the relative weighting of exploitation 

versus exploration, 

 S is a random variable selected according to the probability distribution given 

in eq. 4.9. 
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Every time an ant travels an edge (r, s) it performs the local pheromone update in each 

pheromone matrix, i.e., for each objective m, as follows: 

 

 
0.),().1(),(   srsr mm  4.10 

 

where ρ is the pheromone evaporation rate, 

 τ0 is the initial pheromone value. 

 

The global updating rule is implemented after the number of allocated turns (NT) using 

the best ant and the second-best ant with respect to each of the objectives as in eq. 4.11. 
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During the process, the non-dominated solutions found are stored in an external set as 

usually done in elitist (second generation) MOGAs. 
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Algorithm P-ACO [49, 53] 

 

Inputs 

α, β, , q0, Initial pheromone level (τ0), Archive 

size (NA), Number of ants (N), Maximum cycles (Nc), 

Maximum turns or jumps ant can perform within a cycle 

(NT), Start node (S), End node (E) 

Output 

Non-dominated set (A*) 

Variables 

Cycle no (t), Turns remained (turns_remain), Archive 

(At), Population (Pt), Set of ants (Xt), Number of 

successful ants in the current cycle (ns) 

Initialize 

t = 1, turns_remain = NT, At = Φ, Pt = Φ, Xt = Φ, ns = 

0; Set pheromone level of each edge to τ0 

Repeat 

Release a new set of ants Xt(of size N) to the colony 

from the start node (S) 

Repeat 

For each ant ‘a’ in Xt 

If ant ‘a’ does not reach to the end node 

(E) 

If ant’s (‘a’) next set of feasible 

nodes is not empty 

Move to the next node using eqs. 4.8 

and 4.9 

Apply the local updating to the 

visited edge using eq. 4.10 

Store this node in ant’s (‘a’) 

visited cities 

Else // Ant ‘a’ lost 

Start ant ‘a’ again from start node 

(S) 
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Else If ant ‘a’ reaches to the end node (E) 

Mark ant ‘a’ as sussessful 

Copy the solution produced by ant ‘a’ 

to Pt 

Ant ‘a’ stops exploring 

ns = ns + 1 

If (ns = N) // All ants in current cycle reached 

to (E) 

Break // Exit from Repeat … Until 

(turnsRemain == 0) 

turns_remain = turns_remain - 1 

Until (turns_remain == 0) 

Apply the global pheromone updating (eqs. 4.11 and 

4.12) using the best and second-best solution in Pt 

Copy all non-dominated solutions in Pt and At to At+1 

If |At+1| > NA 

Reduce the size of At+1 to NA by removing crowded 

solutions 

Remove the current set of ants from the colony  

(Ct = Φ)  

Set At = Φ and Pt = Φ 

t = t + 1 

turns_remain = NT 

ns = 0 

Until (t <= Nc) 

Return ANc as A* 
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4.4 Summary of the Chapter 
 

In this chapter, ant colony optimization has been described and the most commonly 

used ACO algorithms the Ant System (AS) and the Ant Colony System (ACS), were 

introduced. The chapter then reviewed the existing multi-objective ant colony 

optimization algorithms. Finally, P-ACO, the best MOACO algorithm for generating a 

good set of solutions in the central part of the Pareto front (compromised solutions) was 

described. 
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5 AUTOMATIC HOSE/PIPE ROUTING IN 3D SPACE USING 
THE ACO AND THE PROPOSED ACO ALGORITHMS 

  5 

The research work reported in this thesis uses ant colony optimization algorithms for 

simulation work carried out in finding the optimal layout of automatic hose/pipe 

routing. Initially, this chapter explains the simulation of automatic hose/pipe routing in 

a 3D CAD model using ant colony optimization. Artificial ants travel from a start point 

to an end point on a randomly generated network of points or network of grid points. 

For generating these networks, collision free edges must be obtained. In this research, 

the C++ library RAPID was used for collision detection and this library needs the 

tessellated model of the original CAD model. Section 5.1 introduces the tessellated 

format of a CAD model. Next, the collision detection library and its use are discussed in 

section 5.2. Next, the steps involved in hose routing with ant colony optimization are 

discussed in section 5.3. Then two (proposed) modifications are explained for reducing 

the size of the search space (section 5.4) and avoiding the stagnation problem of the ant 

colony algorithm (section 5.5). Section 5.6 introduces a new multi-objective 

optimization algorithm – the Pareto Strength Ant Colony Optimization algorithm 

(PSACO). Section 5.7 explains the multi-objective hose routing problem and how P-

ACO and PSACO are applied to this problem. Finally, multi-colony ant systems are 

proposed for (simultaneous) multi-hose routing  in section 5.8. 

 

Initially, an ant colony optimization algorithm (described in Chapter 4) is developed for 

minimizing the total length of pipes and avoiding the obstacles. The proposed ant 

colony optimization algorithm is tested on randomly generated networks of points and 

networks of grid points located in the free space of 3D CAD models. Other ant colony 

algorithms proposed in this chapter are tested on randomly generated networks. For 

generating these networks, it is required to test whether a path between two points is 

collision free. For this, the tessellated model of the original CAD model was obtained 

and passed to the C++ collision detection library – RAPID. 
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5.1 The Tessellated Format 
 

The STL (STereoLithography) format or tessellated format [11] is an ASCII or binary 

file used in manufacturing to represent 3D models. It is a list of triangular planes that 

describes a computer generated solid model. This is the standard input for most 

prototyping machines. The STL file defines an object’s surfaces as a set of adjacent 

triangles as shown in Fig. 5.1. This file basically contains the X, Y and Z Cartesian 

coordinates of each vertex of the triangles, as well as the coordinates of the vectors 

normal to the triangles. With the tessellated format, each edge is shared only by two 

triangles. The tessellated model is an approximation to the real model and the accuracy 

of the tessellated model depends on the number of triangles used. In most CAD 

packages the number of triangles generated for the tessellated model can be controlled. 

Models used in this research were generated using the CAD package Pro/Engineer and 

its programming toolkit Pro/Toolkit. 

 
 

  
Original CAD Model Tessellated Model 

 
Fig. 5.1 3D Model generated in tessellated format 

 

Standard collision detection software (such as RAPID) requires polygonal models 

composed entirely of triangles that are an approximated model of the original model. 

Thus, the tessellated representation of a 3D model can be passed to the collision 

detection program. Also, most CAD software support the tessellated format. 

 

5.2 Collision Detection Library – RAPID 
 

RAPID (Robust and Accurate Polygon Interface Detection) [59] is a C++ library 

developed at the Department of Computer Science, University of North Carolina, for 
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interference detection (or collision detection) of large environments composed of 

unstructured models. 

 

 It is applicable to polygon soups [59] - models that contain no adjacency 

information and obey no topological constraints. The models may contain 

cracks, holes, self-intersections, and non-generic (e.g., coplanar and collinear) 

configurations. 

 It is numerically robust - the algorithm is not subject to conditioning problems 

and requires no special handling of non-generic cases (such as parallel faces). 

 The RAPID library is free for non-commercial use. It has a very simple user 

interface: the user needs to be familiar with only about five function calls. 

 

RAPID accepts only polygonal models composed entirely of triangles, but does not 

require the model to have any particular structure. For example, some collision 

detection systems require the shapes to be well-formed solids – the surfaces must be 

“closed” so that there are a well-defined inside and outside. 

 

5.2.1 Basic Usage of RAPID 
 

To use the RAPID library [60] in a C++ project, one must include the header file 

“RAPID.H” that includes all necessary structures and functions. In addition, the 

following header files need to be included in the C++ project: MATVEC.H, 

MOMENTS.H, OBB.H, OVERLAP.H, RAPID_PRIVATE.H and 

RAPID_VERSION.H. 

 

In RAPID, a model is a collection of triangles; each triangle has three vertices; each 

vertex has three coordinates. These coordinates are given with respect to the “model 

coordinate system” or within the “model space”. 

 

A model’s placement in world space is defined as the placement of the model’s 

coordinate axes within the world space, which are specified as a rotation, R, followed by 

a translation, T. Given the placement of a model with R and T, the location in world 

space of a vertex of the model can be determined as follows: 
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where Xm is a point in the model coordinate system, and Xw is the world coordinate of 

the same point. 

 

The basic function of RAPID is to indicate whether two objects m1 and m2 are in 

physical contact in world space. The corresponding code is: 

 

int RAPID_Collide ( 

double R1[3][3], double T1[3], RAPID_model* m1, 

 double R2[3][3], double T2[3], RAPID_model* m2,  

int flag) 

 

Here R1 and T1 represent the orientation (rotation and translation) of model m1 in the 

world space and R2 and T2 the orientation of model m2 in the world space. This 

function returns “RAPID_OK”, which is 0, on success. A non-zero value indicates that 

the call failed, and the returned value itself is the error code. After calling this function, 

the number of pair-wise intersecting triangles can be found in the global variable 

“RAPID_num_contacts”. If this variable is 0, the models m1 and m2 are not touching. If 

it is non-zero, they are touching. The variable ‘flag’ can be set as 

“RAPID_FIRST_CONTACT” or “RAPID_ALL_CONTACTS”. If it is set as 

“RAPID_FIRST_CONTACT”, the collide routine searches for contacts until it locates 

the first one. In the case of “RAPID_ALL_CONTACTS”, the function checks for all 

contacts which is useful for complete knowledge about which triangles collide with 

others. 

 

RAPID acquires a model by adding its triangles to a RAPID_model object. For 

example, the following code adds a pyramid to the RAPID_model ‘m’. Notice that the 

square base of the pyramid must be built as two triangles. 

 

double p0[3] = {0.0, 0.0, 1.0}; // top of pyramid 

double p1[3] = {-.5, -.5, 0.0); // SW corner 

double p2[3] = {+.5, -.5, 0.0); // SE corner 
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double p3[3] = {+.5, +.5, 0.0); // NE corner 

double p4[3] = {-.5, +.5, 0.0); // NW corner 

 

RAPID_model* m = new RAPID_model; 

m->BeginModel(); 

m->AddTri(p1, p2, p0, 0); // south face 

m->AddTri(p2, p3, p0, 1); // east face 

m->AddTri(p3, p4, p0, 2); // north face 

m->AddTri(p4, p1, p0, 3); // west face 

m->AddTri(p1, p4, p2, 4); // bottom face 

m->AddTri(p2, p4, p3, 5); // bottom face 

m->EndModel(); 

 

Notice that each triangle is given an id number, as it is added to RAPID's object. When 

RAPID reports contacts, it is these id numbers that are inserted into the contact_pair 

structures. 

 

The m->BeginModel() tells RAPID to prepare the object ‘m’ for the addition of 

triangles. Each subsequent m->AddTri(...) adds a triangle to the object ‘m’. 

RAPID stores a copy of the triangles in ‘m’. When m->EndModel() is called, 

RAPID knows that no further triangles will be added, and it then performs any 

necessary pre-processing. 

 

The RAPID_model object can be destroyed with the usual C++ syntax, 

 

delete m1; 

delete m2; 

 

5.3 Hose Routing with Ant Colony Optimization 
5.3 

Hose routing with the ant colony optimization algorithm is implemented by the 

following steps. 

 

1. Generate the tessellated representation of the original 3D model. 
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2. Generate a network of valid paths (edges) using randomly generated points 

or grid points in the free space, from the start point to the end point. 

3. Obtain the best layout of hoses (XG) between the commodities (start and end 

point pairs) using the ant colony optimization algorithm. 

4. Refine the solution (XG) obtained using the entire search space. 

 

In the first step, the tessellated representation of the obstacles is obtained as a text file 

from the CAD package. In the second step, this text file is passed to a program which 

incorporates the collision detection library RAPID. The following inputs are also 

supplied to this program: 

 

 world size of the paths to be explored, given by the maximum and minimum of 

each axis coordinate - Xmin, Xmax, Ymin, Ymax, Zmin, and Zmax, 

 coordinates of the start (S) and the end (E) points, 

 number of random points or grid points 

 radius (r) of the hose pipes, 

 text file containing the tessellated model of the original 3D model. 

 

This program then generates a network of valid paths from randomly generated or grid 

points from the world, and the start point and the end point (See Fig. 5.2). When 

connecting two points, the program checks, with the aid of the C++ library, RAPID, that 

the path between two points is collision free (the axis of the hose cylinder lies on the 

line connecting the two points). For simplicity, a rectangular hexahedron is used that is 

centred on the line segment between the two points such that the cylindrical hose could 

be laid within it. This network data are stored in a text file for use in the next step. 
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Fig. 5.2 A random point network generated in a CAD model 
 
During the third step, the best layout of hoses (XG) between the start and the end points 

is obtained using one of the proposed algorithms discussed in Chapter 4. 

 

In the fourth step, the program refines the solution XG (obtained using the entire search 

space). For this, the algorithm generates a network of random points near the 

neighbourhood of solution XG and searches a better solution using again ant colony 

optimization. 

 

5.4 The Proposed Reduced Sized Search Space for Ant Colony Optimization 
5.4 

A new modification of the Ant System (MAS) is introduced to reduce the size of the 

search space of the ant colony algorithms. This modification works very well when the 

problem becomes more complicated, i.e., the number of edges is increased. 

 

The motivation of this modification is to reduce the size of the search space while 

generating the paths to the problem. For this, the algorithm tries to reduce the number of 

possible edges that need to be explored during each turn. 

 

In ant colony optimization Ji(r) (see eq. 4.1) is the set of neighbour nodes of r that 

remain to be visited by ant i positioned on node r. This list may include some nodes for 

which, if ant i were to visit them, the travel length would be greater than the current best 

length (or the quality would be less than the current best quality) of the best solution 
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found so far. The proposed modification throws out these unwanted nodes from Ji(r). 

 

Assume that Lc is the current best length found by MAS and Li is the distance travelled 

up to node r by ant i. Assume also that x is a node connected to node r that has not been 

visited by ant i and the distance between nodes x and r is Lx. In MAS, the contender 

node list Ji
*(r) is obtained as follows: 

 

  cxii LLLxrJ )(*  5.2 

 

In standard ant colony optimization, there is a possibility that ants can choose a node x 

with Lk + Lx  Lc which increases the search space and reinforces pheromones on 

unwanted edges. 

 

5.5 The Proposed Explorer Ants for Avoiding Stagnation (N_MAS) 
5.5 

Stagnation [58] occurs when a network reaches its convergence (or equilibrium) state; 

an optimal (local) path p0 is chosen by all the ants and this recursively increases an ant’s 

preference for p0. In order to avoid this situation, the following two types of ants are 

introduced into the algorithm: 

 

a) Explorers – these ants negatively smell the high pheromone edges, i.e., these 

ants are attracted towards low pheromone edges and hence search for new paths. 

b) Followers – these ants tends to choose high pheromone edges, i.e., these ants 

follow the paths found by previous ants. 

 

In order for the proposed MAS algorithm to avoid the stagnation problem, it is 

necessary to introduce a new state transition rule for explorers. Thus, the state transition 

rule is changed for MAS as follows: 
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where (r, s), (r, s), Ji(r) are defined as in eq. 4.1 and  is a parameter which 

determines the relative importance of pheromone versus distance ( > 0). 

 

Notice that, the reciprocals of pheromone values are used in eq. 5.3 for explorer ants. As 

a result, these ants are attracted towards low pheromone edges. The objective of these 

ants (explorers) is to try to explore new paths when the algorithm exhibits a stagnated 

behaviour. 

 

For the second type of ants (followers), the state transition rule remains unchanged as 

given in the eq. 4.1. 
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5.6 The Proposed MOACO Algorithm - Pareto Strength Ant Colony 
Optimization (PSACO) 

5.6 

In this thesis, a new Pareto strength ant colony optimization algorithm (PSACO) is 

proposed independently from [65, 66, 67]. The algorithm updates the pheromones based 

on the domination concept introduced in SPEA2 [55]. A single pheromone matrix is 

used for all of the objectives in the problem which is in contrast to P-ACO [49, 53]. 

Further, this algorithm is based on the classical ant colony algorithm AS [27, 28]. 

 

Most of the previous MOACO algorithms (except recently published) have not used the 

domination concept in Pareto optimization to update the pheromones. For example, the 

best and the second-best ants of the each objective are used for updating the pheromone 

matrix corresponding to each objective in P-ACO. Further, this algorithm needs more 

memory as the number of objectives is increased as it needs a separate pheromone 

matrix for each of the objectives. Another problem with most of the earlier approaches 

is that they were developed for bi-criteria optimization problems and cannot be 

extended to any number of objectives. For example, MACS uses a single pheromone 

matrix and two heuristic functions for bi-criteria optimization and the pseudo-random 

proportional rule of MACS cannot be extended to multiple objectives. 

 

In PSACO, when an ant selects the next move, it uses the random propositional rule as 

in AS (Ant System) as defined in eq. 4.1. The major change of this algorithm is in the 

pheromone updating procedure. In a multi-objective problem, one cannot evaluate the 

quality of a solution according to just one objective as all the objectives are equally 

important. The current state of the art in multi-objective optimization methods for 

handling this type of problems is the domination concept: when assigning a quality 

measurement to a solution the number of individual solutions that it dominates should 

be considered together with the number of individual solutions by which it is 

dominated. In addition, a multi-objective optimization algorithm must take into account 

the diversity of the solutions, i.e., the final solutions produced by the algorithm must 

represent the whole Pareto front. 

 

As in SPEA2 [55], PSACO maintains two solution sets: population Pt (of size NP) and 

archive At (of size NA) for each cycle t. Population Pt contains the set of solutions 
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produced by the current set of ants (current cycle). Archive At is an external set that 

includes a fixed number of solutions (NA) containing the best non-dominated solutions 

that have been found from the beginning of a simulation run.  Whenever the number of 

non-dominated individuals is less than NA, the archive At is filled up by current best 

dominated solutions. 

 

When evaluating the quality of a solution, PSACO takes into account both dominated 

and dominating solutions. More specifically, each individual solution i in the archive 

and the population is assigned a strength value S(i) [55], representing the number of 

solutions it dominates (see eq. 5.7): 
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where |.| denotes the cardinality of a set and the symbol i   j indicates that solution i 

dominates solution j. On the basis of the S values, the raw fitness R(i) of an individual 

solution i is calculated as in eq. 5.8: 
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It is important to note that R(i) = 0 corresponds to a non-dominated solution while a 

high value of R(i) means that i is dominated by many solutions (which in turn dominate 

many solutions). Furthermore, the raw fitness R(i) needs to be minimized. 

 

In addition to the raw fitness value, additional density information is incorporated to 

discriminate between solutions having identical raw fitness values. The density 

information is calculated using the k-th nearest neighbour method [56] as in eq. 5.9. 
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where σi
k is the distance between the solution i and its k-th nearest neighbour in the 

population Pt or the archive At. Usually k is equal to the square root of the sample size 

(i.e. AP NN  ). In the denominator, two is added to ensure that 0 < D(i) < 1. 

 

The quality of a solution i in PSACO is evaluated as in eq. 5.10 
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This Q(i) value of a solution is used for the pheromone updating of eqs. 4.2  and 4.3  in 

AS. 

 

The next important aspect in PSACO is the selection of solutions for the next cycle’s 

archive At+1. The algorithm uses the same method adopted in SPEA2 [56]. The first step 

is to copy all non-dominated solutions (i.e., those which have quality Q(i) more than 

one) from the current archive At and the current population Pt to the next cycle’s archive 

At+1: 

 

 }1)({1  iQAPiA ttt  5.13 

 

If the non-dominated front fits exactly into the archive (|At+1| = NA) the filling up of the 

archive is completed. Otherwise, there can be two situations: |At+1| < NA or |At+1| > NA. 

In the first case the best NA - |At+1| dominated solutions (with highest Q(i)) from At and 

Pt ) are copied into the new archive. In the second case, solutions are iteratively 

removed from At+1 until |At+1| = NA. A solution with minimum distance to another 

solution is chosen for removal at each stage. If there are several solutions with 

minimum distance the tie is broken by considering the second smallest distances and so 

forth. 
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Proposed Algorithm - PSACO 

 

Inputs 
α, β, , Initial pheromone level (τ0), Archive size 
(NA), Number of ants (N), Maximum cycles (Nc), Maximum 
turns or jumps ant can perform within a cycle (NT), 
Start node (S), End node (E) 

Output 
Non-dominated set (A*) 

Variables 
Cycle no (t), Turns remained (turns_remain), Archive 
(At), Population (Pt), Set of ants (Xt), Number of 
successful ants in the current cycle (ns) 

Initialize 
t = 1, turns_remain = NT, At = Φ, Pt = Φ, Xt = Φ, ns = 
0; Set pheromone level of each edge to τ0 

Repeat 
Release a new set of ants Xt(of size N) to the colony 
from the start node (S) 
Repeat 

For each ant ‘a’ in Xt 
If ant ‘a’ does not reach to the end node 
(E) 

If ant’s (‘a’) next set of feasible 
nodes is not empty 

Move to the next node using eq. 
4.1 
Store this node in ant’s (‘a’) 
visited cities 

Else // Ant ‘a’ lost 
Start ant ‘a’ again from start 
node (S) 

Else If ant ‘a’ reaches to the end node (E) 
Mark ant ‘a’ as successful 
Copy the solution produced by ant ‘a’ 
to Pt 
Ant ‘a’ stops exploring 
ns = ns + 1 

If (ns = N) // All ants in current cycle reached 
to (E) 

Break // Exit from Repeat … Until 
(turnsRemain == 0) 

turns_remain = turns_remain - 1 
Until (turns_remain == 0) 
For each solution ‘i’ in Pt or At 

Compute R(i), D(i) and Q(i) using eqs. 5.8, 5.9 
and 5.10 respectively 

Apply the global pheromone updating rule (eqs. 4.2 and 
4.3) using the quality Q(i) of each solution ‘i’ in Pt 
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Copy all non-dominated solutions in Pt and At to At+1 
(eq. 5.13) 
If |At+1| < NA 

Copy the best NA - |At+1| solutions in Pt and At to 
At+1 

Else 
Reduce the size of At+1 to NA by removing crowded 
solutions 

Remove the current set of ants from the colony (Ct = 
Φ)  
Set At = Φ and Pt = Φ 
t = t + 1 
turns_remain = NT 
ns = 0 

Until (t <= Nc) 
Return ANc as A* 
 

The following section describes a multi-objective optimization problem that arises in 

hose/pipe routing with three objective functions with the addition of a new term to the 

random proportional rule and the pseudo random proportional rule of P-ACO and 

PSACO to fit the multi-objective problem. 

 

5.7 Multi-Objective Hose Routing with MOACO 
5.7 

Initially an ant colony algorithm was proposed for single hose routing in 3D space and 

was published in [12, 13]. The search space is defined by the set of grid points as well 

as a set of random points in the free space defined in the CAD model. This problem is 

converted into finding the shortest path between two points (start and end) in a network 

generated by grid points or random points in the free space. There are many algorithms 

(e.g. A* algorithm [61], Dijkstra's algorithm [5]) that can be used to solve this problem. 

The major problem with the existing conventional path finding algorithms is that they 

cannot be extended to multiple objectives problems. For such type of problems, 

unconventional population-based algorithms such as ant colony algorithms or genetic 

algorithms produce favourable results. The aim was to extend the ant colony algorithm 

introduced in [12, 13] and summarized in this thesis to deal with multi-objective 

problems. This type of problem has a wide range of applications such as hose/pipe 

harness, electrical and hydraulic wiring. 
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The proposed MOACO algorithms attempted to optimize the following objectives in 

automatic hose/pipe routing: 

1. Total length of the hoses between the start and the end nodes 

2. The number of bends 

3. The angles of the bends (the algorithm tries to keep the angle of each bend close 

to those in a pre-specified catalogue of angles of bends).  

 

This scenario can be modelled as follows. Let H = (V, E) be an edge-weighted 

undirected graph representing a network in which the nodes represent terminating nodes 

(start or end nodes) or intermediate nodes. Let S and E be the start and end nodes, 

respectively. Then the algorithm needs to find a path (P) such that 
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where L is the length of path P 

 NB is the number of bends in path P 

 i’s are the angles between adjacent edges (see Fig. 5.3) 

 () is defined as follows: 
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 where 1, 2, …, m are the pre-specified catalogue angles. Each component 

is divided by 180 for normalizing the function and m is the number of 

catalogue angles. 

 

Fig. 5.3 A path between start (S) and end (E) nodes with bend angles 
 

Then the multi-objective minimization problem can be stated as follows: 
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Find a path P in H between S and E such that 
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Function f1 deals with the minimization of the total length of the hoses. SE is the length 

of the straight line joining the start and end nodes. This is the absolute minimum length 

without considering the obstacles and is used to normalize the total length of the hoses 

(L). Function f2 minimizes the number of bends (NB). The term (1 – 1/NB) is used 

instead of NB for normalization such that the term reaches 0 when there is only one bend 

and tends to unity as the number of bends increases. Here it is assumed that there is no 

straight path between the start and end nodes. Function f3 minimizes the sum of the 

absolute differences between angles of bends (i's) and the closest angle from the pre-

specified catalogue of angles of bends (see Fig. 5.3). (i) is defined as in eq. 5.18. 

When defining (i), each component is divided by 180 to normalize the function as the 

maximum absolute difference of  and  is 1800. 

 

5.7.1 Modified Random-Proportional Rule 
 

Since the experiments carried-out in this thesis for multi-objective optimization are 

based on networks created from randomly generated points, the angles between two 

connected edges are also not known and random. Therefore, angles between two 

connected edges are not from the given catalogue of angles. As a result of this, the 

algorithm must select an angle which is closer to one of the catalogue angles. For this, a 

new term is added as the second heuristic function to the random proportional rule (eq. 

4.1) and the pseudo-random proportional rule (eq. 4.4) for selecting edges with angles 

which are closer to one of the pre-specified catalogue angles as follows: 
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Random proportional rule: 

 

 










 


otherwise

rJsif
srurur

srsrsr

srp
i

rJu
i

i

,0

)(,
]),,(1[)],(.[)],([

]),,(1[)],(.[)],([

),(
)(








 5.22 

 

Pseudo-random proportional rule: 
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In these formulae, the new term (r, s,) is defined as in eq. 5.18 and  is the angle 

between the edge (r, s) and the edge visited immediately before by ant i.  is a parameter 

that indicates the relative importance of how close the angle  is to one of the angles in 

the pre-specified catalogue of angles of bends. If   is set to zero the ant calculates the 

probability based on the problem heuristic (distance to the end node E) and the 

pheromones laid by previous ants, just like in the original ant system. As  is increased, 

the probability of choosing an edge that makes an angle (with the edge visited 

immediately before) that is closer to an angle in the pre-specified catalogue of angles of 

bends is increased. 

 

The set Ji(r), the set of neighbour nodes of r that remain to be visited by ant i, was also 

modified to suit our problem. First the algorithm filters neighbour nodes (say x) of r that 

have not been visited by ant i such that the edge ‘rx’ makes an angle (with the edge 

visited immediately before by ant i) that differs from one of the pre-specified catalogue 

angles of bends by less than a certain small angle (e.g. 50). This set is defined as 

follows: 
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where (r, x, ) is defined as in eq. 5.18 and  is the angle between the edge (r, x) and 

edge visited immediately before by ant i. 
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If the set Ji
(1)(r) is empty, the algorithms explore the other neighbouring nodes of r. i.e., 

 

    ),,()()2( xrxrJ i  5.25 

 

Here  is a small value between 0 and 1. For example, if the designer selects the 

maximum tolerance as 5 degrees,   is set as 5/180. 

 

5.8 The Proposed Multi-Colony Ant Systems for Multi-Hose Routing 
5.8 

Two types of multi-colony ant systems (MCAS-MHR-1 and MCAS-MHR-2) are 

proposed for multi-hose routing; both are extensions to the ant system (AS). In MCAS-

MHR-1, the task of each colony is to search for an optimal path between two points 

such that it shares other colonies’ optimal paths (bundling) as much as possible. MCAS-

MHR-1 uses only a single pheromone matrix for all the colonies. Pheromone updating 

is based on a weighted sum of total path lengths and shared path lengths between the 

paths. MCAS-MHR-2 is very similar to MCAS-MHR-1, but it uses a separate 

pheromone matrix for each colony and adds an additional term to the random 

proportional rule defined in the original ant system (AS) so that ants prefer to select 

paths that have been used by not only the same colony but also by the ants of other 

colonies. 

 

The combinatorial optimization version of this problem consists of finding the optimum 

set of paths between the commodities and maximising the shared (or common) lengths 

of these paths.  i.e., solution needs to be found such that 
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where Pc and Pc (c  c) are two paths between (Sc, Ec) and (Sc, Ec) respectively, 

 l() represents the length of a path, 

 Pc  Pc represents common edges (or shared edges) between Pc and Pc. 
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The multi-colony ant systems proposed in this thesis use n colonies to explore paths 

between n commodities. Each ant in a colony c explores paths between the start node Sc 

and the end node Ec by cooperating with other ants in colony c. While the ants of colony 

c are walking along edges, they try to maximize the use of common edges that are being 

used by ants of other colonies. As there is no direct communication between ants, this is 

obtained by the pheromone communication system of the proposed ant systems. 

 

The following sections (sections 5.8.1 and 5.8.2) introduce the two versions of multi-

colony ant systems MCAS-MHR-1 and MCAS-MHR-2 proposed for multi-hose 

Routing. 

 

5.8.1 MCAS-MHR-1 with Single Pheromone Matrix 
 

The problem in which we are interested is to identify the paths between the 

commodities with maximum possible length of common edges. Therefore, in the 

proposed algorithm, the common edges of the paths receive a higher amount of 

pheromone when pheromone updating occurs. As a result, when an ant of a later cycle 

encounters a shared edge, it has a higher probability of choosing it than choosing a non-

shared edge. 

 

In this approach a single pheromone matrix is used for all the colonies. When an ant of 

a colony is selecting the next move, it uses the random propositional rule as in the ant 

system defined in eq. 4.1. However, the most noticeable change to this algorithm is the 

pheromone updating procedure. The implementation of the pheromone updating of a 

path Pck produced by an ant k of colony c is based on 

 

 the length of the path Pck. 

 the total shared length of the path Pck with each path Pck produced by each 

successful ant k  of each colony c (c  c and c = 1, 2, …, n). 
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The global updating rule is implemented as follows. Ants which were able to complete 

their tour within the number of allocated turns (NT) allow the updating of pheromone 

levels of their visited edges according to the following equation: 
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where (0 <  < 1) is a pheromone decay parameter, n is number of colonies (or number 

of commodities), mc is the number of ants in colony c that were able to complete their 

tours within the stipulated number of turns NT and Qck is the pheromone contribution of 

edges on path (Pck) produced by ant k of colony c and is defined as follows: 
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where Lck is the length of the path Pck and sck is the total shared length of path Pck with 

paths produced by ants of other colonies (i.e., other than colony c) which is defined as 

follows: 
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where l() is the length of the path, Pck  P ck represents common edges (or shared 

edges) between Pck and Pck, mc’ is the number of ants in colony c’ that were able to 

complete their tours within the stipulated number of turns NT, w1 and w2 (w1 + w2 = 1) 

are two weights that measure the importance of the length of path Pck and the total 

shared length sck, respectively. 
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In eq. 5.30, the weighted sum approach is used for pheromone updating and hence this 

algorithm uses weighted sum multi-objective optimization with the following 

optimizing criteria: 

 

1. Minimizing the length of each path 

2. For each path, maximizing the path length shared with other paths produced by 

ants in other colonies. 

 

It is noticeable in eq. 5.28 that shared edges obtain more pheromones than non-shared 

edges. For example, consider the following two paths P1 (S1ABE1) and P2 

(S2ABE2) (See Fig. 5.4). 

 

 

Fig. 5.4 Demonstration of pheromone strengths of shared and non-shared edges 

 

For the simplicity of calculation, let us assume that there is only one ant in each colony 

c1 and c2 (the ant from colony c1 travels from S1 to E1 and the ant from colony c2 travels 

from S2 to E2). Then the pheromone contribution (Q11) on path P1 (S1ABE1) and 

the pheromone contribution (Q21) on path P2 (S2ABE2) are calculated according 

to eq. 5.30 with w1 = 0.99 and w2 = 0.01 as follows: 
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Δτ (S1, A) = 0.1275 Δτ (B, E1) = 0.1275 
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From eq. 5.28, the shared edge (AB) of paths P1 and P2 obtains combined pheromones 

from both paths P1 and P2 that is calculated as 0.1275 + 0.085 = 0.2125, while the non-

shared edges of paths P1 and P2 receive 0.1275 and 0.0850 as pheromone values, 

respectively. 

 

5.8.2 MCAS-MHR-2 with Multiple Pheromone Matrices 
 

Unlike MACS-MHR-1, this algorithm uses a separate pheromone matrix for each 

colony (or commodity). This algorithm is similar to the multi-colony ant algorithm for 

the edge disjoint path problem described in [57] where the algorithm attempted to find 

disjoint paths between the commodities (the opposite of our approach). In this approach, 

an ant that encounters a pheromone trail left by an ant of the same type still has a high 

probability of following it. However, when it encounters an edge that was shared by 

other paths, it is more attracted to that edge than to an edge of non-shared paths. 

 

To implement the ants’ attraction towards foreign pheromones the random propositional 

rule defined in eq. 4.1 has been modified appropriately as follows: 
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where c(r, s) is the pheromone trail left by colony c on the edge (r, s), 

 (r, s) is the inverse of the distance from node s to the end node (Ec) of 

colony c, 

 Jk(r) is the set of neighbour nodes of r that remain to be visited by ant k 

positioned on node r, 

  and  are parameters indicating the importance of pheromones and heuristic 

information, respectively, 

 c(r, s) represents the amount of pheromone trail not belonging to colony c on 

the edge (r, s) and is known as foreign pheromone, and is defined as the sum of 

the pheromone trails left by all other colonies on the edge (r, s), i.e., 
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  is a parameter that indicates the relative importance of foreign pheromone 

trails left by other colonies. If   is set to zero, the ant calculates the probability 

based on the problem heuristic and the pheromones of its own colony in the 

manner identical to the original ant system (see eq. 4.1). If  is increased, the 

probability of choosing an edge with a large amount of foreign pheromone trail 

is also increased and thus the ant tends to select the edges shared with the 

previous paths. 

 

The global updating rule is implemented as follows. The ants which were able to 

complete their tour within the number of allocated turns (NT) allow the updating of 

pheromone levels of their visited edges according to: 
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where mc is the number of ants in colony c that were able to complete their tours within 

the stipulated number of turns NT and ck(r, s) is defined as in eqs. 5.29, 5.30 and 5.31. 

 

In the ant colony algorithms presented above, it is necessary to compare two paths 

produced by the same colony and compare the entire solution produced by all colonies 

in the current cycle with the previously generated solution. The following methods are 

used for comparing them. 

 

A. Finding the best path of a colony in a cycle 

 

The pheromone contribution Fck defined in eq. 5.30 is used to compare two paths in the 

same colony, i.e., Qck > Qck means that ant k produces a better path than ant k. 
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B. Updating the total solution 

 

Once the best path for each colony c is identified, it is necessary to find whether or not 

this solution is an improvement over the best solution produced in the previous cycles. 

To do this, two metrics, strength_1 and strength_2, are defined for a solution {Pj | j = 1, 

2, …, n} of the multi-path problem. 

 

strength_1 is the reciprocal of the total length of the solution: 
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strength_2 is the weighted measure of the total length and total shared distance: 
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 w1 and w2 (w1 + w2 = 1) are two weights that measure the importance of the 

total length L and shared length s, respectively. 

 

The solution produced by a cycle is considered to be better than the previous solution if 

both strength_1 and strength_2 have improved or if one of the criteria has improved 

whilst the other criterion has remained unchanged. 

 

5.9 Summary of the Chapter 
 

In this chapter, the tessellated model of a 3D CAD model and the C++ collision 

detection library RAPID have been described. It was then explained how they are used 

to check for edge collision with the given CAD model. A description was given of how 
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the tessellated model, the RAPID library and ant colony optimization are used in hose 

routing. 

 

Fig. 5.5 shows the various steps involved in automatic hose/pipe routing suggested in 

this thesis. 

 

 
 

Fig. 5.5 Steps involved in automatic hose/pipe routing in a 3D CAD model using ACO 
 
Next two modifications were introduced into ant colony optimization for reducing the 

size of the search space while generating solutions to a given problem and for avoiding 

the stagnation problem. Then this chapter briefly reviewed the existing multi-objective 

ant colony optimization algorithms. In addition, a taxonomy of existing algorithms and 

the proposed MOACO algorithm (PSACO) was presented. P-ACO, the best MOACO 



 79

algorithm for generating a good set of solutions in the central part of the Pareto front 

(compromised solutions) and the proposed algorithm (PSACO) for MOACO were 

described in detail. How these two algorithms (P-ACO and PSACO) can be applied to a 

multi-objective hose routing optimization problem was explained. Finally, two multi-

colony ant systems were proposed for simultaneous multi-hose routing.  

 

The algorithms presented in this chapter have been successfully applied to obtain the 

results of this thesis. Initially ant colony optimization algorithms have been applied to 

single-objective optimization (minimizing the length of the path) in section 6.1. Results 

of the proposed methods for reducing the size of the search space and avoiding the 

stagnation problem were presented in sections 6.2 and 6.3, respectively. Results of the 

proposed Pareto strength ant colony optimization (PSACO) and P-ACO were presented 

in section 6.4. Finally in section 6.5, results of the proposed multi-hose routing 

algorithms were presented. 
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6 RESULTS AND DISCUSSION 
6 

This chapter shows the experimental results of the simulations carried out for the 

automatic hose/pipe routing of 3D models using ant colony optimization. In section 6.1, 

the results of the preliminary experiments are presented and the strengths and 

weaknesses of the Ant System (AS) on grid-based and random-based networks are 

discussed. In section 6.2, the results of the reduced size search space for ant colony 

optimization (MAS) are presented and discussed. The results of the introduction of 

explorer ants to solve the stagnation problem of the ant colony optimization algorithm 

are presented and discussed in section 6.3. In section 6.4, the results of the multi-

objective ant colony optimization algorithm (PSACO) proposed in section 5.6 are 

presented and discussed. In this section, the performance of PSACO is compared with 

the current best Pareto ant colony optimization algorithm (P-ACO), using the 

illustrative representation methods for the non-dominated sets (described in section 

3.2), the performance comparison methods for two multi-objective optimization 

algorithms (described in section 3.3), and the methods for selecting a solution from the 

non-dominated solutions (described in section 3.4). Further, computation times for the 

two algorithms (PSACO and P-ACO) are compared and refinement of the obtained 

solution is discussed in section 6.4. Finally, results obtained by the proposed multi-

colony ant systems (see section 5.8) for multi-hose routing are discussed in section 6.5. 

 

Initially, the Ant System (AS) was implemented for grid-based networks and random-

based networks and their strengths and weaknesses were investigated empirically. 

Preliminary experiments were restricted to a single objective function (finding the 

shortest path from start to goal) and avoiding the obstacles. The CAD software package 

Pro/Engineer was used for generating the 3D models and its programming toolkit 

Pro/Toolkit was used for obtaining the tessellated format (STL format) of the generated 

model. The C++ library, RAPID, was used to generate a network of paths which are 

collision-free with objects of the CAD model. The same procedure was followed for the 

generation of the random networks of collision-free paths for the other experiments 

carried-out in this thesis. 
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6.1 Results Obtained for Grid-Based and Random-Based Ant Systems 
6.1 

Initially, a feasibility study was carried out for the application of the Ant System to 

hose/pipe routing. The purpose of this experiment was to optimize a single objective 

function (total length of the pipes) avoiding collision of the pipes with objects in the 

CAD model. 

 

The parameter settings for the ant systems were: 

 

Number of ants (N) = 10 

Initial pheromone level for each edge (0) = 100 

Maximum number of turns an ant can perform within a cycle (NT) = 100 

Maximum number of cycles (Nc) = 100 

 = 1,  = 5 and  = 0.01 

 

These parameter settings were selected based on earlier research carried-out for ant 

colony optimization [30, 31], where it was found that these parameter settings achieve 

good results in general. 

 

All the simulations were conducted on a Pentium IV PC (Processor speed = 3.0 GHz, 

Memory = 512 MB) in the Microsoft Windows XP environment using Microsoft Visual 

C++ (Version 6.0). 

 

The performance of the algorithms was defined by the time (seconds) taken by a run 

and the length of the optimal path obtained. 

 

The algorithms were tested on 5 models and for each model, the grid-based version was 

tested on 3 different step sizes (increment values of x, y and z coordinates) 10, 25 and 

50. The random-based version was tested for 100, 150, 200 and 500 random points. All 

the simulations were carried out for 100 cycles and averaged over 10 trials varying the 

random seed across the trials. In the figures below, the best paths obtained over 10 trials 

are shown for each of the two versions. 
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6.1.1 Model 1 - Hose routing in an environment with a hole in a cube 
 

The proposed ant colony algorithm was tested in an environment consisting of a cube 

containing a hole (see Fig. 6.1). Hose segments needed to be laid inside this hole in 

order to obtain the optimal path. 

 
Table 6.1 Comparison of grid-based and random-based - hole in a cube model 

 
 Grid-based  Random-based 
Step Size 10 25 50 N/A N/A N/A N/A 
No of points 18081 1377 225 100 150 200 500 
Avg. Length 244.32 251.66 378.80 292.70 299.00 262.49 245.22 
St. Dev. (Len.) 4.21 4.35 11.24 51.20 54.00 17.51 3.40 
Best (Length) 237.79 247.23 367.96 256.80 257.70 241.32 238.85 
Avg. Time (s) 993.70 49.40 3.50 8.90 21.40 32.00 220.10  

 

  

(a) Grid-based (b) Random-based 

Fig. 6.1 Model 1: Hole in a cube  
{Xmin = -250, Xmax = 150, Ymin = -50,Ymax = 150, Zmin = -200,  

Zmax = 0; S = (-200, 150, -100); E = (-100, -50, -150);  Radius = 5} 
 

Table 6.1 shows the comparison of the two versions over 10 trials for each value of the 

step size (grid-based) and each number of random points (random-based). According to 

Table 6.1, the best solution generated by the random-based version (with 500 random 

points) is very close to the best solution generated by the grid-based version (with step 

size = 10 and 18081 points). However, the average computational time taken by the 

random-based version is comparatively less than for the grid-based version (220.1 sec. 

against 993.7 sec.). The random-based version is more than 4 times faster. 
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6.1.2 Model 2 - Hose routing in an environment with a hole in a cube where the 
optimal path is blocked by an obstacle 

 

In this simulation, the optimal path found in the earlier case was blocked by a cubic 

obstacle and the target point was placed behind the obstacle (see Fig. 6.2 and Table 6.2). 

 

Table 6.2 Comparison of grid-based and random-based - hole in a cube models 
where the optimal path is blocked by a cubic obstacle 

 
 Grid-based  Random-based 
Step Size 10 25 50 N/A N/A N/A N/A 
No of points 18081 1377 225 100 150 200 500 
Avg. Length 322.70 305.08 400.00 397.70 368.10 376.50 312.60 
St. Dev. (Len.) 20.96 7.24 0.00 43.10 29.88 41.70 15.14 
Best (Length) 290.55 299.34 400.00 339.40 329.54 324.40 291.51 
Avg. Time (s) 952.20 64.40 5.00 12.30 27.30 49.90 318.30  

 

  

(a) Grid-based (b) Random-based 

Fig. 6.2 Model 2: Optimal path is blocked by a cubic obstacle  
{Xmin = -250, Xmax = 150, Ymin = -50, Ymax = 150, Zmin = -200,  

Zmax = 0;  S = (-200, 150, -100); E = (-200, -100, -150); Radius = 5} 
 

The best average length for the grid-based version is obtained with step size 25 (1377 

points) (see Table 6.2). However, the best path was produced with the step size 10. The 

average path length of the random-based version with 500 points (312.6) is relatively 

close to the average path length of the grid-based version with step size 25 (305.08) and 

the lengths of the best paths in both versions are very close. 
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This experiment shows that when selecting the right grid (or step) size, the grid-based 

version performs very well even with relatively large step sizes. 

 

6.1.3 Model 3 - Hose routing in an environment with a U-shape obstacles 
 

In this experiment, a U-shape obstacle was placed in the environment and the 

environment was made more complex by introducing other objects. Furthermore, the 

start and the target points were placed such that only one path existed between them. 

Note that the z coordinates of the search space were restricted to the top and the bottom 

of the obstacles (See Fig. 6.3 and Table 6.3). 

 

Table 6.3 Comparison of grid-based and random-based models  
with a u-shaped obstacle 

 
 Grid-based  Random-based 
Step Size 10 25 50 N/A N/A N/A N/A 
No of points 55451 4205 675 100 150 200 500 
Avg. Length 596.28 1260.00 925.00 761.60 710.30 
St. Dev. (Len.) 22.42 405.00 328.00 174.80 40.00 
Best (Length) 551.31 698.00 654 619.10 608.9 
Avg. Time (s) 

Failed 

173.25 

Failed 

13.20 38.10 89.70 804.60  
 

  

(a) Grid-based (b) Random-based 

Fig. 6.3 Model 3: U-shaped obstacle  
{Xmin = -300, Xmax = 400, Ymin = 0, Ymax = 100, Zmin = -300,  
Zmax = 400; S = (50, 25, -50); E = (350, 25, -50); Radius = 5} 

 

In this experiment, the grid-based version failed in all the trials with the step sizes 10 

and 50. The grid-based version failed for these two step sizes because none of the grid 
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lines were laid in any part of the optimal path when generating the network of grid lines. 

However, it was successful with step size 25 and generated the best average length 

(596.28) and best optimal path length (551.31). This experiment demonstrates that if the 

right resolution is selected, the grid-based version performs well in terms of both 

optimal length and the computational time. 

 

6.1.4 Model 4 - Hose routing in an environment with parallel walls 
 

In this experiment, two 3D points were selected and the shortest path between them was 

blocked by 5 parallel walls (see Fig. 6.4 and Table 6.4). 

 

Table 6.4 Comparison of grid-based and random-based models  
containing parallel walls 

 
 Grid-based  Random-based 
Step Size 10 25 50 N/A N/A N/A N/A 
No of points 40931 3125 507 100 150 200 500 
Avg. Length 1096.90 1021.90 1025.40 986.20 963.61 
St. Dev. (Len.) 91.30 41.60 57.20 45.90 9.07 
Best (Length) 1007.70 968.90 963.00 938.00 948.09 
Avg. Time (s) 

Failed 

133.67 

Failed 

11.10 28.30 59.40 316.70  
 

  

(a) Grid-based (b) Random-based 

Fig. 6.4 Model 4: Parallel walls  
{Xmin = -300, Xmax = 300, Ymin = 0, Ymax = 100, Zmin = -300,  
Zmax = 300; S = (-300, 25, 0); E = (300, 50, -25); Radius = 5} 

 

Here also, the grid-based version failed for step sizes 10 and 50 as in the previous 

experiment. Here also grid-based version failed because it is not possible to find a 
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connected path between start point (S) and end point (E) in the network of grid lines 

generated using the step sizes 10 and 50. Even though the grid-based version was 

successful with step size 25, the average length and the best length are higher than the 

respective values for the random-based version. The average computational time for the 

random-based version is low for all cases except for 500 random points. 

 

6.1.5 Model 5 - Hose routing in an environment with a diagonal empty space 
 

 

 Random-based 

Fig. 6.5 Model 5: Diagonal empty space  
{Xmin = -50, Xmax = 350, Ymin = -50, Ymax = 150, Zmin = -200,  
Zmax = 50; S = (25, 0, 0); E = (180, 100, -185); Radius = 5} 

 

Table 6.5 Comparison of grid-based and random-based models  
with a diagonal empty space 

 
 Grid-based  Random-based 
Step Size 10 25 50 N/A N/A N/A N/A 
No of points 22386 1683 270 100 150 200 500 
Avg. Length 320.24 313.32 327.17 295.23 
St. Dev. (Len.) 13.70 9.21 20.44 9.86 
Best (Length) 302.38 299.14 303.08 275.39 
Avg. Time (s) 

Failed Failed Failed 

7.60 16.60 27.50 155.70  
 

In this simulation, a diagonal empty space was placed between two objects and the 

straight path between the start point and the end point was blocked by a cubic shaped 

object (see Fig. 6.5 and Table 6.5). The grid-based version failed for all 3 step sizes. 

Here also the grid-based version failed because it is not possible to find a connected 

path between start point (S) and end point (E) in the network of grid lines generated 
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using the step sizes 10, 25 and 50. The random-based version was successful in each 

case and produced reasonable results. 

 

6.1.6 Discussion (Grid-Based and Random-Based Ant Systems) 
 

The first phase of our research has been applied to automatic 3D hose/pipe routing 

where the world is represented as two versions, grid-based and random-based for single 

hose routing in 3D space. The search space is defined by a set of grid points as well as a 

set of random points in free space. The problem is converted into finding the shortest 

path between two points (start and end) in a network generated by the grid points or 

random points in the free space. There are many algorithms (e.g., A* algorithm [61], 

Dijkstra's algorithm [5]) that can be used to solve this problem. The major problem with 

existing conventional path finding algorithms is that they cannot be extended to 

multiple-objective problems. For such types of problem, unconventional algorithms 

such as ant colony algorithms, genetic algorithms are preferable. The aim of the ant 

colony algorithm introduced in this thesis was for it to be extendable to multiple-

objective problems. This type of problem has a wide area of applications such as 

hose/pipe harness, electrical and hydraulic wiring. 

 

The problem presented here and the travelling salesman problem (TSP) are quite 

similar; however there are some differences. In the TSP, paths must be found such that 

each ant must travel to each city once and must finally come back to the start city. In the 

case described here, ants must start from the start point and need to finally reach the end 

point. The constraints that each ant must travel to each point and that ants must finally 

come back to the start point are not imposed. However, it must be guaranteed that when 

an ant has visited a point, it must not visit that point again. To this end, cycles were 

removed from the ants’ paths before applying the global updating rule. For the TSP, the 

global updating rule is applied after all ants have completed a tour (i.e., each and every 

ant must come back to the start city). Hence, for the TSP, the algorithm knows when to 

apply the global updating rule. In the experiments described above, this is not always 

possible, as some ants may get lost. Thus, a new parameter, NT, was introduced into the 

algorithm. This parameter was set such that most of the ants of the current population 

were able to reach the end point. 
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The above simulation results show the strengths and weaknesses of the grid-based and 

the random-based versions of the ant colony algorithm for automatic 3D hose routing. 

The use of the RAPID library greatly helps the algorithm to detect collisions when 

laying the hoses. The simulation study also indicates that the proposed grid-based and 

random-based versions of the ant colony algorithms are of practical use because the 

required computational times are reasonably low. 

 

However, in the grid-based version, the resolution or the size of the grid plays an 

important role in the determination of the optimal path and affects the computational 

time. If none of the grid line falls on the optimal path when constructing the road map, 

the algorithm fails to obtain the optimal path (See Tables 6.3, 6.4 and 6.5). Thus, 

selecting the right size of grid (or step size) is important for the grid-based version. 

 

The advantage of using the random-based version is that it did not fail for any of the 

tested models and produced a reasonably good solution to the problem in comparably 

lesser time.  Furthermore, in the case of the grid-based version, as the step size is 

decreased, the amount of memory needed to store the road map increases drastically as 

does the computation time. 

 

6.2 Results Obtained for Ant Colony Optimization with a Reduced Size Search 
Space 

6.2 

In this section, results of the new modification (MAS) introduced in section 5.4 are 

explored. AS (Ant system) and MAS were implemented and their strengths and 

weaknesses were investigated experimentally. The performances of the two algorithms 

were compared in terms of the quality of the best path obtained (see section 6.2.1), the 

number of turns performed during the allocated time (see section 6.2.2), the total 

number of nodes in all contender node lists Ji
*(r) during each cycle and the average 

number of alternatives (see section 6.2.3) and the time spent on each cycle (see section 

6.2.4). 

 



 89

The parameter settings for both algorithms were:  

 

Number of ants (N) = 10  

Initial pheromone level for each edge (0) = 100 

 = 1,  = 5 and  = 0.01 

 

The stopping criterion for each of the experiments was set according to the problem and 

the complexity of the network. 

 

All the simulations were carried out on a Pentium IV PC (Processor speed = 3.0 GHz, 

RAM = 512 MB) in the Microsoft Windows XP environment using Microsoft Visual 

C++ (.Net version). 

 

Both algorithms (AS and MAS) were tested on the following three Pro/Engineer models 

(see Fig. 6.6). 

 

   

(a) Model 1 (b) Model 2 (c) Model 3 

  

Fig. 6.6 Tested Pro/Engineer Models 

 

6.2.1 Quality of the best path obtained 

6.2.1 

For each model, both algorithms (AS and MAS) were tested with networks of 200, 400 

and 800 random points. All the simulations were carried out for a specific time (T) over 

100 trials with different random seeds in each trial. T was determined by running MAS 

for 4000 turns (40 cycles) and the time elapsed to obtain the best length was recorded 
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for each trial. T was then made roughly equal to the average time taken to obtain the 

best solution with MAS over 50 trials. 

 

For each trial, the best length given by AS or MAS, the list of nodes in the 

corresponding best path and the number of turns (iterations) were recorded in text files. 

 

In this section, the best lengths obtained for AS and MAS are compared statistically 

over the results obtained from 100 trials. The following statistics are considered: 

 

Avg. Len. – Average of the best lengths over 100 trials 

Std. Dev. – Standard deviation of the best lengths 

Minimum Len. – Minimum best length obtained 

Maximum Len. – Maximum best length obtained 

First Quartile – First quartile of best lengths 

Median - Median of best lengths 

Third Quartile – Third quartile of best lengths 

Range – Difference between the maximum and minimum best lengths 

 

A highlighted (in bold) statistical value in the tables (see Tables 6.6 – 6.8) indicates that 

it exceeds the corresponding value of the other algorithm. Values are italicized when the 

two algorithms obtained the same results. 

 

Histograms are also used to compare the best lengths of AS and MAS (see Figs.  

6.7 – 6.15). 

 

Experimental results (Quality of the best path obtained) 

 

Model 1 

 

Both algorithms were tested on an environment consisting of a cube containing a hole 

(See Fig. 6.6). The optimal path was first determined by laying pipe segments through 

the hole. The optimal path was then blocked by a cubic obstacle and the end node was 

placed behind this cubic obstacle. 
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The following input parameters were supplied to the program: 

Xmin = -250, Xmax = 150, Ymin = -100, Ymax = 150, Zmin = -200, Zmax = 0,  

S = (-125, 150, -100), E = (-125, -100, -150), Radius (r) = 5,  

Maximum number of turns an ant can perform within a cycle (NT) = 100 

 

Table 6.6 Comparison of best lengths obtained in AS and MAS – Model 1 

 
 AS MAS 

No of points 200 400 800 200 400 800 
Time T  
(in Sec.) 

5 6 50 5 6 50 

Avg. Len. 365.61 317.79 349.43 365.06 315.14 342.03 
Std.  Dev. 6.34 6.47 11.84 6.60 1.84 10.04 

Minimum Len. 355.97 310.62 322.71 355.97 310.62 316.27 
Maximum 

Len. 
369.87 339.70 380.92 369.87 321.27 358.55 

First Quartile 355.97 314.68 342.12 355.97 314.68 333.51 
Median 369.87 314.68 353.45 369.87 314.68 343.97 

Third Quartile 369.87 319.82 354.79 369.87 314.68 349.69 
Range 13.90 29.08 58.21 13.90 10.65 42.28  

 

  

(a) AS (b) MAS 

Fig. 6.7 AS and MAS histograms for a 200-point network over 100 trials - Model 1 
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(a) AS (b) MAS 

Fig. 6.8 AS and MAS histograms for a 400-point network over 100 trials - Model 1 
 

 

(a) AS (b) MAS 

Fig. 6.9 AS and MAS histograms for an 800-point network over 100 trials - Model 1 
 

Model 2 

 

In this model, a U-shape obstacle was placed in the environment and the environment 

was made more complex by introducing other objects. Furthermore, the start and the 

end nodes were placed such that only one path existed between them. Note that the z 

coordinates of the search space were restricted to the top and the bottom of the obstacles 

(see Fig. 6.6). 
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Xmin = -300, Xmax = 400, Ymin = 0, Ymax = 100, Zmin = -300, Zmax = 400, 

 S = (50, 25, -50), E = (350, 25, -50), Radius (r) = 5, Maximum number of turns an ant 

can perform within a cycle (NT) = 100 

 

Table 6.7 Comparison of best lengths obtained in AS and MAS – Model 2 

 
 AS MAS 

No of points 200 400 800 200 400 800 
Time T  
(in Sec.) 

10 25 150 10 25 150 

Avg. Len. 1439.9 1359.6 1909.8 1262.0 1142.5 1193.1 
Std.  Dev. 325.4 331.3 644.4 253.1 227.3 353.3 

Minimum Len. 752.8 782.5 714.8 796.7 799.1 682.9 
Maximum 

Len. 
2225.2 2295.4 3433.7 1896.4 1816.9 2402.8 

First Quartile 1170.3 1115.1 1424.1 1040.2 969.0 935.5 
Median 1452.1 1312.0 1844.3 1246.8 1076.1 1117.5 

Third Quartile 1683.8 1586.7 2364.7 1453.5 1310.2 1339.0 
Range 1472.4 1512.9 2718.9 1099.7 1017.8 1719.9  

 

  

(a) AS (b) MAS 

Fig. 6.10 AS and MAS histograms for a 200-point network over 100 trials - Model 2 
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(a) AS (b) MAS 

Fig. 6.11 AS and MAS histograms for a 400-point network over 100 trials - Model 2 
 

  

(a) AS (b) MAS 

Fig. 6.12 AS and MAS histograms for an 800-point network over 100 trials - Model 2 
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Model 3 

 

In this model, there were two narrow passages for the routing of the optimum path 

between the start and the end nodes (see Fig. 6.6) and the environment was made more 

complex by introducing other objects. Note that the z coordinates of the search space 

were restricted to the top and the bottom of the obstacles. 

 

Xmin = -125, Xmax = 400, Ymin = 0, Ymax = 100, Zmin = -250, Zmax = 200,  

S = (-75, 50, -60), E = (250, 50, -60), Radius (r) = 5, Maximum number of turns an ant 

can perform within a cycle (NT) = 100 

 

Table 6.8 Comparison of best lengths obtained in AS and MAS – Model 3 

 
 AS MAS 

No of points 200 400 800 200 400 800 
Time T  
(in Sec.) 

1 5 20 1 5 20 

Avg. Len. 437.66 489.07 447.55 440.23 475.96 444.13 
Std.  Dev. 57.73 33.24 12.10 62.58 14.58 10.56 

Minimum Len. 423.27 463.37 432.96 423.27 463.37 432.96 
Maximum 

Len. 
816.62 701.30 482.54 760.89 517.25 465.08 

First Quartile 423.27 463.37 432.96 423.27 463.37 432.96 
Median 423.27 485.49 450.43 423.27 468.15 450.43 

Third Quartile 423.27 494.29 456.12 430.34 485.49 450.48 
Range 393.35 237.93 49.58 337.62 53.88 32.12  

 

  

(a) AS (b) MAS 

Fig. 6.13 AS and MAS histograms for a 200-point network over 100 trials - Model 3 



 96

 

  

(a) AS (b) MAS 

Fig. 6.14 AS and MAS histograms for a 400-point network over 100 trials - Model 3 
 

  

(a) AS (b) MAS 

Fig. 6.15 AS and MAS histograms for an 800-point network over 100 trials - Model 3 
 

Discussion (Quality of the best path obtained) 

 

When comparing the results obtained in Tables 6.6 – 6.8, MAS outperforms AS 

according to the statistics except in a small number of cases. Furthermore, it is 

noticeable that MAS produces good results when the routing problem becomes more 

complex. For example, MAS produces better statistics or equal results when networks 

of 800 random points were used. When comparing the average lengths of the two 
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algorithms, MAS produces better average results except in one case. In most cases, the 

standard deviation obtained by MAS is low which implies that variation between the 

solutions produced by MAS is low. This is also confirmed by the range statistic values. 

When considering the minimum lengths obtained, AS produced the better value in one 

case, MAS produced the better value in another case and in 5 cases the results were the 

same for both algorithms. Normally it is difficult to compare single results as both 

methods are stochastic and hence, for a particular trial, one algorithm may behave very 

well by chance. Quartile values also indicate how the optimum lengths obtained from 

the two algorithms are distributed. For example, the third quartiles of AS and MAS for 

the 800-point network of Model 2, are 2364.7 and 1339.0 (see Table 6.7) respectively. 

This implies that 75% of the lengths obtained for MAS are less than 1339.0, whereas 

75% of the lengths for AS are below a much higher value of 2364.7. 

 

When comparing the histograms of the obtained best lengths (see Figs. 6.7 – 6.15) for 

AS and MAS, it is noticeable that in most cases, the percentages of the leftmost bars of 

the histograms for MAS are higher than the corresponding percentages for AS. For 

example, in Fig. 6.12, this value is nearly 71% for MAS and the corresponding value for 

AS is about 15%. This indicates that MAS produces better solutions than AS. The 

minimum value (782.5) for AS for the network of 400 points for Model 2 (see Table 

6.7) is less than the corresponding value for MAS (799.1). However, when comparing 

the corresponding histograms (see Fig. 6.11), the percentage of the leftmost bars for 

MAS (about 28%) is higher than the respective value for AS (about 16%). It is evident 

that MAS produces good results for these statistics when the number of points used is 

higher or the problem becomes complex. Furthermore, it can be noted that the 

percentages of the rightmost bars of the histograms of MAS are zero for most cases. 

 

In addition to these results, a two-tailed t-test with a 95% confidence level was applied 

to both methods for the following hypotheses: 

 

    H0: MAS  AS Vs. H1: MAS < AS 

 

where H0 is the null hypothesis, H1 is the alternative hypothesis, MAS and AS are the 

mean best lengths of MAS and AS, respectively. 
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Tables 6.9 – 6.11 show the test statistics for the two-tailed t-test for the 3 models. In 

these tables, 95% confidence intervals for (MAS - AS) are also included. Negative 

numbers in these intervals (highlight in bold) imply that the first mean (MAS) is smaller 

than the second mean (AS) or the optimum lengths produced by MAS are smaller than 

those for AS with a 95% confidence level. 

 

Table 6.9 Two-tailed t-test and confidence interval – Model 1 

 
No of points 200 400 800 
95% Confidence Interval 
(MAS - AS)  

(-2.36, 1.25) (-3.98, -1.32) (-10.5, -4.3) 

T value -0.61 -3.94 -4.77 
Degree of freedom 197 114 192 

Accept. 
Interval 

(0, 0.05) (0, 0.05) (0, 0.05) 
Alternative 
hypothesis 

P value 0.27 0.0001 0.0000 

 

Table 6.10 Two-tailed t-test and confidence interval – Model 2 

 
No of points 200 400 800 
95% Confidence Interval 
(MAS - AS)  

( -259, -97) ( -296, -138) ( -862, -572) 

T value T = -4.31 -5.41 -9.75 
Degree of freedom 186 175 153 

Accept. 
Interval 

(0, 0.05) (0, 0.05) (0, 0.05) 
Alternative 
hypothesis 

P value 0.0000 0.0000 0.0000 

 

Table 6.11 Two-tailed t-test and confidence interval – Model 3 

 
No of points 200 400 800 
95% Confidence Interval 
(MAS - AS)  

( -14.2, 19.4) ( -20.3, -5.9) ( -6.6, -0.2) 

T value 0.30 -3.61 -2.13 
Degree of freedom 196 135 194 

Accept. 
Interval 

(0, 0.05) (0, 0.05) (0, 0.05) 
Alternative 
hypothesis 

P value 0.62 0.0002 0.017 
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According to these results, there is sufficient evidence, at the 0.05 level of significance, 

to conclude that the average best lengths for MAS is smaller than the corresponding 

value for AS, in most cases. It is noticeable that these results are significantly better 

when the complexity of the problem is increased. 

 

6.2.2 Number of turns 

6.2.2 

In this section, the numbers of turns (iterations) performed within the specified time (T) 
for AS and MAS are statistically analyzed. The following statistics are considered: 

 
Avg. No of Turns – Average number of turns over 100 trials 
Std. Dev. – Standard deviation of the turns 
Min. No of Turns – Minimum number of turns 
Max. No of Turns – Maximum number of turns 
 

A highlighted (in bold) statistical value in the tables (see Tables 6.12 – 6.14) indicates 

that it exceeds the corresponding value of the other algorithm. 

 

Experimental results (Number of turns) 

 

Table 6.12 Comparison of number of turns for AS and MAS – Model 1 (see Fig. 6.6)

 
 AS MAS 
No of points 200 400 800 200 400 800 
Time T (in Sec.) 5 6 50 5 6 50 
Avg. No of Turns 886.33 428.41 1006.6 1135.5 690.12 1998.2 
Std.  Dev. 24.10 42.06 42.3 21.8 23.94 61.2 
Min. No of Turns 807.00 202.0 902.0 1084.0 604.0 1800.0 
Max. No of Turns 923.00 500.0 1100.0 1181.0 704.0 2104.0  

 

Table 6.13 Comparison of number of turns for AS and MAS – Model 2 (see Fig. 6.6)

 
 AS MAS 
No of points 200 400 800 200 400 800 
Time T (in Sec.) 10 25 150 10 25 150 
Avg. No of Turns 963.47 605.09 489.42 1823.4 1916.0 2247.6 
Std.  Dev. 35.46 11.98 45.29 102.4 249.7 607.9 
Min. No of Turns 900.0 591.00 400.0 1605.0 1500.0 1109.0 
Max. No of Turns 1020.0 700.00 600.0 2062.0 2502.0 3900.0  
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Table 6.14 Comparison of number of turns for AS and MAS – Model 3 (see Fig. 6.6)

 
 AS MAS 
No of points 200 400 800 200 400 800 
Time T (in Sec.) 1 5 20 1 5 20 
Avg. No of Turns 213.72 577.99 818.64 241.6 883.00 1565.6 
Std.  Dev. 6.44 28.44 36.55 12.92 27.57 50.2 
Min. No of Turns 200.0 504.0 703.00 219.0 804.0 1404.0 
Max. No of Turns 227.0 602.0 900.00 272.0 945.0 1673.0  

 

Discussion (Number of turns) 

 

According to these tables, it is evident that MAS performs a greater number of turns (or 

iterations), and hence tends to give better solutions than AS, within the given fixed time. 

In all cases, the average number of turns for MAS is higher than the corresponding 

value for AS. For example, this value for MAS is 2247.6, for the network of 800 points 

of Model 2 (see Table 6.13), while the corresponding value for AS is 489.42. This 

implies that MAS is able to explore more good solutions within a given time. It is also 

noticeable that the maximum number of turns taken by AS is less than the minimum 

number of turns taken by MAS except in one case. This means that MAS almost always 

performs a higher number of turns than AS within the given time. This also shows that 

MAS has the ability to explore a greater scope of the search space. 

 

6.2.3 Total No of nodes in all contender node lists and average No of alternatives 

6.2.3 

The total number of nodes in all the contender node lists [Ji
*(r)] (see section 5.4) during 

each cycle is given by: 
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where n(A) is the number of elements in set A. 
  

For this experiment, Model 1 with the same parameter values as in the first 2 

experiments (sections 6.2.1 and 6.2.2) was used. However, the stopping criterion was 

changed: in this case, the program was run for 100 cycles (or 10,000 turns). The 

program was set to find the best path by using AS and recording both n_AS and n_MAS. 

When computing Ji
*(r), the current best value produced by AS rather than MAS is used 

as the program is unable to run the two algorithms simultaneously. 

 

Experimental results (Total No of nodes in all contender node lists) 
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(a) n_AS vs. n_MAS (b) Percentage of Node Reduction 

Fig. 6.16 Comparison of number of nodes in contender node lists [Ji
*(r)]  

per cycle for AS and MAS for a 200-point network - Model 1 (Typical run) 
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(a) n_AS vs. n_MAS (b) Percentage of Node Reduction 

Fig. 6.17 Comparison of number of nodes in contender node lists [Ji
*(r)]  

per cycle for AS and MAS for a 400-point network - Model 1 (Typical run) 
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(a) n_AS vs. n_MAS (b) Percentage of Node Reduction 

Fig. 6.18 Comparison of number of nodes in contender node lists [Ji
*(r)]  

per cycle for AS and MAS for a 800-point network - Model 1 (Typical run) 
 

Discussion (Total No of nodes in all contender node lists) 

 

According to Figs. 6.16 – 6.18, it is clear that n_MAS values are very much lower than 

n_AS values. The right-hand side of each figure shows the percentage of node reduction 

if MAS is used instead of AS. This shows that the total number of nodes in all 
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contender node lists per cycle is reduced by more than 60% after 3 or 4 cycles. This is 

also a good indication that MAS is able to search for good solutions and removes the 

unwanted edges from the contender node lists and hence avoids reinforcing pheromone 

values of unwanted edges. Note that during the first cycle, n_AS and n_MAS are the 

same as no information of the best length is available. 

 

Experimental results (Average No of alternatives) 

 

Further, the average number of alternatives [62] that an ant has for choosing the next 

node was computed for an 800-point network of Model 1. Although some edges may be 

connected to a node, if the pheromone levels of these edges are smaller than a threshold 

 after a number of cycles, the probability of the ants selecting such edges is negligible. 

These edges were removed from the count.  

 

For ant i that is placed on node r let 
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be the numbers of possible next nodes (that have not yet been visited) that have a 

probability > λ of being chosen, for AS and MAS, respectively. Then, the average 

numbers of alternatives with probability > λ during a cycle are 
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where n(A) is the number of elements in set A. 
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(a) D_AS vs. D_MAS (b) Percentage reduction of alternatives 

Fig. 6.19 Comparison of average numbers of alternatives, D, for an 800-point network 
of Model 1 (Typical run) (λ = 0.01) 

 

Discussion (Average No of alternatives) 

 

According to Fig. 6.19, the average number of alternatives for MAS is well below that 

for AS in most of the cycles. The right-hand side of the figure shows the percentage 

reduction in the average number of alternatives D for MAS with respect to AS. 

Negative percentages indicate that the D values for AS are less than for MAS. 

Furthermore, the average values of the D values for all cycles for AS and MAS are 

98.57 (Std. Dev. 19.15) and 77.11 (Std. Dev. 9.61) respectively. According to these 

average values, each ant has roughly 99 and 77 alternatives per cycle for AS and MAS, 

respectively. 
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6.2.4 Time spent on a cycle 

6.2.4 

In this experiment, time spent on each cycle was measured. For this, 200-, 400- and 

800-point networks of Model 1 were used with the same parameters as for experiment 1 

(See Section 6.2). The stopping criterion was changed such that the program was run for 

100 cycles. 

 

Experimental results (Time spent on a cycle) 
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Fig. 6.20 Comparison of cycle times, for a 200-point network of Model 1  
(Sample run) 
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Fig. 6.21 Comparison of cycle times, for a 400-point network of Model 1  
(Sample run) 
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Fig. 6.22 Comparison of cycle times, for a 800-point network of Model 1  
(Sample run) 

 
Table 6.15 Comparison of average cycle time for AS and MAS – Model 1 

 
No of Points 200 400 800 
Algorithm AS MAS AS MAS AS MAS 
Average Cycle Time 
(ms) 

220.47 118.13 765.15 335.63 3398.6 1288.75

Std. Dev. (Cycle 
Time) 

29.13 19.19 97.07 61.82 433.41 327.35 
 
 

Discussion (Time spent on a cycle) 

 

Figs. 6.20 – 6.22 show that cycle times for MAS are very low compared to those for AS 

in all the three cases. Table 6.15 shows the average cycle time and its standard 

deviation. These figures demonstrate that the average cycle time can be reduced 

approximately by half when using MAS. Hence, for a given run time, it is possible to 

run a higher number of cycles for MAS than for AS and thus achieve better results for 

MAS than for AS. 

 

6.3 Results Obtained with the Introduction of Explorer Ants for Avoiding 
Stagnation 

6.3 

In this experiment, the introduction of two types of ants (explorers and followers) into 

MAS (N_MAS) in order to avoid the stagnation behaviour is examined (see section 5.5 
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also).  

 

Each of the three models (see Fig. 6.6) was tested with a 200-, 400- and 800- random 

point network for 100 trials. For each trial, 5 explorers and 5 followers were used. 

Values for the other parameters and the stopping criterion were the same as for 

experiment 1 in section 6.2. 

 

Experimental results (Introduction of Explorer Ants for Avoiding Stagnation) 

 
Table 6.16 Comparison of best lengths obtained by MAS and N_MAS – Model 1 

 
 MAS N_MAS 

No of 
points 

200 400 800 200 400 800 

Time T  
(in Sec.) 

5 6 50 5 6 50 

Avg. Len. 365.06 315.14 342.03 360.36 314.72 340.94 
Std.  Dev. 6.60 1.84 10.04 6.42 1.64 10.14 
Minimum 

Len. 
355.97 310.62 316.27 355.97 310.62 318.92 

Maximum 
Len. 

369.87 321.27 358.55 369.87 321.27 358.55 

First 
Quartile 

355.97 314.68 333.51 355.97 314.68 332.49 

Median 369.87 314.68 343.97 355.97 314.68 343.78 
Third 

Quartile 
369.87 314.68 349.69 369.87 314.68 350.64 

Range 13.90 10.65 42.28 13.90 10.65 39.63  
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(a) MAS (b) N_MAS 

Fig. 6.23 MAS and N_MAS histograms for a 200-point network over 100 trials -  
Model 1 

 

 
 

(a) MAS (b) N_MAS 

Fig. 6.24 MAS and N_MAS histograms for a 400-point network over 100 trials -  
Model 1 
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(a) MAS (b) N_MAS 

Fig. 6.25 MAS and N_MAS histograms for a 800-point network over 100 trials -  
Model 1 

 
Table 6.17 Comparison of best lengths obtained in MAS and N_MAS – Model 2 

 
 MAS N_MAS 

No of 
points 

200 400 800 200 400 800 

Time T (in 
Sec.) 

10 25 150 10 25 150 

Avg. Len. 1262.0 1142.5 1193.1 1098.0 1066.3 1104.5 
Std.  Dev. 253.1 227.3 353.3 208.9 180.7 322.7 
Minimum 

Len. 
796.7 799.1 682.9 752.3 784.7 671.2 

Maximum 
Len. 

1896.4 1816.9 2402.8 1691.9 1646.2 2533.5 

First 
Quartile 

1040.2 969.0 935.5 958.4 952.8 863.4 

Median 1246.8 1076.1 1117.5 1085.9 1032.0 993.9 
Third 

Quartile 
1453.5 1310.2 1339.0 1219.2 1153.0 1360.4 

Range 1099.7 1017.8 1719.9 939.6 861.5 1862.3  
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(a) MAS (b) N_MAS 

Fig. 6.26 MAS and N_MAS histograms for a 200-point network over 100 trials -  
Model 2 

 

  

(a) MAS (b) N_MAS 

Fig. 6.27 MAS and N_MAS histograms for a 400-point network over 100 trials -  
Model 2 
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(a) MAS (b) N_MAS 

Fig. 6.28 MAS and N_MAS histograms for a 800-point network over 100 trials -  
Model 2 

 
 

Table 6.18 Comparison of best lengths obtained in of MAS and N_MAS – Model 3 

 
 MAS N_MAS 

No of 
points 

200 400 800 200 400 800 

Time T (in 
Sec.) 

1 5 20 1 5 20 

Avg. Len. 440.23 475.96 444.13 423.27 470.34 440.89 
Std.  Dev. 62.58 14.58 10.56 0.00 11.34 9.59 
Minimum 

Len. 
423.27 463.37 432.96 423.27 463.37 432.96 

Maximum 
Len. 

760.89 517.25 465.08 423.27 517.25 465.08 

First 
Quartile 

423.27 463.37 432.96 423.27 463.37 432.96 

Median 423.27 468.15 450.43 423.27 463.37 432.96 
Third 

Quartile 
430.34 485.49 450.48 423.27 484.91 450.43 

Range 337.62 53.88 32.12 0.00 53.88 32.12  
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(a) MAS (b) N_MAS 

Fig. 6.29 MAS and N_MAS histograms for a 200-point network over 100 trials -  
Model 3 

 

  

(a) MAS (b) N_MAS 

Fig. 6.30 MAS and N_MAS histograms for a 400-point network over 100 trials -  
Model 3 
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(a) MAS (b) N_MAS 

Fig. 6.31 MAS and N_MAS histograms for a 800-point network over 100 trials -  
Model 3 

 
Discussion (Introduction of Explorer Ants for Avoiding Stagnation) 

 

According to the Tables 6.16 – 6.18, the average values of the best lengths are improved 

when the two types of ants (explorers and followers) are introduced into MAS. Standard 

deviations of the best lengths are also reduced except in one case. Note that, the 

standard deviation for the network of 200 points of Model 3 (see Table 6.18) is 0. In this 

experiment, N_MAS converged to 423.27 for all 100 trials. In addition to these results, 

the other statistics are also improved or remain the same. 

 

When comparing the histograms of N_MAS and MAS (see Figs. 6.29 – 6.31), it can be 

seen that the percentage values of the two lowest bars are always higher for N_MAS 

than for MAS. 

  

Further, the two-tailed t-test with a 95% confidence level was applied to N_MAS with 

the following hypothesises: 

 

   H0: N_MAS  MAS Vs. H1: N_MAS < MAS 
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where N_MAS and MAS are the mean best lengths of N_MAS and MAS, respectively. 

The following tables (see Tables 6.19 – 6.21) show the test statistics of the two-sample 

t-test for the 3 models. In these tables, 95% confidence intervals for (N_MAS - MAS) are 

also included. 

 
Table 6.19 Two-Tailed T-Test and Confidence Interval – Model 1 

 
No of points 200 400 800 

95% Confidence Interval 
(N_MAS - MAS) 

(-6.51, -2.88) (-0.90, 0.07) (-3.9, 1.7) 

T value -5.10 -1.69 -0.77 
Degree of freedom 197 195 197 

Accept. 
Interval 

(0, 0.05) (0, 0.05) (0, 0.05) 
Alternative 
hypothesis 

P value 0.0000 0.047 0.22 

 

Table 6.20 Two-Tailed T-Test and Confidence Interval – Model 2 

 
No of points 200 400 800 

95% Confidence Interval 
(N_MAS - MAS) 

(-229, -99) (-133, -19) ( -183,  6) 

T value -5.00 -2.62 -1.85 
Degree of freedom 191 188 196 

Accept. 
Interval 

(0, 0.05) (0, 0.05) (0, 0.05) 
Alternative 
hypothesis 

P value 0.0000 0.0047 0.033 

 
Table 6.21 Two-Tailed T-Test and Confidence Interval – Model 3 

 
No of points 200 400 800 

95% Confidence Interval 
(N_MAS - MAS) 

(-29.38, -4.5) (-9.3, -2.0) (-6.05, -0.4) 

T value -2.71 -3.04 -2.27 
Degree of freedom 99 186 196 

Accept. 
Interval 

(0, 0.05) (0, 0.05) (0, 0.05) 
Alternative 
hypothesis 

P value 0.0040 0.0013 0.012 
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According to these results, there is sufficient evidence, at the 0.05 level of significance, 

to conclude that the average best length for N_MAS is smaller than the corresponding 

value for MAS in most of the cases. 
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6 RESULTS AND DISCUSSION 
6.4 Results Obtained for Multi-Objective Ant Colony Optimization 
6.4 

In this section, results of the application of multi-objective ant colony optimization 

algorithms (P-ACO and the proposed PSACO) discussed in sections 4.3.1 and 5.6 for 

the multi-objective hose routing problem described in section 5.7 are investigated. Both 

algorithms (P-ACO and PSACO) have been tested on two Pro/Engineer models (see 

Fig. 6.32). Model 1 consists of a cube containing a hole. Hose segments needed to be 

laid inside this hole in order to obtain the optimal path, which is blocked by a cubic 

obstacle, and the end point is placed behind this obstacle. In Model 2, a U-shape 

obstacle is placed in the environment and the environment is made more complex by 

introducing other objects. Furthermore, the start and the end points are placed on the 

opposite sides of the U-shaped obstacle. Note that the z-coordinates of the search space 

are restricted to the top and the bottom of the obstacles. 

 

For each model, two methods (P-ACO and PSACO) are compared in terms of 

illustrative representation methods of non-dominated solutions, performance 

comparison methods described in sections 3.2 and 3.3, respectively. Further, 

performances are compared using the computation times of the two algorithms. In 

section 6.4.7 the application of the methods described in section 3.4 for selecting a final 

solution from the non-dominated solutions obtained by MOACO algorithms is 

discussed. Finally, a refining process is described and results of this process are 

presented in section 6.4.7. 

 

A network of 800 random points has been generated for each model as described in step 

2 of section 5.3 and has been stored in a text file. 93198 and 67975 edges have been 

generated for Model 1 and Model 2, respectively. 

 

Both P-ACO and PSACO have been run twenty times on these networks for 40 cycles 

(Nc = 40). Each cycle consists of 100 turns (NT = 100). All the simulations have been 

carried out on a Pentium IV PC (Processor speed = 3.0 GHz, RAM = 512 MB) in the 

Microsoft Windows XP environment using Microsoft Visual C++ (.Net version). 
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(a) Model 1 (b) Model 2 

Fig. 6.32 Tested Pro/Engineer Models 
 
Model 1 
 
The parameters for the two algorithms for Model 1 have been set as follows: Number of 

ants N = 20, Archive size NA = 10, Initial pheromone level τ0 = 1, α = 1, β = 5,  = 0.01, 

q0 = 0.9 (only for P-ACO), γ = 2, ε = 10/180 = 0.0556, Catalogue angles: 1 = 45º,  

2 = 90º, 3 = 120º, 4 = 150º and 5 = 180º. 

 

Overall, 13 and 20 non-dominated solutions have been generated by P-ACO and 

PSACO, respectively out of 200 solutions generated in 20 runs. 

 

6.4.1 Illustrative Representation of the Non-Dominated Solutions for Model 1 
(see Fig. 6.32) 

 

Figs. 6.33 – 6.35 illustrate the non-dominated solutions using the scatter-plot matrix, the 

value path and the bar chart methods, respectively. 

 

According to the scatter-plot matrix method both algorithms have a good spread of non-

dominated solutions within the objective function’s extreme values. Further, PSACO 

has obtained smaller (better) objective values when compared with the objective values 

obtained by P-ACO. 

 

The value path method shows the spread of each of the non-dominated solutions in each 

objective. The objective values of both algorithms do not span the entire range for each 

S 

E

S 

S 
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objective. This is expected as the objective space of our problem is discontinuous and 

discrete. For example, for the second objective, f2 cannot achieve the value 0 as there is 

no solution with the number of bends NB = 1 (see Fig. 6.32). However, it is noticeable 

that both algorithms produce solutions with a good spread between the extreme values 

of each objective. Further, both algorithms produce good trade-off solutions as most of 

the solutions have a large change of slope between two consecutive objective function 

bars. 

 

The bar chart method (see Fig. 6.35) also shows the same results as the value path 

method. The values of each objective function do not spread over their entire region  

[0, 1] as the objective spaces are not continuous. 
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Fig. 6.33 The scatter-plot matrix method for Model 1 

 

f1 

f2 

f3 



 120

 

The Value Path Method [PACO]
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The Value Path Method [PSACO]
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Fig. 6.34 The value path method for Model 1 

 

The Bar Chart Method [PACO]
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The Bar Chart Method [PSACO]
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Fig. 6.35  The bar chart method for Model 1 
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6.4.2 Metrics of Performance of the Non-Dominated Solutions for Model 1 
 

As the true Pareto front of the Model 1 is not known, it is not possible to compute the 

M1
* metric (see section 3.3). Thus it is not possible to discover how close each non-

dominated solution obtained by P-ACO and PSACO is to the true Pareto front.  
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Fig. 6.36 Boxplots of the results obtained for the M2

* metric with σ = 0.25 for Model 1 
 

The second metric M2
* gives an idea about the distribution of the non-dominated 

solutions obtained in each of the runs of the experiment. Higher M2
* values imply a 

better distribution of the non-dominated solutions for the algorithm. Fig. 6.36 shows 

boxplots of values of M2
* for P-ACO and PSACO with σ = 0.25. A boxplot graphically 

represents the minimum, maximum and median values as well as the upper and lower 

quartiles (upper and lower ends of the box). The boxplots show that PSACO has higher 

values for each of these statistics. Table 6.22 also compares the descriptive statistics of 

M2
* for P-ACO and PSACO over the twenty runs of the experiment. Bold values 

indicate that they exceed the corresponding values of the other algorithm. It is 
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noticeable that PSACO outperforms P-ACO for each statistics and hence PSACO 

generates a better distribution of non-dominated solutions. 

 
 

Table 6.22  Descriptive statistics of the M2
* metric with σ = 0.25 for Model 1 

 
 P-ACO PSACO 
Mean 6.725 7.142 
Std. Dev. 1.168 0.916 
Q1 6.111 6.595 
Median 7.056 7.111 
Q3 7.556 7.722 
Minimum 3.600 5.333 
Maximum 8.222 8.889 
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Fig. 6.37 Boxplots of the results obtained for the M3

* metric for Model 1 
 
M3

* estimates the maximum extent in each dimension of the spread of the non-

dominated solutions. Fig. 6.37 shows the boxplots of the M3
* metric for P-ACO and 

PSACO of Model 1 for the non-dominated solutions obtained over the 20 runs of the 

experiment. Table (6.23) compares the descriptive statistics of the M3
* metric for P-
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ACO and PSACO. According to these, it is noticeable that the maximum extent in each 

dimension of the non-dominated solutions obtained by PSACO is better in most cases. 

 
Table 6.23 Descriptive statistics of the M3

* metric for Model 1 
 

 PACO PSACO 
Mean 0.7556 0.7875 
Std. Dev. 0.0663 0.0732 
Q1 0.6935 0.7408 
Median 0.7750 0.8019 
Q3 0.8067 0.8459 
Minimum 0.6502 0.6324 
Maximum 0.8614 0.9090 
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Fig. 6.38 Boxplots of the results obtained for the C metric for Model 1 

 
The C-metric (defined in section 3.3) calculates the proportion of non-dominated 

solutions obtained in one algorithm, which are dominated by non-dominated solutions 

obtained in another algorithm. For example, C(A, B) = 0.7 means that 70% of solutions 

in algorithm B are dominated by at least one of the solutions of algorithm A. Fig. 6.38 

illustrates the boxplots of the C-metrics of one algorithm against the other. The left 



 124

boxplot demonstrates the proportion of non-dominated solutions obtained in PSACO 

that are dominated by non-dominated solutions obtained in P-ACO. Similarly, the right 

boxplot displays the proportion of non-dominated solutions obtained in P-ACO that are 

dominated by non-dominated solutions obtained in PSACO. Table 6.24 compares the 

descriptive statistics of the C-metric values. From these, it is clear that, PSACO 

generates better non-dominated solutions. For example, the mean value for C(PSACO, 

P-ACO) is 0.2397 and hence 24% of non-dominated solutions of P-ACO are covered by 

PSACO solutions on average whilst it is 0.1636 (or 16%) for C(P-ACO, PSACO). 

 
Table 6.24 Descriptive statistics of the C Metric for Model 1 

 
 C(PACO, PSACO) C(PSACO, PACO) 
Mean 0.1636 0.2397 
Std. Dev. 0.1516 0.1750 
Q1 0.0000 0.1000 
Median 0.2000 0.2222 
Q3 0.2167 0.3000 
Minimum 0.0000 0.0000 
Maximum 0.5000 0.7000 
 

6.4.3 Computation Times for Model 1 
 

In each run of the experiment, each algorithm was run for 40 cycles (each cycle 

consisting of 100 turns). The computation time of each run was recorded and stored in a 

text file. Fig. 6.39 depicts the boxplots of the computation times for P-ACO and 

PSACO and Table 6.25 compares the descriptive statistics of the computation times. 

The average times are 26.919 (min.) and 18.997 (min.) for P-ACO and PSACO, 

respectively. These results show that PSACO takes less computation time to perform a 

single run. 
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Fig. 6.39 Boxplots of computation time (min.) for Model 1 

 

Table 6.25 Descriptive statistics of computation time (min.) for Model 1 
 

 PACO PSACO 
Mean 26.919 18.997 
Std. Dev. 1.957 1.917 
Q1 25.624 18.305 
Median 26.932 19.237 
Q3 28.365 20.107 
Minimum 23.948 13.416 
Maximum 31.274 22.646 
 

Model 2 

 

The parameters for the two algorithms for Model 2 have been set as follows: Number of 

ants N = 10, Archive size NA = 5, Initial pheromone level τ0 = 1, α = 1, β = 5,  = 0.01, 

q0 = 0.9 (only for P-ACO), γ = 2, ε = 10/180 = 0.0556, Catalogue angles: 1 = 45º, 2 = 

90º, 3 = 120º, 4 = 150 º and 5 = 180 º. 
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Overall, P-ACO and PSACO have generated 7 and 4 non-dominated solutions, 

respectively, out of 100 solutions generated in 20 runs. 

 

6.4.4 Illustrative Representation of the Non-Dominated Solutions for Model 2 
 

Figs. 6.40 – 6.42 show the overall non-dominated solutions using the scatter-plot 

matrix, the value path and the bar chart methods, respectively. According to the scatter-

plot matrix, PSACO has obtained smaller objective values compared to P-ACO. As for 

Model 1, objective values are not spread over the entire range of each of the objectives 

[0, 1] (see also the value path and bar chart methods) as the problem considered here is 

also discontinuous and discrete. Both algorithms also produce good trade-off solutions 

as witnessed by the large slope between two consecutive objective bars in the value path 

method. 
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Fig. 6.40 The scatter-plot matrix method for Model 2 
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The Value Path Method [PACO]
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Fig. 6.41 The value path method for Model 2 

 

The Bar Chart Method [PACO]
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Fig. 6.42 The bar chart method for Model 2 
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6.4.5 Metrics of Performance of the Non-Dominated Solutions for Model 2 
 

As for Model 1, it is not possible to compute the M1
* metric since the true Pareto front 

of the Model 2 is not known. 

 

Fig. 6.43 illustrates boxplots of values of M2
* for P-ACO and PSACO with σ = 0.10. 

Further, Table 6.26 also compares the descriptive statistics of M2
*. These results show 

that PSACO has obtained a better distribution of non-dominated solutions for Model 2. 

For P-ACO, the first quartile and the median are zero (Table 6.26) as M2
* was zero for 

15 trials out of 20. 
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Fig. 6.43 Boxplots of the results obtained for the M2

* metric with σ = 0.10 for Model 2 
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Table 6.26 Descriptive statistics of the M2

* metric with σ = 0.10 
 

 PACO PSACO 
Mean 0.425 1.675 
Std. Dev. 0.783 1.304 
Q1 0.000 0.250 
Median 0.000 1.750 
Q3 0.750 2.750 
Minimum 0.000 0.000 
Maximum 2.000 4.000 
 

Fig. 6.44 shows the boxplots of the M3
* metric for P-ACO and PSACO for Model 2 for 

the non-dominated solutions obtained over 20 runs of the experiment. Table (6.27) 

compares the descriptive statistics of the M3
* metric for P-ACO and PSACO. According 

to the boxplots and the descriptive statistics, it is clear that the maximum extent in each 

dimension of the non-dominated solutions obtained is better in the case of PSACO. 
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Fig. 6.44 Boxplots of the results obtained for the M3

* metric for Model 2 
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Table 6.27 Descriptive statistics of the M3

* metric for Model 2 
 

 PACO PSACO 
Mean 0.3396 0.4383 
Std. Dev. 0.0745 0.2212 
Q1 0.2818 0.3920 
Median 0.3374 0.4941 
Q3 0.3784 0.5766 
Minimum 0.2121 0.0000 
Maximum 0.4823 0.7468 
 

Fig. 6.45 illustrates the boxplots of the C-metrics of one algorithm against the other for 

Model 2. Table 6.28 shows the descriptive statistics of the C-metric values. Since the 

mean and other statistics of C(P-ACO, PSACO) are zero, none of the non-dominated 

solutions obtained in P-ACO dominate the non-dominated solutions of PSACO. Since 

the mean of C(PSACO, P-ACO) is 0.8225, 82% of non-dominated solutions obtained in 

P-ACO are dominated by one of the non-dominated solutions of PSACO. 

 

P
A

C
O

)
C

(P
S

A
C

O
,

P
S

A
C

O
)

C
(P

A
C

O
,

1.0

0.5

0.0

C
 M

e
tr

ic

Boxplots of C Metric

 
Fig. 6.45 Boxplots of the results obtained in the C metric for Model 2 
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Table 6.28 Descriptive statistics of the C Metric for Model 2 
 

 C(PACO, PSACO) C(PSACO, PACO) 
Mean 0.0000 0.8225 
Std. Dev. 0.0000 0.3381 
Q1 0.0000 0.8000 
Median 0.0000 1.0000 
Q3 0.0000 1.0000 
Minimum 0.0000 0.0000 
Maximum 0.0000 1.0000 
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6.4.6 Computation Times for Model 2 
 

As for Model 1, each algorithm was run for 40 cycles (each cycle consisting of 100 

turns). The computation time of each run was recorded and stored in a text file. Fig. 

6.46 illustrates the boxplots of the computation times for P-ACO and PSACO and Table 

6.29 compares the descriptive statistics of the computation times. The average times for 

P-ACO and PSACO are 83.518 and 81.016, respectively. These results show that 

PSACO requires a lower computation time for a single run. 
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Fig. 6.46 Boxplots of computation time (min.) for Model 2 

 
Table 6.29 Descriptive statistics of the computation time (min.) for Model 2 

 
 PACO PSACO 
Mean 83.518 81.016 
Std. Dev. 3.965 3.256 
Q1 81.286 78.251 
Median 84.103 80.191 
Q3 86.030 82.437 
Minimum 76.005 77.067 
Maximum 88.947 87.771 
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6.4.7 Final Solution 
6.4.7 

In the case of a multi-objective optimization procedure, the higher level of information 

that cannot be incorporated into the optimization algorithm must be used for selecting a 

suitable solution (see Fig. 3.1). The approaches discussed in section 3.4 have been used 

for selecting a solution among the non-dominated solutions (overall) in both the 

algorithms, P-ACO and PSACO. For the first two metrics (lp-metric and Tchebycheff 

metric), a reference point z is required which is comprised of individual best objective 

function values and thus (0, 0, 0)T is selected as the reference point z. Further, p = 2 

(Euclidian distance) has been used for the lp-metric. Both metrics assume that there are 

no priorities among the objectives. In the Pseudo-Weight Vector Approach, the 

selection of the solution is subjective. Thus, the solution for this approach is selected 

such that the weight for the third objective (f3) is the closer to zero. The purpose of this 

is to minimize the deviation between the bend angles and the pre-specified catalogue 

angles. Table 6.30 and Table 6.31 show the final solutions obtained using these 

approaches for Model 1 and Model 2, respectively. The last column of these tables is 

the sum of the deviations (absolute difference between the bend angle (θi) and the 

closest catalogue angle to θi (ω)). These results also show that in most cases, the final 

solution obtained for PSACO for these approaches is not dominated by the 

corresponding solution for P-ACO. 

 
Table 6.30  Final solution obtained using various methods for Model 1 

 
 Method f1 f2 f3 Length # 

Bends 
 

i
i 

PACO 0.2814 0.5 0.0570 354.79 2 20.50 lp-Metric 
PSACO 0.2814 0.5 0.0570 354.79 2 20.50 
PACO 0.2814 0.5 0.0570 354.79 2 20.50 Tchebycheff-

Metric PSACO 0.2889 0.5 0.0551 358.55 2 19.83 
PACO 0.3699 0.5 0.0119 404.61 2 4.29 Pseudo-

weight PSACO 0.4520 0.5 0.0080 465.25 2 2.86 
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Table 6.31 Final solution obtained using various methods for Model 2 

 
 Method f1 f2 f3 Length # 

Bends 
 

i
i 

PACO 0.7652 0.90 0.0580 1277.92 10 104.42 lp-Metric 
PSACO 0.5415 0.75 0.0690 654.36 4 49.73 
PACO 0.7652 0.90 0.0580 1277.92 10 104.42 Tchebycheff-

Metric PSACO 0.5415 0.75 0.0690 654.36 4 49.73 
PACO 0.8039 0.95 0.0555 1529.91 21 209.74 Pseudo-

weight PSACO 0.5887 0.80 0.0488 729.47 5 43.89 
 

6.4.8 Refining the solution 
 

According to the solutions found in the previous section, it is noticeable that bend 

angles are not much closer to the pre-specified catalogue of angles of bends. For 

example, for the solution obtained by the lp-metric and the Tchebycheff-metric for 

Model 2 for PSACO each bend deviates on average by approximately 12o (≈ 49.73/4) 

from the closest catalogue angle (see second and fourth rows of Table 6.31). Thus, one 

could refine the solution further near the solution XG (obtained using the entire search 

space) as follows: 

 

Assume that XG = (S, P1, P2, …, Pn, E) is the final solution obtained using the entire 

search space where P1, P2, …, Pn are the intermediate points between S and E. Then the 

refining algorithm creates a network using some random points in the neighbourhood of 

each point Pi (i = 1, 2, …, n) (see Fig. 6.47). Next, the refining algorithm searches for 

non-dominated solutions in this network using PSACO. 

 

Table 6.32 shows the overall best non-dominated solutions found for Model 2 after the 

refining of the lp-metric solution of PSACO (see second row of Table 6.31). Here the 

refined network is generated using 200 random points (density = 200) in each point Pi’s 

neighbourhood. Each neighbourhood i is defined as a cube (of size 2r) centred on the 

corresponding point Pi. For this experiment r is set to 20. As in the previous 

experiments, PSACO is run for 20 trials with 10 ants and an archive size (NA) of 5. 
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Fig. 6.47 Creating the refined network 

 

Table 6.32  Refined solutions obtained using PSACO for Model 2  
(r = 20, Density = 200) 

 
 f1 f2 f3 Length # Bends  

i
i   

Solution 1 0.5160 0.75 0.0104 619.79 4 7.52 
Solution 2 0.4892 0.75 0.0277 587.27 4 19.93 
Solution 3 0.5667 0.75 0.0093 692.41 4 6.67 
Solution 4 0.5085 0.75 0.0260 610.37 4 18.73 

 
According to Table 6.32, it is noticeable that all the refined solutions (except solution 3) 

dominate the previous solution found searching the entire search space (compare the 

solutions found in Table 6.32 with the second row of Table 6.31). In solutions 1, 2 and 4 

both length and  
i

i   are improved even though the number of bends is still the 

same. The average deviation from the catalogue angles is also improved. For example, 

if solution 1 is selected, this value is approximately 20 (≈ 7.52/4) per bend and was 120 

with the solution found using the entire search space. 
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Fig. 6.48 shows the solutions obtained in the entire search space and in the refined 

search space. Table 6.33 lists the actual bend angles, their closest catalogue angles and 

the deviation from the closest catalogue angle. The bend angles of the refined solution 

are much closer to the pre-specified catalogue angles. 

 

 
(i) Solution obtained searching the entire 

search space 
(ii) Refined solution (Solution 1) 

Fig. 6.48 Solutions obtained using the entire search space and the refined  search 
space for Model 2 

 
 

Table 6.33  Bend angles of the solutions obtained in the entire search space and the 
refined search space for Model 2 

 
 Solution obtained using the entire 

search space 
Refined solution (Solution 1) 

 Angle Closest 
Catalogue 

Angle 

Deviation Angle Closest 
Catalogue 

Angle 

Deviation

Bend 1 58.82 45 13.82 45.33 45 0.33 
Bend 2 80.63 90 9.37 117.29 120 2.71 
Bend 3 108.26 120 11.74 118.31 120 1.69 
Bend 4 134.80 120 14.80 122.79 120 2.79 

 

Fig 6.49 shows the boxplots of the computation times for searching non-dominated 

solutions in the entire search space and the refined search space. Table 6.34 compares 

the different descriptive statistics of the computation times for finding the solutions in 
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the entire and refined search spaces. According to the boxplot and the table the 

computation times for searching in the refined search space is well below the 

computation time for searching in the entire search space. 

 

Fig. 6.49 Boxplots of computation times using the  
entire search space and the refined search space for Model 2 

 
Table 6.34  Descriptive statistics of computation times using the  

entire search space and the refined search space for Model 2 
 

 Entire Search Space Refined Search Space 
Mean 81.016 14.242 
Std. Dev. 3.256 1.235 
Q1 78.251 78.251 
Median 80.191 14.371 
Q3 82.437 14.936 
Minimum 77.067 9.477 
Maximum 87.771 15.433 
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Thus, if the solution obtained using the entire search space is not satisfactory, it is 

advisable to run the refinement algorithm to search for an acceptable solution near the 

neighbourhood of the solution obtained using the entire search space. 

 

6.5 Results Obtained for the Proposed Multi-Colony Ant Systems for Multi-Hose 
Routing 

6.5 

In this section, the results of applying the proposed multi-colony ant systems  

MCAS-MHR-1 and MCAS-MHR-2 described in section 5.8 are presented and 

discussed and their strengths and weaknesses are investigated empirically. 

 

The parameter settings for both algorithms are: number of ants for each colony = 5, 

initial pheromone level on each edge = 1, pheromone decay parameter  = 0.01,  = 1 

and  = 5. Other parameter settings are included in the relevant experiment results. 

 

The termination criterion for each of the experiments was set to 100 cycles. 

 

All the simulations were carried out on a Pentium IV PC (Processor speed = 3.0 GHz, 

RAM = 512 MB) in the Microsoft Windows XP environment using Microsoft Visual 

C++ (.Net version). 

 

6.5.1 Experiment 1: Demonstrating the potential of MCAS-MHR-1 and MCAS-
MHR-2 on a test graph 

6.5.1 

The purpose of this experiment is to demonstrate on a graph the potential of the 

proposed two algorithms MCAS-MHR-1 and MCAS-MHR-2 whose optimal solutions 

between the given commodities (pairs of start and end points) are already known. 

 

Test graph 1 (see Fig. 6.50) is used to find the best shared paths between the 

commodities (S1, E1) and (S2, E2). There are 9 possible solutions for this simple graph 

(see Table ble 6.35). When considering the shortest paths between the two commodities 

(S1, E1) and (S2, E2), the choice would be solution 1. However, if paths need to be 

shared as much as possible while the total length of the paths is minimized, the 

algorithms should select solution 5. 
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Table 6.36 shows the percentage of runs that obtain each solution over 100 runs after 

100 cycles for different values of w1, w2 and  (only for MCAS-MHR-2).  

 

 

 

Fig. 6.50 Test graph 1 – Finding the optimum paths between commodities (S1, E1) and 
(S2, E2). Best solution:(S1EFE1, S2EFE2) 

 

These results show that both algorithms obtain the disjoint solution (solution 1) when 

the shared length between two paths is not considered for pheromone updating (see 

Table 6.36, Fig. 6.51 and Fig. 6.52). However, both algorithms obtain solution 5 from 

more than 70% of the runs (except in one case) when there is a contribution from the 

shared length between two paths for the pheromone updating (see Fig. 6.51 and Fig. 

6.52). The highest percentage obtained for MCAS-MHR-1 is 84% and it happened 

when w1 = 0.9 and w2 = 0.1. Compared with MCAS-MHR-1, MCAS-MHR-2 gives 

slightly better results for most of the  values. For example, when w1 = 0.9 and w2 = 0.1, 

MCAS-MHR-2 obtains solution 5, from 91%, 88%, 89% and 93% of the runs for the  

values 1, 2, 4 and 5, respectively. Therefore, it possible to conclude, empirically, that 

the performance of MCAS-MHR-2 is better as a result of using additional information 

(foreign pheromones). 
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Table 6.35  Possible solutions for test graph 1 

 
Solution No Path from S1 to E1 Path from S2 to E2 

1 S1ABE1 S2CDE2 
2 S1ABE1 S2EFE2 
3 S1ABE1 S2ES1ABE1FE2 
4 S1EFE1 S2CDE2 
5 S1EFE1 S2EFE2 
6 S1EFE1 S2ES1ABE1FE2 
7 S1ES2CDE2FE1 S2CDE2 
8 S1ES2CDE2FE1 S2EFE2 
9 S1ES2CDE2FE1 S2ES1ABE1FE2 

 

Table 6.36  Percentage of each solution found on test graph 1 for different values of w1, w2 and  (for MCAS-MHR-2 only) 
 

MCAS-MHR-1 
(w1, w2) (1, 0) (0.9, 0.1) (0.8, 0.2) (0.7, 0.3) 
Solution 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 

(%) 100 0 0 0 0 0 0 0 0 14 0 0 0 84 2 0 0 0 33 0 4 0 63 0 0 0 0 23 0 2 0 71 2 0 0 0 
MCAS-MHR-2 

(w1, w2) (1, 0) (0.9, 0,1) (0.8, 0.2) (0.7, 0.3) 
Solution 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 

 = 0 100 0 0 0 0 0 0 0 0 23 0 0 0 77 0 0 0 0 3 0 0 0 95 2 0 0 0 23 0 2 0 71 2 0 2 0 

 = 1 100 0 0 0 0 0 0 0 0 9 0 0 0 91 0 0 0 0 0 0 0 0 94 6 0 0 0 16 0 2 0 78 2 0 2 0 

 = 2 100 0 0 0 0 0 0 0 0 12 0 0 0 88 0 0 0 0 15 0 2 0 79 2 0 2 0 4 0 2 0 92 2 0 0 0 

 = 3 100 0 0 0 0 0 0 0 0 18 0 0 0 80 2 0 0 0 20 0 0 0 78 0 0 2 0 14 0 2 0 78 6 0 0 0 

 = 4 100 0 0 0 0 0 0 0 0 6 0 3 0 89 0 0 0 0 8 0 0 0 92 0 0 0 0 6 0 2 0 90 2 0 0 0 

 = 5 100 0 0 0 0 0 0 0 0 3 0 0 0 93 2 0 2 0 5 0 2 0 93 0 0 0 0 18 0 0 0 82 0 0 0 0 
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MCAS-MHR-1 for Test Graph 1
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Fig. 6.51 Percentage of runs of MCAS-MHR-1 that obtain each solution of test graph 1  

 



 

 143

 

MCAS-MHR-2 for Test Graph 1 (Gama = 0)
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MCAS-MHR-2 for Test Graph 1 (Gama = 2)
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MCAS-MHR-2 for Test Graph 1 (Gama = 3)
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MCAS-MHR-2 for Test Graph 1 (Gama = 4)
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Fig. 6.52 Percentage of runs of MCAS-MHR-2 that obtain each solution of test graph 1 
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6.5.2 Experiment 2: Applying MCAS-MHR-1 and MCAS-MHR-2 to a complex 
3D model 

6.5.2 

The purpose of this experiment is to apply the proposed two algorithms  

MCAS-MHR-1 and MCAS-MHR-2 (see section 5.8) to a complex 3D environment and 

to compare the results of the two algorithms. 

 

Both algorithms were tested on the following Pro/Engineer 3D model (see Fig. 6.53) 

using different values of w1, w2 and  (only for MCAS-MHR-2) for random networks of 

200 points and 400 points. The other parameters of the algorithms are fixed as detailed 

at the beginning of this section. Both algorithms were used for finding the best shared 

paths of 4 commodities. All simulations were carried out for 100 cycles. 

 

 

 

 
Fig. 6.53 Tested Pro/Engineer Model 

 

For each trial, the final path length of each commodity, the connecting points of each 

path, the time spent on running the trial (in seconds), the total shared length of paths and 

strength_1 and strength_2 (defined in eqs. 5.39 and 5.40) were recorded in text files. 

 

Consider 

  4,3,2,1)( iQ j

i  

to be the best solution produced in the jth trial (j = 1, 2, …, 100). Here )( j

iQ means the 

S 

E 



 

 145

path of the ith commodity of the best solution of the jth trial. Further, consider {Ri | i = 

1, 2, 3, 4} to be the overall best solution among the best solutions [ 4,3,2,1)( iQ j

i ,  j = 

1, 2, …, 100] produced in 100 trials and ti (i = 1,2, ..., 100) to be the computation time 

of the ith trial. 

 

Tables 6.37 and 6.38 summarize the following descriptive statistics obtained for each of 

the algorithms over 100 trials after 100 cycles for different values of w1, w2 and  

(MCAS-MHR-2 only) for 200 point and 400 point networks. 

 
Statistic Description Mathematical Form 

Q - Avg. total length Average total length of the 
paths of the best solutions 
over 100 trials 









4

1

)(

100

1 )(
100 i

j

ij

j j
QlQwhere

Q
Q  

)( 
jQSD - SD total length Standard deviation of the 

total lengths of the paths of 
the best solutions over 100 
trials 

)( 
jQSD  

S - Avg. shared length Average shared length of 
the best solutions over 100 
trials )(

100

4

1

4

1

)()(

100

1 











i

ik

k

j

k

j

ij

j
j

QQlSwhere

S

S  

)( 
jSSD - SD shared length Standard deviation of 

shared lengths of the best 
solutions over 100 trials 

)( 
jSSD  

1P - % avg. shared length Percentage of the average 
shared length to the average 
total length 

1001 
Q

S
P  

R - Total length of the 

overall best solution 

Total length of the paths of 
the overall best solution 

 
4

1
)(

i iRlR  

R - Total shared length of 

the overall best solution 

Total shared length of the 
paths of the overall best 
solution 

)(
4

1

4

1






 
i

ik

k
ki RRlR  

2P - % shared length of the 

overall  best solution 

Percentage of the shared 
length of the paths of the 
overall best solution to the 
total length of the paths of 
the overall best solution 

1002 




R

R
P  

T - Avg. Time Average time per trial 

100

100

1

 i

it
T  

 
The best solution out of 100 runs is selected using strength_2 (see eq. 5.40) i.e., the 

solution with the highest value of strength_2 is selected as the best solution. Here l(.) is 

the length of the argument and Ri  Rk is the set of common edges between paths Ri and 

Rk. 

 

Fig. 6.54 shows how the average total lengths and the average shared lengths of  
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MCAS-MHR-1 change for different values of weights. The average shared length 

increases as w1 decreases. Similarly, the average total length also increases with lower 

values w1.  

 

Fig. 6.55 and Fig. 6.56 show how the average shared lengths and average total lengths 

of MCAS-MHR-2 differ for different values of w1, w2, and . As for MCAS-MHR-1, 

the average shared length and average total length increase as w1 decreases. It can be 

noted that for each value of , the average shared length and the average total length 

increase as w1 decreases. 

 

As, for both algorithms the average total length increases as w1 decreases, the designer 

of the algorithm must select the values for w1 and w2 carefully. Lower values of w1 

imply that both the total length and shared length of the solution increase and higher 

values of w1 imply that both total length and shared length decrease. Hence the designer 

should select w1 and w2 such that they balance the optimality of both the total length and 

the shared length of the paths. 

 

When comparing the average shared lengths for the different  values for specific 

weights (see Fig. 6.55), it is noted that  = 2 gives the highest average shared length or  

the closest to the highest average shared length in most of the cases of both the 200 

point and the 400 point networks. Therefore, MCAS-MHR-2 with  = 2 is selected for 

comparison with MCAS-MHR-1. 

 
Fig. 6.57 compares the average shared lengths of MCAS-MHR-1 and MCAS-MHR-2 

(with  = 2) for different weights for the 200 and 400 point networks. For the 200 point 

network, it can be seen that MCAS-MHR-2 produces significantly larger average shared 

lengths for weights w1 = 0.9999 and 0.999 when compared with the values of MCAS-

MHR-1. However, there is no significant difference for the average shared lengths for 

MCAS-MHR-1 and MCAS-MHR-2 for the 400 point network. When comparing the 

average total lengths (see Fig. 6.58), there is no significant difference between the two 

versions. 
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The total lengths and shared lengths of the overall best solutions of MCAS-MHR-1 and 

MCAS-MHR-2 ( = 2) are compared in Figs. 6.59 and 6.60. For both the 200 and 400 

point networks, MCAS-MHR-1 produces higher shared values than MCAS-MHR-2 in 4 

out of 6 cases. However, when comparing the total lengths, MCAS-MHR-2 produces 

smaller total length values in most cases. 

 

When comparing the computational times of the two algorithms (see Fig. 6.61), the 

computation time of MCAS-MHR-1 is less for the more complicated network (400 

point network).  

 

When comparing memory requirements, MCAS-MHR-2 uses a single pheromone 

matrix for each colony and it needs more memory than MCAS-MHR-1. Indeed, the 

memory requirement of MCAS-MHR-2 grows with the number of commodities used in 

the algorithm. 
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Table 6.37  Descriptive statistics of MCAS-MHR-1 for the 200 point network 

 
 Q  )( 

jQSD  S  )( 
jSSD  1P  R  

R  2P  T (Sec.) 

w1 = 1.0, w2 = 0.0 3568.9 30.6 119.6 192.5 3.35 3490.32 148.50 4.26 56.27 

W1 = .9999, w2 = .0001 3584.3 37.4 238.7 264.3 6.66 3595.12 887.32 24.68 57.03 

W1 = .999, w2 = .001 3735.6 126.4 588.7 230.4 15.76 3960.28 1209.94 30.55 63.66 

 

 

Table 6.38  Descriptive statistics of MCAS-MHR-1 for the 400 point network 

 
 Q  )( 

jQSD  S  )( 
jSSD  1P  R  

R  2P  T (Sec.) 

w1 = 1.0, w2 = 0.0 3342.36 36.38 58.23 110.85 1.74 3238.01 241.34 7.45 128.61 

W1 = .9999, w2 = .0001 3347.85 42.47 82.11 115.43 2.45 3238.44 241.34 7.45 129.52 

W1 = .999, w2 = .001 3480.53 96.66 338.30 195.07 9.72 3577.07 828.75 23.17 128.28 
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Table 6.39  Descriptive statistics of MCAS-MHR-2 for the 200 point network 
 
Weights  Q  )( 

jQSD  S  )( 
jSSD  1P  R  

R  2P  T (Sec.) 

0 3567.02 30.70 133.25 202.09 3.74 3488.68 0.00 0.00 56.10 

1 3568.54 29.46 75.27 153.89 2.11 3489.08 518.03 14.85 56.20 

2 3572.95 31.52 92.53 166.40 2.59 3390.99 0.00 0.00 55.94 

3 3562.44 33.30 120.53 178.93 3.38 3460.98 104.40 3.02 55.56 

4 3573.30 28.56 148.12 215.85 4.15 3514.67 0.00 0.00 55.47 

w
1 

=
 1

.0
, w

2 
=

 0
.0

 

5 3567.67 35.66 121.38 188.76 3.40 3461.55 43.69 1.26 55.21 

0 3588.27 43.37 239.78 251.01 6.68 3493.48 800.54 22.92 56.26 

1 3587.12 45.09 259.04 233.30 7.22 3532.09 688.93 19.50 56.34 

2 3591.61 42.89 293.69 248.87 8.18 3574.13 910.93 25.49 56.11 

3 3587.27 43.32 282.10 247.06 7.86 3572.71 990.17 27.72 55.86 

4 3581.76 37.96 236.63 227.05 6.61 3554.92 740.03 20.82 55.73 

w
1 

=
 .9

99
9,

 w
2 

=
 .0

00
1 

5 3593.44 38.78 310.84 243.90 8.65 3550.06 1004.85 28.31 55.56 

0 3747.75 156.75 612.55 250.36 16.35 3812.51 1296.03 33.99 56.09 

1 3735.79 128.62 616.77 229.78 16.51 4065.98 1369.88 33.69 55.82 

2 3730.34 114.60 650.97 267.58 17.45 3609.02 1128.69 31.27 55.00 

3 3741.96 107.70 615.63 238.94 16.45 3774.27 1141.45 30.24 55.29 

4 3737.44 111.86 617.79 273.20 16.53 4084.38 1395.68 34.17 55.21 

w
1 

=
 .9

99
, w

2 
=

 .0
01

 

5 3740.83 145.18 615.56 250.67 16.46 3548.82 1016.95 28.66 55.72 
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Table 6.40  Descriptive statistics of MCAS-MHR-2 for the 400 point network 
 
Weights  Q  )( 

jQSD  S  )( 
jSSD  1P  R  

R  2P  T (Sec.) 

0 3339.39 38.59 34.80 81.36 1.04 3239.44 0.00 0.00 135.04 

1 3342.62 40.62 41.78 92.60 1.25 3186.64 241.34 7.57 133.79 

2 3345.17 35.52 24.50 70.98 0.73 3261.64 0.00 0.00 135.93 

3 3342.08 35.89 44.93 94.09 1.34 3261.90 0.00 0.00 134.79 

4 3340.79 37.23 53.81 96.21 1.61 3234.37 241.34 7.46 135.75 

w
1 

=
 1

.0
, w

2 
=

 0
.0

 

5 3335.33 45.24 31.06 78.62 0.93 3197.35 412.80 12.91 135.47 

0 3343.75 40.04 70.17 105.89 2.10 3264.22 380.03 11.64 135.97 

1 3355.58 48.88 101.50 142.10 3.03 3244.43 516.50 15.92 135.30 

2 3349.84 43.95 92.01 125.33 2.75 3267.76 402.77 12.33 134.09 

3 3353.93 45.21 85.96 138.72 2.56 3232.26 241.34 7.47 136.08 

4 3351.63 42.97 107.48 160.30 3.21 3334.68 456.43 13.69 136.87 

w
1 

=
 .9

99
9,

 w
2 

=
 .0

00
1 

5 3346.46 45.10 82.42 146.13 2.46 3196.40 241.34 7.55 135.22 

0 3466.34 102.51 289.11 194.28 8.34 3528.09 768.50 21.78 135.19 

1 3472.51 89.87 346.19 195.18 9.97 3542.69 857.55 24.21 134.47 

2 3471.20 92.79 348.81 185.79 10.05 3482.27 747.83 21.48 133.85 

3 3470.18 114.92 319.52 197.79 9.21 3532.38 1015.93 28.76 134.56 

4 3477.17 102.54 355.33 187.84 10.22 3612.18 988.48 27.37 135.05 

w
1 

=
 .9

99
, w

2 
=

 .0
01

 

5 3477.33 98.62 349.55 196.05 10.05 3475.93 840.10 24.17 133.75 
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MCAS-MHR-1 for 200 points network
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MCAS-MHR-1 for 400 points network
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Fig. 6.54 Average values of total lengths and shared lengths of MCAS-MHR-1 for the 200 and 400 point networks against different 
values of weights 
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MCAS-MHR-2 for 200 points network
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MCAS-MHR-2 for 400 points network
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Fig. 6.55 Average shared lengths of MCAS-MHR-2 for the 200 and 400 point networks against different values of  
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MCAS-MHR-2 for 200 points network
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MCAS-MHR-2 for 400 points network

3250

3300

3350

3400

3450

3500

0 1 2 3 4 5

Gama values

A
ve

ra
g

e
to

ta
l

le
n

g
th

s

w1 = 1

w1 = 0.9999

w1 = 0.999

 

Fig. 6.56 Average total lengths of MCAS-MHR-2 for the 200 and 400 point networks against different values of  
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Average shared lengths (MCAS-MHR-1 vs. MCAS-MHR-2) for 200 
points network
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Average shared lengths (MCAS-MHR-1 vs. MCAS-MHR-2) 
for 400 points network
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Fig. 6.57 Comparison of average shared lengths of MCAS-MHR-1 and MCAS-MHR-2 ( = 2) of  
the 200 and 400 point networks against different values of weights 
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Average total lengths (MCAS-MHR-1 vs. MCAS-MHR-2) for 200 points 
network
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Average total length (MCAS-MHR-1 vs. MCAS-MHR-2) for 400 points 
network
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Fig. 6.58 Comparison of average total lengths of MCAS-MHR-1 and MCAS-MHR-2 ( = 2) of  
the 200 and 400 point networks against different values of weights 
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Shared lengths of the best solution for 200 points 
network
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Total lengths of the best solution for 200 points
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Fig. 6.59 Comparison of shared lengths and total lengths of the best solutions of MCAS-MHR-1 and MCAS-MHR-2 ( = 2)  
for the 200 point network against different values of weights 
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Shared lengths of the best solution for 400 points 
network
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Fig. 6.60 Comparison of shared lengths and total lengths of the best solutions of MCAS-MHR-1 and MCAS-MHR-2 ( = 2)  
for the 400 point network against different values of weights 
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Average time (MCAS-MHR-1 vs. MCAS-MHR-2) for 200 points network
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Fig. 6.61 Average time per trial of MCAS-MHR-1 and MCAS-MHR-2 ( = 2)  
for the 200 and 400 point networks against different values of weights 
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6.6 Summary of the Chapter 
 

This chapter presented experimental results obtained for automatic hose/pipe routing of 

3D models using ant colony optimization. Initially ant colony optimization was 

restricted to a single objective (length of the hose) and was tested on two virtual 

networks, grid and random, drawn in the CAD model. According to the initial 

experiments (see section 6.1), the results showed that ant colony optimization based on 

randomly generated networks was able to produce a reasonable solution in a reasonable 

time. Further, the failure rate of the ACO based on random networks is low compared to 

that for grid networks. The results of the two modifications MAS and N_MAS (sections 

6.2 and 6.3) showed that they have improved the performance of the ant system (AS). In 

section 6.4, the results of the multi-objective ant colony optimization were presented. 

According to these results, the proposed multi-objective ant colony optimization 

algorithm PSACO generates better solutions compared to the currently best MOACO 

for compromised (trade-off) solutions. Finally, the results of the two multi-colony ant 

systems (MCAS-MHR-1 and MCAS-MHR-2) for multi-hose routing were presented in 

section 6.5. According to these results, there is no significant difference in the quality of 

the solutions of the two algorithms. However, MCAS-MHR-1 takes less computation 

time, has a smaller number of parameters and requires lower memory capacity. 

 

 

 

6.3 
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7 CONCLUSIONS AND FUTURE WORK 
7 

7.1 Conclusions 
 

The research described in this thesis has covered the application of ant colony 

optimization to finding the optimum layout of hose/pipe routing with several objectives 

and parallel multi-hose routing. 

 

Initially, two versions of an ant colony algorithm based on networks generated from 

grid points and random points have been proposed for automatic 3D hose routing. These 

two versions were restricted to minimizing the total length of pipes and avoiding the 

obstacles. According to the results obtained it is clear that ant colony algorithms 

executed on random-based networks were able to find good solutions in a competitive 

time. For avoiding obstacles when generating the pipes, the C++ library RAPID was 

incorporated into the program and the algorithms were able to handle complex models 

and any shape that can be generated using a CAD package. 

 

Two modifications (see sections 5.4 and 5.5) were introduced to the ant colony 

optimization algorithm and were empirically shown to significantly improve the ant 

colony algorithm, ant system (AS). 

 

7.1.1 Pareto Strength Ant Colony Optimization for Multi-Objective Hose 
Routing 

 

In Section 5.6, a general purpose Pareto strength ant colony optimization algorithm 

(PSACO) has been introduced and applied to automatic multi-objective hose routing in 

3D space. A single pheromone matrix has been used for each of the objectives and the 

algorithm updates its pheromones based on the domination concept.  

 

The results were compared with the Pareto-based ant colony optimization algorithm  

P-ACO. P-ACO is considered as the best Pareto based ACO algorithm that generates 

good solutions at the central part of the Pareto front. This algorithm also uses separate 

pheromone matrices for each of the objectives. 
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The algorithms optimize three objectives:  total lengths of the hoses, total number of 

bends and the angles of bends. Further, a modification has been introduced to the 

random proportional rule of both of the algorithms to attract ants towards the edges that 

make bend angles closer to catalogue angles. In addition, the set of neighbour nodes that 

remains to be visited by an ant has been modified such that the edges make bend angles 

with the previous edge close to one of the catalogue angles. 

 

As in the initial experiments, the tessellated format (STL format) of the original objects 

and the C++ library, RAPID, have been used for collision detection. As a result of these, 

the proposed algorithm can handle free-form obstacles and is not restricted to a 

particular CAD package. Algorithms do not need to call the collision detection 

algorithm during the execution, as the random network is created at the beginning of the 

algorithm. As a result of this, Pareto ant colony algorithms can reduce the computation 

time required. 

 

Algorithms have been compared graphically (scatter-plot matrix, value path, and bar 

chart) and in terms of metrics of performances (using M2
*, M3

* and C metrics) and 

computation time. Graphically, there is not much difference between the two algorithms 

for the first tested model - Model 1 (see Fig. 6.32). But the difference is significant for 

Model 2 (see Fig. 6.32). According to the metrics M2
* and M3

*, PSACO generates better 

distributions of non-dominated solutions and better maxima in each dimension of the 

non-dominated solutions. From the C-metric, it can be concluded that PSACO is very 

competitive compared to P-ACO. For Model 1, non-dominated solutions obtained by 

the two algorithms do not show much difference in terms of the C-metric while the 

former (PSACO) offers a good set of non-dominated solutions for Model 2, which in 

most cases dominate the solutions returned by P-ACO. In addition, the non-dominated 

solutions obtained by P-ACO for Model 2 have not dominated the non-dominate 

solutions of PSACO. 

 

In terms of computation time, the results showed that PSACO takes less computation 

time for both of the models tested. 
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Since PSACO uses a single pheromone matrix, it needs only a fixed amount of main 

memory for all of the objectives whilst P-ACO’s memory requirement increases with 

the number of objectives in the problem. 

 

From a theoretical point of view, PSACO has a sound theoretical background in terms 

of the current state of the art in multi-objective optimization. Furthermore, it can be 

used as a general purpose multi-objective ant colony algorithm for other problems as 

well. 

 

Since a multi-objective optimization algorithm obtains more than one solution, three 

metrics: lp-metric, Tchebycheff metric and Pseudo-Weight Vector Approach were used 

for choosing a solution out of the non-dominated solutions returned by the algorithm. 

These final results also showed that PSACO’s solution has not been dominated by the 

corresponding solution of P-ACO. 

 

The refinement algorithm was applied to the final solution obtained for the second 

tested model - Model 2 (using lp-metric and Tchebycheff-metric). The results obtained 

after refinement improved the former. Moreover, the computation time for a run of the 

refinement algorithm is low compared to that for searching the entire search space. 

Hence, it is recommended to run the refinement algorithm to improve the solution 

obtained by using the entire search space. 

 

7.1.2 Proposed Ant Colony Algorithms for Multi-Hose Routing 
 

In Section 5.8, two versions of multi-colony ant systems (called MCAS-MHR-1 and 

MCAS-MHR-2 respectively) have been introduced for routing multiple hoses/pipes in 

parallel. The two versions use a separate colony for each commodity (pairs of start and 

end points). The first version uses a single pheromone matrix for all colonies whilst the 

second version uses a separate pheromone matrix for each colony. Thus, ants in the 

second version (MACS_MHR_2) were able to smell different pheromones individually 

laid by ants in other colonies. Ants in the first version cannot recognize pheromones 

individually as all pheromones laid by ants from different colonies on an edge are 

summed up to a single value. A further modification was introduced to the random 

propositional rule in MCAS-MHR-2 to attract ants towards edges that were used by ants 



 163

of other colonies. When pheromone updating, both methods evaluate the quality of a 

solution according to not only the total lengths of paths but also the shared length of 

paths. 

 

An objective of this work is to apply these methods to multi-hose routing with 

maximum use of common edges. Initially, the two methods were tested on a simple test 

graph (see section 6.5.1) using two commodities. In Experiment 2 (see section 6.5.2), 

the two methods have been applied to multi-hose routing in a complex 3D CAD model 

using two randomly generated networks of size 200 points and 400 points and 4 

commodities. 

 

In both algorithms, the relative importance of the total length and the shared length must 

be identified; accordingly respective weights (w1 and w2) must be selected. It is difficult 

to select pre-defined values for w1 and w2 for all routing problems. The best way to 

obtain a better result is to run the algorithms with different values of w1 and w2 and to 

select the appropriate solution from solutions produced over different values of w1 and 

w2. 

 

When comparing the overall best solutions, MCAS-MHR-1 gives greater shared 

lengths, whilst MCAS-MHR-2 produces greater total lengths in most cases. 

 

When comparing the average shared lengths, MCAS-MHR-2 performs slightly better 

than MCAS-MHR-1. Obviously this is a result of the use of foreign pheromones in the 

random propositional rule used in MCAS-MHR-2. However, MCAS-MHR-2 uses an 

additional parameter () and needs a separate pheromone matrix for each of the 

commodities; this increases the memory requirement of the algorithm as the number of 

commodities increases. 

 

Computational times for the two algorithms do not show much difference for the simple 

network (200 points network). However, MCAS-MHR-1 takes less computational time 

for the 400 points network as it uses less memory access and fewer computations. 
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According to the results found in both versions, there is no significant difference in the 

quality of the solutions between the two versions: MCAS-MHR-1 and MCAS-MHR-2. 

Thus, MCAS-MHR-1 is recommended for this type of problem as it takes less 

computation time, requires a smaller number of parameters and has low memory 

requirements. 

 

7.2 Recommendations for Future Work 
 

The following suggestions are put forward for future investigations. 

 

1. When creating the contender node list Ji
*(r) of MAS (see section 5.4), the current 

best value is obtained from previous cycles or generations. But this could be further 

improved, if the best solutions generated in the current cycle are also taken into 

consideration. 

2. When introducing two types of ants into MAS (see section 5.5), the pheromone 

values ),( ur in the state transition rule of the explorer ants have been taken to the 

power -1 ( ),(/1 ur ). Other negative power values (integers and real values) could 

be tested for the pheromone values, thereby controlling how much the explorer ants 

are repulsed by the pheromone values. 

3. In this thesis, the final solution of the Pareto ant colony optimization in multi-

objective hose routing was selected using the methods described in section 3.4 (see 

also section 6.4.7). However, when selecting the final solution in this way, the 

algorithm does not take into account problem-specific higher-level information 

(non-technical, qualitative and experience-driven) that cannot be incorporated into 

the model (see also Fig. 3.1).  

Instead of relying on the experience of a skilled engineer for selecting the final 

solution, an intelligent system could be designed which incorporates higher-level 

information relating to hose/pipe routing and this system could then suggest the 

final solution from non-dominated solutions obtained by Pareto ant colony 

optimization algorithms (see Fig. 7.1).  
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Fig. 7.1 Intelligent system which incorporates higher-level information for selecting a 

solution 
 

4. The multi-colony algorithms (MCAS-MHR-1 and MCAS-MHR-2) proposed in 

section 5.8 were run on a single PC. The next step is to implement each colony on 

different PCs (grid computing) and speed up the algorithms. 

5. Finally, these two versions use the classical approach of multi-objective 

optimization (weighted sum approach) and thus another possibility for improvement 

would be to use Pareto optimization techniques. 
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System 

Choose one 
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Step 1: Finding of multiple trade-
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ACRONYMS 

 
ACO Ant Colony Optimization 
ACS Ant Colony System 
AEDG Alternative Energy Distributed Generation 
AGSS Airport Ground Service Scheduling 
AI Artifitial Intelligence 
AS Ant System 
ASCII American Standard Code for Information Interchange 
CAD Computer Aided Design 
CD Cell Decomposition 
CG Cell Generation 
COMPETants Competing Ant Colonies 
CSP Constraint Satisfaction Problem 
EDD Earliest Due Date First 
GA Genetic Algorithms 
GAPRUS Genetic Algorithms based Pipe Routing Using Tessellated Objects 
GBI GA-Based Inspiration 
HC Hill Climbing 
JSP Job Shop Scheduling 
MACS Multiple Ant Colony System 
MACS-VRPTW Multiple Colony System for Vehicle Routing Problems with Time 

Windows 
MAS The Proposed Reduced Sized Search Space for Ant Colony 

Optimization 
MCAS Multi Colony Ant System 
MCAS-MHR-1 Multi Colony Ant System for Multi Hose Routing (Version 1) 
MCAS-MHR-2 Multi Colony Ant System for Multi Hose Routing (Version 2) 
M-MMAS Max-Min Ant System 
MOACO Multi Objective Ant Colony Optimization 
MOAQ Multi Objective Ant-Q 
MOGA Multi Objective Genetic Algorithms 
MONACO Multi-objective Network Ant Colony Optimization 
MOOP Multi Objective Optimization Problem 
N_MAS The Proposed Explorer Ants for Avoiding Stagnation 
ND Non Deteministic 
NP Non-deterministic Polynomial 
NSGA Non-dominated Sorting Genetic Algorithm 
P-ACO Pareto Ant Colony Optimization 
PC Personal Computer 
PRM Probabilistic Road Map 
PSACO Pareto Strength Ant Colony Optimization 
PSO Particle Swarm Optimization 
QAP Quadratic Assignment Problem 
RAPID Robust and Accurate Polygon Interference Detection System 
RBI Rule-Based Inference 
SA Simulated Annealing  
SCM Supply Chain Management 
SPEA Strength Pareto Evolutionary Algorithm 
SPRD Ship Pipe Route Design 
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STL Stereo Lithography 
TC Tree of Combination 
TSP Travelling Salesman Problem 
VRPTSR Vehicle Routing Problems with Tight time windows, Short travel 

time and Re-used Vehicles 
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