661 research outputs found

    A Review on Biological Inspired Computation in Cryptology

    Get PDF
    Cryptology is a field that concerned with cryptography and cryptanalysis. Cryptography, which is a key technology in providing a secure transmission of information, is a study of designing strong cryptographic algorithms, while cryptanalysis is a study of breaking the cipher. Recently biological approaches provide inspiration in solving problems from various fields. This paper reviews major works in the application of biological inspired computational (BIC) paradigm in cryptology. The paper focuses on three BIC approaches, namely, genetic algorithm (GA), artificial neural network (ANN) and artificial immune system (AIS). The findings show that the research on applications of biological approaches in cryptology is minimal as compared to other fields. To date only ANN and GA have been used in cryptanalysis and design of cryptographic primitives and protocols. Based on similarities that AIS has with ANN and GA, this paper provides insights for potential application of AIS in cryptology for further research

    Cryptanalysis of a family of self-synchronizing chaotic stream ciphers

    Get PDF
    Unimodal maps have been broadly used as a base of new encryption strategies. Recently, a stream cipher has been proposed in the literature, whose keystream is basically a symbolic sequence of the (one-parameter) logistic map or of the tent map. In the present work a thorough analysis of the keystream is made which reveals the existence of some serious security problemsComment: 10 pages, 6 figure

    Cryptographic requirements for chaotic secure communications

    Get PDF
    In recent years, a great amount of secure communications systems based on chaotic synchronization have been published. Most of the proposed schemes fail to explain a number of features of fundamental importance to all cryptosystems, such as key definition, characterization, and generation. As a consequence, the proposed ciphers are difficult to realize in practice with a reasonable degree of security. Likewise, they are seldom accompanied by a security analysis. Thus, it is hard for the reader to have a hint about their security. In this work we provide a set of guidelines that every new cryptosystems would benefit from adhering to. The proposed guidelines address these two main gaps, i.e., correct key management and security analysis, to help new cryptosystems be presented in a more rigorous cryptographic way. Also some recommendations are offered regarding some practical aspects of communications, such as channel noise, limited bandwith, and attenuation.Comment: 13 pages, 3 figure

    Self-synchronizing stream ciphers and dynamical systems: state of the art and open issues

    No full text
    International audienceDynamical systems play a central role in the design of symmetric cryptosystems. Their use has been widely investigated both in ''chaos-based'' private communications and in stream ciphers over finite fields. In the former case, they get the form of automata named as Moore or Mealy machines. The main charateristic of stream ciphers lies in that they require synchronization of complex sequences generated by the dynamical systems involved at the transmitter and the receiver part. In this paper, we focus on a special class of symmetric ciphers, namely the Self-Synchronizing Stream Ciphers. Indeed, such ciphers have not been seriously explored so far although they get interesting properties of synchronization which could make them very appealing in practice. We review and compare different design approaches which have been proposed in the open literature and fully-specified algorithms are detailed for illustration purpose. Open issues related to the validation and the implementation of Self-Synchronizing Stream Ciphers are developped. We highlight the reason why some concepts borrowed from control theory appear to be useful to this end

    Towards a spectral approach for the design of self-synchronizing stream ciphers

    No full text
    International audienceThis paper addresses the problem of characterizing the func- tions that can be used in the design of self-synchronizing stream ciphers. We propose a general framework based on a spectral characterization through correlation matrices or equivalently through Walsh matrices. Two modes of self-synchronization are discussed: the finite time one and the statistical one

    Self-synchronized Encryption for Physical Layer in 10Gbps Optical Links

    Get PDF
    In this work a new self-synchronized encryption method for 10 Gigabit optical links is proposed and developed. Necessary modifications to introduce this kind of encryption in physical layers based on 64b/66b encoding, such as 10GBase-R, have been considered. The proposed scheme encrypts directly the 64b/66b blocks by using a symmetric stream cipher based on an FPE (Format Preserving Encryption) block cipher operating in PSCFB (Pipelined Statistical Cipher Feedback) mode. One of the main novelties in this paper is the security analysis done for this mode. For the first time, an expression for the IND-CPA (Indistinguishability under Chosen-Plaintext Attack) advantage of any adversary over this scheme has been derived. Moreover, it has been concluded that this mode can be considered secure in the same way of traditional modes are. In addition, the overall system has been simulated and implemented in an FPGA (Field Programmable Gate Array). An encrypted optical link has been tested with Ethernet data frames, concluding that it is possible to cipher traffic at this level, getting maximum throughput and hiding traffic pattern from passive eavesdroppers

    A Spatiotemporal-chaos-based Encryption Having Overall Properties Considerably Better Than Advanced Encryption Standard

    Full text link
    Spatiotemporal chaos of a two-dimensional one-way coupled map lattice is used for chaotic cryptography. The chaotic outputs of many space units are used for encryption simultaneously. This system shows satisfactory cryptographic properties of high security; fast encryption (decryption) speed; and robustness against noise disturbances in communication channel. The overall features of this spatiotemporal-chaos-based cryptosystem are better than chaotic cryptosystems known so far, and also than currently used conventional cryptosystems, such as the Advanced Encryption Standard (AES).Comment: 11 pages, 3 figure

    Experimental realization of a highly secure chaos communication under strong channel noise

    Full text link
    A one-way coupled spatiotemporally chaotic map lattice is used to contruct cryptosystem. With the combinatorial applications of both chaotic computations and conventional algebraic operations, our system has optimal cryptographic properties much better than the separative applications of known chaotic and conventional methods. We have realized experiments to pratice duplex voice secure communications in realistic Wired Public Switched Telephone Network by applying our chaotic system and the system of Advanced Encryption Standard (AES), respectively, for cryptography. Our system can work stably against strong channel noise when AES fails to work.Comment: 15 pages, 5 figure

    Digital Design of New Chaotic Ciphers for Ethernet Traffic

    Get PDF
    Durante los últimos años, ha habido un gran desarrollo en el campo de la criptografía, y muchos algoritmos de encriptado así como otras funciones criptográficas han sido propuestos.Sin embargo, a pesar de este desarrollo, hoy en día todavía existe un gran interés en crear nuevas primitivas criptográficas o mejorar las ya existentes. Algunas de las razones son las siguientes:• Primero, debido el desarrollo de las tecnologías de la comunicación, la cantidad de información que se transmite está constantemente incrementándose. En este contexto, existen numerosas aplicaciones que requieren encriptar una gran cantidad de datos en tiempo real o en un intervalo de tiempo muy reducido. Un ejemplo de ello puede ser el encriptado de videos de alta resolución en tiempo real. Desafortunadamente, la mayoría de los algoritmos de encriptado usados hoy en día no son capaces de encriptar una gran cantidad de datos a alta velocidad mientras mantienen altos estándares de seguridad.• Debido al gran aumento de la potencia de cálculo de los ordenadores, muchos algoritmos que tradicionalmente se consideraban seguros, actualmente pueden ser atacados por métodos de “fuerza bruta” en una cantidad de tiempo razonable. Por ejemplo, cuando el algoritmo de encriptado DES (Data Encryption Standard) fue lanzado por primera vez, el tamaño de la clave era sólo de 56 bits mientras que, hoy en día, el NIST (National Institute of Standards and Technology) recomienda que los algoritmos de encriptado simétricos tengan una clave de, al menos, 112 bits. Por otro lado, actualmente se está investigando y logrando avances significativos en el campo de la computación cuántica y se espera que, en el futuro, se desarrollen ordenadores cuánticos a gran escala. De ser así, se ha demostrado que algunos algoritmos que se usan actualmente como el RSA (Rivest Shamir Adleman) podrían ser atacados con éxito.• Junto al desarrollo en el campo de la criptografía, también ha habido un gran desarrollo en el campo del criptoanálisis. Por tanto, se están encontrando nuevas vulnerabilidades y proponiendo nuevos ataques constantemente. Por consiguiente, es necesario buscar nuevos algoritmos que sean robustos frente a todos los ataques conocidos para sustituir a los algoritmos en los que se han encontrado vulnerabilidades. En este aspecto, cabe destacar que algunos algoritmos como el RSA y ElGamal están basados en la suposición de que algunos problemas como la factorización del producto de dos números primos o el cálculo de logaritmos discretos son difíciles de resolver. Sin embargo, no se ha descartado que, en el futuro, se puedan desarrollar algoritmos que resuelvan estos problemas de manera rápida (en tiempo polinomial).• Idealmente, las claves usadas para encriptar los datos deberían ser generadas de manera aleatoria para ser completamente impredecibles. Dado que las secuencias generadas por generadores pseudoaleatorios, PRNGs (Pseudo Random Number Generators) son predecibles, son potencialmente vulnerables al criptoanálisis. Por tanto, las claves suelen ser generadas usando generadores de números aleatorios verdaderos, TRNGs (True Random Number Generators). Desafortunadamente, los TRNGs normalmente generan los bits a menor velocidad que los PRNGs y, además, las secuencias generadas suelen tener peores propiedades estadísticas, lo que hace necesario que pasen por una etapa de post-procesado. El usar un TRNG de baja calidad para generar claves, puede comprometer la seguridad de todo el sistema de encriptado, como ya ha ocurrido en algunas ocasiones. Por tanto, el diseño de nuevos TRNGs con buenas propiedades estadísticas es un tema de gran interés.En resumen, es claro que existen numerosas líneas de investigación en el ámbito de la criptografía de gran importancia. Dado que el campo de la criptografía es muy amplio, esta tesis se ha centra en tres líneas de investigación: el diseño de nuevos TRNGs, el diseño de nuevos cifradores de flujo caóticos rápidos y seguros y, finalmente, la implementación de nuevos criptosistemas para comunicaciones ópticas Gigabit Ethernet a velocidades de 1 Gbps y 10 Gbps. Dichos criptosistemas han estado basados en los algoritmos caóticos propuestos, pero se han adaptado para poder realizar el encriptado en la capa física, manteniendo el formato de la codificación. De esta forma, se ha logrado que estos sistemas sean capaces no sólo de encriptar los datos sino que, además, un atacante no pueda saber si se está produciendo una comunicación o no. Los principales aspectos cubiertos en esta tesis son los siguientes:• Estudio del estado del arte, incluyendo los algoritmos de encriptado que se usan actualmente. En esta parte se analizan los principales problemas que presentan los algoritmos de encriptado standard actuales y qué soluciones han sido propuestas. Este estudio es necesario para poder diseñar nuevos algoritmos que resuelvan estos problemas.• Propuesta de nuevos TRNGs adecuados para la generación de claves. Se exploran dos diferentes posibilidades: el uso del ruido generado por un acelerómetro MEMS (Microelectromechanical Systems) y el ruido generado por DNOs (Digital Nonlinear Oscillators). Ambos casos se analizan en detalle realizando varios análisis estadísticos a secuencias obtenidas a distintas frecuencias de muestreo. También se propone y se implementa un algoritmo de post-procesado simple para mejorar la aleatoriedad de las secuencias generadas. Finalmente, se discute la posibilidad de usar estos TRNGs como generadores de claves. • Se proponen nuevos algoritmos de encriptado que son rápidos, seguros y que pueden implementarse usando una cantidad reducida de recursos. De entre todas las posibilidades, esta tesis se centra en los sistemas caóticos ya que, gracias a sus propiedades intrínsecas como la ergodicidad o su comportamiento similar al comportamiento aleatorio, pueden ser una buena alternativa a los sistemas de encriptado clásicos. Para superar los problemas que surgen cuando estos sistemas son digitalizados, se proponen y estudian diversas estrategias: usar un sistema de multi-encriptado, cambiar los parámetros de control de los sistemas caóticos y perturbar las órbitas caóticas.• Se implementan los algoritmos propuestos. Para ello, se usa una FPGA Virtex 7. Las distintas implementaciones son analizadas y comparadas, teniendo en cuenta diversos aspectos tales como el consumo de potencia, uso de área, velocidad de encriptado y nivel de seguridad obtenido. Uno de estos diseños, se elige para ser implementado en un ASIC (Application Specific Integrate Circuit) usando una tecnología de 0,18 um. En cualquier caso, las soluciones propuestas pueden ser también implementadas en otras plataformas y otras tecnologías.• Finalmente, los algoritmos propuestos se adaptan y aplican a comunicaciones ópticas Gigabit Ethernet. En particular, se implementan criptosistemas que realizan el encriptado al nivel de la capa física para velocidades de 1 Gbps y 10 Gbps. Para realizar el encriptado en la capa física, los algoritmos propuestos en las secciones anteriores se adaptan para que preserven el formato de la codificación, 8b/10b en el caso de 1 Gb Ethernet y 64b/10b en el caso de 10 Gb Ethernet. En ambos casos, los criptosistemas se implementan en una FPGA Virtex 7 y se diseña un set experimental, que incluye dos módulos SFP (Small Form-factor Pluggable) capaces de transmitir a una velocidad de hasta 10.3125 Gbps sobre una fibra multimodo de 850 nm. Con este set experimental, se comprueba que los sistemas de encriptado funcionan correctamente y de manera síncrona. Además, se comprueba que el encriptado es bueno (pasa todos los test de seguridad) y que el patrón del tráfico de datos está oculto.<br /

    Self-Synchronized Encryption for Physical Layer in Gigabit Ethernet Optical Links

    Get PDF
    In this work a new self-synchronized symmetric encryption solution for high speed communication systems necessary to preserve the format of the plaintext is proposed, developed and tested. This new encryption mechanism is based on the block cipher operation mode called PSCFB (Pipelined Statistical Cipher Feedback) and the modulo operation. The confidentiality of this mode is analyzed in terms of its IND-CPA (Indistinguishability under Chosen-Plaintext Attack) advantage, concluding that it can be considered secure in the same way as traditional modes are. The encryption system has been integrated in the physical layer of a 1000Base-X Gigabit Ethernet Interface, where the 8b/10b symbol flow is encrypted at line rate. Moreover, an implementation of the proposed system has been carried out in an FPGA (Field Programmable Gate Array) device. Finally, an encrypted optical link has been tested with real Ethernet frames, getting maximum throughput and protecting the data traffic from passive eavesdroppers
    corecore