24 research outputs found

    Balanced arbiter physical uncloneable functions

    Get PDF
    Решается задача построения нового класса физически неклонируемых функций типа арбитр (АФНФ), основанного на применении сбалансированных пар путей, что позволило существенно повысить стабильность, уникальность и единообразие АФНФ. Актуальность предлагаемого исследования связана с активным развитием физической криптографии, применяемой для целей идентификации электронных изделий и формирования криптографических ключей. Показано, что в классических АФНФ используется стандартный базовый элемент, который выполняет три функции, а именно, функцию генерирования задержки сигнала Generate, функцию выбора пары путей Select и функцию переключения путей Switch. Выполнение базовым элементом всех функций одновременно приводит к асимметрии пар путей, приводящей к ухудшению характеристик АФНФ, и предполагает выполнение балансировки путей. Как альтернатива стандартному базовому элементу в статье предлагаются две его модификации, в которых функция Generate выполняется на дополнительных линиях задержки, а функция Switch на мультиплексорах. Применение линий задержки со значениями времен задержки сигнала значительно больше, чем на мультиплексорах позволяет строить сбалансированных АФНФ, характеризующихся высокой степенью симметрии. Предложенный подход построения сбалансированных АФНФ, основанный на применении модифицированных базовых элементов, показал свою работоспособность и перспективность, в том числе, при реализации АФНФ на программируемых структурах. Практические исследования проводились путем сравнительного анализа классической АФНФ и сбалансированных АФНФ, реализованных на современных FPGA. Экспериментально подтвержден эффект улучшения характеристик нового класса ФНФ, и в первую очередь заметное улучшение стабильности, уникальности и единообразия АФНФ

    Физически неклонируемая функция типа АБИТР с нелинейными парами путей

    Get PDF
    Physically unclonable functions (PUFs) are basic physical cryptographical primitives, providing to solve tasks such as unclonable identification, digital device authentication and copyright authentication, true random sequence generation, etc. The major features of PUFs are stability, unpredictability and irreproducibility, due to uncontrollable random variations of distinctive features of the raw materials and technological processes used during their manufacturing. Generally, PUF are digital circuits that extract such variations and convert them into a binary format, which applied for further use. Among the variety of PUF types, an Arbiter PUF (APUF) is distinguished, which is a digital circuit with N-bit challenge input and single output for one-bit response generation. The functionality of APUF is based on comparison of transition time of two copies of the test signal along a pair of configurable paths, selected by the challenge value CH from a set of 2N all possible pairs. The result of the comparison is the binary value of the response. The set of all challenge-response pairs is a random, unpredictable and irreproducible in the cases of implementation of cloned PUF circuits both on single and/or on another chips, also using different technologies. This article presents a new approach to the synthesis of the APUF circuits, based on the permutation network elements, which allow to construct the nonlinear structures of pair of paths. This implies the potential complication of building an APUF model to attack its implemented instances. This article presents new schematic solutions for the synthesis of APUF circuits. Also, the main characteristics of the proposed APUF circuits implemented on the Xilinx Zynq-7000 FPGA is analyzed.Физическинеклонируемыефункции (ФНФ) являются базовыми элементами физической криптографии, позволяющие решать такие задачи как, неклонируемая идентификация, аутентификация и доказательство авторства на цифровые устройства, генерирование случайных последовательностей и т. п. Отличительными особенностями ФНФ являются их случайность, непредсказуемость и невоспроизводимость, обусловленные неконтролируемыми, случайными вариациями исходных материалов и технологических процессов при их изготовлении. По своей сути ФНФ представляют собой цифровые схемы, позволяющие извлекать подобные вариации и преобразовывать их в двоичную форму для дальнейшего использования. Среди всего многообразия ФНФ выделяют ФНФ типа арбитр (АФНФ), которая представляет собой цифровую схему, которая принимает на входы двоичное значение N-разрядного запроса и вырабатывает однобитный ответ. Функционирование схемы АФНФ основано на сравнении времени прохождения двух копий тестового сигнала по паре конфигурируемых путей, выбранной значением запроса из множества 2N всех возможных пар. Результат сравнения и определяет двоичное значение ответа АФНФ. Множество всех пар запросответ является случайным, непредсказуемым и невоспроизводимым в случае реализации копий схемы ФНФ как на одном, так и на других кристаллах, в том числе с использованием различных технологий. В данной статье предлагается новый подход к синтезу схем АФНФ, основанный на применении элементов перестановочных сетей и позволяющий формировать нелинейные конфигурации пар путей, чтопотенциально усложняет построение модели АФНФ с целью осуществления атаки на ее реализации. Приводятся новые схемотехнические решения для построения АФНФ и результаты экспериментальных исследований их основных характеристик, полученных при реализации на FPGA серии Zynq-7000

    Синтез симметричных путей физически неклонируемой функции типа арбитр на FPGA

    Get PDF
    Physical cryptography is one of the current trends among the existing methods of protecting digital devices from illegal access. Circuit design solutions in physical cryptography are called digital physically unclonable functions (PUFs), which to be implemented ensure the uniqueness, non-reproducibility (non-cloning) of the protected digital device. In addition, PUFs should be efficient as hardware resources. The existing implementations of the arbiter PUF are based on the synthesis of configurable symmetric paths, when each link is a pair of two-input multiplexers providing two configurations of test signal translation: direct and cross. In order to build a single link on FPGA, it is necessary to use two built-in LUT-blocks, providing the implementation of two multiplexers, meanwhile the hardware resources of LUT-blocks are not fully utilized. The article presents a new architecture of symmetric paths of the arbiter PUF, allowing efficient use of hardware resources of LUT-blocks for various FPGA families.Физическая криптография является одним из актуальных направлений среди существующих методов защиты цифровых устройств от нелегального доступа. Схемотехнические решения, лежащие в основе физической криптографии, получили название цифровых физически неклонируемых функций (ФНФ), реализация которых обеспечивает уникальность, невоспроизводимость (неклонируемость) защищаемого цифрового устройства. Кроме того, ФНФ эффективны с точки зрения аппаратных ресурсов при их реализации. Существующие ФНФ типа арбитр основаны на синтезе конфигурируемых симметричных путей, каждое звено которых представляет собой пару двухвходовых мультиплексоров, обеспечивающих две конфигурации трансляции тестовых сигналов: прямую и перекрестную. Для построения на программируемой логической интегральной схеме (ПЛИС) типа FPGA одного звена необходимо применение двух встроенных LUT-блоков, обеспечивающих реализацию двух мультиплексоров, при этом ресурсы LUT-блоков используются не полностью. В статье предлагается новая архитектура звеньев симметричных путей ФНФ типа арбитр, позволяющая эффективно применять ресурсы LUT-блоков различных кристаллов FPGA

    Синтез симметричных путей физически неклонируемой функции типа арбитр на FPGA

    Get PDF
    В статье предлагается новая архитектура звеньев симметричных путей ФНФ типа арбитр, позволяющая эффективно применять ресурсы LUT-блоков различных кристаллов FPGA

    Физически неклонируемая функция типа АБИТР с нелинейными парами путей

    Get PDF
    Физически неклонируемые функции (ФНФ) являются базовыми элементами физической криптографии, позволяющие решать такие задачи как, неклонируемая идентификация, аутентификация и доказательство авторства на цифровые устройства, генерирование случайных последовательностей и т.п. Отличительными особенностями ФНФ являются их случайность, непредсказуемость и невоспроизводимость, обусловленные неконтролируемыми, случайными вариациями исходных материалов и технологических процессов при их изготовлении. По своей сути ФНФ представляют собой цифровые схемы, позволяющие извлекать подобные вариации и преобразовывать их в двоичную форму для дальнейшего использования. Среди всего многообразия ФНФ выделяют ФНФ типа арбитр (АФНФ), которая представляет собой цифровую схему, которая принимает на входы двоичное значение N-разрядного запроса и вырабатывает однобитный ответ. Функционирование схемы АФНФ основано на сравнении времени прохождения двух копий тестового сигнала по паре конфигурируемых путей, выбранной значением запроса из множества 2N всех возможных пар. Результат сравнения и определяет двоичное значение ответа АФНФ. Множество всех пар запрос- ответ является случайным, непредсказуемым и невоспроизводимым в случае реализации копий схемы ФНФ как на одном, так и на других кристаллах, в том числе с использованием различных технологий. В данной статье предлагается новый подход к синтезу схем АФНФ, основанный на применении элементов перестановочных сетей и позволяющий формировать нелинейные конфигурации пар путей, что потенциально усложняет построение модели АФНФ с целью осуществления атаки на ее реализации. Приводятся новые схемотехнические решения для построения АФНФ и результаты экспериментальных исследований их основных характеристик, полученных при реализации на FPGA серии Zynq-7000

    Physically unclonable functions based on a controlled ring oscillator

    Get PDF
    Решается задача построения нового класса физически неклонируемых функций (ФНФ) на базе управляемого кольцевого осциллятора (УКО). Актуальность создания УКОФНФ связана с активным развитием физической криптографии, применяемой для целей идентификации электронных изделий и формирования криптографических ключей. Показано, что классические физически неклонируемые функции на основе кольцевых осцилляторов (КОФНФ) характеризуются большой аппаратурной избыточностью из-за необходимости реализовывать большое число КО, в силу того что, каждый бит ответа требует наличия независимой пары реальных КО. В тоже время КОФНФ характеризуются лучшими статистическими свойствами по сравнению с ФНФ типа арбитр и не требуют обеспечения идеальной симметричности и идентичности реализуемых КО. В качестве альтернативы КОФНФ предлагается новый класс физически неклонируемых функций, а именноУКОФНФ, использующий управляемые кольцевые осцилляторы, основанные на управлении частотой формируемых импульсов без изменения функциональности и структуры осциллятора. Важным достоинством УКО является возможность реализации на его основе множества КО,количество которых достигает 2m, где m есть количество разрядов осциллятора, и каждый из них определяется подаваемым запросом. В статье рассматриваются три альтернативных структуры предлагаемых ФНФ, а именно УКОФНФ1, УКОФНФ2 и УКОФНФ3. Показываются их основные достоинства и недостатки, в том числе, в случае двух вариантов реализации, а именно на программированной логике (FPGA) и произвольной логике (ASIC). В качестве базового варианта для реализации на FPGA рассматривается УКОФНФ2 менее подверженный межкристальной и, что более важно, внутрикристальной зависимости, вызванной технологическими особенностями производственного процесса. Практические исследования проводились путем реализации на современных FPGA УКОФНФ2, оценки ее работоспособности и основных ее характеристик. Экспериментально подтверждена работоспособность нового класса ФНФ при их реализации на программируемой логике, а также высокие показатели их основных статистических характеристик

    2D physically unclonable functions of the arbiter type

    Get PDF
    Цели. Решается задача построения нового класса физически неклонируемых функций типа арбитр (АФНФ), основанного на различии задержек по входам многочисленных модификаций базового элемента путем увеличения как количества входов, так и топологии их подключения. Подобный подход позволяет строить двухмерные физически неклонируемые функции (2D-АФНФ), в которых в отличие от классических АФНФ запрос, формируемый для каждого базового элемента, выбирает пару путей не из двух возможных, а из большего их количества. Актуальность данного исследования связана с активным развитием физической криптографии. В работе преследуются следующие цели: построение базовых элементов АФНФ и их модификаций, разработка методики построения 2D-АФНФ. Методы. Используются методы синтеза и анализа цифровых устройств, в том числе на программируе мых логических интегральных схемах, основы булевой алгебры и схемотехники. Результаты. Показано, что в классических АФНФ применяется стандартный базовый элемент, выполняющий две функции, а именно функцию выбора пары путей Select и функцию переключения путей Switch, которые за счет их совместного использования позволяют достичь высоких характеристик. В первую очередь это касается стабильности функционирования АФНФ, характеризующейся небольшим числом запросов, для которых ответ случайным образом принимает одно из двух возможных значений: 0 или 1. Предложены модификации базового элемента в части реализаций его функций Select и Switch. Приводятся новые структуры базового элемента с внесенными модификациями их реализаций, в том числе в части увеличения количества пар путей базового элемента, из которых путем запроса выбирается одна из них и конфигурации их переключений. Применение разнообразных базовых элементов позволяет улучшать основные характеристики АФНФ, а также нарушать регулярность их структуры, которая является главной причиной взлома АФНФ путем машинного обучения. Заключение. Предложенный подход к построению 2D-АФНФ, основанный на различии задержек сигналов через базовый элемент, показал свою работоспособность и перспективность. Экспериментально подтвержден эффект улучшения характеристик подобных ФНФ, и в первую очередь стабильности их функционирования. Перспективным представляется дальнейшее развитие идеи построения 2D-АФНФ, экспериментальное исследование их характеристик и устойчивости к различного рода атакам, в том числе с использованием машинного обучения

    Двухмерные физически неклонируемые функции типа арбитр

    Get PDF
    Objectives. The problem of constructing a new class of physically unclonable functions of the arbiter type (APUF) is being solved, based on the difference in delay times for the inputs of numerous modifications of the base element, due to both an increase in the number of inputs and the topology of their connection. Such an  approach allows building two-dimensional physically unclonable functions (2D-APUF), in which, unlike  classical APUF, the challenge generated for each basic element selects a pair of paths not from two possible, but from a larger number of them. The relevance of such a study is associated with the active development of  physical cryptography. The following goals are pursued in the work: the construction of the basic elements of the APUF and their modifications, the development of a methodology for constructing 2D-APUF.Methods. The methods of synthesis and analysis of digital devices are used, including those based on  programmable logic integrated circuits, the basics of Boolean algebra and circuitry. Results. It is shown that the classical APUF uses a standard basic element that performs two functions,  namely, the function of choosing a pair of paths Select and the function of switching paths Switch, which, due to their joint use, allow achieving high performance. First of all, this concerns the stability of the APUF functioning, which is characterized by a small number of challenge, for which the response randomly takes one of two  possible values 0 or 1. Modifications of the base element in terms of the implementations of its Select and Switch functions are proposed. New structures of the base element are presented in which the modifications of their  implementations are made, including in terms of increasing the number of pairs of paths of the base element from which one of them is selected by the challenge, and the configurations of their switching. The use of  various basic elements makes it possible to improve the main characteristics of APUF, as well as to break the regularity of their structure, which was the main reason for hacking APUF through machine learning. Conclusion. The proposed approach to the construction of physically unclonable 2D-APUF functions, based on the difference in signal delays through the base element, has shown its efficiency and promise. The effect of improving the characteristics of such PUFs has been experimentally confirmed with noticeable improvement in the stability of their functioning. It seems promising to further develop the ideas of constructing two-dimensional physically unclonable functions of the arbiter type, as well as experimental study of their characteristics, as well as resistance to various types of attacks, including using machine learning.Цели. Решается задача построения нового класса физически неклонируемых функций типа арбитр (АФНФ), основанного на различии задержек по входам многочисленных модификаций базового элемента путем увеличения как количества входов, так и топологии их подключения. Подобный подход позволяет строить двухмерные физически неклонируемые функции (2D-АФНФ), в которых в отличие от классических АФНФ запрос, формируемый для каждого базового элемента, выбирает пару путей не из двух возможных, а из большего их количества. Актуальность данного исследования связана с активным развитием физической криптографии. В работе преследуются следующие цели: построение базовых элементов АФНФ и их модификаций, разработка методики построения 2D-АФНФ. Методы. Используются методы синтеза и анализа цифровых устройств, в том числе на программируемых логических интегральных схемах, основы булевой алгебры и схемотехники.  Результаты. Показано, что в классических АФНФ применяется стандартный базовый элемент, выполняющий две функции, а именно функцию выбора пары путей Select и функцию переключения путей Switch, которые за счет их совместного использования позволяют достичь высоких характеристик. В первую очередь это касается стабильности функционирования АФНФ, характеризующейся небольшим числом запросов, для которых ответ случайным образом принимает одно из двух возможных значений:  0 или 1. Предложены модификации базового элемента в части реализаций его функций Select и Switch. Приводятся новые структуры базового элемента с внесенными модификациями их реализаций, в том числе в части увеличения количества пар путей базового элемента, из которых путем запроса выбирается одна из них и конфигурации их переключений. Применение разнообразных базовых элементов позволяет улучшать основные характеристики АФНФ, а также нарушать регулярность их структуры, которая является главной причиной взлома АФНФ путем машинного обучения.Заключение. Предложенный подход к построению 2D-АФНФ, основанный на различии задержек сигналов через базовый элемент, показал свою работоспособность и перспективность. Экспериментально подтвержден эффект улучшения характеристик подобных ФНФ, и в первую очередь стабильности их функционирования. Перспективным представляется дальнейшее развитие идеи построения 2D-АФНФ, экспериментальное исследование их характеристик и устойчивости к различного рода атакам, в том числе с использованием машинного обучения.

    SECURE AND LIGHTWEIGHT HARDWARE AUTHENTICATION USING ISOLATED PHYSICAL UNCLONABLE FUNCTION

    Get PDF
    As embedded computers become ubiquitous, mobile and more integrated in connectivity, user dependence on integrated circuits (ICs) increases massively for handling security sensitive tasks as well as processing sensitive information. During this process, hardware authentication is important to prevent unauthorized users or devices from gaining access to secret information. An effective method for hardware authentication is by using physical unclonable function (PUF), which is a hardware design that leverages intrinsic unique physical characteristics of an IC, such as propagation delay, for security authentication in real time. However, PUF is vulnerable to modeling attacks, as one can design an algorithm to imitate PUF functionality at the software level given a sufficient set of challenge-response pairs (CRPs). To address the problem, we employ hardware isolation primitives (e.g., ARM TrustZone) to protect PUF. The key idea is to physically isolate the system resources that handle security-sensitive information from the regular ones. This technique can be implemented by isolating and strictly controlling any connection between the secure and normal resources. We design and implement a ring oscillator (RO)-based PUF with hardware isolation protection using ARM TrustZone. Our PUF design heavily limits the number of CRPs a potential attacker has access to. Therefore, the modeling attack cannot be performed accurately enough to guess the response of the PUF to a challenge. Furthermore, we develop and demonstrate a brand new application for the designed PUF, namely multimedia authentication, which is an integral part of multimedia signal processing in many real-time and security sensitive applications. We show that the PUF-based hardware security approach is capable of accomplishing the authentication for both the hardware device and the multimedia stream while introducing minimum overhead. Finally, we evaluate the hardware-isolated PUF design using a prototype implementation on a Xilinx system on chip (SoC). Particularly, we conduct functional evaluation (i.e., randomness, uniqueness, and correctness), security analysis against modeling attacks, as well as performance and overhead evaluation (i.e., response time and resource usages). Our experimental results on the real hardware demonstrate the high security and low overhead of the PUF in real time authentication. Advisor: Sheng We
    corecore