
University of Wisconsin Milwaukee University of Wisconsin Milwaukee

UWM Digital Commons UWM Digital Commons

Theses and Dissertations

December 2023

A DESIGN STRATEGY TO IMPROVE MACHINE LEARNING A DESIGN STRATEGY TO IMPROVE MACHINE LEARNING

RESILIENCY OF PHYSICALLY UNCLONABLE FUNCTIONS USING RESILIENCY OF PHYSICALLY UNCLONABLE FUNCTIONS USING

MODULUS PROCESS MODULUS PROCESS

Yuqiu Jiang
University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd

 Part of the Computer Sciences Commons, and the Electrical and Electronics Commons

Recommended Citation Recommended Citation
Jiang, Yuqiu, "A DESIGN STRATEGY TO IMPROVE MACHINE LEARNING RESILIENCY OF PHYSICALLY
UNCLONABLE FUNCTIONS USING MODULUS PROCESS" (2023). Theses and Dissertations. 3410.
https://dc.uwm.edu/etd/3410

This Dissertation is brought to you for free and open access by UWM Digital Commons. It has been accepted for
inclusion in Theses and Dissertations by an authorized administrator of UWM Digital Commons. For more
information, please contact scholarlycommunicationteam-group@uwm.edu.

https://dc.uwm.edu/
https://dc.uwm.edu/etd
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F3410&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=dc.uwm.edu%2Fetd%2F3410&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/270?utm_source=dc.uwm.edu%2Fetd%2F3410&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd/3410?utm_source=dc.uwm.edu%2Fetd%2F3410&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarlycommunicationteam-group@uwm.edu

A DESIGN STRATEGY TO IMPROVE MACHINE LEARNING RESILIENCY OF

PHYSICALLY UNCLONABLE FUNCTIONS USING MODULUS PROCESS

by

Yuqiu Jiang

A Dissertation Submitted in

Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

in Engineering

at

The University of Wisconsin-Milwaukee

December 2023

ABSTRACT

A DESIGN STRATEGY TO IMPROVE MACHINE LEARNING RESILIENCY OF
PHYSICALLY UNCLONABLE FUNCTIONS USING MODULUS PROCESS

by

Yuqiu Jiang

The University of Wisconsin-Milwaukee, 2023
Under the Supervision of Professor Weizhong Wang

Physically unclonable functions (PUFs) are hardware security primitives that utilize

non-reproducible manufacturing variations to provide device-specific challenge-response pairs

(CRPs). Such primitives are desirable for applications such as communication and intellec-

tual property protection. PUFs have been gaining considerable interest from both the aca-

demic and industrial communities because of their simplicity and stability. However, many

recent studies have exposed PUFs to machine-learning (ML) modeling attacks. To improve

the resilience of a system to general ML attacks instead of a specific ML technique, a com-

mon solution is to improve the complexity of the system. Structures, such as XOR-PUFs,

can significantly increase the nonlinearity of PUFs to provide resilience against ML attacks.

However, an increase in complexity often results in an increase in area and/or a decrease

in reliability. This study proposes a lightweight ring oscillator (RO)-based PUFs using an

additional modulus process to improve ML resiliency. The idea was to increase the complex-

ii

ity of the RO-PUF without significant hardware overhead by applying a modulus process to

the outcomes from the RO frequency counter. We also present a thorough investigation of

the design space to balance ML resiliency and other performance metrics such as reliability,

uniqueness, and uniformity.

iii

©Copyright by Yuqiu Jiang, 2023
All Rights Reserved

iv

TABLE OF CONTENTS

1 Introduction 1

1.1 Motivition . 1

1.2 Claims and Contribution . 2

1.3 Outline . 3

2 Preliminaries 4

2.1 Physically Unclonable Function (PUF) . 4

2.1.1 Arbiter-PUF (APUF) . 6

2.1.2 Ring-Oscillator PUF (RO-PUF) . 7

2.2 Standard Performance Index . 13

2.2.1 Uniformity . 13

2.2.2 Bit-aliasing . 14

2.2.3 Uniqueness . 14

2.2.4 Correlation . 15

2.2.5 Reliability . 16

2.3 Machine Learning Modeling Attack . 16

2.3.1 Logistic Regression . 17

2.3.2 Support Vector Machine . 18

2.3.3 Gradient Boosting . 19

2.3.4 Random Forest . 20

v

2.3.5 Neural Network . 21

2.3.6 Reliability-based Modeling . 22

3 MRO-PUF 25

3.1 MRO Architecture . 25

3.2 Alternating MRO (AMRO) . 28

3.3 Uniformity Optimization . 30

4 Implementaiton 34

4.1 Underlying Entropy Source . 34

4.2 Implementaiton of MRO-PUF . 37

4.3 Hardware Overhead Analysis . 37

5 Investigation on MRO Performance 40

5.1 Standard Performance Metrics Analysis . 41

5.1.1 Uniformity . 41

5.1.2 Bit-aliasing . 42

5.1.3 Uniqueness . 44

5.1.4 Correlation . 45

5.1.5 Reliability . 47

5.2 Machine Learning Analysis . 50

5.2.1 CRP-based Modelling . 50

5.2.2 Reliability-based Modelling . 58

5.3 Comparison with Other PUFs . 61

6 Conclusion 63

vi

7 Future Work 64

vii

LIST OF ABBREVIATIONS

AMRO Alternating Modulus Ring Oscillator

APUF Arbiter Physically Unclonable Function

BRV Binary Response Value

CF Coin-Flipping

CMA-ES Covariance Matrix Adaptation Evolution Strategy

CRP Challenge Response Pair

FF Feed-Forward

FPGA Field Programmable Gate Array

GB Gradient Boosting

IPD Intertwined Programmable Delay Line

IRV Integer Response Value

LR Logistic Regression

LUT Look Up Table

ML Machine Learning

MRO Modulus Ring Oscillator

NMQ Non-monotonic Quantization

NN Neural Network

PDL Programmable Delay Line

PUF Physically Unclonable Function

RF Random Forest

RO Ring Oscillator

SRAM Static Random Access Memory

viii

SVM Support Vector Machine

TERO Transient Element Ring Oscillator

VRO Virtual Ring Oscillator

ix

LIST OF FIGURES

2.1 Illustration of authentication using PUF[14] 4

2.2 Illustration of secure key generation using PUF[14] 5

2.3 Structure of APUF[5] . 7

2.4 Structure of RO-PUF[14] . 8

2.5 Architecutre of Habib’s RO-PUF with PDL [22] 9

2.6 Illustration of Feiten’s sequntial sampling with PDL-RO-PUF 10

2.7 Feiten’s path disparity analysis of four configurable LUTs of a PDL-RO.[23] 11

2.8 Structure of IPD-RO-PUF[24] . 12

2.9 The intertwined programmable delay (IPD) stage.[24] 13

3.1 Architecture of MRO-PUF with IPD-RO-PUF as entropy source 27

3.2 Modulus Decision Boundary on Integer Response Value Distribution (modulus
factor = s) . 27

3.3 Structure of AMRO . 29

3.4 Simulated asymmetrical integer response population 30

3.5 Uniformity of asymmetrical integer response with varying modulus factor . . 31

3.6 Uniformity performance with increasing number of decision boundaries . . . 33

4.1 The stage structure of IPD-RO-PUF . 35

4.2 Implementation of RO as entropy source . 36

5.1 Block diagram of Xilinx Zynq testbench . 41

5.2 Uniformity with PDL-RO-PUF and IPD-RO-PUF, modulus factors up to 5
times the general sigma . 42

x

5.3 Conventional uniqueness with PDL-RO-PUF and IPD-RO-PUF, modulus fac-
tors up to 5 time sthe general sigma . 44

5.4 Reliability without screening, modulus factors up to 5 time sthe general sigma 48

5.5 Reliability without screening, modulus factors up to 5 time sthe general sigma 49

5.6 Data reduction rate from the screening, modulus factors up to 5 time sthe
general sigma . 50

5.7 ML attack accuracy analysis on PDL-PO-PUF using single modulus factor
MRO . 53

5.8 ML attack accuracy analysis on PDL-RO-PUF using AMRO with a policy of
two modulus factor different by a factor of 2 54

5.9 ML attack accuracy analysis on PDL-RO-PUF using AMRO with a policy of
one modulus factor fixture on 1 while varying the other 55

5.10 ML attack accuracy analysis on IPD-PO-PUF using single modulus factor MRO 56

5.11 ML attack accuracy analysis on IPD-RO-PUF using AMRO with a policy of
two modulus factor different by a factor of 2 57

5.12 ML attack accuracy analysis on IPD-RO-PUF using AMRO with a policy of
one modulus factor fixture on 1 while varying the other 58

5.13 Reliability covariance map with 2-delay parameter space 60

xi

LIST OF TABLES

4.1 Hardware overhead of MRO and AMRO (measured in number of LUTs) . . 38

5.1 Distribution comparison of bit aliasing analysis 43

5.2 Distribution comparison of uniqueness analysis 45

5.3 Distribution comparison of Feiten’s correlation analysis 46

5.4 Distribution comparison of bit aliasing analysis 52

5.5 Hardware overhead of MRO and AMRO (measured in number of LUTs) . . 62

xii

ACKNOWLEDGMENTS

First and foremost, I am deeply grateful to my esteemed thesis advisor, Prof. Weizhong

Wang. His exceptional guidance, unwavering support, and profound expertise have been

instrumental in the successful completion of this research endeavor. Throughout this journey,

Prof. Wang has provided invaluable mentorship, offering valuable insights, constructive

feedback, and meticulous attention to detail. His patient and thoughtful supervision have

played a pivotal role in shaping the direction, methodology, and overall quality of this thesis.

I am truly fortunate to have had the privilege of working under his mentorship.

I would also like to extend my gratitude to my colleague Dr. Yangpingqing Hu. Working

with Dr. Hu has been intellectually inspiring. His unique perspectives and contributions

have played a significant role in shaping this work. I am grateful for his friendship and

collaboration.

I am thankful to University of Wisconsin-Milwaukee for providing the necessary re-

sources, and access to research materials enabling me to carry out this study effectively.

The assistance provided by the staff and faculty of department of electrical engineering and

computer science is gratefully acknowledged.

Lastly, I would like to express my heartfelt appreciation to my family and friends for

their unwavering belief in me and their constant encouragement throughout this endeavor.

Their understanding, patience, and unconditional support have been vital in keeping me

motivated during the highs and lows of this research journey.

xiii

Chapter1

Introduction

1.1 Motivition

A key requirement for securing communication through open public networks is the ability to

authenticate its counterpart at the other end of the communication channel. To block mali-

cious network elements, a network node must validate the identities of the nodes with which it

communicates. One such authentication method is to use unique hardware-dependent keys

provided by.[1][2][3] The idea is to leverage non-reproducible variations during the manu-

facturing process to provide device-specific query-response pairs, which are also known as

challenge-response pairs (CRPs). At the system level, the challenge is a bit string sent to the

PUF embedded in the remote node as input. The PUF returns a response bit or a bit string as

an answer. A remote node with an embedded PUF is authenticated if the response matches

the expected result. Traditionally, it is impossible to predict or replicate subtle processing

variations embedded in PUFs. There are several implementations of PUF. For example,

Arbiter-PUF[4], ring oscillator PUF (RO-PUF)[5], transient element ring oscillator PUF

(TERO-PUF)[6], SRAM-PUF[7], and butterfly-PUF[8]. Many PUF variants are vulnerable

to machine-learning (ML)-based modeling attacks[9][10][11][12][13]. Researchers have pro-

posed several implementations to improve ML resiliency. Examples include XOR-PUFs[14],

1

feed-forward PUF (FF-PUF), coin-flipping PUF (CF-PUF), and interpose PUFs[15]. How-

ever, many of the improved designs have been found to be vulnerable to more advanced ML

attack techniques.[13][16][17]

1.2 Claims and Contribution

In this work, there are two contributions. First, a modulus-based RO-PUF (MRO-PUF)

is proposed to improve the ML attack resiliency. MRO is a technique that increases the

complexity within a PUF system by increasing the number of decision boundaries for RO’s

binary response. The idea is to generate a binary response by applying a modulus process

to the integer response of the RO-PUF, which is typically the frequency-counter output.

Thus, the complexity of the system can be increased and manipulated by varying the pa-

rameters of the modulus process, without significant hardware overhead. The proposed

design is an alternative framework to NoPUF[18], which can be used to balance ML re-

siliency and reliability, while improving uniqueness. A recent study (NMQ-PUF[19]) has

employed non-monotonic quantization (NMQ) to enhance the resilience of machine learn-

ing (ML) models. The NMQ method shares similarities with the modulus process and has

demonstrated promising ML resilience outcomes with an application-specific integrated cir-

cuit (ASIC) implementation. However, the pro-posed NMQ-PUF fails to address one of the

key reliability issues associated with the use of an aggressive quantization parameter, which

is crucial when implementing the modulus parameters. To address this challenge, we pro-

pose an alternating modulus RO-PUF (AMRO-PUF) that balances the trade off between

ML resilience and reliability. The AMRO-PUF can serve as an alternative paradigm for

improving the controllability of the design process, thereby facilitating the achievement of

desired performance outcomes. In this work, we focus on investigating the performance of

2

MRO based on configurable RO-PUF, such as the programmable delay line RO-PUF (PDL-

RO-PUF) and intertwined programmable delay (IPD-RO-PUF). However, any strong PUF

structure with numerical measurement, such as traditional RO-PUF and TERO-PUF, can

be used as the base entropy source for the proposed modulus process.

Second, both the underlying RO-PUF structure and the proposed MRO structure were

implemented on a Xilinx field programmable gate array (FPGA) to provide a comprehensive

experimental demonstration of the potential improvement in machine learning resiliency.It

is worth noting that FPGA implementations have inherent limitations in terms of place and

routings when compared to other implementations such as ASIC. As a result, a thorough

investigation of entropy sources implemented in FPGAs can provide valuable insights in

terms of balancing the performance metrics.

1.3 Outline

The thesis is organized as follows: Chapter 2 provides background on the development on

PUFs (section 2.1), definitions of performance metrics (section 2.2), and ML modeling attack

methods against PUFs (section 2.3). Chapter 3 provides design strategies on MRO-PUF. In

addition to the base MRO-PUF architecture (section 3.1), we also proposed a variant AMRO-

PUF (section 3.2) and a uniformity optimization strategy (section 3.3). Implementation of

the MRO-PUF is elaborated in chapter 4, where we also provided a hardware over head

analysis to MRO-PUF and AMRO-PUF (section 4.3). The empirical result is demonstrated

and discussed in chapter 5. Finally, chapter 6 concludes this thesis.

3

Chapter2

Preliminaries

2.1 Physically Unclonable Function (PUF)

Figure 2.1: Illustration of authentication using PUF[14]

4

Figure 2.2: Illustration of secure key generation using PUF[14]

A Physically Unclonable Function (PUF) as first proposed by Pappu et al in 2001.[1], is a

hardware security primitive that generates a unique and unpredictable response based on

the physical characteristics of the underlying hardware. PUFs exploit the inherent varia-

tions in manufacturing processes to create unique identifiers or keys. PUFs have various

applications in the field of security, authentication, and secure communication. Some com-

mon applications include: device authentication, secure key generation, anti-counterfeiting,

secure bootstrapping. (see figure 2.1, figure 2.2)

One way to classify different types of PUFs is by distinguishing between weak PUFs and

strong PUFs. Weak PUFs are characterized by their CRP (Challenge-Response Pairs) space,

which grows linearly with incresing available resources. An example of a weak PUF is the

traditional RO-PUF, where each CRP requires a unique pair of RO components. Despite

resource limitations, weak PUFs often provide better randomness and are more resilient

against ML attacks.

On the other hand, strong PUFs have a CRP space that typically grows exponentially

with area, offering practically unlimited CRPs. However, when resources are shared between

CRPs, strong PUFs may exhibit inter CRP dependencies, making them vulnerable to ML

5

modeling attacks. The arbiter PUF and configurable RO-PUF are examples of strong PUFs

[20].

Another method of classifying different types of PUFs is based on the entropy extraction

method. One approach is to compare delays between different propagation lines. The method

base on the manufacturing variations in delays in gates and routes. When a racing condition

is intentionally created, the outcome is although unpredictable with only knowledge on design

but reproducible. Both APUF and RO-PUF are good examples for such delay-based PUFs.

Another method involves reading the state of memory after initialization. The variations

of memory cells provide desirable reproducible response. A example for memory-based PUF

is SRAM-PUF.[7]

The following sections discuss the foundational concepts and principles of popular PUF

base and state-of-the-art variants, with a specific focus on the delay-based method. Interme-

diate delay measurement is a crucial requirement for MRO-PUF.(see section 3.1) However,

it is worth noting that all variants can offer comparable performance metrics. There is a set

of performance metrics are common evaluated across all PUFs design. (see section 2.2)

2.1.1 Arbiter-PUF (APUF)

The APUF is an early incarnation of PUFs, first proposed by Gassend et al. in 2002, shortly

after the introduction of PUFs [5]. The APUF circuit, depicted in Figurefigure 2.3, is also

known as a non-monotonic delay circuit. It consists of multiple delay stages, where each

stage is controlled by a challenge bit. Each challenge bit selects one of the two delay paths

within each stage. The output is generated based on the relative delay difference between

the two configured paths at the end of the delay line.

6

With each additional delay stage, the Challenge-Response Pair (CRP) space of the

APUF doubles, making it a strong PUF. However, the APUF faces challenges due to the

common delay element between CRPs and the additive nature of the total delay in a config-

uration. It has been reported to be vulnerable to Machine Learning (ML) attacks [10][13].

Figure 2.3: Structure of APUF[5]

2.1.2 Ring-Oscillator PUF (RO-PUF)

RO-PUF is first proposed by Suh and Devadas in 2007[14] which is referred as the traditional

RO-PUF though out this paper. Figure 2.4 illustrate the structure of traditional RO-PUF.

A RO-PUF circuit consists of multiple identically laid-out delay loops, also known as ring

oscillators. Each ring oscillator is a simple circuit that oscillates at a specific frequency. Due

to manufacturing variations, each ring oscillator oscillates at a slightly different frequency.

To generate a fixed number of bits, a predetermined sequence of oscillator pairs is selected,

and their frequencies are compared to produce an output bit. The output bits obtained

from the same sequence of oscillator pair comparisons will differ from chip to chip. Since the

oscillators are identically laid out, the frequency differences are determined by manufacturing

variations, and an output bit is equally likely to be a one or a zero if random variations

dominate.

7

The traditional RO-PUF demonstrates a innovative way to reliably harness the entropy

using ROs. At the time of its publication, RO-PUF offered an low-cost implementation on

FPGAs.

Figure 2.4: Structure of RO-PUF[14]

Programmable Delay Line RO-PUF (PDL-RO-PUF)

In contrast to transitional RO-PUF, there is a branch of RO-PUF focuses on utilizing a

configurable RO instead of RO bank. Such RO-PUF variant is also known as PDL-RO-PUF.

The concept of PDL was first proposed by Majzoobi et al.[21] The PDL was first implemented

with APUF to better its adpattation to FPGA. Where APUF was first focussing on ASIC[14].

Later Habib et al adopted the idea of PDL to RO-PUF in 2013,[22] which later Feiten et al

built up on[23].

Habib’s PDL-RO-PUF introduced a structure of configurable RO which consists of an

even number of inverter stages and a NAND or NOR gate forming the loop, as shown in

figure 2.5. Each inverter stage is configured by a number of challenge bits. An enable signal

8

is connected to the NAND or NOR gate to enable or disable oscillation. The response bit is

generated by comparing the oscillation counter between two configurable PDL-RO with the

same challenge. Habib’s PDL-RO-PUF demonstrate the RO-PUF can be modified to strong

PUF with the configurable RO structure enables a much larger CRP space comparing to

Suh’s RO bank. Habib also discussed the advantage of using FPGA LUTs to accommodates

multiple challenges bits to configure a single inverter stage.

Figure 2.5: Architecutre of Habib’s RO-PUF with PDL [22]

However, Feiten et al discovered that the PDL structure implemented in FPGA has sys-

tematic bias in the delay path, due to the unconfigurable routing paths. Feiten’s contribution

to the PDL-RO-PUF is to introduced a sequntial sampling strategy to PDL-RO-PUF. The

idea is to sequentially sampling the same configurable RO with different configuration in-

stead of having two RO instances with the same configuration. (see figure 2.6) The sequntial

sampling minimizes the routing biases between different RO instances. Feiten also inves-

tigated the internal structure of FPGA’s LUT primitive and discussed possible strategies

9

to two keep routing symmetrical between measurement phases(see figure 2.7) The challenge

with such 2-pass scheme is that the temporal variation between the two measurement is

introduced. With the symmetrical measurement constraint the selection of configuration of

PDL become laborious and reduces the CRP space.

Figure 2.6: Illustration of Feiten’s sequntial sampling with PDL-RO-PUF

10

Figure 2.7: Feiten’s path disparity analysis of four configurable LUTs of a PDL-RO.[23]

11

Intertwined Programmable Delay RO-PUF (IPD-RO-PUF)

In our early work let by Hu,[24] we proposed a novel IPD-RO-PUF structure to further

minimizes the systematic biases challenges with PDL-RO-PUF. IPD-RO-PUF uses a IPD

structure to replace teh LUT stage in PDL-RO-PUF to minimize systematic bias. The IPD-

RO and IPD inverter stages are shown in figure 2.8 and figure 2.9, respectively. The IPD

inverter has two LUTs, implemented in a single LUT stage. The idea is to have a two-pass

process in addition to sequential sampling (two runs) inherited from PDL-RO-PUF[23] to

cancel the systematic bias in the LUTs. The two-phase process toggles the switch bit of

the IPD stage such that two nominally symmetrical delay lines are measured in each pass.

The assumption is that a systematic bias is common in both phases. Therefore, by com-

paring these two measurements for each run. The majority of systematic bias was canceled.

Systematic bias leads to a correlation between delays and the corresponding challenges. Fur-

thermore, a reference RO was implemented in the IPD-RO-PUF to reduce the impact of

disturbances from voltage and thermal noise.

Figure 2.8: Structure of IPD-RO-PUF[24]

12

Figure 2.9: The intertwined programmable delay (IPD) stage.[24]

The IPD-RO-PUF demonstrate a promising performance such as uniformity, uniqueness,

and reliability. Similar to Habib’s and Feiten’s PDl-RO-PUF, it leverages the FPGA’s LUT

to increase the complexity of each inverter cell. However the underlying additive delay line

structure still show disadvantages against ML attacks.

2.2 Standard Performance Index

2.2.1 Uniformity

Uniformity is a measure of the binary outcome distribution of PUFs. For an ideal PUF,

the binary response should have the same probability of generating 1s and 0s. Uniformity is

defined by equation (2.1)

H =

∑M
i Ri

M
(2.1)

13

where, Ri denotes the response bit. M is the number of samples. The uniformity ranged

from 0 to 1. The ideal value is 50%, indicating that there are same number of samples for

the response bit being 1 and 0. For a measured uniformity either smaller or larger than

50%, this suggests that the probability of 0 or 1 being generated is larger than the other.

Uniformity dictates the minimum ML prediction accuracy of the PUF.

2.2.2 Bit-aliasing

Bit aliasing is a metric that demonstrates the biases among different PUF instances. The

definition of bit aliasing is introduced in [6]. Bit-aliasing measures the likelihood of a group

of PUFs generating the same response to the same challenge, as shown in equation (2.2).

Al =
1

k

k∑
i=1

ri,l × 100% (2.2)

where ri,l is the lth binary bit of the response from PUF instance i.

2.2.3 Uniqueness

Uniqueness metrics are defined as the variations in the responses of different instances derived

from the same PUF design. Ideally, different instances of the same PUF design would produce

uncorrelated responses.

The traditional definition of uniqueness is shown in the following formula. equation (2.3)

14

U =
2

N(N − 1)

N∑
j=1

N∑
i=j+1

HD(Ri,Rj)

K
× 100% (2.3)

where N denotes the number of PUF instances. Ri is the response vector from the ith

instance. HD(·)denotes the Hamming distance. The ideal value is 50%. K denotes the

number of responses in each response vector.

2.2.4 Correlation

In addition to traditional uniqueness, the correlation in CRPs must also be investigated

to address correlated signature bits [25][26]. Feiten’s Correlation evaluation is defined as

follows:

For each response bit, a correlation matrix is computed by comparing the outcomes of

the n signature bits of each device i with one another, resulting in (n·(n−1))
2

pairings:



cori1,2 cori1,3 ... cori1,n

cori2,3 ... cori2,n

... ...

corin−1,n


(2.4)

with:

corij,k =


1, if sigi,j = sigi,k

−1, otherwise

(2.5)

15

The corij,k values for each pariing are then summed up over m devices:

corj,k =
1

m

m∑
i=1

corij,k (2.6)

The ideal distribution of the corj,k is a normal distribution with a mean of 0. The stan-

dard deviation of the distribution is related to the number of samples tested. Theoretically,

if an infinite number of devices are tested, all calculated correlations should be 0.

2.2.5 Reliability

The reliability of PUFs is the probability of obtaining the same responses when the same

challenge bit patterns are given to the PUF. This is one of the key performance metrics of

PUFs. Reliability is commonly defined by (equation (2.7)) based on the measured data[27].

R =
|M
2
−
∑M

i Ri|
M
2

(2.7)

where M denotes the number of samples collected for the same challenge. Ri is the

binary response value of each sample. The reliability ranges from 0 to 1, where 0 is the least

reliable and 1 is the most reliable.

2.3 Machine Learning Modeling Attack

Parallel to the advancement of PUFs, extensive research has been conducted on modeling

attack strategies. Currently, there is no universally accepted framework for evaluating the

16

resilience of PUFs against machine learning (ML) attacks. To address this, we aim to

incorporate various ML modeling techniques, including both traditional and cutting-edge

approaches, which have demonstrated varying levels of success in modeling different PUF

variants. The ML modeling methods considered in this study are as follows:

• Logistic Regressionsection 2.3.1

• Support Vector Machinesection 2.3.2

• Gradient Boostingsection 2.3.3

• Random Forestsection 2.3.4

• Neural Networksection 2.3.5

• Reliability-based Modelingsection 2.3.6

2.3.1 Logistic Regression

LR is a well investigated ML frame work which was originally developed ad popularized

by Berkson[28]. LR has been reported successful at modeling PUF such as APUF and

XOR-APUF.[10]

For PUFs with single-bit outputs, each challenge C = b1 . . . bk is assigned a probability

p(C, t|w⃗) of generating an output t ∈ {−1, 1}. The vector w⃗ represents the relevant internal

parameters of the PUF, such as runtime delays. The probability is calculated using the

logistic sigmoid function σ(tf), where f(w⃗) is a function parameterized by w⃗. The sigmoid

function is defined as p(C, t|w⃗) = σ(tf) = (1 + e−tf)−1. The decision boundary, determined

by f = 0, separates regions with equal output probabilities. To position the boundary for a

17

given training set M of Challenge-Response Pairs (CRPs), the parameter vector w⃗ is chosen

to maximize the likelihood of observing the set or minimize the negative log-likelihood. (see

equation (2.8))

m⃗ = argminw⃗l(M, w⃗) = argminw⃗

∑
(C,t)∈M

−ln(σ(tf(w⃗, C))) (2.8)

As there is no analytical solution for equation (2.8). The solution is typically obtained

through it gradient equation (2.9).

∇l(M, w⃗) = σ(C,t)∈Mt(σ(tf(w⃗, C))− 1)∇f(w⃗, C) (2.9)

2.3.2 Support Vector Machine

SVM similar to LR performs as a binary classification method with a decision boundary.

However, SVM differs from LR in that it can sovlve for systems that is not linearly separable.

Research has shown that SVM has been successful in modeling APUFs.[29].

During the learning phase, known training examples are mapped into a higher-dimensional

space to facilitate the classification task. This technique is used to handle classification prob-

lems that are not linearly separable in the original input space. By mapping the data to a

higher-dimensional space, the learning algorithm aims to find a good separating hyperplane

that can accurately classify the data.

The goal is to find a hyperplane that maximizes the margin, which is the largest possible

distance between input vectors belonging to different classes. The inputs that lie closest to

18

the separating hyperplane are known as support vectors. The construction of the separat-

ing hyperplane involves two parallel supporting hyperplanes that pass through the support

vectors. The distance between these supporting hyperplanes is referred to as the margin.

To build an SVM, the objective is to maximize the margin while minimizing the classifi-

cation error. These objectives are balanced by a regularization parameter, which determines

the trade-off between the margin and the error.

Trained SVMs heavily depend on the self-inner product of the mapping function, also

known as the kernel. The kernel is evaluated on both the support vectors and the challenge

or test inputs that need to be classified.

2.3.3 Gradient Boosting

Gradient Boosting is an ensemble learning technique that combines multiple weak models

to create a stronger predictive model. It is based on the concept of boosting, where weak

models are sequentially trained to correct the mistakes made by the previous models.[30] GB

is considered as an effective ML modeling against PUF.[12]

In GB, the weak models are typically decision trees. The algorithm works by iteratively

adding new decision trees to the ensemble, with each subsequent tree aiming to correct the

errors made by the previous trees. This is achieved by fitting each new tree to the residual

errors of the ensemble’s predictions.

The concept of gradients plays a key role in GB. After each iteration, the algorithm

calculates the gradients of a loss function with respect to the ensemble’s predictions. These

gradients provide information about the direction and magnitude of the errors. The next

19

weak model is then trained to minimize the loss function by following the negative gradient

direction.

To prevent the model from overfitting, regularization techniques such as tree depth limits

and learning rate adjustments are often applied. Additionally, subsampling techniques such

as stochastic gradient boosting can be used to further improve generalization.

The final predictions of the ensemble are obtained by summing the predictions of each

weak model, with each model assigned a weight based on its performance during the training

process.

2.3.4 Random Forest

Random Forest is a powerful and widely used ensemble-based machine learning algorithm

that combines the predictions of multiple decision trees.[31] It can be used for both classi-

fication and regression tasks. The algorithm is also been considered as one of the effective

ML modeling method against PUF.[32]

At its core, Random Forest creates a collection of decision trees, each trained on a

random subset of the training data. During training, each tree is built by repeatedly splitting

the data based on different features, aiming to create decision boundaries that effectively

separate different classes or predict continuous values. The randomness introduced in the

training process helps to create diverse and independent decision trees.

During prediction, each tree in the Random Forest independently generates a prediction

based on the input data. For classification tasks, the final prediction is determined by

majority voting, where the class with the most votes from the trees becomes the predicted

20

class. For regression tasks, the final prediction is typically the average of the predictions

from the individual trees.

One of the key advantages of Random Forest is its ability to handle high-dimensional

data set with a large number of features. The algorithm automatically selects a subset of

features at each node of the decision trees, reducing the impact of irrelevant or noisy features

and improving the overall performance. This feature selection process also helps to mitigate

the risk of overfitting.

2.3.5 Neural Network

Neural networks, also known as artificial neural networks, are a class of machine learning

models inspired by the structure and functionality of the human brain. They have been suc-

cessfully applied in various domains such as image classification, natural language processing,

and time series prediction.

At a high level, a neural network is composed of interconnected nodes called artificial

neurons or ”units.” These units are organized into layers, typically consisting of an input

layer, one or more hidden layers, and an output layer. Each unit receives input signals,

performs a computation, and produces an output signal. The hidden layers help the network

learn complex patterns and representations from the input data.

The connections between units are represented by weights, which determine the strength

of the relationship between inputs and outputs. During the training process, the network

adjusts these weights using algorithms like backpropagation, which calculates the gradient

of the loss function with respect to the weights. This allows the network to minimize the

difference between its predicted outputs and the true values in the training data.

21

Neural networks can have different architectures, such as feedforward networks, recur-

rent networks, and convolutional networks. Feedforward networks are the most common

type, where information flows from the input layer to the output layer without cycles. Re-

current networks, on the other hand, have connections that form loops, allowing them to

model sequential data. Convolutional networks are designed for processing grid-like data

such as images, by using convolutional layers for feature extraction.

In recent years, deep learning has become synonymous with neural networks, thanks

to the development of deep neural networks with many hidden layers. Deep learning has

achieved remarkable success in various tasks, often surpassing human performance in areas

like image recognition and natural language understanding.

Neural networks have certain advantages, such as their ability to learn complex repre-

sentations, handle large datasets, and generalize well to unseen data. However, they also

have limitations, including the need for substantial computational resources, the potential

for overfitting, and the difficulty of interpreting their internal workings.

2.3.6 Reliability-based Modeling

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is an evolutionary optimiza-

tion algorithm specifically designed for solving continuous optimization problems. It is par-

ticularly effective in cases where the objective function is expensive to evaluate or exhibits

non-linear, non-convex, or multimodal characteristics.

CMA-ES belongs to the class of Evolution Strategies (ES), which are stochastic, population-

based optimization algorithms inspired by biological evolution. The main idea behind CMA-

ES is to adaptively estimate and update the covariance matrix of the multivariate distribution

22

that represents the population of candidate solutions.

Instead of explicitly maintaining a fixed mutation operator like in traditional Evolution

Strategies, CMA-ES dynamically adjusts the shape and orientation of the mutation distri-

bution based on the past success or failure of the candidate solutions. This adaptation is

done by updating the covariance matrix during the evolutionary process.

The CMA-ES algorithm works as follows:

1. Initialization: Start by randomly generating an initial population of candidate solu-

tions. Choose an initial covariance matrix and a step size.

2. Sample Solutions: Generate new candidate solutions by sampling from a multivariate

Gaussian distribution with mean vector and covariance matrix.

3. Evaluating Solutions: Evaluate the fitness or objective function value for each candi-

date solution.

4. Selection: Select the best-performing solutions based on their fitness values.

5. Covariance Matrix Update: Update the covariance matrix based on the selected solu-

tions. This step includes computing the covariance matrix adaptation and adjusting

the step size.

6. Termination Criterion: Repeat steps 2-5 until a termination criterion is met, such as

a maximum number of iterations or a satisfactory fitness value.

CMA-ES is known for its strong robustness and efficiency in handling complex optimiza-

tion problems with large-scale variables. It can adapt effectively to the problem landscape,

automatically adjusting the search distribution to explore promising regions. Moreover, it

23

does not require any gradient information, making it suitable for black-box optimization

scenarios.

24

Chapter3

MRO-PUF

3.1 MRO Architecture

As shown in figure 3.1, the proposed MRO structure consists of two main components: a

entropy source and a modulus process module. The entropy source takes in the challenge

information and generate a device-specific signature. To compliant with the modulus process,

the entropy source is requires to be capable of generating a integer response value (IPV). One

common form of IPV is the frequency measurement of a RO. In this work, the IPD-RO-PUF

is considered as a promissing entropy source candidate. Therefore most of the discussion

in this work references the IPD-RO-PUF (see implementation in section 4.1). However, the

proposed architecture is compatible with any PUF variant that is capable generate IPV as

an intermediate response.

The modulus process module calculate the modulus of the measurement from the en-

tropy source and generate a binary output. The modulus process provides additional com-

plexity which consequently enhancing the ML resiliency.

At the beginning of the MRO-PUF operation, the configurable RO takes in the chal-

lenge bit pattern and starts to oscillate. Then, the counter measures the oscillation cycles

25

for both phase 1 and 2 of the RO. The RO and counter, shown as two parallel processes

in figure 3.1, were implemented on the same hardware with two sequential measurement

processes (see section 2.1.2 and section 2.1.2). Subtracting the counter readings from the

two phases yields an integer value. The subtraction between the two phases minimizes the

common delay bias from different routings in each LUT, which also provides a numerical

response value. Therefore, a sequential sampling technique [23] is feasible. By randomly

selecting two different challenge bit patterns in the challenge space, an integer response can

be generated by comparing the responses from the two different challenges. In contrast to

the conventional binary response, the generated integer response, called the integer response

value (IRV), is used in this study. IRV reflects the quantified delay variation caused dur-

ing manufacturing. If the process is run multiple times with the same pair of challenge bit

patterns, the IRV would vary slightly because of measurement noise, such as thermal and

voltage fluctuations, which generally fit into a normal distribution. This contributes to a

degradation in reliability, which will be examined in Section IV. The oscillation frequency

variances among different RO pairs, chosen by different challenge bit patterns, also gener-

ally fit into a normal distribution. This was because the randomness of the manufacturing

process followed a normal distribution. Therefore, the IRV variation can be described at

two different levels. In this study, the standard deviation of the IRV for a specific challenge

pattern is called the specific sigma. The standard deviation of the IRV from all the chal-

lenges is called the general sigma. The measurement noise is correlated with a specific sigma.

Manufacturing variation correlates with general sigma. The sigma ratio of a general sigma to

a specific sigma reflects the reliability of the RO-PUF. From the experimental data collected

from the Zynq 7000 FPGA, we found that IPD-RO-PUF had a sigma ratio of approximately

20, which resulted in a reliability performance of approximately 98%. PDL-RO-PUF has a

sigma ratio of approximately 40, which results in a reliability of approximately 99%.

26

Figure 3.1: Architecture of MRO-PUF with IPD-RO-PUF as entropy source

Figure 3.2: Modulus Decision Boundary on Integer Response Value Distribution (modulus
factor = s)

Traditionally, the binary response is obtained by comparing the oscillation speed or

frequency between the two ROs. If the binary response output of the PUF has two classes:

‘0’ and ‘1’, then the theoretical decision boundary of the two binary classes is when the two

compared RO have the same propagation delay. In other words, the IRV of PUF was 0.

Considering, the total propagation delay of a configurable RO is the sum of several inverter

delays: Each inverter delay is controlled using a challenging bit. Therefore, such traditional

methods are vulnerable to machine-learning attacks, such as logistic regression (LR) or NN

attacks[33]. This claim is supported by the test results presented in . A modulus response

27

boundary system is proposed to improve the performance against machine learning attacks.

In contrast to the binary response, the idea here is to split the IRV space into several regions,

with a binary response value assigned to each region in an alternating manner (see figure 3.2).

The conversion from IRV to a BRV is shown in equation (3.1). The goal is to achieve better

machine learning attack resilience by increasing the complexity of the system.

B = ⌊ r
m
⌋ mod 2 (3.1)

where, B is the binary response value. r is the IRV from response counter. m is the

modulus factor that determines the width of each response region. The smaller the response

region, the more difficult it is to be modeled. Subsequently, the modulus decision boundary

(see figure 3.2) can be defined as follows:

s = km, k ∈ Z (3.2)

3.2 Alternating MRO (AMRO)

With an increase in the number of modulus decision boundaries, the MRO is at a risk of

reduced reliability. The smaller the modulus factor, the greater the number of decision

boundaries introduced. In this study, an additional structure is proposed to balance the

reliability and resiliency against ML. The idea is to use multiple modulus factors, such that

each zone has a different width. As the simplest case, the two modulus factors can be selected

based on their ML resiliency and reliability in their single MRO performance. Considering

each modulus factor as a controllable factor, it can be leveraged to achieve an optimal trade

28

off between the machine learning resiliency and reliability.

In terms of defining the alternating policy, we propose using the parity bit generated

by the input challenge pattern in a 2 modulus factors design. This policy ensures that the

likelihood of using each modulus factor is approximately 50%. The structure of the AMRO is

illustrated in figure 3.3. The RO and sampling processes were identical to those used for the

MRO structure. An alternating modulus structure requires two modulus processes based

on different modulus factors. The binary outcome of both modulus processes is selected

by the parity bit generated from the challenge-bit pattern. This process does not require

a significant amount of resource overhead, while introducing an additional control- lable

modulus factor. With the two-modulus process utilizing two different modulus factors, the

reliability and ML accuracy can be balanced by fine-tuning the modulus factors.

Figure 3.3: Structure of AMRO

29

3.3 Uniformity Optimization

Figure 3.4: Simulated asymmetrical integer response population

When investigating the uniformity of the MRO, the difference in uniformity with varying

modulus factors was negligible. The assumption is that an RO model with a symmetrical

integer response distribution. However, considering a PUF with an asymmetrical distribu-

tion, applying the modulus process could have either a positive or negative impact on the

uniformity, depending on the modulus factor and the shape of the distribution. To demon-

strate the impact of MRO on a PUF with an asymmetrically distributed integer response, a

simulated integer response population (see figure 3.4) with a Poisson distribution was created

and tested using the modulus process. Note that the simulated distribution is intentionally

30

different from the symmetric experimental data. Therefore, the modulus factor in the sim-

ulation scenario does not match with the scaling with the experimental data. The modulus

pro- cess is identical to other discussions in this work. As shown in figure 3.5, the unifor-

mity with a large modulus factor is 56%. When the modulus factor decreases to 32, the

uniformity worsens to approximately 60%. Furthermore, the uniformity reaches an almost

ideal uniformity value when the modulus factor decreases to 10. We found that when the

modulus factor was sufficiently small, the difference in the number of samples between the

two adjacent bins significantly decreased. Therefore, it is expected that by reducing the

modulus factor, ideal uniformity can be achieved. However, reducing the modulus factor

always poses a risk of rendering PUF unreliable.

Figure 3.5: Uniformity of asymmetrical integer response with varying modulus factor

31

To mitigate the reliability-uniformity trade off concern, a policy derived from the MRO

design is proposed to ensure optimal uniformity while increasing the number of decision

boundaries. Considering adding a decision boundary to be an iterative process, the initially

added decision boundary would split the whole integer response population into two decision

regions with ‘0’ and ‘1’ assigned to each region. In terms of uniformity, the optimal decision

boundary should split the region into two regions with equal populations. Such decision

boundaries can be determined using the median of the population. (see equation (3.3)).

B0 = median(S) (3.3)

where B0 denotes the optimal decision boundary for the initial decision boudnary. S is

the set of all sampled integer response.

Adding the decision boundary to each region can be treated as a process that is similar

to adding the initial decision boundary. (see equation (3.4).

Bn = median(Sn + ϵ) (3.4)

where Bn denotes the nth decision boundary introduced. Sn is a subset of S. Sn contains

all the samples in the region where the decision boundary Bn is added. ϵ is a random value

that is either a positive or negative small value with equal possibility. The purpose of

adding ϵ is to balance the numbers of 1s and 0s. The proposed decision boundary ensures

near-50% uniformity in every decision region in which the boundary is added. In addition,

introducing each optimal uniformity boundary is a standalone process that has a minimal

impact on uniformity, which can be leveraged in terms of considering the number of decision

32

boundaries and selecting the decision region to add the boundary. As shown in figure 3.6, an

example using the proposed decision boundary is demonstrated. The uniformity remained

at approximately 50% with an increased number of decision boundaries.

Figure 3.6: Uniformity performance with increasing number of decision boundaries

33

Chapter4

Implementaiton

To demonstrate the machine learning resilience performance of the proposed MRO PUF

design, both PDL-RO-PUF and IPD-RO were implemented as the underlying hardware

core. The experimental setup was implemented using a Xilinx Artix-7 FPGA. The evaluated

performance metrics included uniformity, uniqueness, reliability, and machine learning attack

resilience under different modeling attack techniques.

4.1 Underlying Entropy Source

The IPD-RO design (see figure 4.1) uses three input signals: challenge-bit patterns, enable,

and switch control. The output was an oscillating signal. Challenge bit patterns configure

each cascading inverter stage in RO. Each inverter stage contributed to the oscillation fre-

quency. The enable signal is a binary control signal that enables and disables oscillations

through a NAND gate. The switch control signal is also a binary control signal that selects

between the phase 1 and phase 2 operations of the PUF. The IPD-RO structure utilizes prim-

itive LUT elements for the inverter stages in RO. (see Figure 9) Each LUT is programmed

to function as a single configurable inverter. Owing to the multiplexing nature of LUT cells,

the LUT input challenge-bit pattern controls the propagation delay of the inverter, which is

34

selected from several independent candidate inverters. For example, a 3-bit input challenge

pattern for an LUT cell has eight possible combinations. Each combination corresponds to

a delay parameter independent of any of the other seven possibilities. If we consider a tradi-

tional design, as shown in Figure 2, each challenge bit controls the selection of one inverter

among the two. In this case, the total propagation delay of a 3-bit challenge input setting is

the summation of the three selected inverters. The eight possible delays are not independent

but linearly dependent on the three delay stages.

Figure 4.1: The stage structure of IPD-RO-PUF

As shown in figure 4.2, each stage within the IPL-RO-PUF is formed by two cascaded

LUT6s (six-bit input LUT module from Xilinx FPGA library). Among the six inputs of

each LUT, I1 acts as the input of the inverter and is connected to the adjacent LUT output,

I2–I5 takes the 4-bit challenge bit pattern, and I6 takes the switch bit (which sets phase 1

or phase 2 of the operation). At any given time, one LUT takes the switch bit and the other

LUT takes the inversion of the switch bit. This arrangement always makes the two LUTs in

one stage to be in opposite modes. ROs with 1, 2, 4, and 8 of these stages were implemented.

These correspond to PUFs of 4, 8, 16, and 32 bits of the challenge bit, respectively. Because

an odd number of inverters are required in RO to enable oscillation, a 2-input NAND gate

35

based on LUT5 was added to the RO. One of its inputs is connected as part of the ring,

whereas the other input is used as a logic-high-enabling pin for control purposes.

Voltage and temperature are the two main factors affecting RO frequency. To decrease

the variation caused by these two factors, a reference RO was implemented to calibrate the

output from PUF RO. The reference ring is always parallel to the PUF ring. The readings

from the PUF rings were calibrated using the readings from the reference ring. Because

the reference ring and PUF ring both experience the same voltage, temperature, and clock

variations, the common variation is cancelled. Reference RO and PUF RO were instantiated

using the same customized design IP. To better cancel the measurement-related noises, we

constrained the reference RO and PUF RO to be in the same clock and power regions of the

FPGA.

PDL-RO-PUF was implemented using the same RO structure, as shown in figure 4.2.

By setting the switch control bit to a constant value, each intertwined stage behaves the

same as the inverter stage in PDL-RO-PUF. Therefore, the hardware was configured as a

PDL-RO-PUF.

Figure 4.2: Implementation of RO as entropy source

36

4.2 Implementaiton of MRO-PUF

The MRO is implemented as a post-process after the RO integer response values are ex-

tracted. In this study, a single MRO structure was demonstrated with 40-bit IPD-RO and

40-bit PDL-RO configurations. Both were implemented in a Xilinx FPGA Zynq 7000 SoC.

The response data collected from the hardware were paired with the corresponding

challenge bit strings to form CRPs. The challenge patterns are in the form of binary vectors

with lengths that match the RO size. The integer response values were recorded and used

in the modulus and screening process. Note that when the PUF is in service, the modulus

process is performed completely within the FPGA fabric, with no integer value leaving the

FPGA. Leaking the integer response value to a potential attacker could make the system

vulnerable to machine learning modeling attacks.

The response from the same challenge bit string may vary owing to the measurement

noise, even with noise-cancelling reference ROs. (See chapter 5) To that end, each challenge

is tested in multiple trials to evaluate the reliability. The estimated reliability is described

in detail in chapter 5.

4.3 Hardware Overhead Analysis

MRO is enabled by utilizing the counter in the underlying RO-PUF. The hardware complex-

ity depends on the modulus factor chosen. In table 5.5, a hardware analysis on both MRO

and AMRO is provided. The data shown in table 5.5, is based on experimentation on Xilinx

Zynq 7000 FPGA with 10-bit modulus factor. The unit of the data is the number of LUTs

37

used in the Xilinx FPGA. No block memory units or DSP slices are used in this experiment.

Therefore, they are omitted from the table.

Table 4.1: Hardware overhead of MRO and AMRO (measured in number of LUTs)

Modulus factor implemen-

tation

MRO with modulus factor

= X

AMRO with modulus factor

= [X,Y]

Single bit wire 0 9

Constant 147 283

Variable signal 350 710

For both MRO and AMRO, three different modulus processes are implemented to

demonstrate the relation between the level of modulus factor control and hardware over-

head. The first MF implementation aims to minimize the hardware footprint. In the case of

MRO, a single wire connected to the one bit of the frequency counter can provide the binary

response with modulus factor of the order of 2. In terms of AMRO, some logic to gener-

ate the parity bit of the challenge pattern is required. Therefore, there is a small amount

of hardware overhead. The second MF implementation provides full modulus factor space.

The modulus factor is set as a constant before deployment. Such implementation is suitable

for applications which do not need to modify the properties of the PUF in real-time. The

constant modulus factor used in this experiment is the largest prime number in the MF

space which is 1021. The third MF implementation provides the maximum control over MF.

The full modulus factor space is available. In addition, the modulus factor can be changed

in real time. With maximizing the controllability, it requires the most hardware overhead

amongst the three implementations. Such configuration is ideal for applications that have

different usage for the PUF. For example, there may be scenarios that prioritize reliability

while others prioritize ML resiliency. For the second and third implementations, the AMRO

38

requires roughly double the hardware resources than MRO.

39

Chapter5

Investigation on MRO Performance

The proposed MRO was a variant of the RO-PUF family. Therefore, the standard

performance metrics for PUFs are applicable. The standard performance metrics considered

in this study include uniformity, bit aliasing, uniqueness, correlation, reliability, and machine

learning resilience.

The MRO test bench was implemented on a Xilinx Artix-7 FPGA (see figure 5.1). The

operation was managed using Zynq PS (processing system). For a single-frequency reading,

Zynq first sends the challenge-bit pattern to the BRAM input. BRAM then passes this

challenge to the RO. After the counter was cleared, RO was enabled for a predetermined

period of time. The counter counts the number of oscillation cycles. The counter value is

then read by the BRAM and passed on to the PS.

Both PDL-RO-PUF and IPD-RO-PUF require aggregating multiple frequency readings

to the final IRV. In this test bench, the calculation of the IRV and modulus process of the

MRO were postprocessed off the FPGA chips.

In this work, we implemented both PDL-RO-PUF and IPD-RO-PUF on five Xilinx

Zynq FPGAs. On each FPGA, we implemented 32 instantiations of each type of RO-PUF

as the underlying entropy source. We collected 65,536 unique CRPs from each instantiation.

40

The collected experimental data were used for performance metrics analysis.

Figure 5.1: Block diagram of Xilinx Zynq testbench

5.1 Standard Performance Metrics Analysis

5.1.1 Uniformity

As defined in equation (2.1), the uniformity was computed with varying modulus factors. As

shown in figure 5.2, the uniformity of the experimental data was close to the ideal scenario

of 50%. However, we do find that the uniformity either slightly improves or deteriorates

depending on the underlying entropy source. (Where PDL has slight improvement with

more aggressive modulus factor and IPD has slight decrease)

41

Figure 5.2: Uniformity with PDL-RO-PUF and IPD-RO-PUF, modulus factors up to 5 times
the general sigma

5.1.2 Bit-aliasing

To investigate the impact of MRO on bit aliasing, bit-aliasing is computed (see equation (2.2)

for 160 instances of both PDL-RO-PUF and IPD-RO-PUF. Each instance generates 65,536

CRPs, and the distribution of bit aliasing is observed for each RO-PUF configuration. Specif-

ically, the analysis includes the following configurations: ideal, traditional (without modulus

process), and MRO with the modulation factor (MF) varying from 0.2 to 2. The ideal dis-

tribution is computed using a random number generator that generates the same number of

CRPs as the other configurations, and its mean is close to 50%, with a standard deviation

42

related to the sample size. In this case, the standard deviation of the ideal distribution is

3.95. Table 5.4 shows that without the modulus process, the mean is close to the ideal, but

both PDL and IPD have worse standard deviation. Notably, PDL-RO based implementation

has over 7 times the standard deviation compared to the ideal configuration. However, with

the modulus process, the standard deviation of the bit aliasing distribution improves. Both

PDL-RO and IPD-RO based implementations achieve near-ideal bit aliasing performance

when the MF is lower than 0.5.

Table 5.1: Distribution comparison of bit aliasing analysis

PDL-RO-PUF IPD-RO-PUF

configuration mean std mean std

Ideal 50.000 3.950 50.000 3.950

MF=0.2 50.051 3.939 50.012 3.948

MF=0.425 50.015 3.964 50.079 3.955

MF=0.65 50.032 4.177 50.114 3.955

MF=0.875 50.047 7.168 50.163 3.947

MF=1.1 50.039 12.722 50.146 3.975

MF=1.325 50.017 18.392 50.122 4.064

MF=1.55 50.007 23.226 50.120 4.186

MF=1.775 50.005 27.045 50.144 4.357

MF=2 50.008 29.868 50.131 4.510

w/o MF 50.020 34.495 50.134 4.832

43

5.1.3 Uniqueness

Uniqueness is defined as equation (2.3). As shown in figure 5.3, the conventional uniqueness

of PDL-RO-PUF was significantly improved by the addition of modulus process. As the

uniqueness reduced from over 70% to approximately 50% at 0.6 modulus factor. In contrast,

IPD- RO-PUF, which has good uniqueness performance natively, benefits very little from

the MRO.

Figure 5.3: Conventional uniqueness with PDL-RO-PUF and IPD-RO-PUF, modulus factors
up to 5 time sthe general sigma

To further investigate the performance of uniqueness, the distribution of the Hamming

distance between each PUF instance was also investigated. (see table 5.2) Similar to the

testing setup of bit aliasing, three configurations are included: ideal, traditional (without

44

modulus process), and MRO. The IPD and PDL based implementation have significantly

larger standard deviation without modulus process. The PDL-RO based implementation

also shows a shift of mean, which is aligned with the observation in figure 5.3. Both IPD-RO

and PDL benefit with the addition of modulus process. With MF at approximately 0.5, both

PDL-RO and IPD-RO archived close to ideal distribution, where the mean is approximately

50% and the standard deviation is approximately 0.196.

Table 5.2: Distribution comparison of uniqueness analysis

PDL-RO-PUF IPD-RO-PUF

configuration mean std mean std

Ideal 50.000 0.196 50.000 0.196

MF=0.2 49.998 0.196 49.999 0.198

MF=0.425 50.002 0.196 50.000 0.195

MF=0.65 50.037 0.209 50.001 0.197

MF=0.875 50.720 0.654 50.000 0.203

MF=1.1 52.943 1.591 50.004 0.279

MF=1.325 56.493 2.393 50.018 0.627

MF=1.55 60.542 2.833 50.038 1.353

MF=1.775 64.406 2.991 50.068 2.299

MF=2 67.640 3.000 50.095 3.242

Traditional 73.634 2.848 50.156 5.344

5.1.4 Correlation

The Feiten’s correlation analysis is defined as equation (2.4) equation (2.5) equation (2.6).

45

The addition of the modulus process is expected to improve the correlation metric of

a PUF. Similar to the distribution analysis of bit-aliasing and uniqueness. The mean and

standard deviation for Feiten’s correlation are shown in table 5.3. The ideal mean is approx-

imately 0 and the standard deviation is 0.0791 considering the sample size. Without the

modulus process, both PDL-RO and IPD-RO based implementations exhibit larger stan-

dard deviation which are 0.4785 and 0.1336 respectively. However, with an MF below 0.875,

the correlation distributions are close to the ideal. This indicates that both IPD-RO and

PDL-RO based implementations can benefit from the addition of MRO.

Table 5.3: Distribution comparison of Feiten’s correlation analysis

PDL-RO-PUF IPD-RO-PUF

configuration mean std mean std

Ideal 0.0002 0.0791 0.0002 0.0791

MF=0.2 0.0000 0.0790 0.0002 0.0791

MF=0.425 0.0001 0.0792 0.0001 0.0790

MF=0.65 -0.0001 0.0792 0.0003 0.0791

MF=0.875 0.0001 0.0810 0.0002 0.0792

MF=1.1 0.0002 0.1039 0.0003 0.0793

MF=1.325 -0.0002 0.1589 0.0003 0.0798

MF=1.55 -0.0001 0.2278 0.0003 0.0833

MF=1.775 0.0006 0.2964 0.0000 0.0912

MF=2 -0.0003 0.3729 0.0003 0.1022

Traditional -0.0004 0.4785 0.0000 0.1336

46

5.1.5 Reliability

For each CRP, the reliability was calculated using equation (2.7). The overall reliability

for a PUF design across all challenges was calculated by taking the mean of all measured

challenge-specific reliability.

Because the cause of unreliability is usually measurement noise crossing the decision

boundary, an increased number of decision boundaries from the modulus process would have

a negative impact on reliability.

Considering the impact of MRO, the reliability degrades with a decreasing modulus

factor, as expected. However, as shown in the following figure (see figure 5.4), the reliability

was still over 95% when the modulus factor was above 2.

47

Figure 5.4: Reliability without screening, modulus factors up to 5 time sthe general sigma

48

Figure 5.5: Reliability without screening, modulus factors up to 5 time sthe general sigma

Furthermore, several methods can be implemented to improve reliability, such as error-

correction codes and CRP screening protocol. In this study, we experimented with a simple

screening policy to demonstrate the potential improvement in reliability while sacrificing the

challenge space. The screening policy is defined as follows. When a response appears to have

a distance smaller than 1.5 specific sigma values to any decision boundary, it is considered

unreliable. Hence, the corresponding challenge-response pairs were discarded. The reliability

with and without the screening policy is shown in figure 5.4 and figure 5.5, respectively. The

data reduction rates are shown in figure 5.6.

49

Figure 5.6: Data reduction rate from the screening, modulus factors up to 5 time sthe general
sigma

5.2 Machine Learning Analysis

5.2.1 CRP-based Modelling

To demonstrate resilience against machine-learning attacks, both PDL-RO-PUF and IPD-

RO-PUF were used as entropy sources. We used 8 RO instances from 2 Xilinx FPGAs for

the ML analysis to provide generality across different FPGAs and RO instances. (2 RO

instances by 2 FPGAs for PDL and 2 by 2 for IPD) We collected 65,536 CRPs from each

RO instances with same set of challenge patterns. 70% of the data is used for training. The

50

rest is used for testing and cross-validation. The data volume is sufficiently large compared

to other recent work on ML resiliency analysis on PUF. (see Table 3) The hardware used for

the ML testbench is the following.

• CPU: Intel Core i7-6700K

• RAM: 32GB

• GPU: Nvidia GeForce RTX 2080

The software testbench is implemented with python 3.8.10. The detailed ML training con-

figuration is shown in Table 2. Note that we used parameter tuner for both SVM and NN

training to increase the confidence in the testing result which resulted in increment in train-

ing time. The other ML methods performed reasonably well with the default parameters.

With the provided configuration, the average training time for a single set of CRPs consid-

ering all ML method is approximately 40 minutes. During each training session, the SVM,

NN and GB take up most of the training time.

51

Table 5.4: Distribution comparison of bit aliasing analysis

ML method
Average train-

ing time [sec]
Configuration

LR 2.68 sklearn 0.24.0[34]

default parameters

SVM 1146.33 sklearn 0.24.0 w/ grid search

C=1

gamma = [scale, 0.1, 0.01]

kernel = rbf

GB 384.48 sklearn 0.24.0

n estimators=300

learning rate=0.7

max depth=5

RB 58.84 sklearn 0.24.0

default parameters

NN 666.93 keras 2.4.3 [35] with

kerastunner 1.0.2 RandomSearch

num layers = 4

weights per layer = [min=32, max=256]

activation =[relu, tanh, sigmoid]

learning rate = [min=1e-5, max=1e-2]

loss function = binary crossentropy

Each modeling method was tested against three different MRO configurations. The first

configuration is the single-modulus-factor MRO (figure 5.7 and figure 5.10). It is obvious

52

that MRO has the potential to reduce the ML attack accuracy when the modulus factor is

below 2. Furthermore, the ML attack accuracy can be reduced to approximately 50%, which

indicates the design under test is completely unpredictable when the modulus factor is below

1. The second and third configurations are AMRO with different modulus-factor policies.

The second configuration follows a modulus policy, which has two alternating modulus fac-

tors that differ by a factor of two. (figure 5.8 and figure 5.11) The third configuration follows

a policy that has one alternating modulus factor fixtured on 1 and sweeping the other. (fig-

ure 5.9 and figure 5.12) The fixtured modulus factor is selected based on the result from the

first configuration (figure 5.7 and figure 5.10), where 1 general sigma is the maximum mod-

ulus factor achieving 50% prediction accuracy. AMRO policies provide options for designers

to fine-tune the balance of the aforementioned performance metrics.

Figure 5.7: ML attack accuracy analysis on PDL-PO-PUF using single modulus factor MRO

53

Figure 5.8: ML attack accuracy analysis on PDL-RO-PUF using AMRO with a policy of
two modulus factor different by a factor of 2

54

Figure 5.9: ML attack accuracy analysis on PDL-RO-PUF using AMRO with a policy of
one modulus factor fixture on 1 while varying the other

55

Figure 5.10: ML attack accuracy analysis on IPD-PO-PUF using single modulus factor MRO

56

Figure 5.11: ML attack accuracy analysis on IPD-RO-PUF using AMRO with a policy of
two modulus factor different by a factor of 2

57

Figure 5.12: ML attack accuracy analysis on IPD-RO-PUF using AMRO with a policy of
one modulus factor fixture on 1 while varying the other

5.2.2 Reliability-based Modelling

The covariance matrix adaptation evolution strategy (CMA-ES) is one of the most effective

ML modeling attack methods against PUFs.[13] The idea of the reliability-based CMA-ES

attack is to perform repeated measurements for the same challenge and observe its reliability

performance. The greater the reliability, the farther the IRV from the decision boundary.

The reliability values measured from each challenge form the target reliability vector. Sim-

ilar to a traditional CMA-ES attack, the Becker’s reliability attack generates several PUF

models.[13] A hypothetical reliability vector is calculated from each generated PUF model.

58

The covariance between the hypothetical reliability vector and the target reliability vector

reflects the fitness of the PUF model. The fittest PUF model, found by the CMA-ES algo-

rithm, provides a set of modeling parameters that can best describe the target PUF. The

modeling parameters can also be considered as an abstraction of the physical parameters of

the PUF, such as the inverter delay of the target PUF. Some PUF designs, such as iPUF[15],

are resilient to CMA-ES attacks owing to their superior reliability. However, a highly reliable

PUF may be vulnerable to other CRP-based ML modeling methods.[18] Therefore, a new

method to overcome such a trade-off is required.

Using MRO, we explored a different approach to improve resiliency against reliability-

based modeling. To demonstrate the advantage of MRO’s resilience against CMA-ES, a

40-bit PDL-RO-PUF was simulated with 1000 unique CRPs. Each unique CRP sample was

sampled 100 times using an additive Gaussian noise. The CMA-ES algorithm generates

parameters and evaluates their reliability and the covariance between their reliability and

that of the target PUF. To better visualize the mechanism of the CMA-ES, we assumed

that the CMA-ES knows 38 of the 40 delay parameters of the target PUF. A 2-D reliability

covariance map can be drawn, as shown in figure 5.13. A warmer color in the covariance map

represents a better correlation between the reliability vector from the modeling parameters

and target reliability. The red dots in the covariance map represent the target delay values.

It is evident that there is only one peak in the 2-D covariance map shown in figure 5.13

(a). The peak is also aligned with the true target delay value. The area closer to the target

delay value has a higher covariance value. As there is only one peak in the 2-d map, we can

extrapolate the 2-D map to a 40-D map, which would also have only one extremum.

Considering the modulus process in MRO, the number of decision boundaries increases,

resulting in multiple sets of modeling parameters with similar reliability performance. By

introducing multiple response decision boundaries (see figure 3.2), different points on the

59

x-axis can have the same reliability. As shown in figure 5.13 (b), multiple peaks are shown

in the covariance map, which traps the CMA-ES algorithm in sets of parameters that have

high covariance, but are different from the true delay parameter. Subsequently, the trapped

parameters will yield inaccurate predictions of the responses. In the MRO designs, the

number of traps increases with a decreasing modulus factor. Furthermore, the number of

traps increased exponentially with the number of dimensions. For example, there are n

prominent traps that have a similar covariance value to the true covariance peak in a 2D

plot. Extrapolating from the 2-delay visualization to 40 delay parameter space would result

in n20 prominent traps in the 40-D covariance space, which serves as an effective defensive

mechanism against CMA-ES attacks.

Figure 5.13: Reliability covariance map with 2-delay parameter space

60

5.3 Comparison with Other PUFs

The proposed MRO-PUF demonstrates a strong potential in improving machine learning re-

siliency, uniqueness and uniformity while maintaining reasonably good reliability. As shown

in Table 3, combining MRO and AMRO with either PDL and IPD provides close to ideal

uniformity, uniqueness, and machine learning resiliency. With the modular factor config-

uration included in the table, the IPD has a slightly reduced reliability just above 90%.

The PDL based MRO and AMRO achieved approximately 98% reliability. The performance

metrics discussed have different importance in different PUF usage. [36] The proposed MRO

and AMRO offers a set of tunable parameters which enables the developer to make tradeoff

among the PUF properties, such as ML resiliency, reliability and area.

61

Table 5.5: Hardware overhead of MRO and AMRO (measured in number of LUTs)

Design Uniformity Uniqueness Reliability ML Resiliency
Training Data

Volume
Considered ML Method

RS-LPUF Fine PDL[37] 51.02% 49.08% 99.49% 53.00% 200 LR, CMA-ES

Transformer PUF with 8 XOR[38] - 49.44% 98.12% ¿ 60% 10000 LR, CMA-ES

SCA-PUF[39] 52.80% 49.90% 91% ¡60% 10000 LR, SVM-RBF, NN

CA-PUF[40] 50.06% 55.63% 92.54% ¡60% 50000 LR, SVM

XOR-mesh PUF[41] 46.04% 44.64% 92.87% 52.40% 10000 LR, SVM

64-bits 8 XOR Arbiter PUF[42] 50% ≈10% ¿98% 50.40% 24000 NN

SCROPUF[43] 49.3% 47.4% - - - -

CT-PUF[44] 50% ≈49% ¿99% ≈60% 100000 LR, SVM, NN

FF-APUF[45] - 41.53% 97.10% ¿95% 20000 LR, CMA-ES

XOR-APUF[36] 50.73% 48.69% 99.41% 64.9% 40000 LR, SVM, NN, CMA-ES

MPUF[46] 37.03% 40.6% - ¡80% 10000 LR, CMA-ES

PDL-RO-PUF 49.99% 73.75% 98.43% 95.74% 44447 LR, SVM-RBF, Gradient Boosting, Random Forest, NN

IPD-RO-PUF 49.31% 50.32% 98.15% 94.68% 44447 LR, SVM-RBF, Gradient Boosting, Random Forest, NN

Proposed Design
Modulus

Factor

PDL with MRO 0.6 49.80% 50.01% 97.78% 51.33% 44447 LR, SVM-RBF, Gradient Boosting, Random Forest, NN

PDL with AMRO [0.6, 1] 49.78% 50.90% 98.09% 51.36% 44447 LR, SVM-RBF, Gradient Boosting, Random Forest, NN

IPD with MRO 0.6 49.32% 50.01% 91.46% 50.94% 44447 LR, SVM-RBF, Gradient Boosting, Random Forest, NN

IPD with AMRO [0.6, 1] 49.34% 50.01% 93.23% 50.84% 44447 LR, SVM-RBF, Gradient Boosting, Random Forest, NN

62

Chapter6

Conclusion

This work proposes MRO, a novel process to improve the machine learning resiliency of

PUFs using a modulus module. We begin with a discussion on the limitations of scalabil-

ity and controllability in system complexity of existing RO-PUFs structures. To overcome

this limitation, we proposed a modular modulus process. The proposed MRO design shows

promising capability in increasing ML resiliency while preserving other PUF characteristics

such as reliability. Furthermore, an alternating MRO scheme is introduced for further con-

trollability in terms of balancing ML resiliency with reliability. We found that with the

proposed scheme, the MRO design can achieve an accuracy of near-50% ML with a relia-

bility above 90%, while maintaining or improving other performance metrics of the PUF.

MRO also improves resiliency against reliability attacks by introducing a significant number

of traps against the CMA-ES algorithm. This result shows the potential of MRO to improve

a large variant of PUFs.

63

Chapter7

Future Work

The work presented in this thesis has proposed and evaluated the effectiveness of MRO

and AMRO in mitigating machine learning attacks. However, we have identified challenges

with the current design, particularly regarding the reliability degradation associated with

aggressive modulus factors. Moving forward, we believe there are two potential directions

for future exploration.

Firstly, it would be intriguing to investigate alternative entropy sources. Our experi-

ments with PDL and IPD-RO-PUF have shown promising results in terms of improved ML

resiliency. There may be other entropy sources, such as TERO-PUF, that could offer a better

balance between ML resiliency and other performance metrics.

Secondly, we aim to abstract the decision boundary. One of the main goals of our

proposed design is to enhance controllability in fine-tuning performance metrics. While the

modulus process has been a promising method for introducing additional decision boundaries

to PUF, our experiments have revealed that the decision boundary does not necessarily need

to be constrained by the modulus process. For example, the discussion with the optimal

uniformity is a form of redefining the decision boundary. For future research, we can explore

the possibility of proposing another type of transformation that can be applied to interme-

diate frequency measurement, thereby introducing additional decision boundaries with more

64

freedom.

65

Bibliography

[1] R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical One-Way Functions,” Science, vol. 297,

no. 5589, pp. 2026–2030, 2002. doi: 10.1126/science.1074376. [Online]. Available: https://www.

science.org/doi/abs/10.1126/science.1074376.

[2] A. Maiti, I. Kim, and P. Schaumont, “A robust physical unclonable function with enhanced challenge-

response set,” IEEE Transactions on Information Forensics and Security, vol. 7, no. 1 PART 2,

pp. 333–345, 2012, issn: 15566013. doi: 10.1109/TIFS.2011.2165540.

[3] A. Shamsoshoara, A. Korenda, F. Afghah, and S. Zeadally, “A survey on physical unclonable function

(PUF)-based security solutions for Internet of Things,” Computer Networks, vol. 183, no. January,

p. 107 593, 2020, issn: 13891286. doi: 10.1016/j.comnet.2020.107593. [Online]. Available: https:

//doi.org/10.1016/j.comnet.2020.107593.

[4] J. W. Lee, D. Lim, B. Gassend, G. E. Suh, M. Van Dijk, and S. Devadas, “A technique to build a

secret key in integrated circuits for identification and authentication applications,” IEEE Symposium

on VLSI Circuits, Digest of Technical Papers, no. CIRCUITS SYMP. Pp. 176–179, 2004. doi: 10.

1109/vlsic.2004.1346548.

[5] B. Gassend, D. Clarke, M. Van Dijk, and S. Devadas, “Silicon physical random functions,” Proceed-

ings of the ACM Conference on Computer and Communications Security, pp. 148–160, 2002, issn:

15437221. doi: 10.1145/586131.586132.

[6] A. Cherkaoui, L. Bossuet, and C. Marchand, “Design, Evaluation, and Optimization of Physical Un-

clonable Functions Based on Transient Effect Ring Oscillators,” IEEE Transactions on Information

Forensics and Security, vol. 11, no. 6, pp. 1291–1305, 2016, issn: 15566013. doi: 10.1109/TIFS.2016.

2524666.

66

https://doi.org/10.1126/science.1074376
https://www.science.org/doi/abs/10.1126/science.1074376
https://www.science.org/doi/abs/10.1126/science.1074376
https://doi.org/10.1109/TIFS.2011.2165540
https://doi.org/10.1016/j.comnet.2020.107593
https://doi.org/10.1016/j.comnet.2020.107593
https://doi.org/10.1016/j.comnet.2020.107593
https://doi.org/10.1109/vlsic.2004.1346548
https://doi.org/10.1109/vlsic.2004.1346548
https://doi.org/10.1145/586131.586132
https://doi.org/10.1109/TIFS.2016.2524666
https://doi.org/10.1109/TIFS.2016.2524666

[7] D. E. Holcomb, W. P. Burleson, and K. Fu, “Power-Up SRAM state as an identifying fingerprint and

source of true random numbers,” IEEE Transactions on Computers, vol. 58, no. 9, pp. 1198–1210,

2009, issn: 00189340. doi: 10.1109/TC.2008.212.

[8] S. S. Kumar, J. Guajardo, R. Maes, G. J. Schrijen, and P. Tuyls, “The Butterfly PUF protecting IP on

every FPGA,” 2008 IEEE International Workshop on Hardware-Oriented Security and Trust, HOST,

no. 71369, pp. 67–70, 2008. doi: 10.1109/HST.2008.4559053.

[9] U. Rührmair and M. Van Dijk, “PUFs in security protocols: Attack models and security evaluations,”

Proceedings - IEEE Symposium on Security and Privacy, pp. 286–300, 2013, issn: 10816011. doi:

10.1109/SP.2013.27.

[10] U. Ruhrmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, and J. Schmidhuber, “Model building attacks

on Physically Unclonable Functions,” Acmccs 2010, vol. 2010, 2010. [Online]. Available: http://

portal.acm.org/citation.cfm?id=1866335.

[11] Y. Ikezaki, Y. Nozaki, and M. Yoshikawa, “Deep learning attack for physical unclonable function,”

2016 IEEE 5th Global Conference on Consumer Electronics, GCCE 2016, pp. 1–2, 2016. doi: 10.

1109/GCCE.2016.7800478.

[12] A. Vijayakumar, V. C. Patil, C. B. Prado, and S. Kundu, “Machine learning resistant strong PUF:

Possible or a pipe dream?” Proceedings of the 2016 IEEE International Symposium on Hardware

Oriented Security and Trust, HOST 2016, pp. 19–24, 2016. doi: 10.1109/HST.2016.7495550.

[13] G. T. Becker, “The gap between promise and reality: On the insecurity of XOR arbiter PUFs,” Lecture

Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics), vol. 9293, no. September 2015, pp. 535–555, 2015, issn: 16113349. doi:

10.1007/978-3-662-48324-4{_}27.

[14] G. E. Suh and S. Devadas, “Physical unclonable functions for device authentication and secret key

generation,” Proceedings - Design Automation Conference, pp. 9–14, 2007, issn: 0738100X. doi: 10.

1109/DAC.2007.375043.

[15] P. H. Nguyen, D. P. Sahoo, C. Jin, K. Mahmood, U. Rührmair, and M. Van Dijk, “The Interpose

PUF: Secure PUF Design against State-of-the-art Machine Learning Attacks,” IACR Transactions on

Cryptographic Hardware and Embedded Systems, vol. 0, no. 0, pp. 243–290, 2019. doi: 10.46586/

tches.v2019.i4.243-290.

67

https://doi.org/10.1109/TC.2008.212
https://doi.org/10.1109/HST.2008.4559053
https://doi.org/10.1109/SP.2013.27
http://portal.acm.org/citation.cfm?id=1866335
http://portal.acm.org/citation.cfm?id=1866335
https://doi.org/10.1109/GCCE.2016.7800478
https://doi.org/10.1109/GCCE.2016.7800478
https://doi.org/10.1109/HST.2016.7495550
https://doi.org/10.1007/978-3-662-48324-4{_}27
https://doi.org/10.1109/DAC.2007.375043
https://doi.org/10.1109/DAC.2007.375043
https://doi.org/10.46586/tches.v2019.i4.243-290
https://doi.org/10.46586/tches.v2019.i4.243-290

[16] S. V. Sandeep Avvaru and K. K. Parhi, “Feed-forward XOR PUFs: Reliability and attack-resistance

analysis,” Proceedings of the ACM Great Lakes Symposium on VLSI, GLSVLSI, pp. 287–290, 2019.

doi: 10.1145/3299874.3318019.

[17] U. Ruhrmair, J. Solter, F. Sehnke, et al., “PUF modeling attacks on simulated and silicon data,”

IEEE Transactions on Information Forensics and Security, vol. 8, no. 11, pp. 1876–1891, 2013, issn:

15566013. doi: 10.1109/TIFS2013.2279798.

[18] A. Wang, W. Tan, Y. Wen, and Y. Lao, “NoPUF: A Novel PUF Design Framework Toward Modeling

Attack Resistant PUFs,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 68, no. 6,

pp. 2508–2521, 2021, issn: 15580806. doi: 10.1109/TCSI.2021.3067319.

[19] K. Stangherlin, Z. Wu, H. Patel, and M. Sachdev, “Enhancing strong puf security with nonmonotonic

response quantization,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 31,

no. 1, pp. 55–64, 2023. doi: 10.1109/TVLSI.2022.3212271.

[20] J. Liu, Y. Zhao, Y. Zhu, C.-H. Chan, and R. P. Martins, “A weak puf-assisted strong puf with inherent

immunity to modeling attacks and ultra-low ber,” IEEE Transactions on Circuits and Systems I:

Regular Papers, vol. 69, no. 12, pp. 4898–4907, 2022. doi: 10.1109/TCSI.2022.3206214.

[21] M. Majzoobi, F. Koushanfar, and S. Devadas, “FPGA PUF using programmable delay lines,” 2010

IEEE International Workshop on Information Forensics and Security, WIFS 2010, 2010. doi: 10.

1109/WIFS.2010.5711471.

[22] B. Habib, K. Gaj, and J. P. Kaps, “FPGA PUF based on programmable LUT delays,” Proceedings -

16th Euromicro Conference on Digital System Design, DSD 2013, pp. 697–704, 2013. doi: 10.1109/

DSD.2013.79.

[23] L. Feiten, J. Oesterle, T. Martin, M. Sauer, and B. Becker, “Systemic Frequency Biases in Ring

Oscillator PUFs on FPGAs,” IEEE Transactions on Multi-Scale Computing Systems, vol. 2, no. 3,

pp. 174–185, 2016, issn: 23327766. doi: 10.1109/TMSCS.2016.2598739.

[24] Y. Hu, Y. Jiang, and W. Wang, “Compact FPGA Ring Oscillator Physical Unclonable Functions,”

TechRxiv, 2021. doi: 10.36227/techrxiv.14214401.v1. [Online]. Available: https://www.techrxiv.

org/articles/preprint/Compact_FPGA_Ring_Oscillator_Physical_Unclonable_Functions_

Circuits_Based_on_Intertwined_Programmable_Delay_Paths/14214401.

68

https://doi.org/10.1145/3299874.3318019
https://doi.org/10.1109/TIFS2013.2279798
https://doi.org/10.1109/TCSI.2021.3067319
https://doi.org/10.1109/TVLSI.2022.3212271
https://doi.org/10.1109/TCSI.2022.3206214
https://doi.org/10.1109/WIFS.2010.5711471
https://doi.org/10.1109/WIFS.2010.5711471
https://doi.org/10.1109/DSD.2013.79
https://doi.org/10.1109/DSD.2013.79
https://doi.org/10.1109/TMSCS.2016.2598739
https://doi.org/10.36227/techrxiv.14214401.v1
https://www.techrxiv.org/articles/preprint/Compact_FPGA_Ring_Oscillator_Physical_Unclonable_Functions_Circuits_Based_on_Intertwined_Programmable_Delay_Paths/14214401
https://www.techrxiv.org/articles/preprint/Compact_FPGA_Ring_Oscillator_Physical_Unclonable_Functions_Circuits_Based_on_Intertwined_Programmable_Delay_Paths/14214401
https://www.techrxiv.org/articles/preprint/Compact_FPGA_Ring_Oscillator_Physical_Unclonable_Functions_Circuits_Based_on_Intertwined_Programmable_Delay_Paths/14214401

[25] L. Feiten, M. Sauer, and B. Becker, “On Metrics to Quantify the Inter-Device Uniqueness of Physically

Unclonable Functions,” pp. 1–11, 2016.

[26] F. Wilde, B. M. Gammel, and M. Pehl, “Spatial Correlation Analysis on Physical Unclonable Func-

tions,” IEEE Transactions on Information Forensics and Security, vol. 13, no. 6, pp. 1468–1480, 2018,

issn: 15566013. doi: 10.1109/TIFS.2018.2791341.

[27] D. P. Sahoo, D. Mukhopadhyay, R. S. Chakraborty, and P. H. Nguyen, “A Multiplexer-Based Arbiter

PUF Composition with Enhanced Reliability and Security,” IEEE Transactions on Computers, vol. 67,

no. 3, pp. 403–417, 2018, issn: 00189340. doi: 10.1109/TC.2017.2749226.

[28] J. Berkson, “Application of the logistic function to bio-assay,” Journal of the American Statistical

Association, vol. 39, no. 227, pp. 357–365, 1944. doi: 10.1080/01621459.1944.10500699. eprint:

https://doi.org/10.1080/01621459.1944.10500699. [Online]. Available: https://doi.org/10.

1080/01621459.1944.10500699.

[29] G. Hospodar, R. Maes, and I. Verbauwhede, “Machine learning attacks on 65nm Arbiter PUFs: Accu-

rate modeling poses strict bounds on usability,” WIFS 2012 - Proceedings of the 2012 IEEE Interna-

tional Workshop on Information Forensics and Security, pp. 37–42, 2012. doi: 10.1109/WIFS.2012.

6412622.

[30] J. H. Friedman, “Greedy function approximation: A gradient boosting machine,” Annals of statistics,

pp. 1189–1232, 2001.

[31] V. Svetnik, A. Liaw, C. Tong, J. C. Culberson, R. P. Sheridan, and B. P. Feuston, “Random forest: A

classification and regression tool for compound classification and qsar modeling,” Journal of chemical

information and computer sciences, vol. 43, no. 6, pp. 1947–1958, 2003.

[32] Y. Tanaka, S. Bian, M. Hiromoto, and T. Sato, “Coin Flipping PUF: A Novel PUF With Improved Re-

sistance Against Machine Learning Attacks,” IEEE Transactions on Circuits and Systems II: Express

Briefs, vol. 65, no. 5, pp. 602–606, 2018, issn: 15497747. doi: 10.1109/TCSII.2018.2821267.

[33] S. Kumar and M. Niamat, “Machine learning based modeling attacks on a configurable puf,” in

NAECON 2018 - IEEE National Aerospace and Electronics Conference, 2018, pp. 169–173. doi: 10.

1109/NAECON.2018.8556818.

[34] F. Pedregosa, G. Varoquaux, A. Gramfort, et al., “Scikit-learn: Machine learning in Python,” Journal

of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

69

https://doi.org/10.1109/TIFS.2018.2791341
https://doi.org/10.1109/TC.2017.2749226
https://doi.org/10.1080/01621459.1944.10500699
https://doi.org/10.1080/01621459.1944.10500699
https://doi.org/10.1080/01621459.1944.10500699
https://doi.org/10.1080/01621459.1944.10500699
https://doi.org/10.1109/WIFS.2012.6412622
https://doi.org/10.1109/WIFS.2012.6412622
https://doi.org/10.1109/TCSII.2018.2821267
https://doi.org/10.1109/NAECON.2018.8556818
https://doi.org/10.1109/NAECON.2018.8556818

[35] F. Chollet et al. “Keras.” (2015), [Online]. Available: https://github.com/fchollet/keras.

[36] N. N. Anandakumar, M. S. Hashmi, and M. A. Chaudhary, “Implementation of efficient xor arbiter

puf on fpga with enhanced uniqueness and security,” IEEE Access, vol. 10, pp. 129 832–129 842, 2022.

doi: 10.1109/ACCESS.2022.3228635.

[37] N. N. Anandakumar, M. S. Hashmi, and S. K. Sanadhya, “Compact Implementations of FPGA-based

PUFs with Enhanced Performance,” Proceedings - 2017 30th International Conference on VLSI Design

and 2017 16th International Conference on Embedded Systems, VLSID 2017, pp. 161–166, 2017. doi:

10.1109/VLSID.2017.7.

[38] Z. Wei, Y. Cui, Y. Chen, C. Wang, C. Gu, and W. Liu, “Transformer puf : A highly flexible configurable

ro puf based on fpga,” in 2020 IEEE Workshop on Signal Processing Systems (SiPS), 2020, pp. 1–6.

doi: 10.1109/SiPS50750.2020.9195259.

[39] H. Zhuang, X. Xi, N. Sun, and M. Orshansky, “A strong subthreshold current array puf resilient to

machine learning attacks,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67,

no. 1, pp. 135–144, 2020. doi: 10.1109/TCSI.2019.2945247.

[40] H. Nassar, L. Bauer, and J. Henkel, “Capuf: Cascaded puf structure for machine learning resiliency,”

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 41, no. 11,

pp. 4349–4360, 2022. doi: 10.1109/TCAD.2022.3197539.

[41] A. Rajan and S. Sankaran, “Lightweight and attack-resilient puf for internet of things,” in 2020 IEEE

International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS), 2020, pp. 139–142.

doi: 10.1109/iSES50453.2020.00039.

[42] K. T. Mursi, Y. Zhuang, M. S. Alkatheiri, and A. O. Aseeri, “Extensive examination of xor arbiter

pufs as security primitives for resource-constrained iot devices,” in 2019 17th International Conference

on Privacy, Security and Trust (PST), 2019, pp. 1–9. doi: 10.1109/PST47121.2019.8949070.

[43] M. Choudhury, N. Pundir, M. Niamat, and M. Mustapa, “Analysis of a novel stage configurable ropuf

design,” in 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS),

2017, pp. 942–945. doi: 10.1109/MWSCAS.2017.8053080.

[44] J. Zhang, C. Shen, Z. Guo, Q. Wu, and W. Chang, “Ct puf: Configurable tristate puf against machine

learning attacks for iot security,” IEEE Internet of Things Journal, vol. 9, no. 16, pp. 14 452–14 462,

2022. doi: 10.1109/JIOT.2021.3090475.

70

https://github.com/fchollet/keras
https://doi.org/10.1109/ACCESS.2022.3228635
https://doi.org/10.1109/VLSID.2017.7
https://doi.org/10.1109/SiPS50750.2020.9195259
https://doi.org/10.1109/TCSI.2019.2945247
https://doi.org/10.1109/TCAD.2022.3197539
https://doi.org/10.1109/iSES50453.2020.00039
https://doi.org/10.1109/PST47121.2019.8949070
https://doi.org/10.1109/MWSCAS.2017.8053080
https://doi.org/10.1109/JIOT.2021.3090475

[45] C. Gu, W. Liu, Y. Cui, N. Hanley, M. O’Neill, and F. Lombardi, “A flip-flop based arbiter physical

unclonable function (apuf) design with high entropy and uniqueness for fpga implementation,” IEEE

Transactions on Emerging Topics in Computing, vol. 9, no. 4, pp. 1853–1866, 2021. doi: 10.1109/

TETC.2019.2935465.

[46] Q. Ma, C. Gu, N. Hanley, C. Wang, W. Liu, and M. O’Neill, “A machine learning attack resistant

multi-puf design on fpga,” in 2018 23rd Asia and South Pacific Design Automation Conference (ASP-

DAC), 2018, pp. 97–104. doi: 10.1109/ASPDAC.2018.8297289.

71

https://doi.org/10.1109/TETC.2019.2935465
https://doi.org/10.1109/TETC.2019.2935465
https://doi.org/10.1109/ASPDAC.2018.8297289

	A DESIGN STRATEGY TO IMPROVE MACHINE LEARNING RESILIENCY OF PHYSICALLY UNCLONABLE FUNCTIONS USING MODULUS PROCESS
	Recommended Citation

	Introduction
	Motivition
	Claims and Contribution
	Outline

	Preliminaries
	Physically Unclonable Function (PUF)
	Arbiter-PUF (APUF)
	Ring-Oscillator PUF (RO-PUF)

	Standard Performance Index
	Uniformity
	Bit-aliasing
	Uniqueness
	Correlation
	Reliability

	Machine Learning Modeling Attack
	Logistic Regression
	Support Vector Machine
	Gradient Boosting
	Random Forest
	Neural Network
	Reliability-based Modeling

	MRO-PUF
	MRO Architecture
	Alternating MRO (AMRO)
	Uniformity Optimization

	Implementaiton
	Underlying Entropy Source
	Implementaiton of MRO-PUF
	Hardware Overhead Analysis

	Investigation on MRO Performance
	Standard Performance Metrics Analysis
	Uniformity
	Bit-aliasing
	Uniqueness
	Correlation
	Reliability

	Machine Learning Analysis
	CRP-based Modelling
	Reliability-based Modelling

	Comparison with Other PUFs

	Conclusion
	Future Work

