808 research outputs found

    Estimating rainfall and water balance over the Okavango River Basin for hydrological applications

    Get PDF
    A historical database for use in rainfall-runoff modeling of the Okavango River Basin in Southwest Africa is presented. The work has relevance for similar data-sparse regions. The parameters of main concern are rainfall and catchment water balance which are key variables for subsequent studies of the hydrological impacts of development and climate change. Rainfall estimates are based on a combination of in-situ gauges and satellite sources. Rain gauge measurements are most extensive from 1955 to 1972, after which they are drastically reduced due to the Angolan civil war. The sensitivity of the rainfall fields to spatial interpolation techniques and the density of gauges was evaluated. Satellite based rainfall estimates for the basin are developed for the period from 1991 onwards, based on the Tropical Rainfall Measuring Mission (TRMM) and Special Sensor Microwave Imager (SSM/I) data sets. The consistency between the gauges and satellite estimates was considered. A methodology was developed to allow calibration of the rainfall-runoff hydrological model against rain gauge data from 1960-1972, with the prerequisite that the model should be driven by satellite derived rainfall products for the 1990s onwards. With the rain gauge data, addition of a single rainfall station (Longa) in regions where stations earlier were lacking was more important than the chosen interpolation method. Comparison of satellite and gauge rainfall outside the basin indicated that the satellite overestimates rainfall by 20%. A non-linear correction was derived used by fitting the rainfall frequency characteristics to those of the historical rainfall data. This satellite rainfall dataset was found satisfactory when using the Pitman rainfall-runoff model (Hughes et al., this issue). Intensive monitoring in the region is recommended to increase accuracy of the comprehensive satellite rainfall estimate calibration procedur

    The hydrology of the Peruvian Amazon river and its sensitivity to climate change

    Get PDF
    This PhD thesis explores the utility of a land surface model (Joint UK Land-Environment Simulator, JULES) for large-scale hydrological modelling of the Peruvian Amazon - a humid tropical mountain basin where process understanding is poor and data are scarce. A sparse rain gauge network necessitates the use of large-scale data from satellite and global climate model reanalysis to complement ground observations, commanding a closer look at (1) the uncertainties (2) merging techniques to utilise multiple observations in the model forcing. A main outcome of the research is establishing the model’s sensitivity to precipitation error, and at the same time, demonstrating an increasing reliability of global remote sensing products as model forcing, specifically, with data from the Tropical Rainfall Measuring Mission Multisatellite Precipitation Analysis version 7 algorithm. Furthermore, satellite-rain gauge data assimilation techniques such as mean-bias correction, double smoothing residual blending, and Bayesian combination, are shown to reduce the mean errors in the satellite-based product. Secondly, with regional calibration and an offline runoff routing scheme, JULES is shown to be reasonably skillful at reproducing the observed streamflow dynamic and extremes. Representing the subgrid heterogeneity of soil moisture using the probability distributed model (PDM) was key to improving surface runoff generation. However, evapotranspirative fluxes in the lower basin remain poorly reproduced without an adequate floodplain system representation. Finally, under the Intergovernmental Panel for Climate Change’s RCP4.5 future climate scenario, which projects a warming and wetting up to the year 2035, the Peruvian Amazon basin is shown to respond nonlinearly to the increase in wet season precipitation with more than 40% increase in the peak flows compared to the baseline scenario. There is limited confidence in the projections due to climate projections uncertainty and the assumptions of model stationarity.Open Acces

    Rainfall estimates on a gridded network (REGEN) – a global land-based gridded dataset of daily precipitation from 1950 to 2016

    Get PDF
    We present a new global land-based daily precipitation dataset from 1950 using an interpolated network of in situ data called Rainfall Estimates on a Gridded Network – REGEN. We merged multiple archives of in situ data including two of the largest archives, the Global Historical Climatology Network – Daily (GHCN-Daily) hosted by National Centres of Environmental Information (NCEI), USA, and one hosted by the Global Precipitation Climatology Centre (GPCC) operated by Deutscher Wetterdienst (DWD). This resulted in an unprecedented station density compared to existing datasets. The station time series were quality-controlled using strict criteria and flagged values were removed. Remaining values were interpolated to create area-average estimates of daily precipitation for global land areas on a 1∘ × 1∘ latitude–longitude resolution. Besides the daily precipitation amounts, fields of standard deviation, kriging error and number of stations are also provided. We also provide a quality mask based on these uncertainty measures. For those interested in a dataset with lower station network variability we also provide a related dataset based on a network of long-term stations which interpolates stations with a record length of at least 40 years. The REGEN datasets are expected to contribute to the advancement of hydrological science and practice by facilitating studies aiming to understand changes and variability in several aspects of daily precipitation distributions, extremes and measures of hydrological intensity. Here we document the development of the dataset and guidelines for best practices for users with regards to the two datasets.This research has been supported by the Australian Research Council (grant nos. DP160103439, CE110001028 and DE150100456) and the Spanish Ministry for Science and Innovation (grant no. RYC-2017-22964)Peer ReviewedPostprint (published version

    Exploration of an adaptive merging scheme for optimal precipitation estimation over ungauged urban catchment

    Get PDF
    Merging rain gauge and radar data improves the accuracy of precipitation estimation for urban areas. Since the rain gauge network around the ungauged urban catchment is fixed, the relevant question relates to the optimal merging area that produces the best rainfall estimation inside the catchment. Thus, an incremental radar-gauge merging was performed by gradually increasing the distance from the centre of the study area, the number of merging gauges around it and the radar domain. The proposed adaptive merging scheme is applied to a small urban catchment in west Yorkshire, Northern England, for 118 extreme events from 2007 to 2009. The performance of the scheme is assessed using four experimental rain gauges installed inside the study area. The result shows that there is indeed an optimum radar-gauge merging area and consequently there is an optimum number of rain gauges that produce the best merged rainfall data inside the study area. Different merging methods produce different results for both classified and unclassified rainfall types. Although the scheme was applied on daily data, it is applicable to other temporal resolutions. This study has importance for other studies such as urban flooding analysis, since it provides improved rainfall estimation for ungauged urban catchments.</jats:p

    Advances in the space-time analysis of rainfall extremes

    Get PDF
    Statistical estimation of design rainfall is considered a consolidated topic in hydrology. However, extreme rainfalls and their consequences still constitute one of the most critical natural risks worldwide, particularly in urban environments. Additional efforts for improving the spatio-temporal analysis of extreme rainfalls are then required, particularly at the regional scale. In this work, a new set of data and techniques for improving the spatial statistical analysis of extreme rainfall is proposed. Italy is considered a challenging case study, due to its specific geographic and orographic settings, associated with recurring storm-induced disasters. At first, the rain-gauge data patchiness resulting from the evolution of the monitoring agencies and networks, is tackled with the "patched kriging" methodology. The technique, involving a sequential annual interpolation, provides complete annual maxima series consistent with the available data. This allows to extract all the information avaialble from the gauge records, considering also the information "hidden" in the shortest series, increasing the robustness of the results. Interpolation techniques, however, can only reflect the estimation variance determined by the spatial and temporal data resolution. Additional improvements can be obtained integrating the rain gauge information with remote sensing products, able to provide more details on the spatial structure of rainstorms. In this direction, a methodology aimed at maximizing the efficiency of weather radar when dealing with large rainfall intensities is developed. It consists in a quasi-real-time calibration procedure, adopting confined spatial and temporal domains for an adaptive estimation of the relation between radar reflectivity and rainfall rate. This allows one to follow the well-known spatio-temporal variability of the reflectivity-rainfall relation, making the technique suitable for a systematic operational use, regardless of the local conditions. The methodology, applied in a comprehensive case study reduces the bias and increases the accuracy of the radar-based estimations of severe rainfall intensities. The field of the satellite estimation of preciptation is then explored, by analyzing the ability of both the Tropical Rainfall Measurement Mission (TRMM) and the recently launched Global Precipitation Measurement (GPM) mission to help identifying the timing of severe rainfall events on wide spatial domains. For each considered product, the date of occurrence of the most intense annual daily records are identified and compared with the ones extracted from a global rain-gauge database. The timing information can help in tracking the pattern of deep convective systems and support the identification of localized rainfall system in poorly gauged areas. The last part of the work deals with the analysis of rainfall extremes at the country scale, with a particular focus on the most severe rainfall events occurred in Italy in the last century. Many of these events have been studied as individual case studies, due to the large recorded intensities and/or to their severe consequences, but they have been seldom expressly addressed as a definite population. To try to provide new insights in a data-drived approach, a comprehensive set of annual rainfall maxima has been compiled, collecting data from the different regional authorities in charge. The database represents the reference knowledge for extremes from 1 to 24 hours durations in Italy, and includes more than 4500 measuring points nationwide, with observation spanning the period 1916-2014. Exploratory statistical analyses for providing information on the climatology of extreme rainfall at the national scale are carried out and the stationarity in time of the highest quantiles is analysed by pooling up all the data for each duration together. The cumulative empirical distributions are explored looking for clues of the existence of a class of "super-extremes" with a peculiar statistical behavior. The analysis of the spatial the distribution of the records exceeding the 1/1000 overall empirical probability shows an interesting spatial clustering. However, once removed the influence of the uneven density of the rain gauge network in time and space, the spatial susceptibility to extraordinary events seems quite uniformly distributed at the country scale. The analyses carried out provide quantitative basis for improving the rainstorm estimation in gauged and ungauged locations, underlining the need of further research efforts for providing maps for hydrological design with uniform reliability at the various scales of technical interest

    Spatiotemporal Precipitation Estimation from Rain Gauges and Meteorological Radar Using Geostatistics

    Get PDF
    [EN] Automatic interpolation of precipitation maps combining rain gauge and radar data has been done in the past but considering only the data collected at a given time interval. Since radar and rain gauge data are collected at short intervals, a natural extension of previous works is to account for temporal correlations and to include time into the interpolation process. In this work, rainfall is interpolated using data from the current time interval and the previous one. Interpolation is carried out using kriging with external drift, in which the radar rainfall estimate is the drift, and the mean precipitation is set to zero at the locations where the radar estimate is zero. The rainfall covariance is modeled as non-stationary in time, and the space system of reference moves with the storm. This movement serves to maximize the collocated correlation between consecutive time intervals. The proposed approach is analyzed for four episodes that took place in Catalonia (Spain). It is compared with three other approaches: (i) radar estimation, (ii) kriging with external drift using only the data from the same time interval, and (iii) kriging with external drift using data from two consecutive time intervals but not accounting for the displacement of the storm. The comparisons are performed using cross-validation. In all four episodes, the proposed approach outperforms the other three approaches. It is important to account for temporal correlation and use a Lagrangian system of coordinates that tracks the rainfall movement.This work has been done in the framework of the Spanish Project FFHazF (CGL2014-60700) and the EC H2020 project ANYWHERE (DRS-1-2015-700099). Thanks are due to the Meteorological Service of Catalonia for providing the radar and rain gauges data used here.Cassiraga, EF.; Gómez-Hernández, JJ.; Berenguer, M.; Sempere-Torres, D.; Rodrigo-Ilarri, J. (2021). Spatiotemporal Precipitation Estimation from Rain Gauges and Meteorological Radar Using Geostatistics. Mathematical Geosciences. 53(4):499-516. https://doi.org/10.1007/s11004-020-09882-1S499516534Aran M, Amaro J, Arús J, Bech J, Figuerola F, Gayà M, Vilaclara E (2009) Synoptic and mesoscale diagnosis of a tornado event in Castellcir, Catalonia, on 18th October 2006. Atmos Res 93:147–160Azimi-Zonooz A, Krajewski W, Bowles D, Seo D (1989) Spatial rainfall estimation by linear and non-linear co-kriging of radar-rainfall and raingage data. Stoch Hydrol Hydraul 3:51–67Bech J, Pascual R, Rigo T, Pineda N, López J, Arús J, Gayá M (2007) An observational study of the 7 September 2005 Barcelona Tornado outbreak. Nat Hazards Earth Syst Sci 7:129–139Bech J, Pineda N, Rigo T, Aran M, Amaro J, Gayà M, Arús J, Montanyà J, van der Velde O (2011) A mediterranean nocturnal heavy rainfall and tornadic event. Part I: overview, damage survey and radar analysis. Atmos Res 100:621–637Berenguer M, Sempere-Torres D, Pegram GG (2011) Sbmcast-an ensemble nowcasting technique to assess the uncertainty in rainfall forecasts by Lagrangian extrapolation. J Hydrol 404:226–240Berenguer M, Sempere-Torres D, Hürlimann M (2015) Debris-flow forecasting at regional scale by combining susceptibility mapping and radar rainfall. Nat Hazards Earth Syst Sci 15:587–602Bochner S (1949) Fourier transforms. Princeton University Press, London, p 219Brown PE, Diggle PJ, Lord ME, Young PC (2001) Space–time calibration of radar rainfall data. J R Stat Soc Ser C 50:221–241Calheiros R, Zawadzki I (1987) Reflectivity-rain rate relationships for radar hydrology in Brazil. J Climate Appl Meteorol 26:118–132Chumchean S, Seed A, Sharma A (2006) Correcting of real-time radar rainfall bias using a Kalman filtering approach. J Hydrol 317:123–137Corral C, Velasco D, Forcadell D, Sempere-Torres D, Velasco E (2009) Advances in radar-based flood warning systems. the EHIMI system and the experience in the Besòs flash-flood pilot basinCreutin J, Delrieu G, Lebel T (1988) Rain measurement by raingage-radar combination: a geostatistical approach. J Atmos Ocean Technol 5:102–115Delrieu G, Annette W, Brice B, Dominique F, Laurent B, Pierre-Emmanuel K (2014) Geostatistical radar-raingauge merging: a novel method for the quantification of rain estimation accuracy. Adv Water Resour 71:110–124Deutsch C (1991) The relationship between universal kriging, kriging with an external drift and cokriging. SCRF report 4Germann U, Turner B, Zawadzki I (2006) Predictability of precipitation from continental radar images. Part IV: limits to prediction. J Atmos Sci 63:2092–2108Goudenhoofdt E, Delobbe L (2009) Evaluation of radar-gauge merging methods for quantitative precipitation estimates. Hydrol Earth Syst Sci 13:195–203Harrold T, Austin P (1974) The structure of precipitation systems—a review. J Rech Atmos 8:41–57Hevesi JA, Istok JD, Flint AL (1992a) Precipitation estimation in mountainous terrain using multivariate geostatistics. Part I: structural analysis. J Appl Meteorol 31:661–676Hevesi JA, Istok JD, Flint AL (1992b) Precipitation estimation in mountanious terrain using multivariate geostatistics. Part II: isohyetal maps. J Appl Meteorol 31:677–688Jewell SA, Gaussiat N (2015) An assessment of kriging-based rain-gauge-radar merging techniques. Q J R Meteorol Soc 141:2300–2313Journel AG, Rossi M (1989) When do we need a trend model in kriging? Math Geol 21:715–739Krajewski WF (1987) Cokriging radar-rainfall and rain gage data. J Geophys Res Atmos 92:9571–9580Mateo J, Ballart D, Brucet C, Aran M, Bech J (2009) A study of a heavy rainfall event and a tornado outbreak during the passage of a squall line over Catalonia. Atmos Res 93:131–146Pulkkinen S, Koistinen J, Kuitunen T, Harri AM (2016) Probabilistic radar-gauge merging by multivariate spatiotemporal techniques. J Hydrol 542:662–678Rinehart R, Garvey E (1978) Three-dimensional storm motion detection by conventional weather radar. Nature 273:287Rosenfeld D, Wolff DB, Atlas D (1993) General probability-matched relations between radar reflectivity and rain rate. J Appl Meteorol 32:50–72Rosenfeld D, Wolff DB, Amitai E (1994) The window probability matching method for rainfall measurements with radar. J Appl Meteorol 33:682–693Rosenfeld D, Amitai E, Wolff DB (1995) Improved accuracy of radar WPMM estimated rainfall upon application of objective classification criteria. J Appl Meteorol 34:212–223Sempere-Torres D, Corral C, Raso J, Malgrat P (1999) Use of weather radar for combined sewer overflows monitoring and control. J Environ Eng 125:372–380Seo DJ (1998) Real-time estimation of rainfall fields using radar rainfall and rain gage data. J Hydrol 208:37–52Seo DJ, Krajewski WF, Bowles DS (1990) Stochastic interpolation of rainfall data from rain gages and radar using cokriging: 1. Design of experiments. Water Resour Res 26:469–477Sideris I, Gabella M, Erdin R, Germann U (2014) Real-time radar-rain-gauge merging using spatio-temporal co-kriging with external drift in the alpine terrain of Switzerland. Q J R Meteorol Soc 140:1097–1111Sinclair S, Pegram G (2005) Combining radar and rain gauge rainfall estimates using conditional merging. Atmos Sci Lett 6:19–22Sun X, Mein R, Keenan T, Elliott J (2000) Flood estimation using radar and raingauge data. J Hydrol 239:4–18Todini E (2001) A bayesian technique for conditioning radar precipitation estimates to rain-gauge measurements. Hydrol Earth Syst Sci Dis 5:187–199Velasco-Forero CA, Sempere-Torres D, Cassiraga EF, Gómez-Hernández JJ (2009) A non-parametric automatic blending methodology to estimate rainfall fields from rain gauge and radar data. Adv Water Resour 32:986–1002Wilson JW, Brandes EA (1979) Radar measurement of rainfall—a summary. Bull Am Meteorol Soc 60:1048–1060Yao T, Journel AG (1998) Automatic modeling of (cross) covariance tables using fast fourier transform. Math Geol 30:589–615Yoon SS, Bae DH (2013) Optimal rainfall estimation by considering elevation in the Han River Basin, South Korea. J Appl Meteorol Climatol 52:802–818Zawadzki I (1973) Statistical properties of precipitation patterns. J Appl Meteorol 12:459–47
    • …
    corecore