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Abstract We developed an operationally applicable land-

only daily high-resolution (5 km 9 5 km) gridding method

for station observations of minimum and maximum 2 m

temperature (Tmin/Tmax) for Europe (WMO region VI). The

method involves two major steps: (1) the generation of

climatological Tmin/Tmax maps for each month of the year

using block regression kriging, which considers the spatial

variation explained by applied predictors; and (2) interpo-

lation of transformed daily anomalies using block kriging,

and combination of the resulting anomaly maps with cli-

matological maps. To account for heterogeneous climatic

conditions in the estimation of the statistical parameters,

these steps were applied independently in overlapping

climatic subregions, followed by an additional spatial

merging step. Uncertainties in the gridded maps and the

derived error maps were quantified: (a) by cross-validation;

and (b) comparison with the Tmin/Tmax maps estimated in

two regions having very dense temperature observation

networks. The main advantages of the method are the high

quality of the daily maps of Tmin/Tmax, the calculation of

daily error maps and computational efficiency.

1 Introduction

Monitoring temperature extremes is important because

they have major impacts on the economy, ecology and

human life. Estimating the 2 m minimum and maximum

temperature (Tmin/Tmax) at high spatial resolution is par-

ticularly important. The daily Tmin/Tmax is often of more

interest than the daily mean temperature (e.g., as an indi-

cator of frost or heat stress in agriculture). However, Tmin/

Tmax data are usually available from fewer monitoring

stations, and the values are less normally distributed than

mean temperature values. Therefore, the gridding of Tmin/

Tmax is more challenging than gridding mean temperature,

and so is the focus of this study.

For high-resolution gridding (25 km2) in Europe, at least

40,000 stations would be needed if a density of one station

per grid square was required. However, as only a few

thousand stations are available, it is essential to generate an

appropriate interpolation algorithm that most efficiently

uses the available station information and additional pre-

dictor information (such as orography or continentality).

A number of studies have investigated the interpolation

of daily climate variables to create regional or global data

sets. Regression is a well-established interpolation tech-

nique that can be used in a variety of ways. Stahl et al.

(2006) compared 12 regression variations and kriging

methods for interpolating daily maximum and minimum

temperatures in British Columbia (Canada). Gaussian filter

inverse distance weighting methods (GIDS), which are

based on multiple linear regression against predictors,

yielded the best results if there was a high-density network

of stations available. However, it was noted that methods

that determine regression functions locally (such as GIDS)

should not be applied in situations where the observed

predictor range is too restrictive (e.g., no observations at
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high elevations). In such cases, the use of ordinary kriging

(OK) was recommended.

Numerous studies have shown that a number of very

similar techniques are suitable for interpolating tempera-

ture and other climate variables (Jarvis and Stewart 2001;

Stahl et al. 2006). In universal kriging (UK), the trend of a

variable is modeled as a function of the spatial coordi-

nates. If the trend is defined as a linear function of the

predictors, it is referred to as kriging with external drift

(KeD). Alternatively, the estimation of trends and resid-

uals can be undertaken separately and combined later in a

process termed regression kriging (RK), which was pro-

posed by Ahmed and de Marsily (1987) and Odeh et al.

(1995). Regression kriging enables the application of

nonlinear dependence to predictors. In cases of linear

dependence, Hengl et al. (2007) demonstrated the equiv-

alence of KeD and RK. In the present study, RK was

preferred because of its greater computational efficiency

and robustness.

The quality of the interpolation method is influenced by

the explanatory predictors considered, such as elevation

(Goovaerts 2000), aspect ratio and distance to the coast

(Daly et al. 2002; Hiebl et al. 2009), seasonality and

weather conditions (Hewitson and Crane 2005). The

unexplained spatial variability of a variable can be con-

sidered in an additional step by interpolation of anomalies

using other methods (New et al. 2001).

Haylock et al. (2008) described a high-resolution grid-

ded data set of daily precipitation and daily 2 m Tmin/Tmax

for Europe. They used a three-step interpolation method

involving: (a) interpolation of climatological monthly

values with three-dimensional thin-plate smoothing

splines; (b) kriging interpolation of the daily anomalies

with respect to the monthly climatologies; and (c) adding

the interpolated anomalies to the climatologies to produce

the final result. Splitting of the interpolation process

facilitates selection of the most appropriate and efficient

method with regard to time and space scales.

We report here an operationally applicable land-only

daily high-resolution (5 km 9 5 km) gridded algorithm for

daily 2 m Tmin/Tmax for Europe (WMO region VI). The

new algorithm also splits the interpolation process into

estimation of monthly climatologies and interpolation of

daily anomalies. However, unlike Haylock et al. (2008), we

applied RK (Hengl et al. 2007), which allows the appli-

cation of multiple predictors (including elevation and

continentality). We conducted the gridding steps in over-

lapping subregions (overlap = 250 km wide) to provide

more climatologically homogeneous conditions (Fig. 1e).

The subregions were determined by merging the Köppen–

Geiger climate zones (Sanderson 1999). By merging we

increased the number of available stations per region,

providing for more robust regression. The new gridding

algorithm enables consistent quantification of uncertainties

of the daily product.

Section 2 briefly introduces the station data used in the

study, Section 3 overviews the predictor data used, and

Sect. 4 describes the new algorithm and explains the

method for calculating the uncertainty. The final section

presents the results and an evaluation of the new method.

2 Station data

This section briefly describes the station data sets used in

the interpolation exercise, and the data sets used for eval-

uation of the new algorithm. To estimate the monthly cli-

matologies, we used data from approximately 3,000

CLIMAT stations (Hoefrichter 2009) providing long-term

averages (1961–1990) of monthly mean daily Tmin and Tmax

observations. The CLIMAT data set has been thoroughly

quality controlled and inhomogeneities have been cor-

rected, making this data set a reliable basis for our analysis.

The daily anomalies were based on data from approxi-

mately 3,000 synoptic stations (SYNOP). For the period

2005–2008, only about 33% of SYNOP and CLIMAT

stations were co-located, as a consequence of the addition

of new stations and the removal of other stations since

1990. Data from SYNOP stations are available in near real

time, but are not subject to a high level of quality control.

Therefore, we introduced a degree of quality control by

excluding daily observations that deviated by more than

±5 standard deviations from the averaged regional

anomalies.

The density of the CLIMAT and SYNOP stations is

variable, with the highest density occurring in Central

Europe and lowest on the Greenland ice shield (Fig. 1).

Approximately, 20 CLIMAT and 20 SYNOP stations are

located along the southern coastline of Greenland. No

CLIMAT data are available for the entire period

1961–1990 for high-elevation areas including the Green-

land ice shield, and currently there is only one SYNOP

station on the ice shield (at the Summit, 3,208 m). Despite

the sparse station network in Greenland, we included it in

the study area because this provided the opportunity to

conduct a feasibility study on the use of our method in

remote areas.

To evaluate the new algorithm for daily Tmin and Tmax

we used data from two independent regional observation

networks having very high spatial resolution. One, situated

in southern Austria, has been in operation since January

2007 and comprises 200 stations covering an area of

29 km 9 14 km (Kabas et al. 2008). The other network

was situated in the Black Forest, Germany, and was

operated in summer 2007. It comprises 96 stations covering

an area of 8 km 9 12 km (Schneider et al. 2008).
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3 Predictors and predictor data sets

In the gridding method, the target variable (mean monthly

Tmin or Tmax) was linearly regressed against multiple pre-

dictors. Useful predictors have to be physically related to

temperature, readily available and applicable to the entire

interpolation domain of interest, and statistically robust in

the regression process. These criteria exclude some

apparently good predictors. For example, objective weather

classifications (e.g., Bissolli and Dittmann 2001) are only

regionally defined, so are not applicable to the entire

domain and are therefore not appropriate predictors.

Satellite data are potentially useful for detection of such

things as cloud and fog, but are potentially subject to the

screening of low fog layers (with potential temperature

inversion) by thin high clouds. Thus, the use of satellite

products is not robust; and these are also affected by a

limited period of availability. Hiebl et al. (2009) accounted

for urban effects in the generation of a high-resolution

climatology in an alpine region, but concluded that there

was no general, operationally usable relationship between

urban effects and temperature at the daily time scale.

Inversion is the reversal of the temperature lapse rate

and leads to strongly modified regional temperature pat-

terns. It predominantly occurs in winter and is often

accompanied by fog. Fog prevents marked cooling during

(a)

(c)

(f)

(d)

(e)

(b)

Fig. 1 Values of the predictors a elevation (m), b continentality index (–), c zonal mean temperature (January, �C), and d climate regions. The

CLIMAT station locations and the SYNOP stations for 15 January 2006 are shown in e and f, respectively

Spatial gridding of daily temperatures in Europe 153

123



the night by limiting the emission of heat, and reduces

warming during the day by reflecting solar radiation.

Therefore, fog weakens the daily temperature cycle. We

tested the inversion index proposed by Daly et al. (2002),

but it was not robust and consequently was not used. The

selected predictors are described below.

Elevation (Fig. 1a) correlates well with surface tem-

perature, is globally available and is thus a useful predictor.

We used high-resolution elevation data obtained from the

shuttle radar topography mission (SRTM; see http://dds.

cr.usgs.gov/srtm/version2_1/SRTM3/), which provides

data within 60� north and south, and represents an

improvement on previous high quality and resolution dig-

ital elevation model (DEM) products (Jarvis et al. 2004).

Pole-wards the data set is complemented by data provided

by the United States Geological Survey (USGS; see

http://eros.usgs.gov/#/Find_Data/Products_and_Data_Ava

ilable/gtopo30_info). The original grid spacing of the

SRTM data is about 90 m (the gtopo30 grid spacing is

approximately 1,000 m) at the equator and increases

toward the poles. The two data sets were aggregated to the

target resolution (5 km 9 5 km) by calculating the average

of all grid values within each target grid box. The two

DEMs were then merged by linearly weighting across an

overlapping area extending 100 km southwards from 60�N.

Climate is strongly affected by the land–sea distribution.

We represented this using the continentality index K ¼
1:7 A

sin u� 20:4 (Gorczynski 1920) as a predictor. This

index was based on the geographical latitude (u) and the

mean annual range of monthly temperatures over the per-

iod 1961–1990 (A in �C). The index is defined to usually

take values from 0 to 100, with lower values indicating

maritime climate and higher values indicating continental

climate. We derived this predictor (Fig. 1b) from the Cli-

matic Research Unit (CRU) data (CRU TS 3.00; Mitchell

and Jones 2005) for the period 1961–1990.

Geographical latitude is a potential predictor of the pole-

ward decrease of mean temperature. However, we used the

zonally averaged monthly CRU climate, which typically

yields better cross-validation results as a predictor than

geographical latitude (not shown).

We quantified the explanatory capacity of the selected

predictors using the root-mean square error (RMSE) of the

fitted temperatures in comparison with the station obser-

vations. To yield a robust estimate, the fitting of the

regression function included all available stations within

the subregions. Table 1 shows the average of the RMSE

values over all subregions and indicates that the best single

predictor is the zonal mean temperature (RMSE = 4.0�C).

Obviously, adding more predictors reduces the RMSE.

The addition of the inversion index as a predictor

resulted in a small reduction of the RMSE. However,

inversion is a local phenomenon that cannot be adequately

captured when determining the regression coefficients for

the climate of an entire subregion (overfitting). Further-

more, artifacts can occur at the inversion height. Thus, only

elevation, zonal mean temperature and the continentality

index were ultimately selected for inclusion in the study.

4 Gridding method

The gridding method involved a two-step process. Firstly,

the climatological monthly Tmin/Tmax data were interpo-

lated using block RK, which applied the selected predictors

in a multi-linear regression step (Wackernagel 2003). The

resulting product is termed a monthly prediction map.

Secondly, block simple kriging (SK) was applied to inter-

polate the normal score transformed daily anomalies. The

back-transformed daily anomaly map was added to the

monthly prediction map, yielding the final result. These

steps are detailed below.

The gridding was performed in a rotated geographical

coordinate system with pole at 180�W and 38�N. This

placed the center of the study area at the equator of the

rotated coordinate system and yielded a quasi-equal area

grid across the target region. This enabled application of an

isotropic variogram in kriging, minimized the number of

grid nodes necessary and maximized the numerical

efficiency.

4.1 Block regression kriging of monthly observations

The framework for generating the climatological monthly

prediction maps of Tmin/Tmax is shown in Fig. 2. We used

block RK for the first gridding step, which is a combination

of multiple linear regression that considers the spatial

variation explained by the used predictors, and block SK

for interpolating the regression residuals (the residual mean

is zero), i.e., block SK interpolates the variation not

explained by the applied predictors (Hengl et al. 2004).

We used block kriging (Deutsch and Journel 1998) because

Table 1 RMSE (in �C) for temperature predictions using the pre-

dictor sets elevation (z), continentality index (K) and zonal mean

temperature (b)

Predictor relation January July Average

Tmin Tmax Tmin Tmax

t * z 6.1 5.8 3.3 4.4 4.9

t * K 5.0 5.1 3.3 3.9 4.3

t * b 5.6 4.8 2.5 3.2 4.0

t * K ? b ? z 3.1 3.0 2.3 2.7 2.8

The values are averages over all subregions
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the grid node values are valid for areal values and not for

point values (as is the case for standard kriging methods)

and therefore is spatially more representative.

The regression coefficients necessary for block RK can

be estimated from point data (observations and predictors

at station locations) if the applied regression function is

linear (Heuvelink and Pebesma 1999; Leopold et al. 2006).

To account for different climates, we determined the

regression coefficients separately for each climate region.

The regression coefficients were then applied to block-

averaged (25 km2) predictor maps. The predictors, the

coverage of the feature space and the covariance of the

regression residuals (determined from the variogram, see

below) have to be taken into account in determining the

regression error (Hengl et al. 2003).

To insure the data were normally distributed, a normal

score transformation (Deutsch and Journel 1998) was

applied to the regression residuals prior to interpolation.

For the kriging process, we used a spherical variogram

model, which has a linear behavior near the origin and

reaches the sill at the range beyond which autocorrelation

becomes zero. For the necessary variogram estimate, we

adopted a suboptimal but robust approach (Ahrens and

Beck 2008). We estimated a climatological variogram

range from normal score transformed monthly regression

residuals (separately for Tmin/Tmax and each subregion).

The range of the variogram of residuals was shorter

(approximately 180 and 1,200 km for Central Europe and

Greenland, respectively) than the monthly temperature

range, which suggests that the trend had been removed. We

also estimated a climatological nugget variance, which was

5–20% of the sill variance (dependent on the subregion,

and the network density). However, as the nugget variation

in the residual variogram reflects the trend estimation error

within the regression step (Ali et al. 2005), it was generally

not smaller than the nugget variance in the variogram of

monthly temperatures.

Following interpolation of the normal score transformed

regression residuals using SK, a back-transformation was

applied, which yielded a residual map that was added to the

regression map. These subregional maps were merged using

linear weighting in the 250 km-wide overlap, to yield the

monthly prediction maps showing the mean over the period

1961–1990 for Tmin and Tmax for the WMO region VI .

Solving the kriging system provided the block SK error

variance (Chilès and Delfiner 1999). This was used to pro-

duce the quartile map of the interpolated residuals, which

were back-transformed. We used half of the inter-quartile

range (IQR/2) as an error measure. The quartile map of the

interpolated residuals and the regression error map were

combined to yield the monthly RK quartile map, following

the additive relation described by Hengl et al. (2003).

4.2 Block simple kriging of the daily anomaly

The framework for generating daily prediction maps is

shown in Fig. 3. Daily anomalies are the difference between

the daily Tmin/Tmax observations and the monthly prediction

maps. Block SK was used for interpolation of the normal

score transformed anomalies and was applied independently

in the climatic subregions. This process enabled regional

weather phenomena to be accounted for. For the block SK of

daily anomalies, we also applied a climatological range and

nugget variance with a spherical variogram. This was

determined seasonally from normal score transformed daily

anomalies. The climatological range of daily variograms

was approximately 50 and 500 km for Central Europe and

Greenland, respectively, and in both cases the range was

shorter than for monthly data. This was because of the

considerably larger small-scale variation in daily anomalies

compared with the smoothly varying monthly regression

residuals. The climatological nugget variance of daily

anomalies lay between 5 and 15% of the sill.

The regionally interpolated daily anomaly maps were

back-transformed, merged, and added to the monthly pre-

diction map. This yielded the daily prediction maps for Tmin

and Tmax.

The daily error variance estimated by block SK of the

normal score transformed anomalies was used to produce

Fig. 2 Framework for generating the monthly prediction map using

regression kriging
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the quartile map of the daily anomalies, which were back-

transformed. For interpolation of the monthly residuals, we

used IQR/2 as the error measure. The error maps of the

monthly predictions and daily anomalies were then com-

bined (Hengl et al. 2003).

Thus, the proposed method applies regression kriging for

monthly data and simple kriging for daily anomalies, and is

henceforth referred to as regression kriging kriging (RKK).

5 Results and discussion

This section illustrates the application of the block RKK

gridding method and provides an evaluation of the tem-

perature and error maps generated. An important part of the

evaluation was a comparison with the E-OBS product

(Haylock et al. 2008).

5.1 Temperature maps

Figures 4 and 5 illustrate the steps in generating the minimum

temperature map for 15 January 2006. The generation of

monthly products using block RK is shown in Fig. 4. Panel

(a) shows the influence of the predictors on the pattern of the

final product. For example, the impacts of elevation and

continentality are clearly evident. The residuals of the mean

monthly observations to the regressed map were interpolated

as shown in panel (b). Most of the large-scale variability was

well explained by the regression step, but interpolation of the

residuals was an important step at smaller spatial scales. The

residual map highlights the regions where the target variable

was not well explained by the applied predictors, or where the

target variable–predictor relationship could not be adequately

estimated because of a lack of data (e.g., in Greenland and

alpine regions). The final mean monthly product is shown in

panel (c). Figure 4 also shows the uncertainty estimates from

block RK (IQR/2). The errors were largest in regions where

the temperature pattern was not well explainable by the

predictors.

The final steps in generating the daily products are

illustrated in Fig. 5. The daily anomalies were interpolated

using block SK, as shown in panel (a). Most of the large-

scale variability was already adequately explained by the

monthly product, but interpolation of the daily anomalies

provided important additional information at the regional

scale. The cold anomaly over Central Europe and the warm

anomaly over Eastern Europe are particularly noteworthy.

The daily anomaly map highlighted regions with marked

daily temperature anomalies, which were then superim-

posed on the monthly mean product in the final daily

product, shown in panel (b). Figure 5 also shows the

uncertainty estimates for the gridded anomalies and the

final product. The uncertainty of the final product was

dominated by uncertainty in the daily anomaly interpola-

tion (the daily anomalies were greater by one order of

magnitude than the monthly regression residuals).

5.2 Cross-validation and comparison with simpler

algorithms

We evaluated the performance of the RKK algorithm in

three climate regions (Greenland, Central Europe and the

Mediterranean) using cross-validation (Wackernagel 2003)

and comparison with simpler but commonly used interpo-

lation methods including ordinary kriging (OK) of daily

observations and inverse distance weighting (IDW) (Ah-

rens 2006) of daily observations.

Cross-validation involves sequential removal of each

observation from the observational data set, and re-esti-

mation of the observed temperature from the observations

in the amended data set using an interpolation method.

Thus, the goal was to re-estimate point values at particular

station locations. Therefore, these results were based on

point interpolation, and not block interpolation. The eval-

uation criteria were RMSE (perfect score 0�C) and the ratio

of the variance of interpolated temperatures and the vari-

ance of observed values (VARI, perfect score 1).

Fig. 3 Framework for generating a daily prediction map
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The results of the evaluation are summarized in Fig. 6

and Table 2. The RMSE box plots in Fig. 6 illustrate the

range of interpolation errors, and the box plots for VARI

show the range of relative variance (in both cases for daily

Tmin in January 2007). The RKK clearly outperformed the

other methods in terms of both evaluation criteria. The

RMSE analysis showed large differences between the cli-

mate regions (smallest for Central Europe, largest for

Greenland), which demonstrates the value of a dense sta-

tion network. The RKK also yielded the best score (close to

1) in the VARI analysis, demonstrating its ability to

maintain the spatial variability of the temperature field.

Similarly, Table 2 demonstrates the superiority of RKK

over OK and IDW (using Central Europe as an example) in

terms of both RMSE and VARI. However, RKK overesti-

mated the spatial variability, especially for Tmin in July. This

was a result of the spatial variability imposed by the chosen

predictors in the regression step during interpolation.

5.3 Validation of the uncertainty measure

A key issue was to provide a robust uncertainty measure

with the RKK, and for this purpose we proposed the IQR.

Correct modeling of the local uncertainty implies that 50%

of the true values are within the local IQR.

To assess the uncertainty measure, the RKK was tested

in two regions that are independent and have dense net-

works of stations, including a network in southern Austria

operated by WegenerNet, and a network in the Black

Forrest, Germany. We used block RKK to estimate the

daily Tmin and Tmax for each test region at a spatial reso-

lution of 5 km 9 5 km (observations aggregated to the

grid of the block RKK).

Figure 7 shows the percentage of observation within the

IQR-provided block RKK. For each network, approxi-

mately 50% of the observations fell within the IQR. Also

Table 3 shows that with point RKK, an average of

approximately 50% of the observations not used in the

cross-validation (Sect. 5.2) fell within the IQR for Tmin and

Tmax in January and July 2007 in Central Europe and the

Mediterranean Sea.

However, the widths of the box plots indicate that there

were large daily differences. The quality of the predicted

temperature and its related uncertainty measure were

associated with particular weather conditions, topographi-

cal complexity of the region and coverage by network

(a)

(d) (e) (f)

(b) (c)

Fig. 4 Steps in the generation of the mean monthly Tmin product

(�C), and its uncertainty with respect to January for the period

1961–1990. a The map produced by application of multiple linear

regressions; b the gridded regression residuals (0�C is indicated by

the dashed line) and c the final monthly product. The d–f indicate the

respective errors (�C), calculated as IQR/2
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observations. The RKK provided an uncertainty measure

that on average (across the climate subregion, and over

long time periods) yielded the target precision (50% of the

observed values within the IQR), but for single day events

at a local scale the uncertainty could be grossly overesti-

mated or underestimated. This is also evidenced in Table 3,

(a)

(c) (d)

(b)Fig. 5 Final steps in the

generation of the minimum

temperature (�C) map and its

uncertainties for 15 January

2006. a The gridded daily

anomalies (0�C is indicated by

the dashed line) and b the final

daily product. c, d The

respective errors, calculated as

IQR/2
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(b)Fig. 6 Evaluation of point

RKK, OK and IDW using cross-

validation for daily Tmin in

January 2007 for three climate

regions (Greenland, Central

Europe, and the Mediterranean

Sea). a RMSE (in �C) and

b VARI (1)

Table 2 Evaluation of RKK, OK and IDW for Central Europe in January and July 2007, using cross-validation for daily Tmin/Tmax

January July

Tmin Tmax Tmin Tmax

RMSE VARI RMSE VARI RMSE VARI RMSE VARI

Point RKK 1.8 1.1 1.8 1.1 1.5 1.2 1.7 1.0

OK 2.1 0.7 2.1 0.7 2.0 0.6 2.6 0.7

IDW 2.1 0.8 2.2 0.7 2.0 0.7 2.7 0.7

The criteria used were RMSE (in �C) and VARI (1)
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which shows that if using non-transformed data the method

overestimated the uncertainty (about 80% of the observa-

tions fell within the IQR) in the regional observation net-

work areas. Thus, error estimation remains uncertain.

5.4 Comparison with the E-OBS product

We compared maps estimated using the block RKK

method with maps based on estimates obtained using a

similar product (E-OBS; Haylock et al. 2008). As with the

RKK, the E-OBS algorithm involves splitting of the

interpolation process into two parts: (1) generation of a

monthly map and (2) interpolation and addition of daily

anomalies. E-OBS uses elevation and geographical coor-

dinates as predictors by applying three-dimensional

smoothing thin-plate splines for interpolation of monthly

data, and uses KeD for interpolation of daily anomalies.

Table 4 shows the mean daily ratio of the Tmin and Tmax

field variances produced by RKK and E-OBS (for Central

Europe and the Mediterranean Sea in January and July for

the period 2005–2008). The spatial variability of RKK was

slightly greater (e.g., the variance in Central Europe was

about 25�C).

Figure 8b shows the mean daily Tmin difference between

the E-OBS and the RKK for January in the years

2005–2008. The greatest differences occurred in complex

terrain including the alpine region, the Scandinavian

mountains and eastern Turkey. One explanation for these

differences is that we treated daily anomalies as non-

explainable variance (e.g., daily anomalies were not

regressed against elevation), while Haylock et al. (2008)

used KeD to explain the elevation dependency of the

anomalies. Furthermore, we used a different set of pre-

dictors to determine the monthly trends. We did not

account for an elevation dependency of daily anomalies

because of the large uncertainty associated with deriving

regression coefficients for daily values, which are highly

dependent on weather phenomena at various scales.

Moreover, Haylock et al. (2008) determined regression

winter 07 summer 07

0
20

40
60

80
10

0

ob
s 

w
ith

in
 IQ

R
 [%

]

0
20

40
60

80
10

0

Tmin
Tmax

(a)

Tmin Tmax

0
20

40
60

80
10

0

ob
s 

w
ith

in
 IQ

R
 [%

] (b)
Fig. 7 Percentage of

observations (obs) within the

IQR using block RKK.

a WegenerNet in summer (July)

and winter (January) 2007.

b Black Forest network in

summer (July) 2007

Table 3 Average percentage of observations falling into the IQR for

daily Tmin and Tmax in January and July 2007 for Central Europe and

the Mediterranean Sea

Central Europe Med Sea

Tmin Tmax Tmin Tmax

January 54 57 46 52

July 47 56 44 50

Total 51 56 45 51

Table 4 Average ratio of the estimated field variances of the daily

products of RKK and E-OBS (Tmin and Tmax for the period 2005–2008

for Central Europe and Mediterranean Sea)

Central Europe Med Sea

Tmin Tmax Tmin Tmax

January 1.1 1.2 1.1 1.0

July 1.0 1.0 1.0 1.0

Total 1.1 1.1 1.0 1.0

−15
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−2

2

5

15(a) (b)Fig. 8 Evaluation of daily Tmin

(�C) in January for the period

2005–2008. a The averaged

cross-validation residuals for

RKK, and b the mean difference

between E-OBS and RKK

Spatial gridding of daily temperatures in Europe 159

123



coefficients for the entire target region simultaneously,

which could lead to considerable overestimation or

underestimation of regional temperature gradients. For

instance, the E-OBS algorithm for Tmin during January

produced significantly lower temperatures for Scandinavia,

probably because maritime effects were not adequately

accounted for (continentality was accounted for in the

RKK).

Figure 8a shows the average daily estimation error for

each observation station using RKK. The largest estimation

errors occurred in areas where there was most difference

between the daily maps produced by E-OBS and RKK,

including the alpine area, Scandinavia and the Mediterra-

nean Sea. This highlights that large uncertainties mostly

arise in areas with low network density and complex

terrain.

6 Conclusion

We developed an operationally applicable algorithm

(RKK) for generating a high-resolution gridded map of

daily minimum and maximum temperatures for the WMO

region VI. These maps are unique in their spatial extent,

resolution and the number of observation stations used.

The RKK method separates the interpolation process

into the estimation of monthly climatologies and the

interpolation of daily anomalies. This enables selection of

the most appropriate interpolation method for the clima-

tological and daily timescales, respectively. For operational

use the target region was separated into seven subregions.

This decreased the calculation time by reducing the size of

the variance–covariance matrix, which had to be inverted

within the kriging process. In addition, the use of climatic

subregions enabled local climatic characteristics to be

accounted for, which resulted in smaller regression

residuals.

An evaluation process indicated the usefulness of the

method. For example, the RKK method showed a similar

performance to the E-OBS data set (Haylock et al. 2008),

and was similarly limited in regions with low station

density. Kyselý and Plavcová (2010) recently demonstrated

this for the E-OBS data set by comparison with an alter-

native data set that was generated from a high-density

network in the Czech Republic.

A major outcome of the study was in establishing an

accurate estimate of the daily interpolation uncertainty

(calculated as half the inter-quartile range). The application

of a normal score transformation of the monthly regression

residuals and daily anomalies prior to interpolation reduced

the estimation error and improved the quality of the RKK

uncertainty measure (observations within the IQR in

approximately 50% of cases with normal score transfor-

mation and 80% without transformation).

The use of other predictors should be investigated, such

as the incorporation of land cover data, which reflects local

energy fluxes and thus has predictive potential for local

temperature patterns. The main challenge for the future is

that simple static indexes, either topographical or weather

based, can capture only a small part of the complex pro-

cesses involved.
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