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ABSTRACT 

Merging raingauge-radar data improves the accuracy of precipitation estimation for urban areas. Since 

the rain gauge network around the ungauged urban catchment is fixed, the relevant research question is 

about the optimal merging area that produces the best rainfall estimation inside the catchment. To 

answer this, an incremental radar-gauge merging performed by gradually increasing: the distance from 

the centre of the study area, the number of merging gauges around it and the radar domain. The proposed 

adaptive merging scheme is applied to a small urban catchment in west Yorkshire, Northern England 

for 118 extreme events from 2007 to 2009.  The performance of the scheme is assessed using four 

experimental raingauges installed inside the study area. The result shows that there is indeed an 

optimum radar-gauge merging area and consequently there is an optimum number of rain gauges that 

produce the best merged rainfall data inside the study area. Different merging methods produce different 

results for both classified and unclassified rainfall types. Although the scheme was applied on daily 

data, it’s applicable to other temporal resolutions. 

This study is of important value for other studies such as urban flooding analysis, since it provides 

improved rainfall estimation for ungauged urban catchment. 

Keywords:  merging, radar, rain gauge, rainfall estimation, urban catchment  
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INTRODUCTION 

 Pluvial flooding of urban areas is a crucial issue and should be addressed carefully since it has 

a large effect on the population and landscapes of the cities (Houston et al. 2011). Heavy and localised 

rainfall is the main factor for this problem and the uncertainty related to it is considerable when 

compared with the overall uncertainty resulting from modelling and forecasting urban flooding 

(Golding 2009). Traditionally, rain gauges are the most direct instruments which provide rainfall 

measurements at individual points (Habib et al. 2010). Like any meteorological devices, rain gauges 

have many sources of errors, such as those due to the effects of wind, evaporation losses, wetting and 

splashing, siting and exposure errors (Habib et al. 2010). However, the most significant problem 

associated with rain gauges is their limited spatial coverage since they represent point rainfall 

measurements and are not densely available. 

 In contrast, weather radar can provide a better spatial and temporal coverage for the study areas 

with fine resolutions both in space and time. Radars with such advantages have been adopted for rainfall 

forecasting and real time operations in urban and rural areas (Liguori et al. 2012; Rico-Ramirez et al, 

2015). However, the radar rainfall measurement has accuracy limitations since it does not measure 

rainfall directly, but rather the returned power from precipitation particles, which can be related to the 

radar reflectivity and this is then converted into an estimation of the rainfall rate. Indeed, it can be said 

that both the measured reflectivity and the radar rainfall rate are subject to errors and uncertainty 

(Harrison et al. 2009). 

 To overcome problems related to radar and rain gauge measurements, a diverse range of 

techniques to merge radar and rain gauge data have been developed and presented in the  literature with 

different degrees of complexity ranging from simple methods, e.g. the calculation of a constant 

multiplicative calibration factor (Chumchean et al. 2006),  statistical methods based on multivariate 

analysis (Hevesi et al. 1992), analysis of the probability distribution of radar-rain gauge data (Rosenfeld 

et al. 1995), geostatistical methods (Ehret et al. 2008; Jewell, S. A. & Gaussiat, N. 2015) and Bayesian 

techniques (Todini 2001). 
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 The density of the rain gauge network has a great impact on the performance of the rainfall 

merging method (Jewell and Gaussiat 2013; Jewell and Gaussiat 2015). A denser rain gauge network 

produces a more precise estimation of the observed rainfall field (Ballester and More 2007). Recent 

studies related to rain gauge network density have investigated the sensitivity of the network density 

based on different rainfall merging methods (Villarini et al.2008; Goudenhoofdt and Delobbe 2009; 

Nanding et al. 2015). The analyses show that the sensitivity of the more complex merging methods 

(e.g., geostatistical interpolations) is higher than that for simpler merging methods (e.g., the mean field 

bias corrections). Moreover, the performance of geostatistical merging improves with the increase of 

the network density. 

 Jewell and Norman (2014) developed a more refined procedure for gauge quality control to 

improve the gauge density used for merging by maximizing the number of gauges used for merging and 

at the same time reducing the error resulted from gauge measurements.  It was found that the quality of 

the merged rainfall over a 15 minute time scale was improved. 

Berndt et al. (2014) showed that the conditional merging method outperformed both Kriging 

with External Drift (KED) and indicator KED. The authors checked the performance of merged rainfall 

for seven cases ranged from 10 minutes to 6 hours and also included 5 different scenarios of rain gauge 

network densities, from low to high network densities. In contrary Jewell and Gaussiat (2015) showed 

that the KED method overwhelmed other geostatistical merging methods, which is the reason that KED 

may be adopted by the Met Office as its favoured method for real time radar-gauge merging in England 

and Wales. 

 Published studies mainly addressed the issue of merging radar and gauge data over a large 

domain. However, in many cases urban areas lack of a rain gauge network, and there is a lack of studies 

assessing the performance of the rainfall merged product inside ungauged catchments. The challenge is 

how to select relevant rain gauges around the study area for the merging. By conventional thinking, the 

more gauges within a fixed area, the better the results due to the increased gauge density; but in this 

case, the situation is not so straightforward because the gauges will be outside the study area. The only 

way to increase the number of gauges is to increase the merging area (i.e. more gauges are included). 
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The problem arises due to the reduced relevance of the gauges if they are far away from the study area. 

Therefore, the increased gauges at far distances away from the study area may not actually contribute 

to improve the accuracy of the merged radar-gauge rainfall over the study area. In fact, they may reduce 

the accuracy if the errors from those gauges are higher than the useful information gained from them. 

An optimal merging area should be explored and an adaptive merging area scheme is proposed.  

When trying to solve the problem of estimating rainfall for an urban catchment in the case 

where no gauges are available inside the area, the first logical proposal would appear to be trying to 

find rain gauges close to the study area and perform the merging of these with the radar data. However, 

many questions have arisen when considering such a solution, for instance: How far away from the 

study area should rain gauges be included to still provide reliable merging results relative to the range 

of influence? What is the optimum number of rain gauges around the study area in order to provide the 

best merged data inside the area? Does adding more gauges far from the study area have a positive or 

negative impact on the merged data i.e. is there information redundancy? In the case of classifying the 

rainfall into convective and stratiform storms, is the optimum distance and consequently the number of 

gauges outside the study area the same as the cases without rainfall classification?  What will the results 

be like for different merging methods?  

With the aim of answering these questions, an adaptive scheme of selecting different merging 

areas, gauge numbers and radar domain is therefore adopted for this purpose. The reason for using an 

adaptive merging area and an adaptive radar domain will be explained later in detail in the Section 

describing KED. A network of 25 gauges distributed around the study area with different distances from 

it has been divided into 4 cases, with each case representing a new merging area with a different number 

of rain gauges. The rain gauge distribution for each case was chosen in such a way that it should 

surround the study area in all directions, so the study area would be almost in the middle of the merged 

area. The radar domain for each of the four cases of the merged areas has also been extracted from radar 

network. For each case, the merging of the daily radar and the rain gauge data has been performed for 

extreme rainfall in the period of 1st April 2007- 28th February 2009, by using two well-known 

geostatistical interpolation methods: conditional merging (Ehret et al. 2008) and KED (Verworn & 
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Haberlandt 2011). The performance of the merged data is assessed using rain gauge observations inside 

the study area (in the real world situation, no gauges are available in the study area. Those gauges are 

experimental gauges).  

 This paper is organized as follows: the methodology in the next section is divided into two sub-

sections that present the geostatistical interpolation method to merge radar-gauge data and the 

performance assessment indicators used to analyse the results. A description of the case study area and 

the data used for merging are presented in the following section. The results of the proposed method 

are discussed and finally, the main findings and conclusions of this work are presented. 

 

METHODOLOGY 

Merging of radar and rain gauge data 

 In this study two geostatistical interpolation methods were used for merging rain gauge and 

weather radar data in order to estimate the precipitation inside our study area. In addition, one 

geostatistical interpolation method was used for the interpolation of the validation gauges. These 

interpolation methods are described below. 

 

- Ordinary Kriging  

Ordinary Kriging (OK) is one of the most widely used geostatistical methods that carry out a spatial 

interpolation of observations at different locations in a random field. OK is just an interpolation method, 

thus it cannot be used to merge radar-gauge data. However, it can be used as a benchmark to evaluate 

other merging methods. In this study OK is used purely for the rainfall interpolation which is briefly 

explained as follows. 

The spatial variability of the precipitation field can be obtained by a predefined semivariogram model 

using rain gauge observations. In this study several semivariogram models were tested (spherical, 

pentaspherecial, exponential, guassian and whittle) and it was found that the spherical model gives 
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consistently the best results to describe the spatial variability of the gauge observations (the results are 

not shown here due to space constraints).  

The linear combination between the rain gauge observation values 𝑍𝐺(𝑥𝑖) and weights λ𝑖
𝑂𝐾 at the 

corresponding locations 𝑥𝑖 was used to interpolate the rainfall value 𝑍𝑂𝐾(𝑥0) at the location 𝑥0: 

                                                 𝑍𝑂𝐾(𝑥0) = ∑ λ𝑖
𝑂𝐾𝑛

𝑖=1 𝑍𝐺(𝑥𝑖)                                                                (1) 

- where n is the number of rain gauges used for the interpolation.  

The best linear unbiased estimate of the rainfall can be obtained after computing the weights and 

assuming a constant unknown mean across the field. More details about OK method can be found in 

Goovaerts (1997). 

 

-  Kriging with a radar based error correction 

The kriging with a radar based error correction (KRE), which is also known as ‘conditional merging’ 

(CM) (Ehret et al. 2008) has been included in this study. A lot of research work have adopted this 

method due to its simplicity and computational efficiency (Goudenhoofdt and Delobbe 2009; Mckee 

2015; Pettazzi and Salson 2012; Berndt et al. 2014). 

 The merged rainfall using this method combines the interpolated rain gauges using the Ordinary 

Kriging (OK) method and the spatial variability of radar data (Ehret et al. 2008). The steps of CM are 

first to interpolate the rain gauge observations using OK to estimate the best linear unbiased rainfall 

field at all ungauged locations. Next, radar pixels at gauge locations are extracted from the radar rainfall 

field and the values at other locations are interpolated using OK. Subsequently, the deviation C between 

the observed and interpolated radar rainfall field is calculated from the following equation (Ehret et al. 

2008). 

                                                𝐶 = exp (tan−1 [ln
𝑅𝑂𝑅𝐼

𝑅𝑂𝑅𝐾
])                                                                   (2) 

- where 𝑅𝑂𝑅𝐼 is the observed radar rainfall field and 𝑅𝑂𝑅𝐾 is the interpolated radar rainfall field 

using the OK method; 𝐶 is equal to one at the rain gauge locations.  
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Finally, the deviation 𝐶  is inserted into the gauge-based kriging field 𝑍𝑂𝐾 as follows 𝑍𝐾𝑅𝐸 = 𝑍𝑂𝐾 𝐶, 

to obtain the merged rainfall field  𝑍𝐾𝑅𝐸 which has the spatial details from the radar field and at the 

same time maintains the features of the gauge interpolated field.  

  

- Kriging with external drift (KED) 

KED is a geostatistical interpolation method, which incorporates one or more secondary variables. In 

this study, only one additional variable is included, which is the radar data.  

It follows the same scheme as in the OK, however, the additional exclusive constraint on the KED 

method is the adoption of the weighted sum of radar values 𝑍𝑅(𝑥𝑗)  at the gauge locations 𝑥𝑗 to realise 

the interpolated radar value 𝑍𝑅(𝑥0) at the unknown point 𝑥0 (Haberlandt 2007): 

                                                   ∑ λ𝑗
𝐾𝐸𝐷𝑍𝑅(𝑥𝑗) = 𝑍𝑅(𝑥0)𝑛

𝑗=1                                                                         (3) 

- where λ𝑖
𝐾𝐸𝐷 is the KED weights   

The semivariogram is fitted to a spherical model, which assumes that the rainfall field is isotropic. 

Further details about the KED method are available in Haberlandt (2007) and Verworn & Haberlandt 

(2011).  

As can be seen from the above two merging methods, the radar values at the gauge locations 

should be used for the interpolation in the KRE method and as external drift in the KED method; and 

because all the gauges are outside the study area, the radar domain should be increased when additional 

surrounding gauges are included in the sphere of influence for estimating the rainfall inside the urban 

area, which is located at the centre of the radar domain. Thus, an adaptive radar scheme, which covers 

all the gauge locations, should be adopted in each merging case, rather than using a fixed radar domain, 

which covers only the study area. Although the merged radar-gauge rainfall field is computed for the 

whole adaptive merging area, only the merged rainfall that covers the study area has been extracted for 

each case study and the statistics were performed only over the study area.  
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Performance assessment 

  The performance of the methods has been evaluated by the comparison made between the 

merged rainfall estimates and the observed interpolated rainfall from the four experimental gauges 

located inside the study area. Those gauges are temporarily installed for research purposes only and the 

rainfall was interpolated over the study area using OK.  The testing procedure has been conducted for 

extreme rainfall for the period from 1st April 2007 to 28th February 2009 covering 118 rainy days. 

 Several quality indicators were adopted in this study for the assessment of the results: The Root 

Mean Square Error (RMSE) is one of the most common indicators used for the verification: 

                                                     𝑅𝑀𝑆𝐸 = √
∑ (𝑅𝑚𝑖

−𝐺𝑖)2𝑁
𝑖=1

𝑁
                                                                                     (4) 

- where 𝑅𝑚𝑖
 and 𝐺𝑖 are the merged rainfall and the observed rain gauge data respectively at 

location i; and N is the number of data points. 

The Mean Absolute Error (MAE) is also used in this study because it is less sensitive to outlier errors: 

                                                      𝑀𝐴𝐸 =
∑ |𝑅𝑚𝑖

−𝐺𝑖|𝑁
𝑖=1

𝑁
                                                                                         (5) 

The Nash-Sutcliffe Efficiency (NSE) is a widely used indicator in hydrological models, and here it is 

used to assess the predictive ability of the rainfall merging method: 

                                                  𝑁𝑆𝐸 = 1 −
∑ (𝐺𝑖−𝑅𝑚𝑖

)2𝑁
𝑖=1

∑ (𝐺𝑖−�̅�)2𝑁
𝑖=1

                                                                             (6) 

- where 𝐺 ̅is the mean of the rain gauge observations.  
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STUDY REGION AND DATA 

Radar Data 

The urban catchment used in this study is located in West Yorkshire, Northern England with a 

total drainage area of 11.06 km2 (Liguori et al. 2012) (Figure 1). The composite radar data that cover 

the study area were provided by the UK Met Office radar network through the British Atmospheric 

Data Centre (BADC) with spatial and temporal resolutions of 1 km and 5 minutes respectively. A 41 

km2 area of radar grid covers the study area. The catchment is within the coverage of three single-

polarisation C-band weather radars (Hamildon Hill, High Moorsley and Ingham) which are located 30 

km, 95km and 90km away from the study area respectively (UK Met Office 2009). Quality control and 

corrections of the sources of errors related to the radar rainfall data were implemented by the UK Met 

Office Nimrod System (Harrison et al. 2009); however, further checking and post processing for the 

radar data is also adopted in this research. Firstly any gaps in the radar data were interpolated using a 

nowcasting model. Then the radar data have been aggregated to a daily time interval to match the 

gauge’s time interval. Then the daily radar data were accumulated for the entire period that covers 118 

rainy days and plotted to check if there are any artefacts that need further correction. It is worth 

mentioning that a check has been made for an area larger than our study area in order to have a clear 

overview of any potential issues that may help to decide whether or not to adopt further corrections to 

the radar data. It is clear from Figure 2 that the partial blockage problem is still evident since there is a 

clear sector that appears in the area and additionally a ground clutter problem (a very large rainfall peak) 

appears in the left part of the area, which needed further correction. However, the above problems only 

affected a small part of our study area. Therefore, a simplified empirical method was established to 

correct ground clutter pixels. The method consists of computing the rainfall ratio between a given pixel 

and the average rainfall of the surrounding pixels using a moving window of 3x3 pixels. This was done 

to check if the pixel at the centre of the window agrees with the average rainfall from the neighbouring 

pixels. If the rainfall ratio is close to 1, then this indicates there is good agreement in terms of rainfall 

rate. However if the ratio is larger than a given threshold, then there is a potential problem with the 

pixel at the centre of the window. However, the threshold value should be chosen with care, because a 
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low threshold value means that a lot of pixels will be identified as potential clutter leading to 

unreasonable results and important information from the original radar field could be lost. On the other 

hand, adopting a high threshold value means that just a few pixels will be identified as clutter and as a 

result the problem may still exist within the radar field. Therefore, we checked all 118 storms carefully 

and a trial and error procedure was adopted to choose the threshold value to ensure that only the 

problematic pixels were identified. For our study area a threshold of 1.7 was good enough to identify 

the suspicious pixels (around 1-2 pixels in the whole region). However, this threshold will be different 

for other case studies since it depends on the region and storm variability. For the above correction 

procedure we were keen to correct only obvious outliers (e.g., very large values caused by ground clutter 

and other non-rainfall targets) within radar data, whose rainfall ratios were larger than the adopted 

threshold. The clutter pixels were identified first for the whole region using the rainfall ratio described 

above.  Then the clutter pixels were corrected by using the average rainfall of the surrounding pixels.  

 

Figure 1. Study area and location of rain gauges. 
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Figure 2. Data quality check within the radar field shows partial beam blockage, and also echoes due to 

ground clutter. 

Rain gauge data 

 The daily rain gauge data were provided by the BADC. Since there were no gauges inside the 

study area, only the closest 25 gauges to the area were chosen to perform the proposed study of merging 

radar-rain gauge data (Figure 1). In order to increase the quality of the merged data, the data quality of 

all the gauges was checked before they were used as input data in the merging technique by using a test 

of spatial consistency between nearby gauges. Spatial consistency checking is utilized to distinguish 

outliers which are not spatially consistent with the neighbouring gauges (Kondragunta, 2001).  The 

daily time series for each gauge was compared with the nearest gauges within a maximum distance of 

15km. If there is a day that shows inconsistencies between neighbouring gauges, this is flagged up. 

However, since rainfall is highly variable in space and time, and a rain gauge that measures rainfall 

amounts from a convective system does not necessarily have to be spatially consistent with its 

neighbours. Therefore, a convective test using radar data was adopted. The flagged days for the gauge 

under consideration and the neighbouring gauges were compared with the radar data (i.e., with the radar 

pixels where the gauges are located). If all gauges agree with the radar data within a certain threshold 

then the flagged days are treated as valid data. On the other hand, if the radar data disagree with the 

gauge under consideration, but agree with the neighbouring gauges, then those flagged days for the 

gauge under consideration will be considered as outliers. Thus we removed those days from the time 
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series for that gauge. It is worth mentioning that the threshold value is an adjustable parameter and can 

be altered according to the location and season.  

Usually the radar data are corrected using the gauge data, however in this study we adopt the 

radar to perform just a qualitative (but not a quantitative) check with the gauge data. That’s why we 

compared the gauge under the test in addition to the neighbouring gauges to the radar pixels (where 

those gauges are located.) By adopting this comparison we make sure that the radar data are more 

consistent with the gauges in order to adopt them for the quality check and to ensure that there is no 

problem within the pixel of the gauge under the test (i.e. ground clutter or attenuation, etc). It is worth 

mentioning that the radar pixels that cover the location of all 25 gauges were problem free, i.e. none of 

those pixels reported any problems in the radar quality check, and that helped to rely on those pixels to 

check the quality of the gauges. 

The second quality test includes comparing the zero-valued rain gauge reports with the rainfall 

from the neighbouring gauges. The principle behind this test is that if rainfall is reported in all 

neighbouring gauges (within 15km) but the gauge under consideration reports zero rainfall,  then that 

gauge is most likely to be malfunctioning. Following the same procedure described in the previous test, 

the flagged days from this test for both the gauge under consideration and the nearest gauges are 

compared with their corresponding radar rainfall pixels. If radar agrees with the neighbouring gauges, 

but disagree with the gauge with zero rainfall, then a multiple linear regression with the neighbouring 

gauges is applied to correct the flagged days for the gauge under consideration.  

The impact on the merged data quality when increasing the distance from the centre of the study 

area and the number of gauges used in the merging, was assessed using four cases of different sizes of 

the merging area (Table 1). For each case, in order to increase the number of rain gauges, the size of 

the merging area was increased to add more gauges farther afield than the ones in the previous case. 

The number of gauges for each case was chosen carefully to make sure that those gauges are distributed 

evenly around the catchment from the four directions. Also, the radar domain was increased for each 

case to cover the new merging area. To check the validity of the proposed method, the merged data 
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were compared with the interpolated rainfall from the four tipping bucket gauges which were installed 

in the catchment from April 2007 until March 2009, with the data recorded every 2 minutes. Rain gauge 

data for the validation network were aggregated to a daily time scale. 

 

Table 1. Number of rain gauges and radar domain for the adaptive merging area. 

 

 

 

 

 

 

Rainfall classification 

  The validation gauges within the urban area (see figure 1) helped to identify the days with 

heavy rainfall. This resulted in identifying 118 non-continuous rainy days. Figure 3 shows the rainfall 

duration of these days in hours. Furthermore, each of the 118 heavy rainfall days was classified into 

three rainfall types: convective, stratiform and a mix between convective and stratiform precipitation. 

This was achieved by using the reflectivity of the original 5 min and 1km radar data.  Steiner et al.’s 

(1995) algorithm was adopted for the rainfall classification. The algorithm depends on the measured 

radar reflectivity to locate the convective pixels in each radar scan. The visual inspection of the observed 

radar data are used as further confirmation of convective pixels.  Following the identification of 

convective pixels, the size and duration of those convective areas were analysed for each radar scan and 

the following procedure was adopted to classify storms.  

Case Distance from centre of 
research area to the 
farthest gauge (km) 

No. of 
gauges 

Radar 
domain 
km2 
 

1 11.03 4 220 
2 12.96 9 432 
3 20.76 17 1056 
4 27.10 25 1518 
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Figure 3. Storm duration in hours for 118 days. 

Unfortunately, it is not a simple task to decide the threshold value that differentiates convective 

from stratiform storms using only the radar reflectivity. Thus, the size of the study area was taken into 

account for deciding the threshold value. Since our study area was small, its size was increased in order 

to monitor the storm movement over time and over the area domain to be able to classify the event. 

Therefore, depending on the new size of the study area the following thresholds were adopted for 

rainfall classification: when the rain event has convective pixels that cover an area of at least 3% of the 

whole precipitation area for 1.15 hours or more, then that event is identified as convective. If the 

convective structures cover a precipitation area less than 3% of the total area, then that storm can be 

identified as mixed precipitation (i.e. a mix of convective and stratiform pixels). If the total precipitation 

area is covered by less than 1% of convective pixels, then that event is identified as stratiform.  These 

thresholds were obtained empirically by looking at different storms that contain convective precipitation 

pixels. Figure 4 shows an example of the classification result of the convective pixels on 19 June, 2007. 
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Figure 4. Rainfall storm (left) on 19 June 2007, and classification results (right) (area identified 

as convective, stratiform, and no precipitation) using the pixel classification algorithm proposed by 

Steiner et al. (1995). 

 

RESULTS AND DISCUSSION 

First, the aggregated daily gridded radar data were compared with the interpolated gridded daily 

rainfall data using the four cases of gauges alone, without merging. The benchmark to assess the 

performance of radar and gauge data was the interpolated gridded data using the validation gauges (see 

figure 1). The OK method is used for the interpolation of both validation gauges and the four cases of 

gauge networks. 

Table 2 shows that all the performance indicators (RMSE, MAE and NSE) for the four cases of 

interpolated gauges were better than the gridded radar data which cover the study area. Thus it’s better 

to merge radar data with gauges rather than using the radar alone which was already confirmed by many 

previous studies (Goudenhoofdt and Delobbe 2009; Nanding et al. 2015).  
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Table 2. Performance of 4 cases of interpolated gauges and radar domain over the study area. 

 

 

 

It is clear from the interpolated gauge results (Table 2) that there is an optimum case (an 

optimum distance from the centre of the study area with an optimum number of gauges) which gives 

better results for the rainfall for the study area. Part of the explanation for this optimum distance is that 

when adding more gauges for the interpolation (in case of using gauges alone) or merging (in case of 

merging gauges with radar data) the distance from the centre of the study area to the farthest gauge will 

increase, thus the correlation will decrease (i.e. correlation error increases). On the other hand moving 

further away from the study area to add more gauges will reduce the sampling error (i.e. model error) 

produced from the interpolation or the merging methods. Thus there is an optimum distance from the 

study area with an optimum number of gauges which show the best interpolated or merged rainfall for 

the study area as shown in the schematic plot in Figure 5.   

 

Figure 5. Schematic plot showing the optimum distance of merging network away from the study area.  

Figure 6 shows the results from the two merging methods for 118 events and for 4 cases of 

merging gauge network. It is clear from Figure 6 that the two merging methods produce consistently 

better results compared with the radar data. However, by comparing the results of the four merging 

Performance Radar Gauge 

  Case1 Case2 Case3 Case4 

RMSE 4.563 2.875 2.832 2.811 2.865 
MAE 3.271 2.074 2.058 2.019 2.063 
NSE 0.666 0.867 0.871 0.873 0.868 
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networks to each other for both classified and unclassified storms, the first case for the KED method 

shows the worst dominant performance. While for the KRE method, the performance of the four cases 

are close to each other. Although there is a small difference between the results of the four merging 

cases for KRE and apart from case 1 the results are also close for KED, there is an optimum case for 

each method that consistently shows better results than the other cases. 

In terms of which case is the best for each merging method and which should produce the best 

rainfall estimate for the study area, it was found that KRE gave a different result to KED. Since KED 

is more sensitive to the gauge density (Goudenhoofdt and Delobbe 2009; Nanding et al. 2015), this 

shows that the third case with the maximum distance from the centre of the study area 20.76km and 17 

gauges seems the best case to adopt. However, KRE shows different results from KED, and it shows 

that the second case with the maximum distance 12.96 km and 9 gauges is the best case to present the 

best rainfall data inside the study area. Thus, it is clear that various merging methods produce different 

results regarding which is the optimum case to present the most accurate merged rainfall for the study 

area, because each method has different model complexity and sensitivity to gauge density. Figure 7 

shows the merged rainfall on 6th of September 2008 for the two merging methods and for the four cases 

of merging network. 
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Figure 6. Performance of the two merging methods (KED left, KRE right) for 118 days and for the four 

merging networks. 
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Figure 7. Merged rainfall on 6th of September 2008 for the KED merging method (left) and 

KRE method (right) and for the four cases of merging network. The top plot is the original radar data.  

Moreover, the rainfall has been classified into three types and the two merging methods have 

been used with each rainfall type and for the four cases of merging gauges.  It was found that 52 storms 

were classified as stratiform; 51 storms as convective and only 15 storms were mixed (mix between 

convective and stratiform). Figure 6 shows that RMSE and MAE of both merging methods for the 

stratiform events are much lower than those for the convective events, which is in part due to the fact 

that convective events have a large spatial variability in comparison with stratiform events. However, 

the NSE results for the stratiform events were worse than those of convective events for both KED and 

KRE methods. This is due to the lower rainfall values in the stratiform events (the denominator in Eq. 

(6) is smaller). 

However, the RMSE, MAE and NSE scores for both KED and KRE methods for mixed 

precipitation produced conflicting results; sometimes the scores were somewhere between those 

obtained for convective and stratiform events, while in other cases they were better than the scores of 

both events. Thus, it is not possible to draw a robust conclusion regarding the mixed storms since they 

were only 15th cases. 
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In terms of which case is the most accurate for each storm type and each merging method, KRE 

shows that the second case - maximum distance from the centre of the study area to the farthest gauge 

12.96 km and 9 gauges - is preferable for convective events; while for stratiform events it is better to 

move farther away from the study area and to add more gauges compared with the convective scenario. 

Thus the third case was the optimum for the KRE and the stratiform type. Since a stratiform storm is 

relatively uniform over the area, gauges up to an optimum distance away are useful and contribute 

additional information during merging; however the convective storms are more localized and gauges 

far away have an apparently negative impact on the merged rainfall.  

However, the KED method does produce surprising results when examining which case is the 

best for a given storm type. It was found that while the KED method does not seem to be so sensitive 

to the storm type, it is more sensitive to the gauge density, and the optimum case for merged rainfall 

over the study area is the third case for both stratiform and convective storms (Figure 6) which is similar 

to the case when the merging is performed without classification.  

For the mixed storms, no conclusions can be drawn about which case is the best for both merging 

methods. 

The modelling of urban drainage system requires measurements and forecasts of precipitation with 

high spatial and temporal resolutions (Liguori et al. 2012). In this study, the only available 5 min data 

are from radar. Since the radar data are prone to different types of errors (Harrison et al. 2009), thus the 

daily merged rainfall from the optimum merged scheme could be used to adjust the 5 min radar data. 

First, the ratio between the daily merged data at all pixels over the study area to the corresponding 

original daily radar data is calculated. Then this daily ratio is applied to the original 5 min radar data at 

each pixel. Figure 8 shows that the corrected 5 min radar data over the study area are lower than the 

corresponding original 5 min data on 9th January 2008 at 21:20:00. That indicates the original daily 

radar data were higher than the corresponding gauge data for that day, thus merging the two former 

datasets produced lower rainfall amounts than the original daily radar data. As a result, the ratio between 

the merged rainfall and the original daily radar data reduced the 5 min data after correction.  
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Figure 8. Original 5 min radar data (top) and corrected 5 min radar data (bottom) on 9th January 2008 

at 21:20:00 

Although we applied our method for a daily time scale due to the data availability, it’s also 

applicable for fine temporal resolutions (hourly or 15 min). However, we believe that the optimum 

merged scheme will be different for various temporal resolutions. The correlation between radar-gauge 

datasets would have a major effect on the sphere of influence for merging rainfall. The radar-gauge 

correlation increases as temporal length increases (Berndt et al. 2014), because as the data is 

accumulated from short to longer time scales, the differences between the two datasets will decrease. 

In addition, the data for short time scales are influenced more by noise than the corresponding longer 

scales. Thus, it is logical to expect different results regarding the optimum merging scheme at different 

temporal resolutions. 

 

 

CONCLUSION 

 Rainfall estimation over a small urban area is a challenge because there are usually no rain 

gauges installed in such small catchments. In addition, most gauges are of a daily type, which are poor 

in terms of temporal resolution for urban system modelling. Conversely, weather radars have much 

better spatial and temporal resolutions, but they suffer from various error sources. Merging these two 

sources of data has the potential to provide the best rainfall estimation over small urban areas. In this 
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study an adaptive merging scheme has been proposed by increasing the size of the merging area to add 

additional raingauges and conduct the merging incrementally with the larger radar domain. The two 

geostatistical merging methods employed and tested were (i) KED and (ii) CM for different sizes of 

merging areas (i.e. different numbers of rain gauges; and a new radar domain for each case). The merged 

rainfall fields over the urban catchment were evaluated using several key statistics for heavy rainfall 

with and without storm classification using four validation gauges inside the catchment. 

 The results indicate that the quality of the merged data for the research area improves with an 

increasing distance from the centre of the study area and number of gauges up to a certain limit; it then 

deteriorates when the distance and gauge numbers are further increased beyond that limit. Also, the 

result shows that different merging methods produce different results regarding the optimum distance 

and optimum number of gauges. The KED method shows that going farther away from the centre of 

the study area to add more gauges than the best case in the KRE method produces the most promising 

rainfall estimate for the study area. Furthermore, when the rainfall is classified into stratiform, 

convective, or mixed, the KED merging method showed that it was not affected by the storm type and 

it was sensitive to the gauge density. Thus, the optimum merged scheme was the same for the classified 

and unclassified rainfall (17 gauges). However, the KRE method showed that it was sensitive to the 

storm type and using a larger area (17 gauges) improves the merged rainfall for stratiform events. 

Convective events need fewer and closer gauges (9 gauges) from the study area than stratiform events 

to produce the best merged rainfall product. 

 Moreover, we propose a method to correct the 5 min radar data by using the optimum merged 

rainfall and the raw daily radar data, since the only available 5 min data in our case is from radar. 

However, we believe that our method is applicable with both fine and coarse temporal resolutions. Thus, 

the result from this study is of important and practical value for other studies, e.g. hydrological 

modelling to analyse flooding in urban areas. Also, it may help to improve rainfall nowcasting and 

forecasting for areas which lacks from gauge records since the method provides the best rainfall 

estimation for those areas.  
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 This study proves the existence of an optimum merging scheme, although the analysis is only 

concentrated in a particular urban area, so clearly more cases should be explored in different catchments 

and climatic conditions.  Further research is required to examine the untackled questions, for example, 

what will the results be if there are different rain gauge network densities around the study area? What 

will the results show for both long and short-term verifications? What would the KED and KRE 

performances be for a dynamic merging scheme by using the optimum merging area for different storm 

types? In this study, there are four experimental rain gauges in the study area. In the real world cases, 

the study area is unlikely to have rain gauges and temporary rain gauges would be needed. Questions 

will arise about how many and how long those temporary rain gauges should be installed to find out the 

optimal merging area. Even more interestingly, is it possible to extrapolate the findings from the study 

sites to a wide range of other sites. It is hoped that this study will stimulate the community to explore 

such questions further.  
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