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Abstract 

Rainfall forecasting plays an essential role to forecast extreme precipitation events for real-time flood 

forecasting. Uncertainties from both radar rainfall estimations and forecasts propagate into runoff 

modelling and impact the ability of an event to be correctly forecasted. Weather radars provide 

measurements with high temporal and spatial resolutions necessary for hydrological applications; 

however, radar rainfall is subject to different sources of uncertainties. Short-term radar-based rainfall 

forecasts (known as nowcasting) are subjected to uncertainties deriving from radar rainfall estimations, 

uncertainties related to the nowcasting model and uncertainties related to the temporal evolution of 

the precipitation field.  This thesis proposes new methods to quantify and account for rainfall forecast 

uncertainties and assesses how some of these uncertainties propagate into hydrological modelling in 

small urban areas and large river catchments. Uncertainties related to both radar rainfall estimations 

and the temporal evolution of velocity fields were studied. 

The study area focused on the north of England, where data from three weather radars and more than 

200 rain gauge stations were available. A radar rainfall estimation ensemble generator was 

implemented to model the uncertainties in radar rainfall. The radar rainfall estimation ensembles were 

computed based on comparing historical weather radar rainfall estimations and rain gauge 

measurements. The radar rainfall estimation ensembles were used to drive a radar-based forecasting 

model to produce ensemble rainfall forecasts. These radar estimation ensemble forecasts were 

compared against the forecasts produced with a stochastic ensemble generator. The results showed 

an improvement in the forecasting ability of the radar rainfall estimation ensembles during the first 

hour of the forecasting time. For flow forecasting applications, the radar rainfall estimation ensembles 

overperformed the stochastic ones in the first forecasted hour and could reproduce flow peaks more 

accurately.  To assess uncertainties related to the temporal evolution of velocity fields, a new 

methodology to generate ensembles using rainfall advection fields from a time window that goes from 

10 min up to 2 hr before the forecast’s start was proposed. The results show that the extra information 

provided by the rainfall velocity fields from the previous hours can improve the rainfall forecast skill up 

to 3h ahead. The forecasts were used to predict sewer flows in an urban area, and the results showed 

that these forecasts provide improvement compared to deterministic forecasts. Merging radar rainfall 

with rain gauge measurements was studied to improve rainfall estimations and tests to assess if sub-

hourly temporal resolutions could be used to merge radar and rain gauge data. A radar – rain gauge 
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merging method combines the spatial distribution of precipitation from weather radars with the 

accuracy of rain gauge measurements to produce a product with the best from both information 

sources. However, using radar-rain gauge merging techniques to produce rainfall forecasts is a 

challenge because the temporal correlation of the radar rainfall advection field is lost. A new rainfall 

forecasting method that merges radar and rain gauge rainfall using kriging with external drift (KED) and 

using advection velocity fields from original radar data was developed. The results showed that this 

method produces a better rainfall forecast than using KED rainfall or radar rainfall. 

The methods used to account for uncertainties in radar estimations had a more substantial influence 

in improving the forecasting skill up to 1 hour lead time; during this period, radar estimations are the 

main errors sources in nowcasting. Ensembles produced by varying the rainfall velocity fields showed 

improved estimations compared to a stochastic ensemble generator at longer lead times. 
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Chapter 1. Introduction  

1.1 Background and motivation 

Flooding is a recurrent natural disaster around the world, and climate simulations for the next 100 years 

suggest changes in the rainfall regime, causing more floods and droughts problems all over the world 

due to the increase of CO2 emissions (Haines et al., 2006; Lau et al., 2010). The increase of CO2 levels in 

the atmosphere and global climate changes are escalating flooding incidences, sewer overflows, and 

droughts. Along with climate change, variations in the land-use also contribute to the fact that floods 

events have become more frequent and intense over the past century in many regions worldwide 

(Haines et al., 2006; Lau et al. Adopting measures to adapt to a changing climate, alongside policies to 

mitigate CO2 emissions are more important than it has ever been  (Haines et al., 2006). Large floods 

events are life-threatening phenomena, have a significant impact on the economy and infrastructure, 

with damages lasting much longer than the event’s duration. As floods are becoming more frequent 

and intense, there is a need to increase protection measures to minimise the losses. There are two 

possible strategies to manage floods hazards. The first of them is non-structural measures, based on 

issuing floods warnings using real-time flood forecasting systems. The second one, a much more 

expensive approach, is structural measures to protect from an estimated flood level (Few, 2003; Brocca, 

Melone and Moramarco, 2011).  Nevertheless, more intense floods that can overcome the protective 

structures will eventually occur. Alternatives measures using floods forecasting and warning systems 

should also be in place, as forecasting floods hours ahead can allow a timely emergency response to 

take place (Golding, 2009) and help to deploy flood barriers in critical locations.  

Rainfall-runoff models have a vital function when issuing flood warnings (Brocca, Melone and 

Moramarco, 2011). Over the last couple of decades, much research has been done to increase 

forecasting rainfall reliability (Pierce et al., 2000; Bowler, Pierce and Seed, 2006; Cloke and 

Pappenberger, 2009; Foresti et al., 2013). The need for high-quality rainfall data with high temporal 

(e.g., 5 min or lower) and spatial (e.g., 1 km or lower) resolutions to forecast flows are often emphasised 

(Berne and Krajewski, 2013; Thorndahl et al., 2016). Weather radars are able to estimate rainfall based 

on back-scattered radiation. It has been used for decades in meteorological applications and has the 

advantage of producing rainfall estimations with high temporal and spatial resolution. Radar resolution 

has a particular impact on localised events with high rainfall intensity (Zhu, Xuan and Cluckie, 2014). 

Weather radars are capable of estimating rainfall in real-time and provide high-resolution data that is 

required. However, radar estimations have shown to be subjected to a number of uncertainties that 

affect the reliability of flow predictions. Probabilistic radar estimations can be used to quantify residual 
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uncertainties in weather radars, as proposed by  Germann et al. (2009). This method uses rain gauge 

historical data set as a reference to produce ensembles. Radar and rain gauge merging have been 

successfully used for years to improve rainfall estimations. However, it needs a dense rain gauge 

network to produce skilful estimations (Jewell and Gaussiat, 2015). Kriging with external drift is a well-

performing merging method but using it in short-term forecasts is challenging as there is little research 

on KED products with a high temporal resolution, and it lacks a temporal correlation between time-

steps. 

Nowcasts are short-term forecasts (up to 6 hours lead time) and have been used for years in real-time 

applications.  Nowcasting models can produce high resolution, very short-term forecasts; however, 

they quickly lose their skill and are highly dependent on the quality of radar data available (Foresti et 

al., 2013). Besides uncertainties from rainfall estimation, rainfall forecast is also subjected to 

uncertainties inherent to the model (Bowler, Pierce and Seed, 2004; Foresti et al., 2013). NWP models 

can extend the forecasting lead-time and produce forecasts with 1.5 km resolution (Simonin, Ballard 

and Li, 2014; Dance et al., 2019). Combining nowcast and NWP forecasts can produce skilful forecasts 

for a more extended period: the nowcast provides accuracy at the start of the forecast, while NWP 

main advantages are only seen after at least 2h from the start of the forecast. Therefore, when the 

accuracy of rainfall forecasts start to drop rapidly, it is also the moment that the NWP forecasts start to 

gain more skill (Bowler, Pierce and Seed, 2006; Seed, Pierce and Norman, 2013). Both nowcast and 

NWP models are subject to a number of different error sources. Although nowcasts have limitations 

due to different sources of uncertainties, it is still more accurate than NWP forecasts at short-term and 

remains an important tool to produce flow forecasts. (Golding et al., 1998; Seed, Pierce and Norman, 

2013; Foresti et al., 2016). Using nowcasting instead of quantitative precipitation estimations (QPE) 

from radar or rain gauge can increase the lead-time in flow forecasting (Foresti et al., 2016). 

Rainfall estimation is one of the primary sources of uncertainties for the first-hour lead-time (Foresti et 

al., 2013). Advances in radars hardware and correction algorithms continuously improve radar data 

quality; nevertheless, residual errors will always be present and affect rainfall forecast (Germann et al., 

2009). As nowcasts are based on advected rainfall fields to produce forecasts, without accounting for 

information on the atmospheric state, the temporal evolution of rainfall is not considered. Using 

probabilistic forecasts can assess some of these uncertainties by perturbing the initial forecast.  

Probabilistic forecasts are a number of forecasts (ensembles) generated by adding noise to the 

deterministic forecast, and they are valid at the same time. Probabilistic forecasts are commonly used 

to quantify the forecast uncertainties and give further information about possible scenarios 

(Araghinejad and Burn, 2005; Laio and Tamea, 2007; Liguori and Rico-Ramirez, 2012a, 2013a). 
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Understanding and improving the estimation of these uncertainties is therefore essential to increase 

the ability to produce rainfall forecasts and subsequently enhance flow predictions. 

This thesis proposes different approaches to account for uncertainties related to radar rainfall 

estimation and the temporal evolution of rainfall fields and assess how these uncertainties propagate 

into flow forecasts in urban and rural catchments.  

1.2 Research questions and objectives 

This study aims to develop methods to improve radar-based rainfall forecasting by addressing 

limitations related to the radar estimation of precipitation and the temporal evolution of rainfall fields 

and analysing how the forecasts produced can be useful to produce flow forecasts. With this in mind, 

the thesis addresses the following research questions: 

Q1. Weather radars have the advantage of high temporal and spatial resolution. However, it is 

subjected to a number of measurements and estimation errors. Can probabilistic radar 

estimations be used successfully to account for radar uncertainties for nowcast applications? 

How rainfall estimation uncertainties propagate into hydrological models? 

Q2. Is it possible to produce ensembles to address uncertainties due to the temporal evolution of 

rainfall in a more realistic way? 

Q3. How temporal resolution affects radar and rain gauge merged products?  Do high-resolution 

radar and rain gauge merged products have the potential to be used in nowcast models?  

Q4. How to produce nowcasts using radar and rain gauge merged products? How the temporal 

resolution of radar and rain gauge merged products affects the forecasting skill? How to 

produce nowcasts using radar and rain gauge merged products when they lack temporal 

correlation? 

In order to answer the research questions above, the objectives of this thesis are: 

O1. To assess and quantify ensemble radar rainfall estimations in radar-based forecasting 

(nowcasting), sewer flow forecasting and river flow forecasting.  

O2. To propose a new method to produce ensemble forecasts by adding noise to probabilistic 

forecasts in a more realistic way by using the information on how the precipitation evolved 

before the forecast starts. To assess the use of this new technique in producing ensemble 

rainfall forecasts and their application in sewer flow forecasting. 

O3. To assess rainfall estimation accuracy using radar and rain gauge merged, KED (kriging with 

external drift) will be used in this thesis due to its robustness and performance. Different 
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temporal resolutions will be used to assess how the KED products’ accuracy varies with the 

accumulation periods. 

O4. To develop a new technique that can improve radar-based forecasts by using KED products 

to overcome the lack of temporal correlation between KED products’ time steps.  

1.3 Thesis layout 

Considering some of the limitations regarding nowcasting uncertainties and their propagations, three 

methods to address nowcasting uncertainties were discussed. Two methods target radar rainfall 

estimation uncertainties and one method that assess the uncertainties related to the temporal 

evolution of rainfall fields. 

The thesis layout includes a review of previous findings in the literature and chapters presenting novel 

research. In Chapter 4 and Chapter 5,  the methods proposed are based on using probabilistic forecasts 

to quantify uncertainties. Chapter 6 tests different KED temporal resolutions that are an essential step 

to allow KED use in nowcasting and hydrological applications. Chapter 7 presents an original method to 

use KED in nowcasting. Unlike the techniques in Chapter 4 and Chapter 5, the use of KED in nowcasting 

aims to reduce forecasting uncertainties. Finally, Chapter 8 gives an overall conclusion of this thesis 

findings. 

Chapter 2 outlines the theory behind rainfall measurement and describes the main uncertainties 

affecting rain gauges measurements and radar rainfall estimations. In Chapter 1, an overview of 

nowcasting techniques and uncertainties related to the nowcasting models is presented. 

Chapter 3 defines the rain gauge and radar dataset used in this thesis and the nowcast and hydrological 

models used in the thesis. 

Chapter 4 addresses the research question Q1. It describes an ensemble generator to produce 

ensemble radar rainfall estimations proposed by (Germann et al., 2009) that uses a historical data set 

to estimate residual errors in radar rainfall.  The method has been tested for rainfall and flow 

estimations, but this method’s applicability in rainfall forecast for hydrological applications has not been 

evaluated. Firstly, with this as the chapter’s final aim, ensemble radar rainfall forecasts were produced 

and compared with stochastic ensemble rainfall forecasts. In the next step, the rainfall forecast was 

used to forecast flows in an urban area and river catchments. 

Chapter 5 proposes a new method to generate ensembles to account for uncertainties related to the 

temporal evolution of the velocity field to address the issues raised on the research question Q2. 

Utilising ensemble rainfall forecasts to account for these uncertainties is commonly used. However, 
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ensembles are usually produced by perturbing the rainfall fields with stochastic noise. The method 

proposed in this chapter uses radar images that are not usually used to produce the forecast, but they 

provide useful information on how the rainfall developed prior to the beginning of the forecast. In this 

way, different velocity fields are related to the rainfall event and can be used to produce the forecasts. 

The results are used to forecast flows in an urban catchment and to assess if the rainfall forecasts can 

be used for this application. 

Chapter 6 gives an overview of rain gauge – radar rainfall merging techniques, specifically kriging with 

external drift (KED). In order to allow the use of KED in rainfall forecasting applications and to address 

research question Q3, different accumulation periods used in the merging are tested. KED is often 

applied using hourly accumulations. A few studies use high temporal resolution; however, further tests 

were needed to assess the prospect of using KED in nowcasting models.  

Chapter 7 addresses the research question Q4 by presenting a novel technique to produce rainfall 

forecasts using KED rainfall and consider the temporal correlation of precipitation. KED products do not 

maintain the temporal correlation of rainfall. This is a major issue when generating nowcasts as the 

rainfall advection field calculated can be opposite from the reality, advecting the rainfall in different 

directions. The method proposed uses the high temporal correlation obtained from radar images to 

compute the advection field. The KED merged product is then advected using the radar-based 

advection field. The chapter assesses this novel technique for radar-based precipitation forecasting.   

Chapter 8 summarises the thesis’s conclusions and the limitations of the work; it also provides 

recommendations for future research. 
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Chapter 2.  Rainfall observation and forecast 

Accurate precipitation estimation is very important in hydrological modelling. It is a crucial input in 

rainfall nowcasting and can be used in rainfall-runoff modelling, flood forecasting applications, such as 

issuing warnings for extreme events, hydrological applications, and climate modelling. Flood forecasting 

applications in large rural catchments require rainfall with good spatial and temporal resolutions. For 

instance, in the UK, weather radar rainfall with spatial and temporal resolutions of 1 km and 15 min 

respectively is used for flood forecasting in large catchments (Price et al., 2012). However, for flood 

forecasting applications in small urban areas, rainfall data should have high temporal (e.g., 5 min or 

lower) and spatial (e.g., 1 km or lower) resolutions, as the small scale of the catchment combined in 

changes in the land use can lead to rapid changes in the catchment flow. A high resolution also allows 

the hydrological process dynamics to be better captured  (Berne and Krajewski, 2013; Thorndahl et al., 

2016). Over the last couple of decades, much research has been done to increase forecasting rainfall 

reliability (Pierce et al., 2000; Bowler, Pierce and Seed, 2006; Cloke and Pappenberger, 2009; Foresti et 

al., 2013). Hydrodynamic models for real-time flow predictions, utilising radar rainfall and radar-based 

rainfall forecasts, can be used for the real-time control of drainage systems in urban areas (Liguori et 

al., 2012). However, it is essential to know the uncertainties related to the radar rainfall measurements 

to produce reliable hydrological simulations and forecasts. 

Several sensors are available to measure precipitation, such as rain gauges, disdrometers, weather 

radar, microwave links and satellite. Each has its own advantages and disadvantages in terms of 

measurement, accuracy and spatial and temporal resolutions.  This thesis uses rain gauge and weather 

radar data to improve precipitation measurement and forecasting for flood forecasting applications in 

large river catchments and urban areas. For this reason, this chapter will focus mainly on these two 

types of precipitation measurements.  

Disdrometers are used to measure the raindrop size distribution (DSD) of precipitation events at a given 

point location, but these instruments do not measure rainfall rates directly. They measure the number 

of drops of different sizes, which give the DSD, which then can be used to the rainfall rate (Rico-Ramirez, 

2019). The rainfall rate is approximately the 3.67th moment of the DSD, providing the raindrops have 

reached terminal fall velocities (Rico-Ramirez, 2019). Disdrometers are often used to calibrate rainfall 

data from weather radars (Tokay et al., 2003), given the fact that the radars measure the radar 

reflectivity from precipitation particles that are related to the sixth moment of the DSD (Rico-Ramirez, 

2018). As with any other precipitation measurement method, disdrometer measurements are also 

prone to uncertainties. For instance, downdrafts (or updrafts) can cause an increase (or decrease) of 

the raindrops fall velocities and consequently affecting the rainfall rates. Since disdrometers provide 
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point measurements with a relatively small sampling area (around 50 cm2), the variability of 

precipitation in space is not accounted for, in particular during convective rainfall events. Studies from 

Jaffrain and Berne (2011) and Tokay et al. (2003) estimate that sampling uncertainties in disdrometers 

are around 10-20%. 

Satellite measurements are particularly helpful in remote areas and oceans where other types of rainfall 

measurements are not available or have poor quality. Satellites providing global rainfall estimates are 

handy in hydrological applications due to their spatial coverage (Sorooshian et al., 2000), and the quality 

of estimations based on satellites have been improving over the years (Rico-Ramirez, 2019). 

Nonetheless, using satellites for operation applications still encounters limitations due to their 

uncertainties (Aghakouchak et al., 2012). The Tropical Rainfall Measuring Mission (TRMM) from the 

National Aeronautics and Space Administration (NASA) and the Japan Aerospace Exploration Agency 

(JAXA) orbits in a range that covers tropical and sub-tropical ranges, providing rainfall, water vapours 

and clouds measurements (Kummerow et al., 2000; Prigent, 2010). After its end, the Global 

Precipitation Measurement (GPM) mission was created as an extension to the TRMM. The GPM 

provides measurements from across the globe and includes an infrared sensor, microwave imager, 

dual-frequency Ku/Ka-band precipitation radar and infrared sensors (Smith et al., 2007) for measuring 

microphysical properties, water fluxes and latent heat releases (Hou et al., 2014). Rainfall 

measurements from GPM have a 0.1 degree spatial resolution and 3 hr temporal resolution (Smith et 

al., 2007) with a latency time of about 6hr, which opens up new opportunities for real-time hydrological 

applications. The GPM mission was also designed to fill the gap of the TRMM regarding estimation of 

light-intensity precipitation and snow (Hou et al., 2014). The GPM mission can provide valuable 

information for monitoring and predicting hurricanes, tropical cyclones, and precipitation events. 

Satellite data is also valuable for numeric weather (NWP) predictions as it gives further information 

about the atmospheric state (Hou et al., 2014) and can potentially be used for data assimilation or to 

validate NWP forecasts.  

Rain gauges and weather radars are vastly used to measure rainfall (Cecinati, 2017). Rain gauges are 

instruments that measure precipitation at ground level with high accuracy (Wilson, Brandes and Noaa, 

1979); however, it lacks the spatial resolution needed for flood forecasting (Jarraud, 2010; Berne and 

Krajewski, 2013). Weather radars estimate rainfall in real-time and provide high-resolution data, and 

have great potential for being used in flood forecasting applications. The spatial resolution usually 

obtained with weather radar (e.g. 1km in the UK) would be difficult to achieve, and even dense rain 

gauge networks are unable to produce such resolution.  
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Weather radars can be used for short-term precipitation forecasting, which is also known as 

nowcasting. Nevertheless, weather radar rainfall estimations are not as accurate as rain gauge 

measurements, and often this can limit its application in hydrology (Wilson, Brandes and Noaa, 1979; 

Borga, 2002; Villarini and Krajewski, 2010). Accurate rainfall forecast inputs are one of the main factors 

that influence accurate flow predictions. Increasing the predictability of these forecasts has proven to 

be a challenge given the small spatial scales involved, and therefore reducing radar rainfall-related 

uncertainties can improve radar-based rainfall forecasts (Bowler, Pierce and Seed, 2004; Foresti et al., 

2013). Both rain gauges and weather radar rainfall are affected by different sources of errors that 

propagate into the rainfall forecasts produced by nowcasting models (Germann et al., 2009; Liguori and 

Rico-Ramirez, 2012c). Geostatistical and non-geostatistical spatial interpolating methods, such as 

kriging, co-kriging,  inverse distance weighting and regression models, have been developed to reduce 

uncertainties related to weather radar. (Seed and Austin, 1990; Kitchen and Blackall, 1992; Ciach and 

Krajewski, 1999; Habib, Krajewski and Kruger, 2001; Germann et al., 2006; Villarini et al., 2008).  

Methods to blend radar and rain gauge measurements will be further discussed in Chapter 6. 

The wide availability of weather and its high temporal and spatial resolution make weather radars a 

good choice for rainfall and hydrological forecasting, particularly for hydrological application in urban 

catchments. Although there are limitations due to its accuracy, there are many methods to address the 

primary sources of inaccuracies in weather radars, and new researches are continuously being carried 

out. Apart from that, forecasting models can also include steps to account for measurements errors 

and improve the forecast outcome. 

In this thesis, methods to account for rainfall estimation errors in nowcasting are proposed. 

Understanding how rainfall is measured, estimated and the limitations of the different instruments 

available are essential when deciding how to address these uncertainties and proposing ways to 

overcome them. This chapter provides an overview of the general theory to measure rainfall. It 

discusses limitations and uncertainties related to rain gauges and weather radars and provides an 

overview of methods used to generate short-term rainfall forecasts. This chapter only gives a general 

description of rainfall estimation and forecasting. This is a vast subject, and more detailed information 

can be found in the cited references. 

2.1 Rain gauges 

Rain gauges are instruments used to measure rain at ground-level. Rain gauges are used as a reference 

and are known to be reliable precipitation instruments; however, its use in forecasting rainfall for 

hydrological applications would be desirable a dense network of rain gauges, in order to capture the 
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process dynamics, and therefore this is often not practical (Wilson, Brandes and Noaa, 1979). Rain 

gauges are point measurements; being so, they only represent measurements over a limited area. 

However, using rain gauges data in combination with weather radar rainfall can provide better 

estimations of precipitation over a large area (Jarraud, 2010) with better accuracy and spatial/temporal 

resolutions. 

Rain gauges can be classified according to how measurements are made: manual gauges, mechanical 

recording gauges, and electrical rain gauges (Strangeways, 2010). As the name says, manual gauges 

need an observer to record the amount of rain that accumulated over a period of time. Measurements 

can be made daily, weekly or even monthly, depending on the measuring cylinder’s volume. It is 

estimated that there are over 50 different kinds of manual rain gauges in the world (Strangeways, 

2010), such as the ‘Snowdon’ copper rain gauge (Figure 2-1). The ‘Snowdon’ rain gauge is a 5-inches 

gauge that has been used as a standard in the UK and Ireland for over a century and can provide 

reasonable rainfall estimations due to its large funnel and accurate rim. It stores rainwater on a bottle 

situated below ground level. (Strangeways, 2010; Burt, 2013). Readings are daily and made using a 

measuring cylinder. Mechanical recording gauges can record the measurements. Gauges such as siphon 

gauges are able to record the measurements, but an observer is needed on-site to collect the data. 

These gauges are usually used to give precise totals and are used as reference rain gauges. Electrical 

rain gauges, such as tipping bucket rain gauge (TBR), electronic weighing rain gauges (WR), capacitance 

gauges and drop-counting gauges, can record measurements remotely with the help of a data logger 

and have the advantage of better temporal resolution (Strangeways, 2006, 2010). As TBRs and WRs are 

vastly used, a more detailed description of these gauges is found in section 2.1.2 and 2.1.1.  

Although rain gauges are usually used as a reference, they are also subject to measurement errors. 

Uncertainties are related to site and location errors, instrumental errors and random errors (Krajewski 

et al., 2003; Rico-Ramirez, Liguori and Schellart, 2015). Precipitation measured by rain gauges will be 

usually underestimated with errors of up to 30% (Jarraud, 2010). Systematic errors in the measurement 

are usually more minor for liquid than solid precipitation. Precipitation can be estimated by correcting 

some of the systematic errors (Jarraud, 2010). The following uncertainties described in this section are 

a general description that are, up to some extent, common to most of the rain gauges. Uncertainties 

specific related to WR and TBR are going to be described in sections 2.1.2 and 2.1.1. 
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Figure 2-1 ‘Snowdon’ rain gauge and graduated cylinder (Strangeways, 2010). 

Uncertainties in rain gauge measurements can be related to wetting losses on the walls of the collecting 

funnel strainers or any debris collected, and losses in the emptying of the container can account for up 

to 15% of errors during warm weather and up to 8% in winter periods (Jarraud, 2010). These 

uncertainties are accumulative and are dependent on the number of times the container is emptied 

and on the type of gauges (e.g. WR are not subject to losses related to wetting losses in the container) 

(Strangeways, 2006; Jarraud, 2010).  

Evaporation losses are mainly important during the summer or in hot locations, leading to uncertainties 

of up to 4% (Jarraud, 2010). In the Snowdon rain gauge, an average of 0.2 mm is lost in each rain event 

(Strangeways, 2006). In heavy rainfall events, evaporation is not as significant in short intermittent 

events of light rainfall. The water inside the gauges is less prone to evaporation by implementing 

measures such as housing the container underground and minimising the ventilation. Evaporation 

losses also are dependent on the gauge type and is an issue especially significant in gauges without a 

funnel to collect rainwater as it allows a more extensive water surface to be exposed. The former two 

sources of uncertainties can be minimised when electrical rain gauges are used (Jarraud, 2010).  

Raindrops can splash when falling into the gauges, and vertical sides have proven to be useful to avoid 

losses. On the other hand, it can increase evaporation losses due to an increased wetting area, and it 

also increases wind-effect errors. Out- and in splashing losses can also cause errors of around 1-2% of 

rainfall (Kurtyka, 1953; Strangeways, 2006; Jarraud, 2010). 

The collector has to be large enough to minimise uncertainties (with a diameter of at least  4 inches)  

(Strangeways, 2006). Gauges with less than 3 inches in diameter can present under-catch of up to 6%. 
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This error is reduced to up to 2% when the diameter is larger than 4 inches (Kurtyka, 1953). In manual 

gauges, a larger collector also means an increase in the size of the container. The UK Met Office uses a 

collector of 5 in on their manual gauges. For mechanical gauges, it is important to have a large collector 

so the water collected can overcome levers friction. For a TBR, the collection should be higher than 10 

ml per tip. (Strangeways, 2006). 

Locations and installation of rain gauges are also essential to reduce uncertainties. The gauges should 

be levelled as 1-degree tilt leads to a 1% error, and maintenance should be made to assure that it has 

not moved (Kurtyka, 1953; Strangeways, 2006). Also, the installation should be at a distance from other 

objects. As a general rule, it is acceptable for the distance to be twice longer than the object’s height, 

although four times the height is often recommended (Strangeways, 2006). 

Wind effects are one of the largest sources of errors in rain gauges, leading to uncertainties of 2-10% 

for rain and up to 80 % for snow (Kurtyka, 1953; Jarraud, 2010). As a general rule, the rain gauges should 

not be installed in windy locations. Wind effects are related to the interactions between the wind flow, 

the body of the rain gauge and the particles falling through the atmosphere and mainly affect lighter 

particles that are carried away from the gauge. The trajectories of these particles are distorted by the 

wind speed, displacement and acceleration close to the rain gauge. The use of windshield devices plays 

an essential role in reducing turbulence around rain gauges. The shape of the gauge and the orifice and 

data corrections can also improve rainfall estimations  (Sevruk and Nespor, 1994; Duchon and 

Essenberg, 2001; Jarraud, 2010; Dai et al., 2013).  As it is a great source of uncertainties, different types 

of windshields have been developed throughout the years. One of the first attempts to shield rain 

gauges was made by Nipher at the end of the 19th century. The Nipher shield is shaped like an inverted 

trumpet. The design is not ideal for cold weather as snow can accumulate in the shield, but it is a widely 

used method (Kurtyka, 1953; Strangeways, 2006). The Alter shield is designed with hinged metal strips 

that are loosely hanging. In windy conditions, the strips swing inwards and form a conical shape similar 

to the Nipher shield. Its hanging strips avoid snow accumulation in the shield (Kurtyka, 1953; 

Strangeways, 2006). Tretyakov made a windshield that combines both the Nipher and Alter design 

effect and has fixed plates (see Figure 2-2). Other ways of avoiding wind effects include the pit gauge 

(see Figure 2-3) and turf wall, that although they are effective, can get filled with snow and sand 

(Strangeways, 2006). Aerodynamic gauges were developed in order to reduce the gauge profile to 

cause less interference in the wind flow. However, they present increased out-splashing errors. 

Although, in real applications, the airflow is turbulent, and its direction and speed can rapidly change. 

The designs were made through experiments in wind tunnels that use laminar airflow (Strangeways, 

2004).  
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Figure 2-2 (a) Nipher Shield. (b) Alter Shield. (c) Tretakov screen (Strangeways, 2006) 

 

Figure 2-3 Pit rain gauge (Strangeways, 2010). 

Spatial uncertainties occur as rain gauges are point measurements and are used to estimate areal 

rainfall. Rainfall intensity, rain gauge network density and domain size play an important role in spatial 

errors. Nonetheless, even in a highly dense network, sampling uncertainties will still be present. In this 

context, using spatial interpolating techniques can improve rainfall estimation.  

2.1.1 Tipping Bucket Rain Gauge 

Tipping bucket rain gauges (TBR) are the most common type of electrical rain gauges and play an 

essential role in rainfall-runoff modelling and urban hydrology. They are also used to calibrate or 

validate other sources of rainfall measurements (e.g. radar, satellite, microwave links). TBRs are widely 

used in the UK as they rely on a simple mechanism, are reliable and do not consume energy (Habib, 

Krajewski and Kruger, 2001; Strangeways, 2006). A TBR is based on a container divided into two 

triangular sections (Figure 2-4). The container is balanced over an axis and rests against one of two 

stops. Figure 2-5 illustrates the operation of a TBR during rainfall.  The collector directs the water for 

the upper compartment, and when filled, the compartment becomes unbalanced and tips over. While 
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it empties, the other compartment is filled. Records are made every time the compartment tilts through 

a pulse-generating switch connected to a receiver. Every pulse or tip is related to the resolution of the 

TBR. Once a record is only done when the bucket switches, TBR only measure accumulated rainfall 

between tips. Rainfall estimates are done by counting the number of tips and the sections’ capacity 

(Habib, Krajewski and Kruger, 2001; Jarraud, 2010). TBR can be designed with different compartment 

sizes. Very small buckets are more prone to uncertainties as the bucket would tip with a very small 

water amount.  TBR are usually designed to tilt at intervals of 0.1, 0.2, 0.25, 0.5 and 1 mm of rain 

(Strangeways, 2006). In the UK, 0.1 and 0.2 mm intervals are often used, while in the US the most used 

interval is 0.25 mm and 1 mm. 

 

Figure 2-4 Tipping bucket (Strangeways, 2010). 

 

 

Figure 2-5 Schematic drawing of tipping bucket rain gauge operating (Netatmo Rain Gauge | Weather Station Tools, 2013). 
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Some of the uncertainties of TBRs were already discussed in section 2.1. However, TBRs are subjected 

to some specific errors. Systematic errors in TBR include wind effects and losses due to over-splashing, 

wetting and evaporation and are responsible for most of the measurements uncertainties (Humphrey 

et al., 1997; Habib, Krajewski and Kruger, 2001).  Due to the high surface area, TBRs are subject to 

evaporation losses. In short events of light rainfall, when the accumulated rain in the container is not 

enough to tip it, the remaining water can evaporate and therefore is not measured. TBRs are not 

recommended to measure solid precipitation. Heating is often necessary to melt the solid precipitation, 

leading to higher losses due to evaporation. Evaporation due to heating was found to be comparable 

or more significant than uncertainties due to wind effect (Strangeways, 2006, 2010; Jarraud, 2010; 

Savina et al., 2012). Water can also adhere to the gauge and change the water balance of the 

compartment or leads to evaporation losses in cases when the bucket does not tip again. It might also 

occur that the compartment is not completely emptied when it tilts. In both events, more water is 

necessary to tip the bucket resulting in underestimation of short events. In longer events, after the third 

tip, this error is reduced. In very light rain, temporal errors can occur. It happens because the rainfall 

amount takes a longer time to tip the bucket, and the start and end of the event might not be accurately 

determined (Jarraud, 2010; Strangeways, 2010). During the time that it takes to tip over, undercatch 

happens when rainfall might still fall in the compartment that is being empty and cause 

underestimation of rainfall. During heavy rainfall events (over 250 mm/hr), these errors increase as the 

time it takes to reposition the buckets is not fast enough. Devices, such as a precise programmable 

pump, control the rate that the water falls into the compartments or that accelerate the tipping action 

can be used to reduce this uncertainty. Although this source of error can be reduced, it cannot be 

eliminated. The nozzle shape, position, and size can also lead to overreading according to the stream 

of water falling into the compartment (Jarraud, 2010; Strangeways, 2010). Calibration with different 

rainfall rates can also be made and taken into account in the data processing.  Dynamic calibration is 

recommended to reduce measurements uncertainties and is an effective way to minimise the 

underestimation of rainfall in high-intensity events  (Niemczynowicz, 1986; Humphrey et al., 1997; 

Jarraud, 2010). Other error sources in TBRs are blockages due to leaves or dirt accumulated in the 

bucket (see Figure 2-7). It can be detected when looking at precipitation measurements from a nearby 

rain gauge, but regular maintenance of the TBR can help reduce blockages.  
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Figure 2-6 Example of a blocked TBR (Source: Personal collection). 

2.1.2 Weighing Rain Gauges 

Weighing Rain Gauges (WR) measure the weight of a container continuously, and consequently, the 

precipitation. The rainfall rate is calculated based on the volume of water collected during a given 

time interval (Nystuen et al., 1996; Jarraud, 2010). In order to weigh the water, the gauge measures 

the rainfall amount with a spring mechanism or with a system of balanced weights. The electronic 

version of WR uses a straingauge load cell to weigh the water, and it produces more accurate 

measurements than the mechanical version. Figure 2-7 illustrates a mechanical weighing rain gauge, 

and a photo of a typical weighing rain gauge can be found in Figure 2-8. For continuous operation, a 

siphon is necessary to empty the bucket regularly; however, this is not shown in Figure 2-7. In order 

to reduce evaporation losses,  evaporation suppressants, such as oil, are added to the gauge 

container (Strangeways, 2006; Jarraud, 2010). WRs are designed to measure all types of precipitation; 

however, they cannot identify the type of precipitation measured. In places where snow or hail are 

present, the gauges need to have a heating system, or anti-freezing solutions should be added to melt 

the snow. Besides that, snow measurements are more prone to be affected by wind as snowflakes are 

easier to be deflected by it (Strangeways, 2006; Jarraud, 2010).   
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Figure 2-7 Schematic drawing of a Weighing Rain Gauge (Strangeways, 2006) 

WRs are subject to some uncertainties related to the gauge type and how measurements are done, and 

most of it was discussed in section 2.1. An issue related to solids’ measurements is that they can stick 

to the funnel orifice and not fall into the container until it melts, leading to temporal uncertainty 

(Jarraud, 2010). Calibration is an essential part of gauge maintenance and should be done 3 to 4 times 

per year. Maintenance also includes inspection of all components, cleaning, and recharging of the anti-

freezing solution. WRs do not use mechanical moving parts to measure rainfall, so maintenance is 

simplified as there is no mechanical degradation (Vuerich et al., 2009; Jarraud, 2010). WR can be 

sensitive to temperature, wind flow over the gauge, and raindrops impact. Data processing is 

mandatory to deal with these noises (Vuerich et al., 2009). 

Advantages of WR include the fact that they are not subject to wetting losses when the container is 

emptied, and the continuous weighing of rainfall produces a better temporal measurement than TBR 

(Jarraud, 2010; Strangeways, 2010). As the measurements are constant, WR evaporation losses are also 

smaller than in TBR and can be quantified. As WR offer advantages when compared to TBR, currently, 

the UK Environment Agency (EA) is in the process of replacing their TBR rain gauges for WRs (M. A. Rico-

Ramirez, personal communication, 6th of June, 2019). 
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Figure 2-8 Weighing rain gauge  

2.2 Weather radar 

In World War II, the United Kingdom and the United States of America worked together in developing 

radar technology to locate enemy aircraft. The invention of the magnetron allowed radars to operate 

with shorter wavelengths, and as a result, the antenna’s size could be reduced and increased the 

accuracy of the radar in detecting target aircraft (Probert‐Jones, 1962; Rinehart, 1997; Rico-Ramirez, 

2019). During the war, an issue with radars was that back-scattered energy from meteorological 

phenomena also appeared in the radar display, overshadowing aircraft signals (Probert‐Jones, 1962). 

After the war, meteorologists started researching the use of radar to study the weather. Since then, 

improvements in all parts of radars have been made using computers to process and correct radar data 

and improve the quality of radar-based rainfall estimations (Rinehart, 1997).  
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Figure 2-9 Schematic of how weather radars work (Source: Personal collection). 

Radars are based on four main components:  transmitter (produces electromagnetic radiation), 

antenna (concentrates the radiation and receives part of the back-scattered radiation), receiver 

(receives the back-scattered radiation and converts it to a low-frequency signal) and a display system 

(Collier, 1996; Rinehart, 1997). The microwave frequency from radars depends on the radar type (5 

GHz for C-band, 3 GHz for S-band and 10 GHz for X-band) (Rico-Ramirez, 2019). When an 

electromagnetic wave hits a target, part of it is reflected to the radar. Rainfall measurements are made 

based on the back-scattered radiation, also called echo or radar reflectivity. It also incorporates the 

difference between horizontal and vertical polarised radiation in the case of dual-polarisation radars 

(Collier, 1996; Germann et al., 2006; Met Office, 2009).  The echoes produced constantly vary according 

to the movement of hydrometers. Therefore it is necessary to integrate a number of uncorrelated 

power reflected measurements in order to reduce the noise in the radar reflectivity. Figure 2-9 

illustrates the principle used by weather radars, where the radar sends electromagnetic waves, and the 

backscattered radiation is used to measures rainfall. The back-scattered energy varies according to the 

number of particles measured within the volume measured by the beam, physical state, orientation, 

composition, state, size and shape of the hydrometer. Probert‐Jones (1962) developed a radar equation 

to calculate the average power received. 

 
𝑃𝑟 =

𝜋3

1024 ln(2)

𝑃0ℎ

𝜆2
𝐺2𝜃1

1

𝑟2
|𝐾|2∑𝐷6 =

𝐶|𝐾|2𝑍

𝑟2
 (2-1) 

Where 𝑃𝑟  is the received power, 𝑃0 is the transmitted power, ℎ is the pulse length, 𝐺 is the gain of the 

antenna, 𝜃1 beamwidth, |K|2 is the dielectric constant (0.93 for water and 0.2 for ice particles), 𝐷 is the 
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drop diameter, 𝜆 is the radar wavelength, and 𝑟 is the range from the target to the radar location. Note 

that 𝑍 = ∑𝐷6 (see below). Adequate calibration of the radar constant (C) can help to improve the 

overall calibration of the radar system.   

For average raindrop diameters small when compared to the radar wavelength (𝐷 ≪ λ), it is possible 

to apply the approximation of the Rayleigh scattering (Rinehart, 1997; Rico-Ramirez, 2019). In this 

condition, the reflectivity can be defined as a function of the raindrop diameter and the drop size 

distribution (Collier, 1996): 

 𝑍 = ∫𝐷6𝑁(𝐷)d𝐷;  mm6 m−3 (2-2) 

Where 𝑁(𝐷)  is the drop-size distribution. The radar reflectivity can be affected by the size of 

hydrometers considered, being so express it in terms of dBZ units is able to express this large variation 

in an appropriate way (Collier, 1996): 

 𝑑𝐵𝑍 = 10log10(𝑍) (2-3) 

The most common drop-size distribution relation is the two-parameter exponential form defined by 

Marshall and Palmer (1948): 

 𝑁(𝐷) = 𝑁0. 𝑒
−Λ𝐷 (2-4) 

 𝛬 = 4.1. 𝑅−0.21 𝑚−1 (2-5) 

Where 𝑁0 is 𝑁(𝐷 = 0) = 8000 𝑚−4, Λ is the slope factor, and 𝑅 is the rainfall rate. 

The rainfall rate can also be expressed in function of the diameter, the rainfall drop-size distribution 

and raindrop velocity (Atlas and Ulbrich, 1977): 

 𝑅 =
π

6
∫𝜐(𝐷)𝐷3𝑁(𝐷)d𝐷 ;  mm hr−1 (2-6) 

Where 𝑣(𝐷) is the terminal raindrop velocity (raindrop velocity when air friction or air resistance  and 

the gravity force are balanced) and can be expressed by (Atlas and Ulbrich, 1977; Rico-Ramirez, 2004): 

 𝑣(𝐷) = 3.87𝐷0.67;𝑚 𝑠−1 (2-7) 

 

From equations (2-6) and (2-7), we have that: 

 𝑅 =
π

6
(3.87)∫𝐷3.67𝑁(𝐷)dD ;  mm hr−1 (2-8) 

It is important to notice from equation (2-8) that R is related to the 3.67th moment of the drop size 

distribution, while Z is related to the 6th moment of the drop size distribution. Therefore, Z is more 

sensitive to larger drops than R. 
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A semi-empirical relation for calculating rainfall rates can be used (Marshall, Langille and Palmer, 1947; 

Collier, 1996; Harrison, Driscoll and Kitchen, 2000).   

 𝑍 = 𝑎𝑅𝑏 (2-9) 

Where 𝑎 and 𝑏 are constants that depend on the type of precipitation and can be estimated by using 

disdrometer observations where both Z and R are available or by using radar and rain gauge 

measurements. Using dual-polarization radars in conjunction with disdrometers can provide 

measurements of the raindrop size distribution. The N(D) can be calculated using the equation (2-2). 

The Z-R relationship depends on the calibration of the radar. However, in the literature, several 

relationships are dependent on the climatology of the area or the nature of precipitation (Marshall and 

Palmer, 1948; Marshall, Hitschfeld and Gunn, 1955; Atlas and Ulbrich, 1977; Fulton et al., 1998). 

Marshall, Hitschfeld and Gunn (1955)  defined a relationship that is more suitable for stratiform events, 

and it is often used in the UK: 

 𝑍 = 200𝑅1.6 (2-10) 

In the US, the commonly used equation is more suitable for convective storms (Fulton et al., 1998): 

 𝑍 = 300𝑅1.4 (2-11) 

Apart from the ones presented on equations (2-10) and (2-11), many other Z-R relationships can be 

found in the literature. Ulbrich and Lee (1999) presented a list of some typical values. Ulbrich and Lee 

(1999) highlighted that the Z-R relationships for thunderstorm represent the core of the precipitation, 

and the values for a and b can change according to the development stage of precipitation. Given the 

fact that precipitation types change in space and time, the use of a single climatological Z-R equation 

can lead to errors in the estimation of precipitation with radar when looking at particular events. 

Table 2-1. Coefficient a and b for some typical Z-R relationships (Ulbrich and Lee, 1999). 

Source Rainfall type a b 

Joss and Waldvogel (1970) 
Average of 
several types 

300 1.5 

Marshall and Palmer (1948) Stratiform 200 1.6 

Atlas and Chmela (1957) Stratiform 255 1.41 

Fujiwara (1965) Stratiform 205 1.48 

Jones (1956) Thunderstorm 486 1.37 

Fujiwara (1965) Thunderstorm 450 1.46 
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For forecasting applications, rainfall data should have a high temporal and spatial resolution. Weather 

radars can scan large areas measure rainfall in real-time, with a temporal resolution of 5 min or lower, 

and provide high-resolution data (1 km or lower) at real-time (Wilson, Brandes and Noaa, 1979; Sun et 

al., 2000; Sokol, 2003; Germann et al., 2006). However, weather radar rainfall data are affected by 

different sources of errors (Rico-Ramirez, Liguori and Schellart, 2015). Radar errors can propagate in 

short-term forecasts; generating inaccurate forecasts and understanding these errors is essential for 

rainfall forecasting applications. 

2.2.1 Radar uncertainties 

Despite advances in the weather radar technology in the past few decades, measurements errors such 

as radar calibration, ground clutter, occultation (beam blockage), radar beam overshooting in shallow 

precipitation, variation in the vertical profile of radar reflectivity (VPR), reflectivity-rainfall (Z-R) 

relationships, radar signal attenuation, and anomalous propagation (AP) still affect rainfall 

measurement and limits its application in hydrology (see Figure 2-10) (Pellarin et al., 2002; Germann et 

al., 2006; Rico-Ramirez et al., 2007; Rico-Ramirez and Cluckie, 2008). Understanding, identifying and 

correcting rainfall estimation uncertainties produce better quantitative precipitation estimations (QPE). 

According to Gorgucci, Scarchill and Chandrasekar (1996), precipitation estimates can have a large 

uncertainty (higher than 100%) when the reflectivity error is only a few decibels at C-band radars. Dual-

polarisation radars also permit the hydrometeor characteristics measurements (Rico-Ramirez, Cluckie, 

and Han, 2005), which can improve the quality of the radar rainfall measurements.  The following 

sections describe in more detail the error sources in radar rainfall estimates.  

2.2.1.1 Radar Calibration 

For accurate measurements, the radar's hardware components must be well maintained and up to date 

to guarantee an accurate calibration of the constants from the radar equation (2-1). Calibration of radar 

should also be made regularly to avoid inaccurate readings (Harrison, Driscoll and Kitchen, 2000).  Lack 

of accurate determination of the calibration constant can lead to systematic errors in the observations. 

The calibrated constants should be verified before any longer processing is applied to the data. There 

are different methods available to calibrate weather radars. However, Ryzhkov et al., (2005), Gourley 

et al. (2003) and Atlas, (2002) highlight that not having a universal method for calibrating radars and 

independently calibrating radars of an entire network can lead to discrepancies in rainfall estimation.  
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Figure 2-10. Illustration of uncertainties related to radar rainfall estimation. Where: 1. Overshooting of precipitation, 2. Sea 

clutter, 3. Wind turbines, 4. Bio-scatter, 5. Radar attenuation, 6. Ground clutter, 7. Variation of the vertical profile of 

reflectivity and 8. Occultation (Source: Personal collection). 

The determination of the radar constant can be realized through field tests that use a metal sphere 

(Anagnostou, Morales and Dinku, 2001) that can be dropped at constant intervals or carried by aircraft, 

balloons or drones (Atlas, 2002; Duthoit et al., 2017; Suh et al., 2017). The location of each ball can be 

compared with the radar data (Atlas, 2002).  Issues related to the tracking of the target, mainly in a 

narrow beam, could be overcome by using GPS (Atlas, 2002). A recent paper by Yin et al. (2019) showed 

how an unmanned aerial vehicle (also known as a drone) could be used to carry the metal sphere to 

calibrate weather radar systems. Because the backscattering cross-section of a metal sphere is known, 

then the reflectivity measurements can be calibrated.  The frequency shift reflector (FSR) is another 

well-known method to calibrate radars and uses a parabolic reflector. The reflector possess a horn at 

the focus that is shorted by a diode and can be used in any weather conditions (Atlas, 2002). A method 

to calibrate ground radars using a space-based radar was proposed by Anagnostou et al. (2001) and the 

methodology demonstrated a significant reduction in uncertainties in the rainfall estimations related 

to miscalibration and would allow calibrations to be more frequent. 

2.2.1.2 Ground clutter, occultation and anomalous propagation 

The choice of the radar's position and the characteristics of the landscape around the radar can also 

produce errors in radar QPE (Quantitative Precipitation Estimation).  Ideally, the radar beam should not 

encounter any kind of obstacles. However, the reality is that ground targets are more frequently than 
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desired, and higher interferences occur in orographic regions. In order to obtain rainfall measurements 

close to the ground, scans must also be carried at low angles (Rico-Ramirez and Cluckie, 2008). Ground 

targets, such as building, mountains, and vegetation, cause interference when they are in the way of 

the radar beam. Furthermore, unless they are appropriately corrected, they can lead to overestimating 

rainfall (Collier, 1996; Dufton and Collier, 2015). Ground interference can also cause occultation of the 

radar beam when the main part of the beam is blocked, and it can only be corrected if it does not 

obstruct more than 60% of the beam (Collier, 1996).  It is also possible that the targets, usually hills or 

mountains, partially block the radar beam and can have a more significant effect in overestimating 

rainfall at low elevation angles. The problem of the data at these angles being so important is that often 

they give very useful information about rainfall at ground levels (Bech et al., 2003; Cluckie and Rico-

Ramirez, 2004).  

Measurements closer to the ground are also affected by anomalous propagation (AP). Anomalous 

propagation occurs when the radar beam is deflected to the ground due to variations in atmospheric 

temperature, pressure, and humidity (e.g. a layer of warm and dry air over moist and cold air) (Rico-

Ramirez and Cluckie, 2008). AP is most usual in nocturnal inversions on clear-nights or after 

thunderstorms when a severe difference in the atmospheric moisture is present. This condition leads 

to unwanted returned signals, extending ground echoes, that is challenging to accurately identify due 

to less predictable location (Collier, 1996; Harrison, Driscoll and Kitchen, 2000; Cho et al., 2006; Rico-

Ramirez and Cluckie, 2008; Dufton and Collier, 2015). 

AP and ground clutter interference can be dealt with in the radar installation (related to the location 

and hardware used) and processing the radar data. When the radar is installed, possible ground clutters 

should be considered, and the radar needs to be positioned in a place where ground clutter is minimal. 

However, it is impossible to eliminate all of it.  Measuring rainfall directing the radar beam at higher 

altitudes can reduce part of the ground clutter problem. However, rainfall measurements higher in the 

atmosphere are not necessarily the same as those rainfall observations measured at ground level. 

Therefore, rainfall measurements closer to the ground are still necessary, and therefore ground clutter 

echoes have to be taken into account (Collier, 1996). Comparing reflectivity data from different 

elevation angles is advised to reduce AP. Its conditions often influence lower elevation angles, and the 

reflectivity presents a higher spatial variability than precipitation. However, differently than ground 

clutter, AP also presents higher temporal evolution that can be similar to precipitation, including the 

existence of growth and decay comparable to storms (Steiner and Smith, 2002). 

As ground clutter echoes are usually permanent, having reference radar data permits that a ground 

clutter map can be used to identify them. However, it has a high false alarm rate and fails to detect 
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anomalous propagation accurately. Giuli et al. (1991) proposed using the spatial variability of the 

differential reflectivity (ZDR ) to identify ground clutter, as it presents a larger ZDR than rainfall alone. 

Rico-Ramirez & Cluckie (2008) used fuzzy and Bayes classifiers to successfully identify ground clutter 

and anomalous propagation (AP). Although the systems were training using dual-polarization radar 

data, the classifiers can also be used when only single-polarization data is available by combining Z, the 

radial velocity V, which is around zero for ground clutter, and the clutter map. Their results also 

corroborate with Giuli et al. (1991) findings about the importance of the ZDR  spatial variability in 

identifying ground clutter. A remaining challenge in the correction methods for clutter elimination rests 

on the need to assure that precipitation echoes are not removed, resulting in underestimating rainfall 

(Harrison, Driscoll and Kitchen, 2000; Cho et al., 2006). Steiner and Smith  (2002) proposed an algorithm 

based on the vertical gradient of the reflectivity and ZDR spatial variability in polar coordinates. A 

decision tree is used pixel by pixel and to assess the occurrence of rainfall. Neural networks (NN) can 

be used to identify AP. However, they need to use long data sets for training. NN has the potential to 

be used for operational identification, but NNs are black-box systems and do not provide information 

about the classification process (Grecu and Krajewski, 2000; Steiner and Smith, 2002). Grecu and 

Krajewski (2000) used neural networks to identify clutter based on volume scan reflectivity 

observations. Using fuzzy logic is also valuable to identify ground clutter and AP. Many researchers have 

studied this approach (Kessinger, Ellis and Van Andel, 1999; Berenguer et al., 2006; Cho et al., 2006; 

Gourley, Tabary and Parent du Chatelet, 2007; Dufton and Collier, 2015). Kessinger, Ellis and Van Andel 

(1999) proposed algorithms using reflectivity, radial velocity and spectrum width as inputs to detect 

ground clutter and anomalous propagation. Cho et al. (2006) proposed a fuzzy logic function where its 

memberships and proper weights are derived from statistics of the reflectivity standard deviation, the 

absolute value of radial velocity and the vertical gradient of reflectivity. It provides better results in 

identifying ground clutter and AP compared with reflectivity-independent approaches that can remove 

precipitation echoes in heavy rainfall events. 

2.2.1.3 Variation in the vertical profile of radar reflectivity 

Variation in the vertical profile of reflectivity (VPR) is related to changes in size and shape distribution 

of hydrometeors (Krajewski et al., 2011) and can be manifested in different forms of errors. VPR 

uncertainties account, along with beam-propagation, is one of the most challenging error sources in 

radar rainfall estimation (Bech, Gjertsen and Haase, 2007). As the distance from the radar increases, 

there is also an enlargement of the measurements' sampling volume. The velocity of hail, snow, and 

water are also different (due to differences in the density and shape of these hydrometeors and the 

difference in the density of the atmosphere due to altitude variations) (Rinehart, 1997). High reflectivity 

can be a result of the presence of melting snow, hailstones and very large raindrops (Rico-Ramirez et 
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al., 2007). At a higher altitude, the distribution of hydrometeors changes, leading to a difference 

between measured rainfall and rainfall that falls in the ground. This variation is caused by factors such 

as evaporation of raindrops below the radar beam, growth of precipitation, melting of snow and hail, 

orographic enhancement (growth of precipitation over hills at low levels that can trigger convective 

events) and wind effects (Harrison, Driscoll and Kitchen, 2000; Rico-Ramirez and Cluckie, 2007; Foresti 

and Pozdnoukhov, 2012; Schellart, Shepherd and Saul, 2012). Figure 2-11 shows an idealized VPR of 

the atmosphere in stratiform precipitation (Harrison, Driscoll and Kitchen, 2000). 

 

Figure 2-11. Idealized vertical reflectivity profile (Harrison, Driscoll and Kitchen, 2000) 

At higher altitudes, snow falls quite slowly until it reaches the freezing level, where it starts to melt 

slowly. The bright band (BB) area is the region where the melting of snowflakes occurs. In this region, 

the outer part of the hydrometeor is formed by water, but the inside remains as snow, and it is seen by 

the radar as a large raindrop with reduced velocity. The scattering of microwaves enhances the 

reflectivity to the radar and can cause overestimation of rainfall. As the hydrometeors keep falling, their 

size becomes smaller, and the velocity increases, leading to a decrease in reflectivity. At a longer 

distance from the radar, part of the sampling volume could be in the rain in the lower part as the upper 

part of the sampling volume could be in the bright band area or even be in a region without 

precipitation, affecting the reflectivity measurements and, consequently, the rainfall estimation (Rico-

Ramirez and Cluckie, 2007). Errors due to the radar beam intercepting the BB can lead to overestimating 

precipitation up to 5 times the actual rainfall. In cases where the radar beam is above the BB, there is 

an underestimation of rainfall, and uncertainties can be up to 4 times less than actual precipitation per 

kilometre (Rico-Ramirez and Cluckie, 2007). In Figure 2-12, an example from a typical VPR pattern 
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during an event with stratiform precipitation is shown. The bright band, where the melting of snow 

takes place, in this case, is centred at 1.8 km (it can be identified by the high reflectivity values). In the 

region below the bright band, the reflectivity is due to raindrops, and above the bright band, the 

reflectivity measured is due to snowflakes (Rico-Ramirez and Cluckie, 2007).   

 

Figure 2-12. VPR during stratiform precipitation. The melting of snowflakes takes place around 1.8 km (bright band). Rainfall 

is present below the bright band. Reflectivity above the bright band is due to the presence of snowflakes, and below it due to 

raindrops (Rico-Ramirez et al., 2007).  

 

Figure 2-13. VPR during convective precipitation. The BB does not occur at a specific height. It can occur over several 

kilometres (Rico-Ramirez et al., 2007). 

In Figure 2-13, an example of the VPR on a convective event can be seen. It differs from a stratiform 

event as it does not present a typical BB form, and the reflectivity tends to be higher from the ground 

to several kilometres above. During convective events, its often difficult to identify the bright band 

using reflectivity measurements (Rico-Ramirez et al., 2007). However, dual-polarisation measurements 

can help to identify precipitation particles, including the bright band. For instance, Gray et al. (2002) 

found a set of typical VPR profiles and used them to estimate rainfall reflectivity at ground level. Rico-
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Ramirez et al. (2005) proposed using a fuzzy logic system (FLS) to classify rain, snow and melting snow. 

Krajewski et al. (2011) developed a method to describe the structure of the VPR concerning the altitude-

related to the elevation angle of the radar.  

2.2.1.4 Range degradation 

Range degradations are significant at long ranges, leading to underestimation of rainfall. It includes 

partial beam filling, rainfall overshooting and vertical gradient of reflectivity. Partial beam filling (when 

the radar beam is partially blocked) can reduce estimates at far ranges, and this is due to the radar 

beam geometry. At far ranges, intense small features are averaged, and as a result, the reflectivity 

measured by the radar is biased (Villarini and Krajewski, 2010). However, this is a less significant issue 

when compared to the other range degradation uncertainties (Fulton et al., 1998; Harrison, Driscoll 

and Kitchen, 2000; Villarini and Krajewski, 2010). A higher sampled volume means that readings of 

smaller and intense features are averaged and also that readings include different hydrometeors, 

consequently producing biased products (Villarini and Krajewski, 2010). It is common for the radar 

beam to come across the bright band at far ranges and during summer months. Although corrections 

can usually remove errors at these ranges, sometimes overcorrections can occur (Harrison, Driscoll and 

Kitchen, 2000). 

During radar operation, in order to make measurements at higher distances from the radar, the radar 

beam height also increases. This is due to the earth’s surface curvature and a higher elevation angle in 

the scan (Hunter, 1996). In situations of shallow rain (more often in cold seasons) or in locations that 

beam blockages have a more significant interference in low angles, the precipitation rate can be 

underestimated and, in some cases, cannot be detected by the radar (Hunter, 1996; Fulton et al., 1998; 

Harrison, Driscoll and Kitchen, 2000). When there are signals detected from lower angles, it is possible 

to use extrapolation techniques to measure rainfall (Hunter, 1996; Fulton et al., 1998). In situations 

where precipitation cannot be detected, the correction is more challenging (Fulton et al., 1998).  

2.2.1.5 Reflectivity-rainfall (Z-R) relationships 

Z-R relationships depend on the drop size distribution of rainfall. As discussed in section 2.2, Z is more 

sensitive to large drops than R is. Experimentally measuring the distribution of drop sizes and their 

statistical correlation to the reflectivity is essential to estimate rainfall. Hundreds of Z-R relationships 

were determined for distinct locations, types of storms and time. As the difference between them are 

relatively small, only a few different Z-R relationships need to be used (Rinehart, 1997). Although the 

variation between storms, situations, and locations still contribute to rainfall estimation uncertainties. 

Melting snowflakes produce higher reflectivity when compared to convective rain, and the difference 

is even higher if compared to drizzle from shallow clouds, even when the rain intensity is the same. It 
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is common to use a constant Z-R relationship to estimate rainfall, leading to increased uncertainties on 

radar rainfall estimations. 

Nevertheless, even with promising results, there are still progress to be made regarding raindrop size 

distribution and shape and estimations for light rain (Ryzhkov et al., 2005). Hasan et al. (2014) 

developed an error model to assess how rain gauge uncertainties impact the Z-R equation. Although 

the model was shown to improve rainfall estimation, the difference is less than 5%. Dual-polarisation 

radars have enabled the use of different rainfall algorithms that combine not only reflectivity 

measurements but also phase measurements (which are immune to radar signal attenuation) in order 

to obtain better rainfall rates than using a single Z-R equation (Bringi, Rico-Ramirez and Thurai, 2011). 

2.2.1.6 Signal attenuation 

Attenuation is the loss of electromagnetic waves when they pass through any kind of material. As can 

be expected, some materials can reduce the radiation more than others (Rinehart, 1997). In rainfall 

estimation applications, attenuation is more significant during heavy rainfall events. Attenuation is not 

significant for radar using longer wavelengths (S-band radars) and can be compensated (Collier, 1996; 

Islam et al., 2014). Therefore, using longer wavelengths can reduce attenuation (Steiner and Smith, 

2002). Nonetheless, this approach has the downside of deteriorating the relationship between rainfall 

and ground clutter and worsening the resolution (Steiner and Smith, 2002). However, at smaller 

wavelengths (e.g. X-band or C-band radars), hydrometeors such as raindrops produce higher 

attenuation. They should be taken into account, as they can significantly alter the rain areas in the 

presence of attenuation. With a wavelength of 5 cm, C-band radars are operated in Europe in many 

different locations and are well known to produce rainfall estimations with uncertainties related to 

attenuation (Smyth and Illingworth, 1998). Table 2-2 summarizes the uncertainties due to the 

attenuation at wavelengths of 5 cm (Collier, 1996). Although snowflakes produce a lower attenuation 

than raindrops in light precipitation events, it is difficult to relate the size of those hydrometeors to 

attenuation (Collier, 1996).  In cases where attenuation is excessive, it can be identified in reflectivity 

maps, but in the case of attenuation of only a few decibels, this task becomes difficult (Gorgucci, 

Scarchill and Chandrasekar, 1996). 

Using dual-polarised radars offer advantages in identifying regions affected by attenuation.  Smyth & 

Illingworth (1998) used the difference between horizontal and vertical differential phase shift to correct 

for attenuation, which is numerically stable and with a low sensitivity to hail. Bringi, Keenan and 

Chandrasekar (2001) also proposed an algorithm to correct attenuation using dual-polarisation radars 

using a constraint-based algorithm that is useful in stabilising attenuation corrections based on 

differential propagation phase. An interpolation method using data from S-band and X-band radars was 
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proposed by Lengfeld et al. (2016) to address uncertainties on X-band radars. The method showed that 

the method could be particularly useful in urban areas in nowcasting applications. Delrieu, Caoudal and 

Creutin (1997) study the use of mountain returns to reduce attenuation uncertainties and found the 

method to provide satisfactory results. Islam et al. (2014) calculated the differential propagation phase 

constraint varying the bright band's location, calculated by an NWP model. The constraint is then used 

in a correction algorithm that is valid also to correct attenuation above the bright band. The radar data 

processing algorithm used by the Met Office includes attenuation correction. However, it can be 

unstable in cases of severe attenuation, and further uncertainties can occur with attenuation correction 

in cases where the weather radars are not correctly calibrated (Harrison, Driscoll and Kitchen, 2000). 

Rico-Ramirez (2012) summarised different algorithms used in the literature to correct attenuation. 

They can be primarily classified into algorithms that use reflectivity measurements only and algorithms 

that use both reflectivity and phase measurements. Their results showed that algorithms using phase 

measurements could successfully correct Z for rain attenuation when comparing attenuation-corrected 

reflectivity measurements with reflectivity measurements from a nearby radar not affected by 

attenuation.  

Table 2-2. Order of magnitude of hydrometeors uncertainties due to attenuation at 5cm wavelength (Collier, 1996). 

Hydrometer type Rainfall type One-way attenuation effect 

Clouds (non-precipitating) Liquid 0.03 dB km-1 (g m-3)-1 

 Ice 0.0015 dB km-1 (g m-3)-1 

Snow Dry 
0.0012 dB km-1 at maximum rate 
3 mm h-1 (i.e. ≈30 mm snow h-1) 

 Wet 5 – 50 times dry snow 

Rain Wet 0.003 dB km-1 (mm h-1)-1 

Hail Dry 0.025 – 0.6 dB km-1 

 Wet 0.25 – 3.5 dB km-1 

Fog Visibility, 30 m 0.013 dB km-1 

 Visibility, 300 m 0.004 dB km-1 

(Gaseous atmosphere)  0.008 dB km-1 

  

2.3 Radar and rain gauge merging 

Using RG (rain gauge) data to improve radar estimations have been used for years, and a variety of 

methods have been developed. The most traditional methods rely on a bias correction approach. Bias 
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correction methods adjust the radar field to agree on average with the gauges in terms of bias and can 

improve accuracy on significant QPE deviations (Harrison, Driscoll and Kitchen, 2000; Overeem, Leijnse 

and Uijlenhoet, 2013). Methods for bias correction can range from simple scaling to complex 

distribution mapping, which can improve low and high extreme rainfall estimations (Chen et al., 2013; 

Teegavarapu, 2014; Lee, Kim and Suk, 2015). Brandes (1975) developed one of the first techniques to 

combine radar and rain gauges measurements. This was done using a factor based on the ratio of rain 

gauges and radar measurements, and subsequently, it was applied to the radar domain to correct 

rainfall measurements. Issues related to isolated rainfall events, attenuation and beam blockage were 

not adequately addressed by this method. Since then, a number of different methods for merging radar 

and rain gauges have been developed. Geospatial interpolation methods use weighting factors to 

produce a merged QPE product that considers the spatial variability of precipitation. It is important to 

highlight that the computational cost used by geospatial interpolation methods is much higher, and the 

time taken to run those methods has to be taken into account in real-time applications (Jewell and 

Gaussiat, 2015).          

There are several geostatistical interpolation methods available in the literature and applied to different 

types of data sets. Ordinary kriging (OK) is an interpolation technique that can be used to interpolate a 

set of point measurements in order to estimate the values at unknown locations. These point 

measurements can come from a rain gauge network to estimate the rainfall at unsampled locations. 

The advantage of this technique is that it takes into account the spatial correlation of the measurements 

to perform the interpolation.  In this way, the rainfall estimation at unknown locations will be correlated 

to the nearest available measurement based on the spatial correlation among the available 

measurements.  Although OK does not merge rain gauge with radar data, its principles are used in many 

kriging-based methods, and a short description of the method will be discussed in section 6.2.1. Radar-

gauge based merging methods that use kriging take advantage of the spatial interpolation in several 

ways. There are two main categories of kriging merging methods. In the first category, two interpolation 

fields are produced (one with rain gauges data and one with radar data), and the bias between them is 

used to correct the radar field (Jewell and Gaussiat, 2015). Examples of this approach are conditional 

merging (Pegram, 2004; Sinclair and Pegram, 2005) and radar-based error correction (Jewell and 

Gaussiat, 2015). The second category merges the radar and rain gauge datasets first and then generates 

interpolated rainfall fields by using weights to adjust the radar-based rainfall estimations at ungauged 

locations (Jewell and Gaussiat, 2015). This approach was used by Krajewski (1987) and Creutin, Delrieu 

and Lebel (1988), who proposed the use of co-kriging (CK) methods to merge radar and rain gauge data. 

CK only uses radar data only at rain gauge locations, so the advantage of having a high spatial resolution 

is not fully explored, and the spatial structure of rainfall is not taken into account. In the past two 
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decades, kriging with external drift (KED) has been developed in radar rainfall applications. KED 

combines rain gauge data with other additional information such as radar rainfall, satellite rainfall, 

terrain elevation,  etc., to generate the interpolated rainfall fields, and the technique has been 

successfully applied by the radar research community (Grimes, Pardo-Igúzquiza and Bonifacio, 1999; 

Velasco-Forero et al., 2004, 2009; Haberlandt, 2007; Berndt, Rabiei and Haberlandt, 2014; Jewell and 

Gaussiat, 2015). In KED radar rainfall applications, rain gauge data is merged with radar data. In KED, 

the spatial distribution of precipitation is primarily based on radar rainfall estimations, while the 

accuracy of the rainfall estimates relies mainly on the rain gauge measurements. KED takes into account 

the spatial correlation of the rainfall field but does not account for temporal correlations. Sideris et al. 

(2014) proposed the use of co-kriging with external drift (CED) to overcome this problem. CED is more 

advanced than KED because it takes into account not only spatial information, but also temporal 

information as secondary co-kriged variables. They found that this method produced better results than 

KED, especially at shorter accumulation periods of 10min, where the temporal correlation of the rainfall 

field is significant. However, at longer accumulation periods of 60min, the errors in CED are very similar 

to the errors in KED. CED, however, is computationally more expensive than KED, which is important to 

consider for real-time applications. Another method that uses block-kriging and Kalman filtering to 

merge radar and rain gauge measurements was proposed by Todini (2001) using a Bayesian approach. 

This technique was an improvement in rainfall estimations, and it also was able to reduce noise 

variations.  

The rain gauge network density has a major influence when using kriging-based interpolation methods 

to estimate the rainfall field. The gauge network density is usually a balance between the installation 

and maintenance costs to maintain them and the number of gauges required to appropriately 

represent the spatial distribution of precipitation within the catchment area. Besides the network 

density, it is also important to take into account that rain gauges can present problems and be 

unavailable for some time. Jewell and Gaussiat (2015) carried a comparative study for merging 

techniques and ordinary kriging for different rain gauge network densities, concluding that all of them 

are highly dependent on the number of rain gauges available. The effect of the gauge network density 

is even more noticeable at high thresholds but merging radar and rain gauge data still produces superior 

results than any of these data sets alone. Goudenhoofdt and Delobbe, (2009) found that the 

geostatistical radar-gauge merging methods are more sensitive to the gauge network density than 

simple methods such as mean field bias correction. Similar findings were reported by Nanding et al. 

(2015). They also found that simple mean field bias correction methods can outperform geostatistical 

methods for a low-density rain gauge network.  



32 

 

Rain gauge and radar merging is a powerful tool to improve rainfall estimation as it has the advantage 

of combining the strength of both measurement techniques: higher accuracy from rain gauges and high 

spatial distribution of precipitation from weather radars. Chapter 6 presented a method to merge radar 

and rain gauge measurements using kriging with external drift (KED) for different accumulation periods. 

KED is a robust method to merge rainfall data and has been widely used to improve radar rainfall 

estimation accuracy (Jewell and Gaussiat, 2015; Cecinati, 2017; Ochoa-Rodríguez et al., 2019). The 

previous chapter's results agree with the literature regarding that even at short accumulation periods, 

using KED still produces better rainfall estimations than using rain gauge or radar data alone. The radar-

gauge merging product's quality suggests that KED merging could be used instead of radar rainfall data 

alone as input to nowcasting models. However, the need for high temporal resolution of nowcast 

models imposes a challenge in using KED for short-term rainfall forecasting. In addition to this, the 

temporal correlation of rainfall is not taken into account during the KED merging, and this can produce 

distorted rainfall advection fields that might not be correlated in time, causing problems to estimate 

the advection field by the nowcasting model (Keller, 2013; Ochoa-Rodríguez et al., 2013). 

The importance of temporal correlation of precipitation fields has been studied, and some methods to 

overcome this issue have been proposed. Sideris et al. (2014) developed a method called co-kriging 

with external drift (CED) to merge radar rainfall and rain gauge data, including information not only 

from the current time step t but also from previous time steps (e.g. t-1) to improve the rainfall product 

and indirectly taking into account the temporal correlation of the precipitation field. The model showed 

to perform better for short accumulation periods. However, for hourly accumulation periods, both KED 

and CED have similar performances. CED shows a significant benefit over KED in events with a high 

temporal correlation between time steps. As expected, the model is more complex than KED and 

demand more computing power and time to solve the equations.  A study carried out by Keller, (2013) 

showed that in events where small rain cells are not detected by rain gauges and are estimated only by 

radar, CED could not replicate the rainfall advection fields satisfactory even when information from the 

previous time step is available. The analysis of CED and KED showed that both methods performed 

similarly to reproduce the rainfall advection fields. This study used hourly accumulations and did not 

find an advantage in using CED over KED, meaning that the method's extra complexity could not justify 

its use for this accumulation period. Keller (2013) assessed that the temporal evolution issue in both 

KED and CED is a limitation for the use of these methods in nowcasting. 

 



33 

 

2.4 Short-term rainfall forecasts (radar nowcasts) 

Once the radar data have been corrected for the different error sources and adjusted with rain gauge 

measurements, a radar-based rainfall forecasting model can be applied. Quantitative Precipitation 

Forecasts (QPFs) can be produced with Numerical Weather Prediction (NWP) Models (with a 

forecasting lead time of a few hours to days) and with radar-based extrapolation, also known as 

nowcasting (1-6 hr forecasting lead time). Rainfall forecasts can refer to both short-term and long-term 

rainfall forecast, while nowcast is a short-term rainfall forecast, with only a few hours lead-time. NWP 

forecasts have a low performance at the beginning of the forecast, but the performance remains 

constant with forecasting lead time. However, the performance of radar-based forecasts (nowcasts) is 

high at the beginning of the forecast but decrease with forecasting lead time.  Nowcasting models are 

based on the extrapolation of Lagrangian trajectories that can produce rainfall forecasts with a few 

hours lead-time (with increased loss of performance after 2–3 hr ahead). They have a significant role in 

enhancing rainfall warning systems, especially when predicting extreme events or flash floods (Zahraei 

et al., 2012; Liguori and Rico-Ramirez, 2013b). Nowcasting models use a sequence of weather radar 

scans in order to produce an advection field that can be used to extrapolate the latest radar rainfall 

scan into the future. The generated precipitation forecasts produced with this technique have the same 

spatial and temporal resolutions as the original radar rainfall fields. The performance of the forecasts is 

high at the beginning of the forecast (Bowler, Pierce and Seed, 2006; Liguori and Rico-Ramirez, 2013b). 

However, uncertainties intrinsic to the nowcasting model result in an increasing forecasting skill loss 

after 1 hr lead-time. Uncertainties in radar nowcasts are caused mainly by (Seed, 2003; Liguori and 

Rico-Ramirez, 2013b; Foresti and Seed, 2014): uncertainties inherent to the specific nowcasting model 

used, errors in radar rainfall estimation, uncertainties due to the temporal development of the velocity 

field and uncertainties caused by precipitation processes such as growth and decay not being taken 

into account. The uncertainties related to the rainfall estimation account for a loss of accuracy in 

nowcasting up to 1 hr lead time (Foresti et al., 2013). A description of the main errors in radar rainfall 

estimation was given in section 2.2.1.  

Assuming that rainfall advection fields are homogeneous over the forecasted domain and that the 

rainfall fields are advected instead of evolving during the forecast are significant limitations in 

nowcasting models. Nowcasting models use a recent sequence of radar rainfall images to calculate how 

the rainfall evolves over time. However, they are not able to calculate how the rainfall velocities and 

changes in intensity happen in the future (Bowler, Pierce and Seed, 2006; Berenguer, Sempere-Torres 

and Pegram, 2011; Atencia and Zawadzki, 2014). The radar images are used to extrapolate recent 

rainfall measurement in order to compute the rainfall forecasts. That means that both growth and 
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decays of rainfall and temporal evolution of the rainfall advection fields are not accounted for by the 

nowcasting model. The non-stationary in space and time characteristic of rainfall make these factors 

even more critical in cases of convective precipitation and in large domains (Bowler, Pierce and Seed, 

2006; Liguori and Rico-Ramirez, 2013b). Lagrangian nowcast models assume that the velocity fields do 

not change during the forecast length (Bowler, Pierce and Seed, 2006; Berenguer, Sempere-Torres and 

Pegram, 2011; Atencia and Zawadzki, 2014; Rossi et al., 2015). Accounting for these uncertainties is still 

challenging, even with extensive research that has been done to assess how to reduce these errors 

(Seed, Pierce and Norman, 2013) and how to account for precipitation growth and decay.  

There are several nowcasting techniques available in the literature: 

• Tracking radar echoes by correlation – TREC (Rinehart and Garvey, 1978) and COTREC (Li, 

Schmid and Joss, 1995). 

• Tracking of rain cell centroids (Johnson et al., 1998). 

• VET, Optical flow techniques (Pierce et al., 2000; Bowler, Pierce and Seed, 2004) 

• Use of NWP advection techniques (Toth and Kalnay, 1997; Golding et al., 1998). 

• Blending techniques (Nowcasting + NWP forecasts): STEPS (Short-term ensemble prediction 

system) (Bowler, Pierce and Seed, 2006). 

Rinehart and Garvey (1978) developed a pattern recognition model based on a correlation coefficient 

to calculate motion vectors in storms known as TREC (tracking radar echo with correlation). The TREC 

algorithm has been modified, and new models are based on this approach.  Li, Schmid and Joss (1995) 

proposed improvements for the TREC model by correcting some wrong vectors that are caused by 

shielding, clutter and some random errors in the radar rainfall estimation and investigating growth and 

decay process based on smoothed fields of echoes motion. These changes allowed a better forecasting 

skill of orographic rainfall with up to 20 min lead time.  Sokol et al. (2013) compared forecasts produced 

using two different models. The COTREC model is based only on extrapolation from radar images and 

assumes that rainfall trajectories do not change with time. The SAMR model (Statistical Advective 

Method Radar) utilizes the same technique and factors in a statistical model to correct precipitation 

estimations and was designed for being used in the warm period of the year. Results showed that SAMR 

provides slightly better results, but it cannot predict new storms and is unable to forecast any significant 

changes in existing storms accurately (Sokol et al., 2013). Berenguer, Sempere-Torres and Pegram, 

(2011) also use TREC and COTREC algorithms to generate forecasts and produce probabilistic forecasts. 

SBMcast uses the String of Beads model to maintain space and time structures. Algorithms that 
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determine the movement of storms based on cross-correlation or use storm-cell centroid techniques 

have been developed over decades. The first is efficient in providing information over a larger area, 

while the second is better tracking isolated storms. The Storm Cell Identification and Tracking (SCIT) 

algorithm proposed by Johnson et al. (1998) is based on tracking techniques and identifying rain cell 

centroids. The SCIT algorithm is able to identify, track, characterize and forecast storm cells movements. 

Although the algorithm can forecast efficiently isolated and well-organized storms, it is unable to detect 

small, shallow cells or cells with a maximum reflectivity of 30 dBZ (Johnson et al., 1998). The GANDOLF 

scheme (Generating Advanced Nowcasts for Deployment in Operational Land-based Forecasts) was 

developed to increase convective rainfall predictability. An object-oriented model of convection is used 

that incorporates a model of the life cycle of convective clouds (Pierce et al., 2000). This advection 

scheme showed deficiencies in severe rainfall events. An attempt to address this issue was made by 

dividing the rain analysis into blocks and forcing adjacent blocks to have a smooth transitional variation 

of the velocity. NWP models are useful for forecasting precipitation at longer lead-times than nowcasts 

as they are based on modelling the changes in the atmospheric state using meteorological variables 

such as temperature, pressure, humidity, winds, etc. NWP models determine large and slow evolving 

scales and use the local details in parameterisation or statistics. NWP models have limited resolution, 

and as a consequence, they have a lower initial skill at the beginning of the forecast than nowcasting 

models. However, NWP does not suffer from the same loss of skill as nowcasting models, and the skill 

remains more or less constant with a longer forecasting time (Golding et al., 1998; Sokol et al., 2013) 

as it is able to model precipitation growth and decay. NWP models require high computing power, and 

although the forecast resolutions are increasing (Sokol et al., 2013; Simonin et al., 2017), they are still 

more computationally demanding than nowcasting models. Figure 2-14 illustrates the loss of 

predictability with lead time for both NWP and nowcasting models. Nowcasting models start with high 

initial skill or performance. However, their predictability is lost rapidly with lead time as the temporal 

evolution of rainfall and growth and decays processes are not resolved. Bray et al. (2011) studied 

uncertainties sources in NWP models. They showed that the domain size and the buffer zone distance 

have are sources of uncertainty that can be easily overlooked as they are not subject to particular 

guidelines. They showed that these uncertainties are particularly important for lead-times shorter than 

24 hours and state the need for long warm-up periods for NWP forecasts. Bowler, Pierce and Seed 

(2004) derived a new optical flow algorithm, enhancing the GANDOLF system’s capability to calculate 

the advection field. This algorithm was used to further develop the STEPS model (Short-Term Ensemble 

Prediction System) (Bowler, Pierce and Seed, 2006). In the STEPS model, ensemble radar nowcasts are 

blended with Numerical weather prediction (NWP) forecasts. NWP models have been shown to have 

better forecasting skill after several hours of lead-time. They can improve the ability to forecast growth 
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and decay of precipitation when blended with a nowcasting model (Bowler, Pierce and Seed, 2006). 

Blending nowcasting with NWP forecasts have been shown to improve the forecasting skill (Liguori et 

al., 2012), and it has been successfully used in real-time applications (Bowler, Pierce, and Seed, 2006; 

Seed, Pierce and Norman, 2013). The uncertainties in radar rainfall analysis and temporal evolution of 

precipitation were accounted for using a stochastic perturbation system, in which probabilistic 

forecasts are produced by adding spatially correlated stochastic noise to the deterministic forecast. 

Although the STEPS performance is higher than GANDOLF’s, moderate and, heavy rain results still do 

not match up accurately with the observed precipitation. A newer version of STEPS has been developed 

to take into account radar errors (Seed, Pierce and Norman, 2013), using a statistical model to generate 

ensembles proposed by Germann et al. (2009). 

 

 

Figure 2-14. Schematic representation of loss of information content in relation to lead time. The dashed, doted, and solid 

lines represent, respectively,  NWP models, nowcasting models and theoretical limit of predictability (Golding et al., 1998). 

2.5 Concluding comments 

This chapter described the different techniques to measure precipitation. The advantages in the 

measurement of precipitation with weather radar are in terms of high spatial and temporal resolutions, 

whereas rain gauge can provide point measurements with reasonable accuracy. Radar rainfall can be 

affected by different error sources.  Advances in weather radar systems and algorithm development 

have been able to minimise some of these error sources in order to improve precipitation estimation. 

However, even with the advance in technology to measure rainfall and merging techniques that take 

into account the strength of different methods, residual errors often remain and have to be taken into 
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account when producing short-term forecasts. Polarimetric radars potentially can improve the quality 

of estimations. However, its use is still limited as the relationship between polarimetric radar variables 

and estate variables are not linear (Zhang et al., 2019). Measurement errors not only imply rainfall 

estimation, but they also propagate into the forecast models. It is important to take into account these 

errors in a probabilistic way to account for the uncertainty in the measurements (e.g. chapter 4) and 

also to try to reduce this uncertainty (e.g. chapter 6). 

Nowcasting models can produce short-term radar-based forecasts that have a good performance at 

the beginning of the forecast, but their performance decrease with forecasting lead time. This is due to 

the fact that precipitation growth and decay is not accounted for by nowcasting models. The use of 

ensemble forecasting techniques can help account for the uncertainties in radar-based precipitation 

forecasting, as shown in the following chapters. However, there are still many challenges to improve 

radar precipitation measurement and forecasting. Blending nowcast with NWP is helpful to increase 

lead-time in forecasts as the atmospheric state is considered in the forecast. However, NWP also is 

subject to its sources of uncertainties, and its forecast skill is better hours after the start of the forecast. 

 

 

  



38 

 

Chapter 3. Datasets and study areas 

3.1 Introduction 

 This chapter aims to describe the models and data sets used in this thesis. As described in Chapter 1, 

this thesis assesses different sources of uncertainties in short-term rainfall forecasts and how it 

propagates into river/sewer flow prediction models. The meteorological data comprises point rain 

gauge data and weather radar data for different places in the UK. Section 3.2 will describe the data 

used for rainfall estimation, including weather radar and rain gauge data. A brief description of the 

nowcast model used in this research is in section 3.3, and the urban and hydrological models used in 

different parts of the thesis are introduced in section 3.4. 

3.2 Rainfall data 

3.2.1 Rain gauge data 

The UK has one of the densest rain gauge networks in the world, as a consequence of its dense drainage 

river network and diversity in climate, geology, water and land-use (Marsh, 2002). The UK Environment 

Agency (EA), partnered with other organizations, such as the UK Met Office, are able to provide rainfall 

data from a dense network of rain gauges.  Rain gauge data is freely available upon request by the UK 

Environmental Agency under the Open Government License, whereas the UK Met Office Integrated 

Archive System (MIDAS) is freely available through the British Atmospheric Data Centre.  The EA rain 

gauge data have a temporal resolution of 15min, whereas the Met Office has a temporal resolution of 

1h.  A recent study by Lewis et al. (2018) developed a methodology to quality control and combine rain 

gauge data from both networks to produce a continuous data set in space and time at 1km/1h 

resolutions over Great Britain.  Nanding (2016) looked at the number of gauges in different countries 

and the average area covered for each gauge (Table 3-1), and their results show how well rain gauges 

cover the British territory. In this thesis, a rain gauge network of 229 tipping bucket rain gauges (TBRs) 

with 15 min temporal resolution was made available for the study area in the north of England. The rain 

gauge data was provided by the EA. The location of the rain gauges is available in Figure 3-1. 
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Table 3-1. Official recent national rain gauge network (Nanding, 2016). 

Country 
Gauge 
number 

Area per 
gauge (km2) 

UK 4400 49 

France 4300 116 

Netherlands 357 99 

Switzerland 450 92 

Spain 8135 62 

Belgium 260 117 

Italy 3000 100 

Germany 3500 102 

South Africa 1500 814 

India 2140 1535 

Japan 1300 291 

China 14000 686 

South Korea 520 193 

 

As mentioned in Chapter 1, rain gauges are used as ground-truth; nonetheless, they are subject to 

different sources of errors. In order to use only reliable rain gauge data, measurements from different 

rain gauges were compared, and only reliable rain gauge data was used. Rain gauge data that presented 

significant deviation compared to the surrounding rain gauges or showed an anomalous behaviour (e.g., 

blockages) were discarded (22 rain gauges in our case). It is also necessary to deal with sampling errors 

when comparing weather radar and rain gauges data. Rain gauges measurements are point 

measurements at ground level, whereas weather radars measurements occur at a higher altitude and 

with a more extensive sampling volume in space (Nanding, Rico-Ramirez, and Han, 2015). Therefore, 

part of both measurements' discrepancies is due to differences in the sampling volumes (Kitchen and 

Blackall, 1992). Providing the rain gauge data is quality-controlled, they can be considered ground-true 

measurements to validate the radar rainfall observations even though the rain gauge measurements 

represent only a particular point in space. 
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Figure 3-1 Map of the study domain with the rain gauge locations (red circles). The region located in the North of England 

covers 256 x 256 km2, and the region is also under the coverage of three MetOffice weather radars. 

3.2.2 Weather radar data 

Composite radar data from the Nimrod system from the UK Met Office, available through the British 

Atmospheric Data Centre (BADC), were used in this study. The MetOffice operates 15 out of the 18 C-

band weather radars existent in the British Isles (Met Office, 2012). The UK Met Office radar network 

can produce high-resolution precipitation data over the UK with a spatial and temporal resolution of 

1km/5min, respectively (Met Office, 2003, 2009). The location of the radars, including the radars in 

Ireland, is shown in Figure 3-2.  The Met Office is also responsible for data processing to reduce 

uncertainties in the rainfall estimations. A series of volume scans, usually between 0.5 and 4.0 degrees 

in elevation, are made by each radar every 5 min. The number of scans varies from four to eight and 

the angle is dependent on the height of the hills around the radar.  In distances up to 75 km of the 

radar, scans have 1 and 2 km resolution and covers over 85% of UK area. From 75 km up to 255 km, the 

resolution is 5 km. The radars data used in this study has been already processed by the Met Office and 

have a temporal resolution of 5 min and a spatial resolution of 1 km x 1km. The data set used in this 

study is from 2007 and 2008 in order to agree with the available flow observations.  
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Figure 3-2 Location of weather radars across the British Isles(Scottish Flood Forecasting Service, 2014). 

The UK Met Office applies different quality control and correction algorithms to the raw radar data. 

These corrections include noise filtering, clutter identification, beam blockage and occultation 

correction, residual spurious echo identification, attenuation correction, correction for vertical 

variations of the radar reflectivity, conversion from reflectivity to rainfall rate, adjustment for antenna 

pointing and a mean field bias adjustment based on rain gauge data (see Table 1 in Harrison, Kitchen 

and Scovell, 2009). Ground clutter is usually observed when the radar beam intercepts high ground, 

and therefore a small percentage of energy is reflected back to the radar.  Because the radar performs 

the same elevation scans every 5min, then the ground clutter map for each elevation can be computed.  

Ground clutter frequency maps can be computed during sunny days for each elevation.  The ground 

clutter echoes can then be identified and replaced with reflectivity data from higher elevations not 

contaminated with ground clutter. The Z-R relationship is constant to all rainfall kinds (𝑎 = 200 and 

𝑏 = 1.6). The radar data processing includes an algorithm to correct for rain attenuation, which can be 

significant at C-band frequencies. The algorithm can be unstable in cases of severe attenuation and 

further uncertainties can occur with attenuation correction in cases where the weather radars are not 

properly calibrated (Harrison, Driscoll and Kitchen, 2000). Currently, there are 18 C-band weather 

radars in the UK (Rico-Ramirez, Liguori and Schellart, 2015). These radars have been upgraded with 

dual-polarisation technology in the last few years. This will result in significant improvements in terms 

of data quality (e.g., better identification of non-meteorological echoes), attenuation correction and 
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rainfall estimation, as demonstrated by several studies (Bringi and Chandrasekar, 2001; Rico-Ramirez 

and Cluckie, 2008; Bringi, Rico-Ramirez and Thurai, 2011; Rico-Ramirez, 2012). Images from adjacent 

radars and previous images from the same radar are analysed to discard corrupted images. Anomalous 

propagation is removed from the radar data by assessing the probability of precipitation using a 

combination of Meteosat images and reports about the type and amount of clouds and present 

weather condition (Harrison, Driscoll and Kitchen, 2000). In order to take into account the variation in 

the vertical reflective profile, an idealized vertical profile, as described in section 2.2.1.3, is identified at 

each radar pixel. It is defined by the background reflectivity factor and incorporates simple 

parameterizations. A radar horizon is used to correct the radar beam's occultation (Harrison, Driscoll 

and Kitchen, 2000). The Met Office radar data processing system also includes correction algorithms 

for uncertainties due to noise filtering, antenna pointing, mean field bias and conversion from Cartesian 

to polar coordinates (Harrison et al. 2009)  

3.3 Nowcasting model 

As discussed in the introduction of this thesis, there are different nowcasting models available in the 

literature. Some of these models track the centroids of individual storms (e.g. TITAN - Thunderstorm 

Identification, Tracking, Analysis, and Nowcasting) of several square kilometres in size, whereas the 

most advanced models are able to track the movement of every rainfall pixel in the rainfall advection 

field (e.g. STEPS) (Dixon and Wiener, 1993; Bowler, Pierce and Seed, 2006). In this thesis, the STEPS 

model was used.  The STEPS model was provided by the UK Met Office. There is also a freely available 

version for the research community (Pulkkinen et al., 2019). STEPS is a rainfall-forecasting model that 

blends rainfall extrapolation nowcasts with NWP rainfall forecasts. The nowcasting module isolates 

small characteristics (estimation of the advection field, the temporal evolution of rainfall and spectral 

decomposition) into multiplicative cascades. This ensures that features that cannot be accurately 

predicted by the model are substituted by stochastic noise. The model assumes that the rate of the 

temporal evolution of rainfall and temporal development of velocity fields remain stationary during the 

forecast. Even with the uncertainties inherent to the model, radar nowcasting produces more skilful 

forecasts than NWP for at least 2 hr., and STEPS uses a multi-cascade approach to blend the two 

forecasting components (i.e. radar nowcasts with NWP forecasts) (Bowler, Pierce and Seed, 2006; Seed, 

Pierce and Norman, 2013). For this study, the STEPS model's nowcasting component was used to 

produce the forecasts up to 3 hr ahead. To account for the uncertainties in the radar rainfall analysis 

and the temporal evolution of the rainfall advection field, nowcasting models often provide 

probabilistic or ensemble forecasts. These forecasts are produced by adding spatially-correlated noise 

to the deterministic forecast. Liguori and Rico-Ramirez (2012) produced probabilistic nowcasts using 
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the STEPS model. They concluded that a number of ensembles larger than 10–20 members do not 

effectively increase the forecast's accuracy. In different research papers, a number of ensembles 

between 20 and 30 are commonly used (Kharin and Zwiers, 2003; Zappa et al., 2010; Panziera et al., 

2011; Liguori and Rico-Ramirez, 2013a; Dai et al., 2015; Foresti and Seed, 2015; Lewis et al., 2015)  On 

this research, each probabilistic forecast is formed by 25 ensemble members.  

3.3.1 Nowcasting component of the STEPS model 

The STEPS model's nowcasting component is based on the Lagrangian extrapolation of radar images to 

produce deterministic forecasts. Probabilistic forecasts are made by adding spatially-correlated 

stochastic noise to the deterministic forecast. Uncertainties related to the nowcast model are related 

to the determination of the advection velocity fields and the evolution of the rainfall advection field. 

Nowcast models are based on extrapolation, and it assumes that the rainfall advection fields are only 

advected and does not evolve with time (Seed, 2003). STEPS uses the optical flow algorithm described 

by Bowler et al. (2004) to produce the advection field. The algorithm uses a sequence of radar images 

to determine the advection velocity field. Two images are compared by partitioning each image into a 

series of blocks and determines the motion of each block, and a smoothing filter for each block is 

applied to improve the forecasting skill (Bowler, Pierce and Seed, 2004). One single advection vector is 

applied in the entire domain before the optical flow algorithm to avoid fast-moving rain issues. By 

maximizing the correlation between the newest radar image and the previous one, it is possible to 

determine the advection vector (Bowler, Pierce and Seed, 2006). Unlike the approach made by Bowler, 

Pierce and Seed (2004), STEPS uses a back-in-time advection system. The velocity fields are then 

subjected to an exponential smoothing in time filter (Bowler, Pierce and Seed, 2006): 

 𝑣𝑠𝑚𝑜𝑜𝑡ℎ(𝑡) = 𝛼𝑣𝑠𝑚𝑜𝑜𝑡ℎ(𝑡 − ∆𝑡)+ (1 − 𝛼)𝑣𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒(𝑡) (3-1) 

 

where 𝑣𝑠𝑚𝑜𝑜𝑡ℎ is the temporary smoothed velocity field, 𝑣𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 is the original velocity field and 𝛼 is 

a parameter that gives the smoothing time-scale. Best performance is achieved when 𝛼 = 0.85; for 

this value, the time-scale for the smoothing is around 90 min. 

Analyzing how the velocity fields vary with time is then used to account for advection uncertainties.  

After removing the bias from the forecasted velocity, the total diagnosed velocity can be compared to 

the forecasted velocity (Bowler, Pierce and Seed, 2006): 

 
𝑣𝑡𝑜𝑡𝑎𝑙(𝑡 + 𝑡1) = 𝑣𝑠𝑚𝑜𝑜𝑡ℎ(𝑡) {1 −

(𝑡1 + 1)

120
𝑓(|𝑣𝑠𝑚𝑜𝑜𝑡ℎ(𝑡)|)}−

1

𝑡 − 1
∑𝑣𝑠𝑚𝑜𝑜𝑡ℎ(𝑡 + 𝑠)

𝑡1

𝑠=1

 (3-2) 

where 𝑡1is the lead time in minutes. 
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The uncertainties arising from growth and decays are taken into account by adding stochastic noise to 

the advection vectors. The Lagrangian temporal evolution of the field is modelled using a second-order 

autoregressive process (AR-2) (Bowler, Pierce and Seed, 2006; Foresti et al., 2016): 

 Y𝑘,𝑖,𝑗
𝑒 (𝑡 + 𝑡1) = ∅𝑘,1(𝑡)Y𝑘,𝑖,𝑗

𝑒 (𝑡 + 𝑡1 − ∆𝑡) + ∅𝑘,2(𝑡)Y𝑘,𝑖,𝑗
𝑒 (𝑡 + 𝑡1 − 2∆𝑡) (3-3) 

Where Y𝑘,𝑖,𝑗
𝑒 (𝑡 + 𝑡1)  and Y𝑘,𝑖,𝑗

𝑒 (𝑡 + 𝑡1 − ∆𝑡) are the lagrangian temporal evolutions that have been 

forwarded in time, ∅𝑘 are weights that control the Lagrangian evolution rate at each scale(3-4), ∆𝑡 is 

the forecast time-step and 𝑡1 is the lead time. 

 ∅𝑘,0(𝑡) = √
1 + ∅𝑘,2(𝑡)

1 − ∅𝑘,1(𝑡)
[{1 − ∅𝑘,2(𝑡)}

2
− {∅𝑘,1(𝑡)}

2
] (3-4) 

 

The STEPS forecasts combine the nowcasting model's outputs, the NWP forecast, and a stochastic noise 

component. At the beginning of the forecast, the nowcast will be the main component of the forecast. 

As the forecasting lead time increases, more weight is given to the NWP forecast than the radar 

nowcast. Although STEPS also comprises a downscaling NWP model, it is not used in this research, and 

therefore it will not be further discussed. A more detailed description of the STEPS model can be found 

in Bowler et al. (2006) and Foresti et al. (2016). 

The choice of not using the NWP component is due to this research focusing on producing very-short 

term forecast in this research. Although STEPS blends both nowcast and NWP, using only the nowcast 

component is also used in real-time applications: the Australian Bureau of Meteorology uses STEPS in 

a range of applications, including a 30 member nowcast with a temporal resolution of 1 km and lead-

time of up to 90 min (Seed, Pierce and Norman, 2013). For short-term forecasts, particularly for up to 

2 hours lead time, advection nowcasting models can produce more reliable forecasts than NWP. Also, 

nowcasts are not as costly or time-consuming as NWP. That is why nowcast is still the optimal solution 

for producing a very-short term forecast (Seed, Pierce and Norman, 2013). 

A sequence of three consecutive radar images with a time-step of 5 min was used to produce forecasts 

every 5 min with a forecasting lead-time between 3-6 h at 1 km spatial resolution. The forecasts 

produced in Chapters 4 and 5 cover a domain of 600 x 600 km2 in size located in North England, as 

shown in Figure 3-1. For Chapters 6 and 7, a smaller domain with an area of 256 x 256 km2 is used. 
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3.4 Study areas 

The catchments used in this study are situated in North England. The region has been subject to several 

flood events over the years, causing economic and property losses and put thousands of people at risk 

(Convery and Bailey, 2008; Wilby, Beven and Reynard, 2008; Roberts et al., 2009).  

Figure 3-3 shows the river and urban catchments location and the rain gauges and radars in the region. 

The dense gauge network and the availability of three weather radars coupled with available 

hydrological data were the main reasons for choosing this region to develop this work. In order to assess 

how the uncertainties propagate into hydrological models, it is also essential to verify how the size of 

the catchments influences the flow forecast. Small catchments are subjected to higher uncertainties. 

Compared to observed rainfall, spatial displacement of the forecasted rainfall of only a couple of 

kilometres could be enough to generate inaccurate forecasts. For this reason, analyzing how the 

uncertainties propagate in catchments of different sizes are essential to gain further information on 

the error propagation. For this reason, this thesis explores the use of small urban catchments where 

sewer flow is one of the main drivers of the flood response, as well as larger catchments where river 

flows are the primary source of flooding.  

This study utilizes the geographic grid reference of the Ordnance National Grid for the radar rainfall 

data (Ordnance Survey., 2018). 

 

Figure 3-3. Location of the urban catchment (7), the river catchments (1-6) and rain gauges’ positions (blue circles) in the 

study region. 
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3.4.1 Urban catchment - Ilkley 

The rainfall forecast output was used as an input in a hydrodynamic sewer network model built in the 

Infoworks CS software package to simulate the flows in the sewer network. Rainfall-runoff processes 

and the flow through the sewer network conduits were modelled utilizing the Infoworks model 

provided and calibrated by Yorkshire Water for research purposes. The sewer system is mainly 

combined, being used to carry both wastewater and rainfall-runoff and is approximately 60 km long. 

The urban area, Ilkley, is located in the Pennine hills and has an area of 11.06 km2, with the majority of 

this area being permeable land (Figure 3-4). The town area falls into 25 different radar pixels with 1km2 

resolution, and the model counts with 432 nodes (pipe connections or inlet points), 444 links (conduits), 

13 pumps and 134 sub-catchments. The sewer system is shown in Figure 3-4, and this also shows the 

location of the rain gauges and flow monitors (Liguori et al., 2012). A schematic drawing of the 

monitoring network is represented in Figure 3-5, giving more details about the pumping network and 

the flow monitor's location in relation to the pumping stations. Most of the flow monitors are situated 

upstream from the pump stations (Liguori et al., 2012).  Infoworks CS uses both rainfall-runoff volume 

and runoff routing models to simulate flows in the catchment, and in this study, the New UK percentage 

Runoff model, the Wallingford model and the Double Linear Reservoir model were used. The full St 

Venant equations are used in the model to calculate the flows in the sewer conduits (Liguori et al., 

2012). Liguori et al., (2012) and Schellart, Shepherd and Saul (2012) provide further information about 

the Infoworks CS model used in this study. The calibration of the urban hydrological model was 

previously performed using current industrial standards (WaPUG, 2002) and data from three storm 

days and one dry day from events that happened between March and April 2000 were used. Data from 

5 tipping bucket rain gauges and flow monitors within the urban area were used for calibration.  

 

Figure 3-4 – Location of flow monitors (1 to 7) and rain gauges (RG02 to RG05) in the sewer system (Liguori et al., 2012). 
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Data from 7 depths monitors, 4 additional rain gauges and 16 flow monitors are available from 2007 

until 2009 within the urban area (Liguori et al., 2012). In this study, data from 2008 was used for 

validation. The hydrodynamic model's capacity in simulating flows was assessed using radar and gauge 

data from 15 April 2008 until 31 December 2008. The period was chosen to include a wide range of 

events. The calibration and validation of the model was not part of the scope of this research. As the 

data used was from 2008, data from the second semester of 2007 until the first event was used to 

simulate the initial conditions. Between each event, flow simulations were carried out to update the 

initial conditions for the specific event. Radar and gauge data and rainfall forecasts with 5 min temporal 

resolution were used to simulate and forecast flows. 

 

Figure 3-5 – Monitoring network (Liguori et al., 2012). 

3.4.2 River catchments 

Rainfall forecast output was also used to forecast river flows in six different river catchments using the 

PDM (probability distributed hydrological model) to represent the rainfall-runoff processes in the 

catchments. The catchments chosen for this study followed the following criteria: the orographic 

impacts and snow accumulation should not be significant, and the catchments chosen are near-natural 

catchments. Near-natural catchments do not directly or significantly impact human activities, such as 

industrial, agricultural and groundwater abstraction, hydroelectric power plants, and reservoirs that 

can potentially change the river flow regime (Marsh and Lees, 2003). These criteria ensure the 

catchments have good river flow data quality to carry this study. The six river catchments studied are 

located in Cumbria and Lancashire districts. 

Table 3-2 shows the name and area of the river catchments, and the position of the catchments and 

the urban area are presented in Figure 3-3. The mean flow of each catchment can be found in Table 
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3-3. The table also presents information about the peak flow in the water years of 2007-2008 and 2008-

2009. Each water year start in October and ends in September of the following one. Crakehill is the 

largest catchment studied, and it also has the largest mean flow. However, the catchment has one of 

the lowest peak flows among the other catchments studied. Results from Table 3-3 show that the 

catchment’s size does not necessarily correspond to the flow intensity in each catchment. 

Table 3-2. River catchment’s area 

Location Killington Brigflatts Arnford Henthorn Catterick Crakehill 

Rivers Lune Rawthey Ribble Ribble Swale Swale 

Area (km2) 219 200 204 456 499.4 1363 

Number 

(Figure 1) 
1 2 3 3+4 5 5+6 

Table 3-3. River catchment’s mean and peak flows 

Location 
Mean Flow 

(m3/s) 

Water year  

2007-2008 

Water year  

2008-2009 

Peak flow 

(m3/s) 

Stage 

(m) 

Peak flow 

(m3/s) 

Stage 

(m) 

Killington 10.20 250.76 2.41 320.48 2.73 

Brigflatts 9.34 234.40 2.96 318.70 3.30 

Arnford 7.40 118.87 2.03 118.74 2.02 

Henthorn 13.69 286.71 3.02 240.18 2.74 

Catterick 12.90 388.64 3.14 327.44 2.91 

Crakehill 20.63 196.27 5.29 154.07 4.87 

Most of the land of the catchments are used as grassland, with the exception of River Swale, where 

horticultural uses take place. In all the catchments studied, the urban areas occupy less than 5% of each 

catchment.  

Table 3-4 details how land is used in each catchment studied. The permeability of each catchment is 

described in Table 3-5. Apart from the River Luna catchment that has a low permeability bedrock, the 

rest of the catchments have bedrocks moderate permeable. The catchments also have low superficial 

permeability. 
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Table 3-4 River catchment´s land-use 

  Landuse (%) 

Location 
Woodland 

Arable / 

horticultural Grassland 

Mountain / 

 Heath / Bog Urban 

Killington 4.43 1.13 83.48 8.21 0.90 

Brigflatts 5.25 0.24 85.19 7.69 0.60 

Arnford 4.21 0.87 79.97 11.30 1.90 

Henthorn 6.41 2.90 80.43 6.09 3.28 

Catterick 5.49 6.71 54.24 30.27 1.95 

Crakehill 6.37 35.25 41.42 12.48 3.40 

 

Table 3-5. River catchment´s permeability 

  Bedrock permeability (%) Superficial deposits permeability (%) 

Location High Moderate Low High Moderate Low 

Killington 0.00 29.81 70.19 1.06 9.29 46.06 

Brigflatts 0.00 74.04 25.96 1.02 11.52 37.46 

Arnford 0.00 92.36 7.64 2.46 17.16 46.23 

Henthorn 0.00 96.52 3.48 3.95 7.81 61.86 

Catterick 0.04 99.96 0.00 1.41 23.18 42.69 

Crakehill 32.32 48.55 11.63 15.43 11.04 57.51 

 

3.4.2.1 River Ribble 

The Ribble basin was selected by the European Commission and officials of the Member States of EU, 

along with 13 other river catchments in Europe, as a pilot to develop and test the EU Water Framework 

Directive (WFD) (Watson and Howe, 2006). The River Ribble estuary is located on the northwest coast 

of England. At Henthorn station, the river drains an area of 456 km2 through North Yorkshire and 

Lancashire. The Ribble´s northern half in Yorkshire Dales and Langstrothdale Chase and drains at 

Arnford station an area of 204 km2. The River Ribble estuary is incised into Permo-Triassic bedrock (Van 

Der Wal, Pye and Neal, 2002; Watson and Howe, 2006; NRFA, 2014). The Ribble´s geology is 

predominantly from carboniferous limestone and some millstone grit with post-glacial deposits and 

Boulder Clay in the valleys. Besides the River Ribble, the basin is also formed by the Crossens drainage 

Network and the Calder, Darwin, Yarrow, Douglas and Hodder river systems. Due to its variable surface, 

the basin has a natural runoff pattern with ´flashy´ river flows. The catchment maximum altitude is 

691.4 m above Ordnance Datum (AOD) and the station level altitude is 38.8 m AOD.  The catchment 

flow has been recorded in these sites since 1968 and the maximum gauge level and peak flow registered 

at Heathorn was, respectively, 3.625 m and 403.9 m3 in 31/10/2010. Along the catchment there is 

Moorland in the upper catchment, and downstream from Arnford there is mixed farming and several 

small towns however, only minor effluent is discharged in the basin. The basin is home for a vast 
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number of protected species that has been suffering with damage to its habitats. The reason the Ribble 

basin to be chosen as a pilot basin to the WFD by the EA is due to the variety of land and water uses 

within the basin, having both natural and modified landscapes and the variety of stakeholders in the 

basin (Marsh and Lees, 2003; Watson and Howe, 2006; NRFA, 2014) . 

3.4.2.2 River Lune 

The River Lune, located in Cumbria and Lancashire, plays an essential role in water resources due to its 

habitat and conservation status, being particularly important for the Atlantic salmon. The area is often 

home to conflicts as a result of the agricultural interests in the region. The river drains an area of 219 

km2 of the eastern Lake District fells and parts of the Yorkshire Dales National Park and has excellent 

water quality. The river regime is flashy and is prone to inundation during wintertime. The topography 

of the region presented a challenge for urban development and intensive agricultural use; for this 

reason, land-use is limited mainly to Moorland, arable farming and grass.  The catchment drains Silurian 

slates to the West, Carboniferous conglomerate and Limestone in the North and East, Peat moss on 

high moors to the Northwest, heather moss in the North. Lower valleys are covered with Boulder Clay. 

The maximum catchment altitude is 675.6 m AOD, and the station altitude is 82.8 m AOD. The 

catchment flow has been recorded in these sites since 1968, and the maximum gauge level and peak 

flow registered was, respectively, 3.369 m and 471.813 m3 on 08/01/2005 (Orr and Carling, 2006; NRFA, 

2014). 

3.4.2.3 River Swale 

The river Swale is located in Yorkshire Ouse, and it drains water from North Yorkshire Dales and flows 

to the southeast to converge with the River Ure, draining a 1363 km2 area at Crakehill station. The 

upper-catchment area is 499.4 km2 and drains at Catterick station. The catchment is formed by 

Carboniferous limestone and millstone grit, Triassic mudstone and sandstone. The river starts in a 

steep-sided hill with a gradient of 14.8 m km-1 and as it matures into a slow-flow river downstream from 

Catterick with a gradient of 0.8 m km-1. The river sediments also change as the river develops. In the 

upland region, there are boulders and cobbles with sand sediments, and in Crakehill, there is an 

accumulation of sand and silt in addition to the Boulder Clay (Bowes, House and Hodgkinson, 2003; 

Bowes et al., 2005; NRFA, 2014).  The maximum catchment altitude is 714.3 m AOD, and the Crakehill 

station altitude is 12 m AOD. The catchment flow has been recorded in these sites since 1969, and the 

maximum gauge level and peak flow registered in Crakehill station was, respectively, 5.68 m and 238.70 

m3 on 27/09/2012. The catchment is responsive and has a fairly natural regime, and has primarily 

moderate permeability. There is mainly Moorland and grassland in the headwater, having a 

considerable area of arable cover (NRFA, 2014). 
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3.4.2.4 River Rawthey 

The River Rawthey is located in Cumbria and Lancashire and drains an area of 200 km2 of Carboniferous 

Limestone and Millstone Grit. The catchment has peat on the highest moors and Boulder Clay in the 

valleys and on lower slopes. The river has a natural flow regime. The maximum catchment altitude is 

734 m AOD, and the station altitude is 84.1 m AOD. The River Rawthey, being a steep river, has very 

responsive flows. The catchment flow has been recorded in these sites since 1969, and the maximum 

gauge level and peak flow registered in Brigflatts station was, respectively, 3.843 m and 460.4  m3 on 

31/01/1995 (NRFA, 2014).  

3.4.2.5 River catchments data 

Hydrometric data was obtained from the National River Flow Archive (NRFA), hosted by the Centre for 

Ecology and Hydrology (CEH). The hydrometric data has a 15 min temporal resolution and is subject to 

automated and manual validation by the NRFA. A Service Level Agreement (SLA) was made in the UK 

to improve the quality and continuity of hydrometric data and comprises the transfer and validation of 

river flow data. Data is transmitted from the gauging stations to regional operational databases, where 

it receives a primary quality control before being sent to the NRFA. The data is not added to the national 

archive until its properly validated by NRFA own software applications and qualified regional 

representatives. Visual and manual validation, including the comparison between different near-

neighbour sites and assessments of time-series statistics, by representatives that are familiar with the 

rivers, flow patterns are the most efficient way to quality-control river flow data (Marsh, 2002; Dixon, 

Hannaford and Fry, 2013).  Further details of the data sensing, recording and validation in the UK river 

basins by NRFA are presented in Dixon, Hannaford and Fry, (2013). 

3.4.2.6 PDM model 

The Probability Distributed Model (PDM) is a flexible lumped conceptual rainfall-runoff model which 

uses as input rainfall and probable evaporation data into fast and estimates the soil moisture storage 

and routes the surface and subsurface flows (Moore, 1985; Moore and Bell, 2002; Li et al., 2011). PDM 

has been extensively used in literature (Arnell, 1999, 2011; Pierce et al., 2005; Cabus, 2008; Cole and 

Moore, 2008; Liguori, Rico-Ramirez and Cluckie, 2009; Kay et al., 2009; Ferket, Samain and Pauwels, 

2010; Li et al., 2011; Bringi and Thurai, 2012; Srivastava et al., 2014; Arnell, Charlton and Lowe, 2014; 

Cecinati et al., 2017). The model is currently used by the Environment Agency for real-time flood 

forecasting across England and Wales. The basic structure of a PDM model is outlined in Figure 3-6. 

The soil's capacity to take up water, including canopy and surface retention, controls the runoff 

production at any given point within the catchment. The storage´s (S1) inlet is rainfall (P), and the outlets 

are evaporation losses (E) and recharge, and when it is full, it generates runoff. The only difference in 
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each point of the catchment is the capacity; then, its spatial variation can be described by a probability 

density function. Integrating the point runoff is then used to model the runoff over the catchment. The 

model gives as output the outflow from subsurface and surface storages with established flows (e.g. 

constant abstractions or releases). The model is based on mass balance principles and takes into 

account averaged rainfall and evaporation over the catchment to compute recharge and runoff 

production. The model represents the subsurface and surface storages by a transfer function discretely 

coincident with a cascade of two linear reservoirs or by solving the Horton-Izzard equation (Moore, 

2007).  Further information about the model and the equations used can be found in Moore (1985, 

2007). 

 

Figure 3-6 The PDM rainfall-runoff model (Moore, 2007) 

The PDM uses 14 parameters that are listed in Table 3-6 and uses potential evapotranspiration (PET), 

catchment area and precipitation (measured or forecasted) as inputs. The meteorological data used 

to compute the potential evapotranspiration was provided by the UK Met Office through the Met 

Office Integrated Data Archive System (MIDAS). The Land surface and marine surface observation 

data from the UK Met Office comprises wind parameters, air temperatures, dew point temperature, 

air pressure and solar radiation measurements and rain measurements (Met Office (2012), 2014). The 

potential evapotranspiration was computed using the FAO Penman-Monteith algorithm (Allen et al., 

1998).  The rain gauge data had to be averaged over each catchment to be used as input in the PDM 

model. The Thiessen method was used to compute the catchment averaged rainfall. 

The simulations were made using hourly data. For this reason, both meteorological and hydrological 

data were accumulated (rainfall) or averaged (flows). The PDM model used was initially set up by 

Nanding (2016). In this research, data from the 1st of January until the 31st of December 2007 was 

used for the PDM calibration. Calibration was made optimising the parameters using a global 

optimization method. 

  



53 

 

Table 3-6. PDM model parameters (Moore, 2007) 

Parameters Description Unit Unit 

𝑓𝑐  Rain factor - 

𝜏𝑑 Time delay hr 

𝑐𝑚𝑖𝑛 Minimum storage capacity mm 

𝑐𝑚𝑎𝑥 Maximum storage capacity mm 

𝑏 Exponent of the soil moisture distribution - 

𝑏𝑒 Exponent in the actual evaporation function - 

𝑘𝑔 Groundwater recharge function hr.mmbg-1 

𝑏𝑔 Exponent of recharge function - 

𝑠𝑡 Soil tension storage capacity mm 

𝑘𝑏 Time constant of the groundwater routing hr.mm2 

𝑞𝑐 Constant flow representing returns/abstractions m3s-1 

𝑘1 Time constant of the surface routing hr 

𝑘2 Time constant of the surface routing hr 

 

The Shuffled Complex Evolution developed at the University of Arizona (SCE-UA) (Duan, Sorooshian 

and Gupta, 1992, 1994; Duan, Gupta and Sorooshian, 1993). Optimization was also tested using root 

mean square error (RMSE) and mean absolute error (MAE), but SCE-UA provided the best results 

overall with the NSE. The Nash-Sutcliffe efficiency (NSE) coefficient was used to assess the model's 

ability to estimate the catchment flow. The NSE ranges from -∞ up to 1, where 1 indicates that the 

model can perfectly reproduce the observed flows and negative values indicate that the model ability 

to reproduce the flow is worse than the observed flow mean (Nash and Sutcliffe, 1970). It is worth 

mentioning that the SCE-UA method optimises the model parameters in order to achieve the best 

NSE performance. However, it is well-known that different combination of parameter values might 

also produce similar model performance (known as equifinality), and therefore parameter uncertainty 

in hydrological modelling is an active area of research.  In this work, however, the best-calibrated 

model obtained through SCE-UA was used in the analysis in order to test how the uncertainties in the 

rainfall and forecasts are propagated in the forecasting of river flows (or flows in the sewer system for 

the urban area). The calibration was undertaken in order to maximize the NSE score. The validation 

was undertaken using data from the 1st of January until the 31st of December 2008. The forecasted 

flows are compared to measured flows and estimated flow using radar data and gauge data. The 

gauge estimated flows are produced using the PDM calibrated using rain gauge data. For the radar 

estimated flow and forecasted flows, radar data was used to calibrate the PDM. This was done in 

order to account for any bias that might be present in the radar rainfall measurements that affect the 

hydrological simulations. In this way, the best-calibrated models using radar and rain gauge 

measurements were identified and used in the forecasting analysis.  
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Chapter 4. Radar rainfall ensembles to represent uncertainties in 

nowcasts  

4.1 Introduction 

The quantification of uncertainty in rainfall measurements is vital in flood forecasting applications. In 

Chapter 2, rain gauge and weather radar uncertainties were discussed, along with a review of some of 

the existing techniques to assess these uncertainties. In Chapter 3, a short explanation about the UK’s 

data processing used to account for these uncertainties was also presented. It is important to note that 

even with efforts to minimize them, residual uncertainties (both in radar rainfall measurements and 

forecasts) are still present and have to be considered, in particular for hydrological applications 

(Germann et al., 2009). Radars errors are particularly significant in the first hours of the forecasts  

(Foresti et al., 2013) and they propagate and produce uncertainties in the flood forecasts. Therefore, it 

is important to model or quantify the uncertainties in the rainfall observations so they can be accounted 

for and propagated into rainfall and river flow forecasts. At present, it is unclear how the uncertainties 

in radar rainfall affect the rainfall forecasts as well as the flow forecasts in sewer systems and river 

catchments. This chapter investigates how we can use existing models to quantify the uncertainties in 

radar rainfall to provide more significant rainfall and flow forecasts compared to existing models that 

only add spatially-correlated stochastic noise to the rainfall advection field. 

There are currently different models available in the literature to model the uncertainties in radar 

rainfall measurements. For instance, Cecinati et al. (2017) proposed a geostatistical method to generate 

random error fields with the correct error characteristics when comparing radar with rain gauge 

observations.  Other methods proposed using multiplicative error models to account for biases in the 

rainfall observations  (McMillan et al., 2011). In contrast, other researchers argue that the errors 

between radar and rain gauge measurements can be modelled by a multiplicative function that 

accounts for biases and random components. Approaches that are based on the modelling of individual 

sources of errors can be challenging as radar estimations can have large variations due to 

meteorological conditions and are complexly correlated (Seed, Pierce and Norman, 2013; Rico-Ramirez, 

Liguori and Schellart, 2015). There are also models based on the difference between radar and a 

reference, usually a dense rain gauge network (Germann et al., 2009; Seed, Pierce and Norman, 2013). 

These models are able to account for the fact that the radar errors change in space and time and that 

radar errors depend upon a number of different factors, as explained in Chapter 2. Once they compare 

radar data with a reference, they are able to provide a direct rainfall estimation that includes all 

uncertainties sources together (Rico-Ramirez, Liguori and Schellart, 2015). One of the models that take 



55 

 

into account the space-time error structure was proposed by German et al. (2019). Germann et al. 

(2009) use a series of stochastic ensembles to assess uncertainties in weather radar rainfall estimation.  

In comparison with models that individually account for the different sources of errors, these models 

consider all the residual errors combined and decreases the complexity of the modelling process. 

Moreover, this model has been successfully used to model rainfall uncertainties for nowcast and also 

to simulate hydrological flows (Seed, Pierce and Norman, 2013; Rico-Ramirez, Liguori and Schellart, 

2015), indicating its suitability to be used in real-time rainfall and flow forecast. The ensembles are 

generated by means of the difference between the radar measurements and a reference (e.g., rain 

gauge observations) obtained from a large historical data set. The model proposed by Germann et al. 

(2009) can represent the spatial and temporal correlations of the error mean and covariances. The 

ensembles are formed by adding a stochastic perturbation to the deterministic radar precipitation field 

(original unperturbed field), as shown in equation (4-1) (Germann et al., 2009).  

 Φ𝑡,𝑖⏟  =   𝑅𝑡 ⏟   +       𝛿𝑡,𝑖⏟  (4-1) 

 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑠𝑡𝑖𝑐      𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐         𝑠𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐    

Where Φ𝑡,𝑖  is the resulting precipitation field for ensemble member 𝑖 at time 𝑡, 𝛿𝑡,𝑖 is the perturbation 

field for ensemble member i, and 𝑅𝑡 is the original radar precipitation field. 𝛿𝑡,𝑖  is modelled using the 

‘LU decomposition algorithm’, and the result is a Gaussian correlated field with covariances and means 

that are pre-defined. 𝑅𝑡  is composed by the original radar estimates at time 𝑡   and location 𝑥𝑇 

(Germann et al., 2009). 

 𝑅𝑡
𝑇 = (𝑅𝑡,𝑥1, 𝑅𝑡,𝑥2, 𝑅𝑡,𝑥3, … , 𝑅𝑡,𝑥𝑀) 

(4-2) 

 

Where  𝑀 is the number of radar pixels in the study area Ω. In the same way, Φ𝑡,𝑖  and 𝛿𝑡,𝑖  are also 

formed by Φ𝑡,𝑥𝑘,𝑖  and 𝛿𝑡,𝑥𝑘,𝑖 at the 𝑀 locations. Hereafter, 𝑅 and 𝛿 will be described as ‘deterministic’ 

and ‘stochastic’ components, respectively. The resulting  Φ𝑡,𝑖  is then a result of the estimated radar 

precipitation field and the 𝑁 different realizations of 𝛿𝑡,𝑖  time-series. It is crucial to have a large enough 

𝑁  for the resulting precipitation field to be able to capture the range of uncertainties in the radar 

estimates (Germann et al., 2009). 

Due to the multiplicative nature of radar uncertainties, the residual error 𝜖 is defined in dB as (Germann 

et al., 2009): 

 
𝜖 = 10log (

𝑆𝑡
𝑅𝑡
) 

(4-3) 
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Where 𝑆𝑡  is the real or true precipitation field that is unknown. Perturbations are hence,  added 

logarithmically, and Equation (4-1) can be written as (Germann et al., 2009): 

 10𝑙𝑜𝑔[Φ𝑡,𝑖] = 10log[𝑅𝑡] + 𝛿𝑡,𝑖 (4-4) 

Where the perturbation 𝛿𝑡,𝑖  is in dB. Using ‘the LU decomposition algorithm’ is used to estimate 𝛿𝑡,𝑖. 

The algorithm core multiplies a random Gaussian vector with zero mean by the square root of the 

covariance matrix (𝐶); the result is then added to the mean error 𝜇.  𝐶 and 𝜇 dimensions are now, 

respectively, 𝑀𝑄𝑥𝑀𝑄 and 𝑀𝑄, where 𝑀 is the number of radar pixels and 𝑄 is the number of time 

steps. Values with no rainfall are excluded from the calculations. Temporal correlation of the errors is 

imposed using an autoregressive model AR(2), allowing 𝛿𝑡,𝑖  to be calculated step-by-step. In order to 

use AR(2), it is necessary to calculate the lag-1 and lag-2 errors correlations in time (𝑟1 and 𝑟2) (Germann 

et al., 2009).   

Initially, an assumption that the 𝜖 is independent in space and time is added using AR(2) and that 𝜇, 𝐶, 

𝑟1 and 𝑟2 do not vary in time. 𝜇 and 𝐶 are then defined as (Germann et al., 2009): 

 𝜇 ≡ 𝐸{𝜖𝑥𝑘} 

𝐶𝑘𝑘 ≡ 𝑉𝑎𝑟{𝜖𝑥𝑘} 

𝐶𝑘𝑙 ≡ 𝐶𝑜𝑣{𝜖𝑥𝑘, 𝜖𝑥1} 

(4-5) 

Where, 𝜖𝑥𝑘 is the residual error at location 𝑥𝑘, 𝐸 is the expectation, 𝑉𝑎𝑟 is the variance, and 𝐶𝑜𝑣 is the 

covariance. Note that the covariance matrix will account for the variation of the errors in space, 

whereas the autoregressive model will account for the variation of the errors in time. 

The ensemble generator consists of two steps (Germann et al., 2009): 

1. Errors space-time structure estimation - Estimate 𝐶 and 𝜇 for the locations 𝑀. At this point, 

the dimensions of 𝐶 and 𝜇 are, 𝑀𝑥𝑀 and 𝑀.  Decompose 𝐶 and estimate 𝑟1 and 𝑟2. 

2. Generate perturbation fields and produce ensembles – Generate 𝛿𝑡,𝑖using Gaussian random 

white noise, the LU composition algorithm and the autoregressive filter AR(2). Each ensemble 

member is formed by adding 𝛿𝑡,𝑖  to 𝑅𝑡. 

Using the LU decomposition algorithm, the covariance matrix is decomposed into an upper- and a 

lower- triangular matrix (4-7). Equation (4-7) describe the LU decomposition algorithm (Germann 

et al., 2009).  

 𝐶 = 𝐿. 𝐿𝑇 (4-6) 

 𝛿𝑡,𝑖 =  𝜇. 𝐿𝑦𝑡,𝑖 (4-7) 
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Where 𝑦𝑡,𝑖 = 𝑁𝑀(0, 𝐼)  is a random Gaussian vector with zero mean and unit-variance. 

Equation(4-7) results in a multivariate vector, 𝛿𝑡,𝑖  distributed in 𝑁𝑀  (Germann et al., 2009). 

An interactive procedure calculates 𝛿𝑡 by linking  𝐿𝑦𝑡,𝑖  with 𝛿𝑡−1,𝑖
′  and 𝛿𝑡−2,𝑖

′  (Equation (4-8). At the end 

of the interaction, the mean error is added (Germann et al., 2009).  

 𝛿𝑡,𝑖
′ =  𝐿𝑦𝑡,𝑖 − 𝑎1𝛿𝑡−1,𝑖

′ − 𝑎2𝛿𝑡−2,𝑖
′ , (4-8) 

 𝛿𝑡 = 𝜇− 𝜐𝛿𝑡,𝑖
′  (4-9) 

 

A detailed description of the method can be found in Germann et al. (2009). 

4.2 Methodology 

The radar rainfall errors were modelled using the model proposed by Germann et al. (2009) described 

above. The radar rainfall estimation ensembles (RE ensembles) attempt to assess the residual 

uncertainties that remain even after the correction algorithms are applied to the radar data in a realistic 

way. These radar rainfall ensembles are used instead of the original radar images to generate forecasts 

using the nowcasting model from STEPS. A deterministic forecast is produced using each of the 25 radar 

estimation ensemble members. As a result, each of these 25 forecasts become the ensemble forecasts. 

Ensemble forecasts based on this method will be referred to as radar rainfall estimation ensembles (RE 

ensembles) in this chapter, while ensemble forecasts generated using the stochastic ensemble 

generator by STEPS will be referred to as STEPS ensembles. Note that the STEPS ensembles are 

generated by adding spatially correlated noise to the deterministic radar forecasts without taking into 

account how the radar errors change in space. 

The rainfall forecast output was used as an input in the hydrodynamic sewer network model from Ilkley, 

a town in northern England. A description of the sewer system can be found in Section 3.4.1. The rainfall 

forecast output was also used to forecast flow in river catchments using a PDM model. In Section 3.4.2, 

there is a more detailed description of the river catchments and the PDM model setup. 

An overview of the events with the start date and time, duration, peak flow, maximum average rainfall, 

and storm type is shown in Table 1. Events with high peak flow were selected, and flow forecasts were 

performed every 30 min, including forecasts of low, medium and high flows. In order to classify the 

storms as convective or stratiform, each pixel of the radar scan was classified as either stratiform or 

convective using the algorithm proposed by Steiner et al. (Steiner, Jr, and Yuter, 1995). A storm was 

classified as convective if more than 3% of the pixels in the study area are convective for a period longer 

than 3 h. The events that did not fulfil these requirements are classified as stratiform (Rico-Ramirez, 
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Liguori and Schellart, 2015). Although the percentage of convective pixels seems to vary from storm to 

storm and depends upon the size of the rainfall domain, it seems that most of the stratiform or 

widespread rainfall systems have a small number of convective pixels (i.e. pixels associated with a high 

reflectivity or rainfall intensity for several hours) in comparison to convective events.  Therefore, the 

thresholds of 3% of convective pixels over 3 hr to classify convective storms were selected by trial and 

error by looking at different storms that clearly showed convective or stratiform behaviour. 

Table 4-1. Event start dates, duration, peak measured flow, maximum average rainfall and storm types (S—stratiform and 

C—convective) for the Ilkley urban catchment. 

Event Date 
Starting 
Time 

Duration 
(h) 

Peak Flow 
(m3/s) 

Max Average Rainfall 
(mm/hr) 

Storm 
Type 

29 April 2008 23:30 6.5 0.3974 5.344 S 

30 April 2008 15:30 3.3 0.3477 8.511 S 

12 May 2008 04:00 6 0.5582 4.117 S 

26 June 2008 13:00 9 0.2869 11.426 S 

7 July 2008 15:00 4 0.5024 7.144 S 

29 July 2008 05:00 4 0.5826 6.444 S 

1 August 2008 01:30 4.5 0.9904 8.073 C 

20 August 2008 20:00 5 0.5800 10.564 S 

4 October 2008 15:00 13 0.3378 8.489 S 

14 October 2008 15:00 5 0.2754 7.358 C 

8 November 2008 20:00 5 0.2592 5.412 S 

9 November 2008 13:30 7 0.5630 18.410 S 

13 December 2008 00:00 9 0.4551 1.813 S 

 

4.2.1 Analysis using radar rainfall estimation ensembles to generate short-term forecast 

Radar rainfall estimation ensembles were generated using both the method described by Germann et 

al. (Germann et al., 2009) and the STEPS ensembles (Bowler, Pierce and Seed, 2006). Figure 4-1 

illustrates an example of radar scans and two different RE ensemble members at different time steps. 

In these figures, it is possible to see how the rainfall is developing according to the radar measurements. 

In Figure 4-1, the forecast started at 02:00, so the results show forecasts with a lead-time of 30 min, 60 

min, and 90 min. There are apparent differences between the radar rainfall and the rainfall forecasts, 

and the results show how these differences increase with lead-time. Using different ensembles to 
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estimate and forecast rainfall can give more information about how the storm will develop according 

to the initial uncertainty of the radar rainfall measurement. 

 

(a) 

 

(b) 

 

(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 4-1. RE ensemble forecasts at time t = 30 min (a,d), t = 60 min (b,e), t = 90 min (c,f) starting on 1 August 2008 at 02:00. 

Each probabilistic forecast is formed by 25 ensemble members that are valid at the simultaneously.  

4.3 Rainfall Forecasting 

The Receiving Operating Characteristic (ROC) curves were calculated to assess the ensembles rainfall 

forecasts' predictability. ROC curves have been widely used to analyze uncertainties in probabilistic 

forecasting systems and measure the ability of a model to correctly identify the occurrence of an event. 

The method is based on a binary system, where yes/no forecasts and yes/no observations are 

computed (Liguori et al., 2012). For a sequence of threshold, a ‘hit-rate’ (HR) (proportion of events 

correctly forecasted) and a ‘false-alarm rate’ (FAR) (proportion of events that were not forecasted) are 

computed and used to define the ROC curve (Mason and Graham, 2002). The better the forecast, the 

higher the HR (and lower the FAR). The area beneath the ROC curve should be above 0.5 (random 

forecast) and is equal to 1 when the model can correctly forecast an event that occurs or not (Liguori 

et al., 2012).  
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Table 4-2. Contingency table for ROC curve 

 Event observed 

Event forecast Yes No 

Yes True positive (TP) False positive (FP) 

No False negative (FN) True Negative (TP) 

 

For a deterministic forecast, HR and FAR can be calculated according to equations (4-10) and (4-11) 

(Kharin and Zwiers, 2003): 

 
𝐻𝑅 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(4-10) 

 
𝐹𝐴𝑅 =

𝐹𝑁

𝐹𝑁 + 𝑇𝑃
 

(4-11) 

For probabilistic forecasts, the HR and FAR can be expressed in function of the probability of the 

forecast exceeding a critical threshold (𝑃𝑐𝑟). In this case, HR and FAR can be calculated according to 

equations (4-12) and (4-13) (Kharin and Zwiers, 2003): 

 
𝐻𝑅 = ∫ 𝑓(𝑃|𝐸 = 1)𝑑𝑃

Ω𝑃

 
(4-12) 

 
𝐹𝐴𝑅 = ∫ 𝑓(𝑃|𝐸 = 0)𝑑𝑃

Ω𝑃

 
(4-13) 

 

Where, 𝑃 is the probability of the forecast to exceed a threshold, Ω𝑃 is the forecast probabilities 𝑃 >

 𝑃𝑐𝑟  and 𝑓(𝑃|𝐸) is the conditional probability density function. 𝐸 is a dichotomous predictant defined 

as 𝐸 = 1 in the occurrence of an event and 𝐸 = 0 when the event does not occur. 

Some of the results obtained for a selection of events with rainfall intensities equal to or higher than 

0.1 mm/hr, 1.0 mm/hr and 3.0 mm/hr are presented in Figure 4-2 until Figure 4-5 at different 

forecasting lead-times.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 4-2.ROC curves for event on 7 July 2008 starting at 15:00 for RE and STEPS ensembles, respectively and thresholds (th) 

equal to 0.1 mm/hr(a, d), 1.0 mm/hr(b, e) and 3.0 mm/hr(c, f). 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 4-3. ROC curves for RE and STEPS ensembles for event on 1 August 2008 starting at 01:30 for RE and STEPS ensembles, 

respectively and thresholds (th) equal to 0.1 mm/hr(a, d), 1.0 mm/hr(b, e) and 3.0 mm/hr(c, f). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 4-4. ROC curves for RE and STEPS ensembles for event on 4 October 2008 starting at 15:00 for RE and STEPS 

ensembles, respectively and thresholds (th) equal to 0.1 mm/hr(a, d), 1.0 mm/hr(b, e) and 3.0 mm/hr(c, f). 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 4-5. ROC curves for RE and STEPS ensembles for event on 14 October 2008 starting at 15:00 for RE and STEPS 

ensembles, respectively and thresholds (th) equal to 0.1 mm/hr(a, d), 1.0 mm/hr(b, e) and 3.0 mm/hr(c, f). 
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To summarise the results from the events analyzed, the area beneath the ROC curves for different 

rainfall thresholds and forecasting lead-times are plotted in Figure 4-6 – Figure 4-8. The results show 

that the forecast skill decreases with both forecasting lead-time and higher rainfall intensities. 

 

Figure 4-6. Area beneath ROC curves for all the events using RE ensembles and STEPS ensembles and threshold 0.1 mm/hr. 

 

Figure 4-7. Area beneath ROC curves for all the events using RE ensembles and STEPS ensembles and threshold 1 mm/hr. 
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Figure 4-8. Area beneath ROC curves for all the events using RE ensembles and STEPS ensembles and threshold 3 mm/hr. 

The tendency observed is that the forecast accuracy decreases with longer lead-time and higher rainfall 

intensities, as shown in Figure 4-6. The first forecasted hour shows a high forecast ability; however, 

with the increase of lead-time, the ability is rapidly reduced. The forecast skill also decreases with higher 

rainfall thresholds, indicating that high rainfall intensities are more challenging to forecast and are 

subject to more errors. In most cases, the ROC curve is below the random forecast line for a threshold 

of 3 mm/hr, demonstrating that in these situations, the model fails to forecast higher rainfall intensities 

efficiently. Figure 4-2 to Figure 4-5 demonstrate how the forecast efficiency decline after the first hour 

forecasted for a threshold of 3 mm/hr. For a rainfall threshold of 0.1 mm/hr, all the events for both 

probabilistic forecasts produce skilful predictions up to 3 hr lead-time. With an increased lead-time, 

however, the forecast ability also decreases. 

The events analyzed produced good forecasts up to 1 hr lead-time for all rainfall thresholds, but overall 

the RE ensembles performed slightly better than the STEPS ensembles during this period. The STEPS 

ensembles lose forecasting skill less rapidly and more constantly between the time-steps used when 

the thresholds are between 0.1 mm/hr and 1.0 mm/hr. Significant forecast accuracy is lost after the 

first hour for the RE ensembles. The area beneath the ROC curve is reduced by approximately 20% for 

rainfall intensities higher than 0.1 mm/hr. For a threshold of 3.0 mm/hr. The area beneath the ROC 

curve is reduced by around 24% after the first forecasted hour. For lead-times longer than 1 h, the 

STEPS ensembles perform better than the RE ensembles in most cases. Seeing as radar errors are the 

predominant source of uncertainties in the first hour forecasted, an ensemble generator based on the 

modelling of the radar residual errors is expected to produce more accurate results at the beginning of 

the forecast (Germann et al., 2009; Foresti and Seed, 2015). 
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The decrease in forecasting accuracy can be up to 27% per hour after 1 hr lead-time for higher rainfall 

intensities. In most cases with a 3.0 mm/hr threshold and lead-time longer than 2 hr, the forecast is 

unable to predict the rainfall intensities accurately at these small spatial scales and presents areas 

beneath the ROC curve equal or lesser than 0.5. The loss of efficiency in the forecast is consistent with 

other studies (Liguori et al., 2012; Foresti et al., 2016). Due to regions with high-intensity rainfall are 

smaller, there is a decline in the performance of the ensemble rainfall forecasts for higher thresholds. 

The area beneath the ROC curves for the RE ensembles are, on average, 10% higher than the STEPS up 

to 30 min lead-time. The difference falls to 6% when the forecasting lead-time is up to 1 hour. 

4.4 Hydrological application in flow predictions 

4.4.1 Urban catchment 

The hydrodynamic model was verified using radar rainfall and the additional rain gauge data within the 

urban area as input. The root mean square error (RMSE) was calculated by comparing simulated flow 

with the measured flow. The RMSE was only computed for measured flow higher than 0.1 m3/s to 

exclude flows measured in dry periods and to minimize uncertainties related to the flow measurement. 

The RMSE for the radar flow simulations is 0.0956 m3/s and for the gauge flow simulation is 0.0838 m3/s 

using a period from 15 April 2008 to 31 December 2008. Figure 4-9 presents the results comparing the 

measured flow with flow simulated using radar data, and Figure 4-10 shows the results comparing 

measured flows and flows simulated using gauge data. The results shown are from 04/10/2008 and 

05/10/2008. In this specific case, the radar data was able to capture better the high peak flows; 

however, it also predicted peaks that did not occur. The rain gauge data was not able to estimate the 

first high-intensity peak. In the second peak, the rain gauge data could not estimate the flow pattern 

and estimated high intensities for a shorter period. The performance of radar and rain gauge was 

strongly dependant on the event, and in many cases, the rain gauge data produced the best results. 
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Figure 4-9. Measured flows (Qm) and radar simulated flows (QR) for 04 and 05 of October 2008. 

 

Figure 4-10. Measured flows (Qm) and gauge simulated flows (QG) for 04 and 05 of October 2008. 

The sewer flow simulation results obtained using radar rainfall, rain gauge measurements and rainfall 

forecasts were compared against the sewer-measured flows. Since the forecasted peak flow sometimes 

appeared a few minutes later (or earlier) compared to the flow observations, it was decided to compare 

the peak flows within a particular time window (e.g., every 30 min or 1 h). This was decided as for real-

time applications; it is essential to accurately forecast the flow peaks intensity. For real-life applications, 

having the flow forecasted within a few minutes from the measured flow still allows protective 

measures to be taken. The results are presented in Figure 4-11 until Figure 4-13.  
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(a) 

 

(b) 

Figure 4-11. Flows (a) and peak flows (b) for events on 07 July 2008 starting at 15:00. QF Ens Radar, QF Ens STEPS, QF Det, Qm, QG and 

QR are, respectively, forecasted RE ensemble flows, forecasted STEPS ensemble flows, forecasted deterministic flow, 

measured flow, estimated gauge flow and estimated radar flow. 

 

(a) 

 

(b) 

Figure 4-12. Flows (a) and peak flows (b) for events on 09 November 2008 starting at 14:00. QF Ens Radar, QF Ens STEPS, QF Det, Qm, 

QG and QR are, respectively, forecasted RE ensemble flows, forecasted STEPS ensemble flows, forecasted deterministic flow, 

measured flow, estimated gauge flow and estimated radar flow. 

RMSE calculations were carried out to assess the performance of the ensembles. Due to the time lag 

present between the measured peak flow and the ensemble-simulated peak flows, a cross-correlation 

correction was performed between the measured flows and ensemble flows. As the lags are not 

consistent, the cross-correlation was adjusted for each case. RMSE for each ensemble member was 

calculated for measured flows higher than 0.1 m3/s (Figure 4-14). Table 2 presents the mean of the 

RMSE for both STEPS and RE ensembles. Given the fact that there is a significant loss of forecast 

efficiency after 1 hr of lead-time, the RMSE is only shown for this period. In most events, the time lags 

between measured flow and forecasts are less than 15 min. 

The forecasted flow in Ilkley only produced reliable forecasts with lead-times up to 30 min. In some 

cases, the predictability maintained up to 1 hr ahead depending upon the nature of the rainfall event. 

For low flow situations, the model can accurately estimate flows using radar and gauge data. However, 

for flows over 0.5 m3/s, the gauge estimations underestimate the flow peaks in most cases. 

Underestimation can be related to the model calibration. Using more events with high peak flows might 

be able to improve flow prediction in similar conditions. Results using radar data produce better 
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estimates for higher flows and can predict peak intensities more accurately for flows around 0.5 m3/s. 

For higher intensity flows, the model also underestimates the flow in most cases. For low-intensity 

flows, both the gauge and radar estimations produce accurate results and mimic the flow pattern. Flow 

simulation with rain gauges has a lower RMSE (0.084 m3/s) than using radar rainfall (0.096 m3/s). These 

results are expected, given that the rain gauges used to simulate the flow are located within the urban 

area.  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4-13. Flows (a) and peak flows (b) peak flows for events on 1 August 2008 starting at 02:30 and flows (c) and peak 

flows (d) for events on 1 August 2008 at 03:00. QF Ens Radar, QF Ens STEPS, QF Det, Qm, QG and QR are, respectively, forecasted STEPS 

ensemble flows, forecasted deterministic flow, measured flow, estimated gauge flow and estimated radar flow. 

Table 4-3. RMSE mean for RE and STEPS ensembles for 0–1 hr after the forecast's start. 

RMSE (m3/s) 

Event Date Starting Time RE Ensembles STEPS Ensembles 

7 July 2008 15:00 0.170 0.200 

1 August 2008 02:30 0.405 0.430 

1 August 2008 03:00 0.140 0.166 

9 November 2008 14:00 0.287 0.169 
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Figure 4-14. RMSE for RE and STEPS ensembles and 0–1 hr after the start of the forecast. 

In the event shown in Figure 4-11 the radar probabilistic forecast is able to simulate the peaks in the 

first hour of the forecast and accurately simulate the second flow peak. The STEPS probabilistic 

forecasts underestimated both flow peaks. For this event, it is clear that using rain gauge data to 

produce the radar rainfall ensembles adds valuable information to improve the forecasts, as the RE 

ensembles predicted peaks are closer to the measured flow, while the STEPS ensembles underestimate 

the flow peaks. This allows the flow peak and flows patterns to be forecasted better using the RE 

ensembles. For RE ensembles, the measured flow (0.509 m3/s) is very close to the 75th percentile flow 

(0.418 m3/s). For the STEPS ensembles, the measured flow is only captured by the more extreme 

ensembles, as can be seen on the boxplot. The flow simulations using radar data and the deterministic 

forecast show similar results to the STEPS ensembles peak flows, both underestimating the flow peaks. 

The simulation using rain gauge data replicate the first flow peak more accurately but underestimate 

the second one. The RE ensembles have the advantage of combining information from both the radar 

and the rain gauges and are able to predict both flow peaks. The second large flow peak occurred 

around 2 hr lead-time and cannot be forecasted by any of the forecasts. This indicates that at lead-time 

longer than 1 hr, the flow forecast loses its forecasting skill. For this event, the RE ensembles perform 

better in analysing the RMSE mean. For the first hour, the mean is approximately 15% smaller for RE 

ensembles when compared to the STEPS ensembles. 

The simulated flow peak in Figure 4-12 is overestimated using radar rainfall. Flow simulations using rain 

gauge data are much closer to the measured peak flow, but there is a delay in time of a few minutes. 

In this example, both RE and STEPS forecasts can capture the flow peak. However, the RE ensembles 

produce a flow forecast with a higher spread than the STEPS forecast. The measured peak flow (0.563 

m3/s) falls between the 25th and 75th percentile for the RE ensembles (Figure 4-12b) in the first 

forecasted hour. In the second hour of the forecast, the STEPS ensembles forecast the flow intensity 

more accurately than the RE ensembles. The RE ensembles produce a larger spread, and therefore 
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there is an overestimation of the flow by a large part of the ensembles. This leads to an increased RMSE 

(0.287 m3/s) for the first hour of the forecasts and a higher value than using the STEPS ensembles 

(0.0169 m3/s). The STEPS ensembles produce a smaller RMSE mean for the whole duration of the event. 

In Figure 4-13, the nowcasting model’s efficiency is rapidly lost with increased lead-time. This figure 

shows the results of forecasting the same rainfall event but at different starting times (30 min apart). 

The forecasts for both ensembles initiated at 02:30 on 1 August 2008 (Figure 4-13a) fail to predict the 

flow peak correctly, and the time lag between the forecasted flow and the measured flow is higher than 

for shorter lead-times. In the forecasts initiated at 03:00 (Figure 4-13b), the peak flow falls into the first 

forecasted hour, and the forecast produced replicates the peak flow better. In this case, both 

ensembles were able to capture the peak flow. However, only some of the RE ensembles can reproduce 

the peak flow correctly. Because the STEPS model produces a higher spread, more ensemble members 

can forecast the peak flow under these circumstances. The event presented in Figure 4-13 presents the 

highest measured flow among all the selected events. Accurately forecasting high rainfall intensities 

has proved to be more challenging, and both forecasts were able to predict the peaks at a short 

forecasting lead-time. The RMSE mean for the forecast initiated at 02:30 is higher (0.405 m3/s for RE 

ensembles and 0.430 m3/s for STEPS ensembles). In contrast to the other events, the flows were 

forecasted with a delay of around 20 min. Starting the forecast 30 min later improved the ability to 

predict flow peaks, and the RMSE for RE ensembles was nearly a third of the previous forecast. In the 

event represented in Figure 4-13, there were no rain gauge data available. So, the advantage of using 

radar rainfall ensembles is more evident. The RMSE indicates that the RE ensembles overperform the 

STEPS ensembles during the first hour forecasted.  

Analysing the 13 events for longer forecasting lead-times, the performance is case dependent, but both 

RE ensembles and STEPS ensembles tend to lose their accuracy as forecasting lead-time increases.  

In the majority of the events, there is a time-lag between the measured and forecasted flows. However, 

this time-lag is not consistent. In some events, the flow peaks are predicted in advance of the actual 

flow and in other cases, the forecasted flow has a delay when compared to the measured flow. The 

simulated flows for both radar and gauge do not present the same time lag, confirming that these are 

uncertainties inherited in the rainfall forecast. The fact that the area studied is an urban area of small 

dimensions with both permeable and impermeable surfaces means that the catchment response time 

is minimal, and any uncertainties related to the rainfall forecast have an almost immediate effect on 

the flow forecast. Tests performed with the ensemble forecasts, where high-intensity rainfall pixels 

were only displaced a few kilometres, could have a high impact on the flow simulation. This highlights 

the importance of improving the accuracy of rainfall forecasts for applications in urban areas. 
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4.4.2 River Catchments 

As mentioned in Chapter 3, the PDM for the river catchments described were calibrated using the 

shuffled complex evolution method (SCE-UA) (Duan, Sorooshian and Gupta, 1992, 1994) in order to 

obtain a maximum Nash-Sutcliff efficiency (NSE) coefficient. The calibration was carried using one-year 

radar data from 2007. Data from 2008 was used for validation. The calibrations of all the catchments 

were done using both radar and rain gauge data, and therefore two models for each catchment were 

produced.  

Table 4-4 contains the NSE coefficient for the six river catchments studied for both calibration and 

validation data periods. The results obtained for the calibration and validation for Arnford, Henthorn 

and Killington catchments are also presented  below (Figure 4-15 until Figure 4-17). For all the 

catchments, rain gauge validation results were better than radar. Catterick and Crakehill validations 

showed that the model for these catchments could not reproduce large peaks, hence the poor NSE 

performance. 

Table 4-4. NSE Coefficient for calibration and validation of the PDM for the river catchments studied using radar and gauge 

Event Date Arnford Brigflatts Catterick Crakehill Henthorn Killington 

Calibration (radar) 0.82 0.76 0.83 0.90 0.85 0.77 

Calibration (gauge) 0.88 0.84 0.88 0.90 0.90 0.92 

Validation (radar) 0.76 0.68 0.58 0.42 0.79 0.62 

Validation (gauge) 0.89 0.84 0.84 0.78 0.89 0.90 
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Figure 4-15. Calibration and Validation of Arnford catchment, where Qobs represents the observed flow and Qsim represents 

the simulated flow using radar or gauge data. 
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Figure 4-16. Calibration and Validation of Henthorn catchment, where Qobs represents the observed flow and Qsim 

represents the simulated flow using radar or gauge data. 
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Figure 4-17. Calibration and Validation of Killington catchment, where Qobs represents the observed flow and Qsim 

represents the simulated flow using radar or gauge data. 
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The RE ensembles produced better forecasts in the vast majority of the cases, generating more accurate 

results when the radar data could not accurately estimate the flows. Taking radar uncertainties into 

account in the forecasts enabled flow peaks to be forecasted even when the rain gauges cannot help 

to estimate the simulated flows correctly. As some of the ensembles produced are closer in value to 

the deterministic forecast and some are able to predict the flow peaks, the ensemble spread was higher 

for the RE ensembles for a majority of the cases. In Figure 4-18 and Figure 4-19, the forecasted flow 

that falls between the 15 and 85 percentiles, measured flow, estimated flow using radar and gauge 

data for three different rural catchments are shown for an event starting on 04/10/2008 at 14:00 for 

RE and STEPS ensembles respectively. The RE ensembles for the Arnford catchment produce forecasts 

with a higher spread, but it can also predict the peak more accurately, although both probabilistic 

forecasts underestimate the flow. For the Henthorn catchment, there is a significant difference 

between the forecasts produced. The STEPS ensembles are close to the deterministic forecast, and it 

completely fails to reproduce the measured and estimated flows pattern. On the other hand, the RE 

ensembles present a very large spread, but both estimated and measured flows are between 15 and 

85 percentiles. The estimated flows using radar and gauge data present pretty different results, with 

the estimated flow based on gauge data being closer to the measured flow, implicating that in this case, 

the use of RE ensembles can clearly improve the outcome of the forecast. For the Killington catchment, 

however, the estimated flow using radar and gauge are pretty similar. The fact of using a historical data 

set for the radar rainfall errors means that results presented by the RE ensembles are again more 

accurate than the STEPS ensembles and are capable of predicting the measured flow peak and pattern. 

The Root Mean Square Error (RMSE) and the goodness of fit were calculated for all events to assess the 

results. The goodness of fitness (GOF) estimator used was proposed by Cecinati et al. (2017) and is 

calculated as shown on the equation below. 

𝐺𝑂𝐹 = 1 −
∑ 𝑞1
𝑛𝑡𝑜𝑡
𝑖=1

+∑ 𝑞100
𝑛𝑡𝑜𝑡
𝑖=1

𝑛𝑡𝑜𝑡
       (4-14) 

Where 𝑞1 is the number of time steps in the first quartile, 𝑞100 is the number of time steps in the last 

quartile, and 𝑛𝑡𝑜𝑡 is the number of time-steps. The GOF measures how well the ensembles can match 

the measured flow by calculating the number of time steps where flow falls between the first and last 

quartile. The GOF ranges from 0 to 1. A GOF equal to 1 means that the measured flow in all time steps 

falls within the ensemble spread.  

Table 4-5, Table 4-6,  

 

Table 4-7 and Table 4-8 show an overview of the events studied for the four different catchments, 

including event start date, duration, peak flow, maximum average rainfall, GOF score and storm types. 
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Note that these events were selected because they produced a significant peak flow, and therefore 

these events are more interesting for forecasting purposes. 

 Table 4-5. Events dates, duration peak measured flow, maximum average rainfall, average GOF scores for RE and STEPS 

ensembles and storm types (S – stratiform and C – convective) for the Arnford catchment. 

Arnford 

Event Duration (h) 
Peak flow 

(m3/h) 
Max average 

rainfall (mm/hr) 
GOFRE GOFSTEPS Storm type 

200801131400 25 57.74 1.02 0.28 0.16 S 

200801170700 12 64.30 3.90 0.38 0.23 S 

200804300000 5 104.88 5.38 0.49 0.37 S 

200806261300 4 16.31 0.76 0.33 0.20 S 

200809050800 19 281.38 3.80 0.27 0.29 C 

200810040800 18 145.44 3.55 0.40 0.20 S 

200810141500 3 99.50 2.72 0.76 0.51 C 

200811082000 5 61.94 2.69 0.35 0.17 S 

200811091500 3 115.13 2.03 0.60 0.33 S 

 

 

Table 4-6. Events dates, duration peak measured flow, maximum average rainfall, average GOF scores and storm types (S – 

stratiform and C – convective) for the Brigflatts catchment. 

Brigflatts 

Event Duration (h) 
Peak flow 

(m3/h) 
Max average rainfall 

(mm/hr) 
GOFRE GOFSTEPS Storm type 

200801131400 32 66.16 1.51 0.24 0.21 S 

200801170100 16 87.74 3.22 0.26 0.33 S 

200804300000 5 38.80 4.52 0.51 0.44 S 

200806261300 5 10.36 1.75 0.60 0.56 S 

200808010300 3 16.52 3.20 0.50 0.59 C 

200809050800 22 134.85 6.71 0.45 0.50 C 

200810040800 18 77.30 2.80 0.37 0.24 S 

200810141500 3 34.68 2.21 0.48 0.58 C 

200811082000 5 44.15 2.69 0.43 0.30 S 

200811091700 2 85.09 1.37 0.55 0.64 S 
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Table 4-7. Events dates, duration peak measured flow, maximum average rainfall, average GOF scores and storm types (S – 

stratiform and C – convective) for the Henthorn catchment. 

Heathorn 

Event Duration (h) 
Peak flow 

(m3/h) 
Max average rainfall 

(mm/hr) 
GOFRE GOFSTEPS Storm type 

200801131400 32 76.05 3.91 0.31 0.20 S 

200801170100 22 71.98 2.60 0.21 0.11 S 

200804300000 5 22.88 0.77 0.61 0.51 S 

200806261300 4 22.10 1.10 0.24 0.14 S 

200808010300 3 52.23 10.75 0.06 0.06 C 

200809050800 22 74.90 2.54 0.30 0.31 C 

200810040800 20 204.75 8.05 0.45 0.19 S 

200810141500 4 95.10 4.39 0.78 0.65 C 

200811082000 5 66.28 6.07 0.34 0.18 S 

200811091500 3 103.00 1.31 0.76 0.65 S 

 

Table 4-8. Events dates, duration peak measured flow, maximum average rainfall, average GOF scores and storm types (S – 

stratiform and C – convevtive) for the Killington catchment. 

Killington 

Event Duration (h) 
Peak flow 

(m3/h) 
Max average rainfall 

(mm/hr) 
GOFRE GOFSTEPS Storm type 

200801131400 32 122.00 4.57 0.33 0.18 S 

200801170100 16 55.63 3.59 0.45 0.42 S 

200804300000 5 21.88 4.37 0.40 0.27 S 

200806261500 3 58.63 0.15 0.37 0.35 S 

200809050800 22 101.75 5.72 0.39 0.42 C 

200810040800 16 347.50 9.35 0.56 0.31 S 

200810141500 3 123.25 4.11 0.70 0.61 C 

200811082000 5 41.63 4.33 0.55 0.30 S 

200811091700 2 86.85 2.56 0.82 0.27 S 
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Figure 4-18. Flows for events on 14/10/2008 starting at 16:00 at Arnford catchment, 04/10/2008 starting at 14:00 at 

Henthorn catchment, and 06/09/2008 starting at 03:00 at Killington catchment. Qens, Qobs, Qdet, Qrad and Qgau are, 

respectively, forecasted RE ensemble flows, measured flow, forecasted deterministic flow, estimated radar flow and 

estimated gauge flow. 

To summarize the results, the mean RMSE for the RE and STEPS ensembles are shown in Figure 4-20 and Figure 4-21; the GOF 

for different events are presented in  Table 4-5,  

Table 4-6,  

 

Table 4-7 and Table 4-8. The RMSEs for the RE ensembles are lower than for the STEPS ensembles (as 

shown in Figure 4-20 and Figure 4-21) for most of the events. However, in some events, these 

differences are very small for the two types of ensembles. Although the RMSE still provides better 

results for the RE ensembles, the slight difference in values would not justify the use of RE ensembles 

if only this method were used to compare the forecasts. RE ensembles take a longer time and require 
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more computer power to be produced than the STEPS ensembles. For most cases, the GOF for RE 

ensembles was higher than for the STEPS ensembles, with the GOFRE being more than double of 

GOFSTEPS. This indicates that RE ensembles are able to capture more often the measured flows. 

 

 

Figure 4-19. Flows for events on 14/10/2008 starting at 16:00 at Arnford catchment, 04/10/2008 starting at 14:00 at 

Henthorn catchment, and 06/09/2008 starting at 03:00 at Killington catchment. Qens, Qobs, Qdet, Qrad and Qgau are, 

respectively, forecasted STEPS ensemble flows, measured flow, forecasted deterministic flow, estimated radar flow and 

estimated gauge flow. 
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Figure 4-20. RMSE for RE ensembles at Arnford, Brigflatts, Henthorn and Killington catchments. Radarens, Det, Radardata, and 

Gaugedata  are, respectively, RE ensemble forecast, deterministic forecast, estimated radar flow and estimated gauge flow. 

 

Figure 4-21. RMSE for STEPS ensembles at Arnford, Brigflatts, Henthorn and Killington catchments. Radarens, Det, Radardata, 

and Gaugedata  are, respectively, STEPS ensemble forecast, deterministic forecast, estimated radar flow and estimated gauge 

flow. 

The GOF results show that in almost 85% of the cases, the RE ensembles produce a better fit than the 

STEPS ensembles. In most cases where the STEPS produces better forecasts, the difference between 

GOFSTEPS and GOFRE is less than 10%. Results also show that the storm type does not necessarily lead to 

more uncertainties in flow predictions, as the convective events do not always have the highest RMSE 

and lower GOF values. 

4.5 Conclusion 

This research assessed how radar rainfall uncertainties propagate from the radar rainfall measurements 

into radar rainfall forecasts and, further on, into urban sewer forecasting. The work also compared the 

accuracy of flow forecast prediction using two different rainfall ensemble generators. A stochastic 

ensemble generator, which adds spatially correlated noise to the deterministic forecast, was used as a 

reference (STEPS ensembles). An ensemble generator that adds spatially correlated noise based on the 

residual radar error between radar rainfall and rain gauge measurements was used to assess the radar 

rainfall uncertainties (RE ensembles) and how they propagate into the simulated sewer flows of an 

urban area.  

Results from the rainfall forecasts show that both ensembles can produce skilful forecasts for lead-

times up to 3 hr for all rainfall intensities larger or equal to 0.1 mm/hr. With intensities larger than 1 
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mm/hr, the results vary depending on the event. Skilful forecasts could be produced up to 1 hr lead-

time in most cases, and in some events, it was possible to produce a skilled forecast even when the 

lead-time was 3 h. For a high rainfall threshold (larger than 3 mm/h), reliable forecasts were produced 

for at least 1-h lead-time. Foresti et al. (2016) used a modified version of STEPS to produce ensembles 

and concluded that for high-intensity events (5 mm/hr), the forecast is only reliable for 30 min. For 

lower intensities, the ensembles produced by Foresti et al. (2016) could forecast rainfall up to 90 min 

ahead. The RE ensembles produced slightly better results than the STEPS ensembles in the first hour of 

the forecasts. After this, the RE ensembles lost accuracy more rapidly than the STEPS ensembles.  

The flow forecasts in the urban areas were generated using an Infoworks CS model. The RE ensembles 

produced better results than the STEPS ensembles in the first hour of the forecasts and were able to 

reproduce the flow peaks better. The RE ensembles RMSE was lower than the STEPS ensembles RMSE 

for most of the events in the first hour forecasted. This was true even in cases where the simulated flow 

using the radar rainfall is overestimated or underestimated, thus being able to reproduce the flow 

hydrograph better. With lead-times longer than 1 h, all the forecasts lose predictability independently 

of which ensemble generator is used. 

The results show a time-lag of a few minutes between the measured and forecasted peak flows for the 

urban catchment. However, even with this limitation, it is possible to improve the forecast of peak flows 

in urban areas using the method proposed. This method can be used in real-time to enhance existing 

warning systems in urban areas with up to one-hour lead-time. The nowcast skill can be potentially 

improved by blending radar nowcasts with NWP forecasts, especially as the forecasting lead time 

increases. With up to one hour lead-time, the nowcast has a significant impact on the forecast, and this 

improvement enhances the flow forecasts during this period. Future works can incorporate 

uncertainties caused by the growth and decay of precipitation using, for instance, the method 

described by Foresti et al. (2018). 

For river catchments, the RE ensembles produced forecasts with higher accuracy at predicting the flow 

peaks when compared to the STEPS ensembles for most cases. While the RE ensembles produced 

forecasts with a higher spread, large peaks that the STEPS ensembles would miss could be forecasted 

by the RE ensembles. RE ensembles' advantage was more evident in situations when radar data could 

not estimate the peak. However, it also struggled in events where both radar and rain gauge simulated 

flows were very different from the observed flow. For the events analysed, the convective events did 

not have the highest RMSE and lowest GOF, meaning that the storm type in these cases did not show 

a tendency of more difficult prediction. In both river and urban catchments, the underestimation in 

high-intensity peaks is challenging to predict, also highlighted by Zhu, Xuan and Cluckie, (2014).  
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Chapter 5. Ensemble forecasts based on the temporal variation of the 

velocity field 

5.1 Introduction 

Nowcast models based on Lagrangian extrapolation of rainfall are important tools to predict 

precipitation at short lead-times. However, they can quickly lose their predictability power due to 

uncertainties inherent to the nowcasting model, uncertainties in the initial radar rainfall analysis and 

uncertainties in precipitation evolution (e.g. precipitation growth and decay). While radar errors count 

for most of the nowcast uncertainties at the first hour forecasted, changes in the rainfall pattern, such 

as growths and decay and temporal evolution of rainfall, count for most of the uncertainties as the lead-

time increases (Foresti et al., 2013).  

Rainfall events present high spatial and temporal variability (Berne and Krajewski, 2013), and using high 

temporal resolution data from weather radar can help capture the most recent precipitation 

distribution. The forecast's temporal resolution depends not only on the data available but also on the 

forecast application. Temporal resolutions ranging from 5 -15 min are more commonly used, but time-

steps of 30 min are also found in the literature (Pierce et al., 2000, 2004; Tilford, Sene and Collier, 2003; 

Ebert et al., 2004; Turner, Zawadzki and Germann, 2004; Wilson et al., 2004; Schroeder et al., 2006; 

Liguori and Rico-Ramirez, 2012a; Schellart et al., 2012; Caseri et al., 2016; Foresti et al., 2016; Kato et 

al., 2017; Simonin et al., 2017). Therefore, rainfall information from up to 1 hr before the start of the 

event can be used to generate the rainfall forecasts.  As it is expected, the radar precipitation 

distribution measured during this period can have a high variation. Nonetheless, the radar rainfall scans 

still are able to produce meaningful forecasts. 

In order to account for the uncertainties due to the temporal evolution of rainfall advection fields and 

growth and decays, it is common to use probabilistic forecasts by adding spatially correlated stochastic 

noise to the deterministic forecast (Seed, 2003; Bowler, Pierce and Seed, 2006; Berenguer, Sempere-

Torres and Pegram, 2011). STEPS uses random velocity fields to account for uncertainties related to the 

temporal evolution of rainfall. Atencia and Zawadzki (2014) proposed a stochastic ensemble-generation 

technique by producing a reflective field that keeps the temporal and spatial structures of the rainfall 

advection fields, being able to represent some of the forecast uncertainties. The proposed ensemble 

generator has some conceptual similarities with SBMcast and STEPS related to the conservation of 

some properties (e.g. temporal correlation and power-spectrum slope) to generate the ensemble 

members. The main difference is that while SBMcast and STEPS only maintain these properties in the 
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first hour forecasted, the ensemble generator is able to add changes to these properties, being able to 

keep them in the forecast for up to 10 hours. Panziera et al., 2011 proposed a method called NORA 

(Nowcasting of Orographic Rainfall by means of Analogues), an analogue approach to produce 

ensembles for orographic regions by comparing the present situation to an analogue one from 

extensive historical data. The analogues are compared using mesoscale flows, air mass stability, average 

rainfall rate and proportion of wet pixels in the radar image. Foresti et al. (2013) extended the NORA 

model to also consider the analysis of rainfall advection fields when retrieving analogue events. 

Ensembles then can be produced by taking into account the temporal evolution of the rainfall present 

in analogue events. Although the method could represent the forecast uncertainties in a number of 

situations, it fails in cases of extreme events that have not been observed before. Atencia and Zawadzki, 

2015 used a 15-yr dataset to produce forecasts using the analogue approach. The study concluded that 

this is due to Lagrangian extrapolation based nowcasts do not take into account the temporal evolution 

of rainfall advection fields and growth and decay of rainfall. Analogue based seems promising to 

replicate the temporal variability of rainfall, but the main issue remains in retrieving the analogues and 

the requirement of having a long historical dataset. Further research in the application of analogues is 

still necessary. 

The idea of using ensemble forecasts for accounting for the uncertainties due to the temporal evolution 

of the rainfall advection fields is not new. However, changes in the temporal evolution of precipitation 

are challenging to predict, and therefore the methods that use historical data are unable to capture 

this evolution. In this chapter, a new method to produce ensembles is proposed by using the 

information on how the storm developed during the last two hours prior to the forecast. In this way, 

any changes in the temporal evolution of precipitation are event-specific that can potentially produce 

more meaningful ensemble forecasts.    

5.2 Methodology 

It is well known that using a constant rainfall advection field during the duration of the forecast is known 

to produce uncertainties because the temporal evolution of precipitation is not accounted for. Figure 

5-1 shows the average advection velocity fields and their standard deviation. The velocity fields were 

calculated for a particular precipitation event during a 3-hr window, and this illustrates how the rainfall 

advection fields can actually vary during the forecast. In some regions, the rainfall fields are not 

subjected to significant changes (e.g. south of the region shown on the right of Figure 5-1). 

Consequently, the uncertainties related to the temporal evolution of rainfall advection fields remain 

small. However, there are regions where the rainfall advection of precipitation can be more uncertain, 
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making it clear that this assumption can produce uncertain forecasts (e.g. east of the region shown on 

the right of Figure 5-1).   

 

Figure 5-1. Average advection velocity fields and their standard deviation calculated over a 3 hr window. The blue area shows 

the regions where there was rainfall during this period. 

The nowcasting component from the STEPS model extrapolates the rainfall advection field by solving 

the optical flow constraint over an area using the least-square approach. To avoid issues with the 

derivative estimation, a single advection vector, found by maximizing the correlation between the last 

two radar images, is used on the entire domain before solving the optical flow constraints.  After solving 

the optical flow constraints, a smoothness constraint is applied to the advection field. The STEPS model 

uses a backward in time advection to avoid stripes that can appear when the rainfall advection fields 

are diverging. The rainfall advection field is perturbed using a Gaussian distributed field with white noise 

to produce an ensemble member. In this way, the perturbed rainfall advection field keeps the proper 

correlation structure. Further details of how the velocity fields are calculated can be found in section 

3.3.1. However, although the precipitation field is perturbed, the advection field remains constant, 

which is clearly not the case, as shown in Figure 5-1.  

Therefore, a new method to account for the uncertainties in the advection fields to generate ensemble 

forecasts is proposed. As different time-steps can be used to generate the advection field and the 

forecasts, the idea is to use rainfall advection fields at different time-steps. It means that not only the 

most recent radar images can provide relevant information on how the rain develops with time, but 

also precipitation fields from previous time steps. Accounting for how the rainfall evolved during a set 

period can give insights into how it will change in the near future. The ensemble generator proposed 
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uses radar rainfall advection fields measured up to two hours before the start of the forecast. Different 

velocity fields are computed using radar images that are between 5 and 30 min apart, which can be 

used to advect the most recent radar images. In order to analyse how far back in time, the velocity 

fields still influence and add skill to the forecasts, tests were made going back in time 30-, 60-, 90- and 

120 min. The choice of these time windows is linked to the number of ensembles produced. Using a 

shorter time window would mean that not enough ensembles would be part of the probabilistic 

forecast. Simultaneously, producing 63 ensembles is already time demanding, so using a more 

extended period would only be advisable if, after analysing the results, the difference between having 

45 and 63 ensembles was high, suggesting a much better performance at longer time-windows.  

Figure 5-2 shows the number of velocity fields that can be generated to produce a probabilistic forecast 

just by doing combinations of precipitation fields during the previous 30 min before the start of the 

forecast. The rainfall advection fields calculated using radar estimations 5, 10 and 15 min apart are 

used. These time-steps between radar images were chosen based on the 5 min temporal resolution of 

the radar measurements. By using a time window of 30 min, 9 ensembles are produced. In an analogue 

way, using a time window of 60 min, produce 27 ensembles; using a 90 min time window produces 45 

ensembles and having a 120 min time window is able to generate 63 ensembles. The choice of not 

going back further in time is that this would require a very large number of ensembles to be produced. 

This would be very demanding, requiring more computational power and a longer time to produce the 

forecasts. Every velocity field will produce a forecast that is moving faster or slower or in a slightly 

different direction (see, e.g. Figure 5-1) and therefore accounting for the temporal evolution of 

precipitation.  Generating ensembles in this way can potentially produce more meaningful ensemble 

forecasts, as information from a particular precipitation event is used instead of adding random white 

noise to generate the ensembles. 

To generate the ensemble rainfall forecasts, advection velocity fields were produced every 5 min with 

5-, 10- and 15 min time-steps between them. As the STEPS model calculates the velocity fields for every 

forecast produced, deterministic forecasts were produced for each time window (forecasts every 5, 10 

and 15 min). These velocity fields will be used to produce the forecasts. A modified version of the STEPS 

model was developed that allows a selection of the velocity field that will be used to advect the most 

recent radar rainfall advection field. The probabilistic forecasts were produced every 5 min, using the 

relevant velocity fields, for the length of the event using the different velocity fields.  
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Figure 5-2. Example of velocity fields used to generate ensemble forecasts with a time window of 30 min and starting time at 

t= 00. 

The results were assessed using the ROC curves, as described in Chapter 4. The ROC curves were 

produced using thresholds of 0.1 mm/hr. 1.0 mm/hr and 3.0 mm/hr. The ensembles were used as input 

to the urban model in the Ilkley catchment to assess how the rainfall ensemble forecasts are able to 

forecast floods in an urban area. 

Forecasts were produced for 14 events, as described in Table 5-1. Although the flow was forecasted for 

the whole duration of the events, only the periods with high flow in Ilkley were taken into account to 

analyse the results in order to concentrate on how the model can forecast flow peaks. Initially, longer 

periods were accounted for, but as there were no problems with forecasting low and constant flow, it 

was decided to focus on the flow peaks. Besides being more challenging to be forecasted, forecasting 

flow peaks plays an essential role in real-time warning systems. 
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Table 5-1. Event start dates, duration and measured flow peaks. 

Event Date 
Starting 
Time 

Duration (h) Peak Flow (m3/s) 

29 April 2008 23:00 5.5 0.407 

30 April 2008 15:30 0.5 0.348 

01 May 2008 04:00 4 0.558 

26 June 2008 13:00 6 0.192 

7 July 2008 15:00 2 0.511 

29 July 2008 03:00 4 0.588 

1 August 2008 03:00 1 1.041 

20 August 2008 22:00 2 0.482 

2 November 2008 13:00 2 0.462 

4 October 2008 17:00 11 0.359 

14 October 2008 15:00 2 0.279 

8 November 2008 20:00 4 0.298 

9 November 2008 03:30 13 0.199 

13 December 2008 00:00 6 0.317 

5.3 Results 

5.3.1 Analysis using perturbations on the temporal evolution of velocity fields to generate 

short-term forecast 

The results were produced for all the events. Figure 5-3 and Figure 5-4 show examples of the radar 

image, the deterministic forecast and two ensemble members for the event on 04/10/2008 for 60 and 

180 min lead-time. In Figure 5-3, although the ensembles are different from each other, they present 

a similar shape of the overall precipitation and are more agreeable with the radar image than for a 

longer lead-time. However, in Figure 5-4, it is easier to notice the difference between the ensembles 

and the impact that the velocity fields have in the forecast after 3 hr. In this particular example, the 

deterministic forecast and the ensembles fail to accurately forecast areas of higher rainfall intensity 

and wrongly forecast rainfall over large regions. This is mainly due to the changes in precipitation 

growth and decay.  
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Figure 5-3. Radar image (top left) at 21:00 on 04/10/2008, deterministic forecast (top right) and two ensembles with 60 min 

lead time (bottom). 

In order to assess the quality of the ensembles, ROC curves for each event were produced. Figure 5-5 

shows the results for the ROC curves for events on 02/09/2008 and 14/10/2008 for a threshold higher 

than 0.1 mm/hr and for time-back windows of 30-, 60-,90- and 120 min.  The results show that all the 

rainfall forecasts produce ROC curves with high areas underneath them. The area beneath the ROC 

curve increases with the number of ensembles in the forecast and decreases with longer lead time. The 

same pattern is seen across almost all the ensembles. Although, in some cases, the ROC areas are kept 

constant even when increasing the number of ensemble members. The ROC curves were also calculated 

for thresholds equal to 1.0 mm/hr and 3.0 mm/hr.  

To summarize the results, Figure 5-6 until Figure 5-8 present the results for thresholds 0.1-, 1.0- and 

3.0 mm/ hr, respectively. The figures compare the area underneath the ROC curves for time-back 

windows of 30-, 60-,90- and 120 min and lead time of 30-, 60-, 120- and 180 min. In Figure 5-6, it is 

possible to observe a tendency of the area beneath the ROC curves increasing slightly with the number 

of ensembles. However, the difference is very small, and that can also be verified when looking on a 

case by case basis. Figure 5-7 shows that having more ensembles have more impact with higher 

thresholds, and this can also be verified in Figure 5-8, where this difference can be noted. The results 
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also show that there is more gain in using more ensembles rainfall forecast members for longer lead-

times. For all the cases, having longer lead-time and higher thresholds lead to a smaller area beneath 

the ROC curve, and this pattern is observed independent of the number of ensembles in the forecast. 

 

Figure 5-4. Radar image(top left))  at 21:00 on 04/10/2008, deterministic forecast (top right) and two ensembles (bottom) 

with 180 min lead time.
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Figure 5-5. ROC curves for the events on 02/09/2008 and 14/10/2008 with 30 min, 1-, 2- and 3 hr lead time and time window 

of 30, 60, 90 and 120 min. (FAR – False Alarm Rate; HR – Hit Rate) 
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Figure 5-6. – Area beneath the ROC curve for a rainfall threshold of 0.1 mm/hr, time window of 30-, 60-, 90- and 120 min and 

forecasting lead times of 30-, 60-, 120- and 180 min. (tb refers to the time window used to produce the advection fields) 

 

Figure 5-7. – Area beneath the ROC curve for a rainfall threshold of 1.0 mm/hr, time window of 30-, 60-, 90- and 120 min and 

forecasting lead times of 30-, 60-, 120- and 180 min. 
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Figure 5-8. – Area beneath the ROC curve for a rainfall threshold of 3.0 mm/hr, time window of 30-, 60-, 90- and 120 min and 

forecasting lead times of 30-, 60-, 120- and 180 min. 

 

5.3.2 Hydrological application in flow predictions in Ilkley 

The deterministic and ensemble rainfall forecasts were used as input to an urban model for sewer flow 

simulation. The results were compared with the measured flow, simulated flow using radar rainfall data 

and simulated flow using rain gauge data.  

Figure 5-9 and Figure 5-10 show results for events on 20/08/2008 at 20:30 and 04/10/2008, 

respectively, with a time-back window of 30-, 60, 90-, and 120 min. Figure 5-11 show results for the 

same events from Figure 5-9 and Figure 5-10 using STEPS ensembles to produce forecasts. The 

forecasts were produced using 25 ensembles. In Figure 5-9, the first peak could not be forecasted. As 

both forecasts rely on radar data, if the radar data fails in estimating the flow, it is challenging for the 

flow to be correctly forecasted. The first peak is in the first hour of the forecast, and at this period, radar 

uncertainties play a major role in the forecast outcome. Only the rain gauge data was able to predict 

this peak, but still, the flow is underestimated. Rain gauge flow also underestimates the following peak. 

In this case, radar data is able to estimate the peak better than rain gauges, and consequently, the 

forecasts are also more reliable.  The radar estimations slightly overestimate the peaks, while the 

deterministic forecasts underestimate them. This is due to changes in the rainfall pattern that are not 
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reproduced by the deterministic forecasts. The rainfall advection field forecast was able to estimate the 

peak for all time windows. However, for the peak that occurs around 1.5 hr after the start of the 

forecast, the deterministic forecast was able to predict the flow peak, however with a slight time lag 

and all the ensemble rainfall forecasts were able to capture the peak flow even with the existing time 

lag. The forecasts produced using different time windows all produced the same behaviour of 

presenting a higher spread with an increased lead time. For the deterministic forecast and ensemble 

rainfall forecasts, results are practically the same for lead time up to 30 min, showing that for this 

period, the differences in the velocity fields do not have a significant impact on the forecast. Figure 5-10 

presents more constant flows during the length of the forecast that can be easily predicted. The 

forecasts are not able to predict the increased flow at the beginning of the forecast; however, from 30 

min until 1 hr, it provided better results than the radar estimations that underestimated the flow. The 

rainfall advection field forecast was able to estimate the flows during most of the forecasting period. 

However, it was still able to predict the increased flow between 1.5 – 2 hr lead time. As is happened in 

all the events, differences between the deterministic forecast and the ensemble rainfall forecasts were 

only visible after 30 min lead time and increasing as the forecast advances.  

Comparing the results obtained using the proposed method with probabilistic forecasts using STEPS 

ensemble generator (results from Chapter 4), it is possible to conclude that although the forecasts can 

be useful in flow forecasting, they are not able to predict peaks that radar data only fails to estimate. 

Being so, the first flow peak of the event on 20/08/2008 cannot be forecasted using any of those 

methods. 

In the same way that flow simulations in Chapter 4, the flow peaks were slightly displaced in time when 

compared to the measured flow. For this reason, the flow peaks within a time window were used to 

assess the forecasts.  
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Figure 5-9. Flows for event on 20 August 2008 starting at 20:30. QEnsF, QDetF, Qm, QG, and QR are, respectively, forecasted 

ensemble flows (with time-back window of 30-, 60, 90 and 120 min), forecasted deterministic flow, measured flow, 

estimated gauge flow and estimated radar flow. 
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Figure 5-10. Flows for events on 04 October 2008 starting at 23:30. QEnsF, QDetF, Qm, QG, and QR are, respectively, forecasted 

ensemble flows (with time-back window of 30-, 60, 90 and 120 min), forecasted deterministic flow, measured flow, 

estimated gauge flow and estimated radar flow. 



   

 

96 

 

 

Figure 5-11. Flows for events on 20 August 2008 starting at 20:30 and 04 October 2008 starting at 23:30. QEnsF, QDetF, Qm, QG 

and QR are, respectively, forecasted ensemble flows (STEPS ensembles), forecasted deterministic flow, measured flow, 

estimated gauge flow and estimated radar flow. 

Figure 5-12 and Figure 5-13 show the peak flows for the events on 20/08/2008 at 20:30 and 

04/10/2008, respectively with a time-back window of 30-, 60, 90-, and 120 min compared with the peak 

measured flows, peak estimated flow using radar and rain gauge data and forecasted flow using 

deterministic forecast. In Figure 5-12, the peak flow was underestimated for all cases, with the rain 

gauge data being able to estimate it slightly better. For 1-2 hr after the forecast started, the measured 

flow peak was captured by some ensembles for all the cases. At longer lead times, as the measured 

flow was low, all forecasts were able to predict it accurately. The forecasts were not able to forecast 

the first flow peak on the event on 04/10/2008. However, the following peak that occurred soon after 

the first one produced flows of the same magnitude, leading to the peak flow for the first hour 

forecasted being predicted by the ensembles forecasts. For a time-back window of 30 min, most of the 

ensemble members underestimated the peak flow, but even though the forecast could still predict the 

peak flow. The peak flow coincided with the ensemble members ' median for forecasts with more 

ensembles (longer time-back window). For lead-time from 1-2 hours, the forecasts with a time-back 

window of at least 1 hour could predict the peak flows, being only slightly underestimated using the 30 

min time-back window. For this period, the deterministic forecast underestimated the peak flow. For 

2-3 hours ahead, as the flows were very low, all the probabilistic forecasts were able to predict it, 

although the deterministic forecast underestimated the peak flow. 
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Figure 5-12. Peak flow boxplot for rainfall advection field forecasts with a time-back window of 30-, 60, 90 and 120 min,  on 

20 August 2008 starting at 20:30. Qm, QG and QR, QDetF are, respectively, forecasted deterministic flow, measured flow, 

estimated gauge flow and estimated radar flow. 
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Figure 5-13. Peak flow boxplot for rainfall advection field forecasts with a time-back window of 30-, 60, 90 and 120 min,  on 

04 October 2008 starting at 23:30. Qm, QG and QR, QDetF are, respectively, forecasted deterministic flow, measured flow, 

estimated gauge flow and estimated radar flow. 

 

5.4 Conclusion 

In this chapter, an ensemble generator was proposed using velocity fields calculated in different time 

steps before the start of the forecast. Each ensemble member was produced by advecting the most 

recent radar image using one of the computed advection fields. Rainfall advection fields calculated 

using 5-, 10- and 15 min apart from up to two hours before the start of the forecast. This study aimed 

to assess how these ensembles perform to produce forecasts and how much time-back should be 

looked into for the forecast. Options using 9, 27, 45 and 63 ensembles were used (time-back window 

of 30-, 60-, 90- and 120 minutes). Results were also used as an input in a hydrological model to simulate 

flows in an urban catchment, to assess how uncertainties propagate in the hydrological model. 

ROC curve analysis showed that there is an increase in the forecasting ability with a higher ensemble 

number. The Area beneath the ROC curves seems to take advantage of a higher number of ensembles 

with longer lead times and higher thresholds. According to Foresti et al., 2013, nowcasts are subjected 

to mainly radar errors up to 1 hr lead time. After this period, the primary sources of uncertainties are 
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due to the temporal evolution of rainfall advection fields and the growth and decay of rainfall. So, 

having a higher difference between the rainfall advection field forecasts at longer lead-times agree with 

the literature as the ensemble generator proposed is to account for uncertainties related to the 

temporal evolution of the rainfall advection fields. Even with a higher number of ensemble members, 

the forecast still loses predictability as the forecast advances in time. Comparing the results of the 

proposed method with some of the results from Chapter 4, it is possible to realise that the ensemble 

rainfall forecasts produce ROC curves with larger areas beneath them than both STEPS and RE 

ensembles for lead times longer than 1 hr. This means that these ensemble forecasts produce better 

performance and account for uncertainties due to the temporal evolution of the rainfall advection field. 

The results were also used as an input for a hydrological model in Ilkley. Flow forecasts were only able 

to reproduce flow peaks that could also be estimated using radar data. For rainfall advection field 

forecasts with a time-back window longer than 60 min, the flow forecasting capability still improves, 

although forecasts produced using time windows of 90 min and 120 min produce similar results. 

Comparing the forecasted flows with flows forecasted using STEPS ensembles (Chapter 4), it was 

concluded that using the proposed ensemble generator does not provide higher accuracy than using 

the STEPS ensembles. This might be because the urban area taken into account is very small, and having 

rainfall displaced just a couple of pixels in a slightly different direction can give completely different 

results. For this reason, it is important to assess the progression of uncertainties of these ensembles in 

bigger catchments, both urban and rural, in order to obtain more information about the efficiency of 

the forecast in hydrological applications. 

Due to the computer power and time necessary to produce forecasts with a large number of ensembles 

(it takes more than 60% more time to run the 90 min forecasts and over double of the time for the 120 

min one when compared to the 60 min time window), and considering that having 90 min or 120 time-

back windows to produce forecasts do not cause a significant improvement in the forecasts. Using a 

time window of 60 min should be enough for most applications.  
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Chapter 6. Radar and rain gauge merging  

6.1.1 Introduction 

Chapter 1 highlighted the importance of how high accuracy and temporal and spatial resolutions are 

important in rainfall nowcasting and, consequently, in flood predictions. It also described how radars 

measurements are subjected to different error sources that affect the accuracy of QPE (Quantitative 

Precipitation estimation). On the other hand, rain gauges are better in estimating precipitation at 

ground levels at specific point locations, and even with uncertainties inherited to rain gauges. 

Combining these independent measurements from radar and rain gauges allow the generation of a 

rainfall merged product that has high spatial resolution representing the spatial distribution of 

precipitation and better accuracy than the original measurements separately (Krajewski, 1987; 

Goudenhoofdt and Delobbe, 2009; Berndt, Rabiei and Haberlandt, 2014; Jewell and Gaussiat, 2015). 

Chapter 4 considered the uncertainties related to radar QPE by producing probabilistic estimations 

based on the bias between weather radar and rain gauge measurements using historical time series. 

Although the radar rainfall ensembles were able to reproduce these uncertainties, they are not 

designed to reduce them. The use of radar-gauge merging techniques comes into place to reduce the 

uncertainties in radar QPE and produce better rainfall forecasts.                                                                                                                                  

The rainfall accumulation period plays an important role in the performance of the radar-gauge rainfall 

merging methods. For hydrological applications, it is important to have both accuracy and high 

temporal resolution QPE due to the precipitation field's fast-changing nature. However, it is usual to 

have merged products at hourly or daily accumulations, at least due to the disparities in representativity 

between radar and rain gauge estimations. At shorter accumulation periods, the radar rainfall 

accumulation is the result of fewer scans. Rain gauge measurements also suffer from shorter 

accumulation periods, especially when TBR (Tipping bucket rain gauges) are used. When the bucket 

takes longer to tilt for low rainfall intensity events, there will be time-steps with no rainfall followed by 

a period of overestimation of precipitation. Issues related to the difference in spatial resolution 

between radar and rain gauge measurements, radars can detect very localized showers that nearby 

rain gauges can miss. However, for longer accumulation periods, there are higher chances for it to be 

detected by the rain gauges. Jewell and Gaussiat (2015) also compared the use of 15 and 60 min 

accumulation periods in radar-gauge merging. They concluded that although the performance is 

considerably better at hourly accumulations, merged products with 15 min accumulation are still better 

than using rain gauges or radars data alone. Berndt, Rabiei and Haberlandt (2014) compared the 

performance of a wide range of temporal accumulation periods (from 10 min to 6h accumulation) and 
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network densities for OK, KED and conditional merging. Their results showed that the correlation 

between radar and rain gauge increases and RMSE decreases as with higher accumulation periods, and 

even at high temporal resolutions, there is an improvement in the performance of merged products 

when compared to OK. 

Most of the studies carried out to compare the vast number of radar-gauge merging techniques 

concluded that the KED rainfall merging approach is a robust method and has shown to produce reliable 

results for both stratiform and convective events (Goudenhoofdt and Delobbe, 2009; Li and Heap, 

2011; Jewell and Gaussiat, 2015; Nanding, Rico-Ramirez and Han, 2015). Ochoa-Rodriguez et al. (2019) 

presented a summary of the outcome of different merging techniques comparison, and KED has an 

overall best performance than the other methods considered. Although the benefit of KED increases 

with rain gauge network density, sensitivity analysis showed that KED, along with other geostatistical 

methods, are is less sensitive to the median separation of rain gauges (Jewell and Gaussiat, 2015). An 

advantage of KED when compared to other methods with similar performance is the lower 

computational cost needed. For these reasons, KED was selected to perform radar-gauge merging in 

this study. 

For radar-based rainfall forecasting applications (nowcasting), short temporal resolutions are required 

(e.g. 15min or lower). Even with a vast number of studies about merging techniques, there is still much 

work to be done on how temporal resolution affects hydrological forecasts. For nowcasting and flow 

prediction applications, the data used must have a high temporal resolution. Most of the studies carried 

on radar-gauge merged products use an hourly resolution or higher. Jewell and Gaussiat (2015) and 

Berndt, Rabiei and Haberlandt (2014) explored the influence of the temporal resolution on the merged 

product, and both studies concluded that a higher temporal resolution leads to a loss in the accuracy 

of rainfall estimations. Shehu and Haberlandt (2021) compared the performance of five merging 

methods at high temporal resolution. They concluded that conditional merging outperforms the other 

methods, as its products maintain high temporal and spatial correlation. It was also concluded that, 

regarding the RMSE, KED performed better than conditional merging. Using sub-hourly accumulation 

periods in KED has been subjected only to a limited number of research papers, but it is an essential 

step to allow the application of KED in nowcasting. In this thesis, the KED product will be used to 

generate rainfall forecasts to drive the nowcasting model (Chapter 7), and the error propagation will 

be assessed for the different temporal resolutions. With that in mind, in this chapter, a comparison 

between OK, KED and radar-only QPE products are carried out for different temporal resolutions 

suitable for hydrological applications. This will allow a comparison of the different accumulation periods 

effect in the nowcasting model when KED is used as an input. The use of KED in nowcasting has not 
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been widely studied, and there was no further research on the effect of temporal accumulation in it. In 

this chapter and Chapter 7, this research gap will be studied. Section 6.2 describes the methodology, 

followed by the results presented in section 6.3. Section 6.4 will present a review of the findings. 

6.2 Methodology 

Radar and rain gauge data from 2008 were used to produced radar-rain gauge merged rainfall 

estimates. For merging radar with rain gauges, KED was chosen. OK is not a merging method. However, 

it is used in this chapter as a reference only. The results were compared against OK and against rainfall 

data. In order to assess the accuracy of the merged product, three different temporal resolutions: 15 

min, 30 min and 60 min were explored.  For this, rain gauge measurements and radar estimations were 

accumulated accordingly to each temporal resolution. Note that most of the events were observed for 

24h, starting from 00:00 until 23:59. The dates, average rainfall and storm types are presented in Table 

6-1. The storm classification was carried in the same way as described in Chapter 4, where a storm is 

classified as convective if it has more than 3% of convective pixels throughout at least 3 hours. 

Table 6-1. Event dates, maximum average rainfall and storm types (S—stratiform and C—convective). 

Event Date 

Max 

Average 

Rainfall 

(mm/h) 

Storm 

Type 

14/01/2008 4.24 S 

15/01/2008 13.41 S 

16/01/2008 5.87 S 

17/01/2008 7.65 S 

18/01/2008 6.86 S 

29/04/2008 5.11 S 

30/04/2008 9.88 S 

07/07/2008 6.78 S 

31/07/2008 8.83 S 

01/08/2008 7.35 C 

02/09/2008 8.12 C 

04/09/2008 3.70 S 

05/09/2008 22.84 C 

06/09/2008 12.09 C 

04/10/2008 12.57 S 

14/10/2008 10.53 S 

08/11/2008 7.43 S 

09/11/2008 11.92 S 

12/12/2008 4.57 S 

13/12/2008 17.40 S 
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The OK and KED methods are described in sections 6.2.1 and 6.2.2. The variogram calculation is 

described in section 6.2.3.  

6.2.1 Ordinary kriging (OK) 

Krige (1952) developed a geostatistical interpolation method using distance weighted average, taking 

into account distance from adjacent rain gauges and the distance between them. Rain gauges within a 

fixed distance of each other are assumed to have some spatial correlation, while far away gauges are 

assumed to be independent (Krige, 1951; Jewell and Gaussiat, 2015). As stated previously, OK is only 

an interpolation method and does not merge radar and rainfall data. However, it is generally used as a 

benchmark to compare merged products against (Jewell and Gaussiat, 2015; Nanding, Rico-Ramirez 

and Han, 2015).  

In OK, the value at each unknown location is calculated as the weighted average of the surrounding 

gauges and given by a linear combination of the available measurements, that is (Jewell and Gaussiat, 

2015; Nanding, Rico-Ramirez and Han, 2015; Cecinati, 2017): 

 
𝑍(𝑥0) = ∑ 𝑤𝛼

𝑛

𝛼=1

(𝑥0). 𝑍(𝑥𝛼) 
(6-1) 

Where 𝑍(𝑥0) is the estimated rainfall at a location 𝑥0 , 𝑍(𝑥𝛼) are the measured rainfall at the rain 

gauge location 𝑥𝛼  , n is the number of available rain gauges and 𝑤𝛼 are the kriging weights 

With the condition that the estimation is unbiased and its variance must be minimized, the resulting 

OK equations can be written as: 

 

{
 
 

 
 ∑𝑤𝛼

𝑛

𝛼=1

= 1                                                                     

∑𝑤𝛼

𝑛

𝛽=1

𝛾(𝑥𝛼 − 𝑥𝛽)+ 𝜇1 = 𝛾(𝑥𝛼 − 𝑥0)   𝛼 = 1,… , 𝑛

 (6-2) 

Where 𝑥𝛼  and 𝑥𝛽  are generic rain gauge locations, 𝛾 is the parametric variogram generated from the 

rainfall readings and 𝜇1 represents the Lagrange multiplier (Cressie, 1990). The variogram represents 

the spatial correlation of the measurements, and it varies for each time step. However, it is important 

to have sufficient measurements available to compute a reliable variogram, and therefore several time 

steps might be required. It is also important to highlight that the variogram is isotropic (parametric) and 

does not change with direction. However, Velasco-Forero et al. (2009) considered anisotropy due to 

the rainfall field's spatial variation and showed that a 2D non-parametric correlogram could improve 

the results. When calculating the variogram, it is assumed that the spatial correlation is a function only 
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of the distance between the rain gauges. It does not take into account the location of the rain gauges 

and their impact on the spatial correlation. 

The equation system (6-2) can also be written as a matrix as follow: 

 

[

𝛾(𝑥1 − 𝑥1) … 𝛾(𝑥1 − 𝑥𝑛) 1
⋮ ⋱           ⋮           ⋮

𝛾(𝑥𝑛 − 𝑥1)

1

⋯
⋯

𝛾(𝑥𝑛 − 𝑥𝑛)

1
1
0

] [

𝑤1
⋮
𝑤𝑛
𝜇

] = [

𝛾(𝑥1 − 𝑥0)
⋮

𝛾(𝑥𝑛 − 𝑥0)

1

] 

(6-3) 

Solving the matrix allows the weighting factors to be computed and then used in equation (6-1) to 

estimate the rainfall rate at the unknown location 𝑥0. 

6.2.2 Kriging with external drift (KED) 

Kriging with external drift generates a merged product using both radar and rain gauge data by taking 

into account additional constraints in the computation of the weights. It differs from OK by assuming 

that the global mean and the covariance of rainfall fields are non-stationary in space and vary across 

the field (Jewell and Gaussiat, 2015). The local mean field is extrapolated from radar data, and a residual 

noise component from rain gauge data is incorporated by interpolation. KED is determined by three 

constraints: 

 

{
 
 
 
 

 
 
 
 ∑𝑤𝛼

𝑛

𝛼=1

= 1                                                                                              

∑𝑤𝛼

𝑛

𝛼=1

𝑍𝑅(𝑥𝛼) = 𝑍𝑅(𝑥0)                                                                       

∑𝑤𝛼

𝑛

𝛽=1

𝛾(𝑥𝛼 − 𝑥𝛽)+ 𝜇1 + 𝜇2. 𝑍𝑅(𝑥𝛼) = 𝛾(𝑥𝛼 − 𝑥0)   𝛼 = 1,… , 𝑛

 

 

(6-4) 

Where 𝑍𝑅  is the radar rainfall estimation at location 𝑥  and 𝜇2 is the second Lagrange multiplier 

required. Using the local mean field instead of the global one can lead to an inaccurate representation 

of rainfall in regions with sparse rain gauge coverage (Jewell and Gaussiat, 2015). 

The equation system described in equation (6-4) can also be written as a matrix: 

 

[
 
 
 
 
𝛾(𝑥1 − 𝑥1) … 𝛾(𝑥1 − 𝑥𝑛) 1 1

⋮ ⋱           ⋮              ⋮     ⋮
𝛾(𝑥𝑛 − 𝑥1)

1
𝑍𝑅(𝑥1)

…
…
…

𝛾(𝑥𝑛 − 𝑥𝑛)
1

𝑍𝑅(𝑥𝑛)

1
0
0

1
0
0]
 
 
 
 

[
 
 
 
 
𝑤1
⋮
𝑤𝑛
𝜇1
𝜇2 ]
 
 
 
 

=

[
 
 
 
 
𝛾(𝑥1 − 𝑥0)

⋮
𝛾(𝑥𝑛 − 𝑥0)

1
𝑍𝑅(𝑥0) ]

 
 
 
 

 

 

(6-5) 
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The calculated weights are used in equation (6-1) to calculate the merged rainfall at the unknown 

locations. 

Both OK and KED skills depend on the number of available rain gauges and their measurements' 

accuracy. When a low number of gauges are available, or for short accumulation periods (that can limit 

the number of rain gauges in the raining region), calculating a variogram based on rain gauges 

measurements can be challenging (Cecinati, 2017) 

6.2.3 Variogram estimation 

The rain gauge network spatial correlation can be represented using the variogram. As discussed earlier, 

a dense network is desirable in order to produce high-quality spatial interpolated products. Having a 

variogram that can adequately represent the spatial correlation of the measurements is therefore 

needed (Schiemann et al., 2011). The variogram for OK and KED in radar-gauge rainfall applications is 

usually calculated based on rain gauges measurements. It provides essential information, such as the 

nugget, range and sill, which are the three parameters of the variogram (see Figure 6-1) (Burrough, 

McDonnell and Lloyd, 2015). The nugget is a discontinuity at the origin of the variogram and is related 

to the variation of spatial sampling errors or measurement errors. The sill is the region where the 

variogram flats out and represents the variance. The range is the distance where the decorrelation 

occurs, meaning that if the spacing between two rain gauges is bigger than the range, they are not 

correlated. (Berne et al., 2004; Burrough, McDonnell and Lloyd, 2015). Figure 6-1 shows a variogram 

where the range, nugget and sill are all marked in the figure. 

The variogram is usually experimentally using rainfall data, usually from rain gauges. The variogram uses 

the separation distance, 𝑑 , to calculate the variance, according to (6-6). Empirically calculating the 

variogram using rain gauges has already limitations depending on the density of the network (Cecinati, 

2017). In this thesis, as the KED results will be used for forecasting applications, the rainfall rate for the 

following time-steps is unknown. The results for variograms calculated with both rain gauge and radar 

data sets will be compared in the next session. In cases where a variogram could not be calculated due 

to the lack of enough data points with rainfall, the previous variogram was used. 

 
𝛾(𝑑) =

1

2
𝐸 {(𝛿(𝑥) − 𝛿(𝑥 + 𝑑))

2
} 

 

(6-6) 

Where 𝛿 is the residual error. 
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Figure 6-1. Variogram example with representation of range, sill and nugget. 

6.3 Results 

Using rain gauge data to produce the variograms was tested, but it was impossible to generate reliable 

variograms once there are not enough data points. Being so, the variograms were derived from the 

rainfall data of each time-steps. Due to the high spatial resolution, the number of data points available 

is much higher. Even being less accurate than rain gauge data, radar data is still accurate enough to 

produce variograms, and they have the advantage of being able to reproduce the spatial variability of 

the rainfall fields more accurately than rain gauges. The results were produced for 15-, 30- and 60-min 

accumulation periods. Figure 6-2, Figure 6-4, Figure 6-6 and Figure 6-8 show the variograms calculated 

for different events and time steps (15/01/2008 at 19:00, 30/04/2008 at 10:00, 10/04/2008 at 16:00 

and 14/10/2008 at 18:00) to illustrate the different variograms.  Figure 6-3, Figure 6-5, Figure 6-7 and 

Figure 6-9 shows the accumulated rainfall using OK interpolation and KED estimations for different 

events and for rain rates accumulated at the time scales of 15-, 30-, and 60 min.  For each event, the 

variograms were calculated for each time step. Figure 6-2 shows that the variograms computed using 

radar rainfall are much smoother than the variograms computed using rain gauge data. This is due to 

the fact that for a single time step, there are more radar pixels available than rain gauge measurements 

that can help to compute a more reliable variogram. Therefore, for real-time applications, it is better 

to compute the variogram using radar rainfall rather than rain gauge measurements unless there is a 

Range 

Sill 

Nugget 
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very dense rain gauge network or the time scale used to compute the variogram includes several time 

steps. This figure also shows that the variograms computed at 15min time scales show a higher variance 

(high sill) compared to the variograms computed at 60min time scales. This is expected, since the 

variability of precipitation is higher at shorter time scales. This result is consistent when looking at 

different rainfall events and time steps. The implication of this is that the interpolated OK/KED rainfall 

field will show a higher variance for shorter time scales.  In Figure 6-3, the radar data present light 

rainfall for a much larger area than the one measured by rain gauges. As a result, the merged product 

also has a smaller area with rainfall, as in places where rain gauges did not detect any rainfall, the 

precipitation intensities were smoothed down. At 60 min accumulation, rain gauges were able to 

measure precipitation over a larger area, and as a result, rainfall was estimated in more locations of the 

domain. 

 

Figure 6-2. Variograms calculated using rain gauge (left) data and radar (right) data for event on 15/01/2008 at 19:00 for 

accumulation periods of 15 min, 30 min and 60 min. 
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Figure 6-3. Rainfall for hourly accumulated radar data in mm/hr, KED and OK on 15/01/2008 at 19:00 and 15-, 30- and 60 

min accumulation. 



   

 

109 

 

In Figure 6-4, it was only possible to calculate the variogram for 60 min accumulation when rain gauge 

data is used. At longer accumulation periods, more data points are likely to be available. This is also 

due to the fact that most of the precipitation for this particular time steps occurred outside the rain 

gauge network domain. In cases where no variogram is computed, the previous variogram is used. 

However, when using radar data, there are more rainfall points to be considered, and the variogram 

could be computed, even for shorter accumulation periods. Therefore, calculating the variogram with 

radar data is important when single time-steps are used. The variogram computed using radar data 

also showed that short accumulation periods produce a high spatial variance. Considering the radar 

image and the OK interpolation in Figure 6-5, it can be noted that the light rainfall occurs in small 

locations over the domain rather than over a large area. Thus, it is more difficult for rain gauges to 

accurately represent the amount of rainfall in the ground as they are point measurements. Over a 60 

min accumulation period, the probability of precipitation falling at the rain gauge location is higher, 

and as a result, there are more points available to calculate the variogram.  The variograms calculated 

in Figure 6-6 using the radar data are almost straight lines for 30- and 60 min, meaning that there is 

still a spatial correlation between the data points even at longer distances. This behaviour was not 

very common, but it happened in other events and is driven by the large precipitation cell shown on 

the top left corner of the domain, where most of the precipitation occurs in this time step. At 60 min 

accumulation, the variograms computed with radar or rain gauges data are very similar. This is due to 

the fact that most of the precipitation occurs over the rain gauge network, and therefore both 

variograms show similar results. The radar variogram for 30 min and 60 min are very similar to each 

other, meaning that the spatial correlation, in this case, does not change with more extended 

accumulation periods for this particular time step.  

   

Figure 6-4. Variograms calculated using rain gauge (left) data and radar (right) data for event on 30/04/2008 at 10:00 for 

accumulation periods of 15 min, 30 min and 60 min. 
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Figure 6-5. Rainfall for hourly accumulated radar data in mm/hr, KED and OK on 30/04/2008 at 10:00 and 15-, 30- and 60 

min accumulation. 
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In Figure 6-7, the radar seems to overestimate rainfall at all accumulation periods when compared to 

the rain gauge. As a result, the KED predictions adjust the radar rainfall field to agree with the rainfall 

intensities measured by the rain gauge network. However, the overall spatial distribution of 

precipitation observed by radar is preserved in the KED estimates. The KED rainfall field is affected by 

both radar and rain gauge observations, and if they are inaccurate or show artefacts, the KED 

estimations will reproduce this. For instance, the KED estimations reproduce some of the radar rainfall 

artefacts (e.g. the beam blocking shown on the radar scan towards the north and north-west from the 

Hameldon Hill radar location), especially at longer accumulation periods. 

 

 

Figure 6-6. Variograms calculated using rain gauge data and radar data for event on 04/10/2008 at 16:00 for accumulation 

periods of 15 min, 30 min and 60 min. 
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Figure 6-7. Rainfall for hourly accumulated radar data in mm/hr, KED and OK on 04/10/2008 at 16:00 and 15-, 30- and 60 

min accumulation. 
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The variograms from Figure 6-8 also show that the variance increases with the temporal resolution. 

Although the radar variogram for 60 min accumulation was smoother than for the gauge data, at 60 

min accumulation, both variograms have a similar shape and variance values. Looking into Figure 6-9, 

as the rainfall is spread over a large area of the domain, more rain gauge measurements are available 

for the variogram calculations. In this event, the rain gauge measurements show a higher intensity 

rainfall than estimated by radar in the region located in Northwest England. The radar overestimates 

the rainfall in other locations when compared to the rain gauge. As KED merging is highly based on 

the rain gauges measurements, the KED intensities are closer to the measured by rain gauges. 

 

Figure 6-8. Variograms calculated using rain gauge data and radar data for event on 14/10/2008 at 18:00 for accumulation 

periods of 15 min, 30 min and 60 min. 

In order to assess the results, cross-validation was used, and performance indicators such as RMSE and 

correlation were calculated for each event. Figure 6-10 and  

Figure 6-11 show the results for KED cross-validation for the events on 15/01/2008, 30/04/2008, 

04/10/2008 and 14/10/2008. Ideally, the correlation should be close to 1, and the RMSE should be close 

to zero. The cross-validation was carried out using the leave-one-out technique, and the figures show 

the estimated rainfall at the rain gauge location left out, compared with the rainfall measured on that 

location. The results show that with shorter temporal resolutions (e.g. 15min), the discrepancy between 

the two values is considerably higher than when using longer accumulation intervals (e.g. hourly), and 

therefore the RMSE error decreases (and correlation increases) with hourly accumulation intervals. 

These results were expected once there are fewer data points available to calculate the variograms, 

resulting in more uncertainties in the spatial correlation of the KED product. All results agree between 

them and show a pattern of having the data closer to the control line as the accumulation interval 

increases. 
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Figure 6-9. Rainfall for hourly accumulated radar data in mm/hr, KED and OK on 14/10/2008 at 18:00 and 15-, 30- and 60 

min accumulation. 
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Figure 6-10. KED cross-validation for events on 15/01/2008 and 30/04/2008 with 15-, 30- and 60-min accumulation. 
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Figure 6-11. KED cross-validation for events on 04/10/2008 and 14/10/2008 with 15-, 30- and 60-min accumulation. 
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The summary of the MAE and correlation between observed rain gauge measurements and predicted 

rainfall at left-out rain gauge locations for KED for all the events can be seen in Table 6-2. For all the 

events, the correlation increases, and the MAE decreases as the accumulation time increases.  

Table 6-2 KED correlation between observed and predicted rainfall and MAE for each event for temporal accumulation of 15 

min, 30 min and 60 min. 

Event Date 

15 min 30 min 60 min 

Correlation 
MAE 

(mm/h) 
Correlation 

MAE 

(mm/h) 
Correlation 

MAE 

(mm/h) 

14/01/2008 0.59 0.34 0.71 0.27 0.78 0.21 

15/01/2008 0.84 0.36 0.89 0.28 0.92 0.24 

16/01/2008 0.72 0.34 0.79 0.26 0.84 0.21 

17/01/2008 0.73 0.36 0.80 0.28 0.85 0.22 

18/01/2008 0.81 0.32 0.85 0.26 0.88 0.22 

29/04/2008 0.84 0.16 0.90 0.13 0.93 0.11 

30/04/2008 0.74 0.44 0.80 0.38 0.85 0.31 

07/07/2008 0.35 0.42 0.42 0.36 0.53 0.29 

31/07/2008 0.58 0.53 0.66 0.42 0.74 0.34 

01/08/2008 0.62 0.56 0.68 0.47 0.74 0.39 

02/09/2008 0.43 0.44 0.54 0.36 0.66 0.29 

04/09/2008 0.43 0.34 0.50 0.29 0.67 0.24 

05/09/2008 0.73 0.63 0.79 0.53 0.84 0.44 

06/09/2008 0.59 0.75 0.66 0.65 0.75 0.54 

04/10/2008 0.84 0.49 0.87 0.42 0.90 0.35 

14/10/2008 0.87 0.34 0.91 0.26 0.94 0.22 

08/11/2008 0.73 0.36 0.82 0.28 0.84 0.23 

09/11/2008 0.74 0.43 0.81 0.35 0.85 0.29 

12/12/2008 0.56 0.24 0.64 0.20 0.73 0.19 

13/12/2008 0.66 0.49 0.74 0.39 0.81 0.32 

 

The results presented in Table 6-2 are presented as box-plots in Figure 6-12 and Figure 6-13, where it 

is clearer to realise the tendency of the correlation to increase with the accumulation time. Longer 

accumulation times also produced merged products with lower RMSE. 
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Figure 6-12 Correlation between observed and predicted rainfall  for all the events with 15-, 30- and 60-min accumulation. 

  

Figure 6-13 Root mean square error and mean absolute error for all the events with 15-, 30- and 60-min accumulation. 

 

RMSE and correlation were also calculated for three different thresholds to assess how the model is 

able to estimate rainfall at higher intensities. The results agree with the expectations that the RMSE 

increases at higher thresholds. In an analogue way, the correlation between measured rainfall and KED 

rainfall decreases at higher thresholds. 
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Figure 6-14 Correlation between observed and predicted rainfall  for all the events with 15-, 30- and 60-min accumulation 

and rainfall thresholds of 0.1-, 1.0-, and 3.0 mm/h. 

 

Figure 6-15 Root mean square error  for all the events with 15-, 30- and 60-min accumulation and rainfall thresholds of 0.1-, 

1.0-, and 3.0 mm/h. 
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6.4 Conclusion 

Radar and rain gauge merging was carried for 20 events in 2008 using the KED rainfall merging 

technique. Although some studies have been carried out in the past to merging rain gauge and radar 

measurements using KED, there is only a few of them that analyse how the temporal resolution of the 

data sets influences the results. A high temporal resolution is particularly important for hydrological 

applications; in this chapter, 15 min, 30 min, and 60 min accumulation were tested for three rainfall 

intensity thresholds.  

It was assessed that the variograms calculated using rain gauge data were not reliable enough as the 

number of data points with rainfall might be low for single time steps for a number of cases, and so the 

calculation of the variograms was not even possible in these cases. Jewell and Gaussiat (2015) also 

compared 15- and 60 min accumulation periods. They stated that computing a variogram with rain 

gauge data for 15 min accumulation during stratiform low-intensity events can be challenging as not 

enough data points are available. Nonetheless, the radar data allowed to compute reliable variograms 

even at shorter time steps. Therefore, radar data was chosen over rain gauge data to calculate the 

variograms for each time-step. Berndt, Rabiei and Haberlandt, (2014), in their study, compared KED 

results for 10-, 60- and 360 min accumulation periods and also used radar data to compute variograms 

as it provides sufficient data points for the variogram computation. The variance for 15 min 

accumulation was high and decreased as the accumulation period increased. 

For all the events, the accuracy of the KED rainfall estimations increased with an increment of the 

accumulation period. However, even for accumulations of 15 min, KED rainfall estimates had fewer 

uncertainties than radar data. During a longer accumulation period, gauge data measurements tend to 

be more accurate, and there are higher chances for localized showers to be detected.  Previous studies 

(Berndt, Rabiei and Haberlandt, 2014; Jewell and Gaussiat, 2015) also indicated that KED takes great 

advantage of accumulating rainfall for longer periods.  

As the goal of merging rain gauge and radar data is to use the product in a new way to generate 

nowcasts, assessing the uncertainties for different accumulation periods is essential to the next step of 

this research. For nowcast applications, it is advisable to have short time-steps (15 min or less). At the 

same time, the quality of the merged product decreases with shorter accumulation periods. However, 

using merged products have the potential to be used in rainfall forecasts and hydrological applications 

in river catchments. Even shorter accumulations periods are needed for urban hydrology, and 

consequently, KED products will have higher uncertainties. Further studies are necessary to assess if 

using KED can be beneficial for urban hydrology. Choosing the best balance between lower accuracy in 
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KED for shorter accumulations and appropriate temporal resolution for the nowcasting models can 

result in more accurate forecasts. If time-steps of 60 min are used, it is more likely that the rainfall 

advection fields will be more unreliable due to changes in the precipitation pattern as they are 

calculated using 3 time-steps (i.e. over a 2-hour window if 60 min time-step is used). The challenge 

remains in how to use the KED rainfall products in nowcasting to produce more reliable forecasts.    
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Chapter 7. Radar and rain gauge kriging with forced velocity fields to 

generate ensemble forecasts 

7.1  Introduction 

Accurate rainfall measurement with high temporal and spatial resolutions is essential to produce 

accurate forecasts for hydrological applications. As discussed in Chapter 1, despite recent advances in 

weather radar technology and radar rainfall algorithms, uncertainties are still present even with high-

quality hardware and a vast number of corrections techniques available. Rain gauges are able to 

represent rainfall at ground level with higher accuracy, although rain gauge measurements are still 

subjected to different sources of uncertainties. However, even when using dense rain gauge networks, 

the spatial resolution is not enough to capture the distribution of precipitation, having important 

implications in flow forecasting, especially in small catchments or small urban areas. Radar rainfall 

estimations are used as input to nowcasting models (i.e. radar-based forecasting models), and 

improving radar rainfall estimations will reduce errors in rainfall forecasts. Rainfall estimation errors 

account for the main source of uncertainties in the first hour forecasted; after this, uncertainties related 

to the model itself increase and have a higher impact on the forecast (Foresti et al., 2013).  

The higher accuracy of merged products in terms of rainfall estimation could improve the nowcast 

accuracy as the initial radar estimation errors are reduced. Therefore it has the potential to improve 

the forecasts. Caseri et al. (2016) used a non-conditional Turning Band Method (TBM) of random fields 

in time and space. The TBM used in this study is a Gaussian random field generator, adapted by Leblois 

and Creutin (2013) to be able to simulate intermittent rainfall advection fields. The TBM uses a space-

time variogram, and the velocity incorporated by the advection technique is assumed to be constant 

and uniform during the length of the event. This is then followed by a conditioning step at rain gauge 

locations using residual substitution kriging and Markov Chain Monte Carlo sampling. The method uses 

the space-time variogram, direction and velocity of rain cells, wind velocity and direction of the event, 

the average percentage of zero rain, the mean and standard deviation of precipitation data and the 

rain gauge data. In order to perform the geostatistical analysis, it is necessary 4 hours of data after the 

start of the event. For consecutive time steps, data from the whole event is used. The results indicate 

a better performance when compared to a persistence-based method (where the last observed rainfall 

advection field using radar is assumed as the rainfall nowcast during the forecasted period). Ochoa-

Rodríguez et al. (2013) used KED and Mean Field Bias Correction (MFB) to adjust radar data using rain 

gauge data. The forecasts produced using radar data and MFB present similar behaviour, while the KED 

forecasts show a different pattern. This is due to the fact that MFB adjusts the radar estimations by 
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using a multiplicative factor and therefore do not change the temporal or spatial structure of the rainfall 

advection field, in contrast to the merged KED product. While the radar rainfall advection field can 

present errors in the measurements compared with rain gauge observations, weather radars are able 

to capture the spatial distribution of rainfall with more detail than rain gauges, with higher spatial and 

temporal correlations. After merging radar and rain gauge rainfall measurements, these correlations 

can be distorted and cause inconsistencies in the nowcast due to the fact that KED does not take into 

account the temporal evolution of rainfall. Ochoa-Rodríguez et al. (2013) suggest that KED might not 

be appropriate for nowcasting, and a method that preserves the spatial and temporal correlation of 

rainfall might be more suitable for nowcasting applications. Shehu and Haberlandt (2021) used 

conditional merging as input in nowcast models and concluded that improving the rainfall estimation 

accuracy could extend the nowcast model predictability from 20 to 60 minutes. 

Although there is a promising indication that KED would improve nowcast performance, further 

research is needed to assess how the nowcast performance improves compared to radar only forecasts. 

Previous studies suggest that the lack of temporal correlation of rainfall advection fields in KED radar 

gauge merging remains a challenge for nowcasting applications. The research question that this chapter 

attempts to address is how can KED rainfall be used to improve short-term rainfall forecasts and to take 

into account the temporal correlation of the rainfall advection field? 

7.2 Methodology 

KED is a rain gauge – radar merging technique that interpolates rain gauge data and uses radar rainfall 

as additional information in the interpolation process. The rainfall intensity from the merged rainfall 

product strongly relies on the rain gauge measurements. At the same time, the spatial distribution of 

the merged precipitation field is driven by the radar rainfall information. This is done by incorporating 

additional constraints in the kriging interpolation weights. The KED estimations produced in Chapter 6 

for different accumulation periods will also be tested in order to analyse how the different 

accumulation periods affect the nowcasting performance. Nowcasting models benefit from a high 

temporal and spatial resolution. A shorter accumulation period is expected to have a higher impact in 

forecasting convective events where the behaviour of the rainfall pattern and intensity can change very 

quickly in space and time. Comparing 15-, 30- and 60 min accumulation periods can give an insight 

about the optimal accumulation period to be considered for nowcasting, balancing the loss of accuracy 

in the KED rainfall product as the accumulation time is reduced and the differences in the rainfall 

patterns at longer accumulations. 
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One of the problems of using KED rainfall in radar nowcasting is that the temporal correlation of the 

KED precipitation field is not taken into account in the merging process. Although the KED rainfall shows 

better performance than ground rainfall observations, there is a detrimental impact of the merging 

technique in the temporal correlation of the rainfall advection field that can produce significant effects 

when computing the advection field for the nowcasting extrapolation. Therefore, a new approach is 

proposed in this chapter that uses the temporal evolution of the rainfall advection field from the original 

radar rainfall advection field while at the same time taking into account the accuracy of the improved 

KED rainfall product. This is made in two steps: radar rainfall advection fields are calculated using radar 

data, followed by generating forecasts that use KED products, but instead of calculating the advection 

fields for this situation, they are forced to use the radar only advection field.  

The nowcasting component of the STEPS model was used to generate deterministic forecasts. The 

model uses three consecutive rainfall estimation images to calculate the advection velocity field. This 

is computed and further applied to the most recent rainfall estimation to extrapolate the rainfall 

advection field and produce the forecast. The original radar rainfall scans were used to produce the 

radar advection field. The nowcasting model was modified to allow the radar advection field to be 

applied in the forecast (see analysis in Chapter 5) rather than the KED rainfall advection field. In this 

method, instead of using the KED products alone to generate the forecasts, the radar rainfall field is 

used as an extra input to the nowcast model. Therefore, the nowcasting model was forced to use the 

original radar data advection fields to generate the forecasts instead of the KED rainfall advection fields. 

The rainfall forecasts are produced by advecting the latest KED rainfall estimation instead of the original 

radar rainfall. In this way, the nowcast still benefits from a higher accuracy from the KED rainfall 

product. However, it is not affected by the lack of consistent temporal evolution of the rainfall advection 

fields of the merged KED rainfall product.  This new approach is more computationally demanding than 

using any of the methods alone as it requires both the KED merged rainfall product and the radar 

advection field computed in advance as inputs for the nowcasting model. However, the time needed 

to generate the nowcast still short enough to allow its use for real-time applications. The forecasts were 

produced using accumulation periods of 15-, 30- and 60 min, as described in Chapter 6. The temporal 

resolution of the weather radar is 5 min, so it was necessary to accumulate the rainfall before 

calculating the rainfall fields. The forecasts produced by using this method will be referred to as KED 

with forced velocities fields (KEDFV) forecasts. At this moment, the KEDFV  forecasts are produced 

according to the following steps: 

1. Radar rainfall accumulation; 

2. Radar and rain gauge merging using KED; 
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3. Deterministic forecasts using  three consecutive radar rainfall images to calculate the radar 

rainfall field; 

4. Deterministic forecast using KED product and radar rainfall field. 

The results were assessed by comparing the forecasts against the KED rainfall product for different 

forecasting lead times. Different forecasting products were produced, such as the KEDFV forecasts 

(produced by extrapolating KED rainfall with radar advection fields), the KED forecasts (produced by 

extrapolating KED rainfall with KED rainfall advection fields) and the deterministic radar forecasts 

(produced by extrapolating radar rainfall with radar advection fields). Different performance indicators 

such as the RMSE, multiplicative bias, Hit Rate (HR), False alarm ratio (FAR), and Critical Success Index 

(CSI) were used to assess the forecast performance. HR, FAR and CSI are based on yes/no forecasts by 

using a contingency table. The contingency table that summarizes the outcomes of an event is shown 

in Table 7-1. Hit rate measures the proportion of occurred events that were correctly forecasted. FAR 

gives an estimation of how often events that did not occur are forecasted as rain by the model; for a 

perfect forecast, FAR should be 0. CSI is an index that measures the forecast's ability to simultaneously 

produce high POD (Probability of Detection) and low FAR, and a value of 100% means that the forecast 

can correctly predict rainfall (Jolliffe and Stephenson, 2011). The methods used to calculate RMSE, Bias, 

HR, FAR and CSI are described below on equations  (7-1) until (7-5).  

Table 7-1. Contingency table (Jolliffe and Stephenson, 2011) 

 Event observed 

Event forecast Yes No Total 

Yes 𝑎 (hits) 𝑏 (false alarms) 𝑎 + 𝑏 

No 𝑐 (misses) 𝑑 (correct rejections) 𝑐 + 𝑑 

Total 𝑎 + 𝑐 𝑏 + 𝑑 𝑎 + 𝑏 + 𝑐 + 𝑑 = 𝑛 

 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝐹𝑖 − 𝑂𝑖)

2

𝑁

𝑖=1

 

(7-1) 

  

𝐵𝑖𝑎𝑠 =

1
𝑁
∑ 𝐹𝑖
𝑁
𝑖=1

1
𝑁
∑ 𝑂𝑖
𝑁
𝑖=1

 

(7-2) 

 𝐻𝑅 =
𝑎

𝑎 + 𝑐
 

(7-3) 
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𝐹𝐴𝑅 =

𝑏

𝑎 + 𝑏
 

(7-4) 

 𝐶𝑆𝐼 =
𝑎

𝑎 + 𝑏 + 𝑐
 

(7-5) 

 

Where 𝐹 is the forecasted rainfall and 𝑂 is the observed rainfall. 

The radar and rain gauge data available as described in Chapter 1 were used, and a domain of 256x256 

km2 in North England was used (see Chapter 3). For assessing the forecasts' performance, 20 events 

between January and December 2008 were used to consider seasonality differences. Although most of 

the events consisted of heavy rainfall during the whole day, a 24-hour period was used to assess all 

events and take into account situations of low rainfall intensity. The events chosen were classified 

between stratiform and convective rainfall, being 17 stratiform events and three convective events.  

The domain and events used in this chapter are the same as those used in Chapter 6. As the results 

obtained in Chapter 6 are used as input in this one.  

The forecasts were generated using a domain of 256x256 km2. However, due to light precipitation 

issues appearing at the boundary of the domain, only a domain size of 200x200 km2 was used to assess 

the forecasts' performance to avoid contouring issues.  

7.3 Results 

7.3.1 Velocity fields for deterministic and KED forecasts 

Rainfall forecasts produced using radar rainfall and KED rainfall were used to assess the difference in 

the velocity fields computed for each rainfall product. Figure 7-1 shows an example of a forecast 

produced for the event on 15/01/2008, starting at 09:15. The first and second column in this figure are 

the Radar and KED rainfall advection fields; respectively, at different time steps or lead times (LTs), 

whereas the third and fourth columns represent the radar-based deterministic forecast (Radarf) and 

KED forecast (KEDf) respectively, both produced using their corresponding advection fields. The 

deterministic radar forecast (Radarf) indicates that the precipitation moves south, with a small eastern 

component. In contrast, the KED forecast (KEDf) produces velocities fields with an overall west direction 

with regions where the rainfall would be displaced north and regions with a north direction. As a result, 

the region with higher rainfall intensities ends up in the wrong location if the KED forecasts are used 

compared to the radar deterministic forecasts. Both rainfall forecasts with 3 hr lead time also show 

how the forecast loses its predictability at higher lead times as the nowcasting model does not take into 

account the temporal evolution of the rainfall advection fields nor growth and decay of precipitation. 

The event on 14/10/2008 with the initial forecast time at 13:15 is represented in Figure 7-2. In this case, 
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the radar rainfall is overestimated compared to the KED rainfall and therefore, the use of KED rainfall 

to drive the nowcasting model could potentially produce reasonable forecasts. However, the KED 

rainfall advection fields indicate that the movement of precipitation goes entirely in the wrong 

direction, resulting in the higher intensity rainfall regions being advected outside the domain. 

Even though there are cases where both forecasted rainfall advection fields show similar patterns, 

there is a high number of forecasts where the differences in the advection fields produce entirely 

different results, for instance, where the direction of the rainfall varies greatly from one forecast to 

the next one. This can be seen for all accumulation periods, but it seems to have a higher impact on 

shorter accumulations. This initial analysis of the KED forecasts agrees with the literature. Ochoa-

Rodríguez et al. (2013) discussed that the inability of the KED to capture the storm patterns is a 

limitation to its use in nowcasting. 
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Figure 7-1. KED rainfall estimation, deterministic forecast, KED forecast and velocity fields for the event on 15/01/2008 with the forecast initial time at 09:15 for 15 min accumulation. 
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Figure 7-2. KED rainfall estimation, deterministic forecast, KED forecast and velocity fields for the event on 14/10/2008 with the forecast initial time at 13:15 for 15 min accumulation. 
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7.3.1.1 Forecasting KED estimates using radar-based velocity fields 

To overcome the anomalies in the velocity (i.e. advection) fields derived from the KED rainfall advection 

fields, velocity fields derived from radar data were used, meaning that both the radar data deterministic 

forecast and the KEDFV forecasts have been produced with the same radar-based velocity field. 

However, the initial rainfall analysis differs from the two cases. Figure 7-3 until Figure 7-5 present the 

forecast results for the event on 30/04/2008, with the forecast starting at 00:00 and using different 

accumulation periods of 15-, 30-, and 60 min. For all the accumulation periods, the deterministic 

forecast overestimates the actual precipitation.  

Figure 7-3 shows the radar rainfall (Radar, first column), KED rainfall (KED, second column), radar 

forecast produced with radar-based advection fields (Radarf, third column), KED forecasts with KED-

based advection fields (KEDf, fourth column) and KED forecasts with radar-based advection fields 

(KEDFVf, fifth column). The radar-based advection field (arrows are shown in the third column) clearly 

captures the movement of the storm observed by radar. In this particular case, the storm is moving 

north from the south. However, the KED-based advection field (arrows in the fourth column) is unable 

to capture the storm movement, and the advection field is more or less stationary within the storm. 

The results for KEDFV show that the use of the radar-based advection field improves the forecasts, and, 

in this case, the KED rainfall forecasts move towards the north, which is in agreement with the 

movement of the storm. Although the changes in intensity with forecasting lead time are not captured 

by the nowcasting model, the KEDFV can still forecast the rainfall inside the intense precipitation region. 

At forecasting lead times longer than 2 hr, the KED forecasts miss most of the high-intensity regions 

and produce false alarms for high-intensity rainfall in regions of none or little rainfall.  

In Figure 7-4, the KED-based and radar-based advection fields are similar, and both can capture the 

direction of the storm, which moves from the south towards the north. However, the KED-based 

advection field is slightly slower than the radar-based advection field. The radar-based velocity field of 

the KEDFV forecasts displaces the rainfall with a slightly stronger northern component. Hence, the 
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Figure 7-3. KED rainfall estimation, deterministic forecast and KED forecast for the event on 30/04/2008 with the forecast initial time at 00:00 for 15 min accumulation. 
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Figure 7-4. KED rainfall estimation, deterministic forecast and KED forecast for the event on 30/04/2008 with the forecast initial time at 00:00 for 30min accumulation.



   

 

133 

 

 

Figure 7-5. KED rainfall estimation, deterministic forecast and KED forecast for the event on 30/04/2008 with the forecast initial time at 00:00 for 60 min accumulation.
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differences in the KED and KEDFV forecasts are smaller, although the KEDFV forecast can better 

reproduce the direction and location of the storm and can also reproduce better the low-intensity 

rainfall regions. These results also show that the rainfall intensity is also overestimated by the radar 

forecasts.  

In Figure 7-5, the radar-based and KED-based velocity fields are again able to capture the storm 

movement. In this case, the radar-based velocity field is slightly faster than the KED-based velocity field. 

However, the KED and KEDFV forecasts are much more similar. However, both fail to reproduce the 

higher intensity regions accurately at longer lead times, showing that the nowcast loses predictability 

quickly for this particular event. Figures 7-3 – 7-5 also demonstrate that shorter accumulation times of 

15min produce unreliable KED-based advection fields when compared with radar-based advection 

fields with the same accumulation time. This is due in part to the variability of the KED merged product 

between time steps. However, as the accumulation time increases (e.g. 30min or 60min), the KED-

based advection field looks more similar to the radar-based advection field.  The differences in the 

advection fields are present on all events studied, even if, in some cases, these differences are smaller 

or more noticeable in just part of the domains. By visually analysing the radar images and the forecasts, 

it is possible to see the differences between the radar rainfall and the forecasted KED direction. In 

addition to this, when KEDFV forecasts are produced, these issues are corrected, and the forecast 

quality improves. 

Figure 7-6 until Figure 7-8 show the RMSE and bias for this event at 15-, 30- and 60 min accumulation 

rainfall products. The RMSE and bias shown in these figures were computed on a pixel basis and were 

computed using all the forecasts produced for this event during 24 hours. As expected from the 

forecasting results shown in the previous figures, there is a higher difference between the forecast 

performance at 15 min accumulation than at longer accumulation times; that is, the RMSE and the bias 

tend to be worse at shorter accumulation times. At 60-min accumulations, the KEDFV forecasts produce 

results with smaller RMSE and better bias (a bias equal to one indicates an unbiased forecast) up to 3 

hrs lead time. After this period, the KED forecast and KEDFV forecast produce similar RMSE, and after 

5 hrs lead time, the KED forecast overperforms the KEDFV forecast in terms of RMSE. During the whole 

length of the forecast, the radar forecast produces higher RMSE and unbiased forecasts than the KED-

based forecasts. It is also interesting to note that the radar forecasts are the worst in terms of RMSE 

and bias compared to either the KED or KEDFV forecasts. For 30-min accumulation scans (Figure 7-7), 

the KEDFV forecast produces a forecast with lower RMSE only during the first hour ahead, and after 

this period, the KED/KEDFV forecasts produce similar RMSE.  The bias is better for the KEDFV forecast 
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than the KED forecast during most of the forecasting period apart from the last hour of the forecast. 

During the whole forecasting period, the radar-based forecasts produce  

7  

Figure 7-6. RMSE and Bias for the event on 30/04/2008 at 15 min accumulation 

  

Figure 7-7. RMSE and Bias for the event on 30/04/2008 at 30 min accumulation 

  

Figure 7-8. RMSE and Bias for the event on 30/04/2008 at 60 min accumulation
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Figure 7-9. KED rainfall estimation, deterministic forecast and KED forecast for the event on 04/10/2008 with the forecast initial time at 17:00 for 15 min. 
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Figure 7-10. KED rainfall estimation, deterministic forecast and KED forecast for the event on 04/10/2008 with the forecast initial time at 17:00 for 30min. 
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Figure 7-11. KED rainfall estimation, deterministic forecast and KED forecast for the event on 04/10/2008 with the forecast initial time at 17:00 for 60 min. 
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the worst results in terms of RMSE and bias. Figure 7-8 shows that the KED forecasts have a lower RMSE 

than the radar or KEDVF forecasts. However, the KEDFV forecast bias is better than the bias from the 

radar and KED forecasts.  Figures 7-6 to 7-8 show that the KEDFV forecasts show the best results in 

terms of bias for all accumulation periods. Being able to particularly improve the forecasts at shorter 

accumulation periods, e.g. 15 min, shows that KEDFV forecasts have the potential to be used in 

hydrological applications as well. 

Figure 7-9 until Figure 7-11 show the forecast results for the event on 04/10/2008, with the forecast 

starting at 17:00 and accumulation periods of 15-, 30-, and 60 min. In Figure 7-9, the radar-based 

velocity field for KEDFV moves faster than the KED-based velocity field. As a result, the rainfall 

displacement is more similar to the rainfall estimation. However, for three hours lead-time, it is 

noticeable that there is a lot of precipitation growth and decay and therefore increasing the 

uncertainties in all the forecasts. The KED and KEDFV forecasts shown in Figure 7-10 are closer to each 

other. However, all the forecasts fail to predict the high intensity and location of rainfall at a 3 hr lead 

time. Figure 7-11 show similar forecasts for both KED and KEDFV. Nevertheless, even with longer 

accumulation periods, the forecasts are not able to predict rainfall at longer lead times. 

Figure 7-12 until Figure 7-14 show the RMSE and bias for the event on 04/10/2008 at 17:00. In the 

same way that it was done with the previous event, the RMSE and bias were calculated for the event's 

whole duration. The KEDFV forecast has a lower RMSE in the first hour forecasted for all the 

accumulation periods; however, the radar forecasts have slightly smaller errors after this period. The 

significant differences in the KED-based velocity field compared to the radar-based velocity field 

produce more significant errors in the KED forecasts compared to either the radar forecasts or the 

KEDVF forecasts. Taking into account the bias, the KEDFV forecast performs better than the other 

forecasts for all accumulation periods and during the whole length of the forecasts.  

Comparing the nowcasting images for the different events, it is possible to see that the method 

proposed adds value to the KED forecast by correcting the rainfall advection in the KED advection fields. 

In the following figures, the results for all the events will be assessed by the performance indicators 

listed in section 7.2. 

The RMSE and bias were calculated for all the events considered and rainfall thresholds (Th) of 0.1-, 

1.0- and 3.0 mm/hr. The results for 0.1-  and 3.0 mm/hr are shown in Figure 7-15Error! Reference 



   

 

140 

 

 

 

source not found. and Figure 7-16. The figures show a tendency of the RMSE to decrease as the 

accumulation period increases, with more 

 

Figure 7-12. RMSE and Bias for the event on 04/10/2008 at 15 min accumulation 

 

Figure 7-13. RMSE and Bias for the event on 04/10/2008 at 30 min accumulation 

 

Figure 7-14. RMSE and Bias for the event on 04/10/2008 at 60 min accumulation 
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Figure 7-15. RMSE and bias boxplot for threshold of 0.1 mm/hr and lead time of 1-, 2- and 3 hr. 
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Figure 7-16. RMSE and bias boxplot for a 3.0 mm/hr threshold and lead time of 1-, 2- and 3 hr. 
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significant differences in the first-hour forecast. This is an expected result, as the uncertainties related 

to the rainfall estimation also reduces at longer accumulation times. Although the KEDFV seems to have 

a lower RMSE in a significant part of the events, the difference between KEDFV and KED regarding RMSE 

is very small. The bias of the KEDFV forecast is usually better than the bias of the KED forecast. However, 

the radar forecasts are able to produce bias closer to 1 in many cases. At longer lead times, the 

difference between the three forecasting methods gets smaller, probably as a result that all the 

forecasts lose predictability at longer lead times. As expected, the forecasts also perform worse when 

the rainfall thresholds increase. 

The CSI, HR and FAR were also calculated for all events to give further insights into the nowcasts. The 

CSI measures the accuracy of the forecast when correct negatives are not taken into account. The CSI 

boxplot can be seen in Figure 7-17Error! Reference source not found. for the 1-, 2-, and 3 hr lead and 

thresholds of 0.1- and 3.0 mm/hr. The CSI shows that the KEDFV produce better results than the KED 

and radar forecasts. At 60 min accumulation, although the KEDFV performs slightly better than the KED 

forecast, both KED and KEDFV produce similar CSI. As previously discussed, the KEDFV can have a more 

significant impact on the forecast accuracy for shorter accumulation periods. The CSI values decrease 

with lead time for the three kinds of forecasts. The CSI values increase with a higher accumulation 

period. The CSI gets relatively small for higher thresholds, and at 3 hr lead time and 3 mm/hr thresholds, 

there is almost no difference between the different forecasts. Figure 7-18 and Figure 7-19 show the Hit 

rate and false alarm ratio for the events at 1-, 2- and 3 hr forecast. The hit rate for the KEDFV forecast 

is better than for the radar and KED forecasts for most cases. However, for longer accumulation times 

and lead times, in a similar manner to the CSI, the values for KED and KEDFV get closer.  The false alarm 

ratio for the KEDFV forecast is usually similar to the KED forecast, however for 15- and 30 min 

accumulation and 1 hr lead time, the KEDFV overperforms the other forecasts. For most cases, the 

radar forecast produces a lower FAR than the KED based forecasts. The hit rate tends to decrease with 

longer lead times and higher thresholds. Even with the KEDFV performing better than the KED and radar 

forecasts in general, when taking into account HR, FAR, and CSI, it is important to note that for lead 

times longer than 2 hr and a threshold higher than 1 mm/hr, any of the forecasts produce reliable 

predictions. 

All the performance indicators show that the KEDFV overperform both radar only and KED forecasts. 

KEDFV forecasts have the potential to be successfully used in hydrological applications, as it mainly 

improves forecasts at shorter accumulation periods. 
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Figure 7-17. Critical Success Index (CSI) boxplot for threshold of 0.1 mm/hr and 3.0 mm/hr, and lead time of 1-, 2- and 3 hr. 
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Figure 7-18. Hit rate and false alarm ratio boxplot for threshold of 0.1 mm/hr and lead time of 1-, 2- and 3 hr. 
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Figure 7-19. Hit rate and false alarm ratio boxplot for threshold of 3.0 mm/hr and lead time of 1-, 2- and 3 hr. 
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7.4 Conclusion 

KED rainfall estimation is more reliable than radar only estimations. However, limitations due to the 

lack of temporal correlation between time-steps impose a limitation to its use in nowcasting. For this 

reason, there is a lack of research papers addressing nowcasting using KED. A new method to produce 

short-term forecasts using KED rainfall products was proposed to address this limitation. Results 

comparing the velocity fields of radar and KED forecasts support previous findings stating that the 

precipitation distribution for the KED forecasts had an erratic behaviour due to the lack of temporal 

correlation of precipitation between consecutive time steps (Ochoa-Rodríguez et al., 2013). The KED 

rainfall product ensures that the spatial correlation of rainfall is kept at each time-step. However, there 

is no continuity between different time steps. This means that between time-steps, the calculated 

direction of the rainfall can be very different from the real one; as a result, the forecasted rainfall can 

be extrapolated for a completely different location. Ultimately, there is an increase in the forecast 

uncertainty in cases with large differences between the radar advection fields and the KED rainfall 

advection fields. The method proposed in this chapter takes into account the fact that the advection 

field produced by the original radar rainfall is better than the advection field produced by KED and can 

capture the rainfall pattern of rainfall. However, because the KED rainfall estimates are better in 

estimating rainfall intensities than radar data alone, the method extrapolates the KED rainfall advection 

field with the advection field from radar. In this way, the method takes into account the temporal 

evolution of precipitation, which is often lost in the KED rainfall products. The forecasts were assessed 

by comparing them with a deterministic radar-based forecast and a deterministic forecast based on 

KED only estimations.  

Results indicate that there is a tendency for RMSE to decrease and the bias to increase as the 

accumulation period increases. RMSE for KEDFV forecast is slightly smaller than KED forecast RMSE. 

However, the KEDFV forecast usually produces better bias. At longer lead-times, the forecasts’ bias and 

RMSE values get smaller and closer to each other due to all of them losing predictability at longer lead 

times. 

In most cases, HR is better for KEDFV. The radar-based forecasts usually produce the lowest far than 

the KED based forecasts. The CSI, which compare HR and FAR, are better for KEDFV forecasts. HR, FAR 

and CSI and tend to present worse performance as lead time and thresholds increase. Lead-times longer 

than 2hr and threshold higher than 1 mm/hr, HR, FAR and CSI indicate that any of the forecasts produce 
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reliable predictions. As the accumulation periods increase, KED and KEDFV performance indicators 

values get closer, indicating that KED rainfall advection fields are closer to radar fields and suffer less 

with loss of temporal correlation. 

The very similar results for the KED and KEDFV for 60 min accumulation mean that there is little gain in 

using a more sophisticated method as proposed above for longer accumulation periods. However, for 

shorter accumulations, the KEDFV does produce more accurate forecasts because it takes advantage 

of the radar-based advection field. It was expected that 15 min accumulation forecast would not 

perform well as its subject to more uncertainties from the KED merging. However, the results produced 

showed a better performance than using radar data alone. Results show that the nowcasting model 

benefits from the method proposed, with a more significant impact in shorter accumulation periods. 

This finding is exciting as it indicates that the KEDFV forecasts can be used in hydrological applications 

that need higher temporal resolution and should be the subject of further research. Using the KEDFV 

method showed that it is possible to use KED merging to produce a forecast with a high temporal 

resolution with higher accuracy than using radar data alone.  
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Chapter 8. Conclusion 

The research carried in this thesis has as main objective to improve the reliability of radar-based rainfall 

forecasting and flow forecasting by addressing uncertainties related to rainfall estimation and its 

propagation into nowcasting and hydrological models. Two primary sources of uncertainties in 

nowcasting models were studied (uncertainties related to radar rainfall estimations and the temporal 

evolution of rainfall), and methods to account for them were proposed  

In order to achieve this, an understanding of rainfall measurements and their uncertainties was 

necessary. Reviewing the current nowcasting techniques and their limitations was important to be able 

to propose ways to account for the uncertainties inherent to the model.  

Chapter 2 discussed a review of some of the current techniques to measure precipitation, their 

importance and main limitations. Hardware updates and algorithm development are important to 

reduce uncertainties, but residual errors still propagate into rainfall and flow forecasting models. In this 

chapter, a description of nowcasts models and their main uncertainties were highlighted. 

In Chapter 4, an ensemble generator that adds spatially correlated noise to radar images was used to 

assess the propagation of weather radar uncertainties into rainfall forecasting and in flow forecasts. 

The chapter focused on answering the research question Q1, and a summary of the results are shown 

below. 

• Ensembles were generated by comparing historical rain gauge and weather radar data sets to 

model residual errors in radar estimations and were used in a nowcasting model to produce 

rainfall forecasts. Flow forecasts for an urban area and river catchments were generated.  

• Rainfall forecast results showed that both ensemble systems performed better in low-intensity 

events 

• For high-intensity rainfall, forecasts are only reliable up to 1-hour lead-time and lost 

predictability rapidly after this period.  

• RE ensembles produced more accurate forecasts than STEPS ensembles in the first hour; this 

coincides with the period where radar estimations have a higher impact on the nowcast 

accuracy. 
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• For lead-times longer than 1-hour, RE ensembles could still produce better forecasts than 

STEPS ensembles in some events. However, in general, its forecasting ability decreased quicker 

than for the STEPS ensembles. 

• Urban catchment results: 

o RE ensembles were better than STEPS ensembles regarding flow estimation, being able 

to better reproduce the flow peaks intensities, even in cases that the radar data could 

not correctly estimate the flow. 

o Any of the probabilistic forecasts could forecast flow peaks efficiently after 1-hour lead-

time in the urban catchment. 

o In events where both radar and rain gauges failed to estimate Ilkley's flow peaks, any 

of the ensembles could predict them either.  

o Results for urban flow forecasting showed a time-lag of a few minutes; however, 

analysing the results using cross-validation and comparing the peak flow forecasted 

over a period of time show that the flow forecasts can be used in real-time applications 

for up to 1-hour lead-time. 

• River catchments results 

o RE ensembles were able to predict flow peaks for most events better.  

o The fact that RE ensembles had a higher spread also meant that it was able to predict 

large peaks that were missed by the STEPS ensembles due to the fact that the peaks 

were also not estimated by radar data. 

o In cases where radar and rain gauge simulated flows were very different from the 

observed flow, the peaks were more difficult to predict. 

Chapter 4 results showed that rainfall estimation ensembles are able to produce better ensembles than 

the STEPS probabilistic forecasts, mainly with up to 1 hour lead time. The benefits of using RE ensembles 

can also be seen in flow forecasts for both urban and river catchments. However, the forecasts lose 

predictability fast after the first hour. 

In Chapter 5, a new method to generate ensembles forecasts was proposed in order to address 

uncertainties related to the temporal evolution of rainfall. Ensembles are generated using rainfall 

velocity fields up to two hours before the forecast initialization. Using past rainfall advection fields that 

were also calculated using different time-steps gives valuable information on how the rainfall pattern 
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develops with time. Depending on the time-back considered, probabilistic forecasts with a different 

number of ensemble members were produced. Following there is a list of the main findings in the 

chapter: 

• Results showed that the forecasting ability increased with the number of ensembles members.  

• For longer lead-times, having more ensemble members in the probabilistic forecast showed to 

have more impact than for up to 1-hour lead time. This is probably due to the temporal 

evolution of rainfall advection fields uncertainties being more significant after 1-hour lead-

time. However, the forecast keeps losing ability with longer lead times. 

• Comparing the area beneath the ROC curve of the rainfall advection fields ensembles produced 

better forecasts after 1-hour lead time than the probabilistic forecasts generated in Chapter 4. 

This means that the forecasts are able to produce better improve the performance of nowcast 

regarding uncertainties due to the temporal evolution of rainfall advection fields.  

• Flow peaks could only be forecasted in cases when they were also estimated by radar data. 

• Using a 60-min time window (27 ensembles) was enough to improve the forecast. The use of 

more ensembles would not be justified when considering the time necessary to produce them 

and the gain from having more ensembles. 

The assumption that past information about the temporal evolution of rainfall could be used to improve 

probabilistic forecasts has been proved right. Increasing the time-window used does improve the 

forecast even when data for up to two hours before the forecast is used and have a more significant 

effect at longer lead times. However, this also leads to the need for more computer power and time to 

produce the forecasts, with little gain to its efficiency. Probabilistic nowcasts with 27 ensemble 

members are much faster to be produced than those with 63 ensembles, and they can still improve the 

forecasts.  

In Chapter 6, the merging of rain gauge and radar data was discussed to address the research question 

Q3. Merging using KED was carried out for three different accumulation periods, and the impact of the 

temporal resolution on rainfall estimation for different intensities were analysed. As shorter 

accumulation periods were also used, using rain gauge data to calculate the variograms was not 

possible as there were not enough data points. Radar data was used to calculate variograms. In this 

chapter, it was found that: 
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• Variograms for a higher temporal resolution presented high variance, but variance decreased 

as temporal resolution got sparse. 

• Using shorter accumulation periods for KED merging is particularly important for forecasting 

applications, and results indicated that even for a 15 min KED merging produced better rainfall 

estimations than radar data. 

Although it was shown that it is possible to improve radar rainfall estimations by merging it with rain 

gauges using KED even at short temporal resolutions, it is important to highlight that the uncertainties 

increase with the temporal resolution. Nonetheless, the merged product still offers advantages 

compared to radar data alone, even at 15 min temporal resolution, showing that it could be 

advantageous to use KED merged products in nowcasting. 

A new approach to produce short-term forecasts using the KED product was proposed in Chapter 7. It 

addresses the research question Q4 by proposing a way to use KED in nowcasting and investigating how 

temporal resolution affects the nowcast outcome. The forecast produced takes advantage of the high 

temporal correlation from weather radar images, coupled with higher accuracy in estimating rainfall 

obtained from KED merging. The deterministic forecasts are produced by applying radar only motion 

fields to KED estimations. In this way, the lack of temporal correlation of KED products is not part of the 

forecast. Following, there is a summary of the main findings of this chapter: 

• Bias, HR and CSI indicate that, overall, KEDFV was the forecast with better performance. 

• Regarding false alarm rates, KED forecasts had the lowest values when compared to both radar 

and KEDFV. Nonetheless, the CSI rate indicates that even then, KEDFV produces better 

forecasts. 

•  Radar forecasts results have lower RMSE than KEDFV forecasts. The RMSE between KED and 

KEDFV forecasts were comparable. 

• For 15 min accumulation, the difference in performance between KED and KEDFV was higher 

for short accumulation periods.  

• As the accumulation time increased, the performance of the forecasts got closer, and the two 

methods produced similar results for hourly accumulations, indicating that for 60 min 

accumulations, KED is less subject to time correlation errors.  

• All the forecasts skills decreased quickly after a 2-hour lead time.   
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• In applications that hourly temporal resolution is sufficient, KED forecasts are as reliable as 

KEDFV. 

KEDFV is a unique method as it overcomes one of the main limitations of using KED for nowcasting, 

having a more significant impact at shorter accumulation periods. Being able to produce reliable 

forecasts even at 15 min temporal resolution means that there is space for extending this research to 

use KEDFV for hydrological application.  

Two different methods were used to address the issues related to rainfall estimation in forecasting and 

hydrological applications. The first one is based on RE ensembles' production using historical data for 

accounting for residual errors. This method has been developed by Germann et al. (2009) and further 

implemented into the STEPS model (Seed, Pierce and Norman, 2013). In this thesis, the method was 

tested for hydrological applications. The ensembles are generated before the forecast, and for each 

ensemble member, a deterministic nowcast is carried out. The second method is an entirely new 

technique to use KED to generate nowcasts. Compared with the radar estimation ensemble generator, 

this method uses rain gauges measurements contemporary to the radar data to adjust the radar 

estimations. Both methods have a higher impact in the first hour forecasted. 

The KEDFV method was used to generate only deterministic forecasts. Probabilistic forecasts can also 

be generated. However, as in this thesis, only a deterministic forecast was produced; it is not possible 

to assess how the two methods compare. To further expand this research, it would be interesting to 

generate forecasts using both the ensemble generator from STEPS and the rainfall advection fields 

ensemble generator proposed in Chapter 5.  A probabilistic forecast that combines KED rainfall 

estimations and rainfall advection field ensembles has the potential to produce more reliable forecasts 

for a longer lead time. In an analogue way, the RE ensembles could also be combined with the temporal 

evolution ensembles. Combining the two methods would also have the potential to improve the 

forecasts for a longer time. However, the research should also include an analysis of the number of 

ensemble members to be used for each method. In this thesis, it was produced 25 RE ensembles, and 

it is not realistic to keep the same number of ensembles in addition to the temporal evolution 

ensembles. 

The merging was done using KED due to its robustness and performance compared with other 

techniques (Ochoa-Rodríguez et al., 2019). Nonetheless, it is highly dependable on the rain gauge 

network density (Goudenhoofdt and Delobbe, 2009; Jewell and Gaussiat, 2015). However, in many 
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places rain gauge network is not dense enough to produce accurate merged results, limiting the 

application of this technique. Satellite technology advances mean that temporal and spatial resolution 

are increasing, and data is available even for ungauged catchments.  Using satellite and radar data, or 

satellite, rain gauge, and radar data is an alternative that should be studied due to its particular 

importance in places where there is a lack of ground-based rainfall measurements. Regarding the 

KEDFV, research in assessing and quantifying the uncertainties propagation into hydrological models 

was not carried out. For urban areas, a higher temporal resolution is usually required, but for river 

catchments rainfall forecasts show that it has the potential to improve flow forecasts.  

The study case for urban application in Ilkley was able to provide a good insight into the error 

propagation of rainfall advection field and RE ensembles; however, the size of the catchment is a 

plausible explanation for extra uncertainties in the flow prediction. If forecasted rainfall is only a couple 

of pixels displaced, the amount of precipitation that reaches the ground can be very different from the 

forecast. Further research using a larger urban area would be important to assess how the catchment 

size affects flow forecasts. 

Blending nowcast with NWP has been helpful to produce skilful forecasts for a longer period. Using 

these ensemble generators with the NWP model has the potential to increase the forecast skill from 

the start of the forecast and for longer lead times. 

The dataset used in this thesis is from 2007 and 2008. Since then, the MetOffice weather radar network 

has been renewed, and the single polarization radars have been upgraded to dual-polarization radars. 

Therefore, the accuracy of radar-based rainfall estimations has improved. During the same period, little 

improvement has been carried in the rain gauge network, which is still heavily based in TBR. It is 

essential to point out that as rainfall intensities in KED estimations are under a more substantial 

influence from rain gauges than from radars, and it is difficult to know how much KED estimations will 

benefit from more accurate radar data before further research is carried. However, as the rainfall 

advection field ensembles use only radar data, the quality of the probabilistic forecasts using this 

method should increase, mainly in up to 1 hour lead time. 
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