85 research outputs found

    GigaHertz Symposium 2010

    Get PDF

    Quantum computing hardware in the cloud : should a computational chemist care?

    Get PDF
    Within the last decade much progress has been made in the experimental realization of quantum computing hardware based on a variety of physical systems. Rapid progress has been fuelled by the conviction that sufficiently powerful quantum machines will herald enormous computational advantages in many fields, including chemical research. A quantum computer capable of simulating the electronic structures of complex molecules would be a game changer for the design of new drugs and materials. Given the potential implications of this technology, there is a need within the chemistry community to keep abreast with the latest developments as well as becoming involved in experimentation with quantum prototypes. To facilitate this, here we review the types of quantum computing hardware that have been made available to the public through cloud services. We focus on three architectures, namely superconductors, trapped ions and semiconductors. For each one we summarize the basic physical operations, requirements and performance. We discuss to what extent each system has been used for molecular chemistry problems and highlight the most pressing hardware issues to be solved for a chemistry-relevant quantum advantage to eventually emerge

    Superconducting integrated THz receiver

    Get PDF
    The operation frequency of superconducting integrated THz receivers can be enhanced by replacing the commonly used elementary niobium with niobium nitride. This work presents the technology development of high-quality niobium nitride thin films and superconductor-insulator-superconductor multilayers along with the simulation and realization of high-frequency circuits for a superconducting integrated THz receiver using niobium nitride electrodes

    Design of surface acoustic wave filters and applications in future communication systems

    Get PDF

    M-sequenze based ultra-wideband radar and its application to crack detection in salt mines

    Get PDF
    Die vorliegende Dissertation beschreibt einen innovativen ultra-breitband (UWB)elektromagnetischen Sensor basierend auf einem Pseudo-Rauschverfahren.Der Sensor wurde für zerstörungsfreies Testen in zivilen Anwendungen entwickelt.Zerstörungsfreies Testen entwickelt sich zu einem immer wichtiger werdenden Bereich in Forschung und Entwicklung. Neben unzähligen weiteren Anwendungen und Technologien, besteht ein primäres Aufgabenfeld in der Überwachung und Untersuchung von Bauwerken und Baumaterialien durch berührungslose Messung aus der Ferne.Diese Arbeit konzentriert sich auf das Beispiel der Auflockerungszone im Salzgestein.Der Hintergrund und die Notwendigkeit, den Zustand der oberflächennahen Salzschichten in Salzminen kennen zu müssen, werden beleuchtet und die Messaufgabe anhand einfacher theoretischer Überlegungen beschrieben. Daraus werden die Anforderungen für geeignete UWB Sensoren abgeleitet. Die wichtigsten Eigenschaften sind eine sehr hohe Messband breite sowie eine sehr saubere Systemimpulsantwort frei von systematischen Gerätefehlern. Beide Eigenschaften sind notwendig, um die schwachen Rückstreuungen der Auflockerungen trotz der unvermeidlichen starken Oberflächenreflexion detektieren zu können.Da systematische Fehler bei UWB Geräten technisch nicht von vorne herein komplett vermeidbar sind, muss der Sensor eine Gerätekalibrierung erlauben, um solche Fehler möglichst gut zu unterdrücken.Aufgrund der genannten Anforderungen und den Nebenbedingungen der Messumgebung unter Tage, wurde aus den verschiedenen UWB-Technologien ein Prinzip ausgewählt, welches pseudozufällige Maximalfolgen als Anregungssignal benutzt. Das M-Sequenzkonzept dient als Ausgangpunkt für zahlreiche Weiterentwicklungen. Ein neues Sendemodul erweitert dabei die Messbandbreite auf 12~GHz. Die äquivalente Abtastrate wird um den Faktor vier auf 36~GHz erhöht, ohne den geringen Abtastjitter des ursprünglichen Konzepts zu vergrössern.Weiterhin wird die Umsetzung eines Zweitormesskopfes zur Erfassung von S-Parametern sowie einer automatische Kalibriereinheit beschrieben. Etablierte Kalibrierverfahren aus dem Bereich der Netzwerkanalyse werden kurz rekapituliert und die Adaption des 8-Term Verfahrens mit unbekanntem Transmissionsnormal für das M-Sequenzsystem beschrieben. Dabei werden Kennwerte vorgeschlagen, die dem Bediener unter Tage einfach erlauben, die Kalibrierqualität einzuschätzen und Hinweise auf mögliche Gerätefehler oder andere Probleme zu bekommen. Die Kalibriergenauigkeit des neuen Sensors im Labor wird mit der eines Netzwerkanalysators verglichen. Beide Geräte erreichen eine störungsfreie Dynamik von mehr als 60~dB in den Systemimpulsantworten für Reflexion und Transmission.Der neu entwickelte UWB Sensor wurde in zahlreichen Messungen in Salzminen in Deutschland getestet. Zwei Messbeispiele werden vorgestellt - ein sehr alter, kreisrunder Tunnel sowie ein ovaler Tunnelstumpf, welcher kurz vor den Messungen erst aufgefahren wurde. Messaufbauten und Datenverarbeitung werden beschrieben. Schließlich werden Schlussfolgerungen und Vorschläge für zukünftige Arbeiten mit dem neuen M-Sequenzsensor sowie der Messung von Auflockerungen im Salzgestein diskutiert.This dissertation describes an innovative ultra-wideband (UWB) electromagnetic sensor device based on a pseudo-noise principle developed in the context of non-destructive testing in civil engineering.Non-destructive testing is becoming a more and more important fieldfor researchers and engineers alike. Besides the vast field of possibleapplications and testing technologies, a prime and therefore typical topic is the inspection and monitoringof constructions and materials by means of contactless remote sensing techniques.This work focuses on one example the assessment of the disaggregation zone in salt rock tunnels.The background and relevance of knowing the state of salt rock layers near a tunnel's surface are explainedand simple theoretical considerations for requirements of suitable UWB sensor devices are shown. The most important sensor parameters are a very large measurement bandwidth and a very clean impulse response. The latterparameter translates into the mandatory application of calibration techniques to remove systematic errors of the sensor system itself. This enables detection of weak scattering responses from near-surface disaggregation despite the presence of a strong surface reflection.According to the mentioned requirements and other side conditions in salt mine environments an UWB sensor principlebased on pseudo-noise stimuli namely M-Sequences is selected as a starting point for system development. A newtransmitter frontend for extending the stimulus bandwidth up to 12~GHz is presented. Furthermore, a technique for increasing the (equivalent) sampling rate while keeping the stable and low-jitter sampling regime of the M-Sequencesapproach is introduced and its implementation is shown. Moreover, an automatic calibration unit for full two-port coaxial calibration of the new UWB sensor has been developed. Common calibration techniques from the area of vector network analysers are shortly reviewed and a reasonablealgorithm the 8-term method with an unknown line standard - is selected for the M-Sequences device. The 8-term method is defined in the frequency domain and is adapted for use with time domain devices. Some performance figures and comparisonwith calibration results from network analysers are discussed to show the effectiveness of the calibration.A spurious-free dynamic range of the time domain impulse responses in excess of 60~dB has been achieved for reflection as well as transmission measurements.The new UWB sensor was used in various real world measurements in different salt mines throughout Germany. Two measurementexamples are described and results from the disaggregation zone of a very old and a freshly cut tunnel will be presented. Measurement setup and data processing are discussed and finally some conclusions for future work on this topic are drawn

    Fast, Accurate State Measurement in Superconducting Qubits

    Get PDF
    Superconducting qubits have emerged as leading candidates as the foundation of quantum information processing systems. Progress in superconducting qubit experiments with greater numbers of qubits and advanced techniques such as feedback will require faster and more accurate quantum state measurement. In particular, cyclic fault tolerance protocols such as the surface code require high accuracy measurement on time scales significantly shorter than the coherence times of the qubits. We have designed a multiplexed measurement system with a bandpass filter that allows fast measurement without increasing environmental damping of the qubits. We use this to demonstrate simultaneous measurement of four qubits on a single superconducting integrated circuit, finding that we can measured a single qubit state to 99.8% accuracy in 140 ns. This accuracy and speed is suitable for advanced multiqubit experiments including surface-code error correction

    Accurate characterisation of Resonant Tunnelling Diodes for high-frequency applications

    Get PDF
    Recent scientific advancements regarding the generation and detection of terahertz (THz) radiation have led to a rapid increase in research interest in this frequency band in the context of its numerous potential applications including high-speed wireless communications, biomedical diagnostics, security screening and material science. Various proposed solutions have been investigated in the effort to bridge this relatively unexplored region of the electromagnetic spectrum, and thus exploit its untapped potential. Among them, the resonant tunnelling diode (RTD) has been demonstrated as the fastest electronic device with its room temperature operation extending into the THz range. The RTD exhibits a negative differential resistance (NDR) region in its I-V characteristics, with this feature being key to its capabilities. Even though the unique capabilities of RTD devices have been experimentally proven in the realisation of compact NDR oscillators and detectors, with fundamental frequencies of about 2 THz, and high-sensitivity detectors up to 0.83 THz, the reliable design procedures and methodologies of RTD-based circuits are yet to be fully developed. In this regard, significant effort has been devoted primarily to the accurate theoretical description of the high-frequency behaviour of RTDs, using various small-signal equivalent circuit models. However, many of these models have had either limited or no experimental validation, and so a robust and reliable RTD device model is desirable. The aim of this thesis is to describe a systematic approach regarding the design, fabrication and characterisation of RTD devices, providing a universal methodology to accurately determine their radio-frequency (RF) behaviour, and so this way enable a consistent integrated circuit design procedure for high-frequency circuits. A significant challenge in the modelling of RTD devices is represented by the presence of parasitic bias oscillations within the NDR region. This has been identified as one of the main restricting factors with regards to the accurate high-frequency characterisation of this operating region. The common approach to overcoming this limitation is through a stabilising technique comprising of an external shunt-resistor network. This approach has been successfully demonstrated to suppress bias oscillations in RTD-based circuits which require operation within the NDR region. However, the introduction of the additional circuit component associated with this method increases the complexity of the de-embedding procedure of the extrinsic parasitic elements, rendering the overall device characterisation generally difficult at high-frequencies. In this work, a novel on-wafer bond-pad and shunt resistor network de-embedding technique was developed in order to facilitate the characterisation of RTDs throughout the complete bias range, without limitation to device sizing or frequency, under a stable operating regime. The procedure was demonstrated to accurately determine the circuit high-frequency behaviour of the RTD device from S-parameter measurements up to 110 GHz. The universal nature of this procedure allows it to be easily adapted to accommodate higher complexity stabilising networks configuration or different bond-pad geometries. Furthermore, the de-embedding method has also enabled the development of a novel quasi-analytical procedure for high accuracy extraction of the device equivalent circuit parameters, which is expected to provide a strong experimental foundation for the further establishment of a universal RTD RF model. The applicability of the developed high-frequency model, which can be easily scaled for various device sizes, together with the measured RTD I-V characteristics was further demonstrated in the development of a non-linear model, which was integrated in a commercial simulator, the Advanced Design Systems (ADS) software from Keysight Technologies. From an application perspective, the model was used in the design of an RTD as a square-law detector for high-frequency data transmission systems. The simulated detector performance was validated experimentally using an RTD-based transmitter in the W-band (75 – 110 GHz) up to 4 Gbps (error free transmission: BER < 10-10 in a waveguide connection), and in the Ka-band (26.5 – 50 GHz) up to 2.4 Gbps (error free transmission in a wireless data link), which demonstrated the accuracy of the developed RTD modelling approach. Lastly, a sensitivity analysis of the RTD-based detector within the Ka-band showed a superior RTD performance over commercially available solutions, with a peak (corrected) detector responsivity of 13.48 kV/W, which is a factor of >6 better compared to commercially available Schottky barrier diode (SBD) detectors

    Design of antenna array and data streaming platform for low-cost smart antenna systems

    Get PDF
    The wide range of wireless infrastructures such as cellular base stations, wireless hotspots, roadside infrastructures, and wireless mobile infrastructures have been increasing rapidly over the past decades. In the transportation sector, wireless technology refreshes require constantly introducing newer wireless standards into the existing wireless infrastructure. Different wireless standards are expected to co-exist, and the air space congestion worsens if the wireless devices are operating in different wireless standards, where collision avoidance and transmission time synchronisation become complex and almost impossible. Huge challenges are expected such as operation constraints, cross-system interference, and air space congestion. Future proof and scalable smart wireless infrastructures are crucial to harmonise the un-coordinated wireless infrastructures and improve the performance, reliability, and availably of the wireless networks. This thesis presents the detailed design of a novel pre-configurable smart antenna system and its sub-system including antenna element, antenna array, and radio frequency (RF) frontend. Three types of 90° beamforming antenna array (with low, middle and high gain) were designed, simulated, and experimentally evaluated. The RF frontend module or transmit and receive (T/R) module was designed and fabricated. The performance of the T/R module was characterised and calibrated using the recursive calibration method, and drastic sidelobe level (SLL) improvement was achieved using the amplitude distribution technique. Finally, the antenna arrays and T/R modules are integrated into the pre-configurable smart antenna system, the beam steering performance is experimentally evaluated and presented in this thesis. With the combination of practical know-how and theoretical estimation, the thesis highlights how the modern smart antenna techniques that support most cutting-edge wireless technology can be adopted into the existing infrastructure with minimum distraction to the existing systems. This is in line with the global Smart City initiative, where a huge number of Internet of Things (IoT) devices being wired, or wireless are expected to work harmoniously in the same premises. The concept of the pre-configurable smart antenna system presented in this thesis is set to deliver a future-proof and highly scalable and sustainable infrastructure in the transportation market

    The Environment and Interactions of Electrons in GaAs Quantum Dots

    Get PDF
    At the dawn of the twentieth century, the underpinnings of centuries-old classical physics were beginning to be unravelled by the advent of quantum mechanics. As well as fundamentally shifting the way we understand the very nature of reality, this quantum revolution has subsequently shaped and created entire fields, paving the way for previously unimaginable technology. The quintessential instance of such technology is the quantum computer, whose building blocks - quantum bits, or qubits - are premised on the uniquely quantum principles of superposition and entanglement. It is predicted that quantum computers will be capable of efficiently solving certain classically intractable problems. To build a quantum computer, it is necessary to find a system which exhibits these uniquely quantum phenomena. The success of silicon-based integrated circuits for classical computing made semiconductors an obvious architecture in which to focus experimental quantum computing efforts. The two-dimensional electron gas which forms at the interface of GaAs/AlGaAs heterostructures constitutes an ideal platform for isolating and controlling single electrons, encoding quantum information in their spin and charge states. This thesis broadly addresses three key challenges to quantum computing with GaAs qubits: scalability, particularly in the context of readout, unwanted interactions between fragile quantum states and their environment, and the facilitation of controllable, strong interactions between separated qubits as a means of generating entanglement. These significant, unavoidable challenges must be addressed in order for a future solid-state quantum computer to be viable
    corecore