128,302 research outputs found

    Selftuning and its footprints

    Full text link
    We re-consider the self tuning idea in brane world models of finite volume. We notice that in a large class of self tuning models, the four dimensional physics is sensitive to the vacuum energy on the brane. In particular the compactification volume changes each time the tension of the brane is modified: consequently, observable constants, as the effective Planck mass or masses of matter fields, change as well. We notice that the self tuning mechanism and the stabilization mechanism of the size of the extra dimensions are generically in apparent conflict. We focus on a self tuning model in six spacetime dimensions to analyze how the above considerations are explicitely realized.Comment: 28 pages, JHEP style. v2: typos corrected and references added. Published versio

    Control Strategies for the Fokker-Planck Equation

    Get PDF
    Using a projection-based decoupling of the Fokker-Planck equation, control strategies that allow to speed up the convergence to the stationary distribution are investigated. By means of an operator theoretic framework for a bilinear control system, two different feedback control laws are proposed. Projected Riccati and Lyapunov equations are derived and properties of the associated solutions are given. The well-posedness of the closed loop systems is shown and local and global stabilization results, respectively, are obtained. An essential tool in the construction of the controls is the choice of appropriate control shape functions. Results for a two dimensional double well potential illustrate the theoretical findings in a numerical setup

    Volume Stabilization and Acceleration in Brane Gas Cosmology

    Full text link
    We investigate toy cosmological models in (1+m+p)-dimensions with gas of p-branes wrapping over p-compact dimensions. In addition to winding modes, we consider the effects of momentum modes corresponding to small vibrations of branes and find that the extra dimensions are dynamically stabilized while the others expand. Adding matter, the compact volume may grow slowly depending on the equation of state. We also obtain solutions with winding and momentum modes where the observed space undergoes accelerated expansion.Comment: 20 pages, 3 figures, v2: comments and references added, to appear in JCA

    Looking Beyond Inflationary Cosmology

    Full text link
    In spite of the phenomenological successes of the inflationary universe scenario, the current realizations of inflation making use of scalar fields lead to serious conceptual problems which are reviewed in this lecture. String theory may provide an avenue towards addressing these problems. One particular approach to combining string theory and cosmology is String Gas Cosmology. The basic principles of this approach are summarized.Comment: invited talk at "Theory Canada 1" (Univ. of British Columbia, Vancouver, Canada, June 2 - 4, 2005) (references updated

    On the Transfer of Metric Fluctuations when Extra Dimensions Bounce or Stabilize

    Full text link
    In this report, we study within the context of general relativity with one extra dimension compactified either on a circle or an orbifold, how radion fluctuations interact with metric fluctuations in the three non-compact directions. The background is non-singular and can either describe an extra dimension on its way to stabilization, or immediately before and after a series of non-singular bounces. We find that the metric fluctuations transfer undisturbed through the bounces or through the transients of the pre-stabilization epoch. Our background is obtained by considering the effects of a gas of massless string modes in the context of a consistent 'massless background' (or low energy effective theory) limit of string theory. We discuss applications to various approaches to early universe cosmology, including the ekpyrotic/cyclic universe scenario and string gas cosmology.Comment: V2. Minor Clarifications V3. appendix and 2 figures added, typos corrected, conclusions unchanged 12 pages, 6 figure

    On Resilient Control of Nonlinear Systems under Denial-of-Service

    Full text link
    We analyze and design a control strategy for nonlinear systems under Denial-of-Service attacks. Based on an ISS-Lyapunov function analysis, we provide a characterization of the maximal percentage of time during which feedback information can be lost without resulting in the instability of the system. Motivated by the presence of a digital channel we consider event-based controllers for which a minimal inter-sampling time is explicitly characterized.Comment: 7 pages, 1 figur
    • …
    corecore