5,805 research outputs found

    Seeing the Forest for the Trees: Using the Gene Ontology to Restructure Hierarchical Clustering

    Get PDF
    Motivation: There is a growing interest in improving the cluster analysis of expression data by incorporating into it prior knowledge, such as the Gene Ontology (GO) annotations of genes, in order to improve the biological relevance of the clusters that are subjected to subsequent scrutiny. The structure of the GO is another source of background knowledge that can be exploited through the use of semantic similarity. Results: We propose here a novel algorithm that integrates semantic similarities (derived from the ontology structure) into the procedure of deriving clusters from the dendrogram constructed during expression-based hierarchical clustering. Our approach can handle the multiple annotations, from different levels of the GO hierarchy, which most genes have. Moreover, it treats annotated and unannotated genes in a uniform manner. Consequently, the clusters obtained by our algorithm are characterized by significantly enriched annotations. In both cross-validation tests and when using an external index such as protein–protein interactions, our algorithm performs better than previous approaches. When applied to human cancer expression data, our algorithm identifies, among others, clusters of genes related to immune response and glucose metabolism. These clusters are also supported by protein–protein interaction data. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.Lynne and William Frankel Center for Computer Science; Paul Ivanier center for robotics research and production; National Institutes of Health (R01 HG003367-01A1

    Bayesian multi-modal model comparison: a case study on the generators of the spike and the wave in generalized spike–wave complexes

    Get PDF
    We present a novel approach to assess the networks involved in the generation of spontaneous pathological brain activity based on multi-modal imaging data. We propose to use probabilistic fMRI-constrained EEG source reconstruction as a complement to EEG-correlated fMRI analysis to disambiguate between networks that co-occur at the fMRI time resolution. The method is based on Bayesian model comparison, where the different models correspond to different combinations of fMRI-activated (or deactivated) cortical clusters. By computing the model evidence (or marginal likelihood) of each and every candidate source space partition, we can infer the most probable set of fMRI regions that has generated a given EEG scalp data window. We illustrate the method using EEG-correlated fMRI data acquired in a patient with ictal generalized spike–wave (GSW) discharges, to examine whether different networks are involved in the generation of the spike and the wave components, respectively. To this effect, we compared a family of 128 EEG source models, based on the combinations of seven regions haemodynamically involved (deactivated) during a prolonged ictal GSW discharge, namely: bilateral precuneus, bilateral medial frontal gyrus, bilateral middle temporal gyrus, and right cuneus. Bayesian model comparison has revealed the most likely model associated with the spike component to consist of a prefrontal region and bilateral temporal–parietal regions and the most likely model associated with the wave component to comprise the same temporal–parietal regions only. The result supports the hypothesis of different neurophysiological mechanisms underlying the generation of the spike versus wave components of GSW discharges

    Hierarchical models for semi-competing risks data with application to quality of end-of-life care for pancreatic cancer

    Full text link
    Readmission following discharge from an initial hospitalization is a key marker of quality of health care in the United States. For the most part, readmission has been used to study quality of care for patients with acute health conditions, such as pneumonia and heart failure, with analyses typically based on a logistic-Normal generalized linear mixed model. Applying this model to the study readmission among patients with increasingly prevalent advanced health conditions such as pancreatic cancer is problematic, however, because it ignores death as a competing risk. A more appropriate analysis is to imbed such studies within the semi-competing risks framework. To our knowledge, however, no comprehensive statistical methods have been developed for cluster-correlated semi-competing risks data. In this paper we propose a novel hierarchical modeling framework for the analysis of cluster-correlated semi-competing risks data. The framework permits parametric or non-parametric specifications for a range of model components, including baseline hazard functions and distributions for key random effects, giving analysts substantial flexibility as they consider their own analyses. Estimation and inference is performed within the Bayesian paradigm since it facilitates the straightforward characterization of (posterior) uncertainty for all model parameters including hospital-specific random effects. The proposed framework is used to study the risk of readmission among 5,298 Medicare beneficiaries diagnosed with pancreatic cancer at 112 hospitals in the six New England states between 2000-2009, specifically to investigate the role of patient-level risk factors and to characterize variation in risk across hospitals that is not explained by differences in patient case-mix

    clues: An R Package for Nonparametric Clustering Based on Local Shrinking

    Get PDF
    Determining the optimal number of clusters appears to be a persistent and controversial issue in cluster analysis. Most existing R packages targeting clustering require the user to specify the number of clusters in advance. However, if this subjectively chosen number is far from optimal, clustering may produce seriously misleading results. In order to address this vexing problem, we develop the R package clues to automate and evaluate the selection of an optimal number of clusters, which is widely applicable in the field of clustering analysis. Package clues uses two main procedures, shrinking and partitioning, to estimate an optimal number of clusters by maximizing an index function, either the CH index or the Silhouette index, rather than relying on guessing a pre-specified number. Five agreement indices (Rand index, Hubert and ArabieâÂÂs adjusted Rand index, Morey and AgrestiâÂÂs adjusted Rand index, Fowlkes and Mallows index and Jaccard index), which measure the degree of agreement between any two partitions, are also provided in clues. In addition to numerical evidence, clues also supplies a deeper insight into the partitioning process with trajectory plots.

    clues: An R Package for Nonparametric Clustering Based on Local Shrinking

    Get PDF
    Determining the optimal number of clusters appears to be a persistent and controversial issue in cluster analysis. Most existing R packages targeting clustering require the user to specify the number of clusters in advance. However, if this subjectively chosen number is far from optimal, clustering may produce seriously misleading results. In order to address this vexing problem, we develop the R package clues to automate and evaluate the selection of an optimal number of clusters, which is widely applicable in the field of clustering analysis. Package clues uses two main procedures, shrinking and partitioning, to estimate an optimal number of clusters by maximizing an index function, either the CH index or the Silhouette index, rather than relying on guessing a pre-specified number. Five agreement indices (Rand index, Hubert and Arabie's adjusted Rand index, Morey and Agresti's adjusted Rand index, Fowlkes and Mallows index and Jaccard index), which measure the degree of agreement between any two partitions, are also provided in clues. In addition to numerical evidence, clues also supplies a deeper insight into the partitioning process with trajectory plots

    Seeing the forest for the trees: using the Gene Ontology to restructure hierarchical clustering

    Get PDF
    Motivation: There is a growing interest in improving the cluster analysis of expression data by incorporating into it prior knowledge, such as the Gene Ontology (GO) annotations of genes, in order to improve the biological relevance of the clusters that are subjected to subsequent scrutiny. The structure of the GO is another source of background knowledge that can be exploited through the use of semantic similarity

    Knowledge-based incremental induction of clinical algorithms

    Get PDF
    The current approaches for the induction of medical procedural knowledge suffer from several drawbacks: the structures produced may not be explicit medical structures, they are only based on statistical measures that do not necessarily respect medical criteria which can be essential to guarantee medical correct structures, or they are not prepared to deal with the incremental arrival of new data. In this thesis we propose a methodology to automatically induce medically correct clinical algorithms (CAs) from hospital databases. These CAs are represented according to the SDA knowledge model. The methodology considers relevant background knowledge and it is able to work in an incremental way. The methodology has been tested in the domains of hypertension, diabetes mellitus and the comborbidity of both diseases. As a result, we propose a repository of background knowledge for these pathologies and provide the SDA diagrams obtained. Later analyses show that the results are medically correct and comprehensible when validated with health care professionals
    corecore