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Abstract

Clinical Algorithms (CAs) are flowcharts that graphically summarize some

of the medical procedures described in Clinical Practice Guidelines (CPGs),

such as diagnosis, management or treatment of certain diseases. Generally,

the development of CAs is done manually with the cooperation of several

health care experts of different specialties which represents a laborious task.

Moreover, the individual differences of the patients causes great variances

in the application of CAs in daily practice. In real world, chronic patients

use to suffer from more than one disease (comorbidities) and each case has

some particularities that may not be considered by the CA.

The automatic induction of structures like CAs from hospital databases

and medical resources solves the previous drawbacks. It reduces the high

costs of the manual generation and it allows the analysis of health care in

comorbidities. Today some computer technologies exist to carry out the

induction of procedural knowledge represented as CAs from the hospital

databases, but they suffer from several drawbacks: the structures produced

by these technologies may not be explicit medical structures that doctors

are familiar or satisfied with, they are only based on statistical measures

that do not necessarily respect medical criteria which can be essential to

guarantee medical correct structures, or they are not prepared to deal with

the incremental arrival of data which is worth to consider in medicine where

hospital databases are constantly updated with new information generated

during daily practice.

In this thesis, we propose a methodology to automatically induce med-

ically correct CAs from hospital databases. These CAs are represented

according to a knowledge model called SDA. The methodology considers



relevant background knowledge of a medical domain that has been previ-

ously validated by health care experts, and it is able to work in an incre-

mental way, so that the CAs generated are updated as soon as new data

arrive.

The methodology has been tested in the domains of hypertension, dia-

betes mellitus and the comborbidity of both diseases. As a result, we pro-

pose an effective repository of background knowledge for all these patholo-

gies and provide the SDA diagrams which have been automatically induced

from hospital databases using this repository. Later analyses show that the

results are medically correct and comprehensible when validated with health

care professionals, and compared against the results obtained by previous

technologies.



To my wife, my family and my friends for boosting me and supporting me

each step of the way.





Acknowledgements

I am sincerely grateful to my advisor, David Riaño, for the support and

guidance he showed me throughout the development and writing of this

thesis. I am sure it would have not been possible without his help. Besides

I am truly indebted and thankful to Dr. Antoni Collado for his continuous

support leading the group of health-care professionals from the SAGESSA

Health-Care Group, and providing continuous medical support which has

been essential in this work. Finally, I would like to show my gratitude to

all the professors, colleagues and classmates who, in one way or another,

helped me to achieve this challenge.





Contents

List of Figures ix

List of Tables xiii

List of Acronyms xv

1 Introduction 1

2 State of the art 5

2.1 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Decision making . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Clustering algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Decision making algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Background knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5.1 Representation of background knowledge . . . . . . . . . . . . . 14

2.5.1.1 Graphs and hypergraphs . . . . . . . . . . . . . . . . . 14

2.5.1.2 Partial orders and LPOs . . . . . . . . . . . . . . . . . 17

2.5.1.3 Concept hierarchies . . . . . . . . . . . . . . . . . . . . 22

2.5.1.4 Other background knowledge structures . . . . . . . . . 25

2.5.2 Background knowledge in clustering . . . . . . . . . . . . . . . . 27

2.5.3 Background knowledge in decision making . . . . . . . . . . . . . 28

2.6 Incrementality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6.1 Incremental clustering . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6.2 Incremental decision making . . . . . . . . . . . . . . . . . . . . 32

2.7 The Episode Of Care (EOC) Data Model . . . . . . . . . . . . . . . . . 33

2.8 The State Decision Action (SDA) knowledge model . . . . . . . . . . . . 34

v



CONTENTS

2.9 Induction of medical procedural knowledge . . . . . . . . . . . . . . . . 37

3 Medical background knowledge 43

3.1 Formalization of medical background knowledge . . . . . . . . . . . . . . 43

3.1.1 Constraints on health care states . . . . . . . . . . . . . . . . . . 44

3.1.2 Preference between state terms . . . . . . . . . . . . . . . . . . . 45

3.1.3 Semantic decisions . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.4 Order of decision sequences . . . . . . . . . . . . . . . . . . . . . 48

3.1.5 Similarity between actions . . . . . . . . . . . . . . . . . . . . . . 49

3.1.5.1 Calculating the similarity between action terms . . . . 52

3.1.5.2 Calculating the similarity between SDA actions . . . . 57

3.1.5.3 Calculating the homogeneity of a set of treatments . . . 58

3.2 Summary of background knowledge . . . . . . . . . . . . . . . . . . . . . 60

3.3 Background knowledge formalization for hypertension, diabetes mellitus

and their comorbidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3.1 Hypertension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3.1.1 Constraints on health care states . . . . . . . . . . . . . 61

3.3.1.2 Preference between state terms . . . . . . . . . . . . . . 61

3.3.1.3 Semantic decisions . . . . . . . . . . . . . . . . . . . . . 63

3.3.1.4 Order of decision sequences . . . . . . . . . . . . . . . . 64

3.3.1.5 Similarity between actions . . . . . . . . . . . . . . . . 65

3.3.2 Diabetes mellitus . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3.2.1 Constraints on health care states . . . . . . . . . . . . . 69

3.3.2.2 Preference between state terms . . . . . . . . . . . . . . 69

3.3.2.3 Semantic decisions . . . . . . . . . . . . . . . . . . . . . 69

3.3.2.4 Order of decision sequences . . . . . . . . . . . . . . . . 71

3.3.2.5 Similarity between actions . . . . . . . . . . . . . . . . 72

3.3.3 Hypertension + Diabetes mellitus . . . . . . . . . . . . . . . . . 74

3.3.3.1 Constraints on health care states . . . . . . . . . . . . . 74

3.3.3.2 Preference between state terms . . . . . . . . . . . . . . 74

3.3.3.3 Semantic decisions . . . . . . . . . . . . . . . . . . . . . 76

3.3.3.4 Order of decision sequences . . . . . . . . . . . . . . . . 77

3.3.3.5 Similarity between actions . . . . . . . . . . . . . . . . 78

vi



CONTENTS

4 Incremental generation of SDA diagrams with background knowledge 83

4.1 Identification of states . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.1.1 The quality of a state . . . . . . . . . . . . . . . . . . . . . . . . 86

4.1.2 The medical sense of a state . . . . . . . . . . . . . . . . . . . . . 87

4.1.3 State identification algorithm . . . . . . . . . . . . . . . . . . . . 88

4.2 Determination of therapeutic sequences . . . . . . . . . . . . . . . . . . 99

4.2.1 Comprehensibility of a therapeutic sequence . . . . . . . . . . . . 99

4.2.2 Correctness of a therapeutic sequence . . . . . . . . . . . . . . . 100

4.2.3 Therapeutic sequences induction algorithm . . . . . . . . . . . . 100

4.3 Integration of the procedures to generate SDA diagrams . . . . . . . . . 116

4.4 Summary of the incremental generation of SDA diagrams with back-

ground knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5 Tests and results 125

5.1 Integration in SDA Lab . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.2 Performance tests of background knowledge . . . . . . . . . . . . . . . . 128

5.3 Performance tests of incrementality . . . . . . . . . . . . . . . . . . . . . 131

5.3.1 Cost reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.3.2 Independence from the size . . . . . . . . . . . . . . . . . . . . . 134

5.3.3 Independence from the order . . . . . . . . . . . . . . . . . . . . 136

5.4 Database adherence tests . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.4.1 Database adherence for each pathology . . . . . . . . . . . . . . 137

5.4.2 Evolution of database adherence for hypertension during 2009 . . 138

5.5 Medical tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.5.1 SDA diagram and medical analysis for each pathology . . . . . . 140

5.5.2 Medical comparison with a knowledge-free approach . . . . . . . 144

5.5.3 Evolution of the SDA diagram for hypertension during 2009 . . . 148

6 Conclusions 155

7 Future work 161

Bibliography 165

vii



CONTENTS

viii



List of Figures

2.1 Example of decision tree . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Example of undirected graph . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Example of directed labeled graph . . . . . . . . . . . . . . . . . . . . . 15

2.4 Example of labeled hypergraph . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Example of partially ordered set . . . . . . . . . . . . . . . . . . . . . . 19

2.6 Example of concept hierarchy . . . . . . . . . . . . . . . . . . . . . . . . 23

2.7 Example of SDA diagram for the treatment of hypertension . . . . . . . 36

2.8 Clinical algorithm on hypertension published by the Institute for Clinical

Systems Improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1 Equivalence relationship of dosage between Losartan and Valsartan for

some example values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2 Variation of sdose(ax, ay) and s(ax, ay) when increasing the difference of

doses between ax and ay . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Example 1 of determining the similarity between two SDA actions . . . 59

3.4 Example 2 of determining the similarity between two SDA actions . . . 59

4.1 Scheme of the methodology to generate SDA diagrams . . . . . . . . . . 84

4.2 Scheme of the three steps to generate SDA diagrams . . . . . . . . . . . 85

4.3 Example of space of states . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.4 Sets of encounters vs counters . . . . . . . . . . . . . . . . . . . . . . . . 102

4.5 Transposing a decision tree . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.6 Two exceptions to the general case when performing a pull-up . . . . . . 113

4.7 Example of updating a therapeutic sequence (1) . . . . . . . . . . . . . 113

4.8 Example of updating a therapeutic sequence (2) . . . . . . . . . . . . . 114

ix



LIST OF FIGURES

4.9 Example of updating a therapeutic sequence (3) . . . . . . . . . . . . . 115

4.10 Example of updating a therapeutic sequence (4) . . . . . . . . . . . . . 115

4.11 Storage and recovery of encounters in the generation of the SDA diagram 117

4.12 Unification of SDA actions . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.1 Developing a SDA diagram with SDA Lab . . . . . . . . . . . . . . . . . 127

5.2 Introducing the background knowledge related to decisions with SDA

Lab v1.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.3 Comparison of time cost with and without background knowledge . . . 130

5.4 Comparison of time cost between the incremental and the non-incremental

approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.5 Evolution of the cost of identifying states when incorporating the first

200 encounters to a SDA diagram . . . . . . . . . . . . . . . . . . . . . . 134

5.6 Evolution of the cost of determining therapeutic sequences when incor-

porating the first 200 encounters to a SDA diagram . . . . . . . . . . . . 135

5.7 Linear graphs of average similarity and number of elements in the SDA

diagram for each pathology for different values of δ . . . . . . . . . . . . 139

5.8 Linear graph of average similarity and number of elements in incremental

SDA diagrams for hypertension during 2009 . . . . . . . . . . . . . . . . 140

5.9 SDA diagram for the treatment of Hypertension (HT) obtained from

patients in 2009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.10 SDA diagram for the treatment of Diabetes Mellitus (DM) obtained from

patients in 2009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.11 SDA diagram for the treatment of HT+DM obtained from patients in

2009 (states based on the stage of the treatment) . . . . . . . . . . . . . 145

5.12 SDA diagram for the treatment of HT+DM obtained from patients in

2009 (states based on the level of control of the disease) . . . . . . . . . 146

5.13 SDA diagram for the treatment of HT obtained from encounters in Jan-

uary of 2009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.14 SDA diagram for the treatment of HT obtained from encounters in

January-February of 2009 . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.15 SDA diagram for the treatment of HT obtained from encounters in

January-March of 2009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

x



LIST OF FIGURES

5.16 SDA diagram for the treatment of HT obtained from encounters in

January-April of 2009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.17 SDA diagram for the treatment of HT obtained from encounters in

January-May of 2009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.18 SDA diagram for the treatment of HT obtained from encounters in

January-June of 2009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.19 SDA diagram for the treatment of HT obtained from encounters in

January-July of 2009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

xi



LIST OF FIGURES

xii



List of Tables

2.1 Example of undirected graph represented as a table . . . . . . . . . . . . 16

2.2 Example of labeled hypergraph represented as a table . . . . . . . . . . 17

2.3 Example of Layered Partial Order (LPO) represented as a table . . . . . 22

2.4 Example of concept hierarchy represented as a table . . . . . . . . . . . 23

2.5 Simplified formal description of the EOC data model . . . . . . . . . . . 34

3.1 State constraints graph for HT (a part of) . . . . . . . . . . . . . . . . . 45

3.2 State terms partial order for HT (a part of) . . . . . . . . . . . . . . . . 46

3.3 Semantic decisions hypergraph for HT (a part of) . . . . . . . . . . . . . 48

3.4 Decisions partial order for HT (a part of) . . . . . . . . . . . . . . . . . 49

3.5 Pharmacological actions hierarchy for HT (a part of) . . . . . . . . . . . 53

3.6 Similarity values for the drugs in each therapeutic group of the treat-

ments of hypertension and diabetes mellitus . . . . . . . . . . . . . . . . 56

3.7 State constraints graph for HT . . . . . . . . . . . . . . . . . . . . . . . 62

3.8 State terms partial order for HT . . . . . . . . . . . . . . . . . . . . . . 62

3.9 Semantic decisions hypergraph for HT . . . . . . . . . . . . . . . . . . . 63

3.10 Decisions partial order for HT . . . . . . . . . . . . . . . . . . . . . . . . 64

3.11 Action hierarchy for HT . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.12 State terms partial order for DM . . . . . . . . . . . . . . . . . . . . . . 70

3.13 Semantic decisions hypergraph for DM . . . . . . . . . . . . . . . . . . . 70

3.14 Decisions partial order for DM . . . . . . . . . . . . . . . . . . . . . . . 71

3.15 Action hierarchy for DM . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.16 State terms partial order for HT+DM (1) . . . . . . . . . . . . . . . . . 74

3.17 State terms partial order for HT+DM (2) . . . . . . . . . . . . . . . . . 75

3.18 Semantic decisions hypergraph for HT+DM . . . . . . . . . . . . . . . . 76

xiii



LIST OF TABLES

3.19 Decisions partial order for HT+DM . . . . . . . . . . . . . . . . . . . . 77

3.20 Action hierarchy for HT+DM . . . . . . . . . . . . . . . . . . . . . . . . 78

4.1 Example of ranking of states according to their quality during the iden-

tification process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2 Example of ranking of states according to their quality during the incre-

mental identification process . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.3 Summary of operations with Decision Trees (DTs) and the stored en-

counters for each possible situation . . . . . . . . . . . . . . . . . . . . . 119

4.4 Parameters of the procedures of identification of states and determina-

tion of therapeutic sequences . . . . . . . . . . . . . . . . . . . . . . . . 123

5.1 Results of average similarity and number of elements in the SDA diagram

for each pathology for different values of δ . . . . . . . . . . . . . . . . . 137

xiv



List of Acronyms

ATC Anatomical Therapeutic Chemical

BMI Body Mass Index

BP Blood Pressure

CA Clinical Algorithm

CPG Clinical Practice Guideline

DBP Diastolic Blood Pressure

DM Diabetes Mellitus

DT Decision Tree

ECG Electrocardiography

EOC Episode Of Care

GOT Glutamyl Oxaloacetic Transaminase

GPT Glutamyl Pyruvic Transaminase

HT Hypertension

LPO Layered Partial Order

LVH Left Ventricular Hypertrophy

OHD Oral Hypoglycemic Drug

SBP Systolic Blood Pressure

SDA State Decision Action

xv



LIST OF ACRONYMS

xvi



1

Introduction

Clinical Practice Guidelines (CPGs) (BGK+02) are medical documents that guide de-

cisions and criteria regarding diagnosis, management, and treatment in specific areas

of health-care based on an examination of current evidence. In general, they gather

all the available evidence related to a disease. Their main aim is to support and pro-

mote good clinical practice but they are also used to provide a homogeneous prac-

tice, to improve the quality, the equality and the equity of patient care, to avoid

several kinds of risk and to reduce costs. Most of the CPGs include Clinical Algo-

rithms (CAs) (SfMDM92; Had95) which are flowcharts that graphically summarize

some of the medical procedures described in the guideline.

CPGs are usually produced at national or international levels by medical associa-

tions or governmental bodies which are based on scientific rigor, employing systematic

reviews and meta-analyses (GR93). Generally, the development of CPGs represents a

laborious task that implies the cooperation of several health care experts of different

specialties. Moreover, the manual generation of CPGs suffers from other drawbacks

due to the individual differences of each patient or the differences on the treatment

depending on the presence of comorbidities (VSS+09).

Some approaches have been carried out to automatically induce part of the knowl-

edge contained in CPGs from the hospital databases, specially procedural knowledge

(MSL+08). These approaches are not necessarily based on the medical evidence but on

the experience of the medical daily practice. Some work has been done on the induction

of clinical pathways represented as Petri nets (MSSvdA08; MSL+08) which is based on

a technique called workflow mining (vdAvDH+03). However, the structures induced by

1



1. INTRODUCTION

those systems are not explicit medical structures that doctors are familiar with. Other

approaches (RLVT08; BRLV12) directly generate CAs which are pure medical struc-

tures. Although these approaches have obtained good results in concrete medical appli-

cations, they suffer from two major drawbacks. On the one hand, the current algorithms

to induce CAs are only based on statistical measures and do not consider any kind of

medical or clinical background knowledge which is not explicit in the hospital databases.

However, attending to the indications of this knowledge it is essential to guarantee

medical correct and comprehensible structures (LVRC07; LVRC12b; LVRB12). On the

other hand, they are not able to deal with incremental data which is of great impor-

tance in medicine because the hospital databases are being constantly updated with

new information generated in daily clinical practice.

The objective of this thesis is to propose a methodology to induce medically correct

and comprehensible CAs represented using the State Decision Action (SDA) knowledge

model (Ria07; BRLV12) from hospital databases that fulfill the Episode Of Care (EOC)

data model (Ria10). The methodology considers the relevant background knowledge of

the domain, previously validated by health care experts, which is represented using

different kinds of structures: graphs, hypergraphs, layered partial orders and concept

hierarchies. Moreover, the methodology is able to work in an incremental way, so that

the CAs generated are updated as soon as new data arrives.

The main contributions of the thesis are the following:

Contribution 1: Formalization of background knowledge structures that support

the automatic induction of medically correct and comprehensible CAs.

Contribution 2: Construction of a background knowledge repository for the dis-

eases of hypertension (ohhs03), diabetes mellitus (CL08) and the comorbidity of both

diseases (MSRS07).

Contribution 3: Development of both an incremental and a non incremental

methodology to induce medically correct and comprehensible CAs based on medical

background knowledge.

Contribution 4: Application of these methodologies to automatically generate

SDA diagrams representing correct and comprehensible CAs for the long term man-

agement of hypertension, diabetes mellitus and the comorbidity of both diseases in the

primary care centers of the SAGESSA Health-Care Group (SAG).

2



The different hospital databases of patients and other medical resources used in

this thesis belong to the SAGESSA Health-Care Group. During the development of

this thesis we have been assisted by health care professionals from SAGESSA who were

one of the main sources of expertise and experience during the knowledge acquisition

process, previous to the construction of the repository of background knowledge. These

health care professionals also supervised the medical validity of the thesis and they

helped in the analysis of the partial and the final results obtained.

The structure of this document is the following:

Chapter 1: An introduction to the thesis, its general objective, the main contri-

butions and the structure of the document.

Chapter 2: Analysis of the current state of the art of the different techniques,

methodologies, structures and models related to the topics of this thesis.

Chapter 3: Formalization of the medical background knowledge needed to solve

each one of the problems involved in the automatic induction of CAs (contribution 1)

and presentation of a repository of background knowledge for hypertension, diabetes

mellitus and the comorbidity of both diseases (contribution 2).

Chapter 4: Proposal of non-incremental and incremental algorithms to solve the

two main problems in the automatic induction of CAs using background knowledge,

and their integration into a global methodology to generate CAs (contribution 3).

Chapter 5: Set of tests regarding the performance of the background knowledge

and incrementality, the adherence of the results to the database and related medical

issues, the analysis of the results and the presentation of the final SDA diagrams for

three chronic pathologies (contribution 4).

Chapter 6: Conclusions and final discussion about the thesis.

Chapter 7: Future research lines.

3
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2

State of the art

The automatic induction of procedural knowledge from hospital databases is a medi-

cal informatics problem which has been object of research using several approaches in

the bibliography. In our approach, the knowledge structures used are SDA diagrams

representing clinical algorithms about long term treatments. These SDA diagrams are

induced from hospital databases that follow the EOC data model. The induction of

these knowledge structures follows a complex procedure involving clustering and deci-

sion making techniques. During the induction of SDA diagrams, we consider background

knowledge of the domain in order to assure the medical correctness of the results. This

background knowledge may be represented using tools like graphs, partial orders, con-

cept hierarchies, etc. Moreover, if the induction of SDA diagrams is made incremental,

our methods will be able to efficiently cope with the arrival of new data to the hospital

databases.

All the concepts and techniques involved in the knowledge-based, incremental, and

automatic induction of SDA diagrams are presented in the following sections together

with a review of the most relevant related bibliography.

2.1 Clustering

Clustering is the mathematical problem of, given a set of patterns, classify them into

classes (clusters), so that similar patterns belong to the same cluster and dissimilar

ones belong to different clusters.

5



2. STATE OF THE ART

Formally speaking, a clustering problem (X, C) consists of a domain of patterns X

and a set of clusters C. Each cluster Ci ∈ C contains a subset of the patterns in X.

Clustering is a common practice in health care, for example classifying profiles of

patient, defining health care patient states within the treatment of a disease, grouping

different kinds of features about patients, risk factors or drugs.

2.2 Decision making

Decision making is the mathematical problem of, given a situation, choosing one action

out of a set of actions to be performed for that situation.

Formally speaking, a decision problem (X, D, f) consists of a domain X, a set of

decisions D, and a decision function f : X→ D. The problem of decision is equivalent

to the problem of classification (Jam86).

In medicine, decisions are made continuously with different purposes: screening,

diagnosing, prognosing, drug and therapy prescription, etc. Through the years, multiple

structures have been proposed to formalize these decision processes. They range from

statistical approaches as Bayesian Networks (LvdGAH04; VdCFL07) or probabilistic

models (DH04) to symbolic approaches as decision trees (GC03; PKSR02; Tur09),

decision tables (Shi97) or decision rules (CN89).

2.3 Clustering algorithms

The clustering problem has been widely treated in artificial intelligence. It is raised

as the unsupervised classification of instances (patterns, observations, data items, or

feature vectors) into classes (clusters) usually based on a proximity measure or, in a

more general way, on the properties that data share.

Formally, an instance x is a single data item which consists of a vector of m

measurements x = (a1(x), ..., am(x)). Each position i of the vector corresponds to

a certain attribute or feature ai which has a value ai(x) for the instance x. An in-

stance set (or data set) is denoted X = {x1, ..., xn} where the ith instance is denoted

xi = (a1(xi), ..., am(xi)). Each instance xi is classified into a cluster Cj of a finite set

of clusters C = {C1, ..., Ck}. A cluster can be viewed as a source of instances whose
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distribution in the space of features is governed by a probability density specific to the

cluster.

Clustering is used to solve very different kinds of problems, thus the bibliogra-

phy is full of different clustering algorithms. Several attempts have been made to

classify clustering algorithms (JMF99; KP04; XW05). One of the most typical classi-

fications is between hard-clustering (McQ67; KR90; Hua98), fuzzy-clustering (Dun73)

or overlapping-clustering (Lel94; RD00; Cle04; BKG+05; CH06; FGK+09).

In hard-clustering each instance is assigned to a single cluster. We attempt to seek

a k-partition of X, C = {C1, ..., Ck} (k ≤ n) such that:

• Ci 6= ∅, i = 1, ..., k

•
⋃k
i=1Ci = X

• Ci ∩ Cj = ∅, i, j = 1, ..., k and i 6= j

Some examples of hard-clustering can be found in (McQ67; KR90; Hua98).

Conversely, the fuzzy-clustering methods propose an organization in which each in-

stance participates to the definition of each cluster. An instance is allowed to belong

to all clusters with a degree of membership ui,j ∈ 0..1, which represents the member-

ship coefficient of the jth instance in the ith cluster and satisfies
∑k

i=1 ui,j = 1, ∀j
and

∑n
j=1 ui,j < n, ∀i. The most popular fuzzy clustering algorithm is fuzzy c-means

(FCM) (Dun73).

Finally, in overlapping-clustering rather than assigning an instance to only one

cluster, we allow an instance to belong to one or several clusters, final clusters thus

intersect. We attempt to seek a covering of X, C = {C1, ..., Ck} (k ≤ n) such that:

• Ci 6= ∅, i = 1, ..., k

•
⋃k
i=1Ci = X

• x ∈ Ci 6⇒ x /∈ Cj , i, j = 1, ..., k and x ∈ X

Some examples of overlapping-clustering are axial-k-means algorithm (Lel94), pyra-

midal clustering (RD00), PoBOC (Cle04), MOC (BKG+05), OPC (CH06) and the

graph-based clustering method in (FGK+09).

7
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Another typical classification of clustering algorithms is among partitioning meth-

ods and hierarchical methods, although several less important approaches have been

carried out like density-based methods, grid-based methods or model-based methods.

Partitioning methods classify n instances into k clusters, where k is specified by

the user. The partitional techniques usually produce clusters by optimizing a criterion

function defined either locally (on a subset of the instances) or globally (defined over

all of the instances). The most intuitive criterion function in partitional clustering

techniques is the squared error criterion. The k-means (McQ67) is the simplest and

most commonly used algorithm employing a squared error criterion. It starts with a

random initial partition and keeps reassigning the instances to clusters based on the

similarity between the instance and the cluster centers until a convergence criterion

is met. Other similar methods are k-medoids (or PAM), clara (Clustering LARge

Applications) (KR90) and k-modes (Hua98).

Hierarchical clustering builds a cluster hierarchy also known as a dendrogram. Ev-

ery cluster node contains sibling clusters which partition the points covered by their

common parent. Such an approach allows exploring data on different levels of granular-

ity. Hierarchical clustering methods are categorized into agglomerative (bottom-up) as

agnes (AGglomerative NESting) (KR90) and divisive (top-down) as diana, Divisive

Analysis (KR90). An agglomerative clustering starts with one-point (singleton) clusters

and recursively merges the two (or more) most appropriate clusters. A divisive cluster-

ing starts with one cluster of all data points and recursively splits the most appropriate

cluster. The process continues until a stopping criterion (frequently, the requested num-

ber k of clusters) is achieved. Some examples of other kinds of hierarchical clustering

algorithms are cobweb (Fis87), cure (SGS98), birch (TZL96), Chameleon (GKK99),

rock (GRS00) and the overlapping pyramidal clustering (RD00).

Clustering is a common technique applied in lots of domains in biomedicine. It has

been used in bioinformatics in order to group genes (TBK09), in medical image pro-

cessing (MS99) but also in the health care domain. Some work has been done applying

clustering methods to group different kinds of risk factors (SvLTO02; RGO+04; Poo07;

AP09) and respiratory parameters (BAL+01). Concerning diseases, in (MAEB04)

spacetime clustering is examined amongst cases of lymphoma in children. (KN08)

proposes a new clustering technique based on Ant Colony Optimization which is used

to classify types of arrhythmia. A conceptual clustering method is applied over cancer

8
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data in (dV96). And (PAKS09) presents Onto-clust, a methodology that combines

clustering analysis and ontological methods in order to identify groups of comorbidities

for developmental disorders.

2.4 Decision making algorithms

Artificial intelligence has a long tradition inducing decision functions. Having a set of

instances (patterns, observations, data items, or feature vectors) and a set of decisions

(classes, or actions), a decision function is automatically learned such that given a

certain instance it is able to propose a decision. This methodology is also referred to

as supervised classification.

Formally, an instance x is a single data item which consists of a vector of m questions

and one decision x = (q1(x), ..., qm(x), dx). Each position i of the first m positions of

the vector corresponds to a certain question or test qi which has a value qi(x) for the

instance x. The last position corresponds to a certain decision dx for this instance. An

instance set (or data set) is denoted X = {x1, ..., xn} where the ith instance is denoted

xi = (q1(xi), ..., qm(xi), dxi).

There are several mechanisms to represent decisions, which can be induced from

data (KZP06). Some mechanisms are logic-based as decision trees (PKSR02; GC03;

Tur09) and decision rules (CN89), some are perceptron-based as single (FS99) or

multi layered (Zha00) perceptrons and RBF networks (RH01), some are statistical ap-

proaches as Bayesian Networks (LvdGAH04; VdCFL07) and some others are instance-

based (CH67) or support vector machines (Bur98). In this thesis we focus on Decision

Trees (DTs).

A tree is a mathematical concept that denotes a simple, undirected, connected and

acyclic graph. The edges are known as branches, the vertices of order 1 are called leaves

and the rest of the vertices, internal nodes. A rooted tree is a tree in which a special

node is singled out. This node is called root. In such kind of trees, nodes which are

one edge away from a given node n are called successors of n.

DTs (PKSR02; GC03; Tur09) are rooted trees used as decisional structures to solve

a decisional problem (X, D, f). Each internal node contains a question qi taken from

a set of questions Q on the elements of X that represents the function qi : X → ∆i

such that any element x ∈ X is given an answer qi(x) in the answer domain ∆i. Each
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internal node with question qi represents a partition of the domain ∆i and it has as

many successors as parts are in that partition. Each branch leading from an internal

node qi to a successor of qi is labeled with one of the possible parts of the partition

that the internal node represents. The leaves of the DT contain final single decisions

from the set D.

Figure 2.1 depicts an example of a simple DT for the treatment of hypertension. It

contains sequences of questions that lead to two alternative decisions Lifestyle modi-

fication and Lifestyle modification+Pharmacological treatment. The DT uses question

stage, meaning the stage of Hypertension (HT) in which the analyzed patient is, with

answers pre-HT, 1 and 2, 3 and question risk group, meaning the level of health fragility

of the analyzed patient, with answers A, B and C.

Figure 2.1: Example of decision tree

In a decision problem (X, D, f), a DT may act as the decision function f . Given

an instance x ∈ X, such that qi(x) = vi where vi is the answer to question q1 for x,

the DT determines a path from the root node to a certain leaf. To decide which path

corresponds to instance x, at each internal node ni containing a question qi, the next

node of the path ni′ is the successor connected to ni by the branch labeled δj such

that δj ∈ ∆i and vi ∈ δj (i.e., at each internal node the branch whose label matches

the answer of the question for x is followed). This process is repeated until the path is
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completed and, thus, a leaf with a final decision d is reached.

Each path from the root to a leaf might be seen as a constraint over the answers of

the questions in the path expressed as a conjunction. It is equivalent to a rule {q1(x) ∈
δ1} ∧ {q2(x) ∈ δ2} ∧ . . . ∧ {qn(x) ∈ δn} → dx where qi is the question corresponding

to the ith node of the path, each δi is one of the different parts of the partition ∆i,

and dx ∈ D is the decision contained in the leaf confirming that all the elements x ∈ X

arriving to this leaf satisfy f(x) = dx.

For example, the DT in figure 2.1 is used to make a decision on a new instance

(patient) x starts asking question stage. If stage(x)=1 the instance goes down through

the left branch labeled pre-HT, 1. According to the DT, the next question to ask is risk

group. Supposing that risk group(x)=A we finally make decision Lifestyle modification.

Although DTs can be build by hand, one of the main processes to automate the

construction of DTs is by induction or supervised learning. This means that, given

a set of instances X and a set of decisions D, the DT is automatically built using an

inductive learning algorithm.

The various heuristic methods to induce DTs can be divided into top-down ap-

proaches and bottom-up approaches, although other alternatives exists like hybrid and

tree growing-pruning approaches (SL91).

Top-down is the strategy of starting from the root node and generating the suc-

cessive internal nodes of the tree until reaching the leaves. All the data set used to

generate the DT is placed in the root node and then one of the questions is selected

to split them into the different branches of the node. This selection is done by means

of a node splitting rule. The procedure is repeated for the successors and so on until

the algorithm decides to place a leaf. For example, when a certain percentage of the

instances have the same decision. When a leaf is placed, a decision is made for all the

instances in this leaf. Usually, the decision made is the one with the highest proba-

bility. Most of the research is concentrated in the area of finding the splitting rule.

One of the main approaches followed is using the information gain (Qui86; Qui93).

The information gain criterion measures the amount of information (SW48) gained by

partitioning the data set according to the answers of a single question. This is to say,

the information gain of a given question qi with respect to the decision set D is the

reduction of uncertainty about the decision to make when the value of qi is known. The

11
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uncertainty about the decision set D is measured by the entropy E(D). We define the

entropy of D in equation 2.1.

E(D) = −
m∑
i=1

Pr(D = di) log2(Pr(D = di)) (2.1)

If the value of qi is already known, we define the uncertainty about D by the

conditional entropy of D given qi, E(D|qi) in equation 2.2.

E(D|qi) =
∑
δjin∆i

Pr(qi = δj)E(D|qi = δj)) (2.2)

Thus, the information gain of qi with respect to D is defined as equation 2.3.

I(D; qi) = E(D)− E(D|qi) (2.3)

One of the most famous DT inductive algorithms based on the concept of informa-

tion gain is ID3 (Qui86). Essentially, it builds the tree by computing at each internal

node the information gained when splitting the data set using each of the questions

and selecting the one that maximizes the gain. The main disadvantage of using the

information gain is that it has a strong bias in favor of the questions with many an-

swers. Another algorithm called C4.5 (Qui93) solves this by using the so-called gain

ratio criterion. The idea is to use the gain ratio GR(D; qi) in equation 2.4 to select the

best question instead of the information gain.

GR(D; qi) =
I(D; qi)

S(D; qi)
(2.4)

In equation 2.4, S(D; qi) is known as the split information which is sensitive to how

wide and uniform the partition induced by a question is. It is defined in equation 2.5.

S(D; qi) =
∑
δjin∆i

Pr(qi = δj |D) log2

1

Pr(qi = δj |D)
(2.5)

The C4.5 algorithm has another important improvement with respect to ID3. This

is the incorporation of pruning strategies to simplify the DT and to avoid overfitting.

In bottom-up approaches (LTG+83) the DT is constructed using some distance

measure, such as Mahalanobis-distance or pair-wise distances between a priori defined

classes. Then, in each step the classes with the smaller distance are merged to form a
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new group. The mean vector and the covariance matrix for each group are computed

from the training samples of classes in that group, and the process is repeated until one

is left with one group at the root. This has some of the characteristics of a hierarchical

clustering approach.

In health care, the problem of decision is so frequent that sometimes it receives

special names as diagnosing (i.e., decide on the sort of disease), assessing a patient

condition (i.e., decide the severity of a disease sign or symptom) or prescribing a treat-

ment (i.e., decide on the proper therapy). In the case of DTs, they have been widely

applied to solve medical problems (PKSR02; GC03). For example, DTs have been used

to predict cesarean delivery (SMC+00), to classify patients as having acute cardiac is-

chemia (LGSD93) or to enhance the tuberculosis prevention in nontraditional settings

and relationships (KMB+05).

2.5 Background knowledge

In machine learning, background knowledge (or prior knowledge) is any information that

can be fed by an expert of the domain or that can be extracted from a source of knowl-

edge, which is not explicitly included in the input data source of the learning process.

Background knowledge is used in complex domains, like medicine, where the input data

source is not enough informative to obtain correct results. This background knowledge

may contain constraints that must be fulfilled, relations or orderings between variables,

additional criteria that must be taken in account, labeled data, expert’s settings of

learning parameters, etc. Including background knowledge in the design of learning

methods is important. Firstly, the role of the expert in asserting background knowl-

edge imposes certain requirements to the way knowledge can be expressed. Attention

has to be paid to aspects of understandability for expressing the required background

knowledge. On the other hand, the use of prior knowledge also creates some new prob-

lems. There is the question of priority. In case of conflict or contradiction between a

partial solution being built from data and the knowledge expressed at the beginning

of the learning process, background knowledge can help to resolve these conflicts and

also to ensure that prior knowledge does not preclude the extraction of really useful

models (SC00).

13



2. STATE OF THE ART

In section 2.5.1 we introduce the tools that have been used in this thesis to represent

background knowledge, then in section 2.5.2 and section 2.5.3 we make a brief survey on

how background knowledge has been incorporated in clustering and decision making,

respectively.

2.5.1 Representation of background knowledge

The way that background knowledge is represented must be simple so that it can be

easily understood by the expert, but it also must be complex enough to gather all the

required knowledge. In the bibliography, background knowledge has been represented

by different means such as graphs, partial orders, concept hierarchies, cost functions,

etc. (LYWZ04; LWY04; COR05; SAM05; BJ06; SY06; MCKD+06; FCPB07; LVRC07;

VMFC09; LVRC12b; LVRB12; XW12).

2.5.1.1 Graphs and hypergraphs

In mathematics, a graph refers to a collection of points called vertices (or nodes) and

a collection of lines called edges connecting pairs of vertices. Any binary relation is a

graph, so graphs can be used to represent essentially any relationship.

Definition 2.5.1 (Graph) A graph G is defined as an ordered pair G = (V,E) com-

prising a set V of vertices and a set E of edges. An edge is defined as a pair of vertices

vi, vj ∈ V .

In an undirected graph the edges are unordered pairs {vi, vj}, so the relations be-

tween pairs of vertices are symmetric and they have no directional character. In a

directed graph (or digraph) the edges are ordered pairs (vi, vj) having a directional

character and which are represented as arrows. A labeled graph is a graph such

that its edges have a label that gives them a different meaning. Figure 2.2 shows

an undirected graph where V = {IN ,BN ,SBDC,SBD,SBDF ,SCDF ,SCD,SCDC}
and E = {{IN ,BN},{BN ,SBDC},{SBDC,SBD},{SBD,SBDF},{SBDF ,SCDF},
{SCDF , SCD}, {SCD,SCDC},{SCDC,IN},{IN ,SCDF},{BN ,SBDF},{SCDC,-

SBDC},{SCD,SBD},{SCDC,SBD},{SCDC,SBDC}}. This graph is a representa-

tion of the direct relations between pharmacological entities of the RxNorm, extracted

from (BP09).
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Figure 2.2: Example of undirected graph

Figure 2.3 depicts a graphical representation of a directed labeled graph where V =

{Patient,AngioV isit,CoronaroExam,Symptom,RiskFactor} and E = {(Patient, -

AngioV isit),(AngioV isit,CoronaroExam),(Patient,Symptom),(Patient,RiskFactor)}.
This graph is a subpart of the Multimedia Temporal Graphical Model presented in (COR05).

Figure 2.3: Example of directed labeled graph

There is an alternative tabular representation which is useful when dealing with

large graphs. For example, table 2.1 contains the graph in figure 2.2. For each pair

of vertices we mark with ’X’ if they are related. In this case, as this is an undirected

graph, we only need to fill the cells above the main diagonal (the cells below the main

diagonal represent the same relationships). On the contrary, for directed graphs, if we

have the edge (vi, vj) we would mark the cell in the row of vi and the column of vj ,
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while if we have (vj , vi) we would mark the cell in the row of vj and the column of vi.

With labeled graphs, we mark the cells with the label of the edge rather than with ’X’.

Table 2.1: Example of undirected graph represented as a table

IN BN SBDC SBD SBDF SCDF SCD SCDC

IN X X X

BN X X X

SBDC X X

SBD X X X

SBDF X

SCDF X

SCD X

SCDC

A hypergraph is a generalization of a graph, where an edge can connect any number

of vertices.

Definition 2.5.2 (Hypergraph) A hypergraph H is defined as an ordered pair H =

(V,E) comprising a set V of vertices and a set E of hyperedges. A hyperedge is defined

as a non-empty subset of V . Therefore, E is a subset of P(V )− ∅.

Figure 2.4 depicts two different graphical representations of a same hypergraph

where V = {EGF ,BRCA1,BRCA2,RB,RAS,myc} and E = {{EGF ,BRCA1,BRCA2,-

RAS},{BRCA1,BRCA2,RB},{RAS,myc}}. This is a subpart of a hypergraph pre-

sented in (MPM10) representing breast cancer knowledge. In the hypergraph, genes

BRCA1, BRCA2 and RB are connected with a relationship called tumor suppressor

gene, EGF , BRCA1, BRCA2 and RAS with a breast cancer relationship, and myc

and RAS with a oncogene relationship.

Figure 2.4: Example of labeled hypergraph
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If we are dealing with large hypergraphs we can represent them in a tabular way

(see table 2.2). Column 1 contains the name of the hyperedge and column 2, the related

vertices. The horizontal lines separate the different sets of related vertices.

Table 2.2: Example of labeled hypergraph represented as a table

breast cancer EGF

BRCA1

BRCA2

RAS

oncogene myc

RAS

tumor suppressor gene RB

BRCA1

BRCA2

Several concepts of graph theory have been widely applied to solve several kinds of

problems in biomedicine (BCM+05; RWL+08; BP09; LXH+10; MPM10). Concretely in

health care, (BCM+05) has applied graph theory to identify instances of deprivation and

high morbidity and mortality in health data sets and in (LXH+10) to study adverse drug

events. Graphs (in some cases simply referred to as relationships between elements)

are also becoming a common tool to represent biomedical knowledge (COR05; BJ06;

VMFC09; XW12). In (COR05) graphs are used in the representation of a clinical

database for cardiology patients. In (XW12), background knowledge, represented using

drug-gene relationships, is used to improve the extraction of pharmacogenomics specific

drug gene relationships from free text.

2.5.1.2 Partial orders and LPOs

In mathematics, a partially ordered set (or poset) formalizes the intuitive concept of

an ordering, sequencing, or arrangement of the elements of a set.

Definition 2.5.3 (Partial order) A relation ≤ is a partial order on a set S if it has:

1. Reflexivity: a ≤ a for all a ∈ S

2. Antisymmetry: a ≤ b and b ≤ a implies a = b, a, b ∈ S

3. Transitivity: a ≤ b and b ≤ c implies a ≤ c, a, b, c ∈ S
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Definition 2.5.4 (Partially ordered set) A partially ordered set P is defined as an

ordered pair (S,≤) where S is called the ground set of P and ≤ is a partial order on

the set S.

Two elements a, b ∈ S are comparable if either a ≤ b or b ≤ a or both.

Given three elements a, b, c ∈ S such that a ≤ b ≤ c then b is said to be between a

and c.

Definition 2.5.5 (Cover) Given a partially ordered set (S,≤) and two elements a, b ∈
S we say a covers b if a ≤ b and there is not any c ∈ S such that a ≤ c ≤ b or if b ≤ a
and there is not other c ∈ S such that b ≤ c ≤ a. In the first case, a is a lower cover

of b (a ≺ b) and in the second case a is an upper cover of b (b ≺ a). We denote c(a)

the set of covers of a (i.e., c(a) = {b ∈ S : a ≺ b or b ≺ a}).

Definition 2.5.6 (Chain) A subset C ⊆ S is called a chain in P = (S,≤) if and only

if for any pair a, b ∈ C, a ≤ b or b ≤ a or both (i.e., C is a totally ordered subset of S).

Definition 2.5.7 (Length) The length of a partially ordered set P = (S,≤) is the

cardinality of the biggest chain in P .

Definition 2.5.8 (Antichain) A subset C ⊆ S is called antichain in P = (S,≤) if and

only if for any pair a, b ∈ C, (a 6= b) neither a ≤ b nor b ≤ a (i.e., C is a totally

unordered subset of S).

Definition 2.5.9 (Width) The width of a partially ordered set P = (S,≤) is the car-

dinality of the biggest antichain in P .

Definition 2.5.10 (Maximal (minimal) element) Given a partially ordered set (S,≤),

an element a ∈ S is called a maximal (or minimal) element if there is none b ∈ S

for which a ≤ b (or b ≤ a). The set of maximal (or minimal) elements of a partially

ordered set P = (S,≤) is denoted MAX(P ) (or MIN(P )).

Hasse diagrams (PS03) are used to represent partially ordered sets. These diagrams

are a graphical rendering of a partially ordered set displayed via the cover relation of

the partially ordered set with an implied upward orientation. A point is drawn for each

element of the ground set of the partially ordered set, and line segments are drawn

between these points according to the following two rules:
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1. If a ≤ b in the partially ordered set, then the point corresponding to a appears

lower in the drawing than the point corresponding to b.

2. The line segment between the points corresponding to any two elements a and b

of the partially ordered set is included in the drawing if and only if b ∈ c(a).

Figure 2.5 depicts an example of a Hasse diagram of the partially ordered set with

S = {0, I, IIA, IIB, IIIA, IIIB, IV } representing stages of breast cancer according

to (BRR07). It is observed, for example, that I ≤ IIA because I appears in a lower

position of the diagram and there is a way of going up from I to IIA. This represents

the meaning that stage I is better than stage IIA, as far as breast cancer is concerned.

By transitive property, we may conclude also that I ≤ IIIB, 0 ≤ IV , etc. but it is

impossible to say whether IIA ≤ IIB or IIB ≤ IIA.

(a) Hasse diagram (b) Left-right Hasse diagram

Figure 2.5: Example of partially ordered set

In health care, these diagrams are usually represented as left-right Hasse diagrams

as the one depicted in figure 2.5(b) obtained from (BRR07).

Given a partially ordered set P = (S,≤) the order relation ≤ is called a preorder

or a quasiorder if it does not necessarily satisfy the antisymmetry property.

Definition 2.5.11 (Preorder) A relation ≤ is a preorder on a set S if it has:
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1. Reflexivity: a ≤ a for all a ∈ S

2. Transitivity: a ≤ b and b ≤ c implies a ≤ c, a, b, c ∈ S

Notice that partial orders are particular cases of preorders.

Given a partially ordered set P = (S,≤) the order relation ≤ is called a total order

if all the elements are comparable with ≤.

Definition 2.5.12 (Total order) A relation ≤ is a total order on a set S if it has:

1. Reflexivity: a ≤ a for all a ∈ S

2. Antisymmetry: a ≤ b and b ≤ a implies a = b, a, b ∈ S

3. Transitivity: a ≤ b and b ≤ c implies a ≤ c, a, b, c ∈ S

4. Comparability (trichotomy law): ∀a, b ∈ S, {a ≤ b ∨ b ≤ a}

A set S equipped with a total order relation ≤ is called a totally ordered set or

linearly ordered set. Notice that total orders are particular cases of partial orders.

In medicine, an example of partial order is the previously mentioned stages of breast

cancer (BRR07), an example of preorder is the preference of selection of questions

during an encounter according to the health risk of the medical test needed to answer

them and an example of total order is fever. In the first case, the possible stages of

breast cancer are 0, I, IIA, IIB, IIIA, IIIB and IV and the comparison of stages among

the patients must be made according to figure 2.5 and it is not always possible to

determine which patient is worst according to these stages (e.g., patients in stage IIA

are not comparable with patients in IIB). In the second case, a question q1 entails more

risks than a question q2 (i.e., q2 ≤ q1) or their risks can be uncertain (i.e., neither

q1 ≤ q2 nor q2 ≤ q1). But if q1 and q2 are obtained using a same medical test we know

that the health risk of q1 and q2 is exactly the same (i.e., q1 ≤ q2 and q2 ≤ q1). In the

third case, fever can be expressed as the body temperature in Celsius degrees ( ◦ C) or

by the terms normal (36.5-37.5 ◦ C), hypothermia (<35.0 ◦ C), fever (37.5-38.3 ◦ C),

hyperthermia (37.5-38.3 ◦ C) and hyperpyrexia (40.0-41.5 ◦ C) and, therefore, it is

always possible to determine which is the patient with a higher temperature among a

group of patients.

Partial orders have many applications in biomedicine. Partial orders can be induced

from medical data in order to extract knowledge about implicit precedences among
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these data. For example, (BRR07) describes an algorithm that uses data about patient-

professional encounters in order to induce partial orders on the patient conditions of

a disease. In (SA04), partial orders are induced from an ontology of biomedical terms

and in (UFM05) partial orders are extracted from unordered 0-1 data in the domain

of medical genetics. Moreover, partial orders can be used to represent background

knowledge in medical decision making. In (LVRC07), a partial order representing the

medical protocol of asking questions in the treatment of a certain disease is used to

increase the acceptability of decision trees in medicine and in (LVRB12) the same

problem is solved by means of partial orders which may represent several health care

criteria such as economic cost, health-risk or comfortability.

Definition 2.5.13 (Layered partial order) A Layered Partial Order (LPO) is a partial

order ≤ that satisfies the following property:

• ∀a, b ∈ S, if a and b are not related (i.e., neither a ≤ b nor b ≤ a), then c(a) = c(b)

They are called layered partial orders because the elements in S are strictly arranged

in layers. A layered partial order determines n disjoint antichains: C1, C2, ..., Cn such

that
⋃n
i=1Ci = S and for each pair of elements (a, b) ∈ Ci × Cj , where i < j, we have

that a ≤ b. Notice that if j = i + 1, we also have that a ≺ b. Each antichain Ci

(i = 1..n) is called a layer of the partial order. An element a ∈ S is in layer i-th if

a ∈ Ci. The layer of an element a ∈ S is denoted as `(a) and it is represented by a

positive number. A layered partial order with n layers is called n-layered partial order

(n-LPO).

For example, the partial order depicted in figure 2.5 is an LPO (concretely a 5-

LPO). As it can be observed, the elements of this partial order are arranged in the

following layers:

{0}, {I}, {IIA, IIB}, {IIIA, IIIB}, {IV }

Observe that the covers of the elements in the same layer are identical and different

from the covers of the elements in other layers. For example, c(IIA) = c(IIB) =

{I, IIIA, IIIB} and c(IIIA) = {IIA, IIB, IV }. The elements within each layer are

not related to each other (e.g., IIA 6≤ IIB and IIB 6≤ IIA) and they are all related

to each of the elements of the next (or previous) layers (e.g., IIA is related to each
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element of the previous layers (0 ≤ IIA, I ≤ IIA) and to each element of the next

layers (IIA ≤ IIIA, IIA ≤ IIIB, IIA ≤ IV ).

Due to its structuring in strict layers of priority, LPOs can be easily represented

as tables. For example, table 2.3 represents the same LPO of figure 2.5. Column 1

contains the number of the layer (`) and column 2, the elements in each layer. The

horizontal lines separate the different layers of the LPO.

Table 2.3: Example of LPO represented as a table

1 0

2 I

3 IIA

IIB

4 IIIA

IIIB

5 IV

It is common to use LPOs to represent medical knowledge that involves partial

orders (BRR07; LVRC07; LVRB12). Their composition in layers of priority makes

them easier to understand and also more natural to medical problems. Therefore, in

the rest of the document, when we are referring to a partial order we are actually

meaning an LPO.

2.5.1.3 Concept hierarchies

Concept hierarchies (taxonomies or is-a hierarchies) organize data or concepts in hier-

archical forms expressing knowledge in concise, high level terms, and facilitating mining

knowledge at multiple levels of abstraction (Lu97). Although they are defined as par-

tially ordered sets, they are explained in an independent section as they usually do not

represent an ordering but semantic relationships of subsumption.

Definition 2.5.14 (Concept hierarchy) A concept hierarchy H is a partially ordered

set (H,≤) where H is a finite set of concepts and ≤ represents a subsumption relation-

ship between concepts.

The partial order ≤ of a concept hierarchy reflects the special general relationship

between concepts, which is also called subsumption relation, subconcept-concept rela-

tion or is-a relation. If a ≤ b we say that a is a subconcept of b and b is a superconcept

of a.

22



2.5 Background knowledge

Since partially ordered sets can be visually sketched using Hasse diagrams, we can

also use this kind of diagrams to express concept hierarchies. In the case of concept

hierarchies, their Hasse diagrams are usually drawn upwards so if a ≤ b then the point

corresponding to a appears higher in the drawing than the point corresponding to b.

Figure 2.6 depicts an example of a concept hierarchy represented as a Hesse diagram

that classifies some diuretic drugs according to the Anatomical Therapeutic Chemical

(ATC) Classification System (fDSM). In this example, C03AA Thiazides, plain is a

subconcept of C03 DIURETICS, and C03BA Sulfonamides, plain is a superconcept of

C03BA04 chlortalidone. Therefore a plain thiazide is a diuretic drug, and chlortalidone

is a plain sulfonamide drug.

Figure 2.6: Example of concept hierarchy

Concept hierarchies may be very large and it can be difficult to visualize them using

a Hesse diagram. Therefore, we can choose a tabular representation. The previous

hierarchy is represented in a tabular way in table 2.4.

Table 2.4: Example of concept hierarchy represented as a table

C03 DIURETICS

C03A LOW-CEILING DIURETICS, THIAZIDES

C03AA Thiazides, plain

C03AA03 hydrochlorothiazide

C03B LOW-CEILING DIURETICS, EXCL. THIAZIDES

C03BA Sulfonamides, plain

C03BA04 chlortalidone

C03BA11 indapamide

Definition 2.5.15 (Nearest ancestor) A concept y is called the nearest ancestor of

concept x if x, y ∈ H and x ≤ y, x 6= y, and there is no other concept z ∈ H such that

x ≤ z and z ≤ y (i.e, x is a lower cover of y).
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In the example displayed in table 2.4, C03AA Thiazides, plain is the nearest ances-

tor of C03AA03 hydrochlorothiazide.

Definition 2.5.16 (Regular concept hierarchy) A concept hierarchy H = (H,≤) is

regular if there is a greatest element in H and there are n sets H1, H2, ...,Hn such that,

H =

n⋃
l=1

Hl and Hi ∩Hj = ∅ for i 6= j

and, if a nearest ancestor of a concept in Hi is in Hj, then the nearest ancestors of the

other concepts in Hi are all in Hj.

The concept hierarchy in table 2.4 is regular.

Another important term for describing the degree of generality of concepts is the

level. Levels are assigned a number. We assign zero to the level of the greatest element

(called the most general concept) of H, and the level of each other concept is assigned

one plus its nearest ancestor’s level number.

Due to the layered structure of a hierarchy, we notice that all the concepts with

the same level number must be in set Hl for one and only one l, l = 1, ..., n. We thus

simply call Hl as level l of the concept hierarchy.

The Hasse diagram of a concept hierarchy is actually a tree. Therefore, all the

terminology for a tree such as node, root, path, leaf, parent, child, sibling, etc. is

applicable to the concept hierarchy as well.

Definition 2.5.17 (Level name) A level name is a semantic indicator assigned to a

particular level. We denote S the set of level names of a concept hierarchy H.

Definition 2.5.18 (Schema level order) A schema level order of a concept hierarchy

H is a total order < on S such that a < b if there are two concepts x and y such that

x is in Hi whose level name is a and y is in Hj whose level name is b.

For example, in figure 2.6 we have the schema level order specified by the ATC

classification system: therapeutic group < pharmacological subgroup < chemical group

< active principle, where therapeutic group is the name of the level containing the

concept C03 DIURETICS ; pharmacological subgroup is the name of the level contain-

ing the concepts C03A LOW-CEILING DIURETICS, THIAZIDES and C03B LOW-

CEILING DIURETICS, EXCL. THIAZIDES ; chemical group, the name of the level
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containing the concepts C03AA Thiazides, plain and C03BA Sulfonamides, plain; and

active principle the name of the level containing the concepts C03AA03 hydrochloroth-

iazide, C03BA04 chlortalidone and C03BA11 indapamide.

Definition 2.5.19 (Nearest common ancestor) A concept z is the nearest common

ancestor of two concepts x and y in a concept hierarchy H if and only if z ≤ x and

z ≤ y and there is not any concept z′ such that z ≤ z′ ≤ x and z ≤ z′ ≤ y.

In the previous example, C03 DIURETICS is the nearest common ancestor of

C03AA Thiazides, plain and C03BA11 indapamide.

In medicine, several approaches have been done on the automatic induction of

concept hierarchies (SWW94), on the automatic classification according to a concept

hierarchy (SAM05; MCKD+06) or on the use of concept hierarchies as background

knowledge (LWY04; LVRC12b). It is common to use concept hierarchies of a standard

classification system or terminology. Some of the most typical systems containing hier-

archies of concepts which can be used as background knowledge are the Unified Medical

Language System (umls) which is a compendium of many controlled vocabularies in

the biomedical sciences (BBB+96), the snomed ct (Systematized Nomenclature of

Medicine – Clinical Terms) which is a systematically organized computer processable

collection of medical terminology covering most areas of clinical information such as

diseases, findings, procedures, microorganisms, pharmaceuticals etc. (LNM+09) and

the Anatomical Therapeutic Chemical (ATC) Classification System which is used for

the classification of drugs (GKHAF09).

2.5.1.4 Other background knowledge structures

Several other mechanisms are used to represent background knowledge as cost functions,

ontologies or co-occurrences.

Cost functions are used to give cost values to the different elements of a set according

to a certain criterion. They are used in optimization problems, where we want to find

the element in the set that optimizes the cost function.

Definition 2.5.20 (Cost function) A cost function f is defined as a function f : S →
D that represents a certain criterion. The elements s ∈ S are evaluated by f which

gives them a cost value in the range D according to the criterion represented. Cost
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functions are used in optimization problems where the objective is to find the element

in S that optimizes the cost function f .

The criterion represented by a cost function may be, for example, an economic

cost, a duration, a level of health-risk, or a combination of several of them. According

to the criterion, the range D of the function can be, for example, a natural number

representing monetary units (euros), temporal units (seconds), abstract units of utility

(utils), etc. Usually, in cases where the cost function has a maximum value, this range

is normalized obtaining a cost function of the type f : S → 0..1 using equation 2.6.

fnorm(x) =
f(x)

maxs∈Sf(s)
(2.6)

Cost functions are given a negative sense, so the higher the cost value of a certain

element is, the worse this element is according to the criterion represented. A cost

function f representing health risk is in the correct sense since a high level of risk

has a negative sense. On the contrary, a cost function f representing patient com-

fortability goes in the opposite sense since a high level of comfortability has a positive

sense. In these cases, we talk of benefit instead of cost. The corresponding function f ′

representing the cost on comfortability should be f ′ = 1− f
In medicine, cost functions have been used to represent different kinds of criteria

such as economic costs (LYWZ04; SY06), health risk (FCPB07) or several other medical

criteria as comfortability or medical adherence (LVRB12).

Ontologies are structural frameworks for organizing knowledge and they are often

used to formally represent complex background knowledge to share.

Definition 2.5.21 (Ontology) An ontology is defined as a structural framework that

represents knowledge as a set of concepts within a domain, and the relationships between

those concepts. Regardless of the language in which they are expressed, most ontologies

describe individuals (instances or ground level objects), classes (concepts), attributes

that individuals and classes may have, and relations in which individuals and classes

can be related to one another.

Ontologies have been widely used to formalize and standardize medical knowledge.

For example, MeSH is the National Library of Medicine’s controlled vocabulary the-

saurus which consists of sets of terms naming descriptors in a hierarchical structure
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that permits searching at various levels of specificity. It contains thousands of descrip-

tors which are arranged in both an alphabetic and a hierarchical structure and with

cross-references. Another example is the metathesaurus of umls which contains over 1

million biomedical concepts (definitions) and 5 million concept names from more than

100 controlled vocabularies like ICD-10, MeSH or snomed ct used in patient records,

administrative data, full-text databases and expert systems.

Some examples of the use of ontologies as background knowledge in medicine are

(FYL+06) and (TBK09) where Gene Ontology annotations are used in bioinformatics

to assist a clustering process, and (RRLV+12) that presents an ontology-based system

that helps health care professionals to determine patient conditions and also to provide

a coordinated action plan which is adapted to the patient needs.

Another type of background knowledge specifies which combinations of values (co-

occurrences) of a set of attributes have high importance for a classification problem.

Definition 2.5.22 (Co-occurrence) A co-occurrence (or typical co-occurrence) is de-

fined as a combination of values of a set (grouping) of attributes that represent a char-

acteristic combination.

For example, co-occurrences have been used as background knowledge in (ZD98)

where the possibility of automating the process of acquiring co-occurrences is explored

and studied in the problem domain of rheumatic diseases.

2.5.2 Background knowledge in clustering

Clustering with background knowledge is also usually referred to as semi-supervised

clustering. We identify four approaches of semi-supervised clustering: constrained clus-

tering, seeded clustering, metric-based clustering and rule-based clustering.

In constrained clustering, background knowledge is represented as constraints that

must be respected during the clustering process. The most typical kind of constraints

are pairwise must-links and cannot-links. A must-link constraint between two instances

means that these two instances should be in the same cluster and a cannot-link means

that they should not be in the same cluster. In (WC10) the cop-cobweb is presented

as a modification of the cobweb clustering algorithm including must and cannot-links.

In (WCRS01) the same procedure is followed with the k-means clustering algorithm

obtaining the so-called constrained k-means (COP-kmeans). An evolved version of
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these constraints is used in (KKM02) to modify a hierarchical agglomerative clustering

algorithm. Another approach based in k-means, uses these kind of constraints with

an associated cost of violating each constraint (BBM+04a). Must-link constraints are

used to cluster documents in (JX06).

Seeded clustering uses some labeled instances (instances that have been previously

assigned to a cluster) as background knowledge. A k-means based approach uses seed

instances in (BBM02; SKP03). In (BBM04b) a hierarchical agglomerative clustering

algorithm uses seed clusters.

In metric-based approaches, an existing clustering algorithm that uses a distance

metric is employed; however, the metric is first trained to satisfy the labels or constraints

in the supervised data. (KKM02) uses an Euclidean distance trained by a shortest-path

algorithm, (BM03) uses string-edit distance learned using Expectation Maximization

(EM), (CCM03) adapts KL divergence with gradient descent and (XNJR03) uses Ma-

halanobis distances trained using convex optimization.

Rule-based clustering represents background knowledge by means of rules that

guide the learning process. The isaac algorithm is modified using classification rules

in (TB99). (VBL09) uses conjunctive rules to introduce additional background knowl-

edge to the ClusDM methodology.

Finally, some approaches combine several of the previous methods. In (BBM04c)

the k-means algorithm is modified (mpck-means) using an approach that uses both

constraints and metric learning and (KK08) uses supervision in terms of relative com-

parisons (e.g., x is closer to y than to z) and also learns the underlying dissimilarity

measure.

2.5.3 Background knowledge in decision making

The most common way of including background knowledge in the induction of decision

mechanisms is by means of cost functions. This approach is known as cost-sensitive

learning. In the case of DTs, they are referred to as cost-sensitive decision trees.

The costs considered in cost-sensitive learning may be of different kinds (Tur00) as

for example, cost of misclassification errors or cost of tests.

The cost of misclassification errors measures the error of making a wrong decision.

For example, the error of sending a patient home when it should have been sent to

ICU. It is usually represented by a cost function e(D,D) where D is the set of possible
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decisions. The error e(di, dj) specifies the cost of making a decision di over an instance,

when it is the correct decision is dj . In (LVRB12) a different approach is presented

using the concepts of type I and type II errors. Type I error represents the relevance

of not making a correct decision (e.g., not accepting a patient to an ICU when it is

required) and type II error represents the relevance of making a wrong decision (e.g.,

discharging a patient when it should remain at the hospital). With this approach

we have two cost functions eI(D) and eII(D) representing type I and type II error

respectively. Most approaches deal with constant error costs (i.e., the same value for

all instances) but costs may be conditional (i.e., they may depend on the nature of the

particular instance, the timing, whether errors have been made with other instances or

the answer of one or more questions of the instances). Some reviews of misclassification

costs are (Elk01; GGR02). In medicine, (LYWZ04; SY06) considers economic costs

and (LVRB12) classifies the most important criteria in medical decision making and

includes some of them as misclassification costs.

The cost of tests measures the cost of obtaining the answer to a certain question.

For example, the cost of answering a question that implies a surgical test may be

greater than the cost of a question that can be answered with a non-invasive test. It

is usually represented by a cost function e(Q) where Q is the set of possible questions.

The error e(qi) specifies the cost of answering question qi for an instance. In these

cases, costs can also be constant or conditional. In the case of conditional costs, they

may depend on the previous questions that have been asked, the answer of the previous

questions, the possible side-effects of the test, etc. In the bibliography, some approaches

use cost of tests usually making a trade-off between a cost function and the typical

information gain measure (Nor89; Tan93). In medicine, (LYWZ04; SY06) considers

economic costs, (FCPB07) also includes the health-risk criterion and (LVRB12) uses

several other medical criteria as comfortability or medical adherence.

There are other kinds of cost which have been less considered in the bibliography

like cost of teacher, cost of intervention, cost of unwanted achievements, cost of com-

putation, cost of cases, human-computer interaction cost or cost of instability (Tur00).

In spite of cost-sensitive learning, there are several other ways to include background

knowledge in decision making. For instance, (Nuñ91) combines cost functions with a

IS-A hierarchy and (Tin98) weights the instances of the dataset. In the health care

domain, (LVRC07) represents the adherence to the medical guidelines as a partial order
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over the questions and makes a trade-off with the information gain. Partial orders are

also used in (LVRB12) to represent medical criteria.

2.6 Incrementality

Incrementality is defined as the process of increasing in number, size, quantity, or

extent. In machine learning, incrementality refers to the property of being able to deal

with new incoming data to revise, if necessary, a previously induced mechanism without

re-inducing it from scratch. In (GC00) Giraud-Carrier states that “a learning task is

incremental if the training examples used to solve become available over time, usually

one at a time”.

Incremental induction is desirable for a number of reasons (Utg94). Most impor-

tantly, revision of existing knowledge presumably underlies many human learning pro-

cesses, such as assimilation and generalization. Secondly, knowledge revision is typically

much less expensive than knowledge creation. For example, incrementality is useful for

serial learning tasks, on the assumption that it is more efficient to revise an existing

hypothesis than it is to generate a hypothesis each time a new instance is observed.

Finally, the ability to revise knowledge in an efficient manner opens new possibilities

for algorithms that otherwise would remain prohibitively expensive.

Incremental learning algorithms are usually motivated basically for these three de-

sirable goals:

1. Cost reduction: The incremental cost of updating the current hypothesis with a

new instance should be much lower than the cost of building a new hypothesis

from scratch. It is not necessary however that the sum of the incremental costs

be less than the execution on the complete database.

2. Independence from the size: The update cost should have a high degree of inde-

pendence to the number of training instances on which the decision mechanism

is based.

3. Independence from the order: The hypothesis produced by the incremental al-

gorithm should depend only on the set of instances that has been used, without

regard to the sequence in which these instance were presented.
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2.6.1 Incremental clustering

The interest in incremental clustering stems from the fact that the main memory usage

is minimal since there is no need to keep in memory the mutual distances between

instances and the algorithms are scalable with respect to the size of the set of instances

and the number of attributes.

One of the most famous incremental clustering algorithms is cobweb (Fis87). It

maximizes a measure called category utility to build a probabilistic hierarchical tree.

The algorithm reads one instance per iteration from a data set and incorporates it into

the tree by descending the tree along an appropriate path to a node where the category

utility is maximal after absorbing the instance and updating statistical information (for

computation of the probabilities) in each node along the way. To find the proper place

to hold the instance, cobweb tries one, or several, or all of the following four possible

operations at each node on the path:

1. place the instance in an existing cluster

2. create a new cluster by itself

3. merge the best two clusters with respect to the values of category utility

4. split a cluster into several clusters by lifting its children one level in the tree to

replace itself

The operation resulting in the largest value of category utility is the final choice on

that node. This procedure is recursively invoked until a leaf node is reached or a new

leaf is created.

Another approach is proposed in (CCFM97) where the number of clusters is fixed.

When a new instance arrives, either it is assigned to an existing cluster or a new cluster

is created while two of the existing clusters are merged. A method based on this ap-

proach is used in (SH01) for document clustering. In (EKS+98) the dbscan clustering

algorithm is adapted to deal with incremental data. The incremental algorithm for

nominal data in (SSK04) is based on a metric on the set of partitions of a finite set of

instances. Other alternative approaches are based on swarm intelligence (LPM06) or

neural networks (HBBC08).
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In some domains, it is possible that not only the data set evolves with the incor-

poration of new instances, but the set of attributes may be dynamic. In (cC05) an

incremental clustering algorithm Core Based Incremental Clustering (cbic), based on

k-means, is presented which is capable to construct a new partition of the data set,

when the attributes set increases.

In medicine, incremental clustering has been applied in several applications, for

example to detect of infectious outbreaks in hospitals (LGCM01) or in the cancer

domain (dV96).

2.6.2 Incremental decision making

Most of research on incremental decision making has been based on improvements of

the ID3 DT induction algorithm (Qui86) both finding a way to compute the infor-

mation gain with minimal spatial cost and guaranteeing that the DTs incrementally

obtained are equal to those that would generate the non-incremental ID3. The first

approach proposed is the ID4 algorithm (SF86) which follows a ID3 based algorithm

and when the relative ordering of the possible questions at a node changes due to

new incoming instances, all subtrees below that node are discarded and have to be

reconstructed, causing that certain concepts are unlearnable. The minimal informa-

tion needed to compute the information gain for a possible question at a node is kept.

This information consists of positive and negative counts for each possible answer to

each possible question at each node. The ID4 algorithm builds the same tree as the

basic ID3 algorithm only when there is a question at each decision node that is clearly

the best choice in terms of its information gain. The ID5 algorithm (Utg88) does not

discard subtrees, but also cannot guarantee that it will produce the same tree as ID3.

The id5r algorithm (Utg89) produces the same tree as ID3 for a data set regardless of

the incremental training order. This is accomplished by recursively updating the tree’s

subnodes. id5r restructures the tree so that the desired question is at the root. The

restructuring process, called a pull-up, is a tree manipulation that preserves consistency

with the observed training instances, and that brings the indicated question to the root

node of the tree or subtree. The advantage of restructuring the tree is that it allows

recalculating the various positive and negative counts during the tree manipulations,

without reexamining the training instances. The improved ITI algorithm (UBC97) also

32



2.7 The EOC Data Model

produces the same tree regardless of the presentation order, or whether the tree is in-

duced incrementally or non incrementally (batch mode). It can accommodate numeric

variables, multiclass tasks, and missing values.

In spite of ID3 based incremental algorithms, other approaches are the incre-

mental cart algorithm (Cra89) which is based on the non-incremental cart algo-

rithm (BFOS84), the stagger algorithm (SRG86) which examines concepts that change

over time (concept drift) or the Very Fast Decision Trees learner (vfdt) (DH00) which

reduces training time for large incremental data sets by subsampling the incoming data

stream.

In medicine, incremental decision making has been applied in the retrieval from

manuals and medical texts (WS06), for on-line prediction of hospital resource utiliza-

tion (NML06) or for patient-dependent seizure detection (Wil05) among others.

2.7 The EOC Data Model

Health care deals with the concept of encounter between the patient and the health

care professionals (RLVT08). An Episode Of Care (EOC) of a particular patient is the

sequence of encounters aiming at curing, stabilizing, or palliating one or several of that

patient’s ailments. Notice that chronic diseases define EOCs that remain open for the

patient’s entire life. Concerning a single encounter, the standard behavior of a health

care professional is to observe the current state of the patient (e.g., patient symptoms,

test results, etc.) and then decide some actions (e.g., prescribe drugs, order tests,

start some medical procedure, etc.). Observe that some evidence may exist that justify

these actions. Therefore within the same encounter, several health care measures may

coexist containing, each one, the evidence to a subset of the actions performed during

that encounter. For example, in the hypertension domain, for a particular encounter

the physician may decide both a drug therapy based on the evidence that the patient

is at high risk of cardiac disease, and a recommendation to modify the patient lifestyle,

due to the presence of cholesterol. A representation model for this minimal information

about the treatment of a chronic patient is the EOC data model (Ria10). A simplified

formalization of it can be seen in table 2.5.

Notice that the data about patient condition, evidences and actions is represented by

means of terms in order to fit the terminology used in the SDA knowledge representation
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Table 2.5: Simplified formal description of the EOC data model

episode of care ← sequence of encounters

encounter ← patient condition + list of health care measures

patient condition ← list of state terms

health care measure ← evidence + action

evidence ← list of decision terms

action ← list of action terms

model (see section 2.8). These terms (or vocabulary items) can be of three sorts: state

terms, decision terms and action terms and they are detailed in the next section. Let

enci be an encounter in the EOC database, we call S(enci) the set of state terms that

define the patient condition in enci, and D(enci) and A(enci) the set of decision terms

and action terms contained in each health care measure in enci.

2.8 The SDA knowledge model

The State Decision Action (SDA) knowledge model (Ria07; BRLV12) is used to repre-

sent procedural knowledge in medicine stressing the concept of simplicity without losing

description capability. It is based on the concept of Clinical Algorithms (CAs) (SfMDM92;

Had95) but also includes all the representation primitives that any CIG (Computer-

interpretable guidelines) system is expected to have (PPT+02; PTB+03; MvdAP07;

IM08) (i.e., actions, decision, patient states, execution states, sequences, concurrences,

alternatives, and loops). The SDA knowledge model is founded on the concept of

term or vocabulary item in the medical domain of the procedural knowledge. These

terms can be of the sort state, decision, or action. State terms define the vocabu-

lary that is used to describe the feasible patient conditions and situations in the area

of interest (e.g., terms as Elevated Blood Pressure or Following Drug Treatment to

establish a differential treatment). Decision terms are the terminology that health

care professionals use to condition the sort of treatment to be followed (e.g., terms as

Secondary Cause Suspected or BP at Goal that may derive the course of professional

activities in one direction or another). Action terms are the way that medical, surgical,

clinical or management activities are defined (e.g., terms as LifeStyle Modifications or

Drug Therapy are respective examples of counsel and prescription, which are two of

the types of medical actions that may appear in the description of a treatment. In a

certain medical context, we denote S, D and A, the sets of state, decision and action
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terms respectively. State, decision and action terms are employed to construct three

sorts of elements that once interconnected they will describe the medical procedure.

These elements are, respectively: states, decisions and actions. States, which are sub-

sets Si = {si1 , si2 , ..., sin} where all sx are state terms, represent patient conditions,

situations, or statuses that deserve a particular course of action which is totally or

partially different from the actions followed when the patient is in another state, for

example, to differentiate between the initial treatment and the subsequent treatments

or between the different stages of a disease. Decisions allow the integration of all the

variability that a treatment may have by means of conditions on several decision terms

di1 , di2 , ..., dim which represent some of the available information about the patient and

the current situation. Actions, which are subsets Ai = {ai1 , ai2 , ..., aip} where all ax are

action terms, constitute the proper health care activities involved in the health care

procedure represented. Similar to the CA notation, the SDA model represents states,

decisions, and actions respectively as circles, diamonds, and rectangles which are con-

nected with arrows in order to provide a join representation of a health care procedure,

as the one depicted in figure 2.7 for the treatment of hypertension. It distinguishes

between plain connectors, decisional connectors, and otherwise connectors. Plain con-

nectors represent evolutions of the health care procedure which can be followed by any

patient. Decisional connectors link decisions with other elements, they contain deci-

sion terms, and only the patients who meet all the terms in a connector are able to

follow this connector. Finally, otherwise connectors link decisions with other elements,

they are identified with the word ’otherwise’, and only the patients who fulfill none of

the connectors leaving a decision are able to follow the otherwise connectors of that

decision. The sequence of decisions and actions that connects one state to one or more

next states is called therapeutic sequence. See, for example the SDA in figure 2.7.

Connectors may have time constraints of the form [min, max]; min representing

the minimum time the process must stop before following the connector (e.g., wait two

hours before measuring BP again to confirm high BP), and max the maximum time

the process must stop before moving forward in the treatment (e.g., next visit must be

scheduled for not later than one week).

The interpretation of a SDA diagram is the following: when a patient arrives, all

the SDA states whose state terms are observed in the current patient condition are

eligible to start the treatment. If several states are eligible, a health care professional
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Figure 2.7: Example of SDA diagram for the treatment of hypertension
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has to decide the one to start at among all the eligible states (this is called type-0

non-determinism). Once this is decided, the connectors are followed until either a

non-eligible state is found or a connector with a positive min delay is reached. In

this process, all the actions of the followed path are the SDA recommendations for

the treatment of that patient. When a decision is reached, all the outgoing decision

connectors whose decision terms are part of the patient condition are eligible to follow

the treatment of that patient. If only one decision connector is eligible, the connector

is followed. If there are several eligible connectors, then a health care professional has

to choose one of them to follow the treatment (this is called type-1 non-determinism).

If none of them is eligible, but there is an otherwise connector, then this connector is

followed. If several otherwise connectors exist, then a health care professional decides

which one is the one to be followed (this is also considered type-1 non-determinism). In

case that there are several plain connectors leaving a state or an action, all of them are

eligible and it is the health care professional who has to decide the one to be followed

(this is called type-2 non-determinism). Non-determinism is only observed when there

is not a single accepted and evidence-based procedure to deal with a particular situation

and the choice criterion between the alternatives is not defined.

The SDA model has been thoroughly tested in the context of the k4care project

(www.k4care.net) where it has been successfully used to represent different sorts of

procedural knowledge in medicine, particularly in home care.

2.9 Induction of medical procedural knowledge

Diffusion of Information and Communication Technology tools within the health care

practice, such as electronic clinical charts, computerized guidelines and, more gen-

erally, decision support systems, makes a huge amount of data available which can

be exploited. One of the main uses of this data is the induction of medical procedu-

ral knowledge which consists in mining the hospital databases by means of machine

learning techniques in order to obtain structures that represent the different flowcharts

followed by patients with a certain disease or pathology.

This kind of structures have been widely used in health care for ages. This is the case

of CAs (SfMDM92; Had95) which are included in Clinical Practice Guidelines (CPGs)

to graphically summarize some of the medical procedures described in the guideline.
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The CAs defined by the international Society for Medical Decision Making (SfMDM92)

are flowcharts that start with a clinical state box defining the clinical state or problem,

and then a combination of both, decision boxes representing yes-no questions leading

the process to alternative paths, and action boxes describing actions, either therapeutic

or diagnostic. All these boxes are connected by arrows that show the logical sequence

of application of the CA. For example, the CA in figure 2.8 was published by the

Institute for Clinical Systems Improvement (Sch06) as a generalization of the long

term treatment and follow up of hypertension.

Generally, CAs are hand-made which represents a laborious task that implies the

interaction between several health care experts of different specialties. This is not the

only drawback of the manual creation of CAs. The individual differences of the patients

causes great variances in the application of CAs in daily practice. In real world, chronic

patients use to suffer of more than one disease (comorbidities) and each case has some

particularities that may not be considered by the CA. The induction of structures like

CAs from hospital databases and medical resources solves the previous drawbacks. It

reduces the high costs of the manual generation and it allows the analysis of health

care in comorbidities. Moreover, the automatic induction of CAs can be used to:

• Create different views (or dimensions) about the same clinical activity (e.g. only

pharmacological treatment, only nursing activities, only expensive actions, pa-

tient evolution vs administrative issues, etc.) by the selection of different termi-

nologies to express the induced CAs

• Complement and refine the CAs based on the medical knowledge provided by the

CPGs, because the induced CAs are obtained from clinical experience

• Automatically check guideline compliance

• Increase the understanding of disease processes

• Improve the physician education

• Compare the procedures followed by different health care institutions

One of the main approaches in the induction of medical procedural knowledge from

data is based on the so-called workflow mining (vdAvDH+03). This technique generates
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Figure 2.8: Clinical algorithm on hypertension published by the Institute for Clinical

Systems Improvement
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process related information exploiting the event logs from a process management sys-

tem, database, etc. and has been successfully applied in several domains (vdAvDH+03).

In (MSSvdA08) and (MSL+08) workflow mining is applied in gynecological oncology

and stroke respectively obtaining clinical pathways represented as Petri nets. The

main drawback of this approach is that the structures induced by those systems are

not explicit medical structures that doctors are as familiar to work with as with CAs.

Another approach is the induction of SDA diagrams using machine learning tech-

niques (RLVT08; BRLV12). The SDA knowledge model (Ria07; BRLV12) has been

introduced in section 2.8 as a model to represent medical procedural knowledge which is

similar to CAs with some improvements. Firstly, the presence of states for the different

stages of a certain disease or disorder lets the SDA model to depict several treatments

in an integrated diagram allowing the representation of long term procedures. Another

improvement is that it can deal with multiple entry points corresponding to the states

that represent the different initial patient conditions and, therefore, not only to in-

tegrate the treatment of all these conditions in a single diagram, but also to address

each patient directly to the corresponding part of the treatment. SDA diagrams also

extend the expressiveness of CAs using multi-term decisions. In CAs, decisions are

always (SfMDM92) yes-no questions but, in the SDA model, decisions may have more

than two branches with different decision terms in each one of them. In addition, each

decision may have alternative otherwise branches which are followed by the patients

that fulfill none of the other branches. This results in a more readable sequence of

decisions and also in a more compact representation of treatments. Finally, the rigidity

and strictness of CAs, previously referred to as their main criticism, is reduced in the

SDA model which increases the flexibility of CAs by dealing with non-determinism.

Non-determinism is frequent in medicine and it allows the participation of health care

professionals when there is not proven evidence on a unique or better treatment.

The current approach to induce SDA diagrams (BRLV12) can be summarized in 4

stages:

1. Detecting states: The states of the SDA diagram are detected with a method

based on a syntactic similarity function between states.

2. Detecting actions: The different sorts of actions of the SDA diagram are detected

with a method based on a syntactic similarity function between actions.
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3. Determining evolutions: The sequences of decisions corresponding to the evolu-

tion from each state to each other possible state are determined using induction

of decision trees.

4. Determining actions: For each evolution between states obtained in the previ-

ous stage, the sequences of decisions corresponding to each possible action are

determined using induction of decision trees.

5. Integrating: The different states and sequences of decisions and actions are inte-

grated in the final SDA diagram.

Notice that this approach does not consider any kind of background knowledge of the

domain to guarantee medically correct results and it uses a non-incremental algorithm.

However, it achieved successful results in (RLVT08) where it was applied to hyperten-

sion, cervical cancer, colorectal cancer and chronic obstructive pulmonary disease. Two

sorts of test were performed: one oriented to verify if the algorithm was able to recover

a predefined SDA diagram from a representative sample of patients treated according

to the indications of that SDA diagram, and another one centered on the generation of

a SDA diagram from the medical actions recorded in a certain hospital. In (BRLV12)

the methodology was tested on the medical domain of hypertension with the purpose

of studying the differences between the health care procedures of a hospital database

and some predefined official CAs.
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Medical background knowledge

In the automatic generation of medical decision structures, there is a relevant amount of

background knowledge which is not explicitly included in the input data. The exclusive

use of mathematical or statistical measures to induce structures that summarize the

steps registered in a hospital database has been proved to be not successful because

it leads to results which are not medically correct or which health care professionals

may not be familiar with (LVRC07; LVRB12). In a complex and sensitive domain

like medicine, using measures that consider all the background knowledge involved is

essential in order to assure medically correct results. This kind of knowledge consists

of medical criteria and constraints that health care experts take into account during

their medical activities. It can be provided by the health care experts themselves or

it can be extracted from medical knowledge sources. This background knowledge is of

different kinds and each one is formalized with a different knowledge structure.

As we stated in the introduction, one of the objectives of this thesis is to build

a repository of background knowledge corresponding to the diseases of Hyperten-

sion (HT) (ohhs03), Diabetes Mellitus (DM) (CL08) and the comorbidity of both

diseases (MSRS07). By means of a knowledge engineering process we have obtained

this repository of knowledge structures.

3.1 Formalization of medical background knowledge

The automatic induction of medical decision structures involves several kinds of knowl-

edge. From all the possible kinds of background knowledge in health care we will focus
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on the constraints that affect the desired set of possible health care states, the pref-

erences about the terminology used in health care states, the semantic relationships

between decision terms, the order in which some questions should be done and the

similarity between different medical actions. Each of these kinds of knowledge must

be represented with a certain background knowledge structure. Here we present these

different kinds of medical knowledge needed and the knowledge structures that are used

to formalize them.

3.1.1 Constraints on health care states

The treatment of a pathology usually deals with the so-called health care states which

are used to organize the different patients according to their conditions.

Definition 3.1.1 (Health care state) A health care state is a set of patient conditions,

situations, or statuses which involve a significant group of patients that deserve a par-

ticular course of action which is totally or partially different from the actions followed

when the patient is in another health care state and which has some interest for the

health care professional.

A health care state must have a medical sense that depends on both the coherence

of its description and the coherence of the health care state itself with respect to the

rest of health care states. That is to say that given a description of a health care state

it must not be redundant or medically incorrect, and given the whole set of health care

states they must be defined at the same level of abstraction of the medical terminology.

This medical sense of a health care state is a kind of medical knowledge which consists

in constraints in the description of health care states.

In the SDA model, health care states are represented as SDA states which are

subsets of SDA state terms (see section 2.8). The set of state terms within a SDA state

define its description, so the constraints related to the description of the health care

states are constraints between state terms, and they are called state term constraints.

Definition 3.1.2 (State term constraint) Being S a set of state terms, a state term

constraint c is an unordered pair {si, sj} with si, sj ∈ S, meaning that if a SDA diagram

includes a state Si that contains the term si, then sj will not be allowed in any of the

states of the SDA diagram (including Si).
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We represent these constraints by means of a state constraints graph.

Definition 3.1.3 (State constraints graph) A state constraints graph is defined as an

undirected graph GS = (S,C) (see section 2.5.1.1) where S is a set of state terms and

C is a set of state term constraints between state terms in S.

Table 3.1 contains a state constraints graph for the treatment of hypertension. For

example, if a state is included in the SDA diagram such that it contains the term

HEART RISK, then none of the states of the SDA diagram will contain the term < 40

YEARS OLD.

Table 3.1: State constraints graph for HT (a part of)

HEART NOT < 40 40 .. 65 65 .. 75 > 75

RISK HEART YEARS YEARS YEARS YEARS

RISK OLD OLD OLD OLD

HEART RISK X X X X

NOT HEART RISK X X X X

< 40 YEARS OLD

40 .. 65 YEARS OLD

65 .. 75 YEARS OLD

> 75 YEARS OLD

3.1.2 Preference between state terms

Considering all the possible health care states that can be used to classify patients

during the treatment of a pathology, a health care professional may have preference for

some of them depending on the context. For example, for the treatment of hypertension

a general practitioner could prefer organizing the patients according to the stages of

the disease while a hospital administrative assistant could be more interested in the

units or departments where the patients are being treated. This kind of knowledge is

a preference order between the possible health care states.

Therefore a SDA diagram (see section 2.8) is constructed for a concrete purpose

(e.g., visualizing the different stages of a treatment, representing actions in emergence

situations, supporting the selection of drugs, prevention, etc.). The construction of a

SDA diagram is associated to an intentionality which indicates the context in which the

SDA diagram will be used. The set of SDA states is used to express this intentionality,

so a health care professional may have preference for some state terms depending on

the different states that he wants in the final diagram. We represent these preferences

by means of a state terms partial order.
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Definition 3.1.4 (State terms partial order) A state terms partial order ≤S is defined

as a Layered Partial Order (LPO) over the set of state terms S (see section 2.5.1.2)

such that, given two terms si, sj ∈ S, si ≤S sj means that si is preferred than sj.

If si ≤S sj , the state term si will be more likely to appear in some of the states of

the SDA diagram than sj as it is preferred by the health care professional.

Table 3.2 contains a state terms partial order for the treatment of hypertension.

States having FOLLOWING HEALTHY HABITS or TAKING 3 DRUGS will be more

likely to be selected for the SDA diagram than those having CONTROLLED DBP or

65 .. 75 YEARS OLD.

Table 3.2: State terms partial order for HT (a part of)

Priority State term

1 NOT FOLLOWING HEALTHY HABITS

FOLLOWING HEALTHY HABITS

NOT TAKING MEDICATION

TAKING 1 DRUG

TAKING 2 DRUGS

TAKING 3 DRUGS

2 CONTROLLED DBP

NOT CONTROLLED DBP

CONTROLLED SBP

NOT CONTROLLED SBP

3 < 40 YEARS OLD

40 .. 65 YEARS OLD

65 .. 75 YEARS OLD

> 75 YEARS OLD

LVH

NO LVH

3.1.3 Semantic decisions

During an encounter with a patient, the physician determines some evidences in order

to make some actions for the treatment of this patient. These evidences are obtained

by asking questions, by consultations to the records or by performing health care tests.

The sequence of gathering evidences and making a final action is called therapeutic

sequence.

Definition 3.1.5 (Therapeutic sequence) A therapeutic sequence is a tree-like sequence

of evidences gathered by questions, consultations or tests that discriminate the different

sorts of treatment to be followed by the patients evolving from a certain health care state
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to any other states. A therapeutic sequence may have no questions but it must have at

least one treatment.

When the physician decides to ask a question to the patient, to consult his records

or to perform a health care test he expects several possible outcomes (evidences). For

example, a physician may want to determine the blood pressure of the patient. He

knows that the expected outcomes when determining the blood pressure are low blood

pressure, blood pressure at goal or high blood pressure. This is a kind of medical

knowledge that relates these outcomes because they are the different alternative values

of a same question, in this case, the blood pressure of the patient.

In the SDA model (see section 2.8), the separation of patients according to their

medical evidences is made with SDA decisions. Decisions allow the integration of all

the variability that a treatment may have by means of conditions on several decision

terms. These decision terms are the different expected outcomes in a certain decision.

When several decision terms can be the expected outcomes of a same decision, we say

that they are semantically related. Following the previous example, we could have the

decision terms Low BP , BP at goal and High BP which are expected outcomes when

determining the blood pressure of the patient. These decision terms are semantically

related because they represent a certain level of blood pressure. In a SDA diagram we

can place a decision providing these three alternatives according to the blood pressure

level of the patient. The possible alternatives when making a decision do not always

have to be disjoint. In order to represent these semantic relationships as background

knowledge, we use a semantic decisions hypergraph.

Definition 3.1.6 (Semantic decisions hypergraph) A semantic decisions hypergraph

is defined as a hypergraph HD = (D,SD) (see section 2.5.1.1) where D is the set of

decision terms and SD is a set of hyperedges sd such that if d1, d2 ∈ sd then d1 and d2

are semantically related.

The semantic decisions hypergraph defines all the possible semantic decisions.

Definition 3.1.7 (Semantic decision) A hyperedge sd ∈ SD of a semantic decisions

hypergraph HD is called a semantic decision.

All the decisions in a SDA diagram must represent semantic decisions (i.e., their

decision terms must be semantically related).
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Table 3.3 contains part of a semantic decisions hypergraph for the treatment of

hypertension. For each semantic decision it specifies a name and the set of decision

terms that it has. For example, the semantic decision called BMI is composed by the

decision terms NORMAL BMI, OVERWEIGHT BMI and OBESE BMI. Therefore,

considering these semantic decisions, the SDA diagram can include a decision with

NORMAL BMI, OVERWEIGHT BMI and OBESE BMI as alternatives, but a decision

with terms of different semantic decisions will not be allowed (e.g., NORMAL BMI and

TAKING MEDICATION CORRECTLY ).

Table 3.3: Semantic decisions hypergraph for HT (a part of)

SD name SD terms

BMI NORMAL BMI

OVERWEIGHT BMI

OBESE BMI

Cardiac auscultation NORMAL CARDIAC AUSCULTATION

NOT NORMAL CARDIAC AUSCULTATION

Correct medication TAKING MEDICATION CORRECTLY

NOT TAKING MEDICATION CORRECTLY

3.1.4 Order of decision sequences

The order in which the different needed evidences are gathered during an encounter in

order to decide the treatment for a patient depends on several criteria that the physician

may consider (LVR12). An important criterion is the utility of an evidence to decide

the course of treatment of the patient but the physician may also consider the order

specified in a clinical guideline, the risk on the health of the patient of obtaining this

evidence, the uncomfortability caused to the patient or his own experience. Depending

on one or more of these criteria, the physician will gather evidences in a certain order.

If these evidences are gathered in a different order, the sequence followed may be not

comprehensible by the physician. This kind of medical knowledge is an order between

the evidences.

In the SDA model (see section 2.8) we use decisions to separate patients according

to their evidences. The sequences of decisions must follow an order which is compre-

hensible for the health care expert. All the decisions in a SDA diagram must always

be semantic decisions (see section 3.1.3), so the background knowledge about the or-

der of decisions is represented with a partial order over the set of semantic decisions.

48



3.1 Formalization of medical background knowledge

Concretely we use a layered partial order defined by the health care expert according

to his own criteria called decisions partial order.

Definition 3.1.8 (Decisions partial order) A decisions partial order ≤D is defined as a

Layered Partial Order (LPO) over the set of semantic decisions SD (see section 2.5.1.2

and 3.1.3) such that, given the semantic decisions sdi, sdj ∈ SD, sdi ≤D sdj means

that, according to the criteria of the health care expert, sdi should be asked before sj.

If sdi ≤D sdj , the SDA decision representing the semantic decision sdi will be more

likely to appear before sdj in a therapeutic sequence.

Table 3.4 contains a decisions partial order for the treatment of hypertension. Ac-

cording to this partial order, the decisions about DBP or SBP will be more likely appear

in the SDA diagram before asking for the age, the sex or the heart rate.

Table 3.4: Decisions partial order for HT (a part of)

Priority SD

1 DBP

SBP

2 Adverse effects

Age

Correct medication

Physical activity

Sex

3 Heart rate

3.1.5 Similarity between actions

The actions that can be made by a physician are of different kinds like pharmacologi-

cal, educational, analytical, ECGs, radiological, consultation, verification, procedural,

etc. For example, prescribing Prinivil 5mg or prescribing Enalapril Merck 2 mg is

a pharmacological action. Although being syntactically different, two actions do not

have to be semantically different. Depending on their medical meaning, two different

actions can be similar or even equivalent. Following the previous example, these two

drug prescriptions are syntactically different. However, both drugs are semantically

similar because they are angiotensin converting enzyme (ACE) inhibitors which are

used to prevent the blood pressure raising produced by the ACE. The physicians may
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use different drugs interchangeably if they are similar enough. The knowledge about

the similarities between actions consists in their semantical characteristics, the dosage

equivalences, etc.

In the SDA model (see section 2.8) the different actions are represented with action

terms. In the SDA diagrams, these terms are grouped in SDA actions. When inducing

SDA diagrams, the knowledge about the similarities between actions terms and SDA

actions is essential to solve problems like calculating the homogeneity of treatments

within a set of encounters or when deciding the most appropriate SDA actions after

a sequence of SDA decisions in order to obtain correct therapeutic sequences. We

represent this knowledge using an extended concept hierarchy (see section 2.5.1.3) that

contains the semantics of the action terms needed to calculate their similarities.

In the case of action terms representing pharmacological actions, the WHO has

established a system to classify drugs called Anatomical Therapeutic Chemical (ATC)

Classification System (fDSM). This classification system divides drugs into different

groups according to the organ or system on which they act and/or to their therapeutic

and chemical characteristics. It consists of five hierarchical levels: anatomical group,

therapeutic group, pharmacological subgroup, chemical group, and active principle. So,

for instance, the active principle Enalapril (ATC code C09AA02) belongs to the chem-

ical group ACE inhibitors, plain (C09AA), which is in the pharmacological subgroup

C09A with the same name. This subgroup is in the therapeutic group Agents acting

on the renin-angiotensin system (C09) which belongs to the anatomical group Cardio-

vascular system (C). We have made three modifications to the ATC hierarchy in order

to use it as background knowledge:

1. We have added a new level below active principle that contains concrete action

terms. So for example, Enalapril Merck 20mg 80 tablets EFG is an action term

that it is a successor of the active principle Enalapril.

2. Some drugs are compound having more than one active principle. For example,

Eneas 10/20mg 30 tablets contains 10mg of Enalapril and 20mg of Nitrendipine.

In the ATC system, these drugs are located in separate groups. However, in

our hierarchy they have been introduced as successors of all their active princi-

ples. Therefore, Eneas 10/20mg 30 tablets is successor of both active principles

Enalapril and Nitrendipine.
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3. In order to compare prescriptions of different drugs it is essential to know what

is the minimum dose of their respective active principle 1, so we have included

this information in the hierarchy.

The resulting extended concept hierarchy is called pharmacological actions hierarchy.

Definition 3.1.9 (Pharmacological actions hierarchy) The pharmacological actions hi-

erarchy is defined as a regular concept hierarchy HpA = (pC ∪ pA,≤,min) (see sec-

tion 2.5.1.3) where pC is the set of concepts in the ATC hierarchy (except the concepts

involving compound drugs) and pA ⊂ A is the subset of action terms representing drug

prescriptions. The hierarchy reflects with ≤ the subsumption relations in the ATC hi-

erarchy between the concepts in pC. Considering pC ′ ⊂ pC the concepts representing

active principles and given an action term a ∈ pA, we have c ≤ a for each active prin-

ciple c ∈ pC ′ that corresponds to the drug prescription a. The hierarchy is extended

with a function min : pC ′ → Q that matches each active principle with its minimum

dose (generally in milligrams).

Considering the level names of the ATC, the pharmacological actions hierarchy has

a schema level order anatomical group < therapeutic group < pharmacological subgroup

< chemical group < active principle < action term.

As far as non-pharmacological action terms are concerned, we studied the incorpo-

ration of the actions found in the icd9cm and icpc systems, but these actions were

not specific enough to represent the actions terms found in the databases used in this

work. So we created a hierarchical classification for this kind of action terms with the

non-pharmacological actions hierarchy.

Definition 3.1.10 (Non-pharmacological actions hierarchy) The non-pharmacological

actions hierarchy is defined as a not necessarily regular concept hierarchy HnA = (nC∪
nA,≤) (see section 2.5.1.3) where nC is a set of non-pharmacological concepts and

nA ⊂ A is the subset of action terms not representing drug prescriptions. The hierarchy

reflects with ≤ the subsumption relations between the concepts in nC and nA. The

actions terms are located in the lowest levels of the hierarchy (i.e., ∀a ∈ nA, 6 ∃c ∈ nC
— a ≤ c).

Both hierarchies of pharmacological and non-pharmacological concepts and terms

are unified in the action term hierarchy.

1The minimum dose for each active principle is published in CPGs (SAG02; SAG03)
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Definition 3.1.11 (Action term hierarchy) The action term hierarchy is defined as a

concept hierarchy HA = (C ∪ A,≤,min) (see section 2.5.1.3) where C = pC ∪ nC ∪
{Action, Pharmacological,Non − pharmacological} and A = pA ∪ nA (see defini-

tions 3.1.9 and 3.1.10). This hierarchy contains the sum of all the relationships ≤ in

HpA and HnA. Moreover, it has the following relationships:

• Action ≤ Pharmacological

• Action ≤ Non− pharmacological

• ∀c ∈ pC in level 1 of HpA Pharmacological ≤ c

• ∀c ∈ nC in level 1 of HnA Non− pharmacological ≤ c

The hierarchy also contains the function min : pC ′ → Q described in definition 3.1.9.

Table 3.5 contains a part of a pharmacological actions hierarchy used for the treat-

ment of hypertension, where the elements in the lower level (in italics) are action terms

in pA (e.g., APROVEL 150MG 28 TABLETS ) and the rest of elements are concepts

in cA (e.g., C CARDIOVASCULAR SYSTEM). The hierarchy also contains the min

function defined over the set of active principles (column on the right). Notice that

some action terms have a ’*’ mark meaning that they are compound drugs. These

drugs appear more than once in the hierarchy. Concretely they are below each one of

their active principles. For example, COZAAR PLUS 50/12.5 28 COATED TABLETS

is a C09CA01 losartan and a C03AA03 hydrochlorothiazide.

The action term hierarchy presented in the current section establishes some se-

mantic relationships between the different pharmacological and non-pharmacological

terms which are necessary to determine the similarity between different treatments. In

the next sections we explain how this concept hierarchy can be used to calculate the

similarity between two action terms and between two SDA actions, respectively.

3.1.5.1 Calculating the similarity between action terms

The similarity s(ax, ay) between two action terms ax, ay ∈ A is calculated depending

on their position in the action term hierarchy HA. There are five cases:

Case 1: If we compare two action terms ax and ay that are exactly the same (ax = ay),

then their similarity is 1 (i.e., s(ax, ay) = 1).
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Table 3.5: Pharmacological actions hierarchy for HT (a part of)

min (mg)

C CARDIOVASCULAR SYSTEM

C03 DIURETICS

C03A LOW-CEILING DIURETICS, THIAZIDES

C03AA Thiazides, plain

C03AA03 hydrochlorothiazide 12.5

COZAAR PLUS 50/12.5 28 COATED TABLETS *

CO-DIOVAN 80MG/12.5MG 28 FILM COATED TABLETS *

PARAPRES PLUS 16/12.5MG 28 TABLETS *

MICARDIS PLUS 80MG/25MG 28 TABLETS *

COAPROVEL 300/25MG 28 COATED TABLETS *

IXIA PLUS 20/12.5MG 28 FILM COATED TABLETS *

HIDROSALURETIL 50MG 20 TABLETS

C09 AGENTS ACTING ON THE RENIN-ANGIOTENSIN SYSTEM

C09C ANGIOTENSIN II ANTAGONISTS, PLAIN

C09CA Angiotensin II antagonists, plain

C09CA01 losartan 25

COZAAR PLUS 50/12.5 28 COATED TABLETS *

COZAAR 50MG 28 COATED TABLETS

COZAAR 12.5MG 7 FILM COATED TABLETS

C09CA02 eprosartan 600

TEVETENS 600MG 28 COATED TABLETS

C09CA03 valsartan 80

CO-DIOVAN 80MG/12.5MG 28 FILM COATED TABLETS *

DIOVAN 160MG 28 COATED TABLETS

C09CA04 irbesartan 75

COAPROVEL 300/25MG 28 COATED TABLETS *

APROVEL 150MG 28 TABLETS

C09CA06 candesartan 8

PARAPRES PLUS 16/12.5MG 28 TABLETS *

ATACAND 16MG 28 TABLETS

C09CA07 telmisartan 20

MICARDIS PLUS 80MG/25MG 28 TABLETS *

C09CA08 olmesartan medoxomil 10

IXIA PLUS 20/12.5MG 28 FILM COATED TABLETS *

IXIA 40MG 28 COATED TABLETS

* Compound drugs
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Case 2: For pharmacological action terms, if we compare the prescription of two drugs

ax and ay that share the same chemical group, their similarity may be affected

by their difference of dose. A first analysis with a dychotomic search using the

database available showed that the proportion of similarity that depends on the

doses is between 0 and 0.3, being 0 when ax and ay show extreme dose differences

(s(ax, ay) = 0.7) and 0.3 when the drugs have equivalent doses (s(ax, ay) = 1).

The similarity between doses of two prescribed drugs is measured considering the

minimum doses of their respective active principles. For each active principle

a in a chemical group, HA contains a minimum dose value which defines the

unitary dose (ud) of all the drugs with a. This is calculated with the function

min. For example, being a the active principle Candesartan its minimum dose

is min(a) = 8 mg, which is the unitary dose of this active principle. A prescrip-

tion of ATACAND 16MG 28 TABLETS has 16mg per tablet, which is twice the

minimum dose, therefore this dose is equal to 2 ud. Sometimes there are prescrip-

tions with doses lower than the minimum dose (e.g., COZAAR 12.5MG 7 FILM

COATED TABLETS represents 0.5 ud of Losartan) which are usually related to

initial treatments. A unitary dose of two drugs of different active principle but of

the same chemical group represents an identical pharmacological treatment. See

for example in figure 3.1 the equivalences of doses between the active principles

Losartan and Valsartan of the same chemical group Angiotensin II antagonists,

plain with the respective minimum doses of 25 mg and 80 mg. Notice that their

minimum doses represent their unitary dose (1 ud) and determine the equivalence

relationship between both active principles.

Figure 3.1: Equivalence relationship of dosage between Losartan and Valsartan for some

example values
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Therefore we can compare doses of drugs of different active principles in a same

chemical group as long as they are measured in ud’s, and calculate a value of

similarity between doses sdose(ax, ay). We first express the doses of ax and ay in

the ud’s of their respective active principles (i.e., a′x = dose(ax)/min(active −

principle(ax)) where dose(ax) is the dose in the action term ax and active −

principle(ax) is the active principle of ax, and equivalently for a′y), and then we

calculate the similarity between doses with equation 3.1.

sdose(ax, ay) = e−‖a
′
x−a′y‖ (3.1)

The reduction of similarity between ax and ay caused by the difference of doses

is equal to 0.3 · (1 − sdose(ax, ay)), so the similarity between two drugs ax and

ay of the same chemical group is s(ax, ay) = 1 − 0.3 · (1 − sdose(ax, ay)) = 0.7 +

0.3sdose(ax, ay). In figure 3.2 we can observe the variation of sdose(ax, ay) and

s(ax, ay) for differences of dose lower than 4. Notice that, as we stated before,

the similarity between two pharmacological action terms of the same chemical

group is always greater than 0.7.

Figure 3.2: Variation of sdose(ax, ay) and s(ax, ay) when increasing the difference of doses

between ax and ay
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For example, let ax be COZAAR 12.5MG 7 FILM COATED TABLETS and ay

be DIOVAN 160MG 28 COATED TABLETS which correspond to drugs with

active principles Losartan and Valsartan respectively. Then ax has a dose of 0.5

ud because 12.5 mg/25 mg is 0.5. Similarly, ay contains a dose of 2 ud. In this

case, sdose(ax, ay) = e−‖0.5−2‖ = e1.5 = 0.22 and so the similarity between both

action terms is s(ax, ay) = 0.77.

Case 3: Pharmacological action terms with different chemical groups but equal pharmaco-

logical subgroup are comparable. Two drugs ax and ay in a same pharmacological

subgroup are used to treat the same concrete symptoms and so they can be con-

sidered partially similar. An analysis of cases of this kind with our data concluded

a constant similarity value of 0.5 (i.e., s(ax, ay) = 0.5).

Case 4: Pharmacological action terms with different pharmacological subgroup but equal

therapeutic group may be comparable depending on each concrete case. Accord-

ing to the ATC classification some therapeutic groups cover drugs with similar

properties and others which are completely different. We analyzed the therapeu-

tic groups involved in the treatments of hypertension and diabetes mellitus and

we concluded the similarity values in table 3.6 for each therapeutic group when

two drugs belong to different pharmacological subgroups.

Table 3.6: Similarity values for the drugs in each therapeutic group of the treatments of

hypertension and diabetes mellitus

Therapeutic group Similarity value

C02 ANTIHYPERTENSIVES 0.0

C03 DIURETICS 0.3

C07 BETA BLOCKING AGENTS 0.3

C08 CALCIUM CHANNEL BLOCKERS 0.0

C09 AGENTS ACTING ON THE RENIN-ANGIOTENSIN SYSTEM 0.5

C02 ANTIHYPERTENSIVES 0

A10 DRUGS USED IN DIABETES 0

Case 5: Finally, any two action terms ax and ay that do not satisfy any of the previ-

ous cases are not medically comparable and therefore, their similarity is 0 (i.e.,

s(ax, ay) = 0).
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3.1.5.2 Calculating the similarity between SDA actions

The similarity between two SDA actions Ax = {ax1, ax2, ..., axm} and Ay = {ay1, ay2, ...,

ayn} according to the action term hierarchy HA depends on the similarity between their

respective action terms and is calculated with the function s(Ax, Ay). If s(Ax, Ay) = 0,

Ax and Ay are completely different actions, and if s(Ax, Ay) = 1, Ax and Ay are

medically equivalent and they can be used interchangeably. To calculate the value of

this function we follow three steps:

Step 1: Expanding compound drugs

Step 2: Pairing action terms

Step 3: Calculating the similarity between actions

The first step consists in replacing all the action terms representing prescriptions

of compound drugs in the compared actions by action terms with prescriptions of all

the drugs that are present in the compound drug, with their corresponding doses.

For example, if MICARDIS PLUS 80MG/25MG 28 TABLETS is found in one of the

actions that are being compared, this action term is replaced by TELMISARTAN 80MG

28 TABLETS and HYDROCHLOROTHIAZIDE 25MG 28 TABLETS.

Once all the prescriptions of compound drugs in Ax and Ay have been replaced by

the prescriptions of their corresponding single drugs, the action terms in Ax are paired

with the action terms in Ay. The aim is to find semantically equivalent action terms

from both interventions. Formally, we want to create a set P of pairs (ap, aq) with

ap ∈ Ax and aq ∈ Ay such that (1) ∀a ∈ Ax,∃!(a, aq) ∈ P , (2) ∀a ∈ Ay, ∃!(ap, a) ∈ P ,

and (3) s(ap, aq) > 0. All the action terms in a SDA action are relevant an so, in order

to reach a successful pairing, Ax and Ay must contain the same number of action terms

(m = n). At this point, if two actions Ax and Ay have a different number of action

terms we can conclude that s(Ax, Ay) = 0. Suppose that Ax and Ay have both n action

terms, then the pairing is performed as follows. For the first action term ax1 in Ax we

calculate its similarity to each one of the action terms in Ay. If ∀ayi ∈ Ay, s(ax1, ayi) = 0

we cannot pair ax1 with an equivalent action term in Ay, therefore we conclude that

s(Ax, Ay) = 0. Otherwise, we create a pair (ax1, ayj) where ayj is the most similar

action term to ax1 in Ay (i.e., ayj = arg maxayi∈Ay
s(ax1, ayi)). Then, after discarding
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the actions that have already been paired, we repeat this procedure until n pairs are

created.

If the pairing has succeeded then s(Ax, Ay) > 0. The final value of similarity is

calculated as the average of similarities between the action terms in each pair in P

with equation 3.2.

s(Ax, Ay) =
1

n

∑
(ap,aq)∈P

s(ap, aq) (3.2)

We use this similarity function to determine whether two SDA actions are equivalent

or not by specifying a similarity threshold δ between 0 and 1. If s(Ax, Ay) ≥ δ then Ax

and Ay are considered equivalent SDA actions.

Figure 3.3 depicts an example of applying the previous procedure to determine the

similarity between two actions Ax and Ay. These actions are completely equivalent

because they both contain a compound drug with 2 ud of hydrochlorothiazide (25mg)

and 4 ud of active principle of Angiotensin II antagonists, plain (300mg and 80mg

of Irbesartan and Telmisartan, respectively), and also the non-pharmacological action

Education.

In figure 3.4 there is a less obvious example of completely equivalent actions. These

actions contain a different compound drug and a different single drug. Once expanded

we observe that they actually have the same active principles and dosages.

The calculation of similarities between actions has lots of applications to solve

other medical problems out of the scope of this thesis. One of these applications is

the reduction of treatment costs by detecting dominant alternatives which is presented

in (LVRC12b).

3.1.5.3 Calculating the homogeneity of a set of treatments

The similarity between actions can be applied to calculate the homogeneity of the treat-

ments within a multiset of actions A′ = {A1, A2, ...} of length n. With the previous

similarity function we calculate similarities between each pair of actions. The homo-

geneity h of the treatments in A′ according to the action term hierarchy HA can be

defined as in equation 3.3.
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Figure 3.3: Example 1 of determining the similarity between two SDA actions

Figure 3.4: Example 2 of determining the similarity between two SDA actions
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h(A′) =
1

n2

∑
Ai∈A′

∑
Aj∈A′

s(Ai, Aj) (3.3)

We can also calculate the homogeneity with the alternative equation 3.4. In this

equation the homogeneity of the set of treatments is equal to the lowest similarity

between two of them. This guarantees a minimum similarity between all the treatments,

but here we will not use it because it is too much restrictive for the purpose of this

thesis.

h(A′) = min
Ai,Aj∈A′

s(Ai, Aj) (3.4)

3.2 Summary of background knowledge

This chapter has introduced the medical background knowledge needed to support

the automatic generation of SDA diagrams. We have presented the different kinds of

background knowledge needed, as well as their formalization as knowledge structures.

A summary of all the background knowledge required is shown in the following list.

a) Background knowledge related to states:

• For the constraints on health care states: a state constraints graph GS containing

state term constraints.

• For preference between state terms: a state terms partial order ≤S .

b) Background knowledge related to decisions:

• For semantic decisions: a semantic decisions hypergraph HD containing the pos-

sible semantic decisions.

• For order of decision sequences: a decisions partial order ≤D.

c) Background knowledge related to actions:

• For similarity between actions: an action terms hierarchy HA that is used to

calculate the values of the similarity function s and the homogeneity function h.

The formalization of this background knowledge has been included in the pa-

per (LVRC12a).
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3.3 Background knowledge formalization for hypertension,

diabetes mellitus and their comorbidity

This section contains the structures created for the diseases of hypertension, diabetes

mellitus, and the comorbidity of both diseases to represent the required background

knowledge introduced in this chapter: the state constraints graph GS with the con-

straints on state terms, the state terms partial order ≤S that specifies the preference

between state terms, the semantic decisions hypergraph HD, the decisions partial or-

der ≤D over the different semantic decisions and the action terms hierarchy HA which

will be used to calculate the values of the similarity function s and the homogeneity

function h.

This knowledge repository has been created together with health care profession-

als from the SAGESSA Health-Care Group (SAG) using their own preferences and

experience, and also the evidence-based knowledge contained in other resources like

CPGs (SAG02; SAG03) or the Anatomical Therapeutic Chemical (ATC) Classification

System (fDSM).

3.3.1 Hypertension

3.3.1.1 Constraints on health care states

Table 3.7 contains the state constraints graph for hypertension. In order to reduce the

size of the table, the terms that have no constraints have been replaced by ’...’. The

patient is considered to have heart risk depending on his age, sex and the presence

of LVH. Other risk factors related to smoking habits or hypercholesterolemia have

been ignored because here we only consider pure hypertensive patients with no other

pathologies or complications. Therefore, if we use heart risk to describe the states of

the SDA diagram we do not want to use the different signs that may imply high risk

because it could cause redundancy within a state and different levels of abstraction in

the terminology used by the whole set of states.

3.3.1.2 Preference between state terms

The state terms partial order for hypertension is shown in table 3.8. The health care

professionals decided to give more priority to the state terms regarding the situation
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Table 3.7: State constraints graph for HT

HEART NOT < 40 40 .. 65 65 .. 75 > 75 FEMALE MALE LVH NO ...

RISK HEART YEARS YEARS YEARS YEARS LVH

RISK OLD OLD OLD OLD

H. RISK X X X X X X X X

NOT H. RISK X X X X X X X X

< 40 Y. OLD

40 .. 65 Y. OLD

65 .. 75 Y. OLD

> 75 Y. OLD

FEMALE

MALE

LVH

NO LVH

...

of the patient within the treatment of hypertension (e.g., FOLLOWING HEALTHY

HABITS, TAKING 2 DRUGS) rather than to the control of the disease (e.g., NOT

CONTROLLED DBP, CONTROLLED SBP).

Table 3.8: State terms partial order for HT

Priority State term

1 NOT FOLLOWING HEALTHY HABITS

FOLLOWING HEALTHY HABITS

NOT TAKING MEDICATION

TAKING 1 DRUG

TAKING 2 DRUGS

TAKING 3 DRUGS

2 CONTROLLED DBP

NOT CONTROLLED DBP

CONTROLLED SBP

NOT CONTROLLED SBP

HEART RISK

NOT HEART RISK

3 < 40 YEARS OLD

40 .. 65 YEARS OLD

65 .. 75 YEARS OLD

> 75 YEARS OLD

LVH

NO LVH

MALE

FEMALE
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3.3.1.3 Semantic decisions

Table 3.9 contains the semantic decisions hypergraph for hypertension. Basically, the

different decision terms have been grouped in semantic decisions according to the evi-

dence they are related to.

Table 3.9: Semantic decisions hypergraph for HT

SD name SD terms

Abdominal exploration NORMAL ABDOMINAL EXPLORATION

NOT NORMAL ABDOMINAL EXPLORATION

Adverse effects ADVERSE EFFECTS

NOT ADVERSE EFFECTS

Age < 40 YEARS OLD

40 .. 65 YEARS OLD

65 .. 75 YEARS OLD

> 75 YEARS OLD

Alcohol ALCOHOL

NOT ALCOHOL

BMI NORMAL BMI

OVERWEIGHT BMI

OBESE BMI

Cardiac auscultation NORMAL CARDIAC AUSCULTATION

NOT NORMAL CARDIAC AUSCULTATION

Correct medication TAKING MEDICATION CORRECTLY

NOT TAKING MEDICATION CORRECTLY

DBP CONTROLLED DBP

NOT CONTROLLED DBP

ECG ALTERED ECG

NORMAL ECG

Glucose LOW GLUCOSE

NORMAL GLUCOSE

HIGH GLUCOSE

GOT NORMAL GOT

HIGH GOT

GPT LOW GPT

NORMAL GPT

HIGH GPT

Healthy habits FOLLOWING HEALTHY HABITS

NOT FOLLOWING HEALTHY HABITS

Heart rate LOW HEART RATE

NORMAL HEART RATE

HIGH HEART RATE

Heart risk HEART RISK

NOT HEART RISK

LVH LVH

NO LVH

Continued on next page
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Table 3.9 – continued from previous page

SD name SD terms

Medication NOT TAKING MEDICATION

TAKING 1 DRUG

TAKING 2 DRUGS

TAKING 3 DRUGS

Physical activity ADEQUATE PHYSICAL ACTIVITY

INADEQUATE PHYSICAL ACTIVITY

Proteinuria NORMAL PROTEINURIA

HIGH PROTEINURIA

Pulmonary auscultation NORMAL PULMONARY AUSCULTATION

NOT NORMAL PULMONARY AUSCULTATION

SBP CONTROLLED SBP

NOT CONTROLLED SBP

Sex MALE

FEMALE

Tibial oscillometry LOW TIBIAL OSCILLOMETRY

HIGH TIBIAL OSCILLOMETRY

3.3.1.4 Order of decision sequences

Table 3.10 shows the decisions partial order for hypertension. The semantic decisions

of priorities 1 and 2 are used to decide on what kind of treatment is needed. The third

level of priority contains the semantic decision Heart rate which can be used to discard

certain types of drugs, and finally, the rest of terms are used to refine the treatment.

Table 3.10: Decisions partial order for HT

Priority SD

1 DBP

Healthy habits

Medication

SBP

2 Adverse effects

Age

Correct medication

Heart risk

Physical activity

Sex

3 Heart rate

4 Abdominal exploration

Alcohol

BMI

Cardiac auscultation

ECG

Continued on next page
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Table 3.10 – continued from previous page

Priority SD

Glucose

GOT

GPT

LVH

Proteinuria

Pulmonary auscultation

Tibial oscillometry

3.3.1.5 Similarity between actions

The action hierarchy that contains the pharmacological and non-pharmacological ac-

tions for the treatment of hypertension is shown in table 3.11.

Table 3.11: Action hierarchy for HT

min (mg)

Action

Pharmacological

C CARDIOVASCULAR SYSTEM

C02 ANTIHYPERTENSIVES

C02C ANTIADRENERGIC AGENTS, PERIPHERALLY ACTING

C02CA Alpha-adrenoreceptor antagonists

C02CA04 doxazosin 1

CARDURAN 4MG 28 TABLETS

...

C03 DIURETICS

C03A LOW-CEILING DIURETICS, THIAZIDES

C03AA Thiazides, plain

C03AA03 hydrochlorothiazide 12.5

COZAAR PLUS 50/12.5 28 COATED TABLETS *

CO-DIOVAN 80MG/12.5MG 28 FILM COATED TABLETS *

PARAPRES PLUS 16/12.5MG 28 TABLETS *

MICARDIS PLUS 80MG/25MG 28 TABLETS *

COAPROVEL 300/25MG 28 COATED TABLETS *

IXIA PLUS 20/12.5MG 28 FILM COATED TABLETS *

AMERIDE 5/50MG 60 TABLETS *

ENALAPRIL/HIDROCL BAYVIT 20/12.5MG 28 TABLETS *

ZESTORETIC 20/12.5MG 28 TABLETS *

HIDROSALURETIL 50MG 20 TABLETS

EMCORETIC 10 MG/25 MG 56 COATED TABLETS *

...

C03B LOW-CEILING DIURETICS, EXCL. THIAZIDES

C03BA Sulfonamides, plain

C03BA04 chlortalidone 12.5

Continued on next page
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Table 3.11 – continued from previous page

min (mg)

BLOKIUM-DIU 28 TABLETS *

HIGROTONA 50MG 30 TABLETS

...

C03BA11 indapamide 1.25

TERTENSIF 2.5MG 30 COATED TABLETS

...

C03C HIGH-CEILING DIURETICS

C03CA Sulfonamides, plain

C03CA01 furosemide 40

FUROSEMIDA CINFA 40MG 30 TABLETS EFG

...

C03CA04 torasemide 2.5

SUTRIL 10MG 30 TABLETS

...

C03D POTASSIUM-SPARING AGENTS

C03DA Aldosterone antagonists

C03DA01 spironolactone 25

ALDACTONE 25 MG 20 FILM COATED TABLETS

...

C03DB Other potassium-sparing agents

C03DB01 amiloride 2.5

AMERIDE 5/50MG 60 TABLETS *

...

C07 BETA BLOCKING AGENTS

C07A BETA BLOCKING AGENTS

C07AA Beta blocking agents, non-selective

C07AA05 propranolol 40

SUMIAL 10MG 50 TABLETS

...

C07AB Beta blocking agents, selective

C07AB02 metoprolol 50

BELOKEN 100MG 40 TABLETS

LOGIMAX 5/50MG 30 TABLETS *

...

C07AB03 atenolol 25

BLOKIUM-DIU 28 TABLETS *

ATENOLOL ALTER 50MG 60 TABLETS EFG

...

C07AB07 bisoprolol 2.5

EMCONCOR 5MG 30 COATED TABLETS

EMCORETIC 10 MG/25 MG 56 COATED TABLETS *

...

C07AB12 nebivolol 2.5

LOBIVON 5MG 28 TABLETS

...

C07AG Alpha and beta blocking agents

C07AG02 carvedilol 12.5

COROPRES 25MG 28 TABLETS

...

Continued on next page
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Table 3.11 – continued from previous page

min (mg)

C08 CALCIUM CHANNEL BLOCKERS

C08C SELECTIVE CALCIUM CHANNEL BLOCKERS WITH MAINLY VASCULAR EFFECTS

C08CA Dihydropyridine derivatives

C08CA01 amlodipine 2.5

ASTUDAL 10MG 30 TABLETS

EXFORGE 5MG/160MG 28 FILM COATED TABLETS *

...

C08CA02 felodipine 2.5

PLENDIL 5MG 30 TABLETS

LOGIMAX 5/50MG 30 TABLETS *

...

C08CA05 nifedipine 30

ADALAT OROS 30MG 28 TABLETS

...

C08CA08 nitrendipine 10

BAYPRESOL 20MG 30 TABLETS

...

C08CA12 barnidipine 10

BARNIX 20MG 56 CAPSULES

...

C08D SELECTIVE CALCIUM CHANNEL BLOCKERS WITH DIRECT CARDIAC EFFECTS

C08DA Phenylalkylamine derivatives

C08DA01 verapamil 120

MANIDON 80MG 60 FILM-COATED TABLETS

...

C08DB Benzothiazepine derivatives

C08DB01 diltiazem 120

UNI MASDIL 200 MG 28 CAPSULES

...

C09 AGENTS ACTING ON THE RENIN-ANGIOTENSIN SYSTEM

C09A ACE INHIBITORS, PLAIN

C09AA ACE inhibitors, plain

C09AA01 captopril 25

CAPTOPRIL STADA 25MG 60 TABLETS EFG

...

C09AA02 enalapril 5

ENALAPRIL MERCK 20MG 28 TABLETS

ENALAPRIL/HIDROCL BAYVIT 20/12.5MG 28 TABLETS *

...

C09AA03 lisinopril 5

LISINOPRIL MYLAN 20 MG 28 TABLETS

ZESTORETIC 20/12.5MG 28 TABLETS *

...

C09AA04 perindopril 2

COVERSYL 4MG 30 TABLETS

...

C09AA05 ramipril 1.25

ACOVIL 5MG 28 TABLETS

...

Continued on next page
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Table 3.11 – continued from previous page

min (mg)

C09AA06 quinapril 5

ECTREN 20MG 28 COATED TABLETS

...

C09AA16 imidapril 2.5

HIPERTENE 10MG 28 TABLETS

...

C09C ANGIOTENSIN II ANTAGONISTS, PLAIN

C09CA Angiotensin II antagonists, plain

C09CA01 losartan 25

COZAAR PLUS 50/12.5 28 COATED TABLETS *

COZAAR 50MG 28 COATED TABLETS

...

C09CA02 eprosartan 600

TEVETENS 600MG 28 COATED TABLETS

...

C09CA03 valsartan 80

CO-DIOVAN 80MG/12.5MG 28 FILM COATED TABLETS *

EXFORGE 5MG/160MG 28 FILM COATED TABLETS *

DIOVAN 160MG 28 COATED TABLETS

...

C09CA04 irbesartan 75

COAPROVEL 300/25MG 28 COATED TABLETS *

APROVEL 150MG 28 TABLETS

...

C09CA06 candesartan 8

PARAPRES PLUS 16/12.5MG 28 TABLETS *

ATACAND 16MG 28 TABLETS

...

C09CA07 telmisartan 20

MICARDIS PLUS 80MG/25MG 28 TABLETS *

...

C09CA08 olmesartan medoxomil 10

IXIA PLUS 20/12.5MG 28 FILM COATED TABLETS *

IXIA 40MG 28 COATED TABLETS

...

C09X OTHER AGENTS ACTING ON THE RENIN-ANGIOTENSIN SYSTEM

C09XA Renin-inhibitors

C09XA02 aliskiren 150

RASILEZ 150MG 28 COATED TABLETS

...

Non-pharmacological

Education

Verification

Check

Follow-up

Evaluation of risk factors

Consultation

Consultation cardiology

Complementary tests

Continued on next page
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Table 3.11 – continued from previous page

min (mg)

Laboratory

ECG

Radiology

Other procedures

Tibial post. D(X)

* Compound drugs

3.3.2 Diabetes mellitus

3.3.2.1 Constraints on health care states

No constraints on health care states have been required by health care professionals in

the case of diabetes mellitus.

3.3.2.2 Preference between state terms

The state terms partial order for diabetes is shown in table 3.12. In this case, both

the situation of the patient within the treatment (e.g., FOLLOWING HEALTHY

HABITS, TAKING INSULINS) and the control of the disease in terms of glucose

(NORMAL/HIGH GLUCOSE) are of major interest for health care professionals and

so, they are given priority 1. It would be more medically logical to consider the level

of HbAlC before the level of glucose as an indicator of the control of the disease, but

the health care professionals argued that, due to the low rate of encounters in their

databases that contain the level of HbAlC, it would be more suitable to use the level of

glucose. This is a clear example of using background knowledge not only to represent

theorical medical knowledge but also to express concrete preferences of a certain health

care center.

3.3.2.3 Semantic decisions

Table 3.13 contains the semantic decisions hypergraph for diabetes where the different

decision terms have been grouped in semantic decisions according to the evidence they

are related to.
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Table 3.12: State terms partial order for DM

Priority State term

1 NOT FOLLOWING HEALTHY HABITS

FOLLOWING HEALTHY HABITS

NOT TAKING MEDICATION

TAKING OHDS

TAKING INSULINS

TAKING OHDS+INSULINS

NORMAL GLUCOSE

HIGH GLUCOSE

2 NORMAL HBALC

HIGH HBALC

Table 3.13: Semantic decisions hypergraph for DM

SD name SD terms

Abdominal exploration NORMAL ABDOMINAL EXPLORATION

NOT NORMAL ABDOMINAL EXPLORATION

Adverse effects ADVERSE EFFECTS

NOT ADVERSE EFFECTS

Age < 40 YEARS OLD

40 .. 65 YEARS OLD

65 .. 75 YEARS OLD

> 75 YEARS OLD

BMI NORMAL BMI

OVERWEIGHT BMI

OBESE BMI

Cardiac auscultation NORMAL CARDIAC AUSCULTATION

NOT NORMAL CARDIAC AUSCULTATION

Correct medication TAKING MEDICATION CORRECTLY

NOT TAKING MEDICATION CORRECTLY

Diet FOLLOWING DIET

NOT FOLLOWING DIET

ECG ALTERED ECG

NORMAL ECG

Foot ALTERED FOOT EXPLORATION

NORMAL FOOT EXPLORATION

Glucose NORMAL GLUCOSE

HIGH GLUCOSE

HbAlC NORMAL HBALC

HIGH HBALC

Healthy habits FOLLOWING HEALTHY HABITS

NOT FOLLOWING HEALTHY HABITS

Heart rate LOW HEART RATE

NORMAL HEART RATE

HIGH HEART RATE

Heart risk HEART RISK

NOT HEART RISK

Continued on next page
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Table 3.13 – continued from previous page

SD name SD terms

LVH LVH

NO LVH

Medication NOT TAKING MEDICATION

TAKING OHDS

TAKING INSULINS

TAKING OHDS+INSULINS

Nutrition NUTRITIONAL RISK

NOT NUTRITIONAL RISK

Physical activity ADEQUATE PHYSICAL ACTIVITY

INADEQUATE PHYSICAL ACTIVITY

Proteinuria NORMAL PROTEINURIA

HIGH PROTEINURIA

Pulmonary auscultation NORMAL PULMONARY AUSCULTATION

NOT NORMAL PULMONARY AUSCULTATION

Rhythmic heart RHYTHMIC HEART

ARRHYTHMIC HEART

Sex MALE

FEMALE

3.3.2.4 Order of decision sequences

Table 3.14 shows the decisions partial order for diabetes. The semantic decisions of

priority 1 basically determine the treatment of the patient, while those of priority 2 are

used to refine it.

Table 3.14: Decisions partial order for DM

Priority SD

1 Adverse effects

Age

BMI

Correct medication

Diet

Glucose

HbAlC

Healthy habits

Medication

Nutrition

Physical activity

Sex

2 Abdominal exploration

Cardiac auscultation

Foot

Heart rate

Continued on next page
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Table 3.14 – continued from previous page

Priority SD

Pulmonary auscultation

Rhythmic heart

Proteinuria

ECG

Heart risk

LVH

3.3.2.5 Similarity between actions

The action hierarchy that contains the pharmacological and non-pharmacological ac-

tions for the treatment of diabetes is shown in table 3.15.

Table 3.15: Action hierarchy for DM

min (mg*)

Action

Pharmacological

A ALIMENTARY TRACT AND METABOLISM

A10 DRUGS USED IN DIABETES

A10A INSULINS AND ANALOGUES

A10AB Insulins and analogues for injection, fast-acting

A10AB01 insulin (human) 100

ACTRAPID INNOLET 100UI/ML

...

A10AB05 insulin aspart 100

NOVORAPID FLEXPEN 100UI/ML

...

A10AC Insulins and analogues for injection, intermediate-acting

A10AC01 insulin (human) 100

INSULATARD NPH FLEXPEN 100UI/ML

...

A10AD Insulins and analogues for injection, intermediate-acting combined with fast-acting

A10AD01 insulin (human) 100

MIXTARD 30 INNOLET 100UI/ML

...

A10AD05 insulin aspart 100

NOVOMIX 30 FLEXPEN 100UI/ML

...

A10AE Insulins and analogues for injection, long-acting

A10AE04 insulin glargine 100

LANTUS 100UI/ML OPTISET

...

A10B BLOOD GLUCOSE LOWERING DRUGS, EXCL. INSULINS

A10BA Biguanides

Continued on next page
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3.3 Background knowledge formalization for hypertension, diabetes
mellitus and their comorbidity

Table 3.15 – continued from previous page

min (mg*)

A10BA02 metformin 850

DIANBEN 850MG 50 TABLETS

...

A10BB Sulfonamides, urea derivatives

A10BB01 glibenclamide 2.5

EUGLUCON 5MG 100 TABLETS

...

A10BB09 gliclazide 40

DIAMICRON 80MG 60 TABLETS

...

A10BB12 glimepiride 1

AMARYL 4MG 120 TABLETS

...

A10BF Alpha glucosidase inhibitors

A10BF01 Acarbose 75

GLUMIDA 100MG 100 TABLETS

...

A10BG Thiazolidinediones

A10BG02 rosiglitazone 1

AVANDIA 4MG 28 TABLETS

...

A10BG03 pioglitazone 15

ACTOS 30MG 56 TABLETS

...

A10BH Dipeptidyl peptidase 4 (DPP-4) inhibitors

A10BH01 sitagliptin 100

JANUVIA 100MG 56 FILM COATED TABLETS

...

Non-pharmacological

Education

Verification

Check

Follow-up

Evaluation of risk factors

Consultation

Consultation endocrinology

Consultation ophthalmology

Complementary tests

Laboratory

ECG

Radiology

Other procedures

Lower extremity oscillometry

* UI/ml for A10A INSULINS AND ANALOGUES
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3.3.3 Hypertension + Diabetes mellitus

3.3.3.1 Constraints on health care states

The state constraints graph for hypertension plus diabetes mellitus is the same that

for hypertension (see table 3.7). No constraints were needed for the case of diabetes

mellitus, and no additional constraints were found when combining hypertension with

diabetes mellitus.

3.3.3.2 Preference between state terms

Health care professionals proposed two state terms partial orders in order to generate

to different SDA diagrams for hypertension plus diabetes mellitus that gave different

visions of the treatment. The first one is shown in table 3.16 and it gives more priority

to the terms related to the situation of the patient within the treatment of the dis-

eases (e.g., FOLLOWING HEALTHY HABITS, TAKING OHDS+1 HYPOTENSIVE

DRUG).

Table 3.16: State terms partial order for HT+DM (1)

Priority State term

1 NOT FOLLOWING HEALTHY HABITS

FOLLOWING HEALTHY HABITS

NOT TAKING MEDICATION

TAKING OHDS

TAKING INSULINS

TAKING OHDS+INSULINS

TAKING 1 HYPOTENSIVE DRUG

TAKING 2 HYPOTENSIVE DRUGS

TAKING OHDS+1 HYPOTENSIVE DRUG

TAKING OHDS+2 HYPOTENSIVE DRUGS

TAKING OHDS+INSULINS+2 HYPOTENSIVE DRUGS

2 CONTROLLED BP

NOT CONTROLLED BP

NORMAL GLUCOSE

HIGH GLUCOSE

3 < 40 YEARS OLD

40 .. 65 YEARS OLD

65 .. 75 YEARS OLD

> 75 YEARS OLD

HEART RISK

NOT HEART RISK

LVH

NO LVH

Continued on next page

74
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Table 3.16 – continued from previous page

Priority State term

MALE

FEMALE

NORMAL HBALC

HIGH HBALC

Table 3.17 contains the other state terms partial order which gives more priority to

the control of the diseases (e.g., CONTROLLED BP, HIGH GLUCOSE).

Table 3.17: State terms partial order for HT+DM (2)

Priority State term

1 CONTROLLED BP

NOT CONTROLLED BP

NORMAL GLUCOSE

HIGH GLUCOSE

2 NOT FOLLOWING HEALTHY HABITS

FOLLOWING HEALTHY HABITS

NOT TAKING MEDICATION

TAKING OHDS

TAKING INSULINS

TAKING OHDS+INSULINS

TAKING 1 HYPOTENSIVE DRUG

TAKING 2 HYPOTENSIVE DRUGS

TAKING OHDS+1 HYPOTENSIVE DRUG

TAKING OHDS+2 HYPOTENSIVE DRUGS

TAKING OHDS+INSULINS+2 HYPOTENSIVE DRUGS

3 < 40 YEARS OLD

40 .. 65 YEARS OLD

65 .. 75 YEARS OLD

> 75 YEARS OLD

HEART RISK

NOT HEART RISK

LVH

NO LVH

MALE

FEMALE

NORMAL HBALC

HIGH HBALC

75



3. MEDICAL BACKGROUND KNOWLEDGE

3.3.3.3 Semantic decisions

Table 3.18 contains the semantic decisions hypergraph for hypertension plus diabetes

mellitus. Basically, the different decision terms have been grouped in semantic decisions

according to the evidence they are related to.

Table 3.18: Semantic decisions hypergraph for HT+DM

SD name SD terms

Abdominal exploration NORMAL ABDOMINAL EXPLORATION

NOT NORMAL ABDOMINAL EXPLORATION

Adverse effects ADVERSE EFFECTS

NOT ADVERSE EFFECTS

Age < 40 YEARS OLD

40 .. 65 YEARS OLD

65 .. 75 YEARS OLD

> 75 YEARS OLD

Alcohol NOT ALCOHOL

ALCOHOL

BMI NORMAL BMI

OVERWEIGHT BMI

OBESE BMI

BP CONTROLLED BP

NOT CONTROLLED BP

Cardiac auscultation NORMAL CARDIAC AUSCULTATION

NOT NORMAL CARDIAC AUSCULTATION

Correct medication TAKING MEDICATION CORRECTLY

NOT TAKING MEDICATION CORRECTLY

Diet FOLLOWING DIET

NOT FOLLOWING DIET

ECG ALTERED ECG

NORMAL ECG

Foot ALTERED FOOT EXPLORATION

NORMAL FOOT EXPLORATION

Glucose NORMAL GLUCOSE

HIGH GLUCOSE

GOT NORMAL GOT

HIGH GOT

GPT LOW GPT

NORMAL GPT

HIGH GPT

HbAlC NORMAL HBALC

HIGH HBALC

Healthy habits NOT FOLLOWING HEALTHY HABITS

FOLLOWING HEALTHY HABITS

Heart rate LOW HEART RATE

NORMAL HEART RATE

HIGH HEART RATE

Continued on next page
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Table 3.18 – continued from previous page

SD name SD terms

Heart risk HEART RISK

NOT HEART RISK

LVH LVH

NO LVH

Medication NOT TAKING MEDICATION

NOT TAKING MEDICATION

TAKING OHDS

TAKING INSULINS

TAKING OHDS+INSULINS

TAKING 1 HYPOTENSIVE DRUG

TAKING 2 HYPOTENSIVE DRUGS

TAKING OHDS+1 HYPOTENSIVE DRUG

TAKING OHDS+2 HYPOTENSIVE DRUGS

TAKING OHDS+INSULINS+2 HYPOTENSIVE DRUGS

Nutrition NUTRITIONAL RISK

NOT NUTRITIONAL RISK

Physical activity ADEQUATE PHYSICAL ACTIVITY

INADEQUATE PHYSICAL ACTIVITY

Proteinuria NORMAL PROTEINURIA

HIGH PROTEINURIA

Pulmonary auscultation NORMAL PULMONARY AUSCULTATION

NOT NORMAL PULMONARY AUSCULTATION

Rhythmic heart RHYTHMIC HEART

ARRHYTHMIC HEART

Sex MALE

FEMALE

Tibial oscillometry LOW TIBIAL OSCILLOMETRY

HIGH TIBIAL OSCILLOMETRY

3.3.3.4 Order of decision sequences

Table 3.19 shows the decisions partial order for the treatment of hypertension and

diabetes mellitus. The semantic decisions of priority 1 are used to decide whether

pharmacological treatment is required or not, or if it must be changed. Those of

priority 2 may determine the type of treatment (e.g., a young patient should be treated

with insulin, an obese patient should be treated with metformin). Finally, the semantic

decisions of priority 3 can be used to decide details as for example the dosage.

Table 3.19: Decisions partial order for HT+DM

Priority SD

1 BP

Continued on next page
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Table 3.19 – continued from previous page

Priority SD

Glucose

Healthy habits

Medication

2 Age

BMI

Diet

HbAlC

Nutrition

Physical activity

Sex

3 Abdominal exploration

Adverse effects

Alcohol

Cardiac auscultation

Correct medication

ECG

Foot

GOT

GPT

Heart rate

Heart risk

LVH

Proteinuria

Pulmonary auscultation

Rhythmic heart

Tibial oscillometry

3.3.3.5 Similarity between actions

The action hierarchy that contains the pharmacological and non-pharmacological ac-

tions for the treatment of patients with hypertension and diabetes is shown in table 3.20.

Table 3.20: Action hierarchy for HT+DM

min (mg**)

Action

Pharmacological

A ALIMENTARY TRACT AND METABOLISM

A10 DRUGS USED IN DIABETES

A10A INSULINS AND ANALOGUES

A10AB Insulins and analogues for injection, fast-acting

A10AB05 insulin aspart 100

NOVORAPID FLEXPEN 100UI/ML

...

Continued on next page
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Table 3.20 – continued from previous page

min (mg**)

A10AC Insulins and analogues for injection, intermediate-acting

A10AC01 insulin (human) 100

INSULATARD NPH FLEXPEN 100UI/ML

...

A10AD Insulins and analogues for injection, intermediate-acting combined with fast-acting

A10AD05 insulin aspart 100

NOVOMIX 30 FLEXPEN 100UI/ML

...

A10AE Insulins and analogues for injection, long-acting

A10AE04 insulin glargine 100

LANTUS 100UI/ML OPTISET

...

A10AE05 insulin detemir 100

LEVEMIR 100U/ML INNOLET

...

A10B BLOOD GLUCOSE LOWERING DRUGS, EXCL. INSULINS

A10BA Biguanides

A10BA02 metformin 850

DIANBEN 850MG 50 TABLETS

AVANDAMET 2MG/500MG 112 TABLETS *

EUCREAS 50MG/850MG 60 TABLETS *

...

A10BB Sulfonamides, urea derivatives

A10BB01 glibenclamide 2.5

EUGLUCON 5MG 100 TABLETS

...

A10BB09 gliclazide 40

DIAMICRON 80MG 60 TABLETS

...

A10BB12 glimepiride 1

AMARYL 4MG 120 TABLETS

...

A10BF Alpha glucosidase inhibitors

A10BF01 Acarbose 75

GLUMIDA 100MG 100 TABLETS

...

A10BF02 Miglitol 75

DIASTABOL 100MG 90 TABLETS

...

A10BG Thiazolidinediones

A10BG02 rosiglitazone 1

AVANDIA 4MG 28 TABLETS

AVANDAMET 2MG/500MG 112 TABLETS *

...

A10BH Dipeptidyl peptidase 4 (DPP-4) inhibitors

A10BH02 vildagliptin 1

EUCREAS 50MG/850MG 60 TABLETS *

...

A10BX Other blood glucose lowering drugs, excl. insulins

Continued on next page
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Table 3.20 – continued from previous page

min (mg**)

A10BX02 repaglinide 1.5

PRANDIN 2MG 90 TABLETS

...

C CARDIOVASCULAR SYSTEM

C02 ANTIHYPERTENSIVES

C02C ANTIADRENERGIC AGENTS, PERIPHERALLY ACTING

C02CA Alpha-adrenoreceptor antagonists

C02CA04 doxazosin 1

CARDURAN 8MG 28 TABLETS

...

C03 DIURETICS

C03A LOW-CEILING DIURETICS, THIAZIDES

C03AA Thiazides, plain

C03AA03 hydrochlorothiazide 12.5

COZAAR PLUS 50/12.5 28 COATED TABLETS *

CO-DIOVAN 160MG/12.5MG 28 FILM COATED TABLETS *

COAPROVEL 300/25MG 28 COATED TABLETS *

AMERIDE 5/50MG 60 TABLETS *

ENALAPRIL/HIDROCL BAYVIT 20/12.5MG 28 TABLETS *

ZESTORETIC 20/12.5MG 28 TABLETS *

HIDROSALURETIL 50MG 20 TABLETS

...

C03B LOW-CEILING DIURETICS, EXCL. THIAZIDES

C03BA Sulfonamides, plain

C03BA04 chlortalidone 12.5

HIGROTONA 50MG 30 TABLETS

...

C03BA11 indapamide 1.25

TERTENSIF 1.5MG 30 COATED TABLETS

...

C03D POTASSIUM-SPARING AGENTS

C03DB Other potassium-sparing agents

C03DB01 amiloride 2.5

AMERIDE 5/50MG 60 TABLETS *

...

C07 BETA BLOCKING AGENTS

C07A BETA BLOCKING AGENTS

C07AB Beta blocking agents, selective

C07AB03 atenolol 25

ATENOLOL ALTER 50MG 60 TABLETS EFG

...

C07AB07 bisoprolol 2.5

EMCONCOR 5MG 30 COATED TABLETS

...

C07AB12 nebivolol 2.5

LOBIVON 5MG 28 TABLETS

...

C08 CALCIUM CHANNEL BLOCKERS

C08C SELECTIVE CALCIUM CHANNEL BLOCKERS WITH MAINLY VASCULAR EFFECTS

Continued on next page
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Table 3.20 – continued from previous page

min (mg**)

C08CA Dihydropyridine derivatives

C08CA01 amlodipine 2.5

ASTUDAL 10MG 30 TABLETS

EXFORGE 10MG/160MG 28 FILM COATED TABLETS *

...

C08CA05 nifedipine 30

ADALAT OROS 30MG 28 TABLETS

...

C08CA08 nitrendipine 10

ENEAS 10/20MG 30 TABLETS *

...

C08D SELECTIVE CALCIUM CHANNEL BLOCKERS WITH DIRECT CARDIAC EFFECTS

C08DA Phenylalkylamine derivatives

C08DA01 verapamil 120

TARKA 180/2MG 28 TABLETS *

...

C09 AGENTS ACTING ON THE RENIN-ANGIOTENSIN SYSTEM

C09A ACE INHIBITORS, PLAIN

C09AA ACE inhibitors, plain

C09AA01 captopril 25

CAPTOPRIL STADA 25MG 60 TABLETS EFG

...

C09AA02 enalapril 5

ENALAPRIL MERCK 20MG 28 TABLETS

ENALAPRIL/HIDROCL BAYVIT 20/12.5MG 28 TABLETS *

ENEAS 10/20MG 30 TABLETS *

...

C09AA03 lisinopril 5

LISINOPRIL MYLAN 20 MG 28 TABLETS

ZESTORETIC 20/12.5MG 28 TABLETS *

...

C09AA04 perindopril 2

COVERSYL 4MG 30 TABLETS

...

C09AA06 quinapril 5

ECTREN 20MG 28 COATED TABLETS

C09AA10 trandolapril 0.5

TARKA 180/2MG 28 CAPSULAS *

...

C09C ANGIOTENSIN II ANTAGONISTS, PLAIN

C09CA Angiotensin II antagonists, plain

C09CA01 losartan 25

COZAAR 100MG 28 COATED TABLETS

COZAAR PLUS 50/12.5 28 COATED TABLETS *

...

C09CA03 valsartan 80

DIOVAN 160MG 28 COATED TABLETS

CO-DIOVAN 160MG/12.5MG 28 FILM COATED TABLETS *

EXFORGE 10MG/160MG 28 FILM COATED TABLETS *

Continued on next page
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Table 3.20 – continued from previous page

min (mg**)

...

C09CA06 candesartan 8

PARAPRES 32MG 28 TABLETS

...

C09CA08 olmesartan medoxomil 10

IXIA 40MG 28 COATED TABLETS

...

Non-pharmacological

Education

Verification

Check

Follow-up

Evaluation of risk factors

Consultation

Consultation endocrinology

Complementary tests

Laboratory

ECG

Radiology

Other procedures

Lower extremity oscillometry

Tibial post. D(X)

* Compound drugs

** UI/ml for A10A INSULINS AND ANALOGUES
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4

Incremental generation of SDA

diagrams with background

knowledge

In this section we describe a procedure to generate SDA diagrams (see section 2.8) which

considers all the relevant background knowledge introduced in chapter 3. Moreover, this

procedure works incrementally and therefore, once a SDA diagram is generated for the

first time, it can be updated as soon as new data arrives rather than being generated

from scratch. The general scheme of the methodology presented is summarized in

figure 4.1.

The data used to generate SDA diagrams is extracted from the EOC database which

contains episodes of care, encounters, etc. of patients treated for a certain pathology,

represented with the EOC data model (see section 2.7). This EOC database is created

starting from a hospital database which uses a representation format as for example,

HL7, env13606, OpenEHR, etc. A filtering and preprocessing procedure (which is not

included in the scope of this thesis) is performed over this database in order to obtain

an EOC database. Each time a new encounter is introduced in the hospital database,

it is transformed to the EOC data model in order to generate a new SDA diagram.

The procedure needs some background knowledge in order to guarantee that the

generated SDA diagram is in accordance with the medical knowledge which is not ex-

plicit in the EOC database. In this thesis, this background knowledge is obtained from

the repository described in section 3.3. This repository can be filled with knowledge ex-
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Figure 4.1: Scheme of the methodology to generate SDA diagrams

tracted from medical knowledge resources like CPGs (SAG02; SAG03), the Anatomical

Therapeutic Chemical (ATC) Classification System (fDSM) or other hospital databases,

or from health care professionals representing their preferences, experience, etc. No-

tice that each time that a SDA diagram is generated, the repository of background

knowledge is consulted.

In addition to the patient data in the EOC database and the medical knowledge

in the repository, the procedure may start from a previously generated SDA diagram.

The first time that we generate a SDA diagram we do not have any previous one so it

will be generated only using the EOC database and the background knowledge. The

successive next times that we generate a new SDA diagram, the last SDA diagram

obtained is used as an additional input of the SDA generation. This last SDA diagram

is modified to incorporate the knowledge contained in the new encounters in the EOC

database and the background knowledge, obtaining a new updated SDA diagram.

The procedure to generate SDA diagrams is divided into three steps each one solving

a different problem (see figure 4.2). The first one solves the identification of states. The

identification of states is the procedure used to identify the different health care states
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(see definition 3.1.1) in which a certain patient may be located during the treatment

of a disease. The set of states identified corresponds to the set of SDA states that

the generated SDA diagram will have. In the successive incremental generations of the

SDA diagram, the set of SDA states of the current SDA diagram is used as the starting

point and it is updated according to the new patient data and medical knowledge.

Figure 4.2: Scheme of the three steps to generate SDA diagrams

The second step is the determination of therapeutic sequences (see definition 3.1.5).

The determination of therapeutic sequences is the procedure used to induce a sequence

of concatenated questions to condition the sort of treatment to be followed for the pa-

tients evolving from a certain health care state to any other states. This corresponds to

a sequence of connected SDA decisions that lead to different SDA actions, representing

the treatment followed when evolving from one state to one or more next states. In

the successive incremental generations of the SDA diagram, the therapeutic sequences

in the current SDA diagram are used as baseline and they are updated considering the

new patient data and medical knowledge.

Finally, the third step is the integration. In this step the resulting SDA diagram
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is built by connecting the SDA states with the SDA decisions and the SDA actions

obtained from the previous two steps.

4.1 Identification of states

The identification of states is the procedure used to identify the different health care

states (see definition 3.1.1) in which a certain patient may be located during the treat-

ment of a pathology. In the SDA model, health care states are represented as SDA

states which are subsets of SDA state terms (see section 2.8).

We want to identify a set of states such that it has a maximum quality and medical

sense, so we will start defining the concepts of quality of a state (section 4.1.1) and

medical sense of a state (section 4.1.2). Then these two concepts will be used in an

incremental algorithm to identify the set of states (section 4.1.3).

4.1.1 The quality of a state

The definition 3.1.1 of health care state expresses that a state must represent a signif-

icant group of patients that deserve a particular course of action and that this state

must have some interest for the health care professional. Therefore, the quality of a

SDA state involves three points of view which are classified as epidemiological, ther-

apeutic and preferential. Each one of these views provides an answer to a different

question:

• Epidemiological: Is this state representing a significant number of patients?

• Therapeutic: Are the treatments followed by the patients represented by the state

homogeneous?

• Preferential: Does the health care expert consider this state relevant?

The epidemiological view is related to the significance of the set of encounters

represented by this state. The epidemiological quality of a state can be calculated then

as the number of encounters represented by this state divided by the total number

of episodes. Given a state Si we denote ε(Si) the proportion of encounters that Si

represents.
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4.1 Identification of states

The therapeutic view is related to the homogeneity of the treatments proposed for

the patients in this state. Given a state Si, let ε(Si) be the set of encounters of patients

being in state Si and A(ε(Si)) the multiset containing the clinical action performed in

each ε(Si), we calculate the treatment homogeneity h(A(ε(Si))) of the state Si with the

procedure described in section 3.1.5.

The preferential view is related to the relevance of the state according to the health

care expert preferences. To represent these preferences we use a partial order ≤S on the

state terms (see section 3.1.2). This LPO can be then transformed into a preference

function p : S → [0, 1] preserving the information provided by the LPO (LVR11).

This is formalized by the properties of normality (i.e., ∀s ∈ S, {0 ≤ p(s) ≤ 1}) and

monotonicity (i.e., ∀s1, s2 ∈ S, {s1 ≤S s2 ⇒ p(s1) ≤ p(s2)}). As ≤S does not provide

information about the distance between elements, we assume that the distance between

consecutive layers of the LPO is constant, we call this the equidistance property. So, if

≤S has n layers and `(s) is the layer where the element s is, equation 4.1 defines the

only preference function p which preserves the partial order of ≤S for all the values

s ∈ S and which satisfies normality, monotonicity and equidistance properties.

p(s) =


`(s)− 1

n− 1
if n > 1

1 otherwise
(4.1)

Finally, the preferential quality p(Si) of a state Si is computed as the average of

the preference values of the state terms in Si (i.e., p(Si) =
∑

s∈Si
p(s)/|Si|).

Given a state Si, we calculate the quality of this state with the function quality(Si)

which can be equal to ε(Si), h(A(ε(Si))) or p(Si) depending on whether we want an

epidemiological, therapeutic or preferential view. Notice that the epidemiological view

has a bias towards the states with less state terms while the therapeutic view has a

bias towards the states with more state terms. Another approach is to combine the

three points of view giving a certain weight α to each of them (i.e., quality(Si) =

αeε(Si) + αth(A(ε(Si))) + αpp(Si)).

4.1.2 The medical sense of a state

In spite of the epidemiological, therapeutic or preferential quality of health care states,

they must have a medical sense. The medical sense depends on both the coherence

of the description of the state and the coherence of the state itself with respect to
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the rest of states as it is explained in section 3.1.1. The knowledge used to guarantee

medical sense is represented with a state constraints graph GS (see definition 3.1.3).

This background knowledge is necessary to assure that, on the one hand, given a SDA

state its terms are not redundant or medically incorrect and, on the other hand, all

the SDA states in a SDA diagram are defined at the same level of abstraction of the

medical terminology. Therefore, although the state constraints graph contains one type

of constraint, these constraints are used to guarantee two aspects: the medical sense

within each state and the medical sense of the whole set of states.

In order to incorporate the constraints in GS to the identification of states, we

distinguish between: intra-state constraints and inter-state constraints.

Definition 4.1.1 (Intra-state constraint) Each constraint c = {si, sj} in the state con-

straints graph GS represents an intra-state constraint, meaning that the state terms si

and sj cannot be in the same state (i.e., we do not allow a state Si such that si, sj ∈ Si
to be in the SDA diagram).

Definition 4.1.2 (Inter-state constraint) Each constraint c = {si, sj} in the state con-

straints graph GS represents an inter-state constraint, meaning that the states Si and

Sj cannot be in the same SDA diagram if si ∈ Si and sj ∈ Sj (i.e., if a state Si that

contains si is included in a SDA diagram, we cannot include a state Sj that contains

sj in the same SDA diagram, and vice versa).

For example, considering the state constraints graph for hypertension in table 3.7,

there is a constraint between the terms HEART RISK and LVH. Therefore, this con-

straint will represent an intra-state constraint that will not allow these two terms to

be in a same state; and a inter-state constraint that will not allow two states to be in

the same diagram if they contain the terms HEART RISK and LVH respectively.

4.1.3 State identification algorithm

The identification of states is solved as a clustering problem (see section 2.1). The

encounters of the EOC database have to be assigned a cluster (i.e., a health care state).

According to the type-0 non-determinism of the SDA model (see section 2.8), the two

sets of patients that satisfy two health care states may intersect, thus we are dealing

with an overlapping clustering problem (see section 2.3). Moreover, we must assure the

medical sense of the health care states by means of constrains so it is also a constrained
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clustering problem (see section 2.5.2), and the constant arrival of new data in the EOC

database suggests that the clustering must be done incrementally (see section 2.6.1).

Nevertheless, the existing clustering methods are not useful to identify health care states

because the quality of a set of health care states depends on criteria which cannot be

derived from the state terms.

The problem of state identification is formally defined as the following. Given a set

of encounters of the EOC database E = {enc1, ..., encn}, each encounter is a meeting

patient-physician where the physician observes a set of characteristics S(enci), repre-

sented as state terms, that describe the state of the patient at this moment; and pro-

poses some health care measures. We generate the best set of clusters S = {S1, ..., Sk},
where k is not given a priori and each cluster Si ∈ S represents a SDA state Si =

{s1, ..., sj}, si ∈ S. If S(enci) ⊆ Si, Si ∈ S then this encounter is represented by this

SDA state. Notice that one encounter can be represented by more than one SDA state.

The quality of a set of states is calculated as the average of the qualities quality(Si) of

each state Si, where quality is implemented as it is explained in section 4.1.1. There

are five constraints that we want the set of states generated to fulfill:

1. The number of terms in a state must be greater or equal than a constant minS

(∀Si ∈ S, |Si| ≥ minS) in order to avoid diagrams with too less states and which

are too general.

2. The number of terms in a state must be lower or equal than a constant maxS

(∀Si ∈ S, |Si| ≤ maxS) in order to avoid diagrams with too much states and

which are too specific.

3. A health care state must represent one or more encounters (∀Si ∈ S, |ε(Si)| > 0)

in order to be representative enough to be considered for the diagram.

4. States having intra-state constraints between some of their terms are not allowed

(given a state constraints graph GS = (S,C) and (si, sj) ∈ C, then si, sj ∈ Si ⇒
Si /∈ S)

5. States having inter-state constraints between them are not allowed (given a state

constraints graph GS = (S,C), (si, sj) ∈ C, si ∈ Si and sj ∈ Sj , then Si ∈ S ⇒
Sj /∈ S and Sj ∈ S⇒ Si /∈ S)
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Starting from the EOC database we propose two algorithms to solve the identifi-

cation of the states: the non-incremental identification algorithm and the incremental

identification algorithm. If we do not have previously identified states, we apply the

non-incremental identification algorithm. This happens the first time that we identify

the states of a SDA. Once a set of states exists, we apply the incremental algorithm to

incorporate the information contained in new encounters to the previous SDA.

Both algorithms are explained in the next paragraphs.

Non-incremental identification algorithm: Algorithm 1 shows the procedure

followed in the non-incremental identification of states.

This algorithm receives as input a set of encounters EPC . The encounters of this

set only contain the patient condition, that is to say the set of state terms (see sec-

tion 2.7) because decision and action terms are not needed. We omit showing the

different background knowledge structures and functions used in the algorithm. It

starts by generating the space of possible states S′ making all the combinations of

state terms s ∈ S. S′ will contain a state for each one of the subsets of S except

the empty set (i.e., P(S) − {∅}). We can restrict the minimal and maximal number

of terms in the states of S′ with the parameters minS and maxS, respectively (i.e.,

S′ = s ∈ P (S) : minS ≤ |s| ≤ maxS − ∅). This process uses the intra-state constraints

of the state constraints graph GS = (S,C) to avoid states having incompatible terms

si, sj , ... such that (si, sj) ∈ C. Each encounter in EPC describes a patient that is

in each one of the states in S′ whose terms are all observed for that patient in that

encounter. If ε(Si) is the set of encounters represented by a certain state Si (i.e.,

ε(Si) = {encj ∈ EPC , S(encj) ⊆ Si}), then S′ does not contain states s such that

epsilon(s) = ∅ (i.e., S′s ∈ P (S) : ε(s) = ∅ = ∅). A state Si which does not repre-

sent any encounter in EPC (ε(Si) = ∅) is not included in S′. So, the final number of

states in S′ is
∑maxS

i=minS

(|S|
i

)
less the number of states having an intra-state constraint

|{Si ⊆ P(S) : ∃(si, sj) ∈ C, si, sj ∈ Si}| and less the number of states that do not

represent any encounter |{Si ⊆ P(S) : ε(Si) = ∅}|.
In order to show an example of the construction of a space of states, consider a set

of encounters EPC that contains these following combinations of state terms about one

or more patients in states e1, e2, e3, or e4, with:

• e1: SMOKES, HEART RISK, S1 HYPERTENSIVE SBP, HIGH CREATININE
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Algorithm 1: non-incremental identification of states

Input: EPC : set of encounters (only their patient condition)

Output: S : set of identified states, S′′ : initial space of states,

qualities : double[]

1 S′ ← generate space of states(EPC , minS, maxS, C);

2 qualities : double[|S′|];
3 foreach Si ∈ S′ do

4 qualities[Si] = calculate quality(Si);

5 S← ∅;
6 represented← ∅;
7 S′′ ← S′;

8 while S′ 6= ∅ do

9 best = arg maxSi∈S′ qualities[Si];

10 S← S ∪ best;
11 represented← represented ∪ ε(best);
12 foreach Si ∈ S′ do

13 if (ε(Si) ⊆ represented) OR

(∃{si, sj} ∈ C : si ∈ Si ∧ sj ∈ Sj ∧ Sj ∈ represented) then

14 S′ ← S′ − Si;

15 return S, S′′, qualities;
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• e2: DOES NOT SMOKE, NO HEART RISK, NORMAL SBP

• e3: DOES NOT SMOKE, NO HEART RISK, PREHYPERTENSIVE SBP

• e4: SMOKES, HEART RISK, PREHYPERTENSIVE SBP

Then, figure 4.3 depicts the space of states S′ for minS = 1 and maxS = 3 and

considering the set of intra-state constraints represented in the state constraint graph

of the case is C = {(SMOKES, NO HEART RISK), (DOES NOT SMOKE, HEART

RISK), (DOES NOT SMOKE, NOT HEART RISK)}.

Figure 4.3: Example of space of states

For each state s ∈ S′ the algorithm calculates the quality of this state quality(s)

(lines 2-4). The quality of a state can be calculated with epidemiological, therapeutic

and preferential approaches as it is proposed in section 4.1.1. Finally, we repeat the

removal of states in S′ until S′ is empty. The removal criteria are:

1. Remove from S′ the state with the greatest quality, at each loop.

2. Remove from S′ all the states representing encounters which are represented by

one of the identified states.

3. Remove from S′ all the states having terms with an inter-state constraint with

any term in one of the identified states.
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Algorithm 1 returns S a set of states which is representative of the patient states in the

encounters EPC , a copy of the initial space of states S′′ and the qualities of each state

in S′′.

Following the previous example, in table 4.1 we specify for each state in the initial

space of states S′ (column 2), the kinds of encounters that it represents (column 3) and

a possible quality value (column 4). The states are given an id number (column 1)

and they are ordered according to their quality. The identified states are in bold and,

for each of them, we specify the id number of the states removed. The first identified

state (the one with the highest quality) is HEART RISK,S1 HYPERTENSIVE SBP.

It removes all the states representing only e1 (see last column). We suppose that there

is a inter-state constraint between HEART RISK and SMOKES, and between HEART

RISK and DOES NOT SMOKE so other states like SMOKES,PREHYPERTENSIVE

SBP are also removed. The other identified states are NORMAL SBP and PREHY-

PERTENSIVE SBP which also remove some states.

Incremental identification algorithm: Algorithm 2 shows the procedure fol-

lowed in the incremental identification of states.

The algorithm receives as input a set of new encounters EPC , as well as the

three output parameters of the previous identification procedure (prev S, prev S′ and

prev qualities). We omit showing the different background knowledge structures and

functions used in the algorithm. First of all, it extends the space of states with the new

states obtained from the new encounters, if there are any (line 1).

Consider the previous example and suppose that there is a new state:

• e5: DOES NOT SMOKE, NO HEART RISK, HYPOTENSIVE SBP

The previous space of states S′ is extended with states: HYPOTENSIVE SBP,

DOES NOT SMOKE,HYPOTENSIVE SBP and NO HEART RISK, HYPOTENSIVE

SBP.

Then, the quality values of the states representing any new encounter are updated

(lines 3-5). Then it keeps two sets that contain the only states that must be revised

(at the moment). The first set is called revise and it initially contains the states

that have advanced other states in terms of quality with respect to the last identifica-

tion. (Si ∈ revise ⇔ ∃Sj , (prev qualities[Sj ] > prev qualities[Si]) ∧ (qualities[Sj ] <

qualities[Si])) (line 6). The other set is called revise encounters and it contains the
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Algorithm 2: incremental identification of states

Input: EPC : set of encounters (only their patient condition), prev S : set of

previously identified states, prev S′ : previous space of states,

prev qualities : array of previous qualities

Output: S : set of identified states, S′′ : initial space of states,

qualities : double[]

1 S′ ← prev S′ + determine new states(EPC ,minS,maxS,C);

2 qualities : double[|S′|];
3 foreach Si ∈ S′ do

4 if represents new encounters(Si) then qualities[Si] = calculate quality(Si);

5 else qualities[Si] = prev qualities[Si];

6 revise← advancing states(S′, prev qualities, qualities);

7 revise encounters← prev S′ − revise;
8 S← ∅;
9 represented← ∅;

10 foreach Si ∈ revise ∪ revise encounters in descendant order of quality(Si) do

11 if Si ∈ revise encounters then

12 S← S ∪ Si;
13 represented← represented ∪ ε(Si);
14 else

15 if ε(Si) 6⊆ represented then

16 S← S ∪ Si;
17 represented← represented ∪ ε(Si);
18 revise← revise ∪ identified advanced(Si);

19 if Si /∈ prev S then revise← revise ∪ identified behind(Si);

20 else

21 if Si ∈ prev S then revise← revise ∪ not identified behind(Si);

22 revise encounters← revise encounters− revise;

23 return S, S′, qualities;
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previously identified states not included in revise (i.e., revise encounters = prev S−
revise) (line 7).

Each one of the states Si in these sets is revised with the following procedure start-

ing from the one with a highest quality. If Si ∈ revise encounters, we identify this

state (lines 12-13). Otherwise, the state is identified if it represents patient states in

encounters which have not been represented by any encounters of any identified state

(ε(Si) 6⊆ represented) (lines 16-17). If Si is identified, there is an additional set of

states that must be revised. These states were identified in the previous identifica-

tion and now they may be not identified because of Si. This set of states is called

identified advanced(Si) (line 18) and contains all the states Sj that fulfill:

• They were identified in the previous identification (Sj ∈ prev S).

• They had a quality greater than Si in the previous identification (prev qualities[Sj ] >

prev qualities[Si]).

• They have a quality lower than Si in the current identification (qualities[Sj ] <

qualities[Si]).

Moreover, if Si was not identified in the previous identification (Si /∈ prev S), we must

also revise the states in identified behind(Si) (line 19) which are the states Sj that

fulfill:

• They were identified in the previous identification (Sj ∈ prev S).

• They have a quality lower than Si in the current identification (qualities[Sj ] <

qualities[Si]).

In case that Si is not identified in the current procedure, if Si was identified in the

previous identification (Si ∈ prev S) there is another set of states that must be revised.

These states were not identified in the previous identification maybe because of Si.

Now that Si is not identified, their situation may change. This set of states is called

not identified behind(Si) (line 21) and contains all the states Sj that fulfill:

• They were not identified in the previous identification (Sj /∈ prev S).

• They have a quality lower than Si in the current identification (qualities[Sj ] <

qualities[Si]).
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Finally, the new states in revise are removed from revise encounters (line 22). The

algorithm returns the set of identified states S, the initial space of states S′ and the

qualities of each state in S′.

Following the same example than before, table 4.2 contains the updated ranking

of states. The column +/- is used to mark the states that have advanced other states

(’+’) and those that have been advanced (’-’). Finally, a ’*’ mark in column Revised

means that this state will be revised during the identification process.

Initially, the set revise contains the states HEART RISK, HYPOTENSIVE SBP,

NO HEART RISK, HYPOTENSIVE SBP, and DOES NOT SMOKE,HYPOTENSIVE

SBP. The set revise encounters contains HEART RISK,S1 HYPERTENSIVE SBP,

NORMAL SBP and PREHYPERTENSIVE SBP.

We start revising the state HEART RISK,S1 HYPERTENSIVE SBP which is in

revise encounters so it is automatically identified. The same happens with the next

state NORMAL SBP. The third state to be revised is HEART RISK which is not

in revise encounters. In this case we identify it because it represents the encounters

of the kind e4, which are not represented by the previous identified states. Then we

must also revise identified advanced(HEART RISK ) which contains the state PRE-

HYPERTENSIVE SBP, and also identified behind(HEART RISK ) which in this case

is empty. Finally we remove PREHYPERTENSIVE SBP from revise encounters. The

next state to revise is PREHYPERTENSIVE SBP which is identified again. The sets

identified advanced(PREHYPERTENSIVE SBP) and identified behind (PREHY-

PERTENSIVE SBP) are empty. The last states to be revised are the three new states.

The first one is HYPOTENSIVE SBP which is identified. The set identified advanced

(HYPOTENSIVE SBP) is empty but the set identified behind(HYPOTENSIVE SBP)

contains all the states that have been advanced by this new state, and have to be revised.

All the remaining states are not identified. So with this new incremental identification

of states, two additional states have been identified. Notice that only half of the states

have been revised.

The incremental identification of states allows us to deal more efficiently with the

constant arrival of data of new encounters because for each new identification of states

we do not have to create the whole space of possible states from scratch but to add the

new ones. Likewise, only the quality of states involving new encounters has to be recal-

culated. Another advantage of this incremental solution is that the proposed algorithm
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just revises the minimum subset of states that is necessary to guarantee a correct iden-

tification. Moreover, the set of identified states only depends on the encounters used,

without regard to the sequence in which those encounters were presented. As far as

memory requirements is concerned, the proposed solution, instead of keeping the whole

set of encounters for each incremental identification, it only stores one encounter for

each combination of state terms together with an identifier. Each state has a list with

the identifiers of the encounters that it represents and the amount of them, avoiding

the storage of redundant data.

4.2 Determination of therapeutic sequences

The determination of therapeutic sequences (see definition 3.1.5) is the procedure used

to induce a sequence of questions to determine the sort of treatment to be followed for

the patients with a certain health care state.

In the SDA model, questions are represented as SDA decisions that allow the in-

tegration of all the variability that a treatment may have by means of conditions on

several SDA decision terms representing available information about the patient and

the patient’s health care condition. The variability of a treatment is represented with

SDA actions, which are subsets of SDA action terms, constituting the proper health

care activities involved in the health care procedure represented (see section 2.8).

We want to induce a therapeutic sequence such that it is medically comprehensible

and correct (LVRB12). We will start defining the concepts of comprehensibility (sec-

tion 4.2.1) and correctness (section 4.2.2) of a therapeutic sequence. In section 4.2.3

these two concepts will be used in an incremental algorithm to induce comprehensible

and correct therapeutic sequences.

4.2.1 Comprehensibility of a therapeutic sequence

Comprehensibility (LVRB12) is a measure of the adherence to the order followed by

a physician when gathering evidences (represented as SDA decisions) in a therapeutic

sequence. In the induction of therapeutic sequences, comprehensibility is guaranteed

by means of a partial order ≤D (see section 3.1.4) on the decision terms D. This partial

order represents the background knowledge available about what are the questions that

should be asked before which other questions in a therapeutic sequence. This knowledge
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should be provided by a health care expert considering several health care criteria

such as the order suggested in CPGs, care preferences or past experiences (LVR12).

This background knowledge should be considered during the induction of therapeutic

sequences in order to foster that decisions with a higher priority appear before in

therapeutic sequences.

4.2.2 Correctness of a therapeutic sequence

Correctness (LVRB12) is a measure of how relevant are the treatment errors made

when a SDA action is decided at the end of a therapeutic sequence. In the induction

of therapeutic sequences, correctness is guaranteed by means of a similarity function s

(see section 3.1.5). This similarity function represents the background knowledge that

is used to calculate the medical homogeneity h of a multiset of actions. During the

induction of therapeutic sequences, we calculate the homogeneity between the treat-

ments that received a certain set of patients. If it is homogeneous enough, there is no

need for more questions (i.e., SDA decisions) and a single global treatment (i.e., SDA

action) can be given.

4.2.3 Therapeutic sequences induction algorithm

The induction of a therapeutic sequence can be seen as a decision tree induction prob-

lem (see section 2.4). Considering the set of encounters in the EOC database of patients

in a certain health care state, a Decision Tree (DT) can be induced such that the ques-

tions are decision terms and the final decisions are sets of action terms. This sort of DT

uses decision terms to discriminate between the sorts of treatments that have been pre-

scribed in these encounters. This DT can be transformed into a therapeutic sequence

represented with the SDA model replacing the internal nodes with SDA decisions and

the leaves with SDA actions. We can guarantee medical comprehensibility and correct-

ness of the therapeutic sequence with cost-sensitive learning (see section 2.5.3). The

constant arrival of new data in the EOC database suggests that the induction process

must be incremental (see section 2.6.2).

In order to accomplish all the above mentioned requirements, we propose an incre-

mental DT induction algorithm which is based on the ITI family of algorithms (Utg88;

Utg89; UBC97) with an alternative measure to choose questions and decisions which

takes into account the background knowledge of the domain.
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The problem of induction of a therapeutic sequence is formally defined as it follows.

Given a SDA state S1, we consider ε(S1) the set of encounters in the EOC database of

patients in state S1. Starting from ε(S1), we induce the most medically comprehensible

and correct DT that classifies each encounter enci ∈ ε(S1) according to their action

terms A(enci), making partitions using sets of decision terms D(enci).

In order to generate these DTs, we use sets of encounters EHC where each encounter

only contains health care measures; that is to say, decision and action terms. State

terms are no needed. The incremental approach presented in this section uses the

storage of counters instead of sets of encounters EHC within the internal nodes of the

decision trees. The counters are used to avoid the redundant storage of encounters

in the DT. When generating DTs, instead of maintaining the corresponding sets of

encounters in each node (which is the usual approach), we maintain counters. In

figure 4.4(a) we can see an example of a set of encounters used in the induction of

therapeutic sequences for the domain of Hypertension (HT). Each row represents a

different encounter and contains its decision terms (column 1) and its actions (column

2), which can be {ALCOHOL, NOT ALCOHOL, SMOKES, DOES NOT SMOKE} and

{EDUCATION, ENALAPRIL MERCK 20MG 28 TABLETS}, respectively. As this

way of representation maintains all the different combinations of decision and action

terms it can imply a huge amount of memory for large sets of encounters. Figure 4.4(b)

depicts the same example represented by means of two counters (one for each semantic

decision which are called Alcohol and Smoking). Each counter has one column for each

action, and one row for each decision term in the semantic decision plus the otherwise

alternative if none of the decision terms appear in the encounter. The counters contain

the number of encounters having each action while having each decision term (or not).

With this representation the amount of memory used by the decision trees does not

grow with the number of encounters and we still keep all the information needed to

induce the therapeutic sequences. The sets of encounters EHC are only kept in the

leaves of the DT, where they are needed in order to expand the leaves if it is necessary.

Most of the algorithms to induce DTs have three key points in which a decision

has to be made according to one or more criteria (LVRB12). Here we call them choice

points and these are the following:

• Condition for placing a decision node (or not): If this condition is fulfilled the
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(a) An example of set of encounters (b) An example of counters

Figure 4.4: Sets of encounters vs counters

algorithm places a decision node and otherwise it keeps placing question nodes

to partition the set of encounters.

• Selection of the best decision: A certain measure is used to decide which one of

the possible decisions is the best for the current set of encounters.

• Selection of the best question: A certain measure is used to decide which one of

the remaining questions is the best to partition the current set of encounters.

Considering these three choice points, we define three functions that will be used in

the algorithm to induce a therapeutic sequence. These are the functions similar action,

best action and best decision. They are described in detail in the next paragraphs.

Notice that these functions work both with counters or sets of encounters, however we

always refer to sets of encounters EHC to clarify the explanation:

similar action(EHC)

During the induction of a DT, when each one of the encounters in a set has a similar

action, a final decision can be made proposing a common action for all these encounters.

The boolean function similar action(EHC) is true when all the encounters in EHC have

a similar action. In this case, the condition for making a decision on the medical action

is fulfilled. When a final decision is made over a set of encounters, this decision may

not be completely correct from a medical point of view for each one of the encounters.

In order to guarantee the medical correctness of the therapeutic sequence induced,
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the medical errors committed must not be relevant (see section 4.2.2). Therefore,

the function similar action(EHC) uses the background knowledge of the similarity

function s to determine how similar are the different actions in the encounters of EHC .

Concretely, it calculates the homogeneity h(A(EHC)) of the treatments in the set of

encounters EHC (see section 3.1.5). If and only if the homogeneity is greater than a

predefined similarity threshold δ, then similar action(EHC) is true.

best action(EHC)

Given a set of encounters EHC , the function best action(EHC) provides the best

action to make (i.e., the most correct action from a medical point of view). In order to

guarantee medical correctness (see section 4.2.2), the function chooses the action with

a higher average similarity with all the actions in the encounters of EHC . For each

action Ai contained in A(EHC) (i.e., each action in some of the encounters in EHC),

we calculate 1
#EHC

∑
enci∈EHC

s(Ai, A(enci)). The action obtaining a higher results is

considered the best one.

best decision(EHC,SD)

Given a set of encounters EHC and a set of possible semantic decisions SD, the

function best decision(EHC , SD) provides the best semantic decision in terms of med-

ical comprehensibility, and which is also a useful decision to decide the final action

(i.e., a decision that when partitions EHC leads to a better situation to decide a fi-

nal action for the therapeutic sequence). In order to select a decision that fulfills

both points, the best decision(EHC , SD) function follows the next procedure. First

of all, it chooses the most comprehensible semantic decisions (see section 4.2.1) us-

ing the decisions partial order ≤D. This is done by selecting those semantic decisions

which have a higher priority according to ≤D (i.e., we select the semantic decisions in

SD1 = {sdi ∈ SD : 6 ∃sdj ∈ SD, sdi 6= sdj |sdj ≤D sdi}.
Then, for each one of the selected semantic decisions in SD1, the function calculates

the expected homogeneity (eh) (LVRB12). Given a semantic decision sd, eh(sd,EHC)

represents the average homogeneity of a pairwise comparison of the homogeneities of

the treatments in the subsets of encounters obtained after partitioning EHC with sd.

This eh(sd,EHC) value is useful to determine whether the use of sd at this point of the
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therapeutic sequence leads to a better situation to decide a final action, or not. eh is

calculated with equation 4.2, where Ed = {enc ∈ EHC : d ∈ D(enc)}.

eh(sd,EHC) =
1

#sd

∑
d∈sd

h(Ed) (4.2)

The difference between the expected homogeneity for a semantic decision and the

homogeneity of the current set of encounters is called the homogeneity gain (∆h) defined

in equation 4.3.

∆h(sd,EHC) = eh(sd,EHC)− h(EHC) (4.3)

We will only consider semantic decisions whose ∆h is greater than a threshold η.

The best decision will be the one with the highest ∆h. If several semantic decisions in

SD1 have the same ∆h then the best decision is selected in lexicographic order.

If none of the semantic decisions in SD1 fulfills this condition, then we start the

procedure once again selecting the semantic decisions in the second layer of priority

of ≤D (i.e., we select the semantic decisions in SD2 = {sdi ∈ SD :6 ∃sdj ∈ SD, sdi 6=
sdj , sdj /∈ SD1|sdj ≤D sdi}. We follow the same procedure with the rest of the layers

of ≤D until we find a semantic decision whose ∆h is greater than the threshold η. If

none of the semantic decisions in SD fulfills this condition, then the function will not

be able to provide a best decision.

To solve the induction of a therapeutic sequence from a state S1 starting from the

set of encounters ε(S1) we propose two algorithms: the non-incremental determination

algorithm and the incremental determination algorithm. To induce the therapeutic

sequence incrementally we apply the non-incremental determination only the first time,

which does not have information about a previous therapeutic sequence. Then, the

incremental determination is used when we already have a therapeutic sequence and

we want to incorporate information about new encounters. This may lead to a different

therapeutic sequence from S1.

Both algorithms are explained in the next paragraphs.

Non-incremental determination algorithm: Algorithm 3 shows the procedure

followed in the non-incremental determination of a therapeutic sequence.

This is a recursive algorithm which receives as input a set of encounters EHC and

a set of semantic decisions SD. We omit showing the different background knowledge
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Algorithm 3: non-incremental induction of TP

Input: EHC : set of encounters (only the health care measures), SD : semantic

decisions

Output: DT : decision tree

1 calculate similarities(EHC);

2 Create a root node for DT ;

3 Update counters of DT ;

4 if similar action(EHC) then

5 DT is a leaf labeled with best action(EHC);

6 Store EHC in DT ;

7 else

8 if ∀enci, encj , D(enci) = D(encj) ∨ (SD = ∅) then

9 DT is a leaf labeled with all the different actions in EHC ;

10 Store EHC in DT ;

11 else

12 sd← best decision(EHC , SD);

13 if (sd=null) then

14 DT is a leaf labeled with all the different actions in EHC ;

15 Store EHC in DT ;

16 else

17 foreach di ∈ sd do

18 E′HC ← encounters enci in EHC such that di ∈ D(enci);

19 if E′HC 6= ∅ then

20 Add a new branch bi below DT labeled di;

21 DT ′ ← non-incremental induction of TP((E′HC , SD − sd));

22 Add the subtree DT ′ below bi;

23 return DT ;
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structures and functions used in the algorithm. In the first call of the algorithm,

the parameter SD is equal to the set SD of hyperedges of the semantic decisions

hypergraph HD. First of all, the algorithm calculates the similarity between actions

s(A(enc1), A(enc2)) for each pair of encounters enc1, enc2 ∈ EHC with the procedure

described in section 3.1.5 (line 1). All the similarities are calculated in this previous step

avoiding to recalculate them each time they are needed during the induction process.

Then it creates a root node for the DT (line 2). The next step consists in updating

the counters of the DT (line 3). In case that all the encounters in EHC have a similar

action (line 4) the algorithm places the leaf with the best action for EHC (line 5) and

stores the current set of encounters EHC in the DT for future uses (line 6). Otherwise,

it checks if all the encounters in EHC have the same decision terms or if there are no

more semantic decisions left (line 8). In this case, the algorithm places a leaf labeled

with all the different actions in EHC (line 9) and stores EHC in the DT (line 10). On

the contrary, it determines the best decision sd (line 12). If the function is not able to

find any useful semantic decision (line 13), the algorithm places a leaf labeled with all

the different actions in EHC (line 14) and stores EHC in the DT (line 15). Otherwise,

for each decision term di in the semantic decision sd, we determine the set of encounters

E′ ⊂ E that have di (line 18). If the set of encounters E′ is not empty, a new branch

bi is created labeled di (line 20). Then the algorithm is called recursively receiving

as parameter the set of encounters E′, and the set of remaining semantic decisions

SD − sd, returning a DT which is connected to bi (lines 21-22).

Notice that in lines 9 and 14 the algorithm places a leaf labeled with all the different

actions in E. This does not refer to syntactically different actions but to semantically

different actions. In this two cases the homogeneity of the actions in EHC is lower than

the threshold δ and thus similar action(EHC)=false. However, some of the actions in

EHC may be similar enough to be considered equivalent. To solve this problem we per-

form an agglomerative hierarchical clustering (LVRC12b) over the set of actions in EHC

(see section 2.3). We use a dendrogram based on the similarity function s described

in section 3.1.5 and the similarity threshold δ. Being A(EHC) = {A1, A2, ..., An} the

set of actions in EHC , we assign each action of A(EHC) in a different cluster. A den-

drogram can be created by successively unifying the two clusters with a higher value

of similarity. The similarity between two clusters is calculated as the average of the

similarities between each action of one cluster with all the actions in the other cluster
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(average linkage clustering). The similarity threshold δ is used to cut the dendrogram

obtaining a final clustering Cδ = {c1, c2, ..., cn} where each cluster ck contains a set of

semantically equivalent actions. Finally, the leaf is labeled with one representative ac-

tion of each cluster. This action is chosen with the method explained in the description

of the function best action(EHC).

Incremental determination algorithm: Algorithm 4 contains the incremental

algorithm to update an existing therapeutic sequence with new encounters.

Algorithm 4: incremental induction of TP

Input: DT : decision tree, EHC : set of encounters (only the health care

measures), SD : semantic decisions

Output: DT : decision tree

1 calculate new similarities(EHC);

2 introduce encounters(DT , EHC , SD);

3 ensure best decision(DT , SD);

4 return DT ;

The incremental algorithm receives as input the same parameters as the non-

incremental algorithm plus the previous DT representing a therapeutic sequence. We

omit showing the different background knowledge structures and functions used in the

algorithm. In the first call of the algorithm, the parameter SD is equal to the set SD

of hyperedges of the semantic decision hypergraph H. Firstly, the algorithm calculates

the similarities that involve new actions included in the set of encounters EHC in order

to avoid repetitive calculations during the induction (line 1). Then, it basically consists

of two steps. The first step, as described below, is to incorporate the new encounters

into the DT by passing them down the proper branches until they reach their proper

leaf (line 2). The second step, also described below, is to traverse the DT from root

to leaves, restructuring it as necessary so that each internal node employs the best

available decision at each moment (line 3). The procedure for the first step is detailed

in algorithm 5.

It starts by updating the counters (line 1). If DT is an internal node (line 2),

the new encounters are recursively passed through the branches of DT and they are

introduced in the proper internal nodes (lines 3-9). Each one of these updated internal

nodes is marked as stale (line 3). Notice that before applying the incremental algorithm
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Algorithm 5: introduce encounters

Input: DT : decision tree, EHC : set of encounters (only the health care

measures), SD : semantic decisions

1 Update counters of DT ;

2 if DT is an internal node then

3 Mark DT as stale;

4 sd← semantic decision used in this node;

5 foreach branch bi below DT labeled di do

6 E′HC ← encounters enci in EHC such that di ∈ D(enci);

7 if E′HC 6= ∅ then

8 DT ′ ← subtree below bi;

9 introduce encounters(DT ′, E′HC , SD − sd);

10 else

11 if similar action(EHC + ε(DT )) then

12 Label DT with best action(EHC + ε(DT ));

13 Store EHC in DT ;

14 else

15 DT = non-incremental induction of TP(EHC + ε(DT ), SD − sd);
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all the nodes of the DT are not stale. In case that DT is a leaf (line 10), it checks if

the encounters in DT (represented as ε(DT )) plus the set of new encounters EHC still

have a similar action (line 11). If so, DT is labeled with the best action (line 12) and

the new encounters are stored in DT (line 13). On the contrary, the non-incremental

algorithm is called in order to obtain a subtree for EHC + ε(DT ) (line 15).

Following with the explanation of algorithm 4, at this point the new encounters have

been introduced in the previous DT, updating counters and generating new subtrees

if necessary. Moreover, all the existing internal nodes that have been modified by new

encounters, have been marked as stale. The other step before returning the new DT is

a call to a procedure that restructures the DT as necessary so that each internal node

employs the best available decision at each moment (line 3). It is fully described in

algorithm 6.

Algorithm 6: ensure best decision

Input: DT : decision tree, SD : semantic decisions

Output: DT : decision tree

1 if DT is an internal node ∧ DT is stale then

2 if similar action(ε(DT )) then

3 DT is a leaf labeled with best action(ε(DT ));

4 Collect and store ε(DT ) in DT ;

5 else

6 if ∀enci, encj , D(enci) = D(encj) then

7 DT is a leaf labeled with all the different actions in ε(DT );

8 Collect and store ε(DT ) in DT ;

9 else

10 sd← best decision(ε(DT ), SD);

11 pull up(DT ,sd);

12 Mark DT as not stale;

13 foreach successor DT ′ of DT do

14 ensure best decision(DT ′, SD − sd);

15 return DT ;

This is a recursive algorithm that only involves modified internal nodes. Therefore,

it first checks if DT is an internal node and whether it is marked as stale (line 1). If
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so, it determines if it should be a leaf with the function similar action (line 2) and if

it is the case, the node is assigned the best action (line 3). Otherwise, the algorithm

first checks if all the encounters in ε(DT ) have the same decision terms (line 6) and

if it is the case it places a leaf labeled with all the semantically different actions in

ε(DT ) (line 7)1. In lines 4 and 8, as we are placing a leaf, we have to store the set of

encounters in the DT. The current node was an internal node so it does not contain

any set of encounters. Therefore we have to collect these encounters from the leaves

of DT and store them. In the case that DT is not transformed into a leaf (line 9), we

determine the best decision (line 10) and then we perform a pull-up of this semantic

decision (line 11). The pull-up of a semantic decision consists in moving it to the top

of the DT so that pull up(DT, sd) always returns a DT with the semantic decision sd

at its root. The algorithm is detailed in 7.

In the pull-up procedure, if DT is a leaf the algorithm transforms it into a subtree

with the semantic decision sd in the root (lines 2-11). Otherwise, if it is an internal

node with a semantic decision sd′ such that sd′ 6= sd, the algorithm can deal with 3

cases. In the general case (line 27) it makes a pull-up of sd for each one of the subtrees

of DT (lines 28-29). This procedure is performed to fulfill the preconditions of the

transpose operation depicted in figure 4.5, which moves the best semantic decision to

the top of the DT (line 30).

Figure 4.5: Transposing a decision tree

Notice that we have a DT with an internal node that uses the semantic decision

sd′ and, in the next level of the DT, we have used the pull-up operator in order to

1Here we refer to the set of encounters ε(DT ) in the decision tree to clarify the explanation but

instead of sets of encounters we use counters.
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Algorithm 7: pull up

Input: DT : decision tree, sd: semantic decision

1 if DT is a leaf then

2 DT is not a leaf;

3 Update counters of DT ;

4 foreach di ∈ sd do

5 E′HC ← encounters enci in ε(DT ) such that di ∈ D(enci);

6 if E′HC 6= ∅ then

7 Add a new branch bi below DT labeled di;

8 DT ′ ← non-incremental induction of TP((E′HC , SD − sd);

9 Add the subtree DT ′ below bi;

10 Remove encounters from DT ;

11 else

12 if semantic decision used in DT is not sd then

13 if DT has exactly one successor DT ′ which is not a leaf then

14 pull up(DT ′,sd);

15 DT ← DT ′;

16 E′HC ← encounters in the successors which are leaves;

17 introduce encounters(DT,E′HC , SD);

18 else if all the successors of DT are leaves then

19 foreach di ∈ sd do

20 E′HC ← encounters enci in ε(DT ) such that di ∈ D(enci);

21 if E′HC 6= ∅ then

22 Add a new branch bi below DT labeled di;

23 DT ′ ← non-incremental induction of TP((E′HC , SD − sd);

24 Add the subtree DT ′ below bi;

25 else

26 foreach successor DT ′ of DT do

27 pull up(DT ′,sd);

28 transpose(DT );
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have subtrees that use the semantic decision sd. We do not mind about the next level

of the tree which will contain internal nodes or leaves (nodes A, B, C and D in the

figure). With these preconditions, we can transpose the DT in order to move sd to

the root. Observe that the subtrees A, B, C and D do not need to be examined or

revised. Each subtree corresponds to a set of encounters, and because the set has not

changed during the transposition, the subtree does not need to be changed in any way.

Similarly, the set of encounters corresponding to the root node of the DT does not

change. Therefore, only the information in the nodes in the middle needs to be revised.

This is done inexpensively, without re-examining encounters, by simply combining the

information kept in their counters. The semantic decision of the nodes in the middle

has not changed due to the incorporations of new encounters but because we needed to

satisfy the preconditions of the transpose operation. Therefore, these nodes will have

to be revised so they are marked as stale.

In the example used to explain the transposition we have supposed that both se-

mantic decisions sd and sd′ contained two decision terms. Usually, there will be more

than two decision terms in a semantic set, but the procedure is equivalent.

As we stated before, when performing a pull-up, we can find two exceptions to the

general case (line 27) which are depicted in figure 4.6. The first case, in figure 4.6(a),

is when the DT has exactly one successor which is a not a leaf (line 14). Here we move

sd to the top of the successor which is not a leaf using a pull-up (line 15). Then we

replace the current DT by this successor (line 16) and introduce the encounters of the

successor leaves (lines 17-18). The second exception, in figure 4.6(b), is when all the

successors of DT are leaves (line 19). In this case we assign the best decision to DT

and generate the branches below it using the non-incremental algorithm (lines 20-26).

Continuing with algorithm 6, after the pull-up procedure, we already know that

the node uses the correct semantic decision so we can mark it as not stale (line 12).

Then we recursively call the same algorithm for each one of the successors of DT (lines

13-14). With this procedure, the modified subtrees of DT are revised so that we finally

ensure the best decision in each node of the decision tree.

In the following we will illustrate an example of how the presented algorithm updates

a therapeutic sequence when introducing new encounters. Consider the DT in figure 4.7

which represents a simple therapeutic sequence that could be obtained during the

generation of a SDA diagram for the treatment of hypertension.
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(a) DT has exactly one successor which is not a leaf

(b) All the successors of DT are leaves

Figure 4.6: Two exceptions to the general case when performing a pull-up

Figure 4.7: Example of updating a therapeutic sequence (1)
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As soon as new encounters arrive, we have to introduce them into the DT and then

ensure the best decision for each node. In figure 4.8 some encounters have been intro-

duced which have passed through the branches ALCOHOL and S1 HYPERTENSIVE

SBP. The nodes which have incorporated new encounters are marked as stale (painted

in gray). Some of these new encounters do not contain the action EDUCATION pro-

posed by the DT, so the corresponding leaf has been replaced by a subtree.

Figure 4.8: Example of updating a therapeutic sequence (2)

Once the encounters have been introduced into the DT, we ensure the best decision

for each node. Now we suppose that the best semantic decision for the root node is

the one related to SBP. This node currently separates patients that take alcohol from

those who do not, so we have to perform a pull-up. As we have the desired decision

in both successors of the root node we simply transpose the DT (see figure 4.9). We

have to mark as stale the internal nodes during the transposition and remove the stale

mark from the root node.

Finally, we ensure the best decision for each remaining stale node. We suppose that

the node at the left that asks for alcohol already contains the best decision and the

one at the right should ask for smoking habits. In the latter case, we make a pull-up

following the first exception (the DT has exactly one successor which is not a leaf) and

obtain the final DT in figure 4.10.

The incremental determination of therapeutic sequences includes several features

that allow dealing more efficiently with the constant arrival of data of new encounters.

For each new incremental determination of a therapeutic sequence we do not have to

induce the whole DT from scratch. The new encounters are introduced through the
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Figure 4.9: Example of updating a therapeutic sequence (3)

Figure 4.10: Example of updating a therapeutic sequence (4)
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existing DT creating new branches if necessary. Finally only the nodes of the DT which

have been affected by the new encounters are revised and restructured so that the best

decision is made at each node. Therefore, the therapeutic sequence only depends on

the encounters used, without regard to the sequence in which those encounters were

presented.

Another advantage of the algorithm is that instead of storing sets of encounters

in each internal node of the DT, it uses counters that represent essentially the same

information but in a more efficient way. With this representation the amount of memory

used by the DTs does not grow with the number of encounters and it still keeps all the

information needed to induce the therapeutic sequences.

4.3 Integration of the procedures to generate SDA dia-

grams

Once the procedures of identifying the states and determining the therapeutic sequences

have been detailed, in this section we will explain how these two procedures are inte-

grated in order to generate SDA diagrams.

We start considering that the identification of states is based on the data contained

in each one of the encounters. Observe also that therapeutic sequences start from a

certain state and that this state and treatment leads to another state. This next state is

not included in the therapeutic sequence itself but it is necessary in the integration step

in order to make the proper connections. To generate therapeutic sequences we use data

contained in each one of the encounters, but to connect these therapeutic sequences

we need to know the state of each following encounter. Therefore, for each one of

the episodes of care in the EOC database we will have to discard the last encounter

because we still do not know the state of its following encounter. These last encounters

will be used in the identification of states but will be ignored in the determination of

therapeutic sequences. Nevertheless, these encounters will not be lost but they will be

stored together with the identification number of their corresponding episode of care.

The next time that we update the SDA diagram, the stored encounters are added at

the top of their respective episode of care. This procedure is depicted with an example

in figure 4.11. The first time that we generate a SDA diagram we do not use the

last encounters of each EOC (enc14, enc22, enc33) in the determination of therapeutic
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sequences but we store them for future uses (see figure 4.11(a)). In a next incremental

generation of the SDA diagram we recover the stored encounters of the involved EOCs

and store the last encounters of each current EOC (see figure 4.11(b)). Notice that

enc14 is not recovered this time because there are no new encounters of EOC 1 in the

database.

(a) Example of storage of encounters in the initial generation of the SDA diagram

(b) Example of storage and recovery of encounters in a next incremental generation of the SDA diagram

Figure 4.11: Storage and recovery of encounters in the generation of the SDA diagram

In order to generate SDA diagrams integrating the procedures explained in the

previous sections we follow these steps:

1. Identification of states and transformation to the SDA model

2. Determination of therapeutic sequences from the identified states and transfor-

mation to the SDA model

3. Connection of SDA actions with the corresponding following SDA states
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4. Selection of a suitable level of abstraction for SDA action terms

5. Unification of SDA actions

The first step consists in applying the procedure of identification of states described

in section 4.1 using all the encounters in the EOC database. The first time that we

generate the SDA diagram we will identify these states from scratch while the next

times, the set of states of an existing SDA diagram will be modified with the incremental

algorithm. The resulting set of states is easily transformed to the SDA model creating

a SDA state for each one of the states identified that contains the corresponding set of

SDA terms. Notice that for each incremental generation of the SDA diagram, the set

of identified states may change and thus some SDA states may be removed from the

SDA diagram and some new SDA states may appear.

In the second step, a therapeutic sequence (decision tree) is determined for each of

the identified states in step 1. As we explained before in this section, the last encounter

of each episode of care in the EOC database is ignored and stored for the future while the

rest of encounters are used to apply the procedure in section 4.2. For the non-identified

states we do not have to induce the DT representing its therapeutic sequence because

it will not be included in the SDA diagram. However, the non-identified states also

represent sets of encounters which have to be stored because they may become identified

states in the future. When we update the SDA diagram with new encounters, some

non-identified states may be identified and we must consider all the encounters that

have been in this state in order to induce a correct therapeutic sequence. Therefore,

we will store the set of encounters for each non-identified state in order to be used in

the future. Similarly, a state which was identified in a previous generation may not be

identified in the current one. In this situation we created a therapeutic sequence for this

state which now will not appear in the SDA diagram. This therapeutic sequence must

be stored so that, in the future, it can be updated with new encounters. In general, we

will deal with 14 different situations which are summarized in table 4.3.

The first row corresponds to the case of the first time we generate the SDA diagram

where neither encounters nor DTs have been stored. If the state is identified we generate

and store the DT which will appear in the SDA diagram. Otherwise, we store the new

encounters for future uses. For the first generation, the cases where there are no new

encounters are impossible. In the second row, for the current state, some encounters
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Table 4.3: Summary of operations with DTs and the stored encounters for each possible

situation

Identified Not identified

Stored New encounters No new encounters New encounters No new encounters

Nothing Generate/store DT - Store encounters -

Merge encounters, Reset old encounters Merge/store No operation

Encounters reset old encounters and generate/store DT encounters No operation

and generate/store DT No operation

DT Update/store DT No operation Store encounters No operation

Encounters Merge encounters, Reset old encounters Merge/store No operation

+ reset old encounters and update/store DT encounters No operation

DT and update/store DT No operation

where stored in a previous generation. If the state is identified, a DT must be created

using the stored encounters and thus they can be removed. Moreover, if there are new

encounters they must be also considered so we merge old and new encounters before

generating the DT. If the state is not identified there is no need to generate a DT. We

merge old and new encounters if necessary. Following the third row, we may deal with

the situation where a DT was stored previously for the current state. If this state is

identified we must update the DT with the new encounters and if it is not identified

the new encounters are stored. If there are no new encounters, no operation is needed.

Finally, in the forth row, we have the case where we have both old encounters and an

old DT. In this case, the operations to be followed are the same that when we only

have old encounters stored, but if the state is identified, we update the old DT instead

of generating it from scratch.

At this point we have a set of DTs which represent therapeutic sequences that start

from each of the identified states. These therapeutic sequences are then transformed

to the SDA model by replacing the internal nodes of the tree by SDA decisions and the

leaves by SDA actions. Each branch leading from an internal node is labeled with a

decision term, and they are transformed to decision connectors containing this term and

pointing to the next internal node (the branches labeled ’otherwise’ are transformed

into otherwise connectors). The leaves are labeled with an action containing a set of

action terms, so a different SDA action is created for each leaf, containing its action

terms. Finally, each therapeutic sequence is connected with its respective identified

state. Therefore, in the SDA diagram we place a plain connector from each SDA

state created in step 1 pointing to the SDA decision in the root of the corresponding
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therapeutic sequence.

In the third step we connect each therapeutic sequence to the following next states.

In order to do this we must have stored, for every encounter of each identified state,

which is the state of the following encounter. Therefore, for each SDA action at the end

of a therapeutic sequence we will have a set of following states. In the SDA diagram,

we create a plain connector leading from a SDA action to each one of the corresponding

SDA states (type-2 non-determinism).

After the third step, the SDA diagram is already finished. However, two modifi-

cations are made that improve the visualization of the SDA diagram. The forth step

consists in selecting a suitable level of abstraction for the SDA action terms. The thresh-

old δ defined in the process of calculating if a set of encounters have a similar action in

section 4.2.3 is related to the level of abstraction of the actions in the diagram. If δ has

a low value, we want our final diagram to consider as equivalent two actions with a low

similarity. Thus if, for example, δ = 0.3 two different diuretics like hydrochlorothiazide

and indapamide will be considered equivalent in the diagram. Therefore, if we specify

such a low δ, we are interested in knowing that the treatment contains a diuretic rather

than knowing if it should be hydrochlorothiazide or indapamide. Otherwise, with a

higher value of δ, these two diuretics will not be considered equivalent and they will

lead to two different actions in the diagram. In this case, we are interested in knowing

exactly which kind of diuretics are needed. Therefore, with δ we are actually defining

a level of abstraction for the terminology in the SDA actions. As a consequence, for

each one of the action terms in the SDA actions we will go up through its predecessors

in the action terms hierarchy HA and we will choose the last concept whose successors

are considered equivalent according to δ. Following the previous example, with δ = 0.3,

we may find the action term HIDROSALURETIL 50MG 20 TABLETS in one of the

SDA actions. Going up one level we find out that its active principle is C03AA03

hydrochlorothiazide whose successors have a similarity of at least 0.7. The same hap-

pens with the next level which is C03AA Thiazides, plain. We keep going up to C03A

LOW-CEILING DIURETICS, THIAZIDES whose successors have a similarity of 0.5.

The successors of the next concept C03 DIURETICS have a similarity of 0.3, so they

are still considered equivalent. This would be the level of abstraction selected because

the next one, C CARDIOVASCULAR SYSTEM, has successors with similarity equal

to 0.0 (< δ). So we choose the concept C03 DIURETICS to replace the original action
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term HIDROSALURETIL 50MG 20 TABLETS. With this procedure we guarantee a

proper terminology for actions in the final SDA diagram.

The other modification done in the fifth step aims at reducing the number of SDA

actions in order to simplify the diagram. Our procedure to generate SDA diagrams

creates a different DT for each state. Each one of these DTs has several SDA actions

as leaves. A concrete SDA action may appear several times in the diagram in different

therapeutic sequences. It is also possible that some of these equal SDA actions lead to

the same states. In these cases, we can unify these SDA actions because they represent

the same treatment followed by the same expected transition to a next state. In the

fifth step, we detect sets of equal SDA actions that are also connected to the same next

states. We unify these SDA actions by removing all of them except one and redirecting

each connector that pointed to the removed SDA actions, to the SDA action that

remains in the diagram as it is depicted in figure 4.12. In figure 4.12(a) there is a SDA

diagram with 7 actions. The action containing the action terms {a2, a3} and pointing

to the state {s3} is repeated twice and thus they can be unified. The same happens

with action {a1} pointing to states {s1, s2} and {s3} and with action {a4} pointing

to state {s3}. The resulting SDA diagram after unifying SDA actions is depicted in

figure 4.12(b). Notice that there are still two actions containing {a1} but they could

not be unified because they are pointing to different states.

4.4 Summary of the incremental generation of SDA dia-

grams with background knowledge

This chapter has introduced two procedures to automatically induce two basic elements

of medical procedural knowledge structures, concretely SDA diagrams, which are health

care states (see definition 3.1.1) and therapeutic sequences (see definition 3.1.5). Both

procedures automatically generate these medical structures from an EOC database

which contains episodes of care, encounters, etc. of patients treated for a certain

pathology. They are also based on background knowledge which is not explicit in the

EOC database. Finally, both procedures are able to work in an incremental way in

order to deal with the constant arrival of new medical data.

Table 4.4 includes a list of all the parameters that have been used during the

explanation of both procedures:
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(a) SDA diagram with 7 actions before unification

(b) SDA diagram with 4 actions after unification

Figure 4.12: Unification of SDA actions
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Table 4.4: Parameters of the procedures of identification of states and determination of

therapeutic sequences

Parameter Explanation

δ threshold to determine whether two or more action terms or actions are equivalent or not

αe weight given to the epidemiological view of the quality of a state

αt weight given to the therapeutic view of the quality of a state

αp weight given to the preferential view of the quality of a state

minS minimum number of terms per state

maxS maximum number of terms per state

η minimum homogeneity gain for semantic decisions to be chosen as best decisions

A method to integrate both procedures has been presented at the end of the chapter

in order to incrementally generate whole SDA diagrams using background knowledge.
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5

Tests and results

There are three main aspects that we want to verify about the proposed methodology

which are:

1. The good performance at the levels of the use of background knowledge and

incrementality.

2. The adherence of the obtained SDA diagrams to the databases used to generate

them.

3. The medical correctness and comprehensibility of the obtained SDA diagrams.

With regard to the first aspect, we have designed some tests to determine whether

the use of background knowledge implies an increase of temporal cost or not, and

whether the methodology fulfills the desirable goals of incrementality.

The second aspect is tested calculating the adherence of the SDA diagrams gen-

erated for Hypertension (HT), Diabetes Mellitus (DM) and the comorbidity of both

diseases to the source databases containing the details of treatment for real primary

care patients assisted in SAGESSA. For the case of HT, we also generate a SDA dia-

gram using the incremental approach during a period of time and analyze the adherence

to the database during its evolution.

Regarding the third aspect, we have decided to generate definitive SDA diagrams

for each one of the previous pathologies in order to test them at a medical level. More-

over, we compare these diagrams with those generate with the knowledge-free approach

125



5. TESTS AND RESULTS

in (BRLV12) from a medical point of view. Finally, we follow the evolution of the SDA

diagram of HT during a period of time and analyze it.

All these tests have been done considering the background knowledge presented

in section 3.3 in order to guarantee medically correct results. Both the tests and the

results obtained are detailed in next sections.

Regarding the parameters (see table 4.4), we have performed several tests and

consultations with the health care professionals in order to determine their value. The

parameters related to the quality of a state have been assigned αe = 0.0, αt = 0.3 and

αp = 0.7 for all the tests because the health care professionals were interested in giving

a great weight to their preferences and a lower weight to the therapeutic view. With

regard to the constraints about the number of terms within a state, the health care

professionals decided that for all these tests it was not necessary to specify a minimum

number of terms (minS = 0). The maximum number of terms maxS has been always

fixed (maxS = 2 for HT and HT+DM, and maxS = 3 for DM). The value for parameter

η has been determined after generating the same therapeutic sequences changing the

values of η and showing the results to the health care professionals. The experience

suggests that η = 0.1 is the best choice, so this value has been fixed for all the tests.

Finally, giving different values to the parameter δ is very interesting because it let us

change the level of abstraction of the terminology of the actions in the SDA diagram.

Therefore, during the following tests, we have tried different values for δ as it is clearly

detailed.

The proposed methodology has been implemented and integrated into an existing

software called SDA Lab which is used to manually develop, manage and execute SDA

diagrams.

5.1 Integration in SDA Lab

SDA Lab (LV07) is a software platform created in 2007 with the main purpose to

manually develop, manage and execute SDA diagrams. Figure 5.1 contains a screen

shot of SDA Lab v1.4. In v1.4, it also includes a tool to automatically generate SDA

diagrams from data using the approach in (BRLV12).

We have evolved SDA Lab to v1.5, replacing the previous method to generate SDA

diagrams by the knowledge-based incremental methodology presented in this thesis.
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Figure 5.1: Developing a SDA diagram with SDA Lab
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Concretely, SDA Lab v1.5 has the following new features:

• Incremental learning of SDA diagrams

• Incremental incorporation of encounters into a SDA diagram one-by-one

• Knowledge-based learning of SDA diagrams

• Management of background knowledge (graphs, hypergraphs, partial orders and

concept hierarchies)

• Manual or automatic (from a file) creation of background knowledge structures

• Execution of SDA diagrams

• Quality assessment of SDA diagrams

When we decide to generate a new SDA diagram we can introduce or modify all the

background knowledge regarding states, decisions and actions. For example, figure 5.2

depicts the window to select semantic decisions, to decide their priority and to choose a

minimum level of homogeneity (the similarity threshold δ introduced in section 4.2.3).

All the tests presented in this chapter have been performed with SDA Lab v1.5.

5.2 Performance tests of background knowledge

The use of background knowledge in the generation of SDA diagrams is essential to

guarantee medically correct results as we will show in future sections. However, before

analyzing these benefits we have to make some performance tests in order to determine

whether considering background knowledge of the medical domain implies an excessive

increase of temporal cost of the knowledge-based solution presented in the thesis or not

with respect to previous knowledge-free solutions (BRLV12).

In this section we compare our approach with the one proposed in (BRLV12) which

generates SDA diagrams with a different methodology that does not consider the back-

ground knowledge of the domain. We have generated four SDA diagrams with 100, 200,

400 and 800 encounters with patients of HT in SAGESSA during the year 2009, using

the algorithm in (BRLV12) and with our knowledge-based approach. The results ob-

tained are shown in figure 5.3 where performance is measured in terms of the execution
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Figure 5.2: Introducing the background knowledge related to decisions with SDA Lab

v1.5
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time expressed in seconds (vertical axis) and conditioned to the number of encounters

(horizontal axis).

Figure 5.3: Comparison of time cost with and without background knowledge

The blue lines represent the results of the induction with the algorithm in (BRLV12)

and the green lines represent the results of our background knowledge based approach.

The simple method used to identify states without background knowledge in (BRLV12)

implies a low temporal cost of less than 0.5 s whereas our approach, which considers sev-

eral constraints between terms, partial orders, etc., has a greater cost that grows to 5.5 s

(for 800 encounters). Contrarily, the determination of therapeutic sequences is favorable

to our approach which grows linearly while the method in (BRLV12) clearly does not.

A deeper analysis of the causes of this improvement concludes that in our knowledge-

based approach the calculation of similarities between actions to detect equivalences

and the use of semantic decisions drastically reduces the size of our decision trees. More-

over, the number of states identified is lower in our approach, so less decision trees are

induced. This implies a small average increment of 3 s for each test until a maximum of

10.9 s, for 800 encounters. The approach to determine therapeutic sequences proposed

in (BRLV12) shows a non-linear trend that reaches the duration of 100 s in the last test.

This great difference between both approaches can also be reinforced by the fact that

our approach reduces the number of steps used to determine therapeutic sequences,
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from three (detecting actions, determining evolutions and determining actions) to one

(determining therapeutic sequences).

The results obtained show evidence that the use of background knowledge not only

does not imply an increase of temporal cost but it severely reduces the time spent

determining therapeutic sequences and, therefore, the total duration of the process

(1.6 s for 100 encounters, 5.8 s for 200, 32.2 s for 400 and 83.8 s for 800).

5.3 Performance tests of incrementality

The use of the incremental approach has to be empirically justified. In section 2.6 we

introduced three desirable goals which usually motivate the use of incremental learning

algorithms. These are:

1. Cost reduction: The incremental cost of updating the current hypothesis with a

new instance should be much lower than the cost of building a new hypothesis

from scratch. It is not necessary however that the sum of the incremental costs

be less than the execution on the complete database.

2. Independence from the size: The update cost should have a high degree of inde-

pendence to the number of training instances on which the decision mechanism

is based.

3. Independence from the order: The hypothesis produced by the incremental al-

gorithm should depend only on the set of instances that has been used, without

regard to the sequence in which these instances were presented.

We have performed several tests to determine whether these goals are achieved

or not. These tests are presented in the following sections together with the results

obtained. For all of these tests we have used the data of patients of HT in SAGESSA

during the year 2009.

5.3.1 Cost reduction

A desirable goal of our incremental algorithm is that the cost of incorporating a new

encounter to a previously built SDA diagram should be much lower than the cost of

inducing the new SDA diagram from scratch. However, it is not necessary that the sum
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of the different incremental costs be less than the execution on the complete database

of encounters.

In order to check whether this goal is achieved or not, we have performed the

following test. Initially we induce a SDA diagram using 200 encounters. Then we

incrementally incorporate a new encounter to the diagram and we calculate the time

spent with this updating. We repeat 10 times this incremental procedure adding a new

encounter to each resulting SDA diagram. Finally, we generate the same SDA diagrams

with the non-incremental procedure (one induced with 201 encounters, one with 202

encounters, etc.) and we calculate the duration of the procedure. With this test we are

able to compare the time spent updating a SDA diagram with several new encounters,

with the time spent generating the same SDA diagrams from scratch. Figure 5.4 shows

the results of the test.

Figure 5.4: Comparison of time cost between the incremental and the non-incremental

approach

The blue lines represent the results of the non-incremental induction and the green

lines represent the results of the incremental induction. The durations of the identi-

fication of states are very constant in both cases, with an average of 1301.6 ms for

the non-incremental approach, and 332.8 ms for the incremental approach. The time

spent determining therapeutic sequences is constant in the non-incremental approach
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and highly variable in the incremental approach. This is caused by the fact that the

number of decision trees to be revised will not always be the same and therefore each

updating will require a different number of operations of pull-up, transposition, etc. In

the case of determining the therapeutic sequences the average durations are 2891.3 ms

for the non-incremental approach, and 368.6 ms for the incremental one. A particular

step that increases the time cost in the non-incremental approach is the calculation

of similarities between actions which is performed in the beginning in order to avoid

recalculations. This procedure takes about 1694.2 ms in the non-incremental approach

because the similarities between all the pairs of actions have to be calculated. In the

incremental approach only the similarities with new actions (if there are any) have to

be calculated so the time spent is reduced to an average 41.5 ms. If we only consider

the time spent generating decision trees (avoiding the time used to calculate similarities

between actions) we observe that in the incremental approach, the steps that require

more modifications of the existing decision trees (4,6) have a cost almost as high as

the non-incremental approach, while the steps that do not require any modification of

existing decision trees (5,7,8,10) have a cost equal to 0.

The total temporal cost of updating an existing SDA diagram with a new encounter

is averaged 3491.5 ms lower than generating a new SDA diagram from scratch, so we

can conclude that the first desirable goal is achieved.

If we update an existing SDA diagram with more than one encounter at the same

step, the time spent will increase because more decision trees will have to be revised.

Now we want to determine whether it is still worth or not updating an existing SDA

diagram rather than generating it from scratch if the updating is performed at the end

of the day. We perform another test to check this. As we did in the previous test, we

induce a SDA diagram with 200 encounters. Now we incrementally update it with the

set of encounters that have taken place during one day. We calculate the time spent

with this updating and repeat the procedure 10 times corresponding to 10 consecutive

days. We compare the duration of this procedure with the duration of generating the

same SDA diagrams from scratch. In this case, the incremental approach still obtains

better results of time cost. Concretely, the incremental approach is averaged 1295.2 ms

faster.

Repeating the previous test but updating the SDA diagram every two days, the

difference grows to 1475.6 ms. Finally, when making the test updating the SDA diagram
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every three days, the incremental approach increases its costs and takes 129.6 ms more

than the non-incremental approach. Therefore, the results suggest that, in the case of

SAGESSA or other health care centers with a similar rate of patients per day, for SDA

diagrams based on about 200 encounters, if we generate them every two days or less,

the approach with lower costs is the incremental one. If we generate the SDA diagram

every three days or more, then the non-incremental approach is preferred.

However, the recommended practice is always to update the SDA diagram as soon

as a new encounter arrives because the temporal cost will be the lowest and the SDA

diagram used as a support to make decisions will always be up to date.

5.3.2 Independence from the size

Another desirable goal of the incremental algorithm is that the cost of updating the

SDA diagram with new data should have a high degree of independence to the number

of encounters that have been used to generate the initial SDA diagram.

We have checked this goal by performing the following test. We generate a SDA

diagram with one encounter and then we keep updating it with one new encounter until

200 encounters are incorporated. Figure 5.5 shows a linear graph with the results of

the test related to the cost of identifying states.

Figure 5.5: Evolution of the cost of identifying states when incorporating the first 200

encounters to a SDA diagram
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The pink line shows the evolution of the time spent in milliseconds (right vertical

axis) to identify states when incorporating the first 200 encounters to a SDA diagram,

and the blue line represents the size of the space of states (left vertical axis) which

increases with the incorporation of new encounters. The graph also includes a trend

line of the evolution of the update cost. The results show that the update cost increases

linearly about 1.8 ms for each new encounter incorporated. A linear trend with such

slope suggests that the update cost of identifying states has a light dependence on the

number of encounters used.

On the other hand, figure 5.6 shows another linear graph with the results of the

test related to the cost of determining therapeutic sequences.

Figure 5.6: Evolution of the cost of determining therapeutic sequences when incorporat-

ing the first 200 encounters to a SDA diagram

In this case, the pink line shows the evolution of the time spent in milliseconds

(right vertical axis) to determine therapeutic sequences when incorporating the first

200 encounters to a SDA diagram. We compare this evolution with the blue line which

represents the total number of nodes (left vertical axis) of all the decision trees which

gives us an idea of the current size of the problem of determining therapeutic sequences.

Notice that the temporal cost of each updating is very variable because it may affect

a different number of decision trees and also a different number of operations such as

pull-up, transposition, etc. The results show that the cost increases linearly about

0.8 ms for each new encounter incorporated. Therefore, when determining therapeutic
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sequences the dependence on the number of encounters used is even lower than when

identifying states.

We can confirm that we achieve this desirable goal because the degree of inde-

pendence to the number of encounters used is very high according to the results (an

increase of 1.8 ms and 0.8 ms for each additional encounter when identifying states and

determining therapeutic sequences respectively).

5.3.3 Independence from the order

The last desirable goal is that the SDA diagram generated by the incremental algorithm

should depend only on the set of encounters that has been used, without regard to the

sequence in which those encounters were presented.

We have checked this property with the following test. We generate a SDA diagram

with 200 encounters incrementally incorporated one by one. Then we randomly shuffle

these encounters and we generate once again the SDA diagram. This procedure has

been done 5 times obtaining 5 SDA diagrams. In all the cases, the diagrams generated

were exactly the same, concluding that the desired goal is achieved.

5.4 Database adherence tests

Once the performance has been checked, we want to determine the adherence of the

SDA diagrams to the hospital database that has been used to generated them in order

to conclude whether the diagrams are able to correctly represent the treatments in

the database or not. Moreover, we want to generate a SDA diagram for HT using

the incremental approach during year 2009 and analyze the adherence to the database

during its evolution.

In section 3.1.5 we proposed a method to calculate the similarity between clinical

actions. This method can be used to compare the medical treatment given to a patient

in an encounter with the treatment that a SDA diagram proposes to this patient,

obtaining a value of similarity between both treatments. In general, we can obtain

the average similarity between the treatments in an EOC database and a certain SDA

diagram.
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5.4 Database adherence tests

5.4.1 Database adherence for each pathology

We have generated a SDA diagram for each of the pathologies: HT, DM and the

comorbidity of both diseases, with different values of the parameter δ (see section 4.2.3),

which determines the level of granularity of the actions in the diagram. If δ ≈ 0 then

the SDA diagram will be more generic and smaller, otherwise if δ ≈ 1 it will be more

concrete but bigger.

Table 5.1 contains the results obtained for different values of δ. Observe that with

δ = 1 (i.e., when no abstraction is made in medical actions registered in the database)

we always obtain an average similarity of 1. The SDA diagram exactly reflects all the

concrete treatments in the database. However, for extremely low values of δ, which

imply a high level of abstraction in the actions of the SDA diagram, we still obtain an

acceptable average similarity of 0.76, 0.68 and 0.76 respectively, for each pathology. A

reduction of 0.7 in δ only implies an average reduction of 0.27 in average similarity.

Moreover, the growth on average similarity is not always linear with the increase of δ

as it can be seen in figure 5.7. In the case of HT, the average similarity stabilizes for

values δ ∈ [0.4, 0.8] and in the case of HT+DM it grows oscillating.

Table 5.1: Results of average similarity and number of elements in the SDA diagram for

each pathology for different values of δ

HT DM HT+DM

δ Average sim. # elements Average sim. # elements Average sim. # elements

0.3 0.76 35 0.68 23 0.76 36

0.4 0.88 39 0.79 35 0.76 36

0.5 0.86 43 0.81 42 0.87 54

0.6 0.84 44 0.88 61 0.93 70

0.7 0.86 47 0.88 62 0.93 83

0.8 0.84 49 0.90 67 0.87 86

0.9 0.95 55 0.95 75 0.91 90

1 1.00 103 1.00 159 1.00 229

Regarding the number of elements in the SDA diagram, we can observe that the

three cases share the same trend. There is a, more or less, linear increase for values of

δ lower than 1, and for δ = 1 the number of elements grows drastically. This behavior

is due to the fact that two action terms only have a similarity equal to 1 when they

are exactly the same or, in the case of pharmacological action terms, if they belong to

the same chemical group and have the same dose (see section 3.1.5.1). Therefore, it
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is very difficult to generalize with this δ and the SDA diagram becomes very concrete

(overfitting).

In general, we can conclude that δ = 0.3 is usually the best choice because it

provides diagrams with a low number of elements and the average similarity results are

satisfactory.

5.4.2 Evolution of database adherence for hypertension during 2009

In order to conclude the tests about the adherence to the database, we have incremen-

tally generated the diagram for HT with δ = 0.3 during the year 2009. The purpose

is to observe the evolution of the average similarity and the number of elements in

the diagram for each month. Starting from January of 2009 we have incrementally

updated an SDA diagram every single month with the new encounters that have taken

place until December of the same year. The average similarity is calculated comparing

the partial SDA diagram with the total database of patients of 2009 with the aim of

observing how the SDA diagram progressively becomes complete.

The linear graph in figure 5.8 shows the results obtained.

The average similarity lasts about eight months to stabilize. Observe that in August

the average similarity is 0.72, which is almost equal to the result at the end of the year

(0.76). Before these eight months there have not taken place enough encounters to

represent all the variability of the treatment. Regarding the number of elements in the

diagram, it grows faster and it is almost stabilized by May with 31 elements (only 4 less

than the final diagram). These results suggest that in future updates of the diagram,

the number of elements will keep more stable, while the average similarity will slowly

increase.

5.5 Medical tests

In this section we present the definitive SDA diagrams for HT, DM and the comorbidity

of both diseases which have been generated from the hospital databases of SAGESSA

during the year 2009 with the non-incremental approach. The background knowledge

from the repository in section 3.3 has been used to guarantee medical correctness of the

results. For each diagram we have chosen a δ = 0.3 because, according to the health

care professionals, it provided more readable diagrams without loss of medical quality.
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(a) HT

(b) DM

(c) HT+DM

Figure 5.7: Linear graphs of average similarity and number of elements in the SDA

diagram for each pathology for different values of δ
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Figure 5.8: Linear graph of average similarity and number of elements in incremental

SDA diagrams for hypertension during 2009

Here we analyze these diagrams from a medical point of view with the support of health

care experts.

Moreover, we medically compare these diagrams with those generated with the

knowledge-free approach in (BRLV12), reporting the advantages of our approach. We

conclude the medical tests analyzing the evolution of the SDA diagram of HT generated

in section 5.4.2.

5.5.1 SDA diagram and medical analysis for each pathology

Figure 5.9 depicts the SDA diagram for the treatment of HT that has been induced

from a database of SAGESSA with all the patients treated in 2009.

The states of the diagram are based on the situation of the patient within the

treatment of the disease. The level of control of the disease always appears in the first

decisions after each state (except for patients taking 2 drugs).

According to the health care professionals, the SDA diagram reflects all the common

situations in the treatment of HT. Due to the fact that the diagram is only based on

pure hypertensive patients (without comorbidities), there are no situations of extreme

treatment (e.g., patients taking 3 hypotensive drugs).
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Figure 5.9: SDA diagram for the treatment of HT obtained from patients in 2009
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We can observe some of the most typical cases represented in the SDA diagram.

For example, when the patient is following none pharmacological treatment but his

disease is controlled. In this case the SDA diagram indicates to continue with the same

successful treatment. Another typical case reflected in the SDA diagram is when the

patient is not following any kind of pharmacological treatment and his disease is not

controlled so the SDA diagram indicates to start taking 1 hypotensive drug, and when

the patient is taking 1 hypotensive drug and his disease is not controlled so he starts a

treatment with 2 hypotensive drugs.

The SDA diagram does not include any information about drug replacement or dose

modification, but this is because we have not used such low level of abstraction in the

terminology of the actions.

Figure 5.10 depicts the SDA diagram for the treatment of DM that has been induced

from a database of SAGESSA with the patients of 2009. The states of the diagram are

based both on the situation of the patient within the treatment and the level of control

of the disease.

When the diagram was validated by health care professionals, they reported that

it lacked of several common clinical situations. A deeper analysis of the causes drove

us to detect that in the data registered for the patients treated of DM in SAGESSA

during 2009, there were no examples of all the common situations that can be found

in the treatment of DM. Our algorithm must be seen as a tool to model health care

treatments reflected in the input data, therefore it will not describe medical actions

that are not present in the database.

The treatment of the DM without comorbidities has a low range of alternatives.

Moreover, having grouped Oral Hypoglycemic Drugs (OHDs) in a unique action term,

leads to a diagram which is small with a great proportion of states and very few

decisions. The diagram is divided into three disconnected sub-diagrams. Health care

professionals argued that there is a low ratio of patients taking insulins or OHDs that

start taking both kind of drugs together. If these two situations were more common,

the three sub-diagrams would be connected.

Another fact that has been detected is the absence of young people in the database,

which causes OHDs to be the only pharmacological starting treatment.

For the combined treatment of HT and DM we have generated two different SDA

diagrams with the patients of 2009, because we have two different versions of the
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Figure 5.10: SDA diagram for the treatment of DM obtained from patients in 2009
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background knowledge in the repository 3.3.3. The first one is depicted in figure 5.11.

In this first diagram, the states describe the situation of the patient within the

treatment of the disease. The level of control of the diseases always appears in the first

decisions after each state.

In general, this SDA diagram reflects all the common situations in the treatment

of HT+DM.

Compared with the diagram of diabetes (see figure 5.10), the SDA diagram in fig-

ure 5.11 incorporates the transition between taking insulins and taking OHDs+insulins.

However, there are several other transitions which our algorithm has not considered to

include in the diagram, due to its low proportion in the database. Therefore, the

diagram is composed by six disconnected sub-diagrams.

Our algorithm has been able to show evidence of several typologies of patients that

do not appear in the database. For example, there are cases in which the treatment

for HT is changed without knowing if the level of hypertension is controlled or not.

This situation happens because there is a typology of patients, whose treatment for

HT is not changed because it is not necessary, which is not registered in the database.

A similar situation happens in some cases in which decisions are made without asking

anything related to DM.

The other SDA diagram generated for the treatment of HT and DM is depicted in

figure 5.12.

In this case, the states represent the level of control of the two diseases whereas

the situation of the patient within the treatment always is left to appear in the first

decisions after each state.

From the health care professionals’ point of view, a logical tracking of the diagram

can be made from any of the states. The SDA contains the four possible situations

about the level of control of HT and DM and they are all connected.

This organization of the states leads to a SDA diagram for HT+DM which is pre-

ferred by health care professionals than the previous one.

5.5.2 Medical comparison with a knowledge-free approach

We have compared our diagrams with the ones obtained with the non-incremental ap-

proach that does not use background knowledge in (BRLV12). Due to the size of these
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Figure 5.11: SDA diagram for the treatment of HT+DM obtained from patients in 2009

(states based on the stage of the treatment)
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Figure 5.12: SDA diagram for the treatment of HT+DM obtained from patients in 2009

(states based on the level of control of the disease)
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diagrams (more than 100 elements) we have considered not to include them in this doc-

ument. The results obtained with this comparison have been included in (LVRC12a).

The main conclusions reported in the paper are:

• The approach in (BRLV12) allows a syntactical adjustment of the number of

states by means of a parameter, while our approach makes this adjustment in

a semantical way, basically with the help of the background knowledge. For

example, the number of states of the diagrams for HT obtained with the approach

in (BRLV12) goes from 1 state (one state for all the encounters) to 57 states (one

state for each different encounter) depending on the value given to the parameter.

With our approach, the number of states for HT is always 4 because of the clinical

priorities and constraints specified in the background knowledge.

• As we are not able to specify semantic decisions with the approach in (BRLV12),

we cannot guarantee the absence of odd decisions in the SDA diagram. For

example, one of the decisions in the diagram of HT of patients treated during

2009 asks whether the patient shows ADEQUATE PHYSICAL ACTIVITY or

NORMAL GLUCOSE, which is a strange medical question to ask. This fact,

together with the absence of priorities between decision terms, makes the resulting

diagrams usually to be less comprehensible by physicians.

• The approach in (BRLV12) is not able to semantically compare actions, thus

all the syntactically different actions are considered to be different even if they

represent medically equivalent measures. This fact causes that the SDA diagram

may contain unnecessary decisions and a great number of actions. For example,

the diagram of the treatments of HT in 2009 has 67 syntactically different actions

while our approach reduces them to 30 semantically different clinical actions.

As a conclusion, the approach that does not use background knowledge may be

useful in controlled settings with a low number of state, decision and action terms as

it shown in (BRLV12) where different SDA diagrams for HT are generated at a high

level of abstraction for highly preprocessed data. In order to obtain medically correct

diagrams in any setting, the use of background knowledge is essential. In addition,

it also allows us to generate several diagrams with different intentionalities (using the
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background knowledge related to the states) and different levels of abstraction for the

same input data (modifying the value of δ).

5.5.3 Evolution of the SDA diagram for hypertension during 2009

Finally, we analyze the evolution of the SDA diagram of HT generated in section 5.4.2.

Figure 5.13 depicts the diagram obtained using the encounters with patients during

January of 2009.

Figure 5.13: SDA diagram for the treatment of HT obtained from encounters in January

of 2009

We can observe that only a few situations have taken place, leading to a very simple

diagram. During this month, there were only situations of patients not following healthy

habits and not taking medication which have been treated without the use of drugs.

The state representing patients that are taking 1 drug appears in the diagram because

some encounters with this kind of patient took place. However, no information is yet

registered about the following encounters, therefore the algorithm is not able to indicate

the treatment and evolution of these patients. After updating the previous diagram

with the encounters of February we obtain the SDA diagram in figure 5.14.

With these new data, the diagram describes two non-deterministic clinical behav-

iors on patients not following healthy habits and not taking medication. The state

representing patients that are taking 1 drug has been connected with the rest of the

diagram showing a continuous evolution of the care. This connection comes represented

by a clinical procedure described as a single clinical action that confirms the treatment
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Figure 5.14: SDA diagram for the treatment of HT obtained from encounters in January-

February of 2009

with a single drug. A new isolated state for patients taking 2 drugs has also appeared.

Since these patients in the database are only visited once, the diagram is unable to

reflect any evolution from this state to any other. The incremental update at the end

of March leads to the diagram in figure 5.15.

This diagram contains the first decisions and increases treatment variability. The

diagram is increased with new decisions and actions during the next months as we can

see in figures 5.16, 5.17, 5.18 and 5.19.

By August, the diagram is almost equal to the final diagram (see figure 5.9). We

have not included in the document the SDA diagrams of the next months because

they are very similar. As it is expected, the final diagram obtained in December, after

this incremental generation, is equal to the one generated with the non-incremental

approach.
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Figure 5.15: SDA diagram for the treatment of HT obtained from encounters in January-

March of 2009
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Figure 5.16: SDA diagram for the treatment of HT obtained from encounters in January-

April of 2009
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Figure 5.17: SDA diagram for the treatment of HT obtained from encounters in January-

May of 2009
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Figure 5.18: SDA diagram for the treatment of HT obtained from encounters in January-

June of 2009
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Figure 5.19: SDA diagram for the treatment of HT obtained from encounters in January-

July of 2009
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Conclusions

The main objective of this thesis has been to solve two of the main drawbacks of the

current technologies to automatically induce CAs from hospital databases, which are:

• They are only based on statistical measures that do not necessarily respect med-

ical criteria and semantics which can be essential to guarantee medical correct

structures.

• They are not prepared to deal with the incremental arrival of new data which is

worth to consider in health care, where hospital databases are constantly updated

with new information about new arriving patients, and with the follow up of

chronic patients.

Regarding the first drawback, we have studied several structures used to represent

background knowledge and with the help of health care professionals we have proposed

a formalization of all the background knowledge required to assist the automatic induc-

tion of medically correct and comprehensible CAs (contribution 1). This background

knowledge includes constraints, preferences, semantic relationships and concept hierar-

chies, which condition the states, decisions and actions more appropriate to be part of

the CAs.

Focusing our work in the diseases of HT, DM and the comorbidity of both diseases,

we have constructed a repository of background knowledge. This knowledge is used

to formalize the preferences and experience of health care professionals as well as the

evidence-based knowledge contained in other resources like CPGs (SAG02; SAG03) or
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the Anatomical Therapeutic Chemical (ATC) Classification System (fDSM) (contribu-

tion 2).

In order to solve the second drawback, we have proposed an incremental method-

ology to induce CAs which is partially inspired in some of the current incremental

induction algorithms (Utg88; Utg89; UBC97). This new methodology includes two

main procedures which are the identification of states and the determination of thera-

peutic sequences, which are integrated to generate CAs. In this work we represented

CAs as SDA diagrams, according to the SDA knowledge model. This incremental

methodology uses the formalized background knowledge to guarantee medically correct

and comprehensible CAs (contribution 3).

The methodology has been evaluated with different kinds of tests. First of all, some

tests have been done to verify the good performance at the level of background knowl-

edge and incrementality. With respect to the former, the results show that the use of

background knowledge does not imply an increase of temporal cost but a severe reduc-

tion of the time spent determining therapeutic sequences and, therefore, a reduction of

the total duration of the process. The good performance of the incremental technology

is confirmed after checking whether the methodology fulfills the three desirable goals

of cost reduction, independence from the size and independence from the order.

A second kind of technological tests determined the adherence of the induced SDA

diagrams to the hospital database that has been used to generated them. The tests

have been done for HT, DM and HT+DM (comorbidity of both diseases) with different

levels of abstraction in the terminology of the SDA diagrams. The results suggest

that diagrams with a high level of abstraction are usually the best option because

they have a low number of elements but keep satisfactory results on adherence to the

database. A low level of abstraction slightly improves the adherence but it also increases

the number of elements, and in some cases the SDA diagram can be unnecessarily

concrete. The evaluation of the results by health care professionals reported that the

diagrams were expressed at a good level of abstraction. More abstract diagrams would

imply a lack of medical interest, while more detailed diagrams would cause the lack

of alternative correct treatments not observed in the data and therefore a sense of

uncompleteness in the diagrams. We have done another test following an incremental

generation of a SDA diagram for HT during 2009, concluding that the number of

elements in the diagram stabilizes faster than the adherence (four months and eight
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months respectively) suggesting that, in future updates of the diagram, the number of

elements will keep more stable, while the average similarity will slowly increase.

We have generated final SDA diagrams for the previous diseases to be analyzed from

a medical point of view (contribution 4). In the case of HT the diagram obtained reflects

all the common situations in the treatment of the disease. The health care professionals

we have worked with were able to find the most typical situations in HT as for example,

when the patient is not following any kind of pharmacological treatment and his disease

is not controlled so treatment starts with taking 1 hypotensive drug. With regard to

DM, with the generation of the diagram, we could determine that there were several

situations which were not found in the database. Thus showing that our system could

also be used to help physicians and health care managers to identify the casemix a

health care center has to provide a service to and the set of treatments provided in

that center. For the case of HT+DM we generated two diagrams, one with states

based on the treatment of the diseases (i.e., the diagram showed the evolution of the

treatment), and one with states based on the control of the diseases (i.e., the diagram

showed the evolution of the diseases as the patient was treated). Thus showing not only

that our methodology can be used to generate correct CAs that represent alternative

views of the same treatments, but also that it is a valid methodology to represent

the treatment of comorbidities. This last is particularly relevant since this sort of

knowledge cannot be found explicitly represented since the CAs that appear in CPGs

are restricted to one single disease. All these SDA diagrams have been compared with

the knowledge-free approach in (BRLV12) and the results obtained show evidence that,

in order to guarantee medically correct diagrams in any setting, the use of background

knowledge is essential, and it is also very useful to generate several diagrams with

different intentionalities and different levels of abstraction for the same input data.

Finally, we have analyzed the evolution of the SDA diagram of HT during 2009 and

confirmed that the diagram generated incrementally is equal to the one generated with

the non-incremental approach.

The culmination of this thesis is another step forward in improving the automatic

generation of clinical algorithms. The fact that the structures extracted from the

hospital databases are medically correct and comprehensible will help the acceptance

of this kind of methodologies by the medical community.

157



6. CONCLUSIONS

Moreover, being an incremental system, it will fit daily clinical practice allowing the

representation of up-to-date procedural knowledge with acceptable costs. Therefore, it

will be applicable in health care centers in order to supervise their medical procedures

or to determine whether certain CPGs are being followed or not, or even to improve

these guidelines with the knowledge extracted from the experience.

At the moment, the work on the development of this thesis has implied the publi-

cation of two papers in scientific journals of impact:

• In (BRLV12) we present a first approach to the automatic generation of SDA

diagrams which does not consider background knowledge and does not work in-

crementally as a first step to the methodology presented in this thesis. In the

paper we generate SDA diagrams for HT using the databases of SAGESSA and

we study the deviations of the treatments with respect to official and predefined

protocols and clinical algorithms, showing a high level of adherence to the treat-

ment proposed by the National Heart Foundation of Australia and the Spanish

Society for Hypertension with about 90.4% of coincident treatment.

• In (LVRB12) we propose a method to induce medically correct and comprehensi-

ble DTs based on some medical criteria included as background knowledge, using

cost functions and partial orders. The results suggest that the method obtains

DTs that physicians evaluate as more comprehensible and correct than the DTs

obtained by previous approaches as they keep an equivalent accuracy.

The results of the thesis have been included in another journal paper (LVRC12a)

which introduces all the formalizations related to the background knowledge, compares

our methodology with the one without background knowledge and reports the conclu-

sions that have been detailed in this document. The results about incrementality will

give rise to another journal paper.

We have also presented two papers in international conferences:

• In (TRLV10) we present another approach to induce medically correct and com-

prehensible DTs which is not based on background knowledge structures. The

paper proposes a slight variation of classical DTs, provides four quality ratios
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to measure the medical correctness of a DT, and introduces an algorithm to in-

duce DTs whose final decisions are both correct and the result of a sequence of

observations with a medical sense.

• In (LVRC12b) we present the method to semantically compare clinical actions (see

section 3.1.5). In the paper, the method is applied to analyze the data about the

treatment of HT in a health care center in order to analyze feasible cost reductions

after replacing medical interventions by their corresponding optimal, observed,

dominant alternatives. This study shows that the use of this methodology reduces

the average cost of each clinical encounter in �1.37.

Finally, we have published two research reports in the Universitat Rovira i Virgili:

• In (LVR11) we present cost functions and partial orders as a way to represent

background knowledge and some mathematical operations to transform a cost

function into a partial order (and vice versa) and also to combine several cost

functions and partial orders into a common structure.

• In (LVR12) we present a hierarchy of medical criteria and we formalize their

representation as cost functions and layered partial orders.
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Future work

Medicine is an evolving science and, therefore, it is common that the protocols used to

treat patients change over time, or even that new drugs or procedures are discovered

causing variations in the physicians’ daily practice. In the approach proposed in this

thesis this behavior is partially considered. During the incremental learning of a SDA

diagram we are able to change the background knowledge obtaining different results.

For example, we can add new constraints between state terms or change their priorities

so that the induced SDA diagram will divide the treatment into different new stages.

We can even add new semantic decisions with a high priority that will lead to different

therapeutic sequences. However, since our approach always considers the whole set of

encounters with patients that have arrived over time, without giving higher priority to

the newer ones, it is not able to forget the health care procedures that have become

obsolete.

Incremental learning systems can be classified according to their memory model

that dictates how to treat past training examples into three categories (MM00):

• full instance memory : the learner retains all past training examples.

• partial instance memory : the learner retains some of the past training examples.

• no instance memory : the learner retains none of the past training examples.

Our approach to induce SDA diagrams is an incremental learning system with full

instance memory. Both the identification of states and the determination of therapeutic

sequences store the whole set of encounters presented (though in an optimized way)
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and it is always fully considered in these learning tasks. Other examples of incremen-

tal learning systems with full instance memory are GEM (RM88), ID5 (Utg88) and

ITI (UBC97).

In order to deal with the situation described in the first paragraph, we are planning

to modify our approach so that it forgets the encounters of patients that contain actions

that have become obsolete. This forgetting behavior is also known as aging and it is

usually related to partial instance memory (and also no instance memory) learning

systems. There are at least three types of aging in the bibliography. The first type

is the proximity-based aging like the one used by the system darling (Sal93). This

partial instance memory algorithm initializes the weight of each new example to one and

decays the weights of examples within a neighborhood of the new example. When an

examples weight falls below a threshold, it is removed. A second type is the frequency-

based aging which is used by the favorit system (KK92a; KK92b). This system to

induce decision trees with no instance memory, ages training examples either positively

or negatively with respect to time (i.e., the newer the example is, the more important

it becomes, and vice versa). If incoming training examples do not reinforce a nodes

presence in the tree, then the nodes score decays. If the score falls below a threshold,

then the algorithm forgets the node. Conversely, if incoming training examples continue

to reinforce and revise the node, its score increases. If the score surpasses an upper

threshold, then the nodes score is fixed and remains so. The last type of aging is

time-based. The partial instance memory flora2 system (W96) is an example of

this kind of aging. It selects a consecutive sequence of training examples from the

input stream and forgets those examples that are older than a threshold, which is set

adaptively. This system was designed to handle drifting concepts, so during periods

when the system is performing well, the size of the window is increased and thus it

keeps more examples. If the performance of the system drops, presumably due to some

change in the target concepts, it reduces the size of the window and forgets the old

examples to accommodate the new examples from the new target concept. As the

systems concept descriptions begin to converge toward the target concepts, the size of

the window increases again, as does the number of training examples maintained in

partial memory.

A time-based aging similar to the one used by the flora2 system is the one that

best suits our problem. In the future we are planning to incorporate it to our approach
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to induce SDA diagrams in order to handle obsolete actions. Being A1 the action

used to treat a certain kind of patient, if new encounters of patients of this kind start

using an alternative action A2, the system may consider either that A1 and A2 are

two alternative actions that coexist or that A2 is a new action that will replace A1.

Therefore it will keep a window of encounters whose size will increase or decrease in

order to determine if A1 and A2 are current treatments (type-1 non-determinism) or if

A1 has become obsolete.

We will also explore other applications of aging for the induction of SDA diagrams.

For example, the removal of old encounters which essentially contain the same health

care procedures that some newer ones, with the aim of reducing the spatial cost of the

knowledge structures stored.

Apart from the incorporation of aging, we are also planning to keep experimenting

with the parameters of the methodology in order to refine them, to construct alterna-

tive structures of background knowledge that allow the induction of SDA diagrams with

different views of the same diseases studied in this thesis, and also to apply our method-

ology to other chronic diseases and comorbidities such as chronic heart failure, chronic

obstructive pulmonary disease, ischaemic heart disease, and hyper-cholesterolemia.
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[KN08] Mehmet Korürek and Ali Nizam. A new arrhythmia clustering technique

based on ant colony optimization. Journal of Biomedical Informatics,

41:874–81, 2008. 8

171



BIBLIOGRAPHY

[KP04] S. B. Kotsiantis and P. E. Pintelas. Recent advances in clustering: A

brief survey. WSEAS Transactions on Information Science and Appli-

cations, 2004. 7

[KR90] L. Kaufman and P.J. Rousseeuw. Finding groups in data: An introduc-

tion to cluster analysis. Wiley, New York, 1990. 7, 8

[KZP06] S. Kotsiantis, I. Zaharakis, and P. Pintelas. Supervised machine learn-

ing: a review of classification techniques. Artificial Intelligence Review,

26(3):159–90, 2006. 9

[Lel94] Alain Lelu. Clusters and factors: neuronal algorithms for a novel rep-

resentation of huge and highly multidimensional data sets. New Ap-

proaches in Classification and Data Analysis. E. Diday, Y. Lechevallier

& al. eds., Springer-Verlag, Berlin., pages 241–48, 1994. 7

[LGCM01] Timothy Langford, Christophe G. Giraud-Carrier, and John Magee. De-

tection of infectious outbreaks in hospitals through incremental cluster-

ing. In Proceedings of the 8th Conference on AI in Medicine in Europe:

Artificial Intelligence Medicine, volume 2101 of Lecture Notes In Com-

puter Science, pages 30–39, 2001. 32

[LGSD93] William J. Long, John L. Griffith, Harry P. Selker, and Ralph B.

D’Agostino. A comparison of logistic regression to decision-tree in-

duction in a medical domain. Computers and Biomedical Research,

26(1):74–97, 1993. 13

[LNM+09] Shengping Liu, Yuan Ni, Jing Mei, Hanyu Li, Guotong Xie, Gang Hu,

Haifeng Liu, Xueqiao Hou, and Yue Pan. ismart: Ontology-based se-

mantic query of cda documents. In AMIA Annu Symp Proc., pages

375–79, 2009. 25

[LPM06] Bo Liu, Jiuhui Pan, and R I (Bob) McKay. Incremental clustering based

on swarm intelligence. In Simulated Evolution and Learning, volume

4247/2006 of Lecture Notes in Computer Science, pages 189–96. Springer

Berlin / Heidelberg, 2006. 31

172



BIBLIOGRAPHY

[LTG+83] G. Landeweerd, T. Timmers, E. Gelsema, M. Bins, and M. Halic. Binary

tree versus single level tree classification of while blood cells. Pattern

Recognition, 16:571–77, 1983. 12

[Lu97] Yijun Lu. Concept Hierarchy in Data Mining: Specification, Generation

and Implementation. PhD thesis, Simon Fraser University, Canada,

December 1997. 22
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[RD00] Oldemar Rodŕıguez and Edwin Diday. Pyramidal clustering algo-

rithms in iso-3d project. In Proceedings of the 4th European Confer-

ence on Principles and Practice of Knowledge Discovery in Databases,

PKDD’00, 2000. 7, 8
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