72 research outputs found

    Application of the Laplace-Borel transformation to the representation of analytical solutions of Duffing's equation

    Get PDF
    Various features of the solutions of Duffing's equation are described using a representation of the solutions in the Laplace-Borel transform domain. An application of this technique is illustrated for the symmetry-breaking bifurcation of a hard spring

    Characterizing chaos in a type of fractional duffing's equation

    Full text link
    We characterize the chaos in a fractional Duffing’s equation computing the Lyapunov exponents and the dimension of the strange attractor in the effective phase space of the system. We develop a specific analytical method to estimate all Lyapunov exponents and check the results with the fiduciary orbit technique and a time series estimation method

    Equivalent linearization for fatigue life estimates of a nonlinear structure

    Get PDF
    An analysis is presented of the suitability of the method of equivalent linearization for estimating the fatigue life of a nonlinear structure. Comparisons are made of the fatigue life of a nonlinear plate as predicted using conventional equivalent linearization and three other more accurate methods. The excitation of the plate is assumed to be Gaussian white noise and the plate response is modeled using a single resonant mode. The methods used for comparison consist of numerical simulation, a probabalistic formulation, and a modification of equivalent linearization which avoids the usual assumption that the response process is Gaussian. Remarkably close agreement is obtained between all four methods, even for cases where the response is significantly linear

    Applications of nonlinear filters with the linear-in-the-parameter structure

    Get PDF

    A novel approach for nonlinearity detection in vibrating systems

    Get PDF
    This paper proposes a novel approach for nonlinearity detection in vibrating systems. The approach is developed based on a new concept recently proposed by the author known as nonlinear output frequency response functions (NOFRFs) and the properties of the NOFRFs for nonlinear systems with multiple degrees of freedom (mdof). The results of numerical simulation studies verify the effectiveness of the approach. Nonlinear components often represent faults in practical mdof systems including beams. The proposed approach therefore has significant potential in the fault diagnosis of practical mdof engineering systems and structures

    Comparisons between harmonic balance and nonlinear output frequency response function in nonlinear system analysis

    Get PDF
    By using the Duffing oscillator as a case study, this paper shows that the harmonic components in the nonlinear system response to a sinusoidal input calculated using the Nonlinear Output Frequency Response Functions (NOFRFs) are one of the solutions obtained using the Harmonic Balance Method (HBM). A comparison of the performances of the two methods shows that the HBM can capture the well-known jump phenomenon, but is restricted by computational limits for some strongly nonlinear systems and can fail to provide accurate predictions for some harmonic components. Although the NOFRFs cannot capture the jump phenomenon, the method has few computational restrictions. For the nonlinear damping systems, the NOFRFs can give better predictions for all the harmonic components in the system response than the HBM even when the damping system is strongly nonlinear

    A New Modification of The HPM for The Duffing Equation With High Nonlinearity

    Get PDF
    In this work we introduce a new modification of the homotopy perturbation method for solving nonlinear ordinary differential equations. The technique is based on the blending of the Chebyshev pseudo-spectral methods and the homotopy perturbation method (HPM). The method is tested by solving the strongly nonlinear Duffing equation for undamped oscillators. Comparison is made between the proposed technique, the standard HPM, an earlier modification of the HPM and the numerical solutions to demonstrate the high accuracy, applicability and validity of the present approach

    Toeplitz Jacobian Method for Nonlinear Double-Periodic Excitations

    Get PDF

    National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1994, volume 1

    Get PDF
    The JSC NASA/ASEE Summer Faculty Fellowship Program was conducted by Texas A&M University and JSC. The objectives of the program, which began nationally in 1964 and at JSC in 1965 are to: (1) further the professional knowledge of qualified engineering and science faculty members, (2) stimulate an exchange of ideas between participants and NASA, (3) enrich and refresh the research and teaching activities of participants' institutions, and (4) contribute to the research objectives of the NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA JSC colleague. This document is a compilation of the final reports on the research projects completed by the faculty fellows during the summer of 1994
    • …
    corecore