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Abstract 

The subject of this thesis is the application of nonlinear filters, with the linear-in-the-parameter struc-

ture, to time series prediction and channel equalisation problems. 

In particular, the Volterra and the radial basis function (RBF) expansion techniques are considered to 

implement the nonlinear filter structures. These approaches, however, will generate filters with very 

large numbers of parameters. As large filter models require significant implementation complexity, 

they are undesirable for practical implementations. To reduce the size of the filter, the orthogonal 

least squares (OLS) algorithm is considered to perform model selection. Simulations were conducted to 

study the effectiveness of subset models found using this algorithm, and the results indicate that this 

selection technique is adequate for many practical applications. The other aspect of the OLS algorithm 

studied is its implementation requirements. Although the OLS algorithm is very efficient, the required 

computational complexity is still substantial. To reduce the processing requirement, some fast OLS 

methods are examined. 

Two major applications of nonlinear filters are considered in this thesis. The first involves the use of 

nonlinear filters to predict time series which possess nonlinear dynamics. To study the performance of 

the nonlinear predictors, simulations were conducted to compare the performance of these predictors 

with conventional linear predictors. The simulation results confirm that nonlinear predictors normally 

perform better than linear predictors. Within this study, the application of RBF predictors to time 

series that exhibit homogeneous nonstationarity is also considered. This type of time series possesses 

the same characteristic throughout the time sequence apart from local variations of mean and trend. 

The second application involves the use of filters for symbol-decision channel equalisation. The decision 

function of the optimal symbol-decision equaliser is first derived to show that it is nonlinear, and 

that it may be realised explicitly using a RBF filter. Analysis is then carried out to illustrate the 

difference between the optimum equaliser's performance and that of the conventional linear equaliser. 

In particular, the effects of delay order on the equaliser's decision boundaries and bit error rate (BER) 

performance are studied. The minimum mean square error (MMSE) optimisation criterion for training 

the linear equaliser is also examined to illustrate the sub-optimum nature of such a criterion. To 

improve the linear equaliser's performance, a method which adapts the equaliser by minimising the 

BER is proposed. Our results indicate that the linear equalisers performance is normally improved 

by using the minimum BER criterion. The decision feedback equaliser (DFE) is also examined. We 

propose a transformation using the feedback inputs to change the DFE problem S  to a feedforward 

equaliser problem. This unifies the treatment of the equaliser structures with and without decision 

feedback. 
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Chapter 1 

Introduction 

1.1 Theme of thesis 

In conventional linear filter's operation, the output value of the filter is simply some linear 

combination of the input signal, i.e. no nonlinear operation on the input signal is performed. 

Such filter is therefore very simple to implement, and is very popular in many applications. 

Although linear filtering techniques have served well in the past few decades [1}, the commercial 

demand for better performance and the requirement to operate in more difficult environments 

continually drives the need to improve on existing methods. In addition, it is well-known 

that the applications of linear filters to real world problems like time series prediction [2] and 

channel equalisation [3] are sub-optimum, and substantial improvements may be achieved by 

using nonlinear methods. 

In this thesis, we consider nonlinear filters which retain the linear-in-the-parameter structure 

for filter applications. The focus is to examine the Volterra and the radial basis function (RBF) 

expansion techniques to generate the desired nonlinear filter structure, and to compare the 

performance of such filters to conventional linear ones. The introduction of nonlinearity into the 

filter's operation however will lead to an increase in the implementation complexity. Although 

this makes the nonlinear implementation less attractive than linear methods, this disadvantage 

is becoming less significant with the recent advances of VLSI technologies which have made the 

computation of highly complex filtering operation in real time not only feasible but low cost. 

This however does not mean that nonlinear filters can be implemented without consideration 

of their implementation complexity. In general, the processing requirements of nonlinear filter 

operations are still very high and their parameter optimisation difficult to perform. Linear 

filters, on the other hand, are very simple to implement, their behaviour is well understood, 

and the techniques for the optimisation of their parameters and model selection process are well 

tested and documented. Therefore, a natural step towards a nonlinear filter implementation 

from a linear one is to use a nonlinear filter which is linear in the parameter. This implies 

that such a nonlinear filter retains a linear structure, i.e. the output is a linear combination of 

its input regressors. The nonlinearities in the filter's operation are introduced by performing 
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nonlinear transformations on the input signal to generate the regressors' responses. Such a filter 

structure retains many of the advantages of the conventional linear model and yet is nonlinear. 

In this work, the following two restrictions regarding the filter's operation are assumed. Firstly, 

the filters considered are applied only to stationary problems, unless otherwise expressed, and 

secondly, the filters operate only on discrete time digital signals. 

By restricting the study to stationary problems, adaptive algorithms need not be considered to 

update the parameters of the filter. This therefore simplifies the study, and allows us to focus 

on the changes in the filter's performance when different structures are applied. 

The second condition, which restricts the nature of the input and output signals to be in 

discrete time and digital form, focuses our study within the digital signal processing (DSP) 

framework. In recent years, the vast improvements in computer hardware and software tech-

nologies have made DSP techniques much more attractive than classical analogue techniques. 

Some of the reasons are: (i) DSP system can now be realised by using very cheap VLSI high-

speed micro-processors and digital computers. (ii) Their implementations, usually based on 

software algorithms, may be modified easily, thus allowing quick turn-around time in the devel-

opment cycle. (iii) They can be used to simulate analogue systems, and perform complicated 

signal transformation that cannot be implemented using continuous time hardware. (iv) Digital 

signals may be easily stored on magnetic media without degradation or loss of signal fidelity 

beyond that introduced in the analogue-to-digital (A/D) conversion. As a consequence of the 

advantages cited, and many more not listed here, it is not surprising that DSP techniques have 

become very important and are now being regularly applied in a broad range of practical applic-

ations, e.g., speech processing, image processing, digital communication channel equalisation, 

layered earth modelling, and many more. Although these applications are quite different in 

nature, they have a common feature, i.e., all of them involve a filtering operation to transform 

the input signal to a desired response. The difference between the various applications is in the 

manner the desired response is extracted. To demonstrate this, the filtering operations for the 

problem of time series prediction and channel equalisation are briefly introduced. 

1.2 Modes of operation 

The basic task of a filter is to operate on an input sequence of data samples s = [SI S2 Sm1T E 

Rm to produce an approximation i of the desired output signal y. To illustrate the different 

operations involved for different filter applications, the applications of the filter to time series 

prediction and channel equalisation are discussed in the following paragraphs. 

2 
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Time series prediction 

The requirement of time series prediction is to use a finite set of present and past samples of 

a process to predict samples of the process in the future. The filter designed to perform the 

prediction is called a predictor. As an example, let us consider the specific case of single-step 

prediction problem. 

Let the samples of a discrete time process be {y(k)}'_1  where the index k of y(k) denotes the 

k°  sample of the process. To predict the sample y(k), the predictor uses an input vector s(k), 

where s(k) = [y(k - 1) y(k - 2) . . . y(k - rn)]T consists of ni past samples of the time series. 

The model of the prediction process is illustrated in Fig. 1. la. The approximation of the desired 

signal is (k), and the difference between the actual sample of the process and the predictor's 

output is called prediction error and is given by e(k) = y(k) - (k). For time series prediction 

problems, the most common criterion used to optimise the filter's operation is to minimise the 

mean square error (MMSE), i.e., E[e(k)2 ], where E[] denotes the expectation operation. More 

details regarding filter operation for time series prediction will be presented in Chapter 2. 

Digital Channel Equalisation 

The task of an equaliser in channel equalisation problem is to reconstruct the transmitted 

digital signals which have been passed through a dispersive medium and corrupted by additive 

noise [3]. Such a problem is very important in the digital communication discipline. As an 

example, let us examine the operations of a symbol-decision class equaliser. 

The symbol-decision equaliser consists of a filter and a quantiser as illustrated in Fig. 1.1b. Let 

the transmit signal y(k) be drawn randomly from a binary source with constellation {±1}. The 

transmit signal is passed through a channel which introduces noise and inter-symbol interference 

into the data. Let the signal received at the end of the channel be s(k). Using a vector of m 

past received signals, i.e. s(k) = [s(k) s(k - 1) . s(k - in + 1)]T, the equaliser generates 

an estimate (k - d) of the transmitted signal y(k - d). The positive integer value d denotes 

the delay order of the equaliser, and a delay value greater than 0 implies that the equaliser is 

making delayed decisions for transmitted symbols. The task of the equaliser is to reconstruct 

the transmitted sequence with the minimum probability of mis-classification. Fig. 1.1b depicts 

this equalisation process. 

1.3 Filter structure 

This section briefly introduces the main component of the work, the nonlinear filter which 

possesses the linear-in-the-parameter structure. By the term filter, we imply a device in the 

form of physical hardware or computer software applied to a vector of discrete-time input data 

s e Rm to extract a prescribed quantity of interest y E R. We denote this operation as a 
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Figure 1.1: Operation of the filter in (a) time series prediction, (b) channel equalisation. 

transformation described by the function f(.), where  f(.) : R - R. i.e.. 

= f(s). (1.1) 

In particular, we are interested in the following form of f(.), 

=f(s)=wo+j(s)wi, (1.2) 

where K denotes the number of parameters, (s) is the output of the i
1h regressor, and w, 

o < i < K - 1, are the filter's weight. From Eq. 1.2 it is observed that the output value 

y is linearly dependent on the values of the regressors (s). This is the reason why such a 

filter's structure is called linear-in-the-parameter. The nonlinearity in the filter's operation is 

introduced in the regressor's operation 2 (s), where b(.)  is a nonlinear function R" - R. 

The flexibility in the choice of applied nonlinearity allows the function f(.) to realise a host of 

different nonlinear structures. 
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1.4 Thesis Layout 

The organisation of the thesis is as follows: 

Chapter 2 presents much of the necessary background to the work performed in this thesis. The 

chapter first expands on the discussion of the linear-in-the-parameter filter and then examines 

two popular techniques of generating such types of filter, namely, the Volterra expansion [4-6] 

and the RBF expansion [7-9] techniques. Subset model selection using the OLS algorithm [10, 

11] is then discussed and, lastly, a short review regarding time series prediction and channel 

equalisation is given. 

Chapter 3 presents some new results regarding the OLS algorithm and the application of RBF 

filters for time series predictions. The chapter is divided into two parts. The first part discusses 

results concerning the OLS algorithm. In particular, the chapter studies the sub-optimum 

nature of the OLS solution and proposes a simple procedure to improve the selection process [12]. 

In addition, the chapter also investigates the implementation complexity of the algorithm, and 

introduces fast-OLS methods to reduce processing requirement [13,14]. The second part of the 

chapter discusses results concerning the application of RBF predictors to time series that possess 

homogeneous non-stationarity. Some results are presented to show that RBF predictors perform 

poorly for this type of time series. To improve the predictive performance, a modification to 

the RBF network's response behaviour is introduced [15,16]. 

Chapters 4 and 5 consider the symbol-decision type equaliser for channel equalisation problems. 

The focus of Chapter 4 is to study the application of nonlinear techniques to realise the decision 

function of the equaliser, while that of Chapter 5 is concerned with linear techniques. Chapter 4 

begins by deriving the decision function of the optimum symbol-decision equaliser, the Bayesian 

equaliser [17, 18], to show that the optimum decision function is nonlinear and has an identical 

structure to the RBF model. The chapter then discusses the effects of delay order on the de-

cision boundaries and equaliser's performance [19]. Also in this chapter, the implementation 

complexity of the RBF equaliser is examined and two methods to reduce the implementation 

complexity are discussed. The first method is based on model selection technique [19] and the 

second method is based on employing decision feedback. In addition, the chapter presents a 

novel transformation method to reduce the Bayesian decision feedback equaliser (DFE) struc-

ture to that of the conventional Bayesian equaliser without feedback [20]. By employing such 

a transformation, the implementation complexity of the Bayesian DFE is not only reduced, it 

allows a unified treatment of the DFE problem. 

Chapter 5 investigates the performance of linear equalisation techniques with respect to the 

optimum nonlinear Bayesian equalisation methods. In particular, the chapter derives the de-

gradation of classification performance incurred by the the application of linear techniques with 

respect to the optimum nonlinear techniques to highlight the sub-optimum nature of the linear 
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implementation. Following the same theme as Chapter 4, a discussion regarding the effects 

of the delay order parameter on the linear equaliser's performance and decision boundaries is 

presented. In addition, the chapter also examines the MMSE criterion widely used to optimise 

the linear equaliser's performance. Some simulations are conducted to show that this criterion 

is sub-optimum [21], and that the linear equaliser's performance may be improved by applying 

the minimum BER (MBER) optimisation criterion instead. Lastly, the chapter considers the 

MBER optimisation procedure for linear combiner DFE [20] problems. 

In Chapter 6, the conclusions of this work are summarised and areas in which further work may 

prove useful are suggested. 



Chapter 2 

Background 

The objective of this chapter is to introduce the necessary background to the work examined 

in this thesis. The chapter is organised as follows: Sec. 2.1 discusses the theory of regression 

modelling and Sec. 2.2 presents the application of nonlinear filters which possess the linear-in-

the-parameter structure to non-parametric modelling. In particular, the Volterra and the RBF 

network implementations of the nonlinear models are examined. Sec. 2.3 discusses the OLS 

algorithm for model selection, and Sec. 2.4 and 2.5 introduce the applications of filters to time 

series prediction and channel equalisation problems respectively. 

2.1 Regression models 

Regression models can be used to describe the input and output relationships of a system. A 

simple example of a regression model is the following, 

Y = g(x) = WO + Wlx, (2.1) 

where y is the output variable of a system, g(x) is a linear regression model describing the true 

relationship between the input variable x to y and Iwo , wi} are the parameters of the model. 

If the functional form of g(.) is known, the problem of identifying the weights {WO, wl} using a 

set of N observations, {xj,yj} 1, is called parametric modelling [22,231. 

In most real world problems however, the output response of a system does not depend linearly 

on the input values and the exact relationship between the input and output values is not known. 

The only data available to describe the process is a collection of N observations between the 

input vector x = [x1  £2 E R and the output value y, namely f xi, yj} 1 . The task 

of creating a model f(.) to approximate the true nonlinear model g(.) based on the available 

data is known as regression analysis [22-251 and is a problem common to many disciplines. 

To identify the unknown nonlinear model g(.), we begin with the assumption that it belongs 

to a general collection of nonlinear functions and use the available data to determine the ap- 
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proximation model f(.) and associated coefficients. In this thesis, we will restrict the structure 

of f(.) to belong to the class of nonlinear models which possess the linear-in-the-parameter 

structure. By not assuming the functional form of g(.), the identification process is known as 

non-parametric modelling [22, 23, 26,27]. 

2.2 Linear in the parameter filter 

This section considers the linear-in-the-parameter filter and formulates the procedure used to 

evaluate the weights of such a model using the MMSE criterion. To facilitate the discussion, 

the example of a linear filter applied to single step time series prediction is examined. 

The time series y(i) to be predicted is first sampled and quantised. The discrete value of the 

signal at sample instant i will be denoted by y(i), where i = 1 . . . N, and N is the number of 

samples. The simplest linear-in-the-parameter model for a time series predictor is the auto-

regressive (AR) model [28,29], where the output of the filter is a linear combination of the past 

values of the time series. The number of parameters used in the model is described as the order 

of the linear predictor. The following equation describes a linear predictor with order K, 

(i) = x(i)Tw = WO +E y(i - j)Wj, (2.2) 

where the vector x(i) = [1 y(i— 1) y(i —2) . . . y(i K - 1)}T E R  consists of a constant value 

1 and a vector of past values of the time series at time i, and w = [wo w1 wK _ l ]T  E R  

are the weights of the filter. The first elements of w and x(i), i.e. wo  and 1, are used to model 

the mean of the time series. The filter's estimated value of the desired signal y(i) is (i). To 

describe the regression using matrix notations, we define the followings variables 

y = [y(l) y(2) ... 

= [(1) (2) ... 

rx(l) 1 Ii y(0) 

x(2) 1 y(l) 
X = I .  

L XNi [1 y(N-1) 

e = [e(1) e(2) ... e(N)}T, 

(2.3) 

(2.4) 

y(O—(K-1)) 

y(1—(K—l)) 
, (2.5) 

y(N—l—(K-1)) 

(2.6) 

where the vector y and y  are the actual and estimated values of the time series respectively. 

The matrix X is the information matrix, and e(i) = y(i) - (i), 1 < i < N, is the prediction 

error between the actual value and the model's predicted value. Using the above notations, the 

regression model for the linear predictor can be expressed in the following matrix form 

F;] 
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y=y+eXw+e. (2.7) 

To highlight the linear-in-the-parameter structure, we define the columns of X as 

X = [co Cl CK_11, (2.8) 

and express the model's output y as a linear combination of the columns of X 

Y =
:

ciwi . 
(2.9) 

The dimension of the matrix Xis N  K and the dimension of the vectors y, ', e is N. The most 

common criterion used to optimise the predictor's performance is the MMSE criterion [1,29], 

i.e., 

Jmmse(W) = E[(y(i) - (i))2 ], i = 1, . . ., oo. (2.10) 

The MMSE cost function includes the expectation operator E[] because the processes involved 

in the estimation problem are random and the criterion operates over ensemble averages. In 

order to solve for the weights using this criterion, precise knowledge of the second order statistics 

of the problem are required. When only finite amount of data describing the process are 

available, e.g., {x(i), y(i)} 1 , only the time average solution for the approximation of the MSE 

solution is possible. Such an approximation is called the least squares (LS) solution. The LS 

method finds the parameter vector w by minimising the Euclidean norm of e [30,31], i.e., 

N 

JLS(W) = (y(i) 
- U(i))2. (2.11) 

i=l 

The LS solution for w is 

= (XTX)_lXTy. (2.12) 

Alternatively, the pseudo-inverse X of X may be applied to solve for w [31,32] i.e., 

w=Xy. (2.13) 

This avoids ill-conditioning problems when formulating (XTX)_l 
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The approach just outlined for evaluating the weights of the linear predictor using the LS 

criterion can be extended to nonlinear predictors which possess the linear-in-the-parameter 

structure. Examples of such types of nonlinear predictors include Volterra filters [4,5,33-35], 

RBF networks [7-9, 36]. NARMAX models [37, 38], multivariate adaptive regression splines 

(MARS) [26, 39] and fuzzy basis function models [40]. The nonlinearity of these predictors' 

operations are introduced by a nonlinear expansion of the original input vector s(i) = [y(i - 

1) y(i - 2) •.. y(i - E Rm to generate an expanded vector 

X(i) = [1 j (s(i)) 2(s(i)) ... K—l(s(i))] E RK. (2.14) 

The operation (s(i)) is the j° regressor's nonlinear transformation R - R on the input 

signal. The structure of this nonlinear predictor with the linear-in-the-parameter characteristic 

is illustrated in Fig. 2.1. 

-1 
___ ___ 

z 
y(i-1) 

1 :111 1 

y(i-2) I y(i-m) 

Nonlinear expansion 
of input vector S(i) 

W,4 
 S(i)) ~( Sw) 

2KJ 
X 

wo  

IA 
V y(i) 

Figure 2.1: Generic model of a filter with the linear-in-the-parameter structure. 
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By defining 

1 

1 
X= = 

x(N) 1 

i (s(1)) 02(S(1)) . K1(S(1)) 

1(s(2)) 2 (S(2)) . thj<_i(s(2)) 

1(s(N)) 2 (s(N)) ... OK_l(S(N)) 

(2.15) 

it is clear that the above information matrix X for the nonlinear predictor has an identical 

structure to the information matrix generated for the linear AR model (Eq. 2.5). Therefore the 

LS weights of the nonlinear model may be evaluated similarly using Eq. 2.12 or Eq. 2.13. The 

following sections discuss the Volterra and RBF techniques of performing nonlinear expansions. 

2.2.1 The Volterra expansion 

A classical nonlinear filter is the Volterra model [5,33,41]. The introduction of nonlinearity using 

the Volterra expansion is based on the application of quadratic, cubic, and higher combinations 

of input values into the filter's function. Such an expansion technique is very similar to the use of 

a truncated Taylor series with memory elements to model an analytic function. Like the Taylor 

series, if the series does not converge, the filter created may only be valid for certain ranges 

of output. This is however not a significant problem as the Volterra model can characterise a 

large class of nonlinear functions and systems [6]. 

However, in spite of its long history and popularity in theoretical studies, relatively few re-

searchers have applied the Volterra filtering techniques to practical applications [4-6,41,42]. 

The main reason for this is that the Volterra expansion method usually results in the formation 

of very large models which require huge processing complexity for their implementations. To 

make the Volterra implementation more practical, some researchers [5, 43] have suggested re-

stricting the Volterra expansions to include only quadratic combinations. This, however, may 

not be a good solution if higher combinations of polynomials are desired in the modelling. Our 

approach to reducing complexity without sacrificing higher nonlinear expansions is to employ 

model selection techniques to remove less important regressors from the Volterra expansions. 

The Volterra predictor of degree L and order m is created using the expansion shown below. 

(i) = w+ w 1 y(i—j1)+ w 12y(i—j1 )y(i_j2)+ 

.12=1 .11 j2~!ji 

+ E  ... 
W
;12j

Y(Zj l )Y(Zj2) ... Y(iiL) (2.16) 

3' 32?)' JL~3L-1 

where 
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L is the degree of the Volterra filter. It denotes the highest power of combinations for the 

past values used in the nonlinear expansion. 

. m is the order of the Volterra filter. It denotes the number of past values used in the 

input vector to the filter. 

• y(i) = predicted value of y(i). 

• w0  = constant. 

. Volterra Kernels 

- w 1  = coefficients for the linear terms, ji = 1 to order rn. 

- = coefficients for the quadratic terms, j2 = 1 to ji 

- w 1j = coefficients for the degree L combinations of past values.
JL  

. Past values 

- y(i - ii) = samples of past values. 

- y(i - jii(i - j2) = quadratic combinations of past values. 

- y(i - j1)y(i - j2) . .. y(i - iL) = degree L combinations of past values. 

Fig. 2.2 illustrates a degree L=2, order rn=3, Volterra predictor. The application of de-

gree 2 implies that the model is restricted to having only quadratic terms in the expan-

sions. Observe that the expansion not only includes all the original input signals to the 

predictor but all the possible quadratic combinations as well. By replacing the notation 

W' = [w Wi  w w w w 31 E R10  used to define the weights of the Volterra filter as 

w = [wo w1 w9 ] E R10 , it is obvious that the realised Volterra structure is identical to 

the generic model of a nonlinear filter with the linear-in-the-parameter structure illustrated in 

Fig. 2.1. 

From the above example, it is evident that the number of regressors involved in the Volterra 

expansion can become very large. The formula to calculate the number of regressors for a 

degree L, order rn, Volterra predictor is 

No of regressors K = 1+n, (2.17) 

where no  = 1, (2.18) 

nj = 1 
(m +3 - 1) 

j = 1,2..... L. (2.19) 

The equation shows that the number of Volterra regressors increases exponentially with respect 

to the degree and order, i.e., L and in, of the model. Fig. 2.3 illustrates the resultant size 

of the Volterra filter with respect to the degree and order specifying the filter. Note that the 

application of high degree values L > 3 quickly results in very large models. 
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Figure 2.2: Volterra predictor with degree L = 2 order m = 3. 
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Figure 2.3: Number of terms generated given Volterra parameter degree L, and order m. 
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2.2.2 The RBF expansion 

This section introduces the RBF model [7-9, 36]. As in the previous section, to facilitate the 

discussion of the RBF model structure, the application of the filter to single step time series 

prediction is studied. The regression model of a RBF filter to predict the current signal y(i) 

given a vector of past values s(i) = [y(i - 1) y(i - 2) ... y(i - 7)]T E Rm is 

ü(i) = f(s(i)) = WO + E  Oj (s(i))wj, (2.20) 

where y(i) is the RBF model's approximation of the actual value y(i), w = [wo w1  ... wK_l]T 

are the filters weights, and 6,(.), 1 < j < K - 1, are the hidden nodes which introduce the 

nonlinear transformation R' - R. These nonlinear expansions {(.)}j' are known by the 

neural networks (NN) community [9,44] as the hidden layer of a special two-layer network. The 

structure of the RBF predictor is illustrated in Fig. 2.4. 

YO-1) y(i-2) y(i-m) 

A 

YO) 

Figure 2.4: Structure of a RBF predictor. 
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The outputs of the hidden nodes are specified by 

Ø (s(i)) = (i1s(i) - cj II/j)' 1< j < K - 1, (2.21) 

where c3  E Rm are called the RBF centres, aj are positive scalers known as widths, and 11.11 

denotes Euclidean norm. The reason for the name radial basis function is the characteristic of 

nonlinearity (.) which has a response that is radially symmetric shape around the centre in 

R space. For general applications the nonlinearity (.) can be chosen from a wide class of 

nonlinear functions. Typical choices include [7-9,44] 

= exp(-r2 /a ), a3  > 0, (2.22) 

= (c+ 

1 

r2 
a3  >0, (2.23) 

)i' 

= (c +r2)a), 0 < aj <1, (2.24) 

= r21og(r), (2.25) 

where r = 11s(i) -  cjjj  is the input parameter to the nonlinear function. 

Although the listed nonlinear functions exhibit very different properties, theoretical investig-

ations [7, 45] and practical results [10, 36,46] have shown that the type of nonlinearity is not 

crucial to the performance of the RBF network and a uniform width a is sufficient for every 

hidden node for universal approximation [45]. RBF models based on any class of nonlinearity 

have excellent approximation capabilities. 

To cast the RBF response as a linear regression model, we define 

y = [11(1) y(2) ... y(N)]T , (2.26) 

y = [y(l) (2) ... (N )]T, (2.27) 

e = [e(1) e(2) ... e(N)JT , (2.28) 

W = [wo W1 WK- 1]
T
' (2.29) 

X(i) = [1 i (s(i)) 2(s(i)) 1 (s(i))], 1 < i < N, (2.30) 

X(1) 1 i(S(1)) . . K-1(S(1)) 

= 
x(2) 

= 
1 01(s(2)) ... K_1(S(2)) 

, (2.31) 

x(N) j L 1 i (s(N)) . . . Kl(S(N)) 

to obtain the following equation 

y=y+e=Xw+e, (2.32) 

again, the weights of the model may be solved by the LS solution, 
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w = Xy. (2.33) 

The traditional application of the RBF network is for strict-interpolation problems in multi-

dimensional spaces [7,8,47]. In such application, all the data points will be used to form the 

centres. As the number of data points available is usually very large, this is rarely practical. 

Broomhead and Lowe [9] removed the restriction of using all the data as centres, and made use 

of the RBF network as an estimator. Such an implementation provided a more suitable basis for 

signal processing applications. In their implementation the centres were chosen randomly from 

the available data. Clearly, this is unsatisfactory [48]. A more rational approach would be to 

consider all the training data {s(i)} 1  as candidate centres and formulate the problem of centre 

selection as subset model selection. Since the RBF regression model is linear-in-the-parameter, 

linear subset modelling techniques may be applied. 

2.3 Subset model selection 

The initial models formed using Volterra and RBF expansions are often very large. This is 

necessary in non-parametric modelling techniques as the initial model should contain a sufficient 

number of nonlinearities to allow for the identification of any unknown nonlinear system. 

However in most practical cases, the unknown system only requires a very small subset of 

nonlinearities from the initial model [48]. To reduce model size, model selection techniques 

can be applied. Parsimonious models are desirable not only because they avoid ill-conditioning 

problems during parameter learning, but also because they offer better generalisation ability 

for applications such as time series prediction [49]. 

The optimum technique for selecting R < K regressors from an initial model with K regressors 

is to form all the possible combinations of R subset models and pick the best one [24,50]. This 

requires a exponential amount of computation and would be impossible to implement for even 

modest sizes of K and R. A more practical approach is to use selection algorithms based on a 

step-wise selection technique. There are two major types of implementation of this technique, 

namely, forward selection and backward-elimination [24, 50. 51]. These methods are based on 

either adding or removing regressors one at a time to generate the subset model. If R << K, 

forward selection is computationally much simpler than backward-elimination. As most of our 

problems fall into this category, we will concentrate on the forward selection technique. 

2.3.1 Forward selection technique: the OLS algorithm 

To select R parameters to form the subset model, the forward selection algorithm begins with 

a subset model with no regressors. The regressors of the original model are then examined to 
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identify which contribute the most to the modelling of the desired signal vector according to 

some criteria. The regressor from the initial model which satisfies the desired criterion most 

becomes the first regressor of the subset model. The next regressor considered for inclusion into 

the subset model is the one that yields the best combination with the currently selected subset 

regressors to model the desired vector. This selection process is repeated until the required size 

of the subset model is reached. 

However, the forward selection method is known to be sub-optimum [50]. Nevertheless, this 

is not a serious problem as many researchers have indicated that very good subset models 

can be found for practical applications using this method [10,11. 50,52]. Coupled with its 

implementation simplicity, the forward selection method has become very popular. 

One efficient implementation of the forward selection algorithm is the orthogonal least squares 

(OLS) method [10, 11, 53,54]. Let us first review the key to the OLS implementation, the 

function of orthogonal projection. Fig. 2.5 shows two vectors u,v in R2  space. The orthogonal 

projection of u on v, i.e. Projvu, can be thought of as the shadow formed by vector u onto v 

when an imaginary light is directed to u along the normal of v; The vector Projvu is the best 

approximation of u using v. The following are the definitions of orthogonal projection and the 

equation to find the orthogonal residual. 

uTv ( 
Projvu = V 

t\UvII2 

WV U - Projvu. 

where I IvII = is the Euclidean norm of v and the vector WV is the residual when v is 

used to approximate u. 

Figure 2.5: Orthogonal projections 

(2.34) 

(2.35) 
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Chapter 2: Background 

In this work, the criterion used in the model selection algorithm is the normalised MSE (NMSE) 

criterion, i.e., 

(\ 

 
NMSE = 101og10 N .)2) ' 

(2.36) 

Ii=1 y(z 

where y(i) is the desired signal value at sample i, and e(i) = y(i) - (i). When there is perfect 

prediction, i.e. e(i) = 0 for all i, the NMSE will be -oc  dB. When there is no prediction, i.e. 

= 0, e(i) = 14 for all i, the NMSE will be 0 dB. 

The OLS algorithm is listed in the following paragraphs. The following notation is used in the 

algorithm, 

X = [CO c1 cK_1] ENXK is the information matrix of the original model. The vectors 

c7  E R'' denote the th  column of the matrix. 

(ii). y E RN is the desired output vector. 

(iii). R is the desired size of the subset model. 

Col_Found[1. . . R] is the vector produced by the algorithm which lists the regressors se-

lected from the initial matrix X by their column number. 

Algorithm 2.1: OLS 

Initialise 

. no-col-found = 0; CoL.Found[1. . . R] = 0; 

. copy the vector y to Yoriginal 

(ii). Calculate the residual vector 

• For columns i = 0 to (K - 1) of the input matrix X that are unused, 

- Project y onto each column c1  

- residuals  = y - Projc,y. 

Select a column 

• The column selected c, to be included in the subset model is the column that has 

the smallest Euclidean norm for the residual vector, residual,. 

j = mini  {IIresiduaLI}, i = unselected columns of X (2.37) 

(liresidual II 
The NMSE of the selected subset model can be calculated by using 201og10 _IYor,g, lñ ) 
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. no-col-found = no-col-found + 1 

Col -Found [nocoLfound] = j. 

This array Col-Found stores the indexes of the selected columns of X. 

Mark the selected column as used. 

• Update y as residual3 , i.e. y = y - Projc,y. This new y can be thought of as the 

unexplained desired output of the present model. 

Update the X matrix 

For columns i = 0 to (K - 1) of X that are unselected, 

update each column ci as follows: 

Ci = c1  - Projc,c. (2.38) 

This is to remove the contribution already given by the selected column c3 . 

Repeat steps (ii-iv) until the number of columns found is equal to R, the desired number 

of coefficients for the subset model. 

Remark: The OLS algorithm is very similar to the Gram-Schmidt orthogonalisation scheme [55]. 

The only difference is that instead of orthogonalising the X matrix in the order of the first 

column to the last column, we now first orthogonalise the columns which have bigger contribu-

tion to the approximation of the desired output vector y. 

The above algorithm returns an array Col...Found[1.. . RI indicating the selected regressors from 

the initial model for the subset model. The weights of the subset model w•  can be found by 

forming a matrix X3  which contains the columns indicated by CoLFound[1.. . R], and evaluating 

using the LS solution, 

ws  = Xyoriginai. 
(2.39) 

Comments on the Orthogonal Least Squares Algorithm 

The OLS method is a powerful and efficient method of performing model selection. The ability 

to find good subset regressors with only linearly increasing computational complexity makes 

this method attractive for practical implementations. Nevertheless, steps (ii-iv) of the algorithm 

require heavy computation, particularly when the N x K matrix X is large. If N> K, it may 

be possible to reduce the computational requirement. This is examined in the next chapter. 

The OLS algorithm has another useful property. As the new subset model is formed by adding 

an additional column to the previously selected model, the NMSE performance will always 

decrease monotonically. 
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2.4 Time series prediction 

The applications of filters to predict the future values of time series are many. Examples include 

forecasting of the stock market shares index [56,57], economic data [58], river-flow level, weather, 

sun-spot series [28,59] and many more. As such, there has been tremendous amount of work 

done in this field. The reader is urged to consult the following review articles and books for a 

more extensive treatment of the work [2,29,49,60-62]. 

The conventional methods for time series prediction were based on linear techniques as sum-

marised in the classic Time series analysis by Box and Jenkins [29]. However, towards the end 

of the 1970's, nonlinear techniques began to be more widely applied. The earlier methods were 

mainly based on the introduction of simple quadratic [63], higher combinations of polynomi-

als [4,49], and exponential nonlinearity [64] into the auto-regressive models. In 1983, a major 

idea was introduced by Tong [60,65], who proposed using threshold models to characterise dif-

ferent disjoint regions of the input space. In recent years, a special class of nonlinear filters that 

possess the linear-in-the-parameter structure have gained prominence. These nonlinear filters 

include structures like the Volterra filters [4,5,33], RBF networks [7-9,36], NARMAX mod-

els [37, 38], multivariate adaptive regression splines (MARS) [26, 39] and fuzzy basis function 

models [40]. Another important class of predictors based on NN techniques is the multi-layer 

perceptron (MLP) [66] which has also seen wide-spread use. 

Time series prediction can also be considered from the viewpoint of dynamic systems [61,62,67]. 

By that, the time series is assumed to be driven by an underlying deterministic system g(.). 

If g(.) is known, the entire future evolution of the time series {y(i), y(i + 1),. . ., y()} can be 

found if the current state s(i) = [y(i - 1) y(i - 2) . . . y(i - m)] E Rm is given. The problem, 

therefore, is to find an approximation of g(.) based on the available training data. To re-

construct the time series given g(.), knowledge of the past rn > 2d+ 1 samples is required [68]. 

The integer d is the fractal dimension of the time series [68]. This process is called state-space 

reconstruction [69]. 

If the functional structure of g(.) is known, a parametric model can be created, and the problem 

then is to solve for the parameters of the model based on the available training data. However in 

most cases, the underlying dynamics are unknown, and the requirement is to find a model f(.) 

to characterise the actual dynamics g(.) based on available training data. If the approximation 

of f(.) to g(.) is good, the future values of the time series may be predicted based on the known 

observations of the current past in observations. 

In this thesis, we shall adopt the state-space reconstruction approach, and assume that the 

underlying dynamics of the time series generator is unknown. 
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2.4.1 Simulation results: OLS algorithm and the linear and nonlinear predictors 

To illustrate the application of the OLS model selection algorithm, and the difference in perform-

ance between a linear and nonlinear predictor, we examine the performance of the predictors 

for two different time series which possess nonlinear dynamics, namely the Dulling's and the 

Mackey-Glass chaotic time series [70]. The nonlinear predictor used is based on the Volterra 

expansion created using the parameters degree L = 3, embedding-vector length m = 61;.  This 

expansion results in a 84 parameter model. To give a fair comparison of performance, a linear 

predictor of order 84 is used. The NMSE criterion is used to measure the performance of the 

selected subset model. 

The chaotic time series were created using the following equations: 

• Duffings time series (Fig. 2.6) 

d2s(i) ds(t) 
d21 + a— - s(t) + s3(t) = /3c0s(t) 

di 
(2.40) 

where a = 0.25, /3 = 0.3, s(0) = 0, = 0 and step size = 0.2 . Gaussian white noise 
di 

is added to this series to create a signal to noise ratio  (SNR) of +50dB. 

• Mackey-Glass time series (Fig. 2.7) 

= —bs(i) + 
1 f1O(i ....r) 

(2.41) 

where r = —21, a = 0.2, b = 0.1, initial conditions s(t - r)= 0.5 for 0 < t < r and step 

size = 2. Gaussian noise is added to create a SNR of +50dB. 

The OLS algorithm was used to select subset models from the 84-term linear predictor and the 

84-term nonlinear Volterra predictor. The NMSE performance of each model for the two time 

series prediction problems is shown in Figs. 2.8 and 2.9. The performance of a simple linear 

predictor created by increasing the linear predictor order from I=1 to K=84 is also included. 

The horizontal axis of Figs. 2.8 and 2.9 shows the number of parameters used to create the 

subset model, and the vertical axis indicates the NMSE attained by the subset model. Both 

results demonstrate that 

The performance of the linear models selected by the OLS algorithm was better than that 

of the linear model without selection. 

(ii). The nonlinear predictor can improve signal prediction performance. 

Size 6 was chosen to satisfy Takens' theorem [68] 
2SNR is calculated using the following equation, 

0,2 
SNR = 101o010  - 

ere  

where a is the variance of the time series, and a2,  is the variance of the additive Gaussian noise. 
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Figure 2.6: Duffing's chaotic time series 
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Figure 2.7: Mackey-Glass chaotic time series 
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Figure 2.8: Linear vs nonlinear predictors performance (Duffing's series) 
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Figure 2.9: Linear vs nonlinear predictors performance (Mackey-Glass series) 
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2.5 Channel Equalisation 

The other application problem which we will consider is that of channel equalisation. Channel 

equalisation is the technique employed to combat the effects of inter symbol interference (ISI) 

and noise which corrupt the transmission of signals across a communication channel. The task 

of the equaliser is to reconstruct the transmitted sequence with the minimum probability of 

misclassification. The communication system we shall examine in this thesis is a discrete linear 

baseband system as illustrated in Fig. 2.10, where the channel represents the combination of 

a transmitter filter, a transmission medium and a receiver filter. This transmission model can 

represent a wide variety of communication models, e.g. linear baseband channel like the twisted 

Pair wire and coaxial cable, or bandpass channel such as the telephone modem line, and HF 

radio link [3,7172]. 

Discrete linear baseband channel 

i.i.d Gaussian noise 

s(k) Trans BIN mitter Receiver 

filter medium filter 

A I r(k) \ r(t) 
s(k-d) .< Equaliser k 

& Sampling 
Detector 

Figure 2.10: Model of a data transmission system 

The discrete linear baseband channel is usually modelled by a FIR filter [3, 71, 721 with the 

following transfer function 

H(x) = (2.42) 

where a(i) are the channel impulse response coefficients and na is the length of the channel 

impulse response. For the study, the channel coefficients are restricted to be real and the 

transmitted symbol s(k) is taken from the set {±1}. This corresponds to the use of a 2-ary 

pulse amplitude modulation (PAM) scheme [71]. Focusing on this simple case allows us to 

highlight the basic principles and concepts more clearly. Moreover, the techniques studied in 

the 2-ary PAM scheme can be extended without any difficulties to more complicated modulation 

techniques e.g. quadrature amplitude modulation (QAM), phase shift keying (PSK) [73-75]. 

24 



Chapter 2 : Background 

The received signal r(k) to the equaliser (Fig. 2.10) at time k is given by 

r(k) = a(i)s(k - i) + n(k) 

= a(0)s(k) + 

n1 

a(i)s(k - i) + n(k), (2.43) 

where s(k) is the independently identically distributed (i.i.d) transmit signal and n(k) is an 

additive i.i.d Gaussian noise with zero mean and variance o. Eq. 2.43 shows that the received 

signal r(k) for the transmitted signal s(k) is attenuated by a factor of a(0), and corrupted by 

additive noise n(k) and the dispersion of energy from neighbouring symbols a(i)s(k-O. 

The performance of the receiver using r(k) to detect the transmitted signal without compens-

ating for the ISI effects will be very poor. To improve the receiver's performance, various 

techniques for channel equalisation have been developed during the past three decades [3,71]. 

Fig. 2.11 lists some of the available equalisation techniques. The diagram shows two main 

classes of equalisers; the equalisers listed in the left column are based on symbol-decision de-

tection process, and the equalisers listed in the right column are based on a block or sequence 

detection process. 

Equaliser class 

Symbol-decision equaliser Block decision equaliser 

Nonlinear techniques Linear techniques I 

(Chapter 5) (Chapter 6) 
MLVA 

no feedback with feedback no feedback with feedback 

Figure 2.11: General breakdown of equalisation techniques 

We first discuss the block detection technique. It is well-known that block detection equalisation 

based on the principle of maximum likelihood sequence estimator (MLSE) of the entire trans-

mitted sequence will provide the best classification performance when the channel's statistics 

are completely known [3,76]. The optimum solution for this class of equaliser is the maximum 

likelihood Viterbi algorithm (MLVA) [77] which determines the estimated symbol sequence by 

the following cost function, 

JMLVA = (r(k) - 
n-1 

a(i)(k - i)) - (2.44) 

where s(k) is the estimated symbol at time k. Although the MLVA can provide the best 
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performance given perfect knowledge of the channel statistics, its implementation complexity 

is very large. This is one of the main reasons why the symbol-decision class equaliser which 

requires significantly simpler implementation is used even though its performance is poorer than 

that of the block decision class of equaliser. Symbol-decision detectors are also preferred in the 

situation when the channel is severely non-stationary, e.g., mobile communications. In [74], it 

was reported that performance of adaptive MLVA degrades seriously in highly non-stationary 

environments, and better performance may be achieved by a Bayesian symbol-decision equaliser. 

This is because the MLVA suffers from the drawback of accumulating channel tracking error 

during decoding of block sequences unlike the symbol decision class equaliser which decodes the 

transmitted symbols at each symbol period. However, methods of improving the MLSE for fast 

time varying channel are now receiving wide-spread attention. For more detailed discussion of 

this type of equalisation technique, refer to [78,79]. The reader interested in examining block 

decoding equalisation techniques can refer to the following references [3,77-82]. 

For the rest of the thesis, only the symbol-decision detector is considered. The name symbol-

decision detector is derived from the fact that this class of equaliser makes a symbol detection 

at each symbol period. Within this class of detector, there exist two different implementations 

of the equaliser's decision function, i.e, linear and nonlinear techniques. The linear implementa-

tion of the equaliser includes the well-known equaliser structure, the linear transversal equaliser 

(LTE) which does not utilise past detected symbols in the decision function, and the conven-

tional decision feedback equaliser (DFE) [3,83-85] which uses some past detected symbols in its 

decision function. The nonlinear implementation similarly includes the two different structures, 

one with decision feedback and the other without. Several different cost functions are available 

to optimise the equaliser's performance, namely, the peak distortion criterion [3,86,87], the min-

imum mean square error (MMSE) criterion [3,71,88] and the minimum bit error rate (MBER) 

criterion. The equaliser optimised using the peak distortion criterion is called the zero-forcing 

(ZF) equaliser. In recent years however, the ZF equaliser has become less popular [71]. The 

current implementations of equaliser are normally based on the MMSE and MBER criteria. 

To illustrate the difference in performance between linear and nonlinear equalisers, simulations 

were conducted to compare the classification performance of the MMSE linear and the optimum 

nonlinear equaliser. The channel transfer function used was H(z) = 0.3482 + 0.8704z' + 

0.3482: 2. For the simulations, the transmit symbol was assumed to be from a binary source 

with constellation {±1}, the equaliser's feedforward and delay order were chosen to be m = 4 

and d = 1 respectively, and complete knowledge of the channel statistics was assumed. The sim-

ulation results are illustrated in Fig. 2.12. The vertical axis of the graph (Fig. 2.12) indicates the 

probability of misclassification in logio scale, i.e BER = 1og10(probability of misclassification), 

and the horizontal axis indicates the operating SNR condition. The definition of SNR for chan-

nel equalisation applications is based on the ratio of received signal power over the variance of 

the noise affecting the communication channel, i.e, SNR 10logi o ° where is 

the transmit signal variance, a(i) are the channel impulse response's coefficients, and o 2  is the 
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noise variance. The simulation results show that the Bayesian equaliser out-performs the linear 

equaliser significantly. For example, at misclassification probability equal to 10, the Bayesian 

equaliser demonstrated a 4.4dB improvement in SNR over the linear MMSE equaliser. 

01 I1 1 I 

6im,46, 
Optimum nonlinear equaliser 

MMSE linear equali 

10 15 20 25 
SNR 

Figure 2.12: Comparison of classification performance between MMSE linear equaliser and 
the optimum nonlinear symbol-decision equaliser for channel H(z) = 0.3482 + 

0.8704z 1  + 0.3482z 2. The parameters of the equaliser were d = 1 and rn = 4. 

The equaliser structures discussed so far are by no means exhaustive; a considerable number of 

other structures and adaptive implementations [1,3] have not been mentioned. In particular, 

equaliser structures such as fractionally-spaced [89, 90], lattice-filter [1] and infinite impulse 

response equaliser [91,92] will not be examined. 

To reiterate, this thesis is primarily concerned with nonlinear filter designs. For channel equal-

isation applications, we will only examine linear and nonlinear filter structures for symbol-

decision equalisers. 

2.6 Conclusion 

In this chapter, we have introduced nonlinear filters which have the linear-in-the-parameter 

structure for non-parametric modelling. In particular, we considered the Volterra and RBF 

techniques of generating the nonlinear expansions. Such expansions, however, result in very 

large initial models which are undesirable due to implementation complexity and poor gen-

eralisation ability. To reduce the size of the model, the OLS algorithm of performing model 

selection was considered. Using simulation results, we showed that nonlinear models, when 

used to predict nonlinear time series, perform better than linear predictors, and that subset 

models found using the OLS algorithm can perform adequately. Lastly, a short introduction to 

time series prediction and channel equalisation was presented. 
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Chapter 3 

Improving the OLS algorithm 
and RBF model for time series 

prediction 

In Chapter 2, the background to the work performed in the thesis was introduced. In particular, 

we studied the OLS algorithm for model selection, compared the performance of nonlinear 

Volterra predictors to that of linear predictors for stationary time series, and introduced the 

channel equalisation problem. As the emphasis of the previous chapter was to give an overview 

to the current techniques available, we did not include any of our own findings there. In this 

chapter, we will present some of our results regarding the OLS algorithm and the application 

of RBF models to nonstationary time series prediction. The following results are reported in 

this chapter: 

The suboptimum solution of the forward-selection algorithm, and a method of improving 

the selection process'. 

The implementation complexity of the OLS algorithm and some methods of reducing the 

implementation processing requirement2. 

The RBF predictor's performance on homogeneous nonstationary time series 3. 

The organisation of the chapter is as follows: 

Sec. 3.1 considers the sub-optimum nature of the forward selection approach and proposes a 

method of improving the selection process. Sec. 3.2 investigates the implementation complexity 

'Appeared in - E.S.CHNG B.MULGREW and S.CHEN. 'Backtracking orthogonal least squares algorithm 
for model selection', lEE Colloquium, on Mathematical Aspects of Digital Signal Processing, Feb. 1994, Bristol. 

Digest No 1994/034, pg 10/1-10/5. 
'Appeared in - E.S.CHNG. S.CHEN and B.MULGREW, 'Efficient computational schemes for the orthogonal 

least squares algorithm', IEEE Trans. Signal Processing, vol 43, no 1, pg 373-376. 

3To appear in - E.S.CHNG, S.CHEN and B.MULGREW, 'Gradient radial basis function for nonlinear and 

nonstationary time series prediction', IEEE Trans. Neural Networks, Nov 1995. 

28 



Chapter 3 Improving the OLS algorithm and RBF model for time series prediction 

of the OLS algorithm and introduces a pre-processing step to reduce the computational re-

quirement. Sec. 3.3 examines the problem of predicting homogeneous nonstationary time series 

using a RBF model. By the term homogeneous nonstationarity, it is meant that the time series 

characteristic is similar throughout the time sequence apart frolocal variations of mean and 

trend. Our simulation results show that the RBF predictor performs relatively poorly for such 

time series. To improve the performance of the predictor, some modifications to the RBF's 

node response behaviour are proposed. Some concluding remarks are given in Sec. 3.4. 

3.1 Suboptimum nature of the forward selection method 

This section investigates the sub-optimum nature of the forward selection method for subset 

model selection and introduces an implementation which improves the selection process. 

It is important to realise that the forward selection method does not guarantee the optimal 

solution for a R-term subset model taken from an initial K-term model. This method only 

ensures the best selection of the next regressor to be included in the current selected subset 

model at every step. The term greedy algorithm [93] can be used to describe this kind of 

selection technique. The only fool-proof method of selecting an optimal R-term subset model 

is to try all the possible combinations of R-term models from the full K-term initial model. As 

there are K!/(R!(K - R)!) possible combinations to form the R-term subset model, it is almost 

impossible to implement even for modest sizes of R and K [50]. 

Example: Sub-optimum solution of the forward selection method 

The following example is presented to illustrate how the forward selection method can fail in 

selecting the optimal subset model from the following linear regression model, 

y=Xw+e (3.1) 

where the vector y e R' is the desired signal vector, X E RNXK is the information matrix, 

w E RK is the weight vector and e is the approximation error of the regression model to the 

desired signal vector. Let X and y have the following values, 

101 2 

X = 0 1 1 , y= 2 

0 0 0.1 0 

and the task of the model selection problem be to pick a subset model with two regressors 

from the initial three regressors model. The columns of X are numbered as c0 , c1  and c2  

respectively. The forward selection algorithm selects columns in the order of c2 , co and Ci. It 
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is true that the best one-term subset model, i.e. Xs 1 , is to use column c2  since it provides 

the best approximation to y 4 . The best two-term subset model, Xs2 , however, is formed by 

using columns c0  and c1 . Since the forward selection type algorithm adds a new column to the 

previously selected subset, a sub-optimal two-term model using c2  and Co is obtained. 

From this example, it is clear that forward selection method is sub-optimal, and the selection 

process can be improved by not always including the regressors selected in the previous stages. 

That is, a larger subset model need not necessarily contain all the columns of the smaller subset 

selected previously. 

3.1.1 Backtracking OLS 

To improve the selection process of the forward selection algorithm, we examine a backtracking 

approach [12]. The procedures of the modified selection algorithms are: The OLS algorithm 

is first applied to select the initial subset model of R terms. As the subset model size is 

increased from 1 t R, the NMSE, which will decrease monotonically, is calculated and recorded. 

By examining how each parameter contributes to reducing the approximation error, we can 

determine if the order of parameter selection should be changed. The idea of the backtrack 

procedure is to introduce parameters that have provided better performance-gain before those 

that have provided less significant gains [12]. This idea is very similar to the forward-backward 

selection method discussed in [50]. The details of the algorithm are as follows. 

Algorithm 3.1 Backtrack OLS Algorithm 

Use the OLS approach to find the initial XSR set. The subscript R of Xs implies that 

the matrix Xs has R columns. 

For i = 1 to R 

determine the NMSE values of using Xsj to approximate y, where Xs2  contains i columns 

selected from X by OLS algorithm. Store these values into the bench-mark array BM-NMSE, 

i.e., BM-NMSE[i] = NMSE attained using the subset model containing i columns. This 

array is used to compare against the performance of subset models selected using the 

backtracking approach. The array drop-NMSE is defined as: 

drop-NMSE[i] = BM-NMSE[i] - BM..NMSE[i-1] 

For i = 2 to R 

- For j = i + 1 to R 

if (drop-NMSE[j] > drop_NMSE[i]) 

4 The subscript R of Xs imply that the matrix XsR has R colunms. 
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Form a X, matrix using the first i —2 columns of XSR and column j of XSR This 

matrix will have i - 1 columns. 

If j = 2, Xtmp matrix will be a single column matrix with the column from column 

I of XSR. 

Re-apply the OLS method to find Xs', where Xs is the selection of R columns from 

X based on the initial set specified in 

Determine the NMSE values using Xs' to model y and store it into the array 

tmp...NMSE. Each element in tmp.NMSE will be compared to its corresponding 

element in BM-NMSE. Any performance improvement in tmp.NMSE implies that 

the new subset found using the backtrack procedure is better. The indexes of the 

columns used to form this subset are stored. The BM-NMSE array is then updated 

with the new improved values. 

Skip the rest of j, i.e. set j = R+ 1. 

Remark: Step (iii)a is the key idea to the backtracking algorithm. A parameter that has 

provided a better contribution to model vector y albeit in a larger subset model Xs replaces 

the original selection. Although this exchange is not optimal in forming the i-term subset model 

Xs j  from the (i - 1)-term subset model Xs(2 _ l), it is possible for better combinations of Xs' 

to be generated when more regressors are selected. 

Backtracking OLS simulation results 

To illustrate the performance of the selected models using the backtracking OLS algorithm, 

the experiment of selecting subset models from the 84-term Volterra predictor used on the 

Duffings and the Mackey-Glass chaotic time series discussed in Sec. 2.4.1 is repeated. The 

NMSE performance of the selected models for the Duffing's time series using the OLS and 

backtracking OLS algorithm is depicted in Fig. 3.1, and for the Mackey-Glass time series is 

depicted in Fig. 3.2. The results in both cases confirmed that the backtracking OLS algorithm 

can improve on the standard OLS selected subset model's performance. This improvement 

however is achieved with a significant increase in implementation complexity and it should be 

noted that in these two examples, the improvement to the predictive performance is only very 

small. These results are in agreement with many other researchers' observation that forward 

selection technique normally yield very good subset model selection [10,11,50,52], and that for 

all practical purpose the OLS solution should suffice. 
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Figure 3.1: OLS and Backtracking OLS on Duffing's series 
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Figure 3.2: OLS and Backtracking OLS on Mackey-Glass series 

3.2 Computation reduction of OLS method 

Although the OLS algorithm [10, 11,53,54] is an efficient implementation of the forward selection 

method, the implementation complexity of the selection process remains significant when the 

original model and the number of available data samples is large. In this section, methods 
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of reducing the implementation complexity will be studied. The basic idea is to perform an 

orthonormal transformation on the N x K matrix X and the N x 1 vector y to change them 

into a K x K matrix X and a K x 1 vector k . The transformation is accomplished by the 

multiplication process: X = QTX and k = QTy where the matrix Q E RNXK has the same 

column space as X. The OLS algorithm is then employed to select significant parameters 

based on X and Y . Because the size of the transformed information matrix and output vector 

is smaller than that of the original version, computational complexity is reduced. In normal 

signal processing problems, the number of data samples, N, is greater than the number of model 

parameters K. Substantial saving in computation based on X and k for subset model selection 

usually more than offsets the additional computation required for pre-processing. In the case 

of N > K, which is certainly not rare, very significant saving in computation can be achieved. 

3.2.1 Reduced OLS: Gram Schmidt 

One possible way of introducing the orthonormal transformation can be accomplished as follows: 

Using the Gram-Schmidt (GS) decomposition [31,94], decompose the N x K matrix X into the 

product of an N x K matrix Q satisfying QTQ = I and a K x K upper triangular matrix B, 

where I is the identity matrix of appropriate dimension. That is 

b00  

0 

[co  C1 CK_j] = [qo qi qK-11 0 

0  

(3.2) 

b01  .. .  bo(K_l) 

b l (K_1 )  

o ... (3.3) 

o ... b(K_1)(K_1) 

or 

where q, 0 < j < K - 1, are the columns of Q. Pre-multiplying both sides of Eq. 3.1 by QT 

yields 

QT = Bh + QTe (3.4) 

By introducing = QTy. X = B and 6 =  QT Eq. 3.4 can be re-written as 

=Xh+ë, (3.5) 
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where and 6 are K x 1 vectors and X is a K x K matrix. The OLS algorithm can now 

be applied using the transformed information matrix X and transformed desired vector for 

subset selection. 

The solution obtained using 5 and X is identical to that using y and X. This is because 

and X are created by performing a unitary transformation [30, 31] on y and X. We can think 

of this transformation as a rotation and/or reflection operation. As such operations preserve 

the length of each (column) vector and the angle between two vectors, no new information is 

created or lost by transforming Eq. 3.1 into Eq. 3.5. Because of this property, we say that y, 

X and e remain invariant after the transformation [30,31]. 

This transformation of X = Q T X and = QTY can be viewed as pre-processing. This pre-

processing requires approximately N x K 2  multiplications [95] when the GS decomposition 

procedure is employed to extract Q. If the saving in computation by using X and 5 for subset 

selection offsets the additional computation of pre-processing, this reduced OLS approach is 

justified. The computational complexity of this reduced OLS algorithm for subset model selec-

tion has been analysed using examples, and the results showing the number of multiplications 

needed for subset selection on a 500 x 84 matrix and a 1000 x 210 matrix are illustrated in 

Figs. 3.3 and 3.4 respectively. The number of multiplications required to perform a subset 

selection of R parameters from a N x K X matrix using the OLS method can be calculated 

using: 

No. multiplications (OLS) = (3N(K - i - 1)) + (2N(K - i)). (3.6) 

The number of multiplications required to perform the pre-processing using the Gram-Schmidt 

decomposition is calculated using: 

No. multiplications (GS decomposition) = N K 2 + NK. (3.7) 

Therefore, the total number of multiplications required to perform a subset selection by the 

reduced-OLS GS approach is 

No. multiplications (reduced-OLS GS) = N K 2 + NK + 

(3K(K - i - 1)) + E (2K(K - i)). (3.8) 
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Figure 3.3: Computation requirement for information matrix X of size 500 x 84 
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Figure 3.4: Computation requirement for information matrix X of size 1000 x 210 

3.2.2 Reduced OLS: SVD 

The Gram-Schmidt procedure is not the only pre-processing method that can be used to trans-

form Eq. 3.1 into Eq. 3.5. The singular value decomposition (SVD) [32] can be employed as an 

alternative pre-processing method. The SVD of the N x K matrix X is defined by 
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FAR  0 v 1 
X = UAVT = [URIUK_R] I 

] 

(3.9) 

K-R 
L 

0 AK_R V 

In the above definition 

• The columns of the N x K matrix U are the left eigenvectors of X, which are com-

monly known as the principal components of X. The columns of U are denoted as 

u0, u1 , UK-1. The N x R matrix UR and the N x (K - R) matrix UK_R are formed 

by [u0  Ui UR-1] and [UR UR+1 UK_i] respectively. 

• A is the K x K diagonal matrix, and the diagonal of A contains the singular values of X 

arranged in the order of A0  ~ Al ~! AK-1. The diagonal elements of the R  R diagonal 

matrix AR are formed by using the A0  ~: Al ... ':~ AR_i. 

• The rows of the K x K matrix VT consist of the right eigenvectors of X. The columns 

of V, the transpose of VT,  are denoted as vo,v, . ,vj'_i. The R x K matrix V is 

formed by [v0  v1 y R_ u T. 

Notice that U is an orthonormal matrix. By introducing 5 = Uy, X = AV  and e = UT e, 

Eq. 3.1 is transformed into Eq. 3.5 as in the previous case of the Gram-Schmidt pre-processing. 

The only difference is that X = AV  is not upper triangular. The SVD however requires 

significantly more computation [95] (approximately three times more multiplications) than the 

Gram-Schmidt orthogonalisation scheme. The saving in computation by using and X for 

subset selection may not always be enough to compensate for the additional computation of 

the SVD pre-processing. 

Further reduction in computation must be sought in order to justify the SVD pre-processing. 

This can be achieved by further reducing the K x K problem into an R x K problem where 

R < K. Pre-multiplying Eq. 3.1 by UR yields 

Uy = UT + Ue. (3.10) 

We now define an N x K matrix 

= URARV, R < K, (3.11) 

X may be thought of as an approximation of X. If we introduce the R  1 vectors = Uy and 

= Ue. and the R x K matrix XR = U. Eq. 3.10 can be rewritten as YR  X e Rh + m 

The OLS algorithm can now be applied to perform subset model selection based on R  and 
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XR. The maximum rank of the subset model in this case is R. The justification of this reduced 

OLS selection approach is that if R is sufficiently large, i will be a very good approximation 

of X and the solution of the subset selection obtained using c'R and XR will be very similar to 

that obtained using the original y and X (up to the rank H subset model). On the other hand, 

if H is small enough, the overall computational complexity of this reduced OLS approach will 

be significantly less than the direct approach using X and y. 

To calculate the error introduced by using X to approximate X, the Frobenius norm [31,94] of 

the matrix is needed. The Frobenius norms of X and X are 

N K—i 2 
~K—1 

IIXIIF E  xii = 1: i.A , 
 

t=i j=O i=O 

NK—i 2 
[R-1 

IIXIIp = li'iil2  = i (3.13) 

t=i j=O I i=O 

Let the matrix E be E = X - i. The Frobenius norm of E is 

N K—i 2 K—i 

JJEJJF = >i: = . (3.14) 

2=1 j=O i=R 

The NMSE of using to approximate X can be defined as 

(IL~N
= 20log0 MSE:j IIp'\ (3.15) 

IIXlIF) 

If NMSE = -00, we have X = X. Note that how well R = UTy approximates UTy is also 

important in selecting an appropriate rank R. To measure the error of using 5n to approximate 

UTy, we define the following NMSE 

/ K  T 

Y 

\ 
NMSE- = 1Olog 0 K—i )2) R 

\ 

(3.16) 

j=O (uT y3  

Let us define the noise floor as the NMSE of approximating y when the full X is used. For 

example, in the two times series previously used for simulations, the noise floor is approximately 

—43dB for the Duffing's case and approximately —40dB for the Mackey-Glass case (Figs. 3.1 and 

3.2). For the reduced OLS based on the SVD pre-processing to work satisfactorily, the rule of 

thumb is to choose an approximation rank R so that the NMSE measures of Eqs. 3.15 and 3.16 

are well below the noise floor. If this criterion is satisfied, the solution of subset model selection 

up to rank R using 5'n  and XR is usually comparable to that obtained using the full y and X. 

Figs. 3.5 and 3.6 plot the NMSE measures of Eqs. 3.15 and 3.16 as functions of approximation 

37 



Chapter 3 : Improving the OLS algorithm and RBF model for time series prediction 

rank R for the two time series examples. The results indicate that an approximation rank 

R> 40 may be sufficient for both cases. In practice, the noise floor may not always be known. 

A compromise between performance of subset selection and computational complexity must be 

made when choosing R. 
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Figure 3.5: NMSE of approximating X and U'Y (Duffing's series) 
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Figure 3.6: NMSE of approximating X and UTY (Mackey-Glass series) 

38 



Chapter 3: Improving the OLS algorithm and RBF model for time series prediction 

3.2.3 Results of reduced OLS methods 

Figs. 3.7 and 3.8 show the performance of the predictors, selected from the original 84-term 

Volterra predictor using the two proposed reduced OLS methods, on the Duffing's and Mackey-

Glass chaotic time series. The two time series used were the same as discussed in Sec. 2.4.1. 

Since the Gram-Schmidt procedure does not cause any approximation to our original problem 

but only introduces a change of bases, the reduced OLS method based on Gram-Schmidt pre-

processing provides identical performance to the OLS method using the original X and y. 

The reduced OLS SVD approach involves approximating the original X and y by XR and 

and its performance will not generally be identical to the OLS method based on X and y. For 

the Duffing's time series, when the approximation rank R = 40, subset models with up to 24 

regressors selected by the reduced OLS SVD algorithm are the same as those selected by the 

OLS algorithm using the full X and y (Fig. 3.7). This suggests that information regarding the 

first 24 significant columns of X is not lost when we approximate the rank 84 matrix X by the 

rank 40 matrix XR.  When an approximation rank 60 is used, there is hardly any difference 

between the subset models selected by the reduced OLS SVD algorithm and those chosen by 

the OLS algorithm using X and y. Similar observations can be drawn for the Mackey-Glass 

time series (Fig. 3.8). 
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Figure 3.7: Comparison of reduced OLS methods (Duffing's series) 
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Figure 3.8: Comparison of reduced OLS methods (Mackey-Glass series) 

3.3 Nonlinear time series prediction using RBF and GRBF model 

In this section, the application of RBF models for nonlinear time series prediction is considered. 

The RBF model has enjoyed considerable success in nonlinear time series prediction [9, 10, 

44-46,61]. Most of the successful results, however, are obtained when the model is applied to 

predict signals that are stationary. The performance of the RBF predictor for nonstationary 

signal is less satisfactory [96]. This is because the RBF model does not characterise temporal 

variability well. Since real-world signals are often not only highly nonlinear but also highly 

nonstationary, it is desired to develop predictors which can handle signals that exhibit both 

such characteristics. 

To improve the predictive performance for nonstationary data, we propose a gradient RBF 

(GRBF) predictor which is a modification of the classical RBF predictor [15, 16]. In the clas-

sical RBF predictor, the centres of the hidden nodes can be interpreted as prototype vectors 

which are used to sense the presence of the input pattern. That is, if a centre matches the pre-

dictor's input vector, the corresponding hidden node will fire strongly. However in the GRBF 

predictor, a hidden node's function is to sense the presence of a prototype vector's gradient. 

This significantly improves the predictive capability of the network in the situation where non-

stationarity of the signal is due to the variations of mean and trend. 

In using this GRBF predictor, we are exploiting the idea that, by performing a suitable difference 
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operation on a nonstationary signal, the resulting signal becomes stationary. This idea is 

used in the auto-regressive integrated moving average (ARIMA) model for linear prediction of 

nonstationary signals [291. By incorporating a similar mechanism into the RBF network, we 

can create a network model that is capable of dealing with nonlinear and nonstationary signals. 

In the following sections, the RBF model is introduced and the procedures required to modify 

the RBF structure to the gradient RBF (GRBF) model are presented. Some simulation results 

are also included to compare the performance between RBF, GRBF and linear predictors. 

3.3.1 The RBF predictor for nonstationary time series 

In this study, the RBF predictor's nonlinearity is chosen to be Gaussian and the width a to be 

uniform. The centres are initially set to all available training data, and the OLS algorithm is 

applied to perform model selection. 

The input vector to the predictor at time time n is s(n) = [y(n - 1). . . y(n - rn)]T E Rm and 

the response of the Gaussian jM  hidden nodes to the input vector s(n) is 

= exp(—cIIs(n) - 
c11

2) (3.17) 

where c3  is the rn-dimensional centre vector of the j°  node,  11.11 denotes Euclidean norm and 

is a positive constant which determines the width of the symmetric response of the hidden 

node. The predictor's output is 

(n) 
= 

(3.18) 

where wj  are the network connection weights and K is the number of hidden nodes. The 

error between the desired network output y(n) and the actual network output s(n) is e(n) = 

y(n)—y(n). 

3.3.2 The Gradient Radial Basis Function model 

The GRBF predictor, like the RBF case, is a nonlinear model with the linear-in-the-parameter 

structure. In the GRBF model, however, the input vector is generated by differencing the raw 

data. The order of differencing determines the order of the GRBF predictor. For example, the 
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input vector of the 1st-order GRBF predictor at time n is given by 

s'(n) = s(n)—s(n—l) 

= [ y(n _ l )_ y(n _2),,y( n — m)_ Y( n _ m _1)}TERm (3.19) 

where s(n) and s(n— 1) are the original input vectors to the RBF network at time n and (n — i) 

respectively. The elements of s'(n) show the rate of change in the trajectory of the time series 

for the the past rn samples. 

The function of the hidden node for the GRBF predictor is also slightly different from that of 

the RBF predictor. Fig. 3.9 depicts the structure of the 1st-order GRBF predictor. 

A 

y(n) 

K 

y(n-1) - y(n-2) y(n-m) - y(n-m-1) 

Figure 3.9: Topology of 1st-order GRBF network 

Although the Gaussian function still serves as the nonlinear function which compares the sim-

ilarity of the input vector to the hidden node's centre, the response of the Gaussian function is 

now multiplied by an additional term (y(n - 1) + ). The response of the j1h hidden node of a 

1st-order GRBF network to the input vector s'(n) is therefore given by 

c(s(n)) = exp(—s'(n) - c;II2 ) x (y(n - 1)  + 6,) (3.20) 

where c is the rn-dimensional centre vector of the j1h  hidden node and 6, is a constant value 

associated with the centre. The term (y(n - 1) + 6) can be interpreted as a local single-step 
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prediction of y(n) by the j1h  hidden node. From Eq. 3.20, if the input vector is very similar 

to the jth centre, the value of the Gaussian function will be close to 1.0 and the predictor 

(y(n - 1) + 6) becomes fully active. As in the case of the RBF network, the output layer is a 

linear combiner with weights w, 1 <j < K. 

The centres c and the scalers 6, 1 < j < K, can be chosen during the training from the 

training data {s'(k)} 1 . For each training input vector s'(k), define 

d(k) = y(k) - y(k - 1). (3.21) 

If s(k) is selected as the j-th centre c, we set bj = d(k) to ensure that the j1h  hidden node is a 

perfect predictor of y(k). In this way, the problem of constructing a network is equivalent to the 

task of selecting a K-term subset model {c , j }f_ from the full N-term model {s'(k), d(k)}._ 1 . 

The OLS algorithm can readily be applied to perform this subset selection task. 

The rationale behind the GRBF model becomes obvious when the network performs predictive 

operation. Each hidden node compares the network input vector s'(n) to its centre c. The 

Gaussian response of each hidden node indicates the degree of matching between s'(n) and c. 

The hidden nodes thus sense the gradient of the time series rather than the series itself, as 

would be in the case of the RBF model. The term (y(n - 1) + b) also has a clear geometric 

meaning. Referring to Fig. 3.10, if the j°  centre c matches the gradient s'(n) of the series, 

(y(n - 1) + b) is likely to be a very good prediction of y(n). 

Time Series 

+ 

y(n-m) 
I' & 

Figure 3.10: Predictive function of th  hidden node. If the centre c matches s'(n), (y(n— 1)+6j 

is a good approximation of y(n). 

Fig. 3.11 illustrates the response behaviour of the RBF and GRBF nodes for a given task of 

sensing the peaks of a sinusoid signal with a time varying mean. To perform the required 

operation, the RBF and GRBF centres were set using a segment of the signal containing a 

peak. The results clearly show that the GRBF node was able to respond to each peaks while 
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the RBF node was unable to track the time series. 

Although the complexity of a GRBF hidden node is greater than that of a RBF hidden node, 

the GRBF has better generalisation properties, particularly in predicting homogeneous non-

stationary time series. This often results in a smaller GRBF network. Therefore, the overall 

complexity of the GRBF network may not necessarily be greater than that of the RBF network 

in practical applications. 
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Figure 3.11: RBF and GRBF node's response. 

3.3.3 Higher-Order GRBF Networks 

We can extend the idea of mapping the data's gradient by the 1-order GRBF network to that 

of matching higher-order gradients in a higher order GRBF network. For instance, the input 

vector to the 2 d  order GRBF network at time n can be defined as 

s"(n) = s'(n) - s'(n - 1) 

= [(y(n-1)— y(n —2))—(y(n-2) y(n 3)) 

(y(n - m) - y(n - rn - 1))— (y(n - rn — i) — y(n - in - 2))]T ERtm. (3.22) 

The response of the j1h  hidden node of the 2 nd  order GRBF network to s"(n) is calculated 

according to 
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= exp(—cs"(n) - c7112 ) x ((y(n 
- 

1)— y(n - 2)) + 6). (3.23) 

The ni-dimensional centre vectors c' and the scalers bjl , 1 < j < i', can similarly be selected 

from the training data {s"(k)}'L1 . For each training input vector s"(k), define 

d'(k) = d(k)—d(k-1) 

= (y(k) - y(k - 1)) - (y(k - 1) - y(k - 2)). (3.24) 

If s"(k) is selected as the centre c7, the value of is set to d'(k). The OLS algorithm is 

well suited to this subset selection problem. 

The geometric properties of the 1'-order GRBF network can similarly be extended to a higher-

order GRBF network. If we view the 1-order GRBF network as using a matching of gradient 

to predict the next value of the time series, then the 
2d order GRBF network predicts the 

next rate of change using a matching of the 2nd order gradient. This interpretation can be 

generalised to higher-order GRBF networks. 

3.3.4 Simulation Results 

We present some simulation results of time series prediction using the RBF and GRBF pre-

dictors in this section. Initial full models were created by using all the available data in the 

training set as RBF and/or GRBF centres. Some linear terms were also included into the full 

models. Subset models were then selected from these large full models using the OLS scheme, 

and used to evaluate single-step and multi-step prediction performance. 

The same two chaotic series, the Mackey-Glass (Fig. 3.12) and the Dufflngs (Fig. 3.13) , as 

used in Sec. 2.4.1 were used to evaluate model predictive performance. 

Data samples of point 100-600 were used as the training set (N = 500) and samples 601 to 1100 

were used as the validation set. The embedding vector's dimension was chosen to be m = 6 

and the width of Gaussian function was set to a = 1.0. The following types of models were 

used: 

L-model Linear model of order 50. 

LO-model Combinations of the linear mode and the classical RBF model. 

L01-model Combinations of the linear model, the classical RBF and' 1s t-order GRBF 

models. 

5The step size used to generate this Duffing's time series is step size = 0.4 . the rest of the parameters used 

to generate the series is as given in Sec. 2.4.1 
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L012-model Combinations of the linear model, the classical RBF model, the 1 and 2 

order GRBF models. 
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Figure 3.12: Mackey-Glass time series 
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Figure 3.13: Duffing's time series 
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3.3.5 Simulation results for stationary nonlinear time series predictions 

For the Mackey-Glass time series, the results of single-step performance for the predictors in 

the training phase are shown in Fig. 3.14, where the vertical axis indicates the NMSE in dB. 

As expected, as the size of each selected subset model increases, the accuracy of the model 

continued to improve. However, the rate of improvement was not the same for each model. 

The predictors with GRBF expansion, i.e. L01 and L012-models, achieved better error 

reduction with a smaller model size. These two GRBF subset models also performed better on 

the validation set when compared to the linear and classical RBF models, as can be seen in 

Fig. 3.15. The multi-step prediction performance on the validation set for each of the models 

was tested using a model size of 25 (Fig. 3.16), and the results show that the two GRBF models 

had better multi-step predictive accuracy. 

The same experiment was repeated for the Duffing's time series with the three models, namely 

L-model, LO-model and L01-model . The results of single-step prediction in training and 

testing phases (Fig. 3.17 and 3.18) and the multi-step predictions using a model size of 25 

(Fig. 3.19) again show that the GRBF predictor possesses better generalisation property. 
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Figure 3.14: Performance of predictors in training phase for stationary Mackey-Glass series : a) 

Linear model, b) Linear & RBF model, c) Linear, RBF & 1 order GRBF model, 

d) Linear, RBF, 1 & 2°' order GRBF model. 

6The results for the L012-models are very similar to L01-model. They are therefore not included in the 

report. 
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Figure 3.15: Performance of predictors in testing phase for stationary Mackey-Glass series : a) 
Linear model, b) Linear & RBF model. c) Linear, RBF & l order GRBF model, 
d) Linear, RBF. 1 & 2' order GRBF model. 
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Figure 3.16: Multi-step performance of predictors with a model size of 25 for stationary Mackey-
Glass series : a) Linear model, b) Linear & RBF model, c) Linear, RBF & 1' order 
GRBF model, d) Linear, RBF, 1 & 2nd order GRBF model. 
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Figure 3.17: Performance of predictors in training phase for stationary Duffing's series a) 

Linear model, b) Linear & RBF model, c) Linear, RBF & 1 order GRBF model. 
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Figure 3.19: Multi-step performance of predictors with a model size of 25 for stationary Duffing's 

series : a) Linear model, b) Linear & RBF model, c) Linear, RBF & pt order 

GRBF model. 

3.3.6 Simulation results for homogeneous nonstationary nonlinear time series pre-

dictions 

To examine how the predictors behave for nonstationary series, we used a modified nonstation-

ary Mackey-Glass time series. This new series, illustrated in Fig. 3.20, was formed by adding 

a sinusoid with amplitude 0.3 and a period of 3000 samples to the Mackey-Glass time series 

used in the previous example. As the training data were formed from samples 100 to 600 and 

the validation data consisted of samples 601-1100, the predictors were trained without being 

exposed to the change in the level and trend of the test data. The results for the single-step 

prediction in the validation phase (Fig. 3.21) and the multi-step predictive performance on the 

validation set using a model size of 35 (Fig. 3.22) suggest that the GRBF network can perform 

better than the classical RBF network in a homogeneous nonstationary environment. 

3.4 Conclusions 

The following three main results reported in this chapter are summarised below: 

(i). Improving the forward selection algorithm 

In this chapter, we demonstrated the sub-optimum nature of the forward selection al-

gorithm for model selection. To improve the selection process, a backtracking OLS ap-

proach was introduced. Although the simulation results showed that the forward selection 

process could be improved, the results also indicated that the subset models found are 
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Figure 3.22: Multi-step performance of predictors with a model size of 35 for modified non-
stationary Mackey-Glass series : a) Linear model, b) Linear & RBF model, c) 
Linear, RBF & 1 order GRBF model. 

in general very good, and it is normally not necessary to employ more complex methods 

than forward selection method for practical applications. 

Reducing the implementation complexity of the OLS algorithm 

The computational requirement of the OLS algorithm was also examined and a method 

of reducing the processing requirement was presented. The reduction in processing was 

shown to be significant when the number of rows in the information matrix X is signific-

antly larger than the number of its columns. Two schemes of the reduced-complexity OLS 

method were proposed. The first scheme was based on a Gram-Schmidt pre-processing 

and would provide identical results to those obtained using the original input matrix and 

the desired output vector. The second scheme was based on a SVD pre-processing and 

it was shown that subset selection performance can always be traded for computational 

complexity. 

Improving the RBF predictor for nonlinear time series prediction 

This chapter also examined the RBF predictor for time series prediction. We showed 

that the predictive performance of the RBF network can degrade significantly when the 

predictor is applied to time series which possess homogenous nonstationary behaviour. To 

improve the predictor's performance, the GRBF model was proposed. The hidden layer 

of this GRBF network was designed to respond to the gradient of the time series rather 

than the trajectory itself. This can usually improve predictive accuracy, particularly 

for homogeneous nonstationary time series as demonstrated in the simulation results. 

Although the discussion of the GRBF model was restricted to time series prediction, it 

can be applied to other signal processing applications. 
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Chapter 4 

Digital communication channel 

equalisation using nonlinear 

techniques 

In this chapter and the next, we will study the application of filters to channel equalisation 

problems. As stated in the beginning of the thesis, our study is restricted to the symbol-

by-symbol detection type equaliser. The structure of such an equaliser consists of a decision 

function and a quantiser to partition the output of the decision function into the various classes 

of possible transmit symbol. The task of the equaliser is to classify the unknown received 

sequence with the minimum probability of misclassification. In this chapter, we will examine 

nonlinear techniques to realise the equaliser's decision function, and in the next chapter, we 

will consider linear implementation techniques. 

The main objective of this chapter is to examine the application of nonlinear techniques to 

realise the decision function of the equaliser. In particular, we will study the effects of delay 

order parameter on the performance of the equaliser and decision boundary. In addition, we 

will also examine the implementation of the symbol-decision equaliser using RBF techniques. 

The following results are reported in this chapter: 

The effects of the delay order parameter on the BER performance of the symbol-decision 

equaliser1 . 

An algorithm to reduce the RBF equaliser's implementation complexity to model the 

Bayesian equaliser'. 

(iii). A transformation to convert the DFE structure into a feedforward structure2 . 

'To appear in - E.S.CHNG. B.MULGREW. S.CHEN and G.GIBSON, 'Optimum Lag and Subset Selection 

for Radial Basis Function Equaliser', IEEE Workshop on Neural Networks for Signal Processing (NNSP'95), 

Sep 95, BOSTON. 
2 Submitted to - S.CHEN, E.S.CHNG, B.MULGREW and G GIBSON 'On decision feedback equaliser', IEEE 

Trans Communications. 
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The outline of this chapter is as follows: Sec. 4.1 introduces the channel equalisation prob-

lem. Sec. 4.2 derives the optimum symbol-decision nonlinear equaliser, the Bayesian equaliser. 

Sec. 4.3 considers the application of the RBF network to the realisation of the Bayesian equal-

iser, and discusses the effects of delay order parameter on the decision boundary. In addition, 

the section also examines the probability of misclassification and introduces a simple BER es-

timator to evaluate the equaliser's performance. Sec. 4.4 studies the implementation complexity 

of the RBF equaliser and proposes a subset model selection method to reduce the complexity. 

Sec. 4.5 examines the Bayesian DFE and Sec. 4.6 concludes the chapter. 

4.1 Channel equalisation 

The generic structure of the digital communication channel model and symbol-decision equaliser 

we will be studying is depicted in Fig. 4.1. It is shown that the transmitted symbol s(k) is 

passed through a linear dispersive channel and corrupted by additive white Gaussian noise 

(AWGN) before being received by the equaliser. 

n(k) 

r(k- r(k-m+])  
> Channel 

—~ 

.. 

n 

Equaliser's function 

f(r(k)) 

_[ I  quantiser 

A 
s(k-d) 

Figure 4.1: Discrete time model of data transmission system 

The transmitted signal s(k) is chosen randomly from a binary source with the constellation 

{±1} and the channel is modelled by a FIR filter with the response function a(0) + a(1)z' + 

+ a(n - 1)z' 1 . The noise source is assumed to have a Gaussian distribution with mean 

zero and variance o. The signal received by the equaliser at time k is r(k), i.e., 

r(k) = (k)+n(k) = s(k —i)a(i) +n(k), (4.1) 
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where 1(k) is the noise-free part of the channel output, and n(k) the additive Gaussian noise 

sample. The measure of the equaliser's performance is the probability of misclassification with 

respect to the signal to noise ratio (SNR). The SNR is defined by 

SNR = 
E[2(k)] 

= i:' a(i)2) 
= :—' a(i)2 

(4.2) 
E[n2(k)] T e2  

The equaliser uses a vector of received signal samples r(k) = [r(k) . .. r(k - in + i)]T  E R" 

to estimate the transmitted symbol s(k - d) where the integers in and d are known as the 

equaliser's feedforward order and delay order respectively. The estimated value of s(k - d) 

is denoted by i(k - d). The equaliser consists of a filter to implement the decision function 

and a slicer to quantise the real output value of the decision function f(r(k)) into one of the 

possible transmitted symbols. In our case when the transmit alphabet is from the set {±1}, 

the quantiser can be implemented using the sgn(.) function, i.e., 

f  sgn(x) 

= 

1 

) 
(4.3) 

—1 if x< 0  

The equaliser's performance is therefore determined by the decision function. In the following 

sections, it will be shown that the optimum decision function, the Bayesian decision function 

[17, 18], is nonlinear and to achieve this solution, the equaliser's decision function must contain 

nonlinearity. This is one of the reasons why many researchers have examined nonlinear equaliser 

structures, e.g.. the Volterra equalisers [34,35,97,98], multi-layer perceptron (MLP) equalisers 

[98-102] and RBF equalisers [17, 18,73, 103]. The RBF equaliser however has been shown to be 

able to realise the Bayesian solution given the channel and noise statistics [17, 18,73]. We will 

therefore concentrate on the RBF implementation for the rest of the chapter. 

4.2 The decision function of the Bayesian symbol-decision equaliser 

The equalisation process can be viewed as a classification problem in which the equaliser's 

task is to partition the input space r(k) E Rm into two distinct regions [17, 18,99] given that 

the transmitted symbol is binary. The boundary points which separate these two regions are 

referred to as the decision boundary. The partitioning which results in the minimum probability 

of misclassification is known as the Bayesian solution and the decision boundary which realises 

this solution is nonlinear [17,18,99]. To derive the Bayesian decision function, we first introduce 

the definition of channel states. 
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4.2.1 Channel states 

The input vector to the equaliser is r(k) = i(k)+n(k). The vector i(k) is known as the channel 

state and is the vector of noise-free received signals r(k) = ft(k) . .. - rn+ i)]T E Rm. The 

values of the channel state are determined by the values of the transmitted sequence vector 

s(k) = [s(k) •.• s(k - in - a + 
2)]T E (44) 

and are related to s(k) by the following expression [99] 

1(k) = F[s(k)], (4.5) 

where the matrix F E 

a(0) a(1) ... a(na - 1) 0 0 

o a(0) a(1) ... a(no  - 1) 0 ... 0 

0  

o ... ... ... ... 
... a(0) a(1) ... a(na - 1) 

Since s(k) has N3 = 2m+,-1 combinations [17, 18], 1(k) has N3  states. Let the N3  sequences 

of s(k) be 

s(k) = [s(k) s(k - 1) •.. s1(k - - a + 
2)]T

, 1 <j < N3 . (4.7) 

The corresponding states of ir(k), denoted as c3 , are given by 

c=i(k)=F[s(k)], 1<j<N3. (4.8) 

The set of N3  channel states Cd = {c,}, 1 < j < N3 , can be partitioned into two subsets 

according to the values of the transmitted symbol s(k - d), i.e., 

Cd = (4.9) 

where 

= {i(k)Is(k—d)=+1}, (4.10) 

= {i(k)Is(k - d) = —1}. (4.11) 

Each set C7 and C contains N3 /2 channel states. 
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4.2.2 The Bayesian decision function 

Because of additive noise, the observation vector r(k) = r(k)+n(k) is a random process having 

conditional Gaussian density function centred at each channel state. Given that the channel 

state i(k) = c, the conditional probability distribution of the observation vector is 

p(r(k)Ic3) = (21rc)_mI2 exp( — IIr(k) - cjII2/(2o)). (4.12) 

Due to the additive noise, the received vector r(k) may be perturbed sufficiently to cross the 

decision boundary, resulting in a misclassification. To minimise the probability of misclassifica-

tion given that the received vector is r(k) [17, 104, 105], the estimated symbol should be chosen 

by determining which transmitted signal s E {d1} has the maximum a posteriori probability 

P(s(k - d) = sjr(k)). This leads to the following decision rule: 

1, fb(r(k)) ~ 0, 
i(k - d) = sgn(16(r(k)) 

= { 
—1, fb(r(k)) <0, 

where fb(r(k))  compares the a posteriori probabilities of the binary transmitted symbols3, i.e., 

fb(r(k)) = P(s(k - d) = +llr(k)) - P(s(k - d) = — llr(k)), (4.14) 

where P(s(k - d) = +llr(k)) and P(s(k - d) = —llr(k)) are the a posteriori probabilities 

that the transmitted signal is +1 and —1 respectively given r(k). The function fb(r(k))  is also 

known as the Bayesian decision function because the Bayes rule [104] is applied to express the 

a posteriori probability into the product of the a priori probability P(s(k - d) = s) and the 

state-conditional probability density function (pdf) p(r(k)Is(k - d) = s) over the pdf of r(k), 

i.e., 

p(r(Ic)Is(k - d) = s)P(s(k - d) = s) 
P(s(k - d) = s)Ir(k)) = p(r(k)) 

(4.15) 

The reason for expressing the a posteriori probabilities in terms of the a priori and state-

conditional probabilities is that these a priori and state-conditional probabilities can be cal-

culated given the channel and noise statistics. If the transmit symbol is i.i.d, the a priori 

probabilities P(s(k - d) = +1) and P(s(k - d) = —1) have the same value I and the state-

conditional pdf p(rls(k - d) = +1) is the sum of the pdfs for each channel state c2  E 

3 The notation upper-case P(.) denotes a probability mass function, and a lower-case p(.) denotes a probability 
density function. 
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i.e., 

1 
p(r(k)Is(k—d)=+1) = - p(r(k)c) 

N3  
C,EC 

1 
= (2iro)_m/2exp(_IIr(k) - clI2/(27)), (4.16) 

where the constant - is the a priori probability of cj. Similarly the conditional pdf p(rls(k - N. 
d) = —1) is the sum of the pdfs for each channel state ej E i.e., 

p(r(k)Is(k - d) = —1) = 
1
- p(r(k)c) 
N3  

CkECd  

1 
- 

N' 

 E (2 0.2)--/2 
- Ck II 2 /(20 e )). (4.17) 

CkEC 

Substituting Eq. 4.15 into Eq. 4.14, the Bayesian decision function becomes 

fb(r(k)) = 
p(r(k)Is(k - d) = +1)P(s(k - d) = +1) 

p(r(k)) 

p(r(k)Is(k - d) = —1)P(s(k - d) = —1) 

p(r(k)) 

(4.18) 

Since the a priori probabilities are the same for the transmitted symbols, and the two denom-

inator terms p(r(k)) in the right hand side of Eq. 4.18 are common, they do not affect the sign 

of the equation and may be removed. The equation simplifies to, 

fb(r(k)) = p(r(k)Is(k_d)=+1)—p(r(k)ls(k—d) —1) 

= p(r(k)Icj)—- p(r(k)c) 

CjEC 

= E (2)_m/2exp(_IIr(k) - cjII2 /(2)) 

c,ec 

- (27ro)—m/2exp(_IIr(k) - CkII 2 /(2O)). (4.19) 

CkEC 

Similarly, the coefficients - and (21ro)_m/2  do not affect the sign of the decision function and 

Eq. 4.19 can be further simplified to 

fb(r(k)) = exp(—r(k) - cjII2/(2o)) - exp(—r(k) - ck II2 /(2o)). (4.20) 

C,EC CkEC 

This concludes the derivation of the Bayesian equaliser's decision function. It is observed 

from the above equation that the Bayesian decision function is nonlinear and is completely 

specified by the channel state locations and noise variance o. Therefore, if the channel is 

known completely, the channel states (Eq. 4.8) and noise statistics (Eq. 4.2) can be calculated 

to generate the Bayesian decision function. 
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In the following section, the RBF network is briefly introduced to show that the RBF model 

structure is identical to that of the Bayesian decision function (Eq. 4.20). 

4.2.3 Implementing the Bayesian decision function using the RBF model 

The response of the RBF network is [7-9,17,36] 

fr(r) 
= 

wØ(r — cjII2/c) (4.21) 

where n denotes the number of computing units or hidden nodes, w, are the weights, (.) are 

the nonlinearities of the hidden nodes, c3  are the centres of the hidden nodes, and a is a positive 

constant known as the width. 

It is obvious by comparing Eq. 4.21 to Eq. 4.20, that the structure of the RBF network realises 

exactly the Bayesian decision function when the weights, centres, a , and the nonlinearity (.) 

are set according to Eq. 4.20 [17,18]. The RBF network is therefore ideal to model the Bayesian 

equaliser. 

To realise the Bayesian equaliser using the RBF network, the channel states c) , 1 < j < N.,, 

are first calculated from an estimate of the channel model. These channel states become the 

RBF centres, and the nonlinearity of q(.) is chosen to be 

(x) = exp(—x). (4.22) 

In addition, the constant term a of the nonlinearity is set to the value of 2o, the weights w 

associated with the channel states belonging to C 4  are set to +1, and the weights associated 

with the channel states belonging to CH are set to —1. 

The performance of the RBF model depends critically on the position of the estimated channel 

states and less critically on the estimated noise variance. It has been shown that given a good 

estimate of the channel state locations and noise statistics, the RBF model will result in BER 

performance very close to the Bayesian equaliser [17]. 
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4.2.4 Example of Bayesian decision function response 

To illustrate the Bayesian decision function response, we examine the response behaviour of the 

Bayesian equaliser when applied to the channel 

H(z) = 0.5 + 1.0z' (4.23) 

with delay order d = 0, feedforward order rn = 2 at SNR = 15dB. Table 4.1 lists the set of 

channel states. Given delay d = 0, the set of channel states associated with transmit symbols 

s = +1 and s = —1 are = {ci ,c2,c3,c4} and = {c5,C6,c7,c8} respectively. 

S/No Transmitted sequence Channel state 

S.
J  

C. 
3 I 

J A A 

s(k) s(k-1) s(k-2) ] [ r(k) r(k-1) I 

1 1 1 1 1.5 1.5 
2 1 1 -1 1.5 -0.5 

3 1 -1 1 -0.5 0.5 

4 1 -1 -1 -0.5 -1.5 

5 -1 1 1 0.5 1.5 
6 -1 1 -1 0.5 -0.5 

7 -1 -1 1 -1.5 0.5 

8 -1 -1 -1 -1.5 -1.5 

Table 4.1: Transmitted sequence and received channel states for channel H(z) = 0.5 + 1.0z 1  

Figs. 4.2a,b depict the conditional probability distribution p(r(k)Is(k—d) = +1) and p(r(k)ls(k—

d) = —1) (Eqs. 4.16 and 4.17) respectively. Note that the pdfp(r(k)Is(k—d) = s) is a mixture 

of multi-variable Gaussian functions whose means correspond to the respective channel states 

in C and Fig. 4.3a illustrates the mapping of the Bayesian decision function fb(r(k)). 

The positive peaks in the graph are attributed to p(r(k) js(k - d) = +1) and the negative peaks 

attributed to p(r(k)s(k - d) = —1). The set of points {ro} for fb(ro) = 0 forms the decision 

boundary 

This example clearly illustrates two characteristics of the Bayesian decision boundary; firstly, 

the decision boundary can be highly nonlinear and secondly, the set of and C may not 

be linearly separable. 

60 



Chapter 4 : Digital communication channel equalisation using nonlinear techniques 

(a) 

::. 

H 
-- 

(b) 

Figure 4.2: Conditional pdf of the received signal vector r(k) : (a) z = p(r(k)Is(k - d) = +1), 

(b) z = p(r(k)Is(k - d) = —1) at SNR=15dB. 

(a) (b) 

Figure 4.3: (a) Bayesian decision function z = fb(r(k)), (b) Contours of the decision function 

mapping and the Bayesian decision boundary at SNR15dB. 
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4.2.5 Effects of error variance and delay order on decision boundaries 

The Bayesian decision boundary is affected by the locations of the channel states, delay order 

parameter and the noise statistics [17, 18]. In the case when the noise is i.i.d Gaussian, the 

effects of noise variance on the decision boundary is not significant [17, 18]. To illustrate this, 

Fig. 4.4 plots the decision boundaries of the Bayesian equaliser for different SNR. The results 

show that the shape of the decision boundaries do not vary significantly for wide ranges of SNR 

and in the cases at high SNR, e.g. for the case when the SNR equals to or greater than NO, 

the decision boundary becomes a set of linear-partitions joined at each end. Such decision 

boundaries are also called the asymptotic decision boundaries as these boundaries are realised 

when SNR tends to oo . 

3 

2 

0 
I 

Gj / SNR=8dB 

-1 

® / 
SNR= 12dB 

-2 N SNR=2OdB 

-3 
-3 -2 -1 0 

r(k) 

Figure 4.4: Bayesian decision boundaries for channel H(z) = 0.5 + 1.0z' with delay d = 0 at 

SNR = 8dB, 12dB and 20dB 

The channel state locations and SNR operating conditions do not uniquely define the decision 

boundary. Given a set of channel states and a fixed SNR value, the decision boundary can also 

be changed by using different delay orders. As an example, we illustrate the Bayesian decision 

boundaries for the channel H(z) (Eq. 4.23) using delay order d = 0, 1 and 2, feedforward order 

rn = 2, and SNR = 30dB. The set of channel states for this problem is listed in Table 4.1 and 

the corresponding Bayesian decision boundaries for the various delay orders are illustrated in 

Fig. 4.5. 
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Note that the channel state positions remain unchanged for different delay orders. It is the 

changes in the delay order parameter value that modify the shape of the decision boundaries. It 

is observed that all three decision boundaries are nonlinear, and in the case of using delay order 

d = 0, the set of channel states C and C become not linearly separable and hence cannot 

be partitioned correctly using linear boundaries. In the cases of using delay order d = 1 and 2, 

the figure shows that the decision boundaries are less nonlinear and that it is possible to employ 

linear boundaries to partition the channel states into the two classes correctly. In addition, our 

studies (Sec. 4.3.2) reveal that the probability of misclassifications performance of the equaliser 

is significantly affected by the delay order parameter. In general, delay orders resulting in the 

channel states C and C being linearly separable have better classification performance 

than those that result in these two sets of channel states being non-linearly separable. 

3 Delay order = 1 
• Delay order = 2 

2 

Channel state \ ® 

0 

-------------- 

-1 

-2 

-3 

Delay order =0 \ 
-3 -2 0 1 2 3 

r (k) 

Figure 4.5: Bayesian decision boundaries for channel H(z) = 0.5+ 1.Oz' with delay d = 0,1 

and 2 at SNR = 30dB. 

4.3 Probability of misclassification 

This section presents the analysis of probability of misclassification by the Bayesian equaliser. 

Due to noise, the received sequence r = r(k) may be perturbed into regions defined for a different 

classification, e.g. given c3  E the misclassification region for the Bayesian equaliser is 

Z, and given c fi the misclassification region is Z. The regions Z and Z are 
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defined by the following equations. 

= {r I fb(r) > 01, (4.24) 

= {r I fb(r) < 0). (4.25) 

To evaluate the probability of misclassification, we first evaluate the probability of misclassific-

ation conditioned on the received sequence for each channel state, i.e.. 

Pb, (cj) 
= JrCz 

forc (4.26) 

Pb(Ck) 
= IrEz(+) 

 p(rcr, for ck E (4.27) 

The above equations state that the probability of misclassification of a channel state is equal 

to the integral of the pdf p(rc) over the misclassification region. 

The total probability of misclassification Pb by the Bayesian equaliser is therefore the mean of 

the probability of misclassification for all channel states, i.e., 

J'rEZ
1

Pb = 
() NsJrz 

(4.28) 

C,EC CkEC 

where the constant 1/Ne  is the a priori probability of channel state being c3  or ck. Because the 

channel states constellation is symmetric, the probability of misclassification can be reduced to, 

if 
Pb=2  L  NsJrEZ 

(4.29) 

C,EC 

4.3.1 Estimating the probability of misclassification 

The evaluation of probability of misclassification using Eq. 4.29 involves evaluating rn-dimensional 

integrals over the error region As a closed-form solution for the expression does not exist, 

one must resort to numerical methods. This option, however, is un-attractive for large in. If our 

requirement of finding classification performance is only one of comparing relative performance 

for equalisers using different delay orders, a simple approximation may be used to estimate this 

measure. 

The probability of misclassifications Pb (Eq. 4.29) can be re-written as 

Pb = 
2
- P(C). 

c,eC 

(4.30) 
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The problem therefore is to calculate P(c). To simplify, if the channel state cj  is wrongly 

classified, we assigned Pb(c) = 1.0. For the case when the channel state is correctly classified, 

it can be shown that when SNR — oo, P(c) is reduced to the minimum distance bound [106] 

i.e., 

cc 

Pb(c) = Q(KjI/) = f(2)_1 / 2exp(_x2 /(2))dx  
K, I 

(4.31) 

where I(j  I is the absolute minimum Euclidean distance of c3  to the decision boundary. Tc 

reiterate, Pb(cJ)  is the probability of misclassification conditional on channel state being c2  

and can be evaluated approximately using the following equations, 

Pb(c)= 
1,

{ Q (I (j I/°e), 

if c2  is wrongly classified, 

if c, is correctly classified. 
(4.32) 

Therefore to evaluate Pb(c), we only need to find the minimum distances of the channel states 

to the decision boundary. This can be performed using the following algorithm. 

Algorithm 4.1 : Evaluating the minimum distance 

For c3  E 

Ck(neares) miflck{IICj - CkII}, Ck E  Cd 

We assume that the closest decision boundary point to c3  lies between c3  and Ck(nearest). 

To find the location of the boundary point, evenly spaced points along the vector from c 

to Ck(nearest)  are evaluated for the occurrence of a sign change in the decision function 

fb(.). A sign change indicates the change in the classification region. We denote the 

boundary point thus found using r, therefore, 

cj(appr) = Ik - rI 

next c 

The algorithm is based on the assumption that the closest boundary point to a channel state 

C3  E C is between c3  and the nearest channel state ck E This is however only true 

for c3  E U and in high SNR cases. The set U is defined as the set of centres nearest to the 

boundary points, i.e. 

{U}—rnin{IIro —c3 II}, 1<j<N,, (4.33) 

where r0  is the set of all boundary points. In the cases when c3  U, the algorithm will produce 

an over-estimate of the minimum distance (j(appr). The following paragraph illustrates with a 

geometric example how an over-estimate of may occur. 
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As an example, we examine the approximation of ( for the channel H(z) = 0.5 + 1.0z' 

using delay order d = 1 and in = 2; the channel state locations and decision boundary are 

illustrated in Fig. 4.5. In this case, the set of centres nearest to the decision boundary are 

U = {c3,c4 ,c5,cs}, and the set of centres not in U, i.e. U= {ci ,c2 ,c7,cs}. Fig. 4.6 illustrates 

why the algorithm will produce an over-estimate of (i  as c1  is not a member of U. The nearest 

channel state to c1  from the set is c3. The boundary point r between c1  and c3  is found 

by examining intervals along the vector c1  to C3. As the evaluated points along the intervals 

are not normal to the decision boundary, the estimated (1(appr) would therefore be greater than 

the actual (1(act) 

In the case of estimating( for centres belonging to U, e.g. the boundary point is found by 

inspecting intervals along the normal to the boundary'. Therefore, the estimated (6(appr) = 

6( act) 

(+) Region  

proximated min distance 

1 i (appr)  7 

'I 

2 

-3 -2 0 1 2 3 
r(k) 

Figure 4.6: Minimum distance of channel states c1  to decision boundary. 

The over-estimation of ( however does not seriously affect the evaluated probability of misclas-

sification. To show why this is so, let us examine the expression of Pb (Eq. 4.30) when it is 

decomposed into two parts, 

4 1t will be shown in Sec. 4.4,1 that the sets of centres belonging to U defines the decision boundary and that 

the decision boundary is formed by hyperplanes partitioning at the normal of closest pairs of centres of different 

classes at high SNR. 
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Pb = 

(CEU 
P(c1) + P C(cd) 

cU 

(4.34) 

where one part of the above expression accounts for the probability of misclassification for the 

set of channel states belonging to U and the other part of the expression accounts for the 

probability of misclassification for the set of channel states not belonging to U. As a direct 

result of Eq. 4.33, the distances to the decision boundary for channel states ck not belonging 

to U are greater than those from the channel states cj belonging to U. As the probability of 

misclassification for each channel state is a function of these distances ((Eq. 4.31), it is obvious 

that the channel states which are further away from the boundary have a significantly smaller 

misclassification probability than those that are nearer to the boundary at high SNR. Hence, 

at sufficiently high SNR, the over-estimate of minimum distances for ck U will not seriously 

affect the estimate of Pb. These is confirmed by simulation results in the following section. 

4.3.2 BER estimate: Some simulation results 

The measure of an equaliser's performance in communication literature is usually expressed in 

terms of the bit error rate (BER) and is evaluated using the following equation. 

BER = log10 Pb. (4.35) 

Simulations were conducted to compare the BER results calculated using Eqs. 4.30 and 4.31 

with those obtained by Monte Carlo (MC) simulations for the following channels, 

H1(z) = 0.8745+0.4372z' —0.2098z 2, (4.36) 

H2(z) = 0.2620 - 0.6647z1 - 0.6995z 2. (4.37) 

These two channels exhibit the same magnitude but different phase response. For the experi-

ment, the equaliser's feedforward order rn was chosen to be 4 with the transmit symbol alphabet 

{±1}. Fig. 4.7 compares the BER estimates of Eqs. 4.30 and 4.31 with those of MC simulations 

for the two channels using different delay orders. The results show that the proposed BER es-

timates are very close to the MC simulations, and that the application of different delay order 

parameter values will result in very different lower limits of BER performance for a given SNR 

condition. To illustrate this strong dependence of the equaliser's performance with respect to 

the delay order, the performance of the equaliser using the delay parameter as the horizontal 

axis is illustrated in Figs. 4.8 for the SNR condition of 12dB, 14dB and 16dB. The results show 

that given the same operating SNR conditions, the difference in BER performance can be very 

significant. For example, the BER performance of the Bayesian equalisers on channel HI(z) 

(Fig. 4.8a) using delay order d = 3 is —4.1 and the BER performance using d = 5 is just -0.97. 
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Figure 4.7: Estimated and MC simulations of BER vs SNR for (a) channel 111(z), (b) channel 

H2(z). 

(a) Equaliser delay order (b) Equaliser delay order 

Figure 4.8: Estimated and MC simulations of BER vs delay order at SNR 12dB, 14dB and 

16dB for (a) channel H1(z), (b) channel H2(:). 

4.4 RBF equaliser implementation complexity 

This section discusses the implementation complexity of the RBF equaliser. In Sec. 4.2.3, it was 

shown that the RBF network can realise the Bayesian equaliser. The computational requirement 

of implementing the full Bayesian solution using the RBF equaliser is however considerable. 

This is because the implementation complexity of the RBF equaliser grows proportionally to 

the number of channel states N3 , and N3  grows exponentially with the number of feedforward 

terms m and channel length na - 1, i.e. N3 = 21+n-1• The following list the numbers of 
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exp(.) function evaluations, additions and multiplications required to make a decision [181: 

Number of exp(.) = N5  

Number of additions = (N5  x in) + N5  

Number of multiplications = N5  x m (4.38) 

In the case when in or n0  is large, the full implementation using all the N3  channel states 

as centres may be impractical. One method of reducing the implementation complexity is to 

reduce the number of channel states required to implement the decision function using decision 

feedback [18]. This method will be discussed in detail in Section 4.0. me otner more airec 

method of reducing the number of channel states is to perform selection from the N5  channel 

states and to pick a subset of these states to approximate the optimum decision boundary [19]. 

The implementation complexity is reduced by not including those channel states which do 

not contribute to the position' of the decision boundary. The following section presents an 

algorithm to perform channel state selection to generate the subset RBF equaliser. 

4.4.1 Selecting subset RBF model 

This section examines subset model selection algorithms to reduce the implementation com-

plexity of the RBF equaliser. The objective is to find a smaller-sized, in terms of number of 

centres, RBF model to realise or to approximate the same Bayesian decision function as the 

full model. 

Before examining the subset model selection algorithm, we have to first understand how centre 

(i.e., channel state) locations affect decision boundaries. To do so, we analyse the Bayesian 

decision function fb(.)  (Eq. 4.20) for o - 0. Although the boundary thus determined is only 

exact in infinite SNR, experimental results [107] and our example in Sec. 4.2.5 have shown that 

the true decision boundary closely approximates the asymptotic decision boundary in high SNR 

condition. Following the work performed in [107], we state the proposition which establishes 

the asymptotic decision boundaries. 

Proposition 4.1 The following conditions are sufficient for a point ro to lie on the asymptotic 

decision boundary. 

liro - cII2 < Jiro - cII2, where c and c = {c E C fl c c}. 

J i ro - c112  < J iro  - ckhl2 , where c E and ck = {c E C fl c c- 

(111). J iro - c1I2 = Jiro  - c 112, 

where the channel states c+ E C 4  and c E are a pair of channel states closest in 
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Euclidean distance to r0 . To prove the above proposition let us consider the Bayesian decision 

function fb(.) (Eq. 4.20) for the input vector r = r0 . This implies fb(ro) = 0 and Eq. 4.20 

becomes 

exp(—jro - cjII2/(2o)) - exp(—ro - Ck112 /(20)) 0, (4.39) 

CkEC 

and therefore, 

exp(—ro - cjII2 /(2o)) = exp(—ro - ck Il 2 /(2O)). (4.40) 

CkEC 

Dividing both sides of the Eq. 4.40 by the summand corresponding to c, i.e. exp(—jjro - 

C 2 /(2o)), and assuming that condition (3) of the proposition is true, we have 

1 + exp(—Ijro - cjII2 /(2o)) = 
C, C )fl( C, ) 

1+ exp(—IIro—ckII2 /(20)). (4.41) 

(CkEC 1)fl(CkC) 

As o2 tends to 0, the summation term on the left hand side of Eq. 4.41 will vanish if condition 

(i) of the proposition is satisfied, to show that the dominating energy from the channel states 

in C is from c. Similarly, the summation term on the right hand side of Eq. 4.41 will 

vanish, if conditions (ii and iii) of the proposition are satisfied, to show that the dominating 

energy is contributed by C. It is therefore obvious that the decision boundary in the regions 

between {c+,  c } is formed by a hyperplane bisecting the space between the two channel states. 

For example, Fig. 4.9 shows that the decision boundary partitioning the pair of channel states 

{C3, c5}, which belongs to U, is a line passing perpendicularly between the space of the two 

channel states at the mid-point. 

Following the above argument, it is obvious that the asymptotic decision boundary is defined 

by the set of all channel states nearest to the decision boundary [107]. We denote the set of 

channel states that satisfy this condition as U+ and U-, i.e., 

{U} - min{IIro  - cjll2 }, cj  E Cdt , (4.42) 
C, 

{L1} - min{Ilro - 0k112 }, Ck E C,;, (4.43) 
C A,  

and the union of U+ and U as U. The channel states that are members of the set U must 

satisfy the following two conditions, 

(i). The mid point rk  between the two states c E C and ck E C,; would be a boundary 

point. To test if is a boundary point, the Bayesian decision function at that point is 
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Figure 4.9: Channel H(z) = 0.5 + 1.0z 1  using d = 1 and in = 2. The mid point rk  between 

channel states of different transmit class. 

evaluated, i.e. fb(rJ,k) , 
to test if the value is 0. 

(ii). In addition, the channel states c3  and ck must be the closest in the Euclidean norm sense 

to the mid point rJk . 

Fig. 4.9 illustrates three different types of mid points, namely r, r 7, and r, 7. It is shown 

that the mid point for the pair of channel states {c5 , c31 satisfies the above two conditions and 

these two channel states are therefore members of the set U. In the case of the mid point for 

the pair of channel states {c2 , C71, although condition (i) is satisfied, i.e. the mid point r 7  

falls into the boundary, condition (ii) is not satisfied as {c6 , c3} are nearer to r 7. Therefore 

these two channel states are not accepted as members of the set U. And for the case of the mid 

point for the pair of channel states {c5, CT), the mid point r 7  does not fall into the decision 

boundary and these two channel states therefore do not qualify as members of U. 

5 1n practical cases, we evaluate fb(rk  + q) and - q) to see if there is a sign change in the evaluated 

values. The vector q is a scaled vector having a very small Euclidean norm with a direction along the two 

channel states. 
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The following algorithm summarises the steps to find U, 

Algorithm 4.2 : Finding {U} 

For ej E 

For ck E C 

{ r = c + 

r fb(rk) 0 and 1 (4.44) if I I 

L
i -min CEC+){IIr,k_CiII} j 

c - {U},ck -+ {U} 

} 

next Ck, 

next c2 . 

Algorithm 4.2 was tested to find the the set U to form the subset RBF equalisers with feedfor-

ward order in = 2 for channel 6  H(z) = 0.5 + 1.0z'. When delay order d = 0 was used, all 

the centres {c1 , . . . , c8) were picked to form the subset model (Fig. 4.5). This is because all the 

centres were required to define the decision boundary. For the case of using delay order d = 1, 

the algorithm picked the subset centres {c3,c4,cs ,cs} to form the subset model. Fig. 4. 10a 

compares the subset equaliser's decision boundary to the Bayesian solution. The results show 

that the approximated boundary is very similar to the actual optimum decision boundary, and 

the regions of the decision boundary which are different are very 'far' away from the channel 

state locations. This implies that the classification performance of the subset equaliser will be 

very similar to the full Bayesian solution. 

Although the above example shows that Algorithm 4.2 can pick a good solution for the subset 

equaliser, the algorithm is not optimum in the sense that redundant channel states may also be 

included in the selection. To illustrate this, consider the selected subset model when delay order 

2 is used. By visual inspection of Fig. 4.5 and Fig. 4.10b, it is clear that the subset model with 

channel states {c3, C4, c5, c61 is sufficient to approximate the Bayesian boundary. Algorithm 

4.2, however, picked all the centres to form the subset model. The reason for including {cl ,c2} 

and {C7, cs} is that these two pairs of channel states also satisfy Eq. 4.44 and thus were accepted 

into the set of selected centres. They are, however, unnecessary because the decision boundary 

formed using centres {c3, c41 and {c5, cs} defines the same decision boundary. 

To minimise the inclusion of redundant centres, an additional condition is introduced in Al-

gorithm 4.2 to verify whether the new channel states under consideration would affect the 

decision boundary realised by the currently selected subset RBF equaliser. The function f3(.) 

6The list of channel states for this problem can be found in Sec. 4.2.4 
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Figure 4.10: Realisation of decision boundary using subset RBF model. (a) : decision boundary 

for delay d = 1, (b) : decision boundary for delay d = 2 

denotes the selected subset equaliser's decision function and is formed by applying the current 

selected channel states in U. If the decision boundary changes with the inclusion of the new 

centres, they will be accepted, otherwise they will be ignored. The algorithm for the improved 

version is as follows: 

Algorithm 4.3 : Finding {U} 

•  
rk=cj+( 

Ck 
2 
-C 

 

fb(r;k) = 0 and 

if c3  = arg mine EC(+){IIr,k - c1112} and 

15(r,k) 0 0 

-. {U+},ck -i  {U} 

= subset RBF model formed using current U+, U as centres. 

(4.45) 

Although algorithm 4.3 can reduce the number of redundant states in the selection process, not 

all the redundant states are removed. This can be observed when the algorithm is applied to 

select U for the previous problem (Fig. 4.5) using d = 2. The selection process examined the 

channel states in C 4  in ascending order, i.e. from C1,C3, c5 to When the channel state 

c1  was considered in the selection process, the algorithm accepted the pair of channel states 

{Cl ,  C21 into the set U since the selection criteria Eq. 4.45 were satisfied. The selection process 

73 



Chapter 4 : Digital communication channel equalisation using nonlinear techniques 

continued with the second channel state belonging to i.e. C3. These two pairs of channel 

states, i.e. {c3, c41 and f C3, c61 were accepted as the selection criteria were also met. In this 

case, the two pairs of channel states were included because c3  had two hyperplane decision 

boundaries surrounding it. For the case of channel state c5, the pair of channel states {c5, c61 

was rejected as the current selected set U already contained {ci , c21 which defined the same 

boundary. Similarly, for C7, the algorithm also rejected the pair {c7, cs} as redundant since 

the selected set U already contained {c3, c41 which defined the same boundary. Therefore, 

the selected subset U for this example is U = {ci , C2, C3, c4, c6}. In this case, the selection 

algorithm did not find the optimum solution as the same decision boundary could have been 

generated by using a smaller set of channel states, namely {c3, c41  c5, c61. 

4.4.2 Subset model selection: some simulation results 

Simulations were conducted using Algorithm 4.3 to select subset RBF equalisers from the full 

model applied to channels H1(z) and H2(z) (Eqs. 4.36 and 4.37). The feedforward order used 

was m = 4, resulting in a full model with 64 centres. Using the SNR condition of 16dB, 

simulations were conducted to evaluate the performance of the subset RBF, full RBF and the 

linear MMSE ' equalisers operating on the two channels. The results are listed in Table 4.2 

and 4.3; the first column of each table indicates the delay order parameter, the second column 

shows the size of the subset model used while the third, fourth and fifth columns list the BER 

performance of the respective equalisers and the last column indicates whether the two subsets 

channel states C 4  and C 1  are linearly or not linearly separable. 

Our results indicate that the full RBF model's BER performance for the cases when the equal-

isation problem is linearly separable is normally better than the cases when the problem is not 

linearly separable. This is not surprising since decision boundaries which are not linearly sep-

arable tend to be much more complicated and have more channel states with different decision 

outputs near to each other. The results also indicate that a smaller-sized RBF subset equaliser 

with classification performance very similar to the full solution can usually be found for the 

case when the equalisation problem is linearly separable. 

'The linear MMSE equaliser is discussed in Chapter 5. It is the linear equaliser with weights found by 

minimising the MSE. 
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Delay Subset 
Size 

Subset 
BER 

Full-model 
BER 

Linear-Ei 
BER 

Decision 
Boundary 

- 

0 56 -4.09 -4.09 -3.44 Linear Sep. 

1 57 -4.14 -4.14 -3.07 Linear Sep. 

2 32 -4.11 -4.12 -2.36 Linear Sep. 

3 32 ..4.11 -4.12 -1.84 Linear Sep. 

4 48 -1.91 -1.91 -0.59 Not-Linear Sep. 

5 64 -0.97 -0.97 -0.37 Not-Linear Sep. 

Table 4.2: Channel H 1(z) : Performance of full-model (64 centres), subset RBF model and 

linear MMSE equaliser at SNR = 16dB. 

Delay Subset 
Size 

Subset 
BER 

Full-model 
BER 

Linear-Eq 
BER 

Decision 
Boundary 

0 56 -0.80 -1.30 -0.37 Not-Linear Sep. 

1 46 -2.99 -2.99 -1.61 Linear Sep. 

2 38 -3.38 -3.38 -2.67 Linear Sep. 

3 56 -3.43 -3.43 -1.94 Linear Sep. 

4 55 -3.32 -3.32 -1.16 Not-Linear Sep. 

I 5 54 -3.41 -3.41 -0.80 Not-Linear Sep. 

Table 4.3: Channel H2(z) :Performance of full-model (64 centres), subset RBF model and linear 

MMSE equaliser at SNR = 16dB. 

4.5 Bayesian Decision Feedback Equaliser 

This section deals with the Bayesian decision feedback equaliser (DFE) [17, 181. The Bayesian 

DFE is very similar to the Bayesian equaliser without feedback as described in the previous 

section. The difference lies in the additional application of past detected symbols to the de-

cision function. The reasons for introducing decision feedback are to reduce implementation 

complexity and to improve classification performance. There is however one disadvantage when 

applying decision feedback, namely, it can introduce error propagation [3,71]. Error propaga-

tion occurs when the equaliser makes wrong decisions and passes these wrong decisions to the 

feedback vector. Because of the wrong information being introduced to the equaliser, more 

error decisions may occur as a direct result. This event is known as error propagation or error 

burst [108-111]. Error propagation, however, is not catastrophic and the equaliser normally 

recovers with only a small performance loss. In almost all cases, the equaliser's performance is 
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improved by the introduction of feedback. 

In the following sections, the operations of the DFE is discussed, and the formulation of the 

Bayesian DFE is examined. In addition, a method of transforming the DFE problem into a 

feedforward structure is considered. 

4.5.1 Structure of the Bayesian DFE 

The generic structure of a DFE is illustrated in Fig. 4.11. There are two input vectors to the 

equaliser. The first input vector is the observation vector r(k), i.e., 

r(k)=[r(k) ... r(k _ rn +l)]TERm, (4.46) 

and this vector is the same as the input vector to the Bayesian equaliser without feedback 

discussed in the previous sections. The second input vector to the DFE is a vector of past 

detected symbols, i.e., 

S6(k)=[S(k_d1) ..(-d--i)] ER. (4.47) 

z - z 

r(k) I r(k- 1) r(k-m+ 1) 

f(r(k), tk)) 

Equaliser's decision function 

(k-d-n) (k-d-1) 

z 

Figure 4.11: Schematic of a generic decision feedback equaliser. 

The function of the Bayesian DFE is to use these two vectors to estimate the transmitted 

symbol s(k - d), where the variables d, in and n are the decision delay order, feedforward order 

and feedback order parameters respectively. The feedforward order parameter is usually set 

to [17,18] 
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m—d+1, (4.48) 

and the feedback order set to [17,71, 1121 

fl - 1. (4.49) 

The remaining parameter d is usually set to 

d=n0 -1. (4.50) 

Note that the use of feedforward parameter in = d + 1 is optimum and the use of larger 

feedforward order in > d + 1 will not improve the performance of the equaliser [18]. 

4.5.2 Formulating the Bayesian DFE decision function 

As in the feedforward Bayesian equaliser's case, the Bayesian DFE's decision function is to model 

the a posteriori probabilities P(s(k - d) = slr(k)) in terms of the conditional probabilities 

p(r(k)Is(k - d) = s) (Eq. 4.15) where s E {±1}. In the Bayesian equaliser's case without 

feedback, all the N, channel states in Cd = U are used to implement the decision 

function fb(r(k)) (Sec. 4.2). If the knowledge of past detected symbols is applied, only a 

subset of the channel states from Cd is required to implement the conditional Bayesian decision 

function fb(r(k), Wk)). 

As discussed in Sec. 4.2.1, the set of channel states in Cd can be evaluated using 

Cd = {i(k)} = {F[s(k)]}, 1 <j < N,. (4.51) 

For the DFE's case, the transmit sequence s(k) can be decomposed into two vectors 

s(k) = [s(k),sT (k)]T , (4.52) 

where 

sa(k) = [s0(k) ... Sa(k_d)1TER l , (4.53) 

sb(k) = [sb(k — d — 1) sb (k—d—n)]T  E R. (4.54) 
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There are Na = 2d+1 = 2m combinations of Sa(k) and Nb = 2 combinations of sb(k),  i.e. 

saj = [sa,j(k) ... s0,(k - d)IT E Rd+l, 1 <j < Na = 2d+1 (4.55) 

Sb! = [sb,(k - d - 1) .•. Sb.!(k - d - E R'. 1 < I < Nb = 2T2 .  (4.56) 

Under the assumption that the given feedback sb(k) = 5b,! is correct, the set of possible channel 

states Cd1 that can occur is determined by the combinations of Sa (k), i.e.. 

Cd,! = {F[s, s'1]T}, 1 < j < Na. (4.57) 

The set of all channel states Cd is the union of these subsets Cd,!,  i.e. 

Cd= C,,, (4.58) 
1<!<Nb 

and 

Cd,! n Cd,k = qj if I :A k. (4.59) 

The conditional Bayesian decision function fb(r(k), b(k)) for sb(k) = Sb,, is obtained by apply-

ing the set of channel states in Cd,!  to model the conditional probabilities p(r(k)Is(k - d) = s), 

i.e. 

p(r(k)Is(k - d) = +1 fl sb(k) = Sb,!) = 
1 
E  p(r(k)Icj), (4.60) 

c,ec 

p(r(k)Is(k - d) = —11lSb(k) = Sb,!) = p(r(k)Ick), (4.61) 

where the set and are 

CW = {r(k)Isb (k) = Sb,l fl s(k - d) = +1)}, (4.62) 

{r(k)Isb(k) = Sb,j fl s(k - d) = —1)}. (4.63) 

Therefore the conditional Bayesian decision function is 

fb(r(k),sb(k) = Sb!) = p(r(k)Is(k - d) = +1 fl sb(k) = Sb!) 

—p(r(k)Is(k - d) = —1 fl Sb(k) = Sb!) 

1 1 
= p(r(k)Ici ) - > p(r(k)Ick ). (4.64) 

C,EC' CkEC >  
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With the introduction of feedback, only N3 = 2' channel states are required in the conditional 

decision function fb(r(k)ib(k)). In the case when there is no feedback, all the N3 = 2'' states 

would be required in the original decision function fb(r). As a result of feedback, implementation 

complexity is reduced. In addition, the reduced number of possible channel state occurrences 

also normally results in less nonlinear conditional Bayesian decision boundaries, and increased 

minimum distances of channel states of C and CH  to the decision boundaries [18]. Because 

of this increase in minimum distances to the boundary, the misclassification probability of the 

DFE is lower than those without feedback. 

Example: Reduction in implementation complexity 

This section discusses the reduction in implementation complexity of the DFE using the equal-

isation problem on channel H(z) = 0.5 + 1.0z 1  using the following equaliser's parameters, 

delay d = 1, feedforward order m = 2 and feedback order n = 1. Referring to Table 4.1, the 

set of channel states Cd,, = u for sb(k) = s,,, = [+1] is {C1, c3 , C5, C71 and the set of 

channel states Cd,,  for sb(k) = Sb,l = [-1] is {c2 , c4 , c6, c8}.  Fig. 4.12 illustrates the conditional 

Bayesian DFE boundary formed. 

I. 

01 

N 

Condition decicion boundary 
given sb(k) = 1+1] 

-3 -2 -1 0 I 2 3 
r (k) 

Fig (a) 

-2 
Condition decicion boundary\ 
given s(k)[I] 

3 -2 -1 0 1 2 2 
r (Ic) 

Fig (b) 

Figure 4.12: Conditional Bayesian decision boundary and set of channel states Cd,2 , Fig (a) 

fb(r(k)Isb(k) = [1]), Fig (b) fb(r(k)Isb(k) = [-1]). 

In this example, 2m = 4 channel states are required to implement each conditional Bayesian 

function fb(r(k)b(k) = sb,I). Implementation complexity is therefore reduced as compared to 

the full model's decision function fb(r(k)) which uses N3 = = 8 channel states (Fig. 4.5). 
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4.5.3 Channel state translation 

The current Bayesian DFE implementation requires Nb = 2' different conditional Bayesian 

decision functions fo(r(k)Ib(k) = s,:), i.e., one decision function for each possible feedback 

vector sequence 5b,l, 1 < I < 211. This therefore implies that significant implementation com-

plexity is required if the number of possible feedback states Nb = 21 is large. It is, however, 

possible to remove this requirement of having multiple conditional Bayesian decision function 

by introducing a transformation of the input vector r(k) E Rm -k r'(k) E Rm [20]. 

The description of the transformation is as follows: Assuming that the feedback vector b(k) = 

Sbl is correct, the original input vector r(k) is transformed into the new input vector r'(k) by 

the following translation, 

r'(k) = r(k) - vi 
(4.65) 

where 

vi = F[ 0 , sb,i]. 
(4.66) 

The translation performed on r(k) removes the contribution of past detected symbols 9b(k) 

from the input vector, i.e., the new input vector 

r'(k) = r(k)+n(k)—v: 

= F[sa(k) , Sb(k)] + n(k) - F[ 0 , Sb(k)] 

F[sa(k) ,0] + n(k). (4.67) 

We denote the translated noiseless channel states F[s3(k) , 0] as 

= F[s0(k), 0] = ['(k) '(k - d + 1)]T R. (4.68) 

As there are only N0 = 2d+1 combinations of S0 (k), there are only N. channel states I'(k) in 

the set 

C = {'(k)} = {F[50,1, 0]}, 1 < j N0  = 2'. (4.69) 

Therefore after performing the transformation, only one Bayesian decision function with the 
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set of channel states Cd  as centres is needed, 

fb(r(k),sb(k)) = p(r(k)Ic2 ) - .- p(r(k)c), (4.70) 

c,ec CEC 

where the two sets of channel states and denote the channel states in C,' (Eq. 4.69) 

associated with transmitted symbol s(k—d) = +1 and —1 respectively. The translation therefore 

removes the requirement of having multiple conditional decision functions for each feedback 

pattern. 

4.5.4 Recursive implementation to generate r'(k) 

The transformation as described in the previous section has an additional advantage that it can 

be implemented effectively using recursive implementation. We demonstrate how this may be 

achieved using the following DFE equalisation problem. The channel used is a 3-tap channel 

H(z) = a0  + a1 z + a2 z 2  and the equaliser's parameters are d = 2, m = 3, and n = 2. The 

original input vector r(k) is 

r(k) a0  

r(k) = r(k —1) = 0 

r(k —2) 0 

s(k) n(k) 

a1 a2  0 0 s(k —1) n(k —1) 

ao a1  a2 0 s(k - 2) + n(k - 2) 

0 ao a1  a2 s(k —3) n(k —3) 

s(k —4) n(k —4) 

(4.71) 

and the translated vector r'(k) = F[s0(k) , s(k)] - F[ 0 , sb(k)] + n(k) i s 

r'(k) r(k) 

r (k) = r'(k —1) = r(k— 1)—a2s(k-3) (4.72) 

r'(k - 2) r(k - 2) - ais(k - 3) - a2s(k - 4) 

Assuming that the past detected symbols are detected correctly, i.e. b(k) = Sb(k), the trans-

formation can be implemented recursively as illustrated in Fig. 4.13. 

In the general case, it can be shown that the translated elements of vector r'(k) can be found 

recursively using the following expression: 

r'(k—i) = z 'r'(k_i+1)_an _iS(k—d-1), i=m-1l. 
(4.73) 

r'(k) =r(k). J 

EJ! 
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a 1 ' 

(k-2) 

r(k) 
i

a2

;Lzi:

: 

W I  I  T 

DPE' s decision function 
F ---k)  s(k)) 

Figure 4.13: Recursive implementation of DFE forr'(k) with channel H(z) = ao+ulz+a2z 2  

Example 

Let us consider the problem of applying the transformation to the DFE on channel H(z) = 

0.5 + 1.0z using d = 1, m = 2 and n = 1. The matrix F is 

F= 
0.5 1.0 0 (4.74) 
0 0.5 1.0 

and the set of sa(k) is {sa,j}, 1 < j < 2. The values of these vectors are listed below: 

Ii uT _r iT 
Sa,1 - 

- 

LI,  IJ , Sa,2 Ll,il 

1 ii r 
5a,3 - L I 1J

T 
S,,,4  = [

_ 'i 
T
. 

 

The channel states of C = {c'1 , c, c, c} are 

= F[s0,1,0]T = 
[i.5,0.5]T

, = F[Sa,2,OIT = 

C
, 

= F[s03, 0]T 
= [0.5, 0.5]T

, c = F[sa,4, 
0]T 

= [1.5, _0•5]T 

The translation vectors v1  = F[0,sb,,] are 

= F[0 0 - 1]T 
= [0 - 1]T (4.75) 

v2  = F[0 0 + T 
= [0 + 11T (4.76) 

The translation vectors v1 ,v2 , the translated set of channel states C, and the translated 

Bayesian decision boundary are illustrated in Fig. 4.14. 
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Figure 4.14: Translated Bayesian decision boundary and translated channel states using delay 

d = 1 and m = 2 for channel H(z) = 0.5 + 1.0z'. 

4.5.5 Bayesian DFE : some simulation results 

Computer simulations were used to compare the performance of the Bayesian feedforward equal-

iser with that of the Bayesian DFE. The same two channels H 1(z) and H2(z) as discussed in 

Sec. 4.3.2 were used. The feedforward and delay parameters of both the feedforward and DFE 

were set to in = 4 and d = 2. The feedback parameter was set to n = 2 for the DFE. The 

results of both the experiments are illustrated in Figs. 4.15 and 4.16. Both results show that 

the degradation in performance due to error propagation resulted in only a very small loss of 

performance and that the application of decision feedback improves the performance of the 

equaliser. 
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Channel Hl(z) 
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u -2 
Bayesian feedforward Eq. 
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C 

0 
Bayes DFE Eq. 

-4 
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correct feedback 
-ç 

6 
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Figure 4.15: Comparing the performance of the Bayesian feedforward equaliser and Bayesian 

DFE for channel 111(z). 
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actual feedback 

correct feedback 
-5 

Figure 4.16: Comparing the performance of the Bayesian feedforward equaliser and Bayesian 

DFE for channel H2(z). 

4.6 Conclusions 

This chapter studies the symbol-decision equaliser. In particular, we show that the optimum 

symbol-decision equaliser is nonlinear and that it is possible to realise the optimum Bayesian 

decision function using the RBF model. The effects of the delay order parameter on decision 

boundaries and BER performance were highlighted and our results show that the attainable 

BER performance depends strongly on the delay order parameter and can be significantly 
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different for various values of the delay order. To determine the optimum operating delay 

parameter, a simple BER estimator for the Bayesian equaliser was proposed. 

The implementation complexity of the RBF equaliser required to realise the Bayesian solution 

was also discussed. To reduce the implementation complexity, an algorithm was proposed to 

select a subset model from the full RBF equaliser implementation. Our results showed that the 

number of centres, and hence the computation complexity, can be reduced with no significant 

effects on the BER performance of the equaliser. 

Lastly, the Bayesian DFE was examined. We introduced a geometric transformation on the 

input vector to reduce the DFE to an equivalent equaliser without feedback. The geometric 

translation not only provided deeper understanding of the DFE mechanism but also facilitated 

more efficient practical implementation. The results also indicated that significant improvement 

of classification performance may be achieved by introducing feedback. 
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Chapter 5 

Digital communication channel 

equalisation using linear 
techniques 

The previous chapter considered the optimum symbol-decision equaliser, the Bayesian equaliser. 

It was shown that the Bayesian equaliser's decision function is nonlinear, and hence can only be 

realised using nonlinear techniques. Although nonlinear equalisers provide better performance 

than linear equalisers, they are not as widely used due to their significantly more demanding 

implementation complexity. Linear equalisation techniques, which have much simpler imple-

mentation requirement, are very popular despite having poorer performance. 

This chapter is concerned with the application of linear techniques to channel equalisation. We 

first consider the most common type of linear equaliser, the minimum MSE (MMSE) linear 

equaliser. Although the MMSE linear equaliser is very popular, the classification performance 

of such an equaliser is sub-optimum in two ways; firstly, the approximation of nonlinear decision 

boundaries using linear methods will yield poor results, and secondly, the MMSE cost function 

is not the optimum criterion to be applied for finding the weights of the linear equaliser. In this 

chapter, we will demonstrate these two short-comings and examine an optimimsation criterion 

based on minimising the BER to improve the linear equaliser's performance. Also in this chapter 

we will consider the application of this minimum BER (MBER) criterion to a linear-combiner 

DFE. 

The following results are reported in this chapter: 

(i). Optimisation techniques to minimise the BER of the linear feedforward equaliser are 

introduced 1 

'Submitted to - S.CHEN, E.S.CHNG, B.MULGREW and G.GIBSON, 'On decision feedback equaliser', IEEE 

Trans. Communication 
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(ii). Optimising the feedforward weights of the DFE using the MBER criterion 
2 

The outline of the chapter is as follows: The MMSE linear equaliser is introduced in Sec 5.1. Sec 

5.2 considers the difference in functional mapping capability between the linear and nonlinear 

equaliser and examines the effects of delay order on the decision boundaries. Sec 5.3 studies 

the probability of misclassification of the linear equaliser and introduces a method to evaluate 

the BER. Sec 5.4 proposes a method for optimising the equaliser's performance for MBER. Sec 

5.5 examines the transformation introduced in Chapter 4 to convert the linear-combiner DFE 

to a feedforward equaliser structure and considers the optimisation of the DFE's performance 

based on the MBER criterion. Sec 5.6 concludes the chapter. 

5.1 The MMSE Linear equaliser 

This section introduces the MMSE linear equaliser. The aim of channel equalisation using 

linear techniques is the same as channel equalisation using nonlinear techniques, that is, to 

re-construct the transmitted symbol given a vector of received signal which has been corrupted 

by additive noise and ISI effects [1,3,71,72]. The difference between the linear and nonlinear 

techniques is in the implementation of the equaliser's decision function, i.e., no nonlinearity is 

present in the linear equaliser's decision function. 

As in Chapter 4, the received signal r(k) for the linear equaliser at time k is 

r(k) = r(k) + n(k) (5.1) 

where (k) is the noise-free received signal, and n(k) is the additive white Gaussian noise with 

zero mean and variance o 2  [3,17]. The noise-free received signal r(k) is 

71 

(k) = s(k - i)a(i) (5.2) 

where a(i) are the channel impulse response, n0  the channel impulse length, and s(k) the i.i.d 

transmitted signal from a 2-ary PAM source with symbol constellation {±1}. The equaliser 

uses a vector r(k) of consecutive received samples, i.e., 

r(k) = r(k)+n(k) 

= [(k) (k — m+ l)]T+[n(k) n(k— m+  Ij 

= [r(k) r(k —m+1)IT (5.3) 

'Submitted to - S.CHEN. E.S.CHNG, B.MULGREW and G GIBSON. On decision feedback equaliser', IEEE 

Trans. Communication 
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to form an estimate ñ(k - d) of s(k - d). The vector r(k) containing the noiseless received signal 

is known as a channel state and the vector n(k) is zero-mean Gaussian i.i.d noise. The integers 

in and d are known as the equaliser's feedforward order and delay order respectively. 

The linear equaliser's decision function f,(r(k)) is [1,3,71,72] 

f,(r(k)) = wTr(k) 

= 
wr(k - i + 1) (5.4) 

where w = [wi  . . . wrn] '  are the weights of the linear equaliser. To determine the transmitted 

symbol s(k - d), a decision slicer is applied to quantise the decision function output value 

f,(r(k)) into one of the possible symbol constellation. In the case of the 2-ary PAM source, the 

decision slicer can be implemented using the sgn(.) function. 

The most common criterion to optimise the linear equaliser is the MMSE criterion [1,3,71,721. 

This criterion is popular because the equaliser thus optimised can usually perform well and the 

implementation requirement is simple [1, 3,71,72]. The MMSE criterion is 

JMMSE = E[(s(k - d) - f,(r(k)))2] (5.5) 

and the MMSE solution of w, also known as the Wiener solution, is 

w = {E[r(k)r(k)T]Y1E[s(k - d)r(k)] (5.6) 

where {E[r(k)r(k)T ]} is the autocorrelation matrix and E[s(k - d)r(k)] is the crosscorrelation 

vector between the input of the equaliser and the desired response s(k - d). If the statistics of 

the channel are known, the optimum Weiner solution can be solved using Eq. 5.6 [1,71,87]. 

Although the MMSE is very popular, it is not the best criterion for optimising the weights of the 

linear equaliser. A better choice would be the MBER criterion. The MBER criterion however 

is not popular as it was thought to be difficult to implement [71]. Our experience, however, 

disagrees with this observation. We have found that MBER optimisation of the linear equaliser 

can be carried out quite easily for cases when the channel is stationary using un-constrained 

gradient descent optimisation techniques [113]. The details of the MBER. optimisation proced-

ure for the linear equaliser is reported in Sec. 5.4 

5.2 Approximating the Bayesian decision boundary using linear boundary 

This section examines the application of the linear boundary to realise the Bayesian boundary. 

As in the case of the Bayesian equaliser (Sec. 5.1), the linear equaliser's decision boundary is 

M. 
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similarly affected by the channel state locations and delay order. A linear equaliser, however, 

may only realise linear boundaries, and hence cannot be applied to equalisation problems which 

have channel states belonging to different transmitted signal that are not linearly separable. 

The sets of channel states belonging to different transmit symbols, i.e. C(+'  and C, as 

defined in Sec. 4.2.1, are given by 

= {1(k)Is(k - d) = +1), (5.7) 

d = {i(k)Is(k—d)=-1}, (5.8) 

and the set of all channel states is 

Cd = CUCd . (5.9) 

In the case when C and are not linearly separable, linear equalisation techniques 

will result in misclassifications even when noise is not affecting the communication system. 

To illustrate some of the problems that arise when applying linear equalisation techniques, we 

compare the realised MMSE linear equaliser's decision boundaries with the Bayesian equaliser's 

decision boundaries for the channel H(z) = 0.5 + 1.0z'. 

Examples of decision boundaries 

The following paragraphs describe the realised decision boundaries for the channel H(z) = 

0.5 + 1.0z' using a linear MMSE equaliser and a Bayesian equaliser with feedforward order 

rn = 2 and delay order d = 0, 1 and 2, operating under SNR condition = 15dB. 

The results depicted in Figs. 5.la,b and 5.2a,b illustrate the realised linear and Bayesian decision 

functions mapping and decision boundaries for delay order d = 1 and 2 respectively. The plots 

clearly highlight the nonlinear nature of the Bayesian function which allows hyper-surfaces to 

be formed in the r(k) E R2  space to generate nonlinear boundaries. This is in contrast to the 

linear decision functions which can only realise hyper-planes and hence only generate linear 

boundaries. It is also observed that the nonlinear nature of the Bayesian function allows the 

Bayesian boundary to be 'bent' for optimum partitioning of channel states belonging to different 

transmit symbols. This is unlike the linear boundary which could not be 'bent' and hence has 

poorer partitioning capability. This implies that the channel states are nearer to the linear 

boundary than the nonlinear optimum boundary. This 'nearness' to the linear boundary has the 

undesirable effect that when noise is present in the communication system, a higher probability 

of misclassification will occur. A formal treatment of the linear equaliser's performance with 

respect to the Bayesian equaliser is given in Sec. 5.3. 

In both examples, using delay d = 1 and 2, the channel states of C and C were linearly 

separable, and hence linear equalisation techniques could be applied. However, in the case 

89 



Chapter 5 : Digital communication channel equalisation using linear techniques 

Bayesian boundary 

/ 
I I 

/ \I 

/c 

Linear boundary 

(a) (b) 

Figure 5.1: Effects of delay order on the decision function of the Bayesian and linear equaliser 

for channel H(z) = 0.5 + 1.0z 1, delay order d = 1, m = 2 and SNR = 15dB: (a) 

Mapping of the Bayesian decision function (vertical axis) for 16 (r(k)) and MMSE 

linear decision function f,(r(k)), (b) The corresponding Bayesian and linear decision 

boundaries. 

when the equalisation problem is not linearly separable, applying linear equalisation techniques 

will result in misclassification for certain channel states even in the absence of additive noise. 

An example of an equalisation problem which is not linearly separable is illustrated in Fig. 5.3 

where the equaliser's delay order is chosen to be d = 0 for channel H(z). From the diagram, 

it is observed that the Bayesian decision boundary was able to partition the channel states 

belonging to different transmit symbols successfully, while the linear partitioning resulted in 

channel states {c3, c6} being misclassified even in the absence of noise. 

From the above examples, the results clearly indicate two major short-comings of linear equal-

isation techniques; firstly, the poorer partitioning capability of the linear equaliser as compared 

to the Bayesian equaliser, and secondly the in-ability of the linear equaliser to operate on non 

linearly separable problems. These are the primary reasons why nonlinear equalisers which do 

not possess these disadvantages have been so actively pursued [17,97, 99, 101 102]. 
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(a) (b) 

Figure 5.2: Effects of delay order on the decision function of the Bayesian and linear equaliser 

for channel H(z) = 0.5 + 1.0z 1 , delay order d = 2, m = 2 and SNR = 15dB: 

(a) Mapping of the Bayesian decision function (vertical axis) fb(r(k)) and MMSE 
linear decision function f,(r(k)), (b) The corresponding Bayesian and linear decision 

boundary. 
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Figure 5.3: Effects of delay order on the decision function of the Bayesian and linear equaliser 

for channel H(z) = 0.5 + 1.0z 1, delay order d = 0, iii = 2 and SNR = 15dB: The 

Bayesian and linear decision boundaries. 
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5.3 Probability of misclassification 

This section presents the analysis of probability of misclassification by the linear equaliser. 

Following the analysis presented in Sec. 4.3 for the Bayesian equaliser's case, the received vector 

r(k) to the equaliser is a noise-perturbed version of the channel state 1(k). Due to noise, the 

received tRequence r = r(k) may be perturbed into regions defined for a different classification. 

Given c3  E c+), the misclassification region for a linear boundary is and given c3  E C, 

the misclassification region is The regions and Z are defined by the following 

equations and illustrated in Fig. 5.4a, 

= {r I fl(r) > 01, (5.10) 

= {r I fl(r) < 0}. (5.11) 

Following the same analysis as in Sec. 4.3, the total probability of misclassification P, by the 

linear equaliser is therefore, 

>i .±_J p(rlcj)dr+ 
Nsfr€z1  N3 rEZ 

CkEC 

(5.12) 

To highlight the difference in performance between the linear and the Bayesian equaliser, we 

introduce the following equation to express the linear equaliser's misclassification probability 

with respect to the Bayesian equaliser's misclassification probability 3 Pb, 

(5.13) 

where Pw  is the difference in probability of misclassification between the linear and Bayesian 

equaliser. The difference in probability of misclassification exists because the regions of integ-

ration for P, and Pb are different. We denote these difference regions using the notations 

and w, and they are defined by the following equations and illustrated in Fig. 5.4b, 

Wd = (5.14) 

= {r I fb(r) <0 and fl(r) > 01 

= {r I fb(r) > 0 and fl(r) < 01 (5.15) 

3The Bayesian equaliser's probability of misclassification Pb (Eq. 4.28) is, 

Pb 
= 

j;; p(rlc3)dr + 
- 

c p(rjck)dr. 

C,ECa
+,  JrEZ, Cj,EC ) b 
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Figure 5.4: Bayesian and linear classification regions. Channel H(z) = 0.5 + 1.0z 1 , rn = 2, 

d = 1: (a) RBF and linear boundaries . (b) Misclassification region due to linear 
approximation of Bayesian solution 

To derive P, let us first consider the case of evaluating Pw for channel states c E Cd 

Pw(c E C) = IrE W+ 
p(rIc)dr 

- 

- frew 
p(rlc)dr (5.16) 

C,EC 

where the first term on the right hand side of the equation is to perform integration in the 

additional area included by the linear decision boundary and the second term is to remove the 

integration for the region not defined in the linear boundary but was included in the region 

specified for the Bayesian boundary. 

Similarly, the following equation specifies the difference in probability of misclassification in the 

region Wd for ck E 

1 1 
PW(ck e C) = N3 JrEW 

p(rlck)dr - I 
EW' 

p(rlck )dr. (5.17) 

CkEC ECII- 
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Therefore, the total Pw is, 

= Pw (c3  E C) + Pw (c3  E C) 
1  JrEW(_) 

p(rlc,)dr — 
N3 = N3 

CEC C,,ECd  

IrE W(+)  J p(rlck)dr— 
1
N$ 

(5.18) 

CkEC 
- rEw 

C5EC 

Substituting the Bayesian decision function fb(r) into Eq. 5.18, we get 

Pw 
= Ir E W(+) 

fb(r)dr 
- Jr E W(_) 

fb(r)dr. (5.19) 

By the definition of and WH (Eq. 5.15), the Bayesian function 16(r) is positive over the 

region w and negative over the region W. Therefore, Eq. 5.19 can be written as 

PW = IrEW (+)
f6(r)dr+ 

 JrEW—) 
fb(r)Idr. (5.20) 

Since the function If6(r)I is non-negative, the above equation shows that if the region or 

w 4  is not empty, the linear equaliser will have a degradation in performance Pw with respect 

to the Bayesian solution. 

5.3.1 Evaluating the probability of misclassification 

The previous section considered the evaluation of P1  in terms of rn-dimensional surface integrals. 

As numerical integration is undesirable, a much simpler method of evaluating P1  is introduced 

in the section. We first re-write Eq. 5,12 as 

P1  = Pj (c,) + 
- 

P(C). (5.21) 

CJ EC CkEC 

The problem therefore lies in evaluating P,(c). To simplify we shall assign Pi(c) = 1 if the 

channel state c is wrongly classified. If the channel state is correctly classified, the following 

expression should be evaluated, 

4 The Bayesian decision function (Eq. 4.19) fb(r(k)) is, 

fb(r) = - p(rc,) - -. p(rc). 

C,EC CkEC 
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- 
I frez p(rlc)dr , for c E 

PI, (C) - 
fr€z 

p(rlc)dr, for c E 

These rn-dimensional surface integral equations can be simplified in the linear boundary case 

by introducing an orthonormal transformation T(.) to rotate r so that one of the transformed 

basis vector x1  becomes parallel to the normal of the linear boundary. The following expression 

shows the transformation of T(.) on Eq. 5.22, 

Pz(c) 

= { 

fx=T(r E z ) PIC)kt T' Idx, CE Cd (5.23) 

fx=T(rEz P(Xk)ket T' Idx, CE 

where det T' is the Jacobian determinant of T [1141. Since a rotation is an orthonormal 

transformation, and the function p(rlcj) is symmetrical, the equation reduces to 

roo p00 cc 

Ptc(ci)=J P(xi)dxiJ P(x2)dx2  ... J p(X m)dXm, 
(3 - -00 

where is the Euclidean distance of ej to the linear boundary along the normal of the linear 

boundary w and p(Xj) is a one dimension Gaussian variable, 

p(x3) = (2 )"2exp(—x2 /(2o) ). (5.25) 

As the integration of f 0000 p( m )dxm  has the value unity, Eq. 5.24 reduces to, 

00 

PI': (C) 
= J 

p(xi)dxi J(2)_h/2exP(_x /(2) )dxi. (5.26) 
(3 

The distance of ej to the linear boundary along w can be easily found using orthogonal pro-

jection [115], i.e., 

(C, - p)TwI 
(j = II'tII 

(5.27) 

where p is any point on the decision boundary, and (c, - p) is a vector from p to C3 . Fig. 5.4b 

illustrates the distance of channel state C2 to the linear decision boundary along the normal w. 

SThe  normal of the linear boundary is the weight w of the linear equaliser. 
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Applying the Q(.) function [71], 

1 
Q(() 

def

= 
exp(—x2/2)dx (5.28) 

for Eq. 5.26, the probability of misclassification using the linear equaliser (Eq. 5.21) becomes 

1= 1 E  Pi(cj)+- P(C), (5.29) 

c,ec CEC 

where 

P1,(c) = Q(KiII°e) if channel state c2  is correctly classified 
P,(c) 

P,(c) = 1 if channel state c is wrongly classified 
(5.30) 

1 

 

5.3.2 BER estimate: some simulation results 

Simulations were conducted to compare the theoretical BER using Eqs. 5.29, 5.30 and BER 

results from Monte Carlo (MC) simulations. For the experiment, the linear MMSE equaliser's 

feedforward order rn was chosen to be 4. The following four channels were used, these channel 

exhibiting the same magnitude but different phase responses, 

H1(z) = 0.8745+ 0.4372z-'-0.2098z-2 , (5.31) 

H2(z) = 0.2620 -0.6647z-' -0.6995z- 2 ,  (5.32) 

H3(z) = 0.6996+0.6646z-' -0.2623  Z — 2
,  (5.33) 

H4(z) = 0.2098-0.4370z-1 -0.8750z- 2 .  (5.34) 

Simulations were conducted using a range of SNR with delay order d = 0,.. . , 5 to study the 

effects of delay order on BER performance. The simulation results are illustrated in Fig. 5.5. 

The experiment shows that i) the theoretical BER are very close to the Monte Carlo simulation 

results, and ii) the delay order parameter can seriously affect the performance of the linear 

equaliser. The results also show that the optimum delay order which result in the best BER 

performance is different for each of the channel models even though these channels exhibit the 

same magnitude response. 

For channel equalisation under non-stationary environment, the optimum operating delay order 

should be re-calculated and applied. By allowing the delay order to change dynamically, it is 

obvious that significant improvement to the equaliser's performance can be achieved over an 

equaliser which operates with a fixed delay order. 
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Figure 5.5: Estimated and Monte Carlo BER for channel H1(z), H2(z), H3(z) and H4(z) 

5.4 The minimum BER (MBER) linear equaliser 

This section compares the difference between the classification performance of a linear equaliser 

with weights found by optimising the MSE versus weights found by optimising the BER. 

To show that there can be a difference in performance, we illustrate the MSE and BER surface 

plots of the performance of a linear equaliser applied to the channel H(z) = 0.5 + 1.0z' 

using delay order d = 1 with feedforward order in = 2 and SNR20dB. The MSE surface 

and corresponding contours plot with respect to the weights w = [wi w2 ]T are illustrated in 

Figs. 5.6a,b respectively. It is observed from Fig. 5.6b that the locus of weights for a fixed 

MSE is in the form of an ellipse and the elliptical locus shrinks in size as the mean-square error 

Jmmse approaches the minimum value. When w = Wmmse, the locus reduces to a point. The 
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MMSE solution for this example is at wmn = [7.534e _ 01, 9.766e_ 02]T. 

The BER surface and contour plots for the same equalisation problem are illustrated in Fig 5.7 

to highlight the difference between the MSE surface and the BER surface. The plots show that 

the BER surface is a valley and that the MBER solution is along the weight value w2 0-01- 

(a) (b) 

Figure 5.6: Linear equaliser's MSE performance for channel H(z) = 0.5+ 1.0z', in = 2, d = 1 

and SNR=20dB: (a) MSE surface with respect to weights. (b) Contour of MSE 

with respect to weights. 

(a) (b) 

Figure 5.7: Linear equaliser's BER performance for channel H(z) = 0.5+ 1.0z 1 . m = 2, d = 1 

and SNR=20dB: (a) BER surface with respect to weights. (b) Contour of BER 

with respect to weights. 
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It is obvious by comparing Figs. 5.6b and 5.7b that the weights satisfying the optimum MSE 

solution do not correspond to the optimum BER solution. For this example, it is obvious 

the BER performance may be improved by optimising the weights to minimise the BER cost 

function rather than the MSE cost function. An algorithm to perform BER optimisation is 

presented in the next section. 

5.4.1 Optimising the weights of the linear equaliser with respect to BER 

It was shown in the previous section that the MMSE criterion to find the weights of the linear 

equaliser may not result in the optimum BER performance. To optimise the weights for MBER, 

we examine a gradient descent method [113] to optimise the linear equaliser's probability of 

misclassification cost function (Eq. 5.29), 

Jber('') = -PI 
1 

j = 
- 

P,(c,) + Pl(c). 
N5  

C,EC ckEC 

(5.35) 

To find the weights which will satisfy the minimum BER solution, we proceed as follows. We 

begin with an initial weight value w(0) using the MMSE solution. Using this initial guess, we 

compute the gradient vector, which is defined as the derivative of the Jber(W) cost function 

evaluated with respect to the weight w(n) at time n (i.e., the n iteration). We compute 

the next guess of the weight vector by making a change of the present guess in a direction 

scaled by a step size value opposite to that of the gradient. If the updated weight improves 

the BER performance, the new weights are accepted and the value of the step size doubled to 

accelerate the optimisation process. If the updated weight vector degrades the performance of 

the equaliser, the weight vector is not accepted and the step size parameter value is reduced 

to allow for finer update. The recursive process of calculating the gradient and modifying the 

weights is repeated until the maximum number of allowed iteration is reached. The details of 

the algorithm are as follows: 

Algorithm 5.1 : Optimising the weights of linear equaliser to minimise BER 

Estimate the channel model a(i). 

Solve for the MMSE solution w,nmse. 

Let n = 1,w(n) = wmm,e,/A(fl) = V(Jber (W(fl)))/IIV(Jber(V4T(Tl)))II 

Optimise w with respect to minimising P1  (Eq. 5.35) using gradient descent [113], i.e. 

w j w(n) + /i(fl)[V(J6er(W(fl)))] 

if Jber("mp) 

{ w(n + 1) = wmp/IIwtmpII; /* Update new weights / 
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.z(ri + 1) = p(n) * 2; / Increase step size / 

} 
else 

{ w(n + 1) = w(n); / Retain old weights / 

u(n + 1) = (n) * 0.3; /* Reduce step size */ 

} 

n = n+1; 

if (n < max iterations) Goto (iii). 

The vector w(n) is the weight vector of the equaliser at iteration n, z(n) is a positive real-value 

and V(Jber (W(fl))) is the gradient vector of P1  using w(n), i.e. 

V(Jber (W(fl))) = [OP,/Owi OP:/3w2  ... OPI /3Wm ]T, (5.36) 

where ÔPI/Owk, 1 < k < m, is 

N 
 OQ(I(jl/ie) (5.37) ÔPI/ÔWk = 

Ow 

By the chain rule, each ôQ((j I/O e )/5Wk  can be expressed as 

8Q(( I/°e) = V00 10'e) .ç2_ • (5.38) 
OW/c OCj dw 

After some algebra 6  it can be shown that 

,CTW\ —,rn 2 \ 
wk(cT W) - (sgn(cT w )c,k j-1 w) 

eV(1 w)3/ 2 ). 
(5.39) 

(9 Wk 

In the above derivation, we have used p = 0, i.e. the origin is a point in the decision boundary. 

We will prove later in the chapter that p = 0 is a valid boundary point for our equalisation 

problems. 

6Such partial differentiation can be easily solved using symbolic-mathematical packages like Maple. Maple is 

a registered trademark of Waterloo Maple Software. The Maple code used to derived aQ(I(,I/o' e )/3wk  is listed 

in Appendix B. 
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5.4.2 MBER linear equaliser: some simulation results 

Example Channel H(z) = 0.5 + 1.0:_1 

To examine the operations of Algorithm 5.1, it is applied to optimise the weights of a linear 

equaliser operating on the channel H(z) = 0.5+1.0z 1  with delay order d = 1, feedforward order 

rn = 2 and SNR=20dB. As illustrated in Figs. 5.6 and 5.7, the MMSE and MBER solutions for 

this problem are significantly different. To start the optimisation, we first evaluate the MMSE 

weights assuming perfect knowledge of the channel model and noise statistics. The weights are 

then iteratively updated if the modification of the weights improves the BER performance. 

Figs. 5.8a-e depict the changes in the BER, MSE, weight values, and the step size p during 

optimisation. The results show that there were no change in the weights value in the first two 

iterations. This is because the updating vector p(fl)[—V(Jber (W(fl)))I is too large, and the 

weights Wtmp, if accepted, will actually cause a degradation in performance. When the p value 

is reduced to a sufficiently small value in n = 2, the updated weights were accepted and the 

corresponding BER plot showed a jump in improvement from a value of —4.84 to —5.78, while 

the MSE value showed an increased from 0.217 to 0.264. From iterations n = 3,. . . , 20, some 

updates of the weights occurred as indicated by the positive increase in the step size values. 

The changes to the weights are however very small, and little changes in the values of MSE 

and BER were actually observed. After 20 iterations, the step size plot (Fig. 5.8e) shows that 

p converges to 0 indicating that the weights have converged to the MBER solution. 

Fig. 5.9a compares the BER performance of the Bayesian equaliser and the linear equaliser 

with weights minimised by MMSE and MBER on channel H(z) = 0.5 + 1.0z 1  using delay 

order d = 1 for various SNRS. The results indicate that the linear equaliser's performance was 

improved by applying the MBER criterion and that the best equaliser solution is the optimum 

nonlinear Bayesian equaliser. 

Fig. 5.9b compares the same three equalisers' performance on the same channel using delay order 

d = 2. In this case, only a small improvement was gained by using the MBER linear equaliser 

over the MMSE equaliser. However, it is observed that the Bayesian equaliser's performance 

was only slightly better than the MMSE and MBER solution. 
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Figure 5.9: BER performance of the Bayesian equaliser, the MBER and MMSE linear equaliser 

for channel H(z) = 0.5 + 1.0z' using rn = 2 and (a) delay d = 1, (b) delay d = 2. 

Example : Channel H5(z) = 0.3482 + 0.8704z" + 0.3482z'2  

Another channel H5(z) = 0.3482 + 0.8704z" + 0.3482z 2  was used to study the effects of 

optimisation using the MBER cost function. The parameters used for the equaliser were delay 

order d = 1 and feedforward order rn = 4 operating under a SNR condition of 20dB. The 

initial MMSE weights of the equaliser were evaluated by assuming perfect knowledge of the 

channel model and noise statistics. Fig. 5.10 illustrates the changes in the values of BER, MSE, 

weights and p during optimisation. For this example, convergence is reached approximately 

after 20 iterations and the results showed that the BER was improved from —3.05 to —3.37 

while the MSE value showed a degradation from 0.198 to 0.231. The weights showed little 

changes after convergence (20 iterations), although the step size p parameter exhibited some 

oscillation behaviour indicating that updates to the weights were still being carried out. 

The BER performance of the MMSE linear equaliser, MBER linear equaliser and the Bayesian 

equaliser for the channel H5(z) for various SNR is depicted in Fig. 5.11. It is observed that the 

Bayesian equaliser achieves the best BER performance followed by the MBER linear equaliser, 

and the worst performance by the MMSE linear equaliser. 

From the simulation results, we have seen that for some cases, significant improvement in 

misclassification performance may be achieved by optimising the weights of the linear equaliser 

using the MBER cost function instead of the MMSE cost function, and for other cases, the 

results show that there is no significant gain to be achieved by optimising the weights to 

minimise the BER. It is, however, not possible to know in advance if BER optimisation would 

result in a much better BER performance over the MMSE linear equaliser. 
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5.4.3 Proof that the origin is a boundary point 

In the previous section, we assumed that the boundary realised by the linear equaliser should 

pass through the origin. We will prove in this section why this is so. The proof is presented 

by comparing the performance of the equalisers which have parallel decision boundaries, i.e., 

decision boundaries that pass through the origin, and a parallel decision boundary that does 

not pass through the origin. By showing that the decision boundary which passes through the 

origin results in the smallest misclassification probability, we conclude that the linear equaliser 

should have the the decision boundary passing through the origin. 

The general equation of the linear equaliser's decision function with an offset term is, 

f1 (r) = wr(k - i+ 1)+z. (5.40) 

In the case when z = 0, the realised decision boundary will pass through the origin and in the 

case when z 0, the decision boundary will be shifted along the normal of the boundary by 

distance b [115], where 

b= 
V'WTW 

(5.41) 

The purpose of the boundary is to partition the set of channel states Cd = {c2 }, 1 < j < N., 

into two regions. In the following analysis, we will assume that the delay order is chosen such 

that the set of channel states and C+)  are linearly separable. Given that the transmit 

symbol is from the set 1±11  and therefore is zero mean, the set of channel states Cd will be 

symmetrically distributed about the origin. It is this symmetrical distribution of the channel 

states about the origin that is the key to proving that the offset should be 0. 

Fig. 5.12 illustrates the effects of z on the linear decision boundary for the decision function 

fl (r) = —2r 1  + r2. Note that the decision boundary of case 2 is parallel to case 1, and that the 

distance of the decision boundary of case 2 to case 1, along the normal of the boundary, is b. 

The probability of misclassification for the equaliser with linear decision boundary is (See 

Eq. 5.29), 

Pt = P, (c) + 
. 
: 

Pj(ck) 

c3 EC +) C k EC 

(5.42) 

where N. = number of possible channel states, C and C are the set of channel states 

associated with transmitted symbol s(k - d) = +1 and —1. 
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r 
- Cl 

Figure 5.12: Parallel decision boundary with different offset values 

We first show that in the case when the decision boundary passes through the origin, the sum of 

probability of misclassification due to channel states in the C7 equals the sum of probability of 

misclassification due to the channel states in This statement can be proved by noting the 

symmetrical distribution of channel states about the origin, i.e., each channel state e 

has a 'companion' channel state C where the values of channel state = —cr, 

i.e., 

= F[s1(k)Is(k—d)=+1I 
(5.43) 

= F[—s(k)Is(k - d) = —11 = (5.44) 

where s(k) = [s(k) . . . s(k - m - a + 2)]T is the th combination of s(k), and F E 

RmX(m+T_l) is the matrix 7  defined in Eq. 4.6. 

Because of these pairings, the distance of each channel state in C to the decision boundary 

7The matrix F is 

a(0) a(1) ... a(na -1) Q ............0 

o a(0) a(1) ... a(na - 1) 0 .........0 

F= . 

0  
0 ... ... 

... a(0) a(1) ... a(ria-1) 
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is the same as the distance of the companion' channel state in i.e. 

- 

(c ) )w (_c +)) T w  

- 
= = .  

IwII I liwli 
(5.45) 

Therefore, the total probability of misclassification due to channel states in C(+)  is equal to the 

probability of misclassification due to the channel states in C(-) , i.e., 

Pj(c,) 
1 y -'-' 

C,EC 
p; 

 CkEC 

(5.46) 

In the case when an offset is introduced in the decision function such that the resultant decision 

boundary does not passes through the origin, the probability of misclassification due to channel 

states in will not be equal to channel states in If the decision boundary is shifted 

along the normal of the boundary by a distance b towards channel states G (as in case 2 of 

Fig. 5.12), the probability of misclassifications due to channel states in increases, while 

the probability of misclassifications due to channel states in decreases. This is due to 

the fact that the distance to the boundary of channel states in C decreases by b while the 

distance to the boundary of channel states in increases by b. 

The following equations express the probability of misclassification of channel states and 

for case 1, 

t7 
Plc(ca3el)('j) = (

IL ) 
and for case 2, 

- 

( I I 
Pic(case2)(C) 

 

Plc( ca3el)(C) = Q KI
) 

(5.47) 

= 
Q (I)I 

+ IbI) 
(5.48) 

Although the probability of misclassification for channel states in C decreases due to the off- 

set, the overall probability of misclassification of the equaliser increases because the probability 

of misclassifications due to channel states in C(+)  are higher than the saving in probability of 

misclassification from channel states in i.e., 

PIc(case2)() - Plc( case l)(Cj )> PIc(cose2)(C) - PIc(Ca$el)(Ci 
1 L (5.49) 

This is due to the nature of the error function Q(.) which is weighted more heavily for values 
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near zero. Applying the same observation to all the channel states, we have 

rlcVase2)Cj ) - lc(case1)j 

cEc cEc 
j d 3 4 

> Plc(case2)(C
,
H ) 

- E 1ic( casel)(Cj) (5.50) 

cEC(  

Therefore, any shift in the decision boundary away from the origin towards C results in an 

increase in the probability of misclassification. By observing that the same argument can be 

applied if the decision boundary had been moved towards the proof is complete. 

5.5 Decision Feedback equaliser 

This section discusses the linear equaliser with decision feedback. The conventional DFE [3, 

71] is based on a symbol-decision structure that employs a linear combination of the channel 

observations r(k) and the past decisions as illustrated in Fig. 5.13. We will call this DFE the 

linear-combiner DFE, in contrast to other DFE structures that use nonlinear combinations of 

the channel observations and past decisions [18,73,75,82,112]. 

The linear-combiner DFE's structure is very similar to the linear feedforward equaliser's struc-

ture. The difference lies in the DFE's decision function which now includes the application of 

past detected symbols [3,71] i.e., 

f1 (r(k), sb(k)) = wTr(k) + bT b(k), (5.51) 

where w and r(k) are the linear-combiner DFE's feedforward weights and feedforward input 

vector respectively, and b and sb(k) are the feedback weights and the vector of past detected 

symbols respectively. The vector b(k) is 

Sb(k) = [I(k — d — 1) ... (k — d — n )]T E R, (5.52) 

where d is the delay order parameter and n is the number of feedback terms. By comparing 

Eq. 5.51 to the linear equaliser's decision function (Eq. 5.4), it is obvious that the linear-

combiner DFE's feedforward structure is identical to the linear feedforward equaliser and that 

the function of the weighted feedback term bTsi(k) is to introduce an offset in the linear 

boundary as discussed in the previous section (Sec. 5.4.3). Under the assumption that the 

equaliser's past decisions are correct, bTsi(k) can be designed to eliminate a large proportion 

of ISI without enhancing noise [3,71]. The feedforward section wTr(k) then takes care of the 
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remaining IS!. The weights of the DFE are usually chosen by minimising the MSE criterion. 

We will call such linear DFE the MMSE linear-combiner DFE. 

z i ft — z H' 

r(k) I r(k-1) I r(k-m+1) 

f(r(k), tk)) 

Equaliser's decision function 

(k-d-n) (k-d-1) HF- 

z tIhk.df 
Figure 5.13: Schematic of a generic decision feedback equaliser. 

5.5.1 Effects of introducing feedback 

To illustrate how feedback helps to remove ISI, we apply the MMSE linear-combiner DFE to 

channel H(:) = 0.5 + 1.0z' using delay d = 1, feedforward order m. = 2, and feedback order 

n = 1 for SNR=15dB. The set of channel states for this problem is listed in Table. 5.1. 

In the original equalisation problem without feedback, the linear equaliser is required to parti-

tion the full set of N3  = 8 channel states in Cd into two regions. By using past detected symbol 

information, the number of channel states that may occur is reduced from N3  to N3 /2' [18]. For 

example, if sb(k) = s(k-2) = +1 for our equalisation problem, the set of channel states that may 

occur is reduced to the set {ci, C3, C, c71, and similarly, if the feedback s6(k) = s(k —2) = —1, 

the set of channel states that may occur is reduced to the set {c2 , c4, c5, c8}. This reduction of 

available combinations of channel state is illustrated in Fig. 5.14. Assuming that the feedback is 

correct, the reduced number of available channel states often results in decision boundaries be-

coming simpler and the non linearly separable equalisation problem becoming linear separable. 

In addition, the minimum distances of the channel states to the decision boundary normally 

become larger which in turn result in less probability of misclassification. 

The decision boundaries of the MMSE linear-combiner DFE and linear feedforward equaliser 

are illustrated in Fig. 5.14. Note from the diagrams that the conditional linear-combiner DFE 

boundaries for feedback sb(k) = +1 and sb(k) = —1 are parallel. This can also be observed 

by realising that the value bTs& (k) is the offset term z in the decision function as described 
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S/No Transmitted sequence Channel state 

S. 
3 

C. 
3 7 

-F 

s(k) s(k-1) s(k-2) I 
A 

[ r(k) 
A 

r(k-1) I 

1 1 1 1 1.5 1.5 
2 1 1 -1 1.5 -0.5 
3 1 -1 1 -0.5 0.5 

4 1 -1 -1 -0.5 -1.5 

5 -1 1 1 0.5 1.5 

6 -1 1 -1 0.5 -0.5 

7 -1 -1 1 -1.5 0.5 

8 -1 -1 -1 -1.5 -1.5 

Table 5.1: Transmitted sequence and received channel states for channel H(z) = 0.5 + 1.0z 

in Eq. 5.40. From Fig. 5.14, we can also see that the channel states {c3, c5} (Fig. 5.14a) 

and {c4 , c6} (Fig. 5.14b) are further away from the MMSE DFE boundary than the linear 

equaliser's decision boundary. This increase in distance away from the boundary is the reason 

why the MMSE linear-combiner DFE has less probability of misclassification during equaliser's 

operation'. There is however one problem when applying past detected symbols in the decision 

function, that of error propagation [108-111] which occurs when wrongly detected symbols are 

passed into the feedback vector. Error propagation however is not catastrophic and in most 

cases the loss due to its effect is not significant. 

The results of the Monte Carlo simulation using the MMSE linear feedforward equaliser. MBER 

linear feedforward equaliser, and the MMSE linear-combiner DFE for the channel H(z) using 

delay order d = 1, feedforward order in = 2, and for the DFE feedback order n = 1 is illustrated 

in Fig. 5.15. The simulation results show that the MMSE linear-combiner DFE perform better 

than both the equaliser without feedback and that the performance loss due to error propagation 

of the DFE is approximately 2db at SNR equals to 12dB, but becomes smaller at higher SNR. 

8 Although {ci ,C7 1  (Fig. 5.14a) and {c2, C8) (Fig. 5.14b) becomes nearer to the MMSE linear-combiner DFE 

boundary, their distance to the boundary are further away than channel states {c3 ,c5) and {c4 ,c6 } which 

dominates the probability of error. 
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Figure 5.14: Conditional set of possible channel state locations and decision boundaries for 
MMSE linear-combiner DFE and MMSE linear feedforward equaliser for feedback 

(a) sb(k) = [+1], (b) Sb(k) = [-1]. 
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Figure 5.15: Comparison of Feedforward Eq, and DFE Equaliser for channel H(z) = 0.5+1.0z 

using delay d = 1 and Tn = 2. (DFE uses n = 1, i.e. feedback vector is s(k - 2).) 
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5.5.2 Alternative implementation of Linear DFE 

As described in Sec. 4.5.3, it is possible to convert the DFE structure into a feedforward structure 

by introducing a transformation to cancel the past detected symbol's IS! from the input vector 

r(k). That is, the new transformed input vector r'(k) to the DFE equaliser is 

r'(k) = r(k) - F[O,b(k)]. (5.53) 

Fig. 5.16 illustrates the schematic layout of the DFE with the transformation process. To apply 

the transformation, an estimate of the channel must be available in addition to the values of 

the feedback vector b(k) values. By applying the feedback information this way, the problem 

is reduced to a linear feedforward equaliser . Therefore by reducing the DFE problem to 

a feedforward equalisation problem, it is obvious that the MBER optimisation procedure to 

optimise the weights of the feedforward weights of the DFE can be carried out. 

Fig. 5.17 illustrates the translated channel states and decision boundary for channel H(z) = 

0.5+ 1.0z 1 . The diagram shows the translation of subset channel states {C1,C3,CS,C7} and 

{c2 ,c4,c6,c8} into Notice that the MMSE solution in this case is far away 

from the best possible linear solution. In general, the minimum MSE solution is different from 

the minimum BER solution. Fig. 5.17 also suggests that the linear-combiner DFE can also be 

optimised for BER to improve on the equaliser's performance. 

-1 -1 

r(k) 
1 1 

r(El) 

Applying Transformation on 

r(k) - r'(k) 

r'(kA r'(k-1)l r'(k-m+l) 

Equaliser's decision function 

Estimated channel model 

(i) 

f(r (k)) 

Figure 5.16: Schematic of the translation of input signal r(k) - r'(k) for the DFE. 

91n this study, we will assume that the statistics of the channel is completely known. 
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-3 L 
-3 -2 -1 

r (k) 

Figure 5.17: Illustration of translated channel states and the corresponding Bayesian DFE de-
cision boundary, MBER DFE linear boundary and the MMSE DFE linear bound-

ary for channel H(z) = 0.5 + 1.0z' with in = 2, d = 1 and SNR = 10dB. 

5.5.3 MBER DFE : some simulation results 

Two examples are used to compare the MMSE and MBER solutions of a linear-combiner DFE. 

The first example uses the two-tap channel H(z) = 0.5 + 1.0z' and the following equaliser's 

parameter in = 2, d = 1 and n = 1. The decision boundaries of the Bayesian DFE, the MMSE 

and MBER linear-combiner DFE plotted in the translated observation space r'(k) are shown 

in Fig. 5.17. Fig. 5.18 compares the BERs as a function of SNR with detected symbols being 

fed back for these three DFEs. Note that the MBER DFE's performance is very similar to the 

Bayesian DFE. This result agrees with the decision boundary plot (Fig. 5.17) which indicated 

that the MBER DFE's decision boundary closely approximates the Bayesian solution. 

The second example uses a 5-tap channel with the following transfer function 

H6(:) = 0.227 + 0.466:_1  + 0.688z 2  + 0.466z 3  + 0.227z (5.54) 

and equaliser's parameter in = 5, d = 4, and n = 4. The BEEts of the Bayesian DFE, the 

MMSE and MBER linear-combiner DFEs with detected symbols being fed back are plotted 

in Fig. 5.19, where it can be seen that the performance of the MBER linear-combiner DFE is 

better than the MMSE solution. The performance gap between the Bayesian DFE and MBER 

linear-combiner DFE confirms the fact that the real optimal solution for the DFE structure is 

generally nonlinear. The "best linear solution" is sub-optimal in nature. However, the usual 

MMSE solution is inferior to this "best linear solution". 
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Figure 5.18: Comparing the performance of Bayesian, MBER, and MMSE DFE equalisers for 

channel H(z) = 0.5+1.0z 1  with detected symbols being fed-back. The parameters 

of the equaliser used were delay d = 1, m = 2 and n = 1. 
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Figure 5.19: Comparing the performance of Bayesian, MBER, and MMSE DFE equalisers for 

channel H6(z) = 0.227+0.466z- '+0.688z-  2  + 0.466z 3+ 0.227z 4  with detected 

symbols being fed-back. The parameters of the equaliser used were delay d = 4, 

rn = 5 and n = 4. 

114 



Chapter 5 Digital communication channel equalisation using linear techniques 

5.6 Conclusions 

This chapter examined the linear equaliser's performance. In particular, we highlighted the ef-

fects of delay order on decision boundaries geometrically, and showed using computer simulation 

results the significant effects of delay order on BER performance. Analysis of the difference in 

capability of the Bayesian equaliser's decision function and the linear equaliser's decision func-

tion was tlso presented. To improve the MMSE linear equaliser's performance, we proposed 

optimising the weights using the MBER criterion. Our results indicated that in some cases, 

performance could be improved. This MBER optimisation was also extended to feedforward 

weights of the DFE. 
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Chapter 6 

Conclusions 

6.1 Introduction 

The work described within this thesis is primarily concerned with the application of nonlinear 

models with linear-in-the-parameter structure to time series prediction and digital communica-

tion channel equalisation. In particular, the Volterra and RBF expansion techniques of introdu-

cing nonlinearity into the linear models were considered in detail. Such expansion techniques, 

however, can generate very large initial models which are generally un-acceptable for practical 

applications. To reduce the model size the OLS subset model selection technique [10,11,53,54] 

was studied. In this study, one major objective was to compare the performance of nonlinear 

models to that of conventional linear models for time series prediction and equalisation prob-

lems. Our results and analysis have shown that nonlinear models have superior performance 

over linear models in both applications. 

In the next section, the work performed is first summarised and specific achievements accom-

plished are highlighted (Sec. 6.2). In Sec. 6.3, the limitations of the current work are discussed 

and some new directions for future work are proposed. 

6.2 Summary and specific achievements of work performed 

The work examined in the thesis can be broken down into two major parts. In the first part, 

chapters 2 and 3, the problems of model selection using the OLS algorithm and the application 

of nonlinear predictors for time series prediction were examined. In the second part of the thesis, 

chapters 4 and 5, the problem of digital communication channel equalisation using linear and 

nonlinear filters was considered. The major outline of each chapter is given in the following 

paragraphs. 

The objective of chapter 2 was to briefly introduce the background of work considered in the 

thesis. In chapter 3, three results regarding the OLS algorithm and RBF predictor were presen-

ted. The first result concerned the sub-optimum nature of the OLS algorithm selection process. 
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To improve the selection process, a back-tracking OLS algorithm was proposed [12]. Computer 

simulations were conducted to compare the performance of the subset models found using these 

two selection techniques. Although the results indicated that the back-tracking method can 

find better subset models, the improvements were also shown to be very small, and for all prac-

tical purposes, the OLS's solution would be sufficient. The second result presented in chapter 

3 concerned the OLS algorithm's implementation requirement. Although the OLS algorithm 

is known to be very efficient, our studies revealed that it is possible to further reduce the im-

plementation complexity by introducing some pre-processing steps [13, 16]. The pre-processing 

steps are introduced by performing an orthonormal transformation on the original regression 

problem to reduce the size of the information matrix. Two different pre-processing techniques, 

the reduced OLS-Gram Schmidt and reduced OLS-SVD, were considered. The computational 

requirement of the reduced OLS-Gram Schmidt and OLS algorithm were compared using some 

examples, and the results showed that the reduced OLS method can ease the implementation 

requirement. The third result reported in chapter 3 concerned the application of RBF predict-

ors to time series predictions. Using computer simulations, we showed that the performance 

of nonlinear RBF predictors was superior to that of linear predictors for predicting nonlinear 

stationary time series. The performance of the RBF predictor, however, showed significant 

degradation in performance when the time series to be predicted exhibited homogeneous non-

stationary behaviour. To improve the predictive performance, the gradient RBF network [15,161 

was introduced. The GRBF predictor is based on having the nonlinearity of the model respond 

to the gradient of the time series. As such, the effects on the varying trends and mean would 

be reduced and hence the predictor's performance would be improved. This is confirmed using 

computer simulation results which compare the GRBF predictor and RBF predictor for such 

time series problems. 

The second part of the thesis, chapters 4 and 5, examined the application of nonlinear filter to 

channel equalisation problems. Chapter 4 first introduced the channel equalisation problem and 

then derived the optimum solution for the symbol-by-symbol detection equalisation problem, 

the Bayesian equaliser. It was shown that the Bayesian equaliser's decision function is nonlinear 

and its structure identical to the RBF model. In addition, it was demonstrated that the RBF 

model can realise the Bayesian equaliser if the channel statistics are given. Three main results 

were reported in this chapter. The first result reported concerned the effects of delay order 

parameter on the equalisation problem. Our studies showed that the use of different delay 

order parameters not only changes the shape of the decision boundaries, it also limits the 

performance of the optimum equaliser operating under a fixed SNR condition [19]. That is, 

for the same SNR condition, the performance of the optimum Bayesian equaliser can result in 

significantly different levels of classification performance. To determine the optimum operating 

delay order, a simple method of estimating the BER performance of the Bayesian equaliser was 

proposed. Simulations were conducted to compare the results of the proposed estimator to those 

obtained from Monte Carlo simulations. The results showed that the proposed estimator is quite 

accurate and hence may be used to determine the effective operating delay order. The second 
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main result concerned the selection procedure for reducing the implementation complexity of 

the RBF Bayesian equaliser. In the full implementation of the RBF Bayesian equaliser. a 

considerable amount of computational processing is required during the equaliser's operation. 

This makes the RBF implementation unattractive for practical applications. To reduce the 

implementation complexity, a model selection technique to select a reduced-size RBF equaliser 

was examined [19, 21]. Our results showed that some centres from the RBF equaliser may 

be removed without introducing significant degradation to classification performance if these 

centres are selected carefully. The third and last result reported in this chapter concerned the 

application of decision feedback to the equaliser's operation. It was shown that the introduction 

of decision feedback results in the improvement of the equaliser's classification performance and 

a reduction in implementation complexity. In addition, we showed that it is possible to convert 

the DFE problem to the conventional feedforward equaliser's performance by introducing a 

transformation. Such a transformation not only allows us to view the equalisation problem in 

an unified manner, it also simplifies the RBF implementation of the Bayesian DFE [20]. 

Chapter 5 considered the application of linear techniques to channel equalisation. The pur-

pose of this chapter was to introduce linear techniques and then compare the performance 

of linear equalisers to those of nonlinear equalisers. The chapter began with an introduction 

to the conventional linear equaliser, the MMSE linear equaliser. To highlight the difference 

in classification ability between the linear and nonlinear equaliser, some geometric examples 

which illustrate the functional mapping of the decision function were given. It was shown that 

the linear equaliser's decision function could only realise linear mapping and hence only lin-

ear decision boundaries. This is as compared to the nonlinear method which could generate 

much more complicated nonlinear mapping, and hence nonlinear decision boundaries. As the 

optimum decision boundary for most equalisation problem is generally nonlinear, the linear 

equaliser's solution is normally sub-optimum. In addition, it was also shown that the MMSE 

criterion is not the best criterion to use when optimising the linear equaliser's performance. To 

improve the linear equaliser's performance, the MBER criterion was considered. The MBER 

optimisation was carried out using an iterative gradient descent method. Our results showed 

that the MBER linear equaliser normally performs better than the conventional MMSE linear 

equaliser [21]. This optimisation scheme was also extended to the linear-combiner DFE by first 

introducing the transformation to convert the DFE to the feedforward equaliser's structure [20]. 

6.3 Limitations of current work and proposal for future work 

This section discusses some of the limitations of work performed. 

In this thesis, only the Volterra and RBF expansion techniques were considered to perform the 

nonlinear expansions for the linear-in-the-parameter structure. Other expansion techniques, 

e.g. NARMAX models [37,38], multivariate adaptive regression splines (MARS) [26,39], fuzzy 

basis function models [40] and so on, were not studied. Therefore, one clear direction for future 
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work is to consider the other expansion techniques. 

The other main limitation of this work was the assumption of stationarity in the problems we 

have considered. As most real world problems are non-stationary, adaptive implementation is 

an important area of future work. 

Lastly, in the study of MBER optimisation for the linear equaliser, more work can be carried out 

to examine the nature of the linear equaliser's BER surface. In this thesis, we had assumed that 

the BER surface is uni-modal and had performed un-constrained optimisation when optimising 

for MBER performance. We have however not proved that the actual BER surface is uni-modal. 

Also, in this study of MBER optimisation, we had begun the optimisation process using the 

MMSE solution. As the computational requirement for solving for the MMSE weights is high, 

this may not be a practical choice. The question of having an arbitrary starting point for 

optimisation should be examined. 
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Efficient computational schemes for the 
orthogonal least squares algorithm 

E.S. CHNG t  S. dEN I and B. MULGREW t 

Abstract— The orthogonal least squares (OLS) algorithm model and e the error vector of approximating y by Xh. 

11.21 is an efficient implementation of the forward selection The column vectors y and e contain N elements, that is. 

(3] method for subset model selection. The ability to find 
good subset parameters with only a linearly increasing corn- 

there are Ps data samples and Ps values of error. 

putational requirement makes this method attractive for The original X matrix have K columns. To create a 

practical implementations. In this correspondence. we ex- parsimonious model which has R parameters, we are ac-
amine the computational complexity of the algorithm and 
present a pre-processing method for reducing the computa- 
tional requirement. to form a subset input matrix Xs. The OLS algorithm se- 

Keywords—OLS. nonlinear model. RBF model,volterra model. 
lects columns from the input matrix sequentially. At each 

selection, all the unused columns are studied to determine 

Nonlinear predictors generated using radial basis functions 

(RBF) [2.4], fuzzy basis functions [5] or Volterra expan-

sions [6] normally results in the formation of very large 

initial models that have the linear_in.paramelercharacter-
istic (figure 1). Such large initial models can normally he 

reduced to a much smaller parsimonious model without sig-

nificant degradation in prediction performance if the subset 

model's parameters are chosen carefully. 
To find the optimum R-parameter subset model from an 

original K-parameter model, it is required to calculate the 

performance of all the possible R-parameter subset models 

from the original K-parameter system and choose the best 

one. This requires prohibitively large amount of computa- 

tion and is thus not practical. 
One applicable method of subset model selection for mod- 

els with the linear in parameter characteristic is the forward-

selection search [3]. This method, however, has been criti-

cised for not guaranteeing to achieve the optimum solution. 

Although the criticism is valid, subset models found using 

the forward-selection search is generally good enough for 

practical applications. Examples can be found in the pa-

pers describing the OLS algorithm [1,2] and Korenbergh's 

fast orthogonal search [7]; these two methods are derivat-

ives of the forward-selection technique. 

1. INTRODUCTION 
L_,.., ...hcolumn will contribute to o fit, the desired vector 

y with the current subset X.s. The column that provides 

the best combination with Xs to model y will be picked to 
form the new Xs. The above procedure is repeated until 

the number of columns in Xs equals to R. The selection 

procedure is made very efficient by employing orthogonal-

isation schemes such as the Gram-Schmidt or the House-

holder transformation [8]. The details of the algorithm can 

he found in Chen rt al [1.2]. 

Ill. COMPUTATION REDUCTION OF OLS METHOD 

'rhe computational requirement in applying the OLS al-

gorithm to find subset models from an initial information 

matrix X is proportional to the size of X. In the situ-

ation when N > K. where N and K are the numbers of 

rows and columns in X respectively, it may be possible to 

reduce computation requirement of the OLS by first intro-

ducing an invariant transformation on the matrix X and 

then applying the OLS on the transformed data. 
This is accomplished by pre-multiplying equation (1) by 

an orthonormal matrix which spans the column space of X 

[8] to transform the N x matrix X and the ;V x I vector 

y into a K x K matrix X and a K x 1 vector k . This may 

be thought of as a pre-processing. The OLS alorithm is 

then employed to select subset model based on X and 5. 

II. OLS ALGORITHM 

Let us represent these nonlinear predictors that have the 

linear in parameter structure as a linear regression model: 

y=Xh+e (1) 

where y is the desired signal vector. X is the information 

matrix of size ;V x K. h is the parameter vector of the 

Department of Electrical Engineering, 
The University of Edinburgh, King's Building.. 
Edinburgh Ella 3JL, Scotland. 

Department of Electrical and Electronics Engineering, 
The University of Portsmouth, Anglesea Building, 
Amiglesea Road, Portsmouth POI 3DJ, England 

3.1 Reduced-OLS Gram Schmidt approach 
We first examine the classical Gram-Schmidt (GS) pro-

cedure [8) for generating the ort.honormal matrix used for 

the invariant transformation. The information matrix X 
can be decomposed into the product of art N x K matrix 

Q satisfying QTQ I and a K x K upper triangle matrix 

B. where I is the identity matrix of appropriate dimension. 

That is 
X=QB (2) 

Pre-multiplying both sides of equation (I) by 
QT yields 

QTy = Bh+ QTe (3) 
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If we introduce j = 
QTy, X B and = QT we can 

rewrite equation (3) as 

5r=Xh+ (4) 

and are K x 1 vectors and X is a K x K matrix. We can 

then apply the OLS algorithm to perform subset selection 

based on k and X. We call this method the reduced-OLS 

CS approach 
A R-term subset model found using the reduced-OLS GS 

approach is identical to that of applying the OLS on the 

original data. This is because the transformed data X and 

are created by performing a unitary transformation [8] 

on X and y. As such transformation preserve the length of 

each (column) vector and the angle between two vectors, 

we have not lost or created any new information when we 

transform equation (1) into equation (4). 
The amount of computation required to apply the invari-

ant transformation by this method requires approximately 

N x K 2  multiplications [8]. If saving in computation by 

using X and k for subset selection offsets the additional 

computation of pre-processing, this reduced OLS approach 
is justified. Computational complexity of this reduced OLS 

algorithm for subset model selection has been analysed, 

and we illustrate the results using an example showing the 

number of multiplications needed for subset selection work-

ing on a 500 x 84 information matrix (figure 2). The hori-
zontal axis of figure 2 shows the size of the selected subset 

model, and the vertical axis shows the number of multi-

plications performed by the OLS or the reduced-OLS GS 

algorithm to find the required subset model. 
The following equation can be used to calculate the num-

ber of multiplications performed by the OLS to select a 

subset model of R parameters from an information matrix 

X of size N x K: 

No. multiplications (OLS) = 

I))+(2N(K—i)) (5) 

The number of multiplications required to perform the pre-

processing using the GS decomposition is calculated using: 

No. multiplications (GS decomposition) = NK 2  + NK 

(6) 

Therefore, the total number of multiplications required to 

perform a subset selection by the reduced-OLS CS ap-

proach is: 

No. multiplications (reduced-OLS GS) =NK 2  + NK + 

(3K(K - i - 1)) + (2K(K - i)) 

3.2 Reduced-OLS SVD approach 
To further reduce the computational load of the OLS, 

we can use an approximated matrix X to represent X. We 

define X and X as 

X = UAVT (8) 

X = UA,V' a<K (9)  

where the columns of U are the left eigenvectors. A is the 

diagonal matrix containing the singular values and the rows 

of VT  are the right eigenvectors formed by using singular 

value decomposition (SVD) [8] on X. The singular values 

in A are arranged such that A, ? A 2 > AK. The 

N x a matrix U is formed by using the first a columns 

of U. the diagonal a x a matrix A, is formed by using the 

first a rows and columns of A, and the a x K matrix V' 

is formed by using the first a rows of VT. The matrix X 

is a rank a approximation of the matrix X created by the 

product of U,, A. and V. 

If X is used to approximate X, equation (1) can be ap-

proximated by 
yrih+e (10) 

Pre-multiplying the previous equation by U, we get 

 

If we introduce the a x 1_vectors = Uy and ë = Ue, 

and the a x K matrix L = equation (11) can be 

written as 
 

Since the dimensions of k. and X are smaller than those 

of the vector and matrix X in equation (4), the com- 

putation requirement is further reduced when the OLS al-
gorithm is applied. This method is only appropriate when 

the approximation of X, i.e. X. is created by a sufficiently 

large rank a, otherwise the subset model found may not be 

good. 

where s, is the desired signal value at sample m. and e, = 

si  — .,. From equation (13), we can see that when we have 

perfect prediction, i.e. e, = 0 for all m. the NMSE will be 

—oo dB. When there is no prediction. i.e. i, = 0. e, = s, 

for all i. the NMSE will be 0 dB. 

The subset models found using the reduced-OLS GS ap-
proach were identical to those selected by the OLS using 

the original data. This, however, is not true for the models 

IV. RESULTS OF REDUCED OLS METHODS 

Computer simulation was carried out to evaluate the 

quality of subset models found using the reduced-OLS meth-

ods. Subset models were selected from two different 84-tap 

nonlinear predictors used for predicting a chaotic Mackey-

Glass time series. The first predictor was created using 
a degree 3 and embedding-vector-length 6 Volterra expan-

sion. The second predictor was created by combining a 
6-tap linear predictor with a 78-tap RBF predictor. 

For the experiment. 500 samples from the Mackey-Glass 

time series were used to generate the information matrix. 

The information matrix X thus had a size of 500 x 84. To 

measure the modelling quality of the predictor. the norm-

alised mean square error (VMSE) was used: 

/N 2 \ 

NMSE 101ogio I L =1e; (13) 

(7) 
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found using the reduced-OLS SVD approach. The reason 
is that the reduced-OLS SVD scheme selected subset mod- 

els based on Xc and , which are approximations of the 

original data. 
Figure 3 depicts the predictive performance of subset 

models selected from the Volterra predictor. The results 
show that when approximation rank K = 40 is used, subset 

models selected with sizes less than 22 have almost equi-
valent performance to those selected using the full model. 
This suggests that information regarding the first 22 signi-
ficant regressors were not lost when we approximated the 

rank 84 matrix X by the rank 40 matrix XE. When an ap-
proximation rank 60 is used, there is hardly any difference 
between the subset models selected by the reduced-OLS 
SVD algorithm and those chosen by the OLS algorithm 

using the original data. 
Similar results were also found for subset models gener-

ated from the second nonlinear predictor (figure 4). That 
is, subset models found with large approximation rank 
have very similar predictive performance characteristics to 

those selected using the original data. 

V. CONCLUSIONS 

i.2 • • • 

of input vector S 

Nonlinear expansion 

j i x - 1-2 (

7

K'1) i 

h1   

h0  

L. e 

Fig. 1: Nonlinear predictor of order K 

9e+06 

A method of reducing computational requirement of the 
OLS subset model selection algorithm has been presen-
ted. This reduction is significant when the number of rows 
in the information matrix X is significantly larger than 

the number of its columns. Two schemes of the reduced-
complexity OLS method have been proposed. The first 
scheme is based on a Gram-Schmidt pre-processing and 
will provide identical results to those obtained using the 
original input matrix and the desired output vector. For 

the second scheme based on a SVD pre-processing, it has 

been shown that we can always trade in subset selection 
performance for computational complexity. 
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Improving the Radial Basis Function Networks for 
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Abstract. The radial basis function (RBF) network has become a popular choice of neural network 
to be used for nonlinear time series prediction [1-3]. Although the results have been encouraging 
for modelling time invariant nonlinear systems, it is difficult to achieve the same level of success for 
tracking nonstationary signals [4]. In this article, we present a method of modifying the classical 
RBF networks. which improves the predictive accuracy for nonlinear and nonstationary data. 

1 Introduction 

Although the RBF network has achieved considerable 

success in the application to stationary nonlinear time 
series prediction, it is unable to achieve the same level 

of success for tracking nonstationary series. This is be-
cause the RBF network, like many other neural network 

models, does not characterise temporal variability well. 
Since real-world signals are often not only nonlinear but 
also nonstationary, it is desired to develop predictors 

which can handle signals that exhibit both such char- 

acteristics. 
To improve the predictive performance for non-

stationary data, we propose a gradient RBF (GRBF) 

network which is a modification of the classical RBF 
network. In the classical RBF network. the centers of 
the hidden nodes can be interpreted as prototype vec-

tors which are used to sense the presence of the input 

pattern. That is, if a center matches the network input 
vector, the corresponding hidden node will fire strongly. 

While in the GRBF network, a hidden node's function 
is to sense the presence of a prototype vector's gradient. 
This significantly improves the predictive capability of 

the network in the situation where nonstationarity of 
the signal is due to the variations of mean and trend. 

In using this GRBF network, we are exploiting the 
idea that, by performing a suitable difference operation 

on a nonstationary signal, the resulting signal becomes 

stationary. This idea is used in the auto-regressive in-
tegrated moving average (ARIMA) model [5] for linear  

prediction of nonstationary signals. By incorporating a 
similar mechanism into the RBF network, we can cre-

ate a network model that is capable of dealing with 

nonlinear and nonstationary signals. 

2 The Gradient Radial Basis 
Function Network 

The GRBF network. like the RBF network, is a single-
hidden-layer feedforward neural network [3]. It consists 

of a input layer with M input elements, a hidden layer 

with K hidden nodes and, in this study, an output layer 
with 1 node. There are however two main differences 

between the RBF network and the GRBF case. 
Firstly, the input vector to the RBF network contains 

past samples of the time series {yj } while the input vec-

tor to the GRBF network is generated by differencing 

the raw data {y'}. 
The order of differencing determ-

ines the order of the GRBF network. For example. if 
the input vector to the RBF network at time z is given 

by 

X, = [y_i,yi_2. . . _] (1) 

then the input vector of the 1st-order GRBF network 

at time i is 

X = X1 -Xi 

= [y' - Yi -2. , - i-M-Il (2) 

Time elements of x show the rate of change in the time-

series trajectory for the past M samples. 

1 
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Secondly, the function of the hidden node for the 

GRBF network is different from that of the RBF net-

work. Figure 1 depicts the structure of the 1st-order 

GRBF network Although the Gaussian function still 

serves as the nonlinear function which compares the 

similarity of the input vector to the hidden node's cen-

ter, the response of the Gaussian function is now mul-

tiplied by an additional term (y...i + 6). The response 
of the j-th hidden node of a 1st-order GRBF network 

to the input vector x is therefore given by 

exp(—aIx - c,Il) x (yi + b) (3) 

where c is the flit-dimensional center vector of the j-
th hidden node, a is a width parameter. and 6j is a 

constant value associated with the center .  

The term (y..i  + 6) can be interpreted as a local 

single-step prediction of yj by the j-th hidden node. 
From (3), if the input vector is similar to the j-th center, 
the value of the Gaussian function will be close to 1.0 

and the predictor + 6,) becomes fully active. As 

in the case of the RBF network, the output layer is a 

linear combiner with weights h,, 1 <j < K. Similar to 

the selection of RBF centers, c and 6, 1 < j < K, can 

be selected during training from the training data set 

{ where N is the number of training data. For 

each training input vector x, define dk = yk - yk-1. 

If 4 is chosen as the j-th center c, the values of 6, is 

set to dk. This ensures that the j-th hidden node is a 

perfect predictor of Yk. 
The rationale behind the GRBF model become ob-

vious when the network performs predictive operation. 

Each hidden node compares the network input vector 

x',  with its center c. The Gaussian response of each 

hidden node indicates the degree of matching between 

x and c. The hidden nodes thus sense the gradient 

of the time series rather than the series itself as in the 

case of the RBF model. The term +6) also has a 

clear geometric meaning; if the j-th center c3 matches 

the gradient x of the series, (ye_i + 8,) is likely to be 

a very good prediction of y'. Although the complex-
ity of a GRBF hidden node is greater than that of a 

RBF hidden node, the GRBF has better generalisation 
property, particularly in predicting nonstationary time 

series. This often results in a smaller GRBF network. 
Therefore, the overall complexity of the GRBF network 
may not necessarily be greater than that of the RBF 

network in practical applications. 

3 Simulation Results 

We present some simulation results of time series pre-
diction using the RBF and GRBF predictors. Initial  

full models were created by using all the available data 

in the training set as RBF and/or GRBF centers. Some 

linear terms were also included into the full models. 

Subset models were then selected from these large full 

models using the OLS [21 scheme, and used to evaluate 

single-step and multi-step prediction performance. 

3.1 Results for Stationary Series 

The Mackey-Glass (figure 2) chaotic time-series was 

used to evaluate model predictive performance. Data 

samples of point 100-600 were used as the training set 

and samples 601 to 1100 were used as the validation 

set. The values of M was chosen to be 6, and the width 

of Gaussian function was set to n = 1.0. The following 

types of models were used: 

L-model - The linear model of order 50. 

LO-model - A combination of the linear model and 

the classical RBF model. 
L01-model - A combination of the linear model, 

the classical RBF and 1st-order GRBF models. 

The results of single-step performance for the predict-

ors in training phase are shown in figure 3, where the 

vertical axis indicates the normalised mean square error 

(NMSE) in dB. As expected, as the size of each selected 
subset, model increases, the accuracy of the model con-

tinued to improve. However, the rate of improvement 

was not the same for each model. The predictors with 
GRBF expansion. i.e. L01-model. achieved better er-

ror reduction with a smaller model size. This GRBF 

subset model also performed better on the validation 
set compared with the linear and classical RBF mod-

els, as can be seen in figure 4. 

3.2 Results for Nonstationary Series 

To examine how the predictors behave for nonstation-

ary series, we used a modified Mackey-Glass time-series 

(figure 5). This new series was formed by adding sinus-
oid with amplitude 0.3 and a period of 3000 samples to 

the Mackey-Glass time series used in the previous ex-

ample. As the training data were formed from samples 

100 to 600 and the validation data consisted of samples 
from 601-1100, the predictors were trained without be-
ing exposed to the change in the level and trend of the 

test data. The results for the single-step prediction in 

the validation phase (figure 6) suggest that the GRBF 

network can perform better than the classical RBF net-

work in a nonstationary environment. 
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K 

4 Conclusions 

We have presented a GRBF network for nonlinear and 

nonstationary time series prediction. The hidden layer 

of this GRBF network is designed to respond to the 

gradient of time-series rather than the trajectory it-

self. This can usually improve predictive accuracy, par-

ticularly for homogeneous nonstationary time series as 

are demonstrated in the simulation results. Although 

the discussion was based on time series prediction this 

GRBF network can be applied to other signal pro-

cessing applications. 
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Abstract 

This paper examines the application of the radial basis function 
(RBF) network to the modelling of the Bayesian equaliser. In partic-
ular, we study the effects of delay order d on decision boundary and 
attainable bit error rate (BER) performance. To determine the op-
timum delay parameter for minimum BER performance. a simple BER 
estimator is proposed. 
The implementation complexity of the RBF network grows exponen-
tially with respect to the number of input nodes. As such, the full 
implementation of the RBF network to realise the Bayesian solution 
may not be feasible. To reduce some of the implementation complex-
ity, we propose an algorithm to perform subset model selection. Our 
results indicate that it is possible to reduce model size without signi-
ficant degradation in BER performance. 
Indexing Term: Bayesian equaliser, neural networks, RBF network, 
BER. 

1 Introduction 

It is well-known that the performance of neural network (NN) equaliser is 
superior to the conventional linear equaliser for the digital communication 
symbol-by-symbol equalisation problem [1-3]. The superiority of the NN 
structure is due to its ability to model the optimum Bayesian decision bound-
ary better than the conventional linear systems. In many practical equal-
isation problems. the Bayesian decision boundary is often highly nonlinear, 
and in some cases, not linearly separable. It is thus not surprising that. NN 
techniques, which are capable of modelling any nonlinear decision boundar-
ies, have become very popular in equalisation problems. This paper continues 
this theme and investigates the application of the radial basis function (RBF) 
network to realise the Bayesian equaliser. 

The paper is organised as follows: In Sec. 2.1, we extend the work re-
ported in [1. 2] to show the effects of delay order on the Bayesian equaliser's 
decision boundary and BER performance. Our analysis show that the equal-
iser achieves different attainable BER performance when different delay order 
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is applied under the same signal to noise (SNR) operating condition. To de-
termine the optimum delay order, a simple BER estimate for the equaliser 
is proposed in Sec. 3. The implementation complexity of the RBF equaliser 
is also discussed and an algorithm to select small-sized RBF models which 
approximate the Bayesian solution is presented in Sec.4 

2 Implementing the Bayesian equaliser 

An established model of a digital communication channel subjected to inter-
symbol interference (ISI) for a multi-level pulse amplitude modulation (2-sty 
PAM) scheme is described by the following equation [2.4]: 

r(k) = E s(k - i)a(i) + e(k) (1) 

where r(k) is the received signal at time k. s(k) is an independently identically 

distributed (i.i.d) transmitted symbol with symbol constellation defined by 

the set {±1}, a(i) are the channel impulse response coefficients with the 

length of the impulse response n0 , and e(k) is the additive white Gaussian 

noise e(k) of zero mean and variance o' [2,4]. The equaliser uses an array of 

received signal 
r(k)=[r(k).. r(k —Tn+1)]T (2) 

to estimate the transmitted symbol s(k - d), i.e. (k - d). The integers ni 

and d are known as the feedforward order and delay order respectively. 
The transmitted symbols that affect the input vector r(k) is the transmit 

sequence s(k) = [s(k). . . . , s(k - m - na  + 2]T There are N, = 2m+n,,-1 

possible combinations of these input sequences. i.e. {s3}. 1 < j < N3  [2]. In 

the absence of noise, there are N3  corresponding received sequences Cd 

{ c }. 1 < j < N3 , which are also referred to as channel states. The subscript 

d in Cd denotes the delay order used, The values of the channel states are 

defined by the following equation. 

cF[sj] 1<j<N3 (3) 

where the matrix F E RmX(m+11._l) is 

a(0) a(1) ... a(na -1) 0 0 

0 a(0) a(1) ... a(na - 1) 0 ... 0 

F 

 

0 ... a(0) a(1) ... a(na  - 1) 
(4) 

When noise is present, the received vector r(k) has a Gaussian distribution 

with expected values corresponding to the respective c3 . 

The set of channel states {c}, 1 < j < N3  can be partitioned according 

to the value of s(k - d), i.e., channel states associated with .s(k - d) = +1 
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belong to the class and channel states associated with s(k - d) = —1 

belong to the class The response of the Bayesian equaliser prior to the 

slicer is [2], 

f(r(k)) = 
P(2 )_m/2 exp(—Hr(k) - ciII2/2o) 

CEC 

- E P(2O)m/2 exp( —Ir(k) - c]j2 /2o) (5) 

c,EC - 

where pi  and p are the a priori probabilities of occurrence for the respective 

channel states. In the case of i.i.d transmitted symbols, p1  = P3 = 1/N8 . The 

output of the Bayesian equaliser (k - d) is sgn(f(r(k)), where sgn(.) is the 

signum function. 
From Eq. 5, it is obvious that the structure of the RBF network is identical 

to the Bayesian equaliser [2], and that the RBF network realises precisely the 
Bayesian solution when the weights, centres and the nonlinearity of hidden 

units are set accordingly. 

2.1 Effects of delay order on decision boundaries 

The set {r(k)If(r(k)) = 01 defines the Bayesian decision boundary and is 

dependent on the channel state values and the delay order parameter [1.2]. 

The channel states are determined by the channel impulse response and the 
equaliser feedforward order. The channel states however do not uniquely 
define the decision boundary. Given a set of channel states, the decision 
boundary can be changed by using different delay orders. 

As an example. the Bayesian decision boundaries realised by a RBF equal-
iser with feedforward order rn = 2 for channel 11(z) = 0.5 + 1.0z 1  is ex-

amined. Fig la lists all the 8 possible combinations of the transmitted signal 

sequence s(k) and the corresponding channel states c,. Fig. lb depicts the 
corresponding decision boundaries for the different delay orders. Note the 
dramatic change in the shape of the decision boundaries for different delay 

orders. 
The use of different delay orders also results in different limits of BER per-

formance. To determine the optimum delay order, a computationally simple 
method to estimate the BER of the Bayesian equaliser is presented in Sec. 3.2. 

3 Probability of mis-classification 

This section presents the analysis of probability of mis-classification of the 

Bayesian equaliser. 
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Figure 1: (a) Input and desired channel states for channel H(z). 
(b) Bayesian decision boundaries for channel H(z). 

3.1 Evaluating the probability of error 

We define Z C Rm to be the region of r(k) classified as +1 and Z C Rm 
to be the region classified as —1. The probability of making a wrong decision 

P is 

Pe Pi 1r1c,(r)dr+ pj
JrE 

fric,(r)dr (6) 

C,€C EZ  z 

where fric(r) is the probability density function (pdf) of the noisy received 
vector r conditioned on the received channel state being Cl, 

frc(r) = (2)_m/2exp(_Ilr - ci II 2 /(20 )) (7) 

Because the symbol constellation is symmetric equation (6) can be reduced 

to 

2 j P' f fric,(r)dr (8) 

C,EC 

3.2 Estimating the probability of error 

The evaluation of BEEt using Eq. 8 involves evaluating rn-dimensional integ-

rals over the error region Z. As a closed-form solution for the expression 
does not exist, one must resort to numerical methods. This option however 
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is un-attractive for large Tn. As our requirement to find BER performance 

is only one of comparing relative performance for equalisers using different 

delay orders, a simple approximation may be used to estimate the BER. The 
probability of mis-classifications, P, can be expressed as 

P, = P(c) (9) 

where Pe(cs) is the probability of mis-classification conditioned on the noise-

free channel state being c1 . It can be shown that in the case when SNR - 

Pe (ci) can be reduced to the minimum distance bound [5]. i.e., 

P(c) = Q(iII) 
= J(2Yh/2 exP(_x2 /(2))dx (10) 

where I(I is the absolute minimum Euclidean distance of ci  to the decision 

boundary. 
Although Eq. 10 is only valid for very high SNR, it can be applied with 

Eq. 9 to evaluate a rough estimate of the BER performance. Our simula-
tion results however indicate that the proposed estimator gives good BER 
estimates even for low SNRs. 

3.3 BER estimate: Some simulation results 

Simulations were conducted to compare the BER results obtained using Eqs. 9 
and 10 with those obtained by the Monte Carlo (MC) simulations. The fol-
lowing channels which have the same magnitude but different phase response 

were used. 

H1(z) = 0.8745 + 0.4372z _l_0.2098z _ 2 (l 1) 

H2(z) = 0.2620 - 0.6647z' - 0.6995z 2 (12) 

For the experiment, the equaliser's feedforward order was chosen to be 4 with 
the transmit symbol alphabet {±1}. Fig 2 compares the BER estimates of 
Eqs. 9 and 10 with those of MC simulations for the two channels using differ-
ent delay orders. The results show that the proposed BER estimate is very 
accurate. To illustrate the strong dependence of the equaliser's performance 
with respect to the delay order, we plot the performance of the equaliser using 
the delay parameter as the horizontal axis in Fig 3. 

4 Selecting subset RBF model 

The implementation of the full RBF solution requires the use of all N channel 

states. In some cases, equivalent Bayesian solution may be realised by using 
a subset of the full model. For example the decision boundaries of delay 
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Figure 2: Estimated and MC simulations of BER vs SNR for H1(z) (Fig a) 

and H2(z) (Fig b). 

order 1 and 2 (Fig lb) can be realised by a RBF model with centres ci  from 

{c3, c4. CS, C61 (Fig. 4a,b). 
In many cases, we have observed that it is possible to find small sub- 

set RBF model to approximate the full model's solution when the decision 
boundary is linearly separable. The task is however much more difficult when 
the decision boundary is nonlinearly separable. 

This section examines subset model selection algorithms to reduce mi-

plementation complexity of the RBF equaliser. The objective is to find a 

smaller-sized, in terms of number of centres, RBF model to realise or to ap-
proximate the same Bayesian solution as the full model. To understand how 
centres affect boundary, we analyse the effects of centre positions on decision 

boundary when o - 0. Defining the points on the boundary as r. i.e. 

{rolf(ro) = 0), Eq. 5 becomes 

P(2) 12  exp(—ro - cII2/2o) = 

C, 

PJ(2) 12  exp(—ro - ciIl2 /2u) (13) 

C, EC 

When c - 0, the sum on the lbs. of Eq. 13 becomes dominated by the 

closest centres to r, i.e. 

UI = mm {IIro - ckll} (14) 

CkEC 

This is because the contribution of centres c b' converges much more 

quickly to zero when or, - 0 than centres belonging to U+. Similarly, the sum 

on the r.h.s of Eq. 13 becomes dominated by the closest centres, U. This 
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Figure 3: Estimated and MC simulations BER vs delay order for SNR 12dB, 

14dB and 16dB for H1(z) (Fig a) and H2(z) (Fig b). 

implies that the asymptotic decision boundaries are hyper-planes between 

pairs of U+ U and that the set of all U+ U defines the asymptotic decision 

boundaries. The following algorithm may be employed to find the set of all 

U+, U-. 
Algorithm 1 : Finding U,U 

For c, E c+ 
For c2  C c 

r=c+, 2 ) 

if 
f(r) = 0 and 1 (15) 

[ 
= minC€c+{Ir_ckIIJ ] 

Cl U+, cj  — U 
next c - 

next C1 . 

Algorithm 1 was tested to find subset models from the full RBF model 

(Sec. 2.1) used on channel H(z) = 0.5 + 1.0z'. As expected, when delay 

order 0 was used, all the centres, Jet , ....cg) were picked to form the subset 

model (Fig. ib). For the case of using delay order 1, the selected subset 

model consisted of centres {c.3 , c4 , c5, ce} These results can be easily verified 
by visual inspection of the boundary formation as illustrated in Figs. 4a and 

lb. 
Although algorithm 1 works, the selection process is not optimum in the 

sense that redundant centres may be included to form the subset model. To 
illustrate, consider the selected subset model when delay order 2 was used. 
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Figure 4: Realisation of decision boundary using subset RBF model. 
Decision boundary for (Fig a) delay d = 1, (Fig b) delay d = 2. 

By visual inspection of Figs. 4b and lb, it is clear that the subset model 

with centres {c3, C4, c5 , C61 is sufficient to realise the Bayesian boundary. Al-
gorithm 1, however, picked all the centres to form the subset model. The 

reason for including centres {c1  . c2} and {C7, cg} is that these two pairs of 
centres satisfy Eq. 15 in algorithm 1 and thus also define the asymptotic de-
cision boundary. They are however unnecessary because the decision bound-

ary formed using centres {c3. c4} and {c5, c6} are the same. 
To minimise the inclusion of redundant centres, an additional condition 

is introduced in Eq. 15 to verify if the new centres under consideration affect 
decision boundary. If the decision boundary changes with the inclusion of 
the new centres, they will be accepted, otherwise ignored. By adding this 
condition. some redundant centres will not be included in the selected subset 
model. The algorithm for the improved version is as follows: 

Algorithm 2 : Finding U'. U- 

r = c1  + 
1(r) = 0 and 

if C1  = minckEc+{IIro - ckll} and 
13 (r)0O 

c, — U. c —= 

f = RBF model formed using U+, U-  as centres. 

Delay order I 

-I 

-2 

.3 
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4.1 Subset model selection : some simulation results 

Simulations were conducted to select subset models from the full model used 

on channels H1(z) and H2(:). The feed forward order used was in = 4, 

resulting in a full model with N, = 64 centres. Using SNR 

condition at 16dB, simulations were conducted to evaluate the performance 
of the subset RBF, full RBF and the linear Wiener equalisers for the two 
channels. The results are tabulated in Table la and lb; The first column of 
each table indicates the delay order parameter, the second column shows the 
size of the subset model used while the third, fourth and fifth columns list the 
BER performance of the respective equalisers and the last column indicates 
if the decision boundary is linearly or not-linearly separable. 

Our results indicate that the full RBF models' BER performance for cases 
when the decision boundary is linearly separable, are normally better than 
those when the decision boundary is not linearly separable. This is not sur-
prising since decision boundaries which are not linearly separable tend to be 
much more complicated and have more centres with different decision outputs 
near to each other. It was also observed that smaller-sized RBF subset mod-

els can be found for the case when the boundary is linearly separable. and 

their performance not significantly poorer than the full model's performance. 

ubsel Subset Full-model Linear-Eq Decinion 5ubuei Subset FuII.mode Linear-Eq Decision 

Size BER BER BE any j Size BER BER RER BowaJary 

o 56 -4.09 I .4.09 .344 Linear Sep 0 56 -0.80 -1.30 -0.37 INoi.Lincar Sep 

1 57 -4.14 -4.14 -3.07 Unew Sep. I 46 -2.99 -2.99 -1.61 Uncar Sep 

2 32 -4.11 -4.12 -2.36 Line&Sep. 2 38 -3.38 -3.38 -2.67 Linrar Sep  

3 32 -4.11 .4. 12 1.84 1-inearSep. 3 56 .3.43 -3.43 -1.94 L,inearSep. 

4 48 -1.91 -1.91 -0.59 Not-UncarSep. 4 55 -3.32 -3.32 -1.16 Noi-LinearSep. 

5 64 -0.97 -0.97 -0.37 Not-Linear Sep 54 -141 -141 -080 NoiLinear Sep. 

Table a : Channel 111(z) Table b: Channel H2(z) 

Table 1: Comparing the performance of the full-size (64 centres) RBF equal-
iser, subset RBF equaliser and the Wiener equaliser for Channel 

H1(z) (Table la) and Channel H2(:) (Table lb) at SNR=16db. 
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5 Conclusions 

This paper discusses the implementation of the RBF equaliser to realise the 
Bayesian solution. In particular, the effects of the delay order parameter on 
decision boundaries and BER performance is highlighted. We have showed 
that the attainable BER performance depends strongly on the delay order 
parameter and can be significantly different for various values of the delay 
order. To determine the optimum operating delay order parameter, a simple 

BER estimator for the RBF equaliser is proposed. 
The implementation complexity of the RBF equaliser to realise the Bayesian 

solution is also discussed. To reduce some of the implementation complexity, 
we have introduced an algorithm to select subset model from the full RBF 
implementation. Our results indicate that that good subset models with no 
significant degradation in BER performance may be found. 
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Appendix B 

Maple programme to derive 

gradient of P1  cost function 

This section discuss the derivation of ÔP1/8Wm  where P1 is the linear equaliser's probability of 

mis-classification cost function, and wm  is the weight of the linear equaliser. 

To recap, the expression of the probability of mis- classi fi cation of a linear equaliser, Pi, is 

P11 E  P1'(Cj ) + —' E  P(c,). 

C,EC 1 CkEC 1  

no 

In optimising the above function with respect to the weights w of the linear equaliser, the 

partial differentiaon of the P1 with respect to the weights needs to be calculated. The values of 

3P1 /@wi,ÔP1/ôw2,...,ÔP1/ôWm, where ÔP,/Owk, 1<k< in, is 

OP,/ôwk = 
0Q(K j I/e) (B.2) 

By chain rule, each ÔQ(I(jj/0e)/19wk can be expressed as 

ÔQ(KjI/0e) = ôQ(KjI/e) ,i (B.3) 

OWk oç3 ôWk 

The results using the Maple symbolic partial differentiaon algorithm shows that 

(CTW \ 
V"  - ww) (wk(cTw) - (sgn(cw)cjk 

2)3/2 
(B.4) 

ôwk 
= --e 

The Maple session to perform the above derivation is contained in the following pages. 
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Appendix B : Maple programme to derive gradient of P1  cost function 

> qabn=proc(vafl.std devil 
> local a; 
> #a:=) i/sqrt(2Pi))*'int(eXP(_2/2),X=(ab8(())mtY); 
> a:=)l/sqrt(2*Pi))"int(eXP)_((2/2).X= (abs)va.11)/std de')..infinity); 
> REflRN(a); 
> end; 

qabs proc(vall.std dcvi) 
local a; 

a l/sqrt(2*Pi)inL(exp(1/2*X2)n = nhs(vail)/stddev infinity); RETURN(al 

end 

> di )ci i'wi -4-  c12w2 + c13w3)/sqrt(Wi'Wi + w2w'2 + w3'w3); 

> d2 (c21'wl + c22 w2  + c23w3)/vqrt)w1W1 + w2w2 + w3w3); 
> d3 (c31w1 + (:32:w2 + c33'wi)/sqrt(WiWi + w2w2 + w3w3); 

> d4 )c41w1 + c42w2 + c43w3)/sqrt(wiWi + w2w2 + w3w3): 

> 

> 

dI - 
c it ui + c112w2 + clSuS 

- 
- 

c21w1+c22w?+C2Sw3 

/iT2 + + 

dS -- 
c51 u1 + C32 We  c.9w 

- /i72 + w 22 +w32  

d.4 - 
c4 1 w1+c42 w2 +C43 W8  

- "Ji+ u.? 2  + 

> 
> qi abvq 15(di,td dev) 
> 2 abs=q tbs)d2std dcv) 
> qi abs =qabv(d3stddev)' 
> q4 absqabv(d4Std dcv) 
> 

(2

i
( fi_ !/2 Vierf '/kn wl -4- c12 w2+ ciiu3I 

I IWI + w22  + w3 2Isd_deu 

2 

!erf 
(li u-I + c22 we + c23 w3  

,/7
- (, 

q2-abs 

2 
\/Iw/ + w22  + w321sLder 

!i,jer 
(-I-k31 WI + 32 w2 + cISw2iI 

Q_GbS = 

2 w22  + w.9Is1d_dcv 

(_ 

(ii u- I + c42w2 + c43w 

-= 

2
71-7+ --,-, +    W31Istd_dev 

q4 -abs 

 

2 
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Appendix B : Maple programme to derive gradient of P, cost function 

Maple V Release 3 2 

> diff'ql wl ab:=mp1ify(diff(ql ib,w1)); 
> diff q2 w Iabs:ImpIi1Y(diff(q2 abs.wl 
> di1q3 w l abs:sImplifY(d1ff(q3swI 
> dj4fq4 w 1 abs:simp1lfy(dff(q4abvI 

> 
> 

dgffqLwIa!s 

_ abs(1 c 11 w!+ c J2 w + C I5 WS)C11It1 2 +v22 + 2I 

+ JI w1+ cJ2w2+ c!S W5labS(1,w12 +w22 82)w1)/(V 

wi2  + w + w3 21 312  sd_dev) 

diff_q2.wl_abs 

—abs(1, c?iwi + c22w2 + c23w?)c21 IL'1 2  + w22  -1- wS2I 

+ 2I wi+ c22w21 c2Y wSl abs(I W 12 +w22 +W32)W1)/(V  

w1 2  + w22  + w31
3/2  1d-der) 

(- 1 12 1 v'( diffq8 wi aôs 

—abs(1. c8l w + c32 w2 + c38w8)01 ltvi 2  + w2 2  -4- w 2I 

+Jwi+c2w2+cw1 abs( I.W1+w2+w3))/(1 

wI1  -# w22  + IL321 / sfd_dcv) 

1/2 '1 
1 diff_q4 _wLabs  

—abs(l. c41w1 + c42w2 + c43w3)c4i lw!2  + w2 2  + ItS 2! 

w12  + w2 2  + 0 2  sid_dev) 

> diffqlw3 as=simpIify(dff(ql abw3)); 
> diWq2w3abs:simpliiy(dlff(q2 abaw3)) 
> difl q3 w3 abs: s1mp1ify(diff(q3abs,W3)); 
> diIq4w3 ab9:=simplify(diff(q4abs,w3)l: 

> 
> 

-1/2 
diff_qi -U-3-abs 1 e\

( 
/ 

—abs()ciiwi +c12w2+ciSwS)ci3lw! 2 + we,  +wS 2I 

+ kil ui + c12w2 + riSu abs( 1. w1 2  + w27  + w32)w8>/( 

wi 2  + w22  + w52I3/ 2  .1d.dev) 
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Appendix A : Original publications 

2 

-2 

ci) 

Del, order = 

.1 -2 .1 0 I 2 3 

03 

Delay onr = 2 

-2 

r rj 

Fig (a) 
Fig (b) 

Figure 4: Realisation of decision boundary using subset RBF model. 
Decision boundary for (Fig a) delay d = 1. (Fig b) delay d = 2. 

By visual inspection of Figs. 4b and lb. it is clear that the subset model 

with centres {c, c4 . C, c} is sufficient to realise the Bayesian boundary. Al-
gorithm 1. however, picked all the centres to form the subset model. The 

reason for including centres {C1, c21 and {cT, c8} is that these two pairs of 
centres satisfy Eq. 15 in algorithm 1 and thus also define the asymptotic de-

cision boundary. They are however unnecessary because the decision bound-

ary formed using centres {c3, c41 and {c5, c6} are the same. 
To minimise the inclusion of redundant centres, an additional condition 

is introduced in Eq. 15 to verify if the new centres under consideration affect 
decision boundary. If the decision boundary changes with the inclusion of 
the new centres, they will be accepted. otherwise ignored. By adding this 
condition, sonic redundant centres will not be included in the selected subset 
model. The algorithm for the improved version is as follows: 

Algorithm 2 : Finding LT+,U- 

r = Ca + ( c,-,  C
, 

1(r) = 0 and 

if c4  = WIflCa  ec { Iro - } and 

f(r)$0 

C, —a  U", c2  -i  U 

f3 = RBF model formed using U+. U as centres. 
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Appendix B : Maple programme to derive gradient of P1 cost function 

Maple V Release .3 3 

diff_q2-0_abs  

—abs(I, c2iwl + cflw2 + c3w3)c23 JW12  + w22  + w521 

+ 21 wi + c22 w2 + c23w81ab5(1. w1 2  + w22  + w32)w3)/(v 

lw12  + w22  .+ w32
1 
3/2  siddev) 

dffq3_wYabs —le(-
l/2: /( 

ab6(1, cYl wi + c32w + c330)c33 JW12 + w22  + wsl 

lw!2  + w2 2  + w321312  sd_dcv) 

1/7 

dzffq4 w&5bs _e( ñ( 

abs(1,c4iwl+ c42w2 + c4Yw3)c.5 wi 2  + wE + w31 

- 4iwi + c42w2 + c4gwabs(1. w1 2  + w2 2  + wY2)w3)/(v 

w12  + w2 2  + w3 2I 312  sd_dcv) 
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