1,217 research outputs found

    Quantum Control Landscapes

    Full text link
    Numerous lines of experimental, numerical and analytical evidence indicate that it is surprisingly easy to locate optimal controls steering quantum dynamical systems to desired objectives. This has enabled the control of complex quantum systems despite the expense of solving the Schrodinger equation in simulations and the complicating effects of environmental decoherence in the laboratory. Recent work indicates that this simplicity originates in universal properties of the solution sets to quantum control problems that are fundamentally different from their classical counterparts. Here, we review studies that aim to systematically characterize these properties, enabling the classification of quantum control mechanisms and the design of globally efficient quantum control algorithms.Comment: 45 pages, 15 figures; International Reviews in Physical Chemistry, Vol. 26, Iss. 4, pp. 671-735 (2007

    Construction of Modern Robust Nodal Discontinuous Galerkin Spectral Element Methods for the Compressible Navier-Stokes Equations

    Full text link
    Discontinuous Galerkin (DG) methods have a long history in computational physics and engineering to approximate solutions of partial differential equations due to their high-order accuracy and geometric flexibility. However, DG is not perfect and there remain some issues. Concerning robustness, DG has undergone an extensive transformation over the past seven years into its modern form that provides statements on solution boundedness for linear and nonlinear problems. This chapter takes a constructive approach to introduce a modern incarnation of the DG spectral element method for the compressible Navier-Stokes equations in a three-dimensional curvilinear context. The groundwork of the numerical scheme comes from classic principles of spectral methods including polynomial approximations and Gauss-type quadratures. We identify aliasing as one underlying cause of the robustness issues for classical DG spectral methods. Removing said aliasing errors requires a particular differentiation matrix and careful discretization of the advective flux terms in the governing equations.Comment: 85 pages, 2 figures, book chapte

    Entropy Stable Summation-by-Parts Methods for Hyperbolic Conservation Laws on h/p Non-Conforming Meshes

    Get PDF
    In this work we present high-order primary conservative and entropy stable schemes for hyperbolic systems of conservation laws with geometric (h) and algebraic (p) non-conforming rectangular meshes. Throughout we rely on summation-by-parts (SBP) operators which discretely mimic the integration-by-parts rule to construct stable approximations. Thus, the discrete proofs of primary conservation and entropy stability can be done in a one-to-one fashion to the continuous analysis. Here, we consider different SBP operators based on finite difference as well as discontinuous Galerkin approaches. We derive non-conforming schemes by extending ideas of high-order primary conservative and entropy stable SBP methods on conforming meshes. Here, special attention is given to the coupling between non-conforming elements. The coupling is instructed to entropy stable projection operators. However, these projection operators suffer from a suboptimal degree. Therefore, we develop degree preserving SBP operators where the norm matrix has a higher degree compared to classical SBP operators. With these operators it is possible to construct entropy stable projection operators which have the same degree as the SBP differentiationmatrix. Typically, high-order primary conservative and entropy stable schemes are semi-discrete methods with a discretized spatial domain and assuming continuity in time. Therefore, temporal errors are introduced when integrating the conservation laws in time with standard methods, e.g. Runge-Kutta schemes, for which the entropy can have an unpredictable temporal behaviour. Thus, we extend high-order primary conservative and entropy stable semi-discrete methods to fully-discrete schemes on conforming and non-conforming meshes. This results in an implicit space-time method. We introduce a simple mesh generation strategy to obtain quadrilateral meshes surrounding two dimensional complex geometries. Finally, with the generated meshes we simulate a flow around a NACA0012 airfoil to demonstrate the benefits of considering non-conforming elements for a practical simulation
    corecore