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Abstract

In this work we present high-order primary conservative and entropy stable schemes
for hyperbolic systems of conservation laws with geometric (h) and algebraic (p)
non-conforming rectangular meshes. Throughout we rely on summation-by-parts
(SBP) operators which discretely mimic the integration-by-parts rule to construct
stable approximations. Thus, the discrete proofs of primary conservation and en-
tropy stability can be done in a one-to-one fashion to the continuous analysis.
Here, we consider different SBP operators based on finite difference as well as dis-
continuous Galerkin approaches.

We derive non-conforming schemes by extending ideas of high-order primary con-
servative and entropy stable SBP methods on conforming meshes. Here, special
attention is given to the coupling between non-conforming elements. The coupling
is instructed to entropy stable projection operators. However, these projection op-
erators suffer from a suboptimal degree. Therefore, we develop degree preserving
SBP operators where the norm matrix has a higher degree compared to classi-
cal SBP operators. With these operators it is possible to construct entropy stable
projection operators which have the same degree as the SBP differentiation matrix.

Typically, high-order primary conservative and entropy stable schemes are semi-
discrete methods with a discretized spatial domain and assuming continuity in
time. Therefore, temporal errors are introduced when integrating the conservation
laws in time with standard methods, e.g. Runge-Kutta schemes, for which the en-
tropy can have an unpredictable temporal behaviour. Thus, we extend high-order
primary conservative and entropy stable semi-discrete methods to fully-discrete
schemes on conforming and non-conforming meshes. This results in an implicit
space-time method.

We introduce a simple mesh generation strategy to obtain quadrilateral meshes
surrounding two dimensional complex geometries. Finally, with the generated
meshes we simulate a flow around a NACA0012 air foil to demonstrate the benefits
of considering non-conforming elements for a practical simulation.
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Kurzzusammenfassung

In dieser Arbeit präsentieren wir primär konservative und Entropie stabile Ver-
fahren hoher Ordnung zum Lösen von Systemen von hyperbolischen Erhaltungs-
gleichungen auf geometrischen (h) und algebraischen (p) nicht-konformen rechteck-
igen Gittern. Dabei verwenden wir ausschließlich summation-by-parts (SBP) Op-
eratoren, welche die partielle Integration diskret nachahmen um stabile Approxi-
mationen zu konstruieren. Dadurch können die Beweise von primär konservativen
und Entropie stabilen Verfahren analog zur kontinuierlichen Analyse durchgeführt
werden. In dieser Arbeit betrachten wir verschiedene SBP Operatoren basierend
auf finite Differenzen sowie auf unstetigen Galerkin Ansätzen.

Wir leiten nicht-konforme Verfahren her indem wir die Ansätze von primär kon-
servativen und Entropie stabilen SBP Verfahren auf konformen Gittern erweitern.
Besondere Aufmerksamkeit ist der Kopplung von nicht-konformen Gittern gewid-
met. Die Kopplung ist angewiesen auf Entropie stabile Projektionsoperatoren.
Diese Projektionsoperatoren haben allerdings einen suboptimalen Grad. Dadurch
entwickeln wir Grad erhaltene SBP Operatoren, wo die Norm Matrix eine höhere
Genauigkeit als herkömmliche SBP Operatoren aufweist. Mit diesen Operatoren
können wir Entropie stabile Projektionsoperatoren konstruieren welche denselben
Grad haben wie die SBP Differtiationsmatrix.

Gewöhnlich sind primär konservative und Entropie stabile Verfahren semi-diskret
mit einer räumlichen Diskretisierung. Die Zeit hingegen wird als kontinuierlich
angenommen. Dadurch ergeben sich temporäre Fehler durch die Zeitintegration
der Erhaltungsgleichungen mit Standardverfahren, wie z.B. Runge-Kutta Ver-
fahren, wodurch die Entropie einen unberechenbaren Verlauf in der Zeit annehmen
kann. Daher erweitern wir primär konservative und Entropie stabile semi-diskrete
Methoden hoher Ordnung zu voll-diskreten Verfahren auf konformen und nicht-
konformen Gittern. Die resultierenden Verfahren sind implizite Raum-Zeit Ap-
proximation. Wir führen eine simple Strategie zur Generierung von viereckigen
Gitterelementen ein um zwei dimensionale komplexe Geometrien zu umgeben. Ab-
schließend simulieren wir mit diesen Gittern die Strömung um einen NACA0012
Tragflügel. Mit dieser Simulationen demonstrieren wir die Vorteile von nicht-
konformen Gittern für praktische Anwendungen.
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List of Symbols and Abbreviations

In this work continuous functions are denoted by capital letters with a script type,
e.g. A. Discrete approximations of continuous functions are given by lower case
letters, e.g. a. Vectors are denoted with bold letters, e.g. a = [a0, ..., aN ]T , while
matrices are presented using capital letters with sans-serif font, e.g. A.

Alphanumeric Symbols

1 Vector of ones
a, b Wave speed of the linear advection equation
ã, b̃ Contravariant wave speed of the linear advection equation
ãp, b̃p Approximated contravariant wave speeds of degree p
bn Number of boundary nodes
B Boundary condition
B Boundary matrix with B = diag(−1, 0, . . . , 0,+1)
Br The r-th Bernoulli polynomial
BLEt, BREt Discrete energy growth on the boundaries
CFL Courant-Friedrichs-Lewy number
D Differentiation matrix
(DS), (DT ) Space-time discretization is space and time, respectively
(Dx), (Dy) Spatial discretization is x- and y-direction, respectively
e0 Standard basis vector with e0 = (1, 0, . . . , 0)
eN Standard basis vector with eN = (0, . . . , 0, 1)
E Element
E Total energy
EC Denotes a flux is entropy conservative
ES Denotes a flux is entropy stable
Etot
t Total energy growth

f, g Discrete physical fluxes
f̃ , g̃ Discrete contravariant physical fluxes
f ∗, g∗ Discrete numerical surface fluxes
f̃ ∗, g̃∗ Discrete numerical contravariant surface fluxes
f#, g# Discrete numerical volume fluxes
f̃#, g̃# Discrete numerical contravariant volume fluxes
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List of Symbols and Abbreviations

fEnt Discrete entropy flux function
F ,G Physical fluxes
F̃ , G̃ Physical contravariant fluxes
F ent Entropy flux function
h Water height of the Shallow Water equations
H Implicit system for space-time discretization
I Identity matrix
IEt Discrete energy growth on an interface
ISt Discrete entropy growth on an interface
IUt Discrete growth of the primary quantities on an interface
J Jacobian determinant
K Dissipation matrix
L Denotes the left element
L Interpolation operator
M Diagonal symmetric positive definite norm matrix
Ma Mach number
n = (n1, n2) Normal vector in two dimensional space
N + 1 Number of nodes on an element in one dimension
NQ Number of elements
Nt Number of elements in t-direction
NQx Number of elements in x-direction
NQy Number of elements in y-direction
NE Number of elements on an interface with hanging corners
O(·) Error estimate
p Polynomial degree
P Pressure
P Projection operator
Q Skew-symmetric SBP matrix with Q = MD
R Denotes the right element
Res Residuum to validate primary conservation and entropy stability
S Discrete entropy function
S Entropy function
S Surface matrix
SAT Simultaneous approximation term
Stott Total entropy growth
t Time in physical space
T Final time
u Numerical solution of a scaler conservation law
u Numerical solution of a system of conservation laws
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List of Symbols and Abbreviations

u∗ Numerical surface state in time
u# Numerical volume state in time
U Solution of a scaler conservation law
U Solution of a system of conservation laws of size NEq

U0 Initial condition
U tot
t Total growth of the primary quantities
v Discrete Entropy variables
V Entropy variables
V P Volume part
x, y Coordinates in physical space
ZQ, Ze,Zopt Optimized values for the construction of operators
γ Adiabatic coefficient for the Euler equations
Γ Interface curves describing the surface of a curved domain
∆ Distances
∆ Differencing matrix
ζ Source term for a manufactured solution
ϑ Random generated numbers
ν Velocity
λ Eigenvalue of the Jacobian flux
ξ, η Coordinates in reference space
ξ,η Nodal distribution in the reference space
Ξ Denotes the Mortar element
ρ Density
σ Dissipation rate
τ Time in reference space
υB Interface function defined on the boundary of Ω
ϕ Basis function for variational formulation
φ Test function for variational formulation
Φ Function detecting badly shaped elements
Φmin Upper bound detecting badly shaped elements
χ Two dimensional mapping function
Ψu Entropy potential
Ψf ,Ψg Entropy flux potential
ω Quadrature weights
Ω Physical domain
Ω̂ Reference space
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List of Symbols and Abbreviations

(U ,W)L2(Ω) The L2 inner product
||U||L2(Ω) The L2 norm induced by (U ,U)L2(Ω)
〈u,v〉M Discrete inner product approximated with L2 inner product
||u||M The discrete norm induced by 〈u,u〉M
||u||2 Euclidean vector norm
{u} Average of two states of u

Abbreviations

CFL Courant-Friedrichs-Lewy
CPR Correction procedure via reconstruction
DG Discontinuous Galerkin
DGSEM Discontinuous Galerkin Spectral Element Method
DOFS Degrees of freedom
DP Degree Preserving
EC Entropy conservative
EOC Experimental order of convergence
ES Entropy stable
FD Finite difference
FEM Finite element method
FV Finite volume
GMRES Generalized minimal residual
HGTL Hybrid Gauss-Trapezoidal-Lobatto
HOPR High Order Preprocessor
IBP Integration-by-parts
LAE Linear advection equation
LG Legendre-Gauss
LGL Legendre-Gauss-Lobatto
MHD Magnetohydrodynamics
ODE Ordinary Differential Equation
PDE Partial Differential Equation
SBP Summation-by-parts
SAT Simultaneous-Approximation-Term
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1. Introduction

In large scale applications the effective use of computational resources is an im-
portant aspect of emerging numerical methods. In particular the distribution of
the degrees of freedom are of special interest. This makes numerical methods a
powerful tool for modelling experiments which are either too expensive or impos-
sible to perform. As the power of computers has increased drastically over the
last decades, we have come to rely on numerical schemes to simulate real world
problems based on mathematical models.

Systems of conservation laws cover a broad range of numerical applications as
they simulate the behaviour of numerous fluids. Conservation laws consists of par-
tial differential equations tracking the fluid behaviour and evolution over time on a
given spatial domain. Their solutions are quantities such as density or velocity. For
conservation laws the conserved quantities can only change in time depending on
the fluid flow into or out of the system. This is referred to as primary conservative.

For approximating the solution of partial differential equations there is a broad
range of numerical methods based on finite differences, finite volumes or finite
elements. Especially focusing on conservation laws high-order numerical methods
have been constructed to solve the mathematical model and at the same time to
discretely mimic primary conservation. Still, such numerical schemes do not neces-
sarily represent the physical behaviour of a fluid correctly. A possible explanation
for this phenomenon is that the scheme does not discretely obey the second law
of thermodynamics. Therefore, over the past years numerical schemes have been
developed which are primary conservative and at the same time discretely obey
the second law of thermodynamics. Such schemes are denoted as entropy stable.

In 1993 Carpenter et al. [12] constructed high-order, primary conservative and
energy (linear entropy) stable schemes for linear conservation laws. The method
makes use of summation-by-parts operators based on finite differences. Such op-
erators were first designed in 1974 by Kreiss and Scherer [72] and are constructed
to discretely mimic the integration-by-parts rule. Therefore, the discrete analysis
of primary conservative and energy stable schemes is done in a one-to-one fashion
to the continuous analysis. Nowadays, numerous summation-by-parts operators
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1. Introduction

exist, e.g. operators based on discontinuous Galerkin approaches [42]. Therefore,
the method of Carpenter et al. can be interpreted as a finite difference, discon-
tinuous Galerkin or any other numerical approach by simply considering different
summation-by-parts operators. Due to the variety, summation-by-parts operators
had a great impact on numerically solving conservation laws in a stable manner.
Schemes which rely on the use of summation-by-parts operators are denoted as
summation-by-parts methods.

Designing primary conservative and entropy stable methods for non-linear prob-
lems is a complicated task. Back in 1984, Tadmor was the first to create such a
scheme based on low-order finite volume methods [112]. Extension of this work to
high-order entropy stable schemes with summation-by-parts operators have been
developed relying on split forms, e.g. [42]. However, depending on the conservation
law, finding such a split form can be cumbersome. A breakthrough on high-order
entropy stable methods is the Flux Difference scheme developed by Fisher and
Carpenter [33] in 2013. Here, the method of Tadmor for arbitrary conservation
laws is extended to a general high-order scheme using summation-by-parts opera-
tors without considering any split forms.

All these introduced schemes rely on semi-discrete discretizations. Here, we fo-
cus on a spatial discretization and assume continuity in time. In order for the
numerical solution to discretely obey the second law of thermodynamics we need
to consider a small time step. A recent work by Friedrich et al. [38] expanded the
high-order primary conservative and entropy stable Flux Difference method to a
fully-discrete scheme without assuming exact quadrature. Thus, the physical law
is not violated despite the time step.

When applying numerical schemes to real world problems the choice and de-
sign of the mesh is an important aspect. Here, we consider multi-block meshes
with quadrilateral elements, where each element has its own nodal distribution.
Entropy stable methods like the Flux Difference scheme are typically constructed
on a conforming mesh. For such meshes the nodal distribution of each element
and the element interfaces need to coincide. However, for certain problems one is
interested in refining the mesh resolution in certain regions, e.g. at the surface of
an air foil to observe the fluid behaviour. Obtaining such conforming quadrilateral
meshes is cumbersome or even impossible. Further mesh flexibility is introduced
by considering non-conforming elements. Here, neither the nodes nor the inter-
faces of the elements must coincide. For such meshes we can arbitrary refine the
resolution of an element independent of the neighbor elements. In addition, as the

2



1. Introduction

interfaces of elements do not necessarily have to coincide, it is easier to generate
non-conforming meshes for simulating flows around complex geometries. The main
question of this work is:

Can we maintain convergence order, primary conservation and entropy stability
of a summation-by-parts scheme when focusing on non-conforming meshes?

Investigations on this topic have been done over the last years and will be pre-
sented in this work.

1.1. Goals of the Dissertation

The main goal of this dissertation is to propose high-order primary conservative
and entropy stable summation-by-parts schemes on non-conforming meshes. Fo-
cusing on linear conservation laws Mattsson and Carpenter [83] were the first to
derive such a scheme. Their method consists of projection operators connecting
the non-conforming elements. In terms of energy stability the projection operators
satisfy certain stability and accuracy conditions. However, due to these conditions
the projection operators suffer from a suboptimal degree. Therefore, the method
loses up to one order of accuracy compared with a conforming discretization. To
overcome this order loss we present a new set of degree preserving summation-by-
parts operators such that the resulting non-conforming scheme is of the same order
as the conforming scheme.

Moving on to non-linear problems, the theory on entropy stable methods on
non-conforming meshes is rare. In this dissertation we present the non-conforming
high-order primary conservative and entropy stable method by Friedrich et al. [38].
The authors were the first to derive such a scheme on Cartesian meshes where nei-
ther the nodes nor the interfaces need to coincide. The key concept of this method
is to combine the conforming Flux Difference method of Fisher and Carpenter
for non-linear problems with the non-conforming summation-by-parts method by
Mattsson and Carpenter for linear problems. Additionally, in comparison to linear
conservation laws, a special modification of the term coupling the non-conforming
elements needs to be considered.

Besides focusing on non-conforming elements in space for, e.g. simplifying
the mesh generation, we apply non-conforming elements in time on fully-discrete
schemes. Thus, we can consider different time steps for different elements gaining
additionally flexibility and at the same time still ensuring primary conservation

3



1. Introduction

and entropy stability.

Finally, in order to demonstrate the advantageous features of non-conforming
meshes, we present a simple adaptive cut cell strategy to generate non-conforming
meshes around complex geometries. Therefore, we simulate a flow around a
NACA0012 air foil on a conforming and a non-conforming mesh and compare
the results.

Parts of this dissertation have been published [38, 39] or are under review [40]
in the Journal of Scientific Computing .

1.2. Outline of the Dissertation

In Chapter 2 we introduce energy stable and primary conservative summation-by-
parts methods focusing on the one and two dimensional linear advection equation.
Here, we demonstrate the features of summation-by-parts operators and introduce
different operators derived from finite differences and discontinuous Galerkin ap-
proaches. In Chapter 3 we extend the energy stable and primary conservative
method to a non-conforming mesh by introducing the method of Mattsson and
Carpenter [83]. Here, special attention is paid to the construction of projection
operators connecting non-conforming elements. As the operators have a subopti-
mal degree we introduce degree preserving summation-by-parts operators.

After introducing the linear theory we move on to non-linear conservation laws
and introduce the concept of entropy in Chapter 4. We demonstrate the addi-
tional issues for non-linear problems and derive high-order entropy stable schemes.
Here, we discuss split forms of conservation laws and introduce the Flux Difference
scheme by Fisher and Carpenter [34]. In Chapter 5 we answer the question in the
introduction and present the high-order primary conservative and entropy stable
scheme on a non-conforming mesh by Friedrich et al. [38].

Furthermore we introduce a high-order primary conservative and entropy stable
scheme based on a fully-discrete discretization in Chapter 6. This method can
be applied to conforming and non-conforming elements. Finally, we discuss the
generation of meshes in Chapter 7 and present numerical simulations.

Within each chapter, besides Chapter 7, proofs occur. Theoretical findings and
proofs will be numerically verified at the end of each chapter.
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2. Energy Stable and Primary Conservative
Summation-by-Parts Methods for the
Linear Advection Equation on
Conforming Meshes

We are interested in solving hyperbolic conservation laws. To start off we focus on
one dimensional scalar conservation laws

∂U
∂t

+ ∂F(U)
∂x

= 0, (2.1)

with t ∈ [0, T ] ⊂ R, x ∈ Ω = [xL, xR] ⊂ R and appropriate initial and boundary
conditions. Throughout this thesis we denote U as the conservative variable and
F as the physical flux. Conservation laws are primary conservative, in a sense that
the conserved solution can only change in time depending on the fluid flow into or
out of the system. Mathematically speaking, the time derivative of the integral of
U over Ω only depends on its boundary conditions and so is conserved over time
within the domain Ω. This can be verified by applying Gauss’ law on (2.1)∫

Ω

∂U
∂t

dΩ = υB(τ), (2.2)

where υB(τ) = −F (U(τ, ξ)) |xRξ=xL is purely defined on the boundary. This holds
for all hyperbolic conservation laws independent of the choice of the physical flux
[31].

In this chapter we set the flux to be F(U) = aU which gives us the linear
advection equation (LAE)

∂U
∂t

+ a
∂U
∂x

= 0, (2.3)

where a > 0 describes the constant wave speed. The LAE is the simplest prototype
of a hyperbolic conservation law. Later, in chapter 4, we focus on more general
systems of hyperbolic equations.
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2. SBP Methods for the LAE on Conforming Meshes

Before attempting to solve (2.3) it is necessary to ensure that the model repre-
sents the physical behaviour of U correctly or, in other words, that the model is
stable. A mathematical model is said to be stable if its solution is bounded by its
initial and boundary conditions. The choice of these conditions is an important
component to ensure that the problem is well-posed [23]. For the LAE (2.3) these
are defined by

U(0, x) = U0 (x) for x ∈ [xL, xR],
U(t, xL) = B (t) for t ∈ [0, T ]. (2.4)

Note, that the boundary conditions are one-sided as they are only defined on the
left boundary xL. Since the LAE transports information from left to right (a > 0)
it is not instructed to a right boundary condition. Also, when considering a right
boundary condition for the LAE, then the problem is not necessarily solvable [23].

The definition of linear stability is adapted from Gustaffson [50]:
Definition 1. Linear Stability
The problem (2.3) is linearly stable if the solution is bounded by its initial and
boundary conditions

||U(t, ·)||2L2(Ω) ≤ ||U0||2L2(Ω) +K(t)
∫ t

0
B(τ)2 dτ. (2.5)

where K(t) > 0 is independent of the initial and boundary conditions and the
norm || · ||L2(Ω) is induced by the L2 inner product

(U ,W)L2(Ω) =
∫

Ω
UW dΩ, ||U||2L2(Ω) = (U ,U)L2(Ω) . (2.6)

Due to Definition 1 the solution is bounded and therefore it cannot "explode" in
finite time. We will show that the LAE is stable by applying the energy method.
Therefore, we multiply (2.3) with its solution U and integrate over the domain Ω∫

Ω
U ∂U
∂t

dΩ + a
∫

Ω
U ∂U
∂x

dΩ = 0. (2.7)

Applying the product rule and rearranging sides we get∫
Ω

1
2
∂U2

∂t
dΩ = −a

∫
Ω

1
2
∂U2

∂x
dΩ. (2.8)

Now, we apply Leibniz rule on the left hand side and integrate the right hand side.
By including the boundary condition we get

∂

∂t
||U||2L2(Ω) = −a

(
U(t, xR)2 − B(t)2

)
. (2.9)
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2. SBP Methods for the LAE on Conforming Meshes

As U(t, xR)2 is non-negative, we get the following estimate

∂

∂t
||U||2L2(Ω) ≤ aB(t)2. (2.10)

Finally, by integrating in time over (2.10) and including the initial condition (2.4)
we get

||U(t, ·)||2L2(Ω) ≤ ||U0||2L2(Ω) + a
∫ t

0
B(τ)2 dτ, (2.11)

which indicates that the LAE is stable. Equation (2.11) is referred as an energy
estimate, as 1

2U
2 denotes the energy for the LAE.

Remark 1. The name energy can also be found in [24, 27, 111] and is used as in
physical models the energy is typically described by a quadratic expression.
The total energy of the system is described by 1

2 ||U||
2
L2(Ω). In other words, the

LAE is stable if its total energy is bounded by the initial and boundary conditions.
In addition, the LAE is also declared as energy stable.

In this chapter we introduce numerical methods for hyperbolic conservation laws
in one and two spatial dimensions. As for the continuous analysis above we desire
schemes which are

• Primary Conservative: The numerical approximation must discretely recover
the integral of its numerical solution over time (modulo the boundaries).

• Energy Stable: The numerical solution remains bounded by the initial and
boundary conditions of the problem.

• High-order : The scheme can differentiate polynomials with high degree ex-
actly; this implies that the order of the solution error is high-order.

Over the past years summation-by-parts (SBP) methods had a huge impact on
solving hyperbolic equations. The main idea of these methods is to mimic the
continuous analysis above with a set of discrete operators.

2.1. Summation-by-Parts Methods for the One Dimensional
Linear Advection Equation

Back in 1974 Kreiss and Scherer laid the foundation for SBP methods [72]. They
followed the idea of discretely applying the energy method to prove energy stability
of their scheme. Therefore, they invented finite difference (FD) based summation-
by-parts Operators (SBP Operators) which mimic the integration-by-parts (IBP)
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2. SBP Methods for the LAE on Conforming Meshes

rule. Thus, they were able to prove discrete stability for constant-coefficient and
periodic problems without relying on differentiability or continuity of the numerical
solution. The SBP operators are introduced in Section 2.1.1. Based on the work
of Kreiss and Scherer, novel SBP methods including boundary conditions were
presented by Strand [109], Olsson [93, 94] and Nordström and Carpenter [89].
As an extension of SBP methods, Carpenter, Gottlieb and Abarbanel [12] intro-
duced the Simultaneous-Approximation-Term (SAT) to weakly impose boundary
conditions and to consider energy stable multi-block SBP methods based on FD
operators. This method is called the SBP-SAT scheme and is introduced in Section
2.1.2. Here, there are several extension of the SBP-SAT method to a large amount
of two and three dimensional problems by considering special SATs [13, 15, 90].
In addition, the SBP-SAT method can be applied on unstructured meshes as in
[25, 55, 56, 57].

Besides of the development of energy stable FD methods, discontinuous Galer-
kin (DG) methods had a major impact in solving hyperbolic systems, which was
first introduced by Reed in 1973 [103]. This method can be interpreted as a com-
bination of finite element and finite volume schemes as they are derived from the
weak form of PDEs with basis functions and include numerical surface fluxes. The
DG method is easily applicable to high-order applications by only changing the
number of nodes within one element. Moreover, the DG method benefits from low
dispersion and dissipation errors [2]. In Section 2.1.3 we introduce the derivations
of the Discontinuous Galerkin Spectral Element Method (DGSEM) [54, 67].

Even though SBP-SAT FD methods and DGSEM follow a different motivation
they have a lot in common. In 1996 Carpenter [11] proved that under given cir-
cumstances the differentiation operator of a collocation scheme is a SBP operator.
In addition, Gassner [42] showed that the DGSEM can be interpreted as a SBP-
SAT scheme when considering Legendre-Gauss-Lobatto nodes. This enables us
to directly compare the FD and DG schemes with the SBP property within the
same framework only by exchanging the SBP operator. In addition, we introduce
a further SBP operator called Hybrid Gauss-Trapezoidal-Lobatto (HGTL) operator
in Section 2.1.4 by Fernández [23]. With the SBP framework and operators we
numerically verify the operator properties in Section 2.3.

2.1.1. Summation-by-Parts Operators

Next, we introduce SBP operators. In essence, the goal of SBP operators is to
discretely mimic the IBP property [27, 71, 81, 82, 84]. Such operators are typically
constructed in a reference space Ω̂ = [−1,+1], e.g. [39]. Therefore, we transform
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2. SBP Methods for the LAE on Conforming Meshes

the one dimensional conservation law (2.1) from Ω = [xL, xR] into Ω̂ with the affine
map

ξ(x) = 2 x− xL
xR − xL

− 1. (2.12)

The transformed PDE is represented by
∂U
∂t

+ ∂F(U)
∂x

= ∂U
∂t

+ ∂F(U)
∂ξ

∂ξ

∂x
= 0, (2.13)

including ∂ξ
∂x

= 2
∆x with ∆x := xR − xL we get

∂U
∂t

+ 2
∆x

∂F(U)
∂ξ

= 0. (2.14)

For numerically solving (2.14) we consider discrete operators. Therefore, we intro-
duce SBP operators.
Definition 2. Summation-by-Parts Operator
Given a set of N + 1 nodes ξ = [ξ0, . . . , ξN ]T on the spatial domain Ω̂ with
ξ0 = −1 and ξN = 1. We define ξk :=

[
ξk0 , . . . , ξ

k
N

]T
with k > 0. A matrix

operator D ∈ R(N+1)×(N+1) is a SBP operator of degree p which approximates the
first derivative ∂

∂ξ
on the nodal distribution ξ in Ω̂, if

• Dξk = M−1Qξk = kξk−1, k = 0, 1, . . . , p.

• M denotes the norm matrix and is symmetric positive definite.

• Q + QT = B := diag(−1, 0, . . . , 0, 1).

We consider only SBP operators where the norm matrix M is diagonal as this is
indispensable later for proving stability for non-linear problems in Chapter 4. The
norm matrix M generates a discrete L2 inner product [23, 58] and norm such that

〈u,w〉M = uTMw ≈
∫ +1

−1
UW dξ = (U ,W)L2(Ω̂) , ||u||2M = 〈u,u〉M , (2.15)

where U ,W are continuous functions on Ω̂ with their discrete projections onto the
nodes ξ

u := [U(ξ0), . . . ,U(ξN)]T ,
w := [W(ξ0), . . . ,W(ξN)]T .

(2.16)
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2. SBP Methods for the LAE on Conforming Meshes

Assuming that D is of degree p, then the norm matrix M is automatically of degree
2p− 1, meaning that if K = UW is a polynomial of degree 2p− 1, then

〈u,w〉M = (U ,W)L2(Ω̂) , (2.17)

see [23, 58]. Next, we examine the SBP property MD + (MD)T = B and point out
its relation to IBP. Due to IBP we know(

U , ∂W
∂ξ

)
L2(Ω̂)

= UW
∣∣∣+1

−1
−
(
∂U
∂ξ
,W

)
L2(Ω̂)

. (2.18)

Now we approximate
(
U , ∂W

∂ξ

)
L2(Ω̂) using SBP operators

〈u,Dw〉M = uTMDw = uTQw = uT
(

B− QT
)
w,

= uTBw − (Du)T Mw,
= uNwN − u0w0 − 〈Du,w〉M .

(2.19)

We see that (2.19) discretely mimics IBP (2.18). The terms uTMDw and uTDTMw
are approximations of

(
U , ∂W

∂ξ

)
L2(Ω̂) and

(
∂U
∂ξ
,W

)
L2(Ω̂), respectively. The bound-

ary matrix B refers to surface evaluations of the reference space, as we include the
nodes at the surface of the reference space ξ0 = −1 and ξN = 1.
Remark 2. Another class of such operators are generalized SBP operators [23, 99],
where the surface nodes are not necessarily included. However, before the work
of Chan in 2018 [17] it was not clear whether entropy stable schemes can be
formulated using generalized SBP operators for problems like the compressible
Euler equations. Therefore, in this work we focus on SBP operators where the
surface nodes ξ0 = −1 and ξN = 1 are included.
The mimic of IBP by SBP is the key concept in Section 2.1.2 when applying the

energy method within the discrete analysis.

2.1.2. Summation-by-Parts Methods with
Simultaneous-Approximation-Term

In this section we introduce the SBP-SAT method by Carpenter et al. [12]. This
method is provably energy stable and primary conservative through the use of
SBP operators. In addition, it is applicable to multi-block discretizations, which
allows the scheme to perform on complex meshes. The SBP-SAT method is a
semi-discrete method built from the method of lines. Here, we only discretize the
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2. SBP Methods for the LAE on Conforming Meshes

spatial domain and assume continuity in time. This leads to a discrete system or
ordinary differential equations (ODEs) which is solved by standard Runge-Kutta
time integration methods.

The SBP-SAT scheme was first introduced using SBP FD operators over the
whole domain Ω. After describing the construction of these operators we introduce
the SBP-SAT discretization and finally, we extend this method to a multi-block
discretization.

Construction of SBP FD Operators

In this section, we explicitly construct classical SBP FD operators (MFD,DFD) as
in [23]. Therefore we set ξ = [ξ0, . . . , ξN ]T to be an uniformly distributed set of
N + 1 nodes denoted on the spatial domain Ω̂ with

ξi = i
2
N
− 1, (2.20)

for i = 0, . . . , N . The degree of DFD is denoted by p and the choice of the number
of nodes N + 1 is arbitrary assuming that N is larger than a minimum number of
nodes, see [24, 27, 111]. The construction of the SBP FD operators is adapted by
[39].

The SBP FD operators consist of so called interior and boundary nodes. The
interior nodes have at least p neighbor nodes to the left and right. The derivative
on these nodes is approximated by an unique symmetric, central finite difference
formula of degree 2p. In comparison, the approximation of the derivative on the
boundary nodes is constructed by a non-symmetric finite difference stencil of degree
p. Here, we consider degrees of freedom at the boundary nodes of the operator
MFD and QFD. Focusing on p = 2 and setting the number of boundary nodes to
bn = 2p, the operators have the following structure

MFD := 2
N
diag (h0, . . . , h3, 1, . . . , 1, h3, . . . , h0) , (2.21)

and DFD := (MFD)−1 QFD, where the structure of QFD is given in Figure 2.1. For
the classical SBP FD operators the free coefficients are calculated, such that the
matrix DFD = (MFD)−1 QFD is of degree p

DFDξk = kξk−1 k = 0, . . . , p, (2.22)
⇔ QFDξk = kMFDξk−1 k = 0, . . . , p, (2.23)
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2. SBP Methods for the LAE on Conforming Meshes

QFD =

−1
2 q12 q13 q14 0 0 0 0 0 0 0 0

−q12 0 q23 q24 0 0 0 0 0 0 0 0

−q13 −q23 0 q34 − 1
12 0 0 0 0 0 0 0

−q14 −q24 −q34 0 2
3 − 1

12 0 0 0 0 0 0

0 0 1
12 −2

3 0 2
3 − 1

12 0 0 0 0 0

0 0 0 1
12 −2

3 0 2
3 − 1

12 0 0 0 0

0 0 0 0 1
12 −2

3 0 2
3 − 1

12 0 0 0

0 0 0 0 0 1
12 −2

3 0 2
3 − 1

12 0 0

0 0 0 0 0 0 1
12 −2

3 0 q34 q24 q14

0 0 0 0 0 0 0 1
12 −q34 0 q23 q13

0 0 0 0 0 0 0 0 −q24 −q23 0 q12

0 0 0 0 0 0 0 0 −q14 −q13 −q12
1
2




Figure 2.1.: Structure of the SBP FD operator of degree p = 2 with free boundary

parameters. The figure is reproduced from [39].

where it is convenient to solve (2.23) as all parameters depend linearly on each
other. For degrees of p = 1, 2, the operators MFD and QFD are fully specified, for
p = 3, 4 however this is not the case [23]. For p ≥ 5 we need to consider more
boundary nodes than 2p to ensure a diagonal positive definite norm matrix, where
the minimum number of boundary nodes is found in [3]. Here, we choose the free
parameters so that the truncation error is minimized. To do so we define

εp+1 := DFDξp+1 − (p+ 1)ξp, (2.24)

and then minimize
Ze := εTp+1MFDεp+1, (2.25)

under the assumption that all entries of MFD are positive. If parameters are still
not specified, we desire to have small coefficients within QFD to avoid round-off
errors. Therefore, we calculate

ZQ := 1T (QFD ◦ QFD) 1, (2.26)

where ◦ is the Hadamard product and 1 is a vector of ones of size N + 1. Again
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2. SBP Methods for the LAE on Conforming Meshes

we minimize (2.26) ensuring that all entries of MFD are positive. A pseudocode
description of the construction of MFD,QFD is provided in Algorithm 1.

Input: N and p
Output: MFD and QFD

Set bn := 2p;
Solve (2.23);
while one or more entries of MFD are negative do

Set bn := bn+ 1;
Solve (2.23) again;

end
Minimize Ze in (2.25) under the constraint hi > 0 for i = 0, . . . , bn− 1;
Minimize ZQ in (2.26) under the constraint hi > 0 for i = 0, . . . , bn− 1;

Algorithm 1: Construction of classical SBP FD operators.

From now on we denote SBP finite difference operators as FD operators.

SBP-SAT Discretization

Given a SBP operator DFD with its corresponding norm matrix MFD, we present the
SBP-SAT discretization by Carpenter et al. [12]. For a general scalar hyperbolic
conservation law the SBP-SAT discretization is defined by

∆x
2 ut = −DFDf + SAT , (2.27)

where

ut :=
[
∂U(t, ξ0)

∂t
, . . . ,

∂U(t, ξN)
∂t

]T
. (2.28)

The term DFDf approximates the spatial derivative of the physical flux of ∂F(U)
∂x

.
The SAT term is presented as a penalty term to discretely incorporate the bound-
ary condition B. The choice of the SAT depends on the corresponding conservation
law and its boundary conditions. Focusing on the LAE (2.3) we present the SBP-
SAT discretization

∆x
2 ut = −aDFDu+ a (MFD)−1 e0 (u0 − B(t)) , (2.29)

where e0 := (1, 0, . . . , 0)T and B describes the boundary condition as in (2.4). As
the boundary conditions only depend on the left boundary, the SAT also only
refers to the left boundary. Such a SAT is known as an upwind SAT.
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2. SBP Methods for the LAE on Conforming Meshes

Remark 3. In case a < 0, the SAT would only depend on the right boundary and
would be denoted as downwind SAT.
We demonstrate how the continuous energy analysis is mimicked at the semi-

discrete level with SBP operators to prove stability of semi-discrete approxima-
tions. Here, as we assume continuity in time, we discretely model (2.10). The
growth in the total primary quantity ∂

∂t

∫ xR
xL
Udx is approximated by

∂

∂t

∫ xR

xL
Udx = ∆x

2

∫ +1

−1

∂U
∂t

dξ = ∆x
2

(
1, ∂U
∂t

)
L2(Ω̂)

,

≈ ∆x
2 〈1,ut〉MFD = ∆x

2 1TMFDut.

(2.30)

In addition, the growth in total energy, described by 1
2
∂
∂t
||U||2L2(Ω) is discretely

modeled by

1
2
∂

∂t
||U||2L2(Ω) =

∫ xR

xL
U ∂U
∂t
dx = ∆x

2

∫ +1

−1
U ∂U
∂t

dξ = ∆x
2

(
U , ∂U

∂t

)
L2(Ω̂)

,

≈ ∆x
2 〈u,ut〉MFD = ∆x

2 uTMFDut.

(2.31)

With (2.30) and (2.31) we define the fundamental definition of discrete primary
conservation and discrete energy stability.
Definition 3. Primary Conservative Scheme for Scalar Conservation Laws
A semi-discrete scheme for a scalar conservation law is said to be primary conser-
vative if the temporal derivative of the total discrete primary quantity is

∆x
2 1TMFDut = υB(t), (2.32)

where υB(t) purely depends on the evaluations on the boundary of the domain.
Definition 4. Energy Stable Scheme for the LAE
A semi-discrete scheme for the one dimensional LAE is said to be energy stable
if the temporal derivative of the total discrete energy is bounded by its boundary
condition

∆x
2 uTMFDut ≤

a

2B(t)2. (2.33)

Note, that Definition 4 is a discrete mimic of Definition 1 as integration in time
gives us the semi-discrete energy estimate

∆x ||u(t, ·)||2MFD ≤ ∆x ||u(0, ·)||2MFD +
∫ t

0
aB(τ)2 dτ. (2.34)
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In addition, Definition 3 and 4 do not rely on exact integration of the scheme.
We will prove that the SBP-SAT discretization (2.29) for the LAE is primary
conservative and energy stable.

Theorem 1. Considering SBP operators (MFD,DFD) satisfying the SBP property
MFDDFD + (MFDDFD)T = B, then discretization (2.29) is primary conservative and
energy stable for the LAE.

Proof. To prove primary conservation, we multiply (2.29) by 1TMFD

∆x
2 1TMFDut = −a1TMFDDFDu− a1Te0 (u0 − B(t)) . (2.35)

Due to the SBP property MFDDFD = QFD = B− QFD,T we get
∆x
2 1TMFDut = −a1TBu+ auTMFDDFD1− a (u0 − B(t)) . (2.36)

Assuming that DFD1 = 0 (satisfied for all SBP operators of degree p > 0) we arrive
at

∆x
2 1TMFDut = −auN + aB(t), (2.37)

which indicates that the scheme is primary conservative as the right hand side
purely depends on evaluations on the boundary [24].

Besides primary conservation, we claim that the SBP-SAT scheme is energy
stable. Applying the energy method, we first multiply (2.29) with uTMFD and get

∆x
2 uTMFDut = −auTMFDDFDu− auTe0 (u0 − B(t)) . (2.38)

Due to the SBP property (2.19) we know

uTMFDDFDu = u2
N − u2

0 − uTDFD,TMFDu,

⇔ uTMFDDFDu = 1
2u

2
N −

1
2u

2
0.

(2.39)

Including (2.39) in (2.38) gives us

∆x
2 uTMFDut = −a2u

2
N −

a

2u
2
0 + au0B(t). (2.40)

As for the continuous analysis we know u2
N ≥ 0,

∆x
2 uTMFDut ≤ −

a

2u
2
0 + au0B(t). (2.41)
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By completing the square we arrive at
∆x
2 uTMFDut ≤ −

a

2 (u0 − B(t))2 + a

2B(t)2 (2.42)

Due to the fact that a square of real numbers is positive we get the following
discrete estimate for (2.10)

∆x
2 uTMFDut ≤

a

2B(t)2. (2.43)

Remark 4. The presented SBP-SAT method (2.29) is instructed to SBP operators
where the surface nodes ξ0 = −1 and ξ0 = +1 are included. For nodal distributions
without the surface nodes an alternative energy stable discretization is given by
the SBP CPR (correction procedure via reconstruction) method [100].
For a more flexible scheme we next consider the SBP-SAT discretization on a

multi-block mesh.

SBP-SAT Discretization on Multi-Block Meshes

When moving on to real world applications for two or three dimensional problems,
we typically consider complex meshes with numerous elements, e.g. when simu-
lating a flow surrounding an air foil. An advantageous feature of the SBP-SAT
method is that it can also be applied as a multi-block method. Multi-block methods
decompose the domain Ω into NQ non-overlapping elements

Ω =
NQ⋃
q=1

Eq. (2.44)

On multi-block meshes we construct local nodal numerical solutions on each ele-
ment denoted by uq. The global numerical solution u is given by uniting the local
solutions

u =
NQ⋃
q=1
uq. (2.45)

For simplicity we assume all elements have the width ∆x. A one dimensional
multi-block mesh with two elements (left L and right R) is visualized in Figure
2.2.
The corresponding SBP-SAT discretization for a multi-block mesh with an up-

wind SAT is
∆x
2 uqt = −aDFDuq − a (MFD)−1 e0

(
uq0 − u

q−1
N

)
, (2.46)
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| ||
uL0 u

L
1

. . . . . . . . . . . . uLN

uRN
. . .. . .. . .. . .uR0 u

R
1

| | | | | | | | | | | |||||||||||

Figure 2.2.: One dimensional multi-block mesh with two elements. Here uLN and uR0 are
both defined on the interface. However, their values differ in general due to
discontinuities or approximation errors of the solution.

with u0
N = B(t). Here we can see the convenience of constructing SBP operators

in a reference space as we do not have to construct an operator for each element
individually. Note, that even though uq0 and uq−1

N are defined on the same spatial
coordinate (see Figure 2.2 for element L and R), they do not necessarily have the
same value due to approximation errors or a discontinuous solution.

We approximate the growth in the total primary quantity ∂
∂t

∫
Ω U dΩ by

∂

∂t

∫
Ω
U dΩ =

NQ∑
q=1

∫
Eq

∂U
∂t

dEq ≈
∆x
2

NQ∑
q=1

1TMFDuqt . (2.47)

Accordingly, for a multi-block discretization the growth in total energy 1
2
∂
∂t
||U||2L2(Ω)

is approximated by

1
2
∂

∂t
||U||2L2(Ω) ≈

∆x
2

NQ∑
q=1
uq,TMFDuqt . (2.48)

Similar as in Section (2.1.2), we define primary conservation and discrete energy
stability for SBP methods on a multi-block mesh.
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2. SBP Methods for the LAE on Conforming Meshes

Definition 5. Primary Conservative Scheme for Scalar Conservation Laws
on Multi-Block Meshes
A semi-discrete scheme on a multi-block mesh for a scalar conservation law is said
to be primary conservative if the temporal derivative of the total discrete primary
quantity is

∆x
2

NQ∑
q=1

1TMFDuqt = υB(t), (2.49)

where υB(t) purely depends on the evaluations on the boundary of the domain.

Definition 6. Energy Stable Scheme for the LAE on Multi-Block Meshes
A semi-discrete scheme on a multi-block mesh for the one dimensional LAE is said
to be energy stable if the temporal derivative of the total discrete energy is bounded
by its boundary conditions

∆x
2

NQ∑
q=1
uq,TMFDuqt ≤

a

2B(t)2. (2.50)

As for a single element in Section (2.1.2), we will proof that the SBP-SATmethod
(2.46) is primary conservative and energy stable on a multi-block mesh.

Theorem 2. The multi-block discretization (2.46) is primary conservative and
energy stable for the LAE.

Proof. In order to prove primary conservation, we multiply (2.46) with 1TMFD

∆x
2 1TMFDuqt = −a1TMFDDFDuq − a1Te0

(
uq0 − u

q−1
N

)
. (2.51)

Considering the analogous steps as in Section 2.1.2 we obtain

∆x
2 1TMFDuRt = −auqN + auq−1

N . (2.52)

Summing over all elements the terms on the interior interfaces vanish and thus
gives us

∆x
2

NQ∑
q=1

1TMFDuqt = −auNQN + aB(t), (2.53)

which proves that the discretization is primary conservative.
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To verify that the SBP-SAT multi-block method is energy stable we apply the
energy method as in Section 2.1.2.

∆x
2 uqMFDuqt = −auq,TMFDDFDuq − auq,Te0

(
uq0 − u

q−1
N

)
. (2.54)

By considering the analogous derivations as in Section 2.1.2 we get

∆x
2 uq,TMFDuqt = −a2 (uqN)2 − a

2 (uq0)2 + auq0u
q−1
N . (2.55)

By including this in (2.48) we arrive at

∆x
2

NQ∑
q=1
uq,TMFDuqt

=−a2u
NQ
N −

a

2
(
u1

0

)2
+ a

2u
1
0B(t)︸ ︷︷ ︸

=:BT

+
NQ∑
q=2

(
−a2

(
uq−1
N

)2
− a

2 (uq0)2 + auq0u
q−1
N

)
︸ ︷︷ ︸

=:IT

.
(2.56)

Next, we analyze the term BT and IT individually, where BT refers to the values
at the boundary (boundary terms) of Ω and IT refers to the interior interfaces
(interior terms). Here, BT is exactly the right hand side of (2.40) (ignoring the
element index) and thus we can recover (2.43) which gives us the estimate

BT ≤ a

2B(t)2. (2.57)

In comparison to the SBP-SAT method on a single element, the multi-block scheme
introduces the coupling term IT . To ensure that (2.10) is discretely satisfied, we
need to guarantee that IT is non-positive. As IT contains a binomial we get

IT = −a2

NQ∑
q=2

(
uq−1
N − uq0

)2

︸ ︷︷ ︸
≥0

≤ 0. (2.58)

Including (2.57) and (2.58) in (2.56) we arrive at

∆x
NQ∑
q=1
uq,TMFDuqt ≤ aB(t)2, (2.59)

which indicates energy stability of the multi-block SBP-SAT method.
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Throughout this section we considered the upwind SAT as in (2.46). However,
such SATs are not uniquely defined. An alternative SAT is the central SAT denoted
by

SAT = −a2 (MFD)−1
(
e0
(
uq0 − u

q−1
N

)
− eN

(
uqN − u

q+1
0

))
. (2.60)

Introducing a right boundary condition BN(t) = U(t, xR) we get the discrete energy
equation.

∆x
NQ∑
q=1
uq,TMFDuqt = a

(
u1

0B(t)− uNQN BN(t)
)
. (2.61)

As the energy is no longer described by an inequality, such a SBP-SAT scheme
with a central SAT is denoted as energy conservative. Note, that when we consider
periodic boundary conditions B(t) = u

NQ
N and BN(t) = u1

0 we get

∆x
NQ∑
q=1
uq,TMFDuqt = 0, (2.62)

which is an useful result when verifying primary conservation and energy stabil-
ity/conservation in Section 2.3. Note that when considering a central SAT with
periodic boundary conditions we obtain from (2.53)

∆x
2

NQ∑
q=1

1TMFDuqt = 0. (2.63)

To summarize, we introduced the SBP-SAT method on a single element and on
a multi-block mesh. The key concept of this method lies within the construction
of the norm matrix MFD and differentiation matrix DFD. If these operators satisfy
the SBP property

MFDDFD + (MFDDFD)T = B, (2.64)
then it is possible to mimic the continuous stability and conservation analysis
in a one-to-one fashion. This indicates stability and conservation of the scheme.
Another scheme which satisfies these properties is the Discontinuous Galerkin
Spectral Element Method (DGSEM).

2.1.3. Discontinuous Galerkin Spectral Element Method

In this section we introduce the DGSEM. The DGSEM is a special class of dis-
continuous Galerkin methods (DG methods). We first introduce the general DG
method and then describe the derivation of the DGSEM. This method is of special
interest, as it can be interpreted as a SBP-SAT method provided a non uniform
nodal distribution.
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The Discontinuous Galerkin Method

In this section we introduce the general DG method. As for the SBP-SAT method,
the DG method can be applied as a multi-block method. Thus, we subdivide the
spatial domain Ω into non-overlapping elements as in (2.44). In comparison to the
SBP-SAT method, the DG approach is derived from the weak formulation sim-
ilar to the finite element method (FEM). Both methods, DG and FEM, assume
continuity of the numerical solution on an element. However, the standard FEM
assumes continuity on the interfaces connecting two elements, which indicates
global continuity on the spatial domain Ω. This is insufficient for the solutions
of hyperbolic conservation laws as these are typically discontinuous. In compar-
ison to the FEM, the DG method does not assume a continuous solution at the
interfaces. To handle discontinuities a numerical surface flux is introduced as in
the finite volume method. To derive the weak formulation we multiply (2.1) with
an arbitrary discontinuous test function φ := φ(x) defined on Ω = [xL, xR] and
integrate over the spatial domain∫

Ω

(
∂U
∂t

+ ∂F
∂x

)
φ dΩ = 0, (2.65)

with F := F(U). As the test function is arbitrary, (2.65) needs to be satisfied on
every element ∫

Eq

∂U
∂t
φ dEq +

∫
Eq

∂F
∂x

φ dEq = 0, (2.66)

for q = 1, . . . , NQ. For further extension it is helpful to transform (2.66) into the
reference element Ω̂ = [−1,+1] as in (2.12).

∆x
2

∫ +1

−1

∂U
∂t
φ dξ +

∫ +1

−1

∂F
∂ξ

φ dξ = 0, (2.67)

Within (2.66) or (2.67) we assume that U is differentiable. To weaken this as-
sumption for the DG approach, we derive the weak formulation. Assuming that
φ ∈ C∞ (Eq) we apply integration by parts on (2.67) and get the weak formulation

∆x
2

∫ +1

−1

∂U
∂t
φ dξ + Fφ

∣∣∣+1

−1
−
∫ +1

−1
F ∂φ
∂ξ

dξ = 0. (2.68)

When deriving the DG method we focus on (2.68) and so U is not assumed to be
differentiable on Ω.
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For the DGSEM we approximate U on Eq by the local numerical solution U q. As
for the multi-block SBP-SAT method (2.45) the global numerical solution Unum is

U(t, x) ≈ Unum(t, x) =
NQ⋃
q=1
U q(t, x). (2.69)

The local solution U q is defined by a polynomial basis within Ω̂

U q =
N∑
j=0

uqj(t)ϕj(ξ), (2.70)

where {uqj}Nj=0 are time dependent coefficients. Here, {ϕj}Nj=0 is a set of basis
functions in space. The choice of these functions depend on the considered DG
implementation. We set these functions to be continuous on [−1,+1], which in-
dicates a continuous numerical solution within each element Eq. However, this is
not assumed at the element interfaces as demonstrated in Figure 2.3.

Unum

|
E1

|
E2

|
E3

|

Figure 2.3.: Discontinuous Galerkin solutions are assumed to be continuous on an ele-
ment but not on an interface.

This is the main difference between the discontinuous Galerkin and the continu-
ous Galerkin method or FEM. As discontinuities might occur at the interface, the
surface term Fφ

∣∣∣+1

−1
in (2.68) is not uniquely defined. This issue is not only seen

for DG methods but also for finite volume methods (FV methods). To resolve the
surface term we introduce the numerical surface flux denoted by f ∗. This flux
depends on the interface value of the "left" and "right" element and is defined by
(approximated) Riemann solvers [116]. A well known numerical flux is the local
Lax-Friedrichs flux

f ∗
(
UR,UL

)
= 1

2
(
F(UR) + F(UL)

)
− 1

2 max
z∈{UL,UR}

∣∣∣∣∣∂F∂U (z)
∣∣∣∣∣ (UR − UL) . (2.71)
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Besides introducing the numerical solution and the numerical flux, we need a
numerical representation F q of the physical flux F within Eq. Simply evaluating
F q = F(U q) can cause non-linearity within the basis functions (e.g. terms like

1
1+φ2 ) for which the numerical integration can become cumbersome and expensive.
To avoid these non-linearities we set

F q(t, ξ) =
N∑
j=0

f qj (t)ϕj(ξ), (2.72)

with time dependent coefficients {f qj }Nj=0. Note, that F q 6= F(U q) for non-linear
fluxes which introduces aliasing errors [53]. Assuming the aliasing error to be
sufficiently small and inserting the numerical solution U q, the numerical flux rep-
resentation F q and the numerical surface flux f ∗ in (2.68) and assuming the test
function φ to be an arbitrary linear combination of the basis functions ϕi we get
a DG formulation in the weak form

∆x
2

N∑
j=0

∂uqj
∂t

∫ +1

−1
ϕjϕi dξ + af ∗ϕi

∣∣∣+1

−1
− a

N∑
j=0

f qj

∫ +1

−1
ϕj
∂ϕi
∂ξ

dξ = 0, (2.73)

or alternatively in the inner product notation

∆x
2

N∑
j=0

∂uqj
∂t

(ϕj, ϕi)L2(Ω̂) + af ∗ϕi
∣∣∣+1

−1
− a

N∑
j=0

f qj

(
ϕj,

∂ϕi
∂ξ

)
L2(Ω̂)

= 0, (2.74)

for i = 0, . . . , N . The derivation of a DG method depends strongly on the choice
of the basis functions and the choice of the quadrature rule to approximate the
integrals. To evaluate these integrals at low cost we focus on the DGSEM imple-
mentation.

DGSEM Discretization

In this section we introduce the discretization of the DGSEM. In order to obtain
a high-order scheme, the integrals of the weak formulation are approximated with
Legendre-Gauss (LG) or Legendre-Gauss-Lobatto (LGL) quadrature [53] on Ω̂. Let
ω0, . . . , ωN and ξ0, . . . , ξN denote the quadrature weights and nodes in [−1,+1].
We set the basis functions to be Lagrange basis polynomials of degree p. In
contrast to FD schemes, the number of points within the DGSEM is linked to
the polynomial degree by p = N . The Lagrange polynomials need to be defined
on a set of interpolation nodes. The crux of the nodal DGSEM is to collocate
the interpolation nodes with the nodes of the corresponding quadrature. The
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considered Lagrange polynomials `j for j = 0, . . . , N are defined by

`j(ξ) =
N∏

k=0, k 6=j

ξ − ξk
ξj − ξk

, (2.75)

which satisfy the Kronecker delta property, i.e. `j(ξk) = δjk. With these basis
functions the time dependent coefficients of U q and F q are directly evaluated

U q(t, ξi) =
N∑
j=0

uqj(t)`j(ξi) =
N∑
j=0

uqj(t)δij = ui(t),

F q(t, ξi) =
N∑
j=0

f qj (t)`j(ξi) =
N∑
j=0

f qj (t)δij = fi(t),
(2.76)

which indicates that the DGSEM is a nodal scheme as the coefficients are directly
evaluated at the nodes. The weak formulation of the DGSEM is defined by

∆x
2

N∑
j=0

∂uqj
∂t

(`j, `i)L2(Ω̂) + f ∗`i
∣∣∣+1

−1
−

N∑
j=0

f qj (`j, `′i)L2(Ω̂) = 0, (2.77)

for i = 0, . . . , N . Next, we use quadrature to evaluate the integrals within (2.77).
First we consider

(`j, `i)L2(Ω̂) ≈
N∑
k=0

ωk`j(ξk)`i(ξk) =
N∑
k=0

ωkδjkδik = ωiδij. (2.78)

Due to collocation the integral is approximated by ωkδij. Considering the LG
quadrature the evaluation of (2.78) is an equality as the LG quadrature can inte-
grate polynomials of degree 2N + 1 exactly. Thus, {`j}Nj=0 is an orthogonal basis
with respect to (·, ·)L2(Ω̂). For the LGL quadrature however (2.78) is indeed an
approximation as this quadrature is only exact for polynomials of degree 2N − 1.
In [44] it is shown that an exact integration of the Lagrange basis polynomials on
LGL nodes leads to a non-orthogonal basis within (·, ·)L2(Ω̂) and thus increases
the cost of the integral approximation. Therefore, we accept the integration error
within (2.78). This technique is also referred to as mass lumping.

For the second integral in (2.77) we get(
`j,

∂`i
∂ξ

)
L2(Ω̂)

=
N∑
k=0

ωk`j(ξk)
∂`i
∂ξ

(ξk) = ωj
∂`i
∂ξ

(ξj). (2.79)
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Note that (2.79) is exact for either LG or LGL quadrature. Including these eval-
uations in the weak formulation we obtain

∆x
2 ωi

∂uqi
∂t

+ f ∗`i
∣∣∣+1

−1
−

N∑
j=0

ωj
∂`

∂ξ
(ξj)f qj = 0, (2.80)

for i = 0, . . . , N . For a more compact notation we rewrite (2.80) in terms of norm
and differentiation matrices and define

uq := [uq0, . . . , uqN ]T , f q := [f q0 , . . . , f qN ]T , uqt := ∂uq

∂t
. (2.81)

To distinguish the norm matrices of a FD and DG scheme, we denote the norm
and differentiation matrix for the DGSEM by MDG and DDG. As for FD operators
the norm matrix of the DGSEM is a diagonal matrix

MDG = diag(ω0, . . . , ωN), (2.82)

due to exact integration or mass lumping in (2.78). The spatial derivative of uqi is
defined by

∂

∂x
uqi = ∂

∂x
uq(ξi, t) =

N∑
j=0

∂`j
∂ξ

(ξi)uqj(t), (2.83)

for i = 0, . . . , N . In a compact notation (2.83) is equivalent to

∂

∂x
uq = DDGuq, (2.84)

with
[DDG]ij = ∂`j

∂ξ
(ξi), (2.85)

for i, j = 0, . . . , N . To handle the numerical flux term we introduce the surface
matrix SDG and the numerical surface flux vector f ∗

[SDG]ij = −δ0j`i(−1) + δNj`i(+1),
f ∗ = [f ∗ (U q(t, ξ = −1)) , 0, . . . , 0, f ∗ (U q(t, ξ = 1))]T ,

(2.86)

which gives us SDGf ∗ = f ∗`i
∣∣∣+1

−1
. Finally, we get the DGSEM discretization in a

compact matrix-vector notation

∆x
2 MDGuqt + SDGf ∗ − DDG,TMDGf q = 0. (2.87)
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Our main interest is to obtain an energy stable discretization. The SBP-SAT
method was proven to be energy stable in Section 2.1.2 by considering FD oper-
ators satisfying the SBP property (2.64). For the DGSEM, the coefficients of the
operators MDG,DDG, SDG depend on the corresponding quadrature. As mentioned
before, the LG quadrature is of higher degree than the LGL quadrature. However,
when considering the LGL nodes we obtain a SBP operator as proven in Lemma
1. The key concept of this proof is that the LGL nodes include the surface nodes
(ξ0 = −1 and ξ = +1) whereas the LG nodes do not.

Lemma 1. Considering the LGL nodes {ξi}Ni=0 and weights {ωi}Ni=0. Then the
norm matrix MDG and the differentiation matrix DDG satisfy the SBP property
(2.64)

QDG + QDG,T = B, (2.88)
with QDG = MDGDDG.

Proof. First we look at a single entry of QDG

[QDG]ij = [MDGDDG]ij = ωi
∂`j
∂ξ

(ξi), (2.89)

with i, j = 0, . . . , N . An entry of QDG is equal to
(
`i,

∂`j
∂ξ

)
L2(Ω̂) as

(
`i,
∂`j
∂ξ

)
L2(Ω̂)

=
N∑
k=0

ωk`i(ξk)
∂`j
∂ξ

(ξk) = ωi
∂`j
∂ξ

(ξi) = [QDG]ij , (2.90)

as `i ∂`j∂ξ is a polynomial of degree 2N − 1. Looking at an arbitrary coefficient of
QDG + QDG,T we get
[
QDG + QDG,T

]
ij

= [QDG]ij + [QDG]ji =
(
`i,
∂`j
∂ξ

)
L2(Ω̂)

+
(
∂`i
∂ξ
, `j

)
L2(Ω̂)

. (2.91)

Due to IBP we arrive at[
QDG + QDG,T

]
ij

= `i`j
∣∣∣+1

−1
= `i(+1)`j(+1)− `i(−1)`j(−1). (2.92)

As we consider LGL nodes we know ξ0 = −1 and ξN = +1 which gives us[
QDG + QDG,T

]
ij

= `i(ξN)`j(ξN)− `i(ξ0)`j(ξ0) = δiNδNj − δi0δ0j. (2.93)
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So for QDG + QDG,T holds

[
QDG + QDG,T

]
ij

=


−1 if i = j = 0,
+1 if i = j = N,

0 else
(2.94)

which is precisely the definition of B and so we get the SBP property (2.64)

QDG + QDG,T = B. (2.95)

From now on when referring to DG operators we focus on differentiation matrices
DDG with their corresponding norm matrices MDG constructed on LGL nodes due
to the SBP property (2.64). For the LGL nodes the surface matrix SDG reduces to
B since

[SDG]ij = −δ0j`i(−1) + δNj`i(+1) = δiNδNj − δi0δ0j = [B]ij . (2.96)

Focusing on LGL nodes (2.87) is equivalent to

∆x
2 MDGuqt + Bf ∗ − DDG,TMDGf q = 0. (2.97)

In order to compare the DGSEM discretization (2.97) with the SBP-SAT dis-
cretization (2.46) we rearrange the terms within the weak formulation. Due to the
SBP property (2.64) we get the so called strong formulation.

∆x
2 uqt = −DDGf q − (MDG)−1 B (f ∗ − f q) . (2.98)

Remark 5. Rearranging (2.97) to (2.98) is a discrete mimic of IBP.
To fully specify the DGSEM we need to select the numerical flux. As for SATs,

the numerical flux depends on the considered conservation law. Focusing on the
LAE we get

∆x
2 uqt = −aDDGuq − (MDG)−1 B (f ∗ − auq) . (2.99)

As the LAE transports information from left to right (a > 0) we consider the
upwind flux

f ∗
(
UR,UL

)
= aUL, (2.100)

which is equivalent to the local Lax Friedrichs flux (2.71). For the LAE with a > 0
this is the exact solution of the Riemann problem [116]. Including (2.100) in the
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numerical flux vector, leading to f ∗ = a
[
uq−1
N , 0, . . . , 0, uqN

]T
with u0

N = B(t), we
get the strong formulation for the LAE

∆x
2 uqt = −aDDGuq − a (MDG)−1 e0

(
uq0 − u

q−1
N

)
. (2.101)

Remarkably, when comparing the discretization of the DGSEM (2.101) and the
SBP-SAT method (2.46) we have the same discretization besides different SBP
operators with their corresponding nodes. Even when considering a central nu-
merical flux f ∗

(
UR,UL

)
= aU

L+UR
2 the DGSEM discretization is equivalent to the

energy conservative SBP-SAT scheme with a symmetric SAT (2.60). Therefore,
the proofs of primary conservation and energy stability in Section 2.1.2 hold for
the DGSEM. This is an outstanding result as we can apply different approaches
within the same discretization only by replacing the SBP operator. Even when
considering completely new SBP operators, regardless of the fact if they are de-
rived from a weak formulation or based on finite differences, we can insert these
operators in (2.101) or (2.46) to obtain a primary conservative and energy stable
scheme. From now on, when referring to a method based on SBP operators (M,D),
we name such a scheme a SBP method. Here, (M,D) can be fintie difference or
discontinuous Galerkin operators. Different SBP operators can be found in [23].
Due to good properties as shown in the numerical results sections we describe
the Hybrid Gauss-Trapezoidal-Lobatto (HGTL) operators in Section 2.1.4 which
satisfies the SBP property (2.64).

2.1.4. Hybrid Gauss-Trapezoidal-Lobatto Operators

Finite Difference operators of degree p which satisfy the SBP property (2.64) have
the flexibility to consider an arbitrary number of nodes by increasing the num-
ber of interior points. The structure of the operator as in Figure 2.1 does not
change considering uniform distributed nodes. However, the approximation error
for high-order (p > 2) FD schemes on uniform distributed nodes is higher than on
e.g. LGL or Chebyshev nodes [27]. In comparison to the FD operators, increasing
the number of nodes for the DG operators increases the order of the approximation
which can lead to unnecessary high cost of the scheme.

In order to maintain the flexibility of a FD operator and obtain a reduced error
with no effect on the order of accuracy, Fernández [26] developed HGTL operators.
Here, we consider equally spaced interior nodes, but non uniform distributed nodes
at the boundary. The construction of these operators is similar as for the FD
operators as in Section 2.1.2. In order to construct a SBP operator on such a
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set of nodes with a diagonal positive definite norm matrix it is essential that a
quadrature rule with positive weights exists. Deriving the optimal position of the
non uniform boundary nodes while at the same time ensuring that a quadrature
rule with positive weights exists is a difficult task [27]. Therefore, we first consider
a quadrature rule with positive weights. Quadrature rules for nodal distributions
with a non uniform distribution of nodes at the boundary and equally spaced
nodes in the interior were purposed by Alpert [4] and are denoted as Hybrid
Gauss-Trapezoidal quadrature rules. When considering this quadrature rule in the
reference space Ω̂ = [−1,+1], the boundary points −1 and +1 are not included,
which is essential for the SBP property in this work (2.64). Therefore, Fernández
modified these nodes by including the boundaries and denoted the new quadrature
rule as Hybrid Gauss-Trapezoidal Lobatto rule or HGTL rule. Let N + 1 denote
the number of nodes and bn the number of boundary nodes. The position of the
boundary nodes are derived by solving (2.102) for {(ω̃i, x̃i)}bn−p−1

i=0

bn−p−1∑
i=0

ω̃ix̃i = Br+1(bn− p− 1)
r + 1 , for r = 0, . . . 2 (bn− p− 1) ,

x̃0 = 0,
(2.102)

where Br(·) is the r-th Bernoulli polynomial with B0 = 1. The first equation
within (2.102) is adapted by [4] and the second equation is to ensure that the
nodes at the boundary are included. The nodal distribution of ξ in [−1,+1] is
derived by transformation

ξi = 2
N
x̃i − 1, ξN−i = 2

N
(N − x̃i)− 1, (2.103)

for i = 0, . . . , bn − p − 1. All other nodes within ξ are assumed to be uniformly
distributed as in (2.20).
Remark 6. Note that only bn−p boundary nodes can be non uniformly distributed
as all interior nodes need p equally spaced neighbor nodes to the left and right as its
derivative is approximated via a central finite difference formula. For example, let
the boundary nodes be ξ0, . . . , ξbn−1. To approximate the derivative on the interior
node ξbn we need p equally spaced neighbors ξbn−p, . . . , ξbn+p. Therefore, the only
boundary nodes which can be distributed non uniformly are ξ0, . . . , ξbn−p−1.
Rather than considering the quadrature rule of Alpert which has positive weights

up to degree 20 [4], we assume the norm matrix to have bn free coefficients (as
in (2.21) for p = 2). This gives us more degrees of freedom (DOFS) to solve the
degree equation (2.23).
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With this nodal distribution we can construct the HGTL operators in a one-to-
one fashion to FD operators in Section 2.1.2 as presented in Algorithm 2.

Input: N and p
Output: M and Q
Set bn := 2p;
Solve (2.102) to obtain ξ;
Solve (2.23);
while one or more entries of M are negative or (2.23) not solvable do

Set bn := bn+ 1;
Solve (2.102) and (2.23) again;

end
Minimize Ze in (2.25) under the constraint hi > 0 for i = 0, . . . , bn;
Minimize ZQ in (2.26) under the constraint hi > 0 for i = 0, . . . , bn;

Algorithm 2: Construction of HGTL operators.

Up to this point we introduced SBP operators such as FD, DG and HGTL
operators. Including these operators in discretization (2.46) gives the one dimen-
sional SBP method. In real world applications one typically considers two or three
dimensional non-linear systems of conservation laws on complex geometries and
meshes. Therefore, we next introduce the SBP method for the two dimensional
linear advection equation.

2.2. Summation-by-Parts Methods for the Two Dimensional
Linear Advection Equation

In general two dimensional scalar conservation laws are defined by
∂U
∂t

+ ∂F(U)
∂x

+ ∂G(U)
∂y

= 0, (2.104)

with t ∈ [0, T ] ⊂ R and (x, y) ∈ Ω ⊂ R2. In this section we focus on the two
dimensional linear advection equation such that F(U) = aU and G(U) = bU ,
where a, b > 0 denote the wave speeds

∂U
∂t

+ a
∂U
∂x

+ b
∂U
∂y

= 0. (2.105)

To derive an energy estimate we consider Dirichlet boundary and initial conditions
U(0, x, y) = U0 (x, y) for (x, y) ∈ Ω,
U(t, x, y) = B (t, x, y) for t ∈ [0, T ] and (x, y) ∈ Ω−, (2.106)
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where Ω− := {(x, y) ∈ ∂Ω| (an1 + bn2 < 0)} and n = (n1, n2)T . Here, n1, n2 are
the x and y components of the outward pointing normal to ∂Ω. As for the one
dimensional LAE we obtain the energy estimate

∂

∂t
||U(t, ·, ·)||2L2(Ω) ≤

∫
∂Ω−
B(t, x, y)2 |an1 + bn2| d∂Ω−, (2.107)

or alternatively by integrating in time

||U(t, ·, ·)||2L2(Ω) ≤ ||U0||2L2(Ω) +
∫ t

0

∫
∂Ω−
B(τ, x, y)2 |an1 + bn2| dτd∂Ω−. (2.108)

As the solution is bounded by the initial and boundary conditions the two di-
mensional LAE is energy stable (2.5). Here, we introduce a two dimensional SBP
discretization that remains energy stable and primary conservative. Therefore, we
subdivide Ω into NQ non-overlapping elements as in (2.45). Here, each element is
assumed to be a quadrilateral where in general the interfaces between elements can
be curved. As for the one dimensional case we transform the element E into the
reference space Ω̂ := [−1,+1]× [−1,+1]. Let (x, y) denote the coordinates within
the physical space E and (ξ, η) to be the coordinates within the computational
space Ω̂. As such, we consider a transformation χ : Ω̂→ E such that

(x, y)T = χ(ξ, η). (2.109)
Let χ1, . . . ,χ4 ∈ R2 describe the corners of an element E. The element is described
by curves Γ1, . . . ,Γ4 representing the interface as in Figure 2.4. With the interface
curves Γ1, . . . ,Γ4 we construct an interpolation between the "bottom" and "top"
curve denoted by χbt and an interpolation between the "left" and "right" curve
denoted by χlr with

χbt(ξ, η) := 1− η
2 Γ1(ξ) + 1 + η

2 Γ3(ξ),

χlr(ξ, η) := 1− ξ
2 Γ4(η) + 1 + ξ

2 Γ2(η).
(2.110)

Simply adding χbt and χlr to obtain χ is insufficient, as e.g. corners do not match

χbt(ξ,−1) + χlr(ξ,−1) = Γ1(ξ) + 1− ξ
2 Γ4(−1) + 1 + ξ

2 Γ2(−1),

6= Γ1(ξ) = χ(ξ,−1).
(2.111)

Therefore, we introduce a correction term χcor defined by

χcor(ξ, η) :=1
4 (χ1(1− ξ)(1− η) + χ2(1 + ξ)(1− η))

+ 1
4 (χ3(1 + ξ)(1 + η) + χ4(1− ξ)(1 + η)) .

(2.112)
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η

ξ

I(
ξ
η

)
=
(
−1
−1

) II(
ξ
η

)
=
(

+1
−1

)

III

(
ξ
η

)
=
(

+1
+1

)

IV

(
ξ
η

)
=
(
−1
+1

)
y

x

χ(ξ, η)
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Figure 2.4.: Transforming the reference space Ω̂ = [−1,+1] × [−1,+1] into an element
with curved interfaces.

With the correction term we define the transformation

χ := χbt + χlr − χcor. (2.113)

Thus, we have the mapping of the physical coordinates (x, y) in terms of the
computational coordinates (ξ, η)

(x, y)T = χ(ξ, η). (2.114)

With χ we transform the two dimensional conservation law (2.104) into the refer-
ence space. Assuming ξ = ξ(x, y) and η = η(x, y) we can rewrite the derivatives
of the physical fluxes by applying the chain rule

∂F
∂x

=∂F
∂ξ

∂ξ

∂x
+ ∂F
∂η

∂η

∂x
,

∂G
∂y

=∂G
∂ξ

∂ξ

∂y
+ ∂G
∂η

∂η

∂y
.

(2.115)

Note, that for reasons of simplicity we suppress the dependence of U on the physical
fluxes. As we constructed the mapping function χ such that x = x(ξ, η) and
y = y(ξ, η) we do not directly obtain ∂ξ

∂x
, ∂η
∂x
, ∂ξ
∂y
, ∂η
∂y
. However, we can rewrite these

unknown terms by the inverse of the Jacobian of χ as in [67](
∂ξ
∂x

∂η
∂x

∂ξ
∂y

∂η
∂y

)
=
(
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

)−1

. (2.116)
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Calculating the inverse matrix leads to(
∂ξ
∂x

∂η
∂x

∂ξ
∂y

∂η
∂y

)
= 1
J

( ∂y
∂η
−∂y
∂ξ

−∂x
∂η

∂x
∂ξ

)
, (2.117)

with the determinant J = ∂x
∂ξ

∂y
∂η
− ∂x

∂η
∂y
∂ξ
. Here, we obtain the so called metric

terms ∂x
∂ξ
, ∂x
∂η
, ∂y
∂ξ
, ∂y
∂η
. With the metric terms we rewrite the physical fluxes (2.115)

in reference coordinates as
∂F
∂x

= 1
J

(
∂F
∂ξ

∂y

∂η
− ∂F
∂η

∂y

∂ξ

)
,

∂G
∂y

= 1
J

(
∂G
∂η

∂x

∂ξ
− ∂G
∂ξ

∂x

∂η

)
.

(2.118)

Including (2.118) in (2.115) we obtain the two dimensional conservation law on E
transformed in the reference space Ω̂

J
∂U
∂t

+ ∂F
∂ξ

∂y

∂η
− ∂F
∂η

∂y

∂ξ
+ ∂G
∂η

∂x

∂ξ
− ∂G
∂ξ

∂x

∂η
= 0. (2.119)

For a more compact notation we introduce the contravariant fluxes F̃ and G̃ defined
as

F̃ := F ∂y
∂η
− G ∂x

∂η
,

G̃ := G ∂x
∂ξ
−F ∂y

∂ξ
,

(2.120)

for which we can rewrite (2.119) by

J
∂U
∂t

+ ∂F̃
∂ξ

+ ∂G̃
∂η

= 0. (2.121)

Note, that for (2.121) we assume that χ is smooth such that ∂2χ
∂ξ∂η

= ∂2χ
∂η∂ξ

.

Based on (2.121) we present a SBP discretization. It can be derived from a finite
difference perspective using SATs or from the weak formulation of the PDE. Here,
we choose the weak formulation. Thus, we approximate the conserved variable
U and the contravariant fluxes F̃ , G̃ with a set of basis functions. As such, we
consider Lagrange basis functions of degree N in each spatial direction, e.g.,

U(t, ξ, η)
∣∣∣
Eq
≈ U q(t, ξ, η) =

N∑
i,j=0

uqij(t)`i(ξ)`j(η), (2.122)
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and similar for F̃ and G̃ with f̃ qij and g̃qij. Note, that selecting the test function
to be a product of two Lagrange functions both defined in one dimension we
obtain a tensor product basis. With this basis we can decouple the derivatives
and the numerical fluxes in each spatial direction. Therefore, we can still use the
one dimensional SBP operators as in Section 2.1. For ease of presentation we
assume that the nodal distribution within an element is the same in each spatial
direction. However, due to the tensor product decoupling we could allow the
nodal distribution to differ in ξ- and η-direction. Using (2.122) to approximate
the solution of the conservation law, we multiply (2.121) by a test function φ and
integrate over the reference space

+1∫
−1

+1∫
−1

(
J
∂U q

∂t
+ ∂F̃ q

∂ξ
+ ∂G̃q

∂η

)
φ dξ dη = 0, (2.123)

As for the one dimensional case we represent the test function by the basis func-
tions φ = ∑N

i,j=0 φij`i(ξ)`j(η) to obtain a degree N approximation U q. Note, that
`i(ξ)`j(η) for i, j = 0, . . . , N is a sufficient basis for degree N polynomials. As the
test function is an arbitrary polynomial of degree N , equation (2.123) is equivalent
to

+1∫
−1

+1∫
−1

(
J
∂U q

∂t
+ ∂F̃ q

∂ξ
+ ∂G̃q

∂η

)
`i(ξ)`j(η) dξ dη = 0, (2.124)

All integrals present in (2.124) are approximated with N + 1 LGL nodes and
weights, e.g.,

∫
Ω̂

J
∂U q

∂t
`i(ξ)`j(η) dξ dη ≈

N∑
n,m=0

ωnωm

 N∑
k,l=0

Jkl
∂uqkl
∂t

`k(ξn)`l(ηm)
 `i(ξn)`j(ηm),

=ωiωjJij
∂uqij
∂t

.

(2.125)

Note, that for simplicity we suppress the time variable t. When approximating
the integrals concerning the contravariant fluxes we first apply IBP to obtain a
weak formulation. To resolve discontinuities across element interfaces we introduce
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numerical surface fluxes denoted by f̃ ∗, g̃∗. The approximation is given by

∫
Ω̂

∂F̃ q

∂ξ
`i(ξ)`j(η) dξ dη =

+1∫
−1

`j(η)
 +1∫
−1

∂F̃ q

∂ξ
`i(ξ) dξ

 dη,

=
+1∫
−1

`j(η)
F̃ q`i∣∣∣+1

−1
−

+1∫
−1

F̃ q ∂`i
∂ξ

(ξ) dξ
 dη,

≈ ωj

(
f̃ ∗,q(ξN , ηj)δiN − f̃ ∗,q(ξ0, ηj)δi0 −

N∑
k=0

Qkif̃
q
kj

)
(2.126)

with Q = MD and

∫
Ω̂

∂G̃q

∂η
`i(ξ)`j(η) dξ dη =

+1∫
−1

`i(ξ)
 +1∫
−1

∂G̃q

∂η
`j(η) dη

 dξ,

=
+1∫
−1

`i(ξ)
G̃q`j∣∣∣+1

−1
−

+1∫
−1

G̃q ∂`j
∂η

(η) dη
 dξ,

≈ ωi

(
g̃∗,q(ξi, ηN)δNj − g̃∗,q(ξi, η0)δ0j −

N∑
l=0

Qlj g̃
q
il

)
.

(2.127)

In total this gives us the weak form

ωiωjJij
∂uqij
∂t

+ ωj

(
f̃ ∗,q(ξN , ηj)δiN − f̃ ∗,q(ξ0, ηj)δi0 −

N∑
k=0

Qkif̃
q
kj

)

+ ωi

(
g̃∗,q(ξi, ηN)δNj − g̃∗,q(ξi, η0)δ0j −

N∑
l=0

Qlj g̃
q
il

)
= 0,

(2.128)

and since we consider SBP operators with Qki + Qik = Bik we get the equivalent
two dimensional strong form

ωiωjJij
∂uqij
∂t

+ ωj

([
f̃ ∗,qNj − f̃

q
Nj

]
δiN −

[
f̃ ∗,q0j − f̃

q
0j

]
δi0 +

N∑
k=0

Qikf̃
q
kj

)

+ ωi

(
[g̃∗,qiN − g̃

q
iN ] δNj − [g̃∗,qi0 − g̃

q
i0] δ0j +

N∑
l=0

Qjlg̃
q
il

)
= 0,

(2.129)

with f̃ ∗,qij = f̃ ∗,q(ξi, ηj) and g̃∗,qij = g̃∗,q(ξi, ηj).
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Note, that even though we derived (2.129) using a DG formulation we can apply
the strong form discretization using an arbitrary SBP operator. Therefore, we do
not include the operator superscript DG within (2.129).

As for the one dimensional case we consider the physical fluxes for the two di-
mensional LAE defined in (2.105). We prove that discretization (2.129) is primary
conservative and energy stable for the LAE on a Cartesian mesh. For curved ele-
ments the discretization (2.129) needs to be modified to obtain a discrete primary
conservative and energy stable scheme as presented in Appendix A.1. Focusing on
a Cartesian mesh the metric terms are constant

∂y

∂η
= ∆y

2 ,
∂x

∂η
= 0,

∂x

∂ξ
= ∆x

2 ,
∂y

∂ξ
= 0,

(2.130)

and J = ∆x∆y
4 . We consider a mesh on the domain Ω = [xL, xR] × [yU , yO] with

NQx and NQy elements in x- and y-direction. In total we have NQ = NQxNQy

elements. Next, we define primary conservation and energy stability for the two
dimensional LAE.

Definition 7. Primary Conservative Scheme for Two Dimensional Scalar
Conservation Laws
A semi-discrete method approximating a two dimensional scalar conservation law
is said to be primary conservative if the time derivative of the total discrete primary
quantity is

NQ∑
q=1

N∑
i,j=0

Jijωiωj
∂uqij
∂t

= υB(t), (2.131)

where υB(t) purely depends on evaluations on the boundary of the domain.

Definition 8. Energy Stable Scheme for the Two Dimensional LAE
A semi-discrete method approximating the two dimensional LAE is said to be
energy stable if

NQ∑
q=1

N∑
i,j=0

Jijωiωj
1
2
∂
(
uqij
)2

∂t
≤

NQy∑
ny=1

ã

2

N∑
j=0

ωjB(t, xL, ynyj )2

+
NQx∑
nx=1

b̃

2

N∑
i=0

ωiB(t, xnxi , yU)2,

(2.132)
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as (2.132) approximates (2.107). Here, we define ã = a∆y
2 and b̃ = b∆x

2 . The
physical coordinats xnxi refers to the x-component in the nx element on the i-th
node. The same holds for the y-component ynyj .

To prove that (2.129) conserves the primary quantity and is energy stable, we
first examine the discrete growth in the primary quantity and energy on a single
element. Therefore, we proof Lemma 2.

Lemma 2. The discrete growth of the primary quantity and energy on a single
element of discretization (2.129) are

N∑
i,j=0

Jijωiωj
∂uij
∂t

= −
N∑
j=0

ωj
(
f̃ ∗Nj − f̃ ∗0j

)
−

N∑
i=0

ωi (g̃∗iN − g̃∗i0) , (2.133)

and
N∑

i,j=0
Jijωiωj

1
2
∂u2

ij

∂t
=−

N∑
j=0

ωj

([
uf̃ ∗ − ã

2u
2
]
Nj
−
[
uf̃ ∗ − ã

2u
2
]

0j

)

−
N∑
i=0

ωi

([
ug̃∗ − b̃

2u
2
]
iN

−
[
ug̃∗ − b̃

2u
2
]
i0

)
.

(2.134)

Note, that for clarity we suppress the element index q as we only focus on a
single element.

Proof. First, we prove (2.133). Therefore, we sum over (2.128) for i, j = 0, . . . , N
to apply the discrete integration over the element.

N∑
i,j=0

Jijωiωj
∂uij
∂t

=−
N∑

i,j=0
ωj

(
f̃ ∗NjδiN − f̃ ∗0jδi0 +

N∑
k=0

Qkif̃kj

)

−
N∑

i,j=0
ωi

(
g̃∗iNδNj − g̃∗i0δ0j +

N∑
l=0

Qlj g̃il

)
.

(2.135)

Rearranging the sums over i, j, l we obtain
N∑

i,j=0
Jijωiωj

∂uij
∂t

=−
N∑
j=0

ωj

(
f̃ ∗Nj − f̃ ∗0j +

N∑
k=0

f̃kj
N∑
i=0

Qki

)

−
N∑
i=0

ωi

g̃∗iN − g̃∗i0 +
N∑
l=0

g̃il
N∑
j=0

Qlj

 .
(2.136)
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Assuming that the SBP operator is of degree p > 0, we know ∑N
i=0 Qki = 0 as∑N

i=0 Dki = 0 and thus

N∑
i,j=0

Jijωiωj
∂uij
∂t

= −
N∑
j=0

ωj
(
f̃ ∗Nj − f̃ ∗0j

)
−

N∑
i=0

ωi (g̃∗iN − g̃∗i0) . (2.137)

Note, that (2.137) holds for an arbitrary scalar conservation law as we did not
specify the physical flux. To prove (2.134) we first write the physical flux as

f̃ij = ∆y
2 fij = ãuij,

g̃ij = ∆x
2 gij = b̃uij.

(2.138)

We then multiply (2.128) by uij and sum over all nodes i, j = 0, . . . , N to find

N∑
i,j=0

Jijωiωj
1
2
∂u2

ij

∂t
=−

N∑
i,j=0

ωj

(
uNj f̃

∗
NjδiN − u0j f̃

∗
0jδi0 −

N∑
k=0

Qkiuij f̃kj

)

−
N∑

i,j=0
ωi

(
uiN g̃

∗
iNδNj − ui0g̃∗i0δ0j −

N∑
l=0

Qljuij g̃il

)
.

(2.139)

Rearranging sums gives us
N∑

i,j=0
Jijωiωj

1
2
∂u2

ij

∂t
=−

N∑
j=0

ωj

(
uNj f̃

∗
Nj − u0j f̃

∗
0j − ã

N∑
i=0

N∑
k=0

Qkiuijukj

)

−
N∑
i=0

ωi

uiN g̃∗iN − ui0g̃∗i0 − b̃ N∑
j=0

N∑
l=0

Qljuijuil

 .
(2.140)

Due to the SBP property (2.64) we know 2Qki = Qki − Qik + Bki and thus

2
N∑
i=0

N∑
k=0

Qkiuijukj =
N∑
i=0

N∑
k=0

Qkiuijukj−
N∑
i=0

N∑
k=0

Qikuijukj+
N∑
i=0

N∑
k=0

Bkiuijukj. (2.141)

By rearranging indices we obtain
N∑
i=0

N∑
k=0

Qkiuijukj = 1
2

N∑
i=0

N∑
k=0

Bkiuijukj = 1
2u

2
Nj −

1
2u

2
0j. (2.142)
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Therefore, we can rewrite (2.140) by
N∑

i,j=0
Jijωiωj

1
2
∂u2

ij

∂t
=−

N∑
j=0

ωj

([
uf̃ ∗ − ã

2u
2
]
Nj
−
[
uf̃ ∗ − ã

2u
2
]

0j

)

−
N∑
i=0

ωi

([
ug̃∗ − b̃

2u
2
]
iN

−
[
ug̃∗ − b̃

2u
2
]
i0

)
,

(2.143)

and thus gives us (2.134).

Within the proof of Lemma 2 we were able to rewrite the volume contributions
in term surface contribution. This has been done by considering SBP operators
as they mimic the IBP rule. Note, that the proof of Lemma 2 relied on a Carte-
sian mesh. For curved meshes however, discretization (2.128) does not reduce to
surface contributions when discretely applying the energy method. This is due
to the fact that ã and b̃ are non-constant and thus the discrete fluxes f̃ = ãu
and g̃ = b̃u introduce non-linear terms. The problems of discretizing hyperbolic
conservation laws with non-linear fluxes is discussed in Section 4. As mentioned
before, the discretization of (2.105) needs a slight modification. The modification
of the discretization and the proof of primary conservation and energy stability for
curved meshes is demonstrated in Appendix A.1. With Lemma 2 we finally can
prove primary conservation and energy stability for (2.129).
Theorem 3. Considering a Cartesian mesh and an upwind numerical surface flux,
then the discretization (2.129) is primary conservative and energy stable.

Proof. To obtain a primary conservative and energy stable scheme on the entire
domain we must sum all discrete growths of the primary quantity and energy on
all elements. Due to the use of SBP operators and Lemma 2, the total discrete
growths depend on the interfaces of the elements. Here, we look at the vertical
interfaces. The contribution of the horizontal interfaces is done in an analogous
fashion. We first focus on the interior interfaces, meaning that the interface con-
nects two elements as in Figure 2.5. Due to Lemma 2 the terms referring to the
interior interfaces are

IUt :=
N∑
j=0

ωj f̃
∗,R
0j −

N∑
j=0

ωj f̃
∗,L
Nj , (2.144)

IEt :=
N∑
j=0

ωj

(
uR0j f̃

∗,R
0j −

ã

2
(
uR0j
)2
)
−

N∑
j=0

ωj

(
uLNLj f̃

∗,L
NLj
− ã

2
(
uLNLj

)2
)
, (2.145)

where the superscript L and R refer to the left and right element, respectively.
Here, IUt and IEt approximate the surface integral of ∂U

∂t
and 1

2
∂U2

∂t
on a single
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Figure 2.5.: A single interface connecting two neighboring elements. This figure is re-
produced from [38].

interface. As we focus on a one dimensional interface (first component of u and
f ∗ is fixed), we set

uLj := uLNLj, uRj := uR0j, (2.146)

and the same for f̃ ∗. For a conforming mesh both elements share the same numer-
ical flux, meaning f̃ ∗ := f̃ ∗,L = f̃ ∗,R. So, we see directly that

IUt =
N∑
j=0

ωj f̃
∗
j −

N∑
j=0

ωj f̃
∗
j = 0. (2.147)

As IUt is zero, the total growth in the primary quantity (2.131) only depends on
the interfaces at the boundary of Ω, which indicates primary conservation. Note,
that the derivation holds independent of the choice of the numerical surface flux.

To obtain an energy stable scheme we must specify the numerical flux function.
As for the one dimensional LAE, we consider the upwind flux

f̃ ∗(uR, uL) = f̃(uL) = ãuL. (2.148)

Note, that the upwind flux is an exact solution to the Riemann problem as we
consider positive wave speeds. Focusing on IEt we get

IEt = ã
N∑
j=0

ωj

(
uRj u

L
j −

1
2
(
uRj
)2
)
− ã

N∑
j=0

ωj

(
uLj u

L
j −

1
2
(
uLj
)2
)
,

= − ã2

N∑
j=0

ωj
(
uRj − uL

)2
≤ 0,

(2.149)

as ã = a∆y
2 > 0 (positive wave speed) and due to positive quadrature weights.

Secondly, we pay attention to the interfaces at the physical boundary. On the
right boundary of the domain we are not instructed to a boundary condition, see
(2.4). Including the upwind flux we get
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BREt := −ã
N∑
j=0

ωj

(
uBRNju

BR
Nj −

1
2
(
uBRNj

)2
)
,

= − ã2

N∑
j=0

ωj
(
uBRNj

)2
≤ 0.

(2.150)

At last, we look at the interfaces on the left boundary of the domain with the
upwind flux including the boundary condition

BLEt := ã
N∑
j=0

ωj

(
uBL0j B(t, xL, ynyj )− 1

2
(
uBL0j

)2
)
, (2.151)

where we assume that the interface is the ny-th interface on the left boundary. As
for the one dimensional LAE we complete the square, use the fact that a square
of real numbers is always positive and arrive at

BLEt ≤
ã

2

N∑
j=0

ωjB(t, xL, ynyj )2. (2.152)

By focusing on the interior, right and left interfaces we considered all vertical
interfaces. Note, that the derivations for all horizontal interfaces is analogous. By
summing over all interfaces we obtain the discrete energy estimate

NQ∑
q=1

N∑
i,j=0

Jijωiωj
1
2
∂
(
uqij
)2

∂t
≤

NQy∑
ny=1

ã

2

N∑
j=0

ωjB(t, xL, ynyj )2

︸ ︷︷ ︸
Impact vertical interfaces

+
NQx∑
nx=1

b̃

2

N∑
i=0

ωiB(t, xnxi , yU)2

︸ ︷︷ ︸
Impact horizontal interfaces

,

(2.153)

which is precisely the definition of energy stability.

Throughout this proof we considered an upwind flux for the numerical surface
flux due to positive wave speeds, see (2.100).
Remark 7. When considering a central flux with periodic boundary conditions and
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re-deriving the proofs in Theorem 3, we obtain
NQ∑
q=1

N∑
i,j=0

Jijωiωj
∂uqij
∂t

= 0,

NQ∑
q=1

N∑
i,j=0

Jijωiωj
1
2
∂
(
uqij
)2

∂t
= 0,

(2.154)

which indicates primary and energy conservation.
To summarize, we extended the SBP method to the two dimensional LAE. This

method is provable primary conservative and energy stable considering arbitrary
SBP operators (FD, DG, HGTL). Due to the SBP operators we were able to
reduce volume contributions to surface contributions when discretely applying the
energy method, which is a discrete mimic of the IBP rule. In the next section we
verify primary conservation and energy stability/conservation as well as high-order
convergence and compare the error properties of the different SBP operators.

2.3. Numerical Verification of Summation-by-Parts Schemes
for the Two Dimensional Linear Advection Equation

In this section we demonstrate the convergence properties as well as primary con-
servation and energy stability of the two dimensional SBP scheme. To do so, we
focus on the LAE (2.105) on the domain Ω = [0, 1]× [0, 1] and set the wave speeds
to a = b = 1. We enforce periodic boundary conditions to ensure that

∫
Ω U dΩ

is constant over time. Unless stated otherwise, the upwind SAT/upwind flux is
chosen. The time step is given by the CFL (Courant-Friedrichs-Lewy) condition
[39]

∆t := CFL

max{a, b}
min{∆x

2 ,
∆y
2 }

N + 1 , (2.155)

where ∆x and ∆y denote the width and height of an element and N + 1 denotes
the number of nodes of an element in one spatial direction. In total, an element
consists of (N+1)2 nodes. For simplicity we assume that all elements have the the
same width, height and nodal distribution. To integrate the approximation in time
we use the five-stage, fourth-order low-storage Runge-Kutta method of Carpenter
and Kennedy [14] and set the final time to T = 0.1.

The numerical results are divided into two components. First, we compare differ-
ent SBP operators with respect to their error and time step properties. Secondly,
we verify primary conservation and energy stability of the SBP scheme.
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2.3.1. Comparison and Convergence of Summation-by-Parts Schemes

In this section we compare the error properties of the two dimensional SBP scheme
with FD, DG and HGTL operators via convergence analysis. For the convergence
study, we consider the exact solution

U(0, x, y) = 2 + sin (2π (x− at)) + cos (2π (y − bt)) . (2.156)

The experimental order of convergence (EOC) is determined by

EOCd =
log

( L2,d
L2,d−1

)
log

(√
DOFSd−1
DOFSd

) , (2.157)

where L2,d denotes the L2 error and DOFSd denotes the total number of degrees
of freedom (DOFS) in the domain at the d-th mesh level. Here, the L2 error is
calculated using the quadrature weights of the corresponding norm matrix

L2 error :=

√√√√√NQ∑
q=1

N∑
i,j=0

Jijωiωj
(
U(·, xqi , y

q
j )− u

q
ij

)2
, (2.158)

where xqi and y
q
j denote the components in physical space on the i- and j-th node

within the q-th element. For the convergence study, we increase the number of
DOFSd by increasing the number of elements, but not the number of nodes within
an element. We note that this is an untypical approach when considering FD and
HGTL operators. As in [70], the DOFS are increased by setting the number of
elements fix and increasing the number of nodes within the element. However,
when increasing the number of nodes for DG operators, the degree of the operator
would change in each mesh refinement step. By setting the number of nodes within
the element to be constant and increasing the number of elements, the order of the
DG scheme remains constant when refining the mesh for the convergence study. In
this section we chose the number of nodes and the elements such that the DOFSd
remain constant at the d-th mesh level for all SBP operators. When considering
FD or HGTL operators the d-th mesh level consists of 4d elements within the
spatial domain (2d in the x- and y-direction) and for DG operators the d-th mesh
level has 4d+2 elements (2d+2 in the x- and y-direction). The DG operators includes
(p+ 1)2 nodes per element (p+ 1 in the x- and y-direction). By setting the nodes
for FD and HGTL in one spatial direction to 4(p+1), the DOFSd remain constant
at the d-th mesh level.

DOFSd = 4d︸︷︷︸
#FD/HGTL elements

#FD/HGTL nodes︷ ︸︸ ︷
(4(p+ 1))2 = 4d+2︸ ︷︷ ︸

#DG elements

#DG nodes︷ ︸︸ ︷
(p+ 1)2 . (2.159)
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Besides calculating the error and the EOC of the scheme, we are interested in
the maximum step. For linear problems with periodic boundary conditions it is
possible to rewrite the semi-discrete formulation in the following global form

ut = Au. (2.160)

Let {λi}
NQ(N+1)2

i=1 denote the eigenvalues of A. The low storage five-stage, fourth-
order Runge-Kutta scheme is said to be stable, in a sense that the simulation does
not crash, if the time step satisfies(

1 + (λi∆t) + 1
2(λi∆t)2 + 1

6(λi∆t)3 + 1
24(λi∆t)4 + 1

200(λi∆t)5
)

︸ ︷︷ ︸
=:Ri(∆t)

≤ 1, (2.161)

for all i = 1, . . . , NQ(N + 1)2 [14]. To obtain the maximum time step we calculate
∆t∗i , such that

Ri(∆t∗i ) = 1. (2.162)
The maximum time step is determined by

∆t∗ := min
1≤i≤NQ(N+1)2

{∆t∗i }. (2.163)

Since the time step is dependent on the number of points of the spatial resolution
and wave speed, we normalize the maximum time step which gives us the maximum
CFL

CFL∗ := ∆t∗ (N + 1) max{a, b}
min{∆x

2 ,
∆y
2 }

. (2.164)

Finally, we solve the LAE with different sets of SBP operators with degrees of
p = 2, 3, 4. For all SBP operators the EOC and the maximum CFL number is
shown in the Tables 2.1-2.3.

Focusing on p = 2 in Table 2.1 we obtain an expected EOC of p + 1 [39].
Here, in each mesh level the HGTL operator has the best error properties. The
FD operator is compatible as its maximum CFL number is larger (2.80 > 2.77)
but also its L2 error is slightly higher. More significant is the difference towards
the DG operator, where the L2 error is about two times as large as for the error
of the HGTL operator and its maximum CFL number of 2.05 is noticeably smaller.

For p = 3 in Table 2.2 we also obtain an EOC of p + 1. The maximum CFL
number decays for all SBP operators which is excepted when increasing the degree
p. Again the FD operator has the best maximum CFL number of 2.39 whereas
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EOC and maximum CFL number for solving the LAE with DG, FD and
HGTL operators for p = 2,3,4.

DOFS L2DG EOCDG L2FD EOCFD L2HGTL EOCHGTL

576 9.63E-03 3.37E-03 2.25E-03
2304 1.13E-03 3.1 5.54E-04 2.6 3.80E-04 2.6
9216 1.44E-04 3.0 9.03E-05 2.6 5.85E-05 2.7
36864 1.80E-05 3.0 1.06E-05 3.1 6.90E-06 3.1
147456 2.25E-06 3.0 1.32E-06 3.0 8.56E-07 3.0
589824 2.87E-07 3.0 1.64E-07 3.0 1.07E-07 3.0

Max. CFL 2.06 Max. CFL 2.80 Max. CFL 2.77

Table 2.1.: Setting p = 2, CFL = 1, T = 0.1 and the number of nodes per element in
one dimension for FD and HGTL operators to N + 1 = 12.

DOFS L2DG EOCDG L2FD EOCFD L2HGTL EOCHGTL

1024 4.19E-04 4.73E-04 1.19E-04
4096 2.62E-05 4.0 3.07E-05 3.9 6.70E-06 4.2
16384 1.49E-06 4.1 2.25E-06 3.8 3.58E-07 4.2
65536 9.42E-08 4.0 1.37E-07 4.0 2.14E-08 4.1
262144 5.89E-09 4.0 8.47E-09 4.0 1.22E-09 4.1
1048576 3.70E-10 4.0 5.24E-10 4.0 7.55E-11 4.0

Max. CFL 1.63 Max. CFL 2.39 Max. CFL 2.35

Table 2.2.: Setting p = 3, CFL = 1, T = 0.1 and the number of nodes per element in
one dimension for FD and HGTL operators to N + 1 = 16.

DOFS L2DG EOCDG L2FD EOCFD L2HGTL EOCHGTL

1600 1.48E-05 5.54E-05 4.43E-06
6400 4.96E-07 4.9 2.13E-06 4.7 1.43E-07 5.0
25600 1.23E-08 5.3 9.56E-08 4.5 5.94E-09 4.6
102400 4.29E-10 4.8 5.10E-09 4.2 3.21E-10 4.2
409600 1.34E-11 5.0 2.79E-10 4.2 8.74E-11 1.9
1638400 8.56E-13 4.0 1.36E-11 4.4 3.91E-11 1.2

Max. CFL 1.38 Max. CFL 2.16 Max. CFL 2.13

Table 2.3.: Setting p = 4, CFL = 1, T = 0.1 and the number of nodes per element in
one dimension for FD and HGTL operators to N + 1 = 20.
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the DG operator has the worst (CFL∗ = 1.63). In comparison to Table 2.1 the
DG operator has a better error than the FD operator. Still, the error is not better
than that obtained by the HGTL operator. Comparing the HGTL and the FD
operator we notice a similar behaviour of the error properties and maximum CFL
number as in Table 2.1.

Next, we focus on Table 2.3 for p = 4. As in Table 2.1-2.2 the maximum CFL
number decreases, but the relationship between these numbers for the SBP oper-
ators remain the same (FD best, DG worst). Here, the DG and HGTL operator
have similar error properties. When considering less DOFS than 409600, the
HGTL operator is slightly better, but for more DOFS the DG operator has the
best error properties. Both of these operators have a better error than the FD
operator (ignoring the last mesh level), but again the FD operator has the highest
maximum CFL number of 2.16. We note that for p = 4 we do not obtain an
EOC of p+ 1. A possible explanation for this behaviour is the fourth order time
integration method. Presumably the error of time integration method dominates
the spatial error of the SBP discretization. Therefore, we set up an extra run with
CFL = 0.01 and present the results in Table 2.4

EOC for solving the LAE with with a reduced CFL number.

DOFS L2DG EOCDG L2FD EOCFD L2HGTL EOCHGTL

1600 1.48E-05 5.54E-05 4.43E-06
6400 4.96E-07 4.9 2.13E-06 4.7 1.43E-07 5.0
25600 1.24E-08 5.3 7.99E-08 4.7 5.04E-09 4.8
102400 4.17E-10 4.9 2.66E-09 4.9 1.97E-10 4.7

Table 2.4.: Setting p = 4, CFL = 0.01, T = 0.1 and the number of nodes per element
in one dimension for FD and HGTL operators to N + 1 = 20. We only
considered four mesh levels due to CFL = 0.01.

Due to computational effort in Table 2.4 we only considered four mesh levels.
Here, we verify a convergence order of EOC ≈ p+ 1. Note, that in Table 2.3 and
2.4 the L2 errors for the first two mesh levels remain the same. This indicates that
the time step only effects the error for a fine mesh resolution.

To summarize, we observe that when considering FD operator the maximum
CFL number is higher than for operators on nodes which are not uniformly dis-
tributed. However, for high-order simulations (p > 2) the DG and HGTL operators
have better error properties. For p = 3 we observe the error of the HGTL operator
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is smaller than for DG, but considering a fine mesh at p = 4, than the DG operator
has the best error. Due to the results presented in Table 2.1-2.3 we cannot claim
which operator is "the best", but we can see that all operators can be taken into
consideration when solving hyperbolic conservation laws.

2.3.2. Numerical Verification of Primary Conservation and Energy Stability

As was shown in Section 2.1.2, the SBP scheme is primary conservative and energy
stable. The SBP discretization is defined by

ωiωjJij
∂uqij
∂t

= Res(uqij), (2.165)

with

Res(uqij) =− ωj
([
f̃ ∗,qNj − f̃

q
Nj

]
δiN −

[
f̃ ∗,q0j − f̃

q
0j

]
δi0 +

N∑
k=0

Qikf̃
q
kj

)

− ωi
(

[g̃∗,qiN − g̃
q
iN ] δNj − [g̃∗,qi0 − g̃

q
i0] δ0j +

N∑
l=0

Qjlg̃
q
il

)
,

(2.166)

with i, j = 0, . . . , N and q = 1, . . . , NQ. We choose the numerical flux to be

f ∗(UR,UL) = a
UR + UL

2 − σ |a|2
(
UR − UL

)
, (2.167)

with σ ∈ [0, 1] and similar for g∗. Setting σ = 0, we get the central flux for which
the SBP discretization remains energy conservative and for σ = 1 we obtain the
upwind flux/upwind SAT for which the scheme is energy stable. Here, we note
that energy conservative schemes do not necessarily represent the correct physical
behaviour of a wave as in real world application the energy must dissipate due
to discontinuities. However, just for verification that the numerical scheme is
implemented correctly, we set σ = 0 to verify energy conservation. Therefore, we
multiply (2.165) with uqij and sum over all elements and nodes

NQ∑
q=1

N∑
i,j=0

ωiωjJiju
q
ij

∂uqij
∂t

=
NQ∑
q=1

N∑
i,j=0

uqijRes(u
q
ij). (2.168)

Similarly, primary conservation is described by
NQ∑
q=1

N∑
i,j=0

ωiωjJij
∂uqij
∂t

=
NQ∑
q=1

N∑
i,j=0

Res(uqij). (2.169)
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We verify conservation of the primary quantity and energy by calculating

Etot
t :=

NQ∑
q=1

N∑
i,j=0

uqijRes(u
q
ij),

U tot
t :=

NQ∑
q=1

N∑
i,j=0

Res(uqij).
(2.170)

Here, Etot
t and U tot

t describe the discrete growth of the total energy and the dis-
crete growth of the total primary quantity. We consider the discontinuous initial
condition

U(t, x) =

ϑ1 if x ≤ y,

ϑ2 else,
(2.171)

with periodic boundary conditions. Here, ϑ1 and ϑ2 are uniformly generated ran-
dom numbers in [0, 1]. The random initial condition is chosen to demonstrate
conservation independent of the initial condition. We calculate (Etot

t )k and (U tot
t )k

for k = 1, . . . , 1000 independently by considering a FD operator of degree p = 3
and NQ = 100 elements with (N+1) = 162 nodes (16 nodes in x- and y-direction).

Calculating the discrete growth in the total energy and the total primary
quantity

||U tot
t ||2 5.51E-13

||Etott ||2 7.19E-13

Table 2.5.: Calculating the growth in the total discrete primary quantity U tott and total
discrete energy Etott for 1000 different random initial conditions. The growth
is presented within the euclidean norm. Here, we verify conservation of the
primary quantity and energy.

In Table 2.5 we verify primary and energy conservation. Besides only considering
random initial data, we are interested of how the total primary quantity and total
energy behave in time. Therefore we consider the initial condition

U(t, x) =

2 if 0.3 ≤ x ≤ 0.7 and 0.3 ≤ y ≤ 0.7,
0 else.

. (2.172)

We set T = 10, CFL = 1 and focus again on a FD operator of degree p = 3 with
NQ = 100 and (N + 1)2 = 162. We run the simulation twice considering either
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the central or upwind flux. The total discrete primary quantity and energy are
defined by

Etot =
NQ∑
q=1

N∑
i,j=0

1
2
(
uqij
)2
,

U tot =
NQ∑
q=1

N∑
i,j=0

uqij,

(2.173)

and are plotted over time in Figure 2.6 and 2.7.
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Figure 2.6.: Evolution of the total dis-
crete energy of the solution
with and without dissipa-
tion. We see that the total
discrete energy is conserved
when considering the cen-
tral flux (σ = 0) and that
it decays using the upwind
flux (σ = 1).
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Figure 2.7.: A plot that demonstrates
the conservation of the
integrated conserved vari-
ables. The plot does not
depend on the choice
of the numerical surface
flux.

Here, we verify that the total discrete energy is conserved when considering a
central flux. By introducing a dissipation term (σ > 0) within the numerical flux,
the total discrete energy is dissipated over time. In comparison, the total discrete
primary quantity does not depend on the choice of the numerical surface flux.
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Remark 8. In this section we only focused on FD operators. However, we obtain
the same results when considering any other SBP operator.

2.4. Summary

In Section 2.1 we introduced the SBP method for the one dimensional linear ad-
vection equation. The linear advection equation is naturally primary conservative
and energy stable when considering appropriate boundary conditions, which we
demonstrated using integration-by-parts. To maintain this property within the
numerical scheme, we introduced summation-by-parts operators. These operators
are defined to discretely mimic the integration-by-parts rule. Given a summation-
by-parts operator the SBP scheme is provably primary conservative and energy
stable. Such operators can be derived from finite difference formulas or from a
weak formulation of the conservation law. In extension we introduced the two
dimensional SBP method focusing on quadrilateral elements and using the tensor
product. We implemented the SBP method and compared the numerical errors
and the maximum time step for different summation-by-parts operators. Based on
the degree of the differentiation matrix, we verified that the SBP method is high-
order. Also, we analyzed the behaviour of the total discrete primary quantity and
energy with discontinuous initial data. Since the total discrete primary quantity
remained constant and the total discrete energy did not increase, we demonstrated
that our implementation of the SBP scheme is primary conservative and energy
stable.
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3. Energy Stable and Primary Conservative
Summation-by-Parts Methods for the
Linear Advection Equation on
Non-Conforming Meshes

For two (or even three) dimensional problems the distribution of elements or, in
other words, the mesh is substantial. Many real world problems contain a wide
range of length scales. The efficient approximation of such problems necessitates
the ability to judiciously distribute degrees of freedom. Therefore, we focus on
non-conforming numerical approximations. Non-conforming numerical approxi-
mations offer increased flexibility for applications that require high resolution in
a localized area of the computational domain or near complex geometries. For
example, consider a flow around a cylinder as in Figure 3.1.

Figure 3.1.: A constructed non-conforming mesh to simulate a flow around a cylinder.
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We are interested in how fluids behave near object, e.g. near the cylinder in
Figure 3.1. In terms of computationally efficiency we desire a mesh with fine
elements at the cylinder surface and a coarse mesh at the boundary of the domain.
For more details on mesh configuration see Chapter 7. In general, designing a
conforming mesh around a geometry is cumbersome. The main difficulties occur
due to the interfaces and the nodal distributions of the elements which need to
coincide with the neighbouring element, see Figure 3.2.

Figure 3.2.: Conforming elements where the interfaces and the nodal distribution coin-
cide. The figure is reproduced from [38].

In order to overcome these problems, we consider meshes where neither the
nodal distributions of the element nor the interfaces need to coincide. Focusing
on a quadrilateral mesh, we allow the nodal distribution to differ between ele-
ments (Figure 3.3), sometimes called p refinement or algebraic non-conforming. In
addition the mesh can contain hanging corners (Figure 3.4), sometimes called h
refinement or geometric non-conforming. Combining p and h refinement we obtain
a fully h/p non-conforming approach (Figure 3.5).

In this chapter we present a primary conservative and energy stable non-conforming
SBP method. The key to the non-conforming approximation is how the numerical
fluxes or SATs between neighbor interfaces are treated. In comparison, for con-
forming approximations as in the previous chapter the interface points between
two neighboring elements coincide. This allowed for a straightforward definition
of unique numerical surface fluxes to account for how information is transferred
between neighbors. It is then possible to determine numerical surface fluxes that
guaranteed energy stability/conservation of the conforming approximation.
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Figure 3.3.: Neighboring elements with different nodal distributions. The figure is re-
produced from [38].

Figure 3.4.: Neighboring elements with a hanging corners. The figure is reproduced from
[38].

Figure 3.5.: Neighboring elements with a hanging corner and differing nodal distribution.
The figure is reproduced from [38].
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This chapter is structured as followed: First we will gather insight into the devel-
opment of non-conforming SBP methods in the past. All these methods rely on in-
terpolation/projection operators to connect different types of non-conforming ele-
ments. Based on these methods we will introduce a fully conservative (primary and
energy conservative) discretization for the LAE on algebraic or p non-conforming
elements. Next, we extend the method to geometric or h non-conforming ele-
ments. As fully conservative schemes do not reflect the actual physics of a con-
servation law, we include numerical interface dissipation and obtain an energy
stable scheme. Before, doing numerical tests, we investigate in the properties of
the interpolation/projection operators. It is worth noting, that non-conforming
approximations (in comparison to conforming approximations) are less accurate
due to the reduction of the convergence rate [39]. Therefore, we introduce a new
set of SBP operators and interpolation/projection operators, for which the optimal
convergence rate is retained. Finally, we verify the properties as primary conser-
vation, energy stability/conservation and high-order accuracy for the introduced
SBP operators.

3.1. History on Non-Conforming Summation-by-Parts Methods

In this section we introduce existing non-Conforming SBP methods. Therefore, we
focus on a simple prototype of non-conforming elements as in Figure 3.3. Here, we
have two elements where the interfaces coincide, but not the nodal distributions
(p refinement). We differ between a left element L and a right element R. In each
element we consider a different number and set of nodes. Let ηL,ηR denote the
set of vertical nodes of size NL + 1 and NR + 1, respectively. For each set of nodes
we consider a different SBP operator on each element (ML,DL) and (MR,DR).
As nodal distributions do not coincide, it is not possible to do a point-to-point
transfer between the elements to evaluate the numerical flux/SAT. For the SBP-
SAT method, Mattsson and Carpenter [83] developed interpolation operators that
result in a primary conservative and energy stable scheme for linear hyperbolic
systems on Cartesian meshes. Here, the constructed operators

PL2R ∈ R(NR+1)×(NL+1), PR2L ∈ R(NL+1)×(NR+1), (3.1)

interpolate the nodes from one element to the neighbouring non-conforming ele-
ment, see Figure 3.6. The subscript "L2R" denotes the interpolation from the left
to the right element. Mattsson and Carpenter were able to re-derive the proof
for primary conservation and energy stability for the SBP-SAT method for linear
systems of conservation laws provided that the interpolation operators satisfy the
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Figure 3.6.: Interpolating the nodes on the interface from one element to another.

M-compatibility condition
PTL2RMR = MLPR2L. (3.2)

The M-compatibility condition can also be found in [16, 38, 39, 70, 80, 83, 96, 97]
and is necessary to obtain an energy stable non-conforming SBP method. To
apply the two dimensional discretization for scalar conservation laws (2.129) on a
non-conforming mesh, we need to specify the SAT/numerical flux. Let uL denote
the solution on L over the nodes along its right interface and let uR denote the
solution on R over the nodes along its left interface (see Figure 3.6). Here, the
one dimensional vectors uL and uR are of different sizes, as we consider a non-
conforming mesh. Thus, the projection operators PL2R and PR2L are non-square
matrices. We discretize R with (2.129) and focus on the left surface. For the LAE,
Mattsson and Carpenter choose the following SAT to obtain an energy conservative
scheme

SATEC := [f̃ ∗,REC − f̃R] = ã

2PL2Ru
L − ã

2u
R, (3.3)

where the subscript EC denotes that the SAT is energy conservative. Also, we
included the index R within the numerical flux as the numerical flux differs on the
left and right element. By rearranging (3.3) and inserting f̃R = ãuR we obtain
the following energy conservative numerical surface flux

f̃ ∗,REC = ã
uR + PL2Ru

L

2 , (3.4)

which can be interpreted as a non-conforming central flux. To get an energy stable
scheme we include interface dissipation by

f̃ ∗,RES = f̃ ∗,REC −
|ã|
2

(1
2 (PL2RPR2L + IR)uR − PL2Ru

L
)
, (3.5)

55



3. SBP Methods for the LAE on Non-Conforming Meshes

where IR denotes the identity matrix of size NR+1. Here, the subscript ES denotes
that the numerical surface flux is energy stable. The flux (3.5) can be interpreted
as a non-conforming Lax-Friedrichs flux. Note, that when considering a conform-
ing mesh, meaning that PL2R = PR2L = IR, we get the classical upwind flux (2.148).

Due to (3.2), the interpolation operators depend on the norm matrices. In [83]
a certain set of such interpolation operators is given for SBP FD operator. These
operators are sufficient for certain test cases, but not in general, e.g. the inter-
polation operator connecting FD operators of degree pL = 2 and pR = 3 is not
provided. Constructing the projection operators in general is cumbersome as the
projection operators depend on at least two elements (even more for h refinement).

For DG schemes, Kopriva [66, 69] invented the so called DG Mortar method
for arbitrary conservation laws. The method is also applicable to curvilinear ele-
ments. However, for simplicity of the presentation we focus on Cartesian meshes
(ã remains constant for the left and right element). Here, the operators PL2R
and PR2L are derived by a discrete L2 projection and are denoted as projection
operators. In comparison to the method of Mattsson and Carpenter, the mortar
method constructs the projection operators by first projecting the solution on the
interface nodes of the elements onto an intermediate grid and then projecting back
the numerical flux to the surface of the corresponding element as in Figure 3.7.

PL2Ξ

PΞ2L

PR2Ξ

PΞ2R

X

X

X

X

X

X

X

X

X

X

XX
X

X

X

X

X
X

Figure 3.7.: Two conforming elements with non-conforming nodal distributions and an
intermediate grid.

Here, the intermediate grid is referred to as mortar (the "cement") as it connects
adjacent elements (the "bricks"). The operators PL2Ξ and PR2Ξ project the solu-
tion on the left and right element to the mortar, whereas PΞ2L and PΞ2R denote
the projection back to the element. The main advantage of this approach is that
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one can construct interpolation/projection operators independently of the neigh-
bouring elements as all element interfaces are projected to the same set of nodes.
This overcomes the difficulty of constructing projection operators as in the paper
of Mattsson and Carpenter. In addition, the mortar method has excellent parallel
computing properties [9, 60].

The mortar has its own set of nodes ηΞ and a norm matrix MΞ. In [69] the
nodes are typically chosen to be LG or LGL nodes. For Koprivas’ method, an
unique numerical surface flux is evaluated on the mortar. Considering the LAE
and a Lax-Friedrichs numerical flux on the mortar, then the flux is calculated by

f̃ ∗,Ξ = ã
PL2Ξu

L + PR2Ξu
R

2 − |ã|2
(

PR2Ξu
R − PL2Ξu

L
)
. (3.6)

Using the back projection we get the numerical fluxes for each element

f̃ ∗,L = PΞ2Lf̃
∗,Ξ, f̃ ∗,R = PΞ2Rf̃

∗,Ξ. (3.7)

The mortar method is primary conservative for all system of hyperbolic conserva-
tion laws on Cartesian or curvilinear meshes. However, the method is not necessar-
ily entropy stable/conservative (energy stable/conservative for the LAE). One rea-
son is that the projection operators to not necessarily satisfy the M-compatibility
condition (3.2) when applying a discrete projection.

A more recent non-conforming method was developed by Kozdon and Wilcox
[70]. Here, projection operators are constructed by also introducing an intermedi-
ate grid called the glue grid, as it "glues" the elements together. In addition, the
operators are constructed such that they satisfy the M-compatibility condition

PTL2ΞMΞ = MLPΞ2L,

PTR2ΞMΞ = MRPΞ2R.
(3.8)

Note, that (3.8) can be satisfied independent of the neighboring element. After
deriving operators satisfying (3.8), we obtain the projection operators connecting
the left and right element by

PL2R = PΞ2RPL2Ξ, PR2L = PΞ2LPR2Ξ. (3.9)

This construction maintains the M-compatibility condition (3.2) as

PTL2RMR = PTL2Ξ PTΞ2RMR︸ ︷︷ ︸
=MΞPR2Ξ

= PTL2ΞMΞ︸ ︷︷ ︸
=MLPΞ2L

PR2Ξ,

= MLPΞ2LPR2Ξ = MLPR2Ξ.

(3.10)
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Note, that the norm matrices are symmetric and thus MT = M. The method is
primary conservative and energy stable on Cartesian meshes for linear systems of
hyperbolic conservation laws. Here, the numerical fluxes are uniquely determined
on the glue grid as for the mortar method (3.7). To finally obtain an energy
stable/conservative scheme the SAT needs to be modified by a correction term
COR

SAT :=
[
f̃ ∗,R − f̃R

]
+COR,

=
[
PΞ2Rf̃

∗,Ξ − f̃R
]

+ ã

2
(
uR − PΞ2RPR2Ξu

R
)
.

(3.11)

Note, that after the evaluation of the numerical flux on the glue grid, the SAT
purely depends on the right element. Thus, the storage of the projection operators
can be done locally on each element without considering their neighbors. We verify
energy conservation directly by inseting the central numerical flux.

SATEC =
[
ã

2PΞ2R
(

PR2Ξu
R + PL2Ξu

L
)
− ãuR

]
+ ã

2
(
uR − PΞ2RPR2Ξu

R
)
,

= ã2 PΞ2RPL2Ξ︸ ︷︷ ︸
=PL2R

uL − ã

2u
R = ã

2PL2Ru
L − ã

2u
R,

(3.12)

which is precisely the same numerical SAT as in the approach of Mattsson and
Carpenter (3.3). To include numerical dissipation we consider the Lax-Friedrichs
flux on the intermediate/glue grid as in (3.6).

In addition, Kozdon andWilcox [70] extended their scheme to curvilinear meshes,
but due to this extension the scheme is not primary conservative. Deriving pri-
mary conservative and at the same time energy stable schemes on a non-conforming
curvilinear mesh with h/p refinement is one of today’s research topics. Focusing
on curved meshes Carpenter et al. [16] developed an energy stable and primary
conservative scheme considering p refinement by modifying the SAT. Up to now
their is no energy stable SBP method for general conservation laws considering h
refinement on a curved mesh.

In this work we aim to simulate non-linear problems on complex geometries as
in Figure 3.1. A generation of such meshes is cumbersome, especially for con-
forming meshes, as here all interfaces need to coincide. However, this is not
required for non-conforming meshes with h refinement. As we want to ensure
an energy/entropy stable simulation, we consider Cartesian meshes for element
refinement.
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3.2. Construction of M-Compatible Projection Operators

In this section we construct M-compatible projection operators for all introduced
SBP operators in Section 2.1. As in the last section, we purely focus on p refine-
ment as the extension for h refinement is straightforward (see Section 3.4.2). Here,
we focus on an element L and an intermediate grid Ξ as in Figure 3.8.

PL2Ξ

PΞ2L

X

X

X

X

X X
X

X

X

X

X
X

Figure 3.8.: Single element and an intermediate grid.

Let ηL and ηΞ denote the one dimensional set of nodes of size NL+1 and NΞ +1
in η-direction and ML and MΞ denote the corresponding diagonal norm matrices.
Besides satisfying the M-compatibility condition (3.2), we also discuss the accuracy
of the projection operators PL2Ξ and PΞ2L. Therefore, we define the degree of a
projection operator.

Definition 9. Degree of a Projection Operator
The projection operators PL2Ξ is of degree p, if

PL2Ξ(ηL)k = (ηΞ)k, (3.13)

for k = 0, . . . , p.

How to construct such projection operators of high degree depends on the corre-
sponding SBP operators defined on the element L. First, we construct projection
operators for elements with DG operators.

3.2.1. Projection Operators for Discontinuous Galerkin

In this section we derive projection operators for elements with DG operators.
Therefore, we adapt the Mortar element approach of Kopriva [69]. Here, we as-
sume that the nodes on the element and on the intermediate grid/mortar are LGL
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nodes with corresponding Lagrange basis function `Li , `
Ξ
j with i = 0, . . . , NL and

j = 0, . . . , NΞ. For the mortar method we set NΞ > NL.

First, we discuss the projection from the element to the mortar (PL2Ξ). We
assume that the solution is evaluated at u = (u0, . . . , uNL)T with the polynomial
ansatz U(η) = ∑NL

i=0 `
L
i (η)ui. We want to project u onto the mortar to obtain

uΞ = (uΞ
0 , . . . , u

Ξ
NΞ

)T with

UΞ(η) =
NΞ∑
j=0

`Ξ
j (η)uΞ

j . (3.14)

Note, that U(η) 6= UΞ(η) for a polynomial of higher degree as NL 6= NΞ. The
operator PL2Ξ is created by a L2 projection onto the mortar(

U , `Ξ
j

)
L2(Ω̂) =

(
UΞ, `Ξ

j

)
L2(Ω̂) ,

⇔
NL∑
i=0

(
`Li , `

Ξ
j

)
L2(Ω̂) ui =

NΞ∑
i=0

(
`Ξ
i , `

Ξ
j

)
L2(Ω̂) u

Ξ
i ,

(3.15)

for j = 0, . . . , NΞ. In [69] the evaluation of the discrete inner products can be done
using exact integration or mass lumping. However, to obtain projection matrices
satisfying the M-compatibility condition (3.2), we consider LGL quadrature rules.
The L2 inner product on the left hand side of (3.15) is evaluated exactly on NΞ +1
LGL nodes

(
`Li , `

Ξ
j

)
L2(Ω̂) =

NΞ∑
k=0

ωΞ
k `

L
i (ηΞ

k )`Ξ
j (ηLk ) =

NΞ∑
k=0

ωΞ
k `

L
i (ηΞ

k )δjk = ωΞ
j `

L
i (ηΞ

j ), (3.16)

for i = 0, . . . , NL, j = 0, . . . , NΞ. Note, that this is an exact evaluation of the
L2 product due to the accuracy of the LGL quadrature (exact for polynomials of
degree 2NΞ− 1 and NΞ > NL). The L2 product on the right hand side of (3.15) is
also evaluated on NΞ+1 LGL nodes. Therefore, the inner product is approximated
by an integration rule with mass lumping, e.g. [9],

(
`Ξ
i , `

Ξ
j

)
L2(Ω̂) ≈

NΞ∑
k=0

ωΞ
k `

Ξ
i (ηΞ

k )`Ξ
j (ηΞ

k ) =
NΞ∑
k=0

ωΞ
k δikδjk = δijω

Ξ
j , (3.17)

for i, j = 0, . . . , NΞ. Next, we define the rectangular interpolation operator

[LL2Ξ]ij := `Lj (ηΞ
i ), (3.18)
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with i = 0, . . . , NL and j = 0, . . . , NΞ. We rewrite (3.15) in a compact matrix-
vector notation

MΞLL2Ξu = MΞu
Ξ ⇔ LL2Ξ︸ ︷︷ ︸

:=PL2Ξ

u = uΞ. (3.19)

So the projection operator to move the solution from the element onto the mortar
is equivalent to an interpolation operator. However, this does not hold for project-
ing the solution from the mortar back to the element.

To construct the operator PΞ2L we again consider a L2 projection. Here, we as-
sume to have a discrete evaluation of the solution on the mortar uΞ = (uΞ

0 , . . . , u
Ξ
NΞ

)T
with UΞ(η) = ∑NΞ

i=0 `
Ξ
i (η)uΞ

i and seek the solution on the element u = (u0, . . . , uNL)T
with

U(η) =
NL∑
i=0

`Li (η)ui. (3.20)

The L2 projection back to the element is(
UΞ, `Lj

)
L2(Ω̂) =

(
U , `Lj

)
L2(Ω̂) ,

⇔
NΞ∑
i=0

(
`Ξ
i , `

L
j

)
L2(Ω̂) u

Ξ
i =

NL∑
i=0

(
`Li , `

L
j

)
L2(Ω̂) ui,

(3.21)

for j = 0, . . . , NL. The L2 inner product on the left hand side of (3.21) is computed
exactly using NΞ + 1 LGL points. The L2 inner product on the right in (3.21) is
approximated with mass lumping at NL + 1 LGL nodes. Thus, we obtain

(
`Ξ
i , `

L
j

)
L2(Ω̂) =

M∑
k=0

ωΞ
k `

Ξ
i (ηΞ

k )`Lj (ηΞ
k ) = ωΞ

i `
L
j (ηΞ

i ), (3.22)

where i = 0, . . . , NΞ, j = 0, . . . , NL and
(
`Li , `

L
j

)
L2(Ω̂) ≈

N∑
k=0

ωLi `
L
i (ηLk )`Lj (ηLk ) = δijω

L
j , (3.23)

for i, j = 0, . . . , NL. Again, we write (3.21) in a compact matrix-vector notation
which gives us

LTL2ΞMΞu
Ξ = MLu. (3.24)

As LL2Ξ = PL2Ξ (3.19) we obtain

M−1
L PTL2ΞMΞ︸ ︷︷ ︸

=:PΞ2L

uΞ = u, (3.25)
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where we introduce the projection operator (not an interpolation operator) from
the mortar back to the element withNL+1 nodes. With this approach we construct
projection operators satisfying the M-compatibility condition (3.2), i.e.,

PΞ2L = M−1
L PTL2ΞMΞ ⇔ MLPΞ2L = PTL2ΞMΞ. (3.26)

To summarize, the projection operators for DG elements is constructed as followed

• The projection from the element to the mortar is given by an interpolation
using the DG ansatz PL2Ξ = LL2Ξ.

• The projection back to the element is constructed by PΞ2L = M−1
L PTL2ΞMΞ.

Here, as we adapt the method of Kopriva and set the nodes on the intermediate
grid to be LGL nodes. However, in general the choice of the nodes and weights is
nearly arbitrary, provided that the degree of MΞ is greater or equal to the degree
of ML. For example, the nodes on the mortar/intermediate grid can be chosen to
be FD or HGTL nodes.

Besides satisfying the M-compatibility condition, we are interested in the accu-
racy of the projection operators. As we consider NL + 1 LGL nodes, the corre-
sponding differentiation matrix DL is of degree p = NL. Focusing on a conforming
mesh, the discretization (2.129) for the LAE can solve for polynomials of degree NL

exactly. To extend this result to a non-conforming discretization, we desire pro-
jection operators which are also of degree NL. As the operator PL2Ξ is constructed
by a direct interpolation form LGL nodes to the nodes on the intermediate grid,
it is naturally an operator of degree NL. However, this does not hold for the back
projection PΞ2L as shown in Lemma 3.

Lemma 3. Assume that ηL are LGL nodes of size NL + 1. Let ηΞ be an arbitrary
set of nodes of size NΞ + 1 with a norm matrix MΞ of degree ≥ 2NL− 1. Then the
projection operator PΞ2L is only of degree NL − 1.

Proof. As ηL are LGL nodes of size NL + 1, the corresponding norm matrix ML

is of degree 2NL − 1 [24]. To obtain the degree of the projection operator we first
examine

(
`Li , η

k
)
L2(Ω̂), where i = 0, . . . , NL and k = 0, . . . , NL − 1. As `Li ηk is a

polynomial of degree ≤ 2NL − 1, the approximation using 〈·, ·〉ML
or 〈·, ·〉MΞ

are
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both exact. Therefore, 〈
`Li , η

k
〉

MΞ
=
〈
`Li , η

k
〉

ML

,

⇔
NΞ∑
j=0

ωΞ
j `

L
i (ηΞ

j )(ηΞ
j )k =

NL∑
j=0

ωLj `
L
i (ηLj )(ηLj )k,

⇔
NΞ∑
j=0

ωΞ
j `

L
i (ηΞ

j )(ηΞ
j )k = ωLi (ηLi )k.

(3.27)

Using the definition of the projection operator PL2Ξ (3.19) we can rewrite (3.27)
in a compact matrix vector notation

PTL2ΞMΞ
(
ηΞ
)k

= ML

(
ηL
)k
,

⇔ M−1
L PTL2ΞMΞ

(
ηΞ
)k

=
(
ηL
)k
,

⇔ PΞ2L
(
ηΞ
)k

=
(
ηL
)k
,

(3.28)

for k = 0, . . . , NL − 1. So the projection operator can only project polynomials of
degree NL − 1 exactly.

As we see in Lemma 3, the operator can only project polynomials up to a degree
NL − 1 exactly. This result is not only found for projection operators for DG
operators, but also for projection operators for FD operators as in [70, 83]. Here,
all introduced projection operators are of one degree lower than the degree of the
differentiation matrix D. A discussion on this topic can be found in Section 3.2.3

3.2.2. Projection Operators for Finite Difference and Hybrid
Gauss-Trapezoidal-Lobatto

In this section we discuss the construction of projection operators for FD and
HGTL operators. Again, we focus on an element L and an intermediate grid Ξ
and assume that the differentiation matrix DL is of degree p. As for the projection
operators for DG, we want the projection operators to satisfy

PL2Ξ
(
ηL
)k

=
(
ηΞ
)k
,

PΞ2L
(
ηΞ
)l

=
(
ηL
)l
,

(3.29)

for k = 0, . . . , p and l = 0, . . . , p − 1. As we need to ensure that the projection
operators satisfy the M-compatibility condition (3.2) we seek a projection operator
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that satisfies

PL2Ξ
(
ηL
)k

=
(
ηΞ
)k
,

M−1
L PTL2ΞMΞ

(
ηΞ
)l

=
(
ηL
)l
,

(3.30)

or alternatively

PL2Ξ
(
ηL
)k

=
(
ηΞ
)k
,

PTL2ΞMΞ
(
ηΞ
)l

= ML

(
ηL
)l
,

(3.31)

for k = 0, . . . , p and l = 0, . . . , p− 1.
Remark 9. When solving the system (3.31) including the condition PTL2ΞMΞ

(
ηΞ
)p

=
ML

(
ηL
)p

(the back projection should be of degree p) , then the system is not solv-
able for FD and HGTL operators presented in Section 2.1.2 and 2.1.4. This result
holds for an arbitrary choice of the intermediate grid. For more details see Section
3.2.3.
Note, that after choosing an intermediate grid with nodes and quadrature weights,

the conditions (3.31) only include the unknown projection operator PL2Ξ. We as-
sume that the construction of this operator is a dense matrix, so it introduces
(NL + 1)(NΞ + 1) degrees of freedom. In general, the conditions (3.31) are insuffi-
cient to fully specify PL2Ξ. Therefore, we need to consider further conditions.

We reiterate, that for FD and HGTL operators the differentiation matrix DL

is of degree p only at the boundary nodes. On the interior nodes however, the
operator has a degree of 2p due to a symmetric, central finite difference formula.
To establish further conditions, we set the quadrature rule on the intermediate grid
to be derived from a HGTL or FD operator. Therefore, the nodes ηΞ also consist
of boundary and interior nodes. In order to mimic the accuracy properties of the
differentiation matrix, we set the following conditions for the projection operator:

PL2Ξ
(
ηL
)k

=
(
ηΞ
)k
, for k = 0, . . . , p

PTL2ΞMΞ
(
ηΞ
)l

= ML

(
ηL
)l
, for l = 0, . . . , p− 1,(

PL2Ξ
(
ηL
)k̃)

i
=
((
ηΞ
)k̃)

i
, for k̃ = 0, . . . , 2p,(

PTL2ΞMΞ
(
ηΞ
)l̃)

i
=
(

ML

(
ηL
)l̃)

i
, for l̃ = 0, . . . , 2p,

(3.32)
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and i = bn, . . . , N + 2 − bn. Still, (3.32) does not necessarily fully specify the
projection matrix PL2Ξ, for which we next use optimization constraints. Therefore,
we use any remaining degrees of freedom to ensure that the modulus of each
eigenvalue of the matrix

Zopt := ML − PTL2ΞMΞPL2Ξ (3.33)

is as close to zero as possible [39]. We chose the optimization of minimizing the
eigenvalues of Zopt as

Zopt =ML − PTL2ΞMΞPL2Ξ = ML

(
IL −M−1

L PTL2ΞMΞPL2Ξ
)
,

=ML (IL − PΞ2LPL2Ξ) .
(3.34)

So, when Zopt ≈ 0, then IL ≈ PΞ2LPL2Ξ which indicates a minimization of the
projection error. Note, that optimizing the projection operators such that IL ≈
PΞ2LPL2Ξ is the same optimization criteria as in the work of Kozdon andWilcox [70].

3.2.3. Analysis of the Suboptimal Degree of the Projection Operators

In Section 3.2.1 and 3.2.2 it was not possible to construct projection operators of
degree p which at the same time satisfy the M-compatibility condition (3.2). Up
to now, all constructed SBP operators had norm matrices of degree 2p−1 [23, 58].
A drawback of such operators is that it is not possible to construct PL2Ξ and
PΞ2L of degree p, as proven in the following theorem, where we adapt the ideas of
Lundquist and Nordström [80].

Theorem 4. Given a degree p SBP operator DL with norm matrix ML of degree
2p− 1. Assuming an intermediate grid with a norm matrix MΞ of degree ≥ 2p− 1
such that the matrices ML and MΞ are different in terms of the norm matrices
having different errors, then it is not possible to construct M-compatible projection
operators PL2Ξ and PΞ2L that are both of degree p.

Proof. We assume that it is possible to construct M-compatible operators of degree
p and seek a contradiction. Therefore, we have the degree p projection operator
PL2Ξ and PΞ2L which satisfy

PL2Ξ
(
ηL
)k

=
(
ηΞ
)k
,

PΞ2L
(
ηΞ
)k

=
(
ηL
)k
,

PTΞ2LML = MΞPL2Ξ,

(3.35)
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for k = 0, . . . , p. Focusing on the third equation and multiplying it from left by((
ηΞ
)p)T

and from the right by
(
ηL
)p

we get

((
ηΞ
)p)T

PTΞ2LML

(
ηL
)p

=
((
ηΞ
)p)T

MΞPL2Ξ
(
ηL
)p
,(

PΞ2L
(
ηΞ
)p)T

ML

(
ηL
)p

=
((
ηΞ
)p)T

MΞPL2Ξ
(
ηL
)p
.

(3.36)

Due to the assumptions (3.35) the projection operators are of degree p and thus((
ηL
)p)T

ML

(
ηL
)p

=
((
ηΞ
)p)T

MΞ
(
ηΞ
)p
. (3.37)

However, the norm matrix ML cannot integrate η2p exactly. Also, if MΞ is of degree
2p−1, then the right-hand side of (3.37) also does not integrate exactly. The error
terms for each quadrature rule are different, so the equality (3.37) cannot hold in
general. For the case where the degree of MΞ is larger than 2p − 1, then the
equality (3.37) cannot hold since the right-hand side performs exact integration of
η2p, whereas the right hand side produces a quadrature error.

The contradiction within Theorem 4 holds due to the accuracy of the norm
matrix ML. This contradiction would not occur, if ML would be of degree 2p or
higher. Therefore, we construct SBP operators with norm matrices of degree ≥ 2p
for which projection operators of degree p satisfying the M-compatibility condition
can be built. We denote such SBP operators as degree preserving as in [39]. The
construction of a SBP degree preserving, element based finite difference operator
is given in Section 3.3
Remark 10. The existence of a quadrature rule with positive weights of degree
≥ 2p is sufficient for the existence of a degree preserving SBP operator of degree
p [23].

3.3. Degree Preserving Operators

As shown in Section 3.2.3 it is not possible to construct M-compatible projection
operators of degree p if the norm matrix of the SBP operator is only of degree
2p − 1. Here, p refers to the degree of the differentiation matrix of the SBP
operator. In this section we explicitly construct degree preserving SBP operators
(M,D), where the degree of D is p and the degree of the norm matrix M is ≥ 2p. As
for all other SBP operators in this work, we construct the SBP degree preserving
operator (DP operator) in a reference space Ω̂ := [−1, 1]. We construct the DP
operator in a similar fashion to the FD operators and consider an interior stencil of
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degree 2p and boundary nodes with free parameters. Since the norm matrix needs
to be at least one degree higher than for the FD operators in Section 2.1.2, we
naturally need more free coefficients. These coefficients are obtained by increasing
the number of boundary nodes at least by one. For example, for p = 2 the norm
matrix M is

M := 2
N
diag (h0, . . . , h4, 1, . . . , 1, h4, . . . , h0) , (3.38)

where N + 1 denotes the number of nodes. The upper left corner of Q has the
following structure:

(Q)(1:5,1:7) =

−1
2 q12 q13 q14 q15 0 0

−q12 0 q23 q24 q25 0 0
−q13 −q23 0 q34 q35 0 0
−q14 −q24 −q34 0 q45 − 1

12 0

−q15 −q25 −q35 −q45 0 2
3 − 1

12




.

With these configurations we will focus on the construction of the DP operators.
As for FD operators the degrees of freedom of Q referring to the interior nodes are
the same. Here, we again consider a symmetric central difference formula. Note,
that the DP operator is element based as in [28]. By changing the number of
nodes, we must re-calculate the degrees of freedom at the boundary blocks. This
is similar to a DG operator, as the operator coefficients change by increasing or
decreasing the number of nodes.

Let ξ be an uniformly distributed set of nodes within the reference space [−1,+1]
and ξ0 = −1, ξN = +1. The free coefficients are determined by solving

Qξk = kMξk−1 k = 0, . . . , p,

1TMξk = ξk+1
N − ξk+1

0
k + 1 k = 0, . . . , 2p+ 1.

(3.39)

In case of negative weights for a fixed value N , we increase the number of boundary
nodes bn to obtain more free coefficients for satisfying the property of a diagonal
norm matrix with positive weights.

By solving (3.39), the DP operator is not necessarily fully specified. As in Section
2.1.2 we construct the DP operators using the same constraints and optimization
criteria. A description of the construction is provided in Algorithm 3.
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Input: N and p
Set bn := 2p+ 1;
Solve (3.39);
while one or more entries of M are negative do

Set bn:= bn+1;
if 2bn > N + 1 then

Error: Chose a different N ;
else

Solve (3.39) again;
end

end
Minimize Ze in (2.25) under the constraint hi > 0 for i = 0, . . . , bn− 1;
Minimize ZQ in (2.26) under the constraint hi > 0 for i = 0, . . . , bn− 1;

Algorithm 3: Construction of degree preserving operators.

By following these steps we create SBP operators (M,D) where D is of degree
p and M is of degree 2p + 1. Note, that as for existing SBP operators like those
in Section 2.1.2, a minimum number of nodes needs to be considered to solve for
(3.39). Creating the corresponding projection operators for the DP operators is
done in the same way as for FD and HGTL in Section 3.2.2.

3.4. Non-Conforming Discrete Analysis for the Linear
Advection Equation

In this section we discuss the construction of the non-conforming SBP scheme
and prove primary conservation for energy stability for the LAE. Again, we con-
sider discretization (2.129). As the elements are no longer conforming, we need
to choose an appropriate numerical surface flux/SAT. Here, we need to differ be-
tween elements with conforming (p refinement) and non-conforming interfaces (h
refinement). We will first describe how to determine a fully conservative scheme
for conforming interfaces, but differing nodal distribution. Then, we extend these
results to consider meshes with non-conforming interfaces (hanging corners). Fi-
nally, we determine an energy stable scheme by including interface dissipation.

As discussed in the Section 3.1, it would be efficient to store the projection
operators within the elements and to choose the SAT as in (3.11). For this ansatz,
we need to calculate the numerical surface flux on the intermediate grid. However,
when moving onto general non-linear problems in later sections, it is (up to now)
not possible to evaluate the numerical surface flux on an intermediate grid in
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a stable manner. The reason for this is that when determining the numerical
flux of the projected solution PL2Ξu

L and PR2Ξu
R, then non-linear projections get

introduced, e.g. (PL2Ξu
L)2. A discussion on this issue is provided in Section 5.

Therefore, within the mathematical derivations we neglect the intermediate grid
and store the projection operators PL2R,PR2L and the numerical surface fluxes
f̃ ∗,L, f̃ ∗,R for the left and right element on the interfaces. The derivations will be
consistent with the stability and conservation proofs for non-linear problems in
Section 5. In addition, the derivations in this section are more compact as we do
not consider the projection on an intermediate grid. Still, an intermediate grid
is an useful analytical tool and has been used throughout this work to construct
projection operators.

3.4.1. Non-Conforming Nodal Distributions

In this section we show how to create a fully conservative scheme on a mesh with
conforming interfaces, but non-conforming nodal distributions (p refinement). As
shown in Lemma 2 the primary quantity and energy growth is dependent on the
numerical surface fluxes at an interface. Note, that Lemma 2 refers to a single
element and thus holds for conforming and non-conforming meshes. As such, we
elect to consider all terms related to a single shared interface of a left and right
element.

The numerical approximation is primary and energy conservative provided

IUt :=
〈
1R, f̃ ∗,R

〉
MR

−
〈
1L, f̃ ∗,L

〉
ML

, (3.40)

IEt :=
〈
uR, f̃ ∗,R

〉
MR

− ã

2

〈
1R,

(
uR
)2
〉

MR

−
〈
uL, f̃ ∗,L

〉
ML

+ ã

2

〈
1L,

(
uL
)2
〉

ML

,
(3.41)

are both zero. Here, (3.40) and (3.41) are adapted from Section 2.2 (Equation
(2.144) and (2.145)) and rewritten in a compact matrix vector form where

f̃ ∗,L =
[
f̃ ∗,LNL0, . . . , f̃

∗,L
NLNL

]T
,

f̃ ∗,R =
[
f̃ ∗,R00 , . . . , f̃ ∗,L0NR

]T
,

(3.42)

and 1L and 1R describe vectors of size NL + 1 and NR + 1. Within (3.40) and
(3.41), the subtractions involve two discrete inner products with differing nodal
distributions between the left and right elements. Therefore, we require projection
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operators that move information from the left node distribution to the right and
vice versa. The construction of these operators for FD, DG, HGTL and operators
can be found in Section 3.2 and 3.3.

Now, we address the issue of p refinement where the mesh may contain differing
nodal distributions. To do so, we consider the energy conservative fluxes in a mod-
ified way. Therefore, we introduce the projection operators within the numerical
flux

f̃ ∗,LEC (uR,uL) = 1
2
(
f̃
(

PR2Lu
R
)

+ f̃(uL)
)
,

f̃ ∗,REC (uR,uL) = 1
2
(
f̃(uR) + f̃

(
PL2Ru

L
))
.

(3.43)

We will prove that the scheme is primary and energy conservative, if the projection
operators satisfy the M-compatibility condition (3.2).
Theorem 5. Considering the fluxes within (3.43). The scheme is primary and
energy conservative, meaning that (3.40) and (3.41) are zero, if

PTR2LML = MRPL2R. (3.44)
Proof. First, we focus on (3.40) and include the fluxes (3.43). We get

IUt = ã

2
〈
1R,uR

〉
MR

+ ã

2
〈
1R,PL2Ru

L
〉

MR

− ã

2
〈
1L,PR2Lu

R
〉

ML

− ã

2
〈
1L,uL

〉
ML

.
(3.45)

Writing out the inner product we have

IUt = ã

21R,TMRu
R + ã

21R,TMRPL2Ru
L

− ã

21L,TMLPR2Lu
R − ã

21L,TMLu
L.

(3.46)

Assuming that the projection operators can project a constant exactly, meaning
PL2R1L = 1R and PR2L1R = 1L we get

IUt = ã

2
(
1L,TPTL2RMRu

R + 1R,TMRPL2Ru
L − 1L,TMLPR2Lu

R − 1R,TPTR2LMLu
L
)
,

= ã

2

1L,T
(

PTL2RMR −MLPR2L
)

︸ ︷︷ ︸
=0

uR + 1R,T
(

MRPL2R − PTR2LML

)
︸ ︷︷ ︸

=0

uL

 ,
= 0,

(3.47)
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due to the M-compatibility equation (3.2).

Secondly, we focus on (3.41) to prove energy conservation. Including the fluxes
(3.43) we get

IEt = ã

2
〈
uR,PL2Ru

L
〉

MR

− ã

2
〈
uL,PR2Lu

R
〉

ML

,

= ã

2
(
uR
)T

MRPL2Ru
L − ã

2
(
uL
)T

MLPR2Lu
R.

(3.48)

Rearranging terms gives us

IEt = ã

2
(
uR
)T (

MRPL2R − PTR2LML

)
︸ ︷︷ ︸

=0

uL,

= 0,
(3.49)

again due to the M-compatibility equation (3.2). This indicates that the scheme is
primary and energy conservative when considering the energy conservative fluxes
(3.43).

Based on this proof, we can construct energy conservative schemes on non-
conforming meshes with conforming interfaces (p refinement). To introduce addi-
tional flexibility, we next consider elements where the interfaces may not coincide
(h refinement).

3.4.2. Non-Conforming Interfaces with Hanging Corners

In Section 3.4.1 we discussed the coupling of elements with a coinciding interface
but differing nodal distributions. As such, each numerical interface flux only de-
pends on one neighboring element. For example the numerical surface flux f̃ ∗,LEC
in (3.43) only contained the projection operator PR2L, so it only depends on one
neighboring element R. This is acceptable if the interfaces have no hanging corners,
however for the more general case of h refinement as in Figure 3.9 the interface
coupling requires addressing contributions from many elements. Throughout this
section we focus on discrete meshes as in Figure 3.9. For the h refinement dis-
cretization we adapt the results derived in the previous section for conforming
interfaces. Therefore, we consider all left elements as if they are one large element
L = ⋃NE

i=1 Li, where NE denotes the number of left neighbors of the right element
R. Thus, we see that L has a conforming interface with element R (red line). To
obtain the nodes of L in the reference space we first map the nodes of Li from
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L1
X

L2
X

...
X

LNE∆LNE

∆L2

∆L1

∆RR

Figure 3.9.: h refinement with hanging corners X. The figure is reproduced from [38].

[−1,+1] to
[
2∑i−1

j=0
∆Lj
∆R − 1, 2∑i

j=0
∆Lj
∆R − 1

]
by

η̃Lik = ∆Li
∆R

(
ηLik + 1

)
+ 2

i−1∑
j=0

∆Lj
∆R − 1, (3.50)

for k = 0, . . . , NLi and i = 1, . . . , NLNE . Here, ηLi denotes the vertical nodes of
the element Li and ∆ denotes its height. The nodes of L on the red line in Figure
3.9 are defined by

ηL := (η̃L1
0 , . . . , η̃L1

NL1
, . . . , η̃LNE0 , . . . , η̃LNENLNE

)T . (3.51)

Due to (3.50) all coefficients of ηL are in the reference space [−1,+1]. The corre-
sponding norm matrix of L is given by

ML := 1
∆R


∆L1ML1 0

. . .
0 ∆LNEMLNE

 . (3.52)

With the nodes ηL and the norm matrix ML we can construct projection operators
PL2R,PR2L which satisfy the M-compatibility condition (3.2):

PTL2RMR = MLPR2L. (3.53)

The "large" projection operators can be interpreted into parts that contribute
from/to each of the left elements with the following block structure

PL2R =
[
PL12R . . . PLNE2R

]
, (3.54)
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and

PR2L =


PR2L1

...
PR2LNE

 . (3.55)

With this new notation we get a modified M-compatibility condition

∆LiPTR2LiMLi = ∆RMRPLi2R, i = 1, . . . , NE. (3.56)

When constructing PR2L and PL2R both operators are of a certain degree, say pR2L
and pL2R (both ≥ 0), meaning

PR2L
(
ηR
)k

=
(
ηL
)k
, for k = 0, . . . , pR2L,

PL2R
(
ηL
)k

=
(
ηR
)k
, for k = 0, . . . , pL2R.

(3.57)

Due to (3.54) and (3.55) the subdomain operators have the following properties

PR2Li

(
ηR
)k

=
(
η̃Li

)k
, for i = 1, . . . , NE and k = 0, . . . , pR2L,

NL∑
i=1

PL12R
(
η̃L1

)k
=
(
ηR
)k
, for k = 0, . . . , pL2R.

(3.58)

Considering the special case k = 0 we get

PR2Li1R = 1Li , for i = 1, . . . , NE,
NL∑
i=1

PL12R1Li = 1R,
(3.59)

which describes the projection of a constant from one element into another. So the
operators PR2Li with i = 1, . . . , NE are of degree pR2L and therefore can project
a constant exactly. In comparison, the operators PLi2R for i = 1, . . . , NE cannot
necessarily project a constant exactly.

As in Section 3.4.1 we need to choose a numerical surface fluxes so that the
scheme is primary and energy conservative. We note that for the h non-conforming
case (just like p non-conforming) the result of Lemma 2 is still valid. Therefore,
only a non-conforming numerical surface flux is needed to construct a fully con-
servative SBP method. Therefore, we analyze all terms which are related to the
interface connecting L1, . . . , LNE and R. Similar to (3.40) and (3.41), we arrive at
the following terms
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IUt =
〈
1R, f̃ ∗,R

〉
MR

−
NE∑
i=1

〈
1Li , f̃ ∗,Li

〉
MLi

, (3.60)

IEt =
〈
uR, f̃ ∗,R

〉
MR

− ãR
2

〈
1R,

(
uR
)2
〉

MR

−
NE∑
i=1

(〈
uLi , f̃ ∗,Li

〉
MLi

− ãLi
2

〈
1Li ,

(
uLi

)2
〉

MLi

)
, (3.61)

which need to be zero to obtain a discretely fully conservative scheme. Note, that
due to the different heights of the subdomains Li we get different metric terms,
such that ãLi 6= ãR.

Theorem 6. Given a set of projection operators that satisfy (3.56), then the nu-
merical surface fluxes

f̃ ∗,REC = ãR
2

(
uR +

NE∑
i=1

PLi2RuLi
)
, (3.62)

and
f̃ ∗,LiEC = ãLi

2
(

PR2Liu
R + uLi

)
, (3.63)

for i = 1, . . . , NE lead to a fully conservative scheme.

Proof. The proof is done analogously to Theorem 5. First, we prove primary
conservation. Inserting the numerical surface flux gives us

IUt =
〈

1R,
ãR
2

(
uR +

NE∑
i=1

PLi2RuLi
)〉

MR

−
NE∑
i=1

〈
1Li ,

ãLi
2
(

PR2Liu
R + uLi

)〉
MLi

,

= ãR2 1R,TMRu
R −

NE∑
i=1

ãLi
2 1Li,TMLiPR2Liu

R

+
NE∑
i=1

ãR
2 1R,TMRPLi2RuLi −

NE∑
i=1

ãLi
2 1Li,TMLiu

Li .

(3.64)

Note, that on a Cartesian mesh ãR = a∆R

2 and ãLi = a
∆Li

2 for all i = 1, . . . , NE.
Therefore, using the modified M-compatibility condition (3.56) on the second and
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third summand we get

IUt = ãR2 1R,TMRu
R − ãR

2

(
NE∑
i=1

PLi2R1Li
)T

MRu
R

+
NE∑
i=1

ãLi
2
(

PR2Li1R
)T

MLiu
Li −

NE∑
i=1

ãLi
2 1Li,TMLiu

Li .

(3.65)

Due to the accuracy conditions of the projection operators (3.59) we arrive at

IUt = ãR2 1R,TMRu
R − ãR

2 1R,TMRu
R

+
NE∑
i=1

ãLi
2 1Li,TMLiu

Li −
NE∑
i=1

ãLi
2 1Li,TMLiu

Li ,

=0,

(3.66)

which proves primary conservation. To obtain energy conservation we look at
(3.61) and insert the numerical surface fluxes

IEt = ãR
2

〈
uR,uR +

NE∑
i=1

PLi2RuLi
〉

MR

− ãR
2

〈
1R,

(
uR
)2
〉

MR

−
NE∑
i=1

ãLi
2

(〈
uLi ,PR2Liu

R + uLi
〉

MLi

−
〈

1Li ,
(
uLi

)2
〉

MLi

)
,

=
NE∑
i=1

ãR
2
(
uR
)T

MRPLi2RuLi −
NE∑
i=1

ãLi
2
(
uLi

)T
MLiPR2Liu

R.

(3.67)

As the norm matrix is diagonal we know that
〈
uR,uR

〉
MR

=
〈
1R,

(
uR
)2
〉

MR

.
Finally, due to the modified M-compatibility condition (3.56) we get

IEt = 0, (3.68)

which indicates entropy conservation.

Based on this proof, we can construct fully conservative schemes for meshes with
non-conforming interfaces.

3.4.3. Including Dissipation within the Numerical Surface Flux

In Sections 3.4.1 and 3.4.2 we derived fully conservative schemes for the LAE on
non-conforming meshes with h/p refinement. From these results, we can include
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interface dissipation to obtain an energy stable discretization for arbitrary non-
conforming rectangular meshes. Now we focus on the general case, where we have
differing nodal distributions as well as hanging corners as in Figure 3.9. As in
Section 3.4.2 we assume that the projection operators satisfy the modified M-
compatibility condition (3.56).

Theorem 7. The non-conforming SBP scheme is primary conservative and energy
stable, for the following numerical surface fluxes

f̃ ∗,LiES = f̃ ∗,LiEC −
|ãLi |

2
(

PR2Liu
R − uLi

)
, (3.69)

f̃ ∗,RES = f̃ ∗,REC −
|ãR|

2

NE∑
i=1

PLi2R
(

PR2Liu
R − uLi

)
. (3.70)

Proof. By including dissipation we can prove primary conservation by substituting
the new fluxes (3.69) and (3.70) into (3.60)

IUt =
〈
1R, f̃ ∗,RES

〉
MR

−
NE∑
i=1

〈
1Li , f̃ ∗,LiES

〉
MLi

(3.71)

Due to Theorem 1 we know that〈
1R, f̃ ∗,REC

〉
MR

−
〈
1Li , f̃ ∗,LiEC

〉
MLi

= 0. (3.72)

Therefore, IUt reduces to

IUt =− |ãR|2

NE∑
i=1

1R,TMRPLi2R
(

PR2Liu
R − uLi

)

+
NE∑
i=1

|ãLi |
2 1Li,TMLi

(
PR2Liu

R − uLi
)
.

(3.73)

Due to the modified M-compatibility condition (3.56) we arrive at

IUt =−
NE∑
i=1

|ãLi |
2

(
PR2Li1R

)T
MLi

(
PR2Liu

R − uLi
)

+
NE∑
i=1

|ãLi |
2 1Li,TMLi

(
PR2Liu

R − uLi
)
.

(3.74)
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As PR2Li can project a constant exactly (3.59), we find that

IUt =−
NE∑
i=1

|ãLi |
2 1Li,TMLi

(
PR2Liu

R − uLi
)

+
NE∑
i=1

|ãLi |
2 1Li,TMLi

(
PR2Liu

R − uLi
)
,

= 0,

(3.75)

which leads to a primary conservative scheme.

To prove energy stability we include (3.69) and (3.70) in (3.61) and adapt the
results from Theorem 1 to find that

IEt =− |ãR|2

NE∑
i=1
uR,TMRPLi2R

(
PR2Liu

R − uLi
)

+
NE∑
i=1

|ãLi |
2 uLi,TMLi

(
PR2Liu

R − uLi
)
.

(3.76)

Again, we apply the modified M-compatibility condition (3.56) and obtain

IEt =−
NE∑
i=1

|ãLi |
2

(
PR2Liu

R
)T

MLi

(
PR2Liu

R − uLi
)

+
NE∑
i=1

|ãLi |
2 uLi,TMLi

(
PR2Liu

R − uLi
)
,

=−
NE∑
i=1

|ãLi |
2

(
PR2Liu

R − uLi
)T

MLi

(
PR2Liu

R − uLi
)
≤ 0,

(3.77)

since each MLi is a symmetric positive definite matrix, so the non-conforming
scheme is energy stable.

Note, that the dissipation terms (3.69) and (3.70) are non-symmetric. An alter-
native choice would be

f̃ ∗,LiES,alt = f̃ ∗,LiEC −
|ãLi |

2 PR2Li

(
uR − PLi2RuLi

)
, (3.78)

f̃ ∗,RES,alt = f̃ ∗,REC −
|ãR|

2

(
uR −

NE∑
i=1

PLi2RuLi
)
. (3.79)
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However, for (3.78) and (3.79) the proof in Theorem 7 would not hold. This is
due to the degree of the projection operators (3.59), as PLi2R cannot necessarily
project a constant exactly. Also, when considering a constant initial solution the
dissipation term for f̃ ∗,LiES,alt would not vanish and therefore the behaviour of the
solution would become unphysical. Note, that the proof of Theorem 7 also holds
for deriving an energy stable scheme for geometric conforming interfaces but dif-
fering nodal distributions (p refinement) by setting NE = 1. Here, the choice
of the numerical surface flux (3.69),(3.70) or (3.78),(3.79) do not affect primary
conservation and energy stability nor does the solution behave unphysical.

To summarize, we derived a high-order, primary conservative and energy stable
SBP method for the LAE on general h/p non-conforming meshes. In the next
section we will numerically verify these properties.

3.5. Numerical Verification of Non-Conforming
Summation-by-Parts Schemes for the Two Dimensional
Linear Advection Equation

In this section we numerically verify properties of the non-conforming SBP scheme
as high-order, primary conservation and energy stability/conservation for the two
dimensional LAE. We set Ω = [0, 1]× [0, 1] ⊂ R2 and a = b = 1. As in Section 2.3
we use the five-stage, fourth-order low-storage Runge-Kutta method of Carpenter
and Kennedy [14]. The explicit time step ∆t is selected by the CFL condition [39]

∆t := CFL
mini{∆xi

2
∆yi

2 }
maxj{Nj + 1}max{a, b} , (3.80)

where ∆xi and ∆yi denote the width and height of the i-th element and Nj + 1
denotes the number of nodes in one dimension of the j-th element.

In this section, we verify the experimental order of convergence as well as con-
servation of the primary quantity and energy for the h/p non-conforming SBP
scheme. To obtain the projection operators we need to choose the nodes on the
intermediate grid. Here, we consider the idea of Kopriva [69] and choose the in-
termediate grid to contain the nodes of the element with the maximum number of
nodes, denoted by ηmax. For p refinement we set

ηΞ := ηmax. (3.81)
We reiterate, that the choice of the nodes on the intermediate grid are nearly ar-
bitrary provided an accurate quadrature rule exists [39]. The intermediate grid

78



3. SBP Methods for the LAE on Non-Conforming Meshes

does not affect the properties of the scheme as primary conservation, energy sta-
bility or high-order. Investigations of choosing different intermediate grids for p
refinement have been done by Friedrich et al. [39]. Here, the maximum time step
(CFL number) remained constant for different types of intermediate grids. A
slightly better L2 error was obtained considering a large number of nodes on the
intermediate grid. However, this involved more computational cost. Therefore, we
chose ηΞ := ηmax as we can simply copy the data from certain elements to the
intermediate grid and at the same time consider a "large" number of nodes.

For h refinement we consider discretizations where an element can have two
neighbors on one side as in Figure 3.10.

L1

L2∆L2

∆L1

∆RR

Figure 3.10.: For h refinement we consider "two-to-one" couplings.

Therefore, we set

ηΞ,T :=
(

∆L1

∆R (ηmax,T + 1)− 1, ∆L2

∆R (ηmax,T + 1)− 1 + 2∆L1

∆R

)
. (3.82)

With these intermediate grids we are able to construct separate projection opera-
tors as in Section 3.2 and thus, we can apply non-conforming schemes.

3.5.1. Comparison and Convergence of Summation-by-Parts Schemes

For the numerical convergence experiments, we set T = 0.1 and CFL = 1. We
analyze the experimental order of convergence with the energy stable numerical
surface fluxes (3.69) and (3.70). For convergence studies we consider the same
exact solution as in Section 2.3 (Equation (2.156)) with periodic boundaries. To
examine the convergence order for h/p non-conforming methods we consider a
general mesh setup that includes pure p non-conforming interfaces, pure h non-
conforming interfaces and h/p non-conforming interfaces. Therefore we define
three element types A,B,C. Here, the mesh is prescribed in the following way

79



3. SBP Methods for the LAE on Non-Conforming Meshes

• Elements of type A in Ω1 = [0, 1
2 ]× [0, 1],

• Elements of type B in Ω1 = [1
2 , 1]× [0, 1

2 ],

• Elements of type C in Ω1 = [1
2 , 1]× [1

2 , 1].

For each level of the convergence analysis, a single element is divided into three
sub-elements. This mesh refinement strategy is sketched in Figure 3.11.

A

B C

(a) Level 1

AA

AA

BB

BB

C C

C C

(b) Level 2

A
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A

A

A
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A

A

A

A

BB

BB

BB

B

B

BB

BB

BB

BB

B

C C

C C

C C

C

C

C C

C C

C C

C C

C

(c) Level 3

Figure 3.11.: Three levels of mesh refinement used to investigate the EOC for the h/p
non-conforming SBP approximation. The figure is reproduced from [38].

In Section 3.2.3, we claimed that non-conforming SBP schemes with differentia-
tion matrices of degree p and norm matrices of degree 2p−1 suffer from order loss
(in comparison to a conforming scheme) due to projection operators of degree < p.
To increase the degree of the projection operator we introduced degree preserving
SBP operators based on finite difference stencils. In order to verify the order loss
or degree preservation we set element A,B and C to be all of the same degree p.
Therefore, we consider FD, HGTL and DP operators where

• Element A has 22 nodes in x- and y-direction,

• Element B has 24 nodes in x- and y-direction,

• Element C has 22 nodes in x- and y-direction,

and p = 2, 3. With such element distributions we consider p refinement along the
line x = 1

2 for y ∈ [1
2 , 1], h refinement along the line y = 1

2 for x ∈ [1
2 , 1] and

h/p refinement along the line y = 1
2 for x ∈ [0, 1

2 ]. In addition, we calculate the
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maximum CFL number as in Section 2.3. For the non-conforming SBP scheme
we obtain EOC rates and maximum CFL numbers presented in Tables 3.1 and
3.2.

EOC and maximum CFL number for the non-conforming SBP
discretization with DP, FD and HGTL operators for p = 2,3.

DOFS L2DP EOCDP L2FD EOCFD L2HGTL EOCHGTL

1544 3.35E-03 2.62E-03 2.60E-03
6176 7.76E-04 2.1 5.02E-04 2.4 4.59E-04 2.5
24704 8.96E-05 3.1 9.25E-05 2.4 8.72E-05 2.4
98816 1.02E-05 3.1 1.80E-05 2.4 1.73E-05 2.3
395264 1.18E-06 3.1 3.66E-06 2.3 3.58E-06 2.3
1581056 1.34E-07 3.1 7.64E-07 2.3 7.71E-07 2.2

Max. CFL 2.57 Max. CFL 2.57 Max. CFL 2.57

Table 3.1.: Setting p = 2 for the non-conforming SBP scheme for the LAE.

DOFS L2DP EOCDP L2FD EOCFD L2HGTL EOCHGTL

1544 1.42E-03 1.72E-03 1.47E-03
6176 7.28E-05 4.3 1.45E-04 3.6 1.78E-04 3.0
24704 4.31E-06 4.1 1.43E-05 3.3 1.90E-05 3.2
98816 2.37E-07 4.2 1.58E-06 3.2 2.17E-06 3.1
395264 1.25E-08 4.2 1.78E-07 3.1 2.54E-07 3.1
1581056 6.43E-10 4.3 2.05E-08 3.1 3.01E-08 3.1

Max. CFL 2.25 Max. CFL 2.24 Max. CFL 2.23

Table 3.2.: Setting p = 3 for the non-conforming SBP scheme for the LAE.

In Table 3.1 with p = 2 we verify a convergence rate slightly higher than p
focusing on FD and HGTL operators. For DP operators however we obtain the
desired EOC of p + 1. This indicates, that the order reduction considering FD
and HGTL operators is presumably because of the degree of the projection op-
erators. Comparing the L2 error we verify that the non-conforming scheme with
HGTL operators has a better error than using FD operators for all mesh levels,
which is the same result we obtained in Section 2.3 when considering a conforming
mesh. Considering DP operators and a coarse mesh as in mesh level one with 1544
DOFS, we have the highest error. But as the SBP scheme using DP operators
has an EOC of p + 1 its error is best for more dense meshes (mesh level five, six
and seven). Remarkably, all three configurations have the same maximum CFL
number of CFL∗ = 2.57, even though the scheme with DP operators is one order
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higher.

When looking at Table 3.2 with p = 3 we observe that the maximum CFL
numbers for all three configurations are nearly the same (CFL∗ ≈ 2.24). As ex-
pected, these CFL numbers are smaller than in Table 3.1 due to a higher order.
This also holds for the L2 errors. In comparison to Table 3.1 the error of the
scheme considering FD operators is smaller than for HGTL operators (for mesh
level two and higher). However, the smallest error for all mesh levels is observed
when considering DP operators. In total, we observe a degree loss for FD and
HGTL operators (EOC ≈ 3), whereas the EOC for DP operators is here even
slightly higher than p+ 1 = 4.

Note, that within Table 3.1 and 3.2 we did not consider DG operators. This
is because we cannot apply p refinement and set all elements to be of the same
degree. However, for completeness and to show that non-conforming SBP schemes
with norm matrices of degree 2p− 1 lose an order, we run convergence test using
the same mesh levels as in Figure 3.11 with

• Element A with DG operators of degree pA = p in x- and y-direction,

• Element B with DG operators of degree pB = p+ 1 in x- and y-direction,

• Element C with DG operators of degree pC = p in x- and y-direction,

for p = 2, 3. We provide the L2 errors, maximum CFL numbers and EOC for
the non-conforming SBP method with DG operators in Table 3.3 and 3.4. Here,
we again verify a convergence rate slightly higher than p, but not p+ 1. Also, the
maximum CFL numbers are smaller than for the all operators in Table 3.1 and 3.2.
This has also been observed in Section 2.3. Therefore the L2 error is clearly better
when comparing it with all other operators when considering (nearly) the same
amount of DOFS. However, this result is reasonable as the non-conforming SBP
method with DG operators consists of elements with a higher polynomial degree
(p+1 in element type B) which indicates a smaller L2 error and a smaller time step.

To summarize, the non-conforming SBP scheme has the flexibility to chose dif-
ferent nodal distribution as well as elements of different sizes. For classical SBP
operators with norm matrices of degree 2p − 1 the EOC of non-conforming ap-
proximations is one degree lower compared to a conforming discretization (EOC
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EOC and maximum CFL number for the non-conforming SBP
discretization with DG operators for p = 2,3.

DOFS L2DG EOCDG

136 3.47E-02
544 5.77E-03 2.6
2176 9.13E-04 2.7
8704 1.61E-04 2.5
34816 3.04E-05 2.4
139264 5.75E-06 2.4
557056 1.15E-06 2.3
2228224 2.30E-07 2.3

Max. CFL 1.63

Table 3.3.: Setting p = 2 for
the non-conforming
SBP scheme with DG
operators for the LAE.

DOFS L2DG EOCDG

228 3.56E-03
912 2.70E-04 3.7
3648 2.10E-05 3.7
14592 2.17E-06 3.3
58368 1.95E-07 3.5
233472 1.98E-08 3.3
933888 2.01E-09 3.3
3735552 2.21E-10 3.2

Max. CFL 1.36

Table 3.4.: Setting p = 3 for
the non-conforming
SBP scheme with DG
operators for the LAE.

of p instead of p + 1). However, when combining a non-conforming scheme with
degree preserving SBP operators, we maintain an EOC of p + 1 on meshes with
h and p refinement. Therefore, we recommend DP operators when considering
non-conforming SBP schemes for the LAE. Note, that exchanging classical SBP
operators with degree preserving SBP operators does effect the maximum time
step for the LAE. Besides verifying the high-order property, we show that the
scheme is primary conservative and energy stable/conservative in the next section.

3.5.2. Numerical Verification of Primary Conservation and Energy Stability

This section is set up analogous to Section 2.3.2. For all upcoming tests we con-
sider the same configuration as in the last section focusing on mesh level three in
Figure 3.11(c). In order to verify that the scheme is energy stable/conservative
independent of the corresponding SBP operator we chose the following element
types

• Element A: FD operator of degree p = 1 and 12 nodes in x- and y-direction,

• Element B: HGTL operator with p = 2 and 16 nodes in x- and y-direction,
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• Element C: DP operator of degree p = 3 and 24 nodes in x- and y-direction.
Due to this setup all element types consist of a different SBP operator, a different
degree and a different number of nodes. We focus on the numerical fluxes (3.69)
and (3.70) and control the interface dissipation by introducing a parameter σ ≥ 0

f̃ ∗,LiES = f̃ ∗,LiEC − σ
|ãLi |

2
(

PR2Liu
R − uLi

)
,

f̃ ∗,RES = f̃ ∗,REC − σ
|ãR|

2

NE∑
i=1

PLi2R
(

PR2Liu
R − uLi

)
.

(3.83)

and similar for g∗ES. For σ = 0 we proved that the scheme is energy conserva-
tive and for σ > 0 it remains energy stable. As in Section 2.3.2 we verify these
properties by calculating

Etot
t :=

NQ∑
q=1

N∑
i,j=0

uqijRes(u
q
ij),

U tot
t :=

NQ∑
q=1

N∑
i,j=0

Res(uqij),
(3.84)

where Res is defined in (2.165). In order to verify energy conservation (σ = 0)
we consider random initial conditions (2.171) with periodic boundary conditions.
Again, calculating (Etot

t )k and (U tot
t )k for k = 1, . . . , 1000 independently we obtain

the following results
Calculating the growth in the total discrete energy and primary quantity

||U tot
t ||2 2.46E-14

||Etott ||2 9.14E-12

Table 3.5.: Calculating the growth in the total discrete primary quantity U tott and total
discrete energy Etott for 1000 different random initial conditions for the non-
conforming SBP scheme. Here, we verify conservation of the primary quantity
and energy.

Table 3.5 verifies primary and energy conservation even though we consider an
arbitrary distribution of the element types. Next, we observe the behaviour of the
total discrete primary quantity and total discrete energy in time. Therefore, we
consider the initial condition

U(t, x, y) =

5 if 0.3 ≤ x ≤ 0.7 and 0.3 ≤ y ≤ 0.7,
0 else.

(3.85)
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We set T = 10 and CFL = 1 and consider the same element types as above. The
simulation is run twice considering σ = 0 (energy conservative) and σ = 1 (energy
stable). The total discrete primary quantity and energy is calculated analogously
as in (2.173). We plot these values over time in Figure 3.12 and 3.13 respectively.
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Figure 3.12.: Evolution of the total dis-
crete energy of the solu-
tion with and without dis-
sipation. We see that
the total discrete energy is
conserved when consider-
ing the central flux (σ =
0) and that it decays using
the upwind flux (σ = 1).
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Figure 3.13.: A plot that demonstrates
the conservation of the
integrated conserved
variables. The plot does
not depend on the choice
of the numerical surface
flux.

Here, we verify energy conservation and stability depending on σ as the total
discrete energy is not increasing. Also, the total discret primary quantity remains
constant independent of an energy conservative or stable surface flux.

3.6. Summary

In this chapter we derived a primary conservative and energy stable SBP method
for solving the two dimensional linear advection equation on a non-conforming
mesh considering h/p refinement. For such meshes, neither the nodal distributions
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nor the interfaces of the elements need to coincide making the mesh more flexible.
We reviewed the work on non-conforming SBP methods by considering older and
state-of-the-art schemes. All these approximations rely on projection operators.
To obtain an energy stable scheme, it is necessary that the projection operators
satisfy the M-compatibility condition (3.2). We described how to construct high-
order projection operators which at the same time satisfy this condition. However,
the M-compatibility condition violates that the projection operators are of the
same degree as the differentiation matrix of the SBP operator. This is due to the
accuracy of the norm matrix, as for classical SBP operators the degree of the norm
matrix is 2p−1, where p denotes the degree of the differentiation matrix. In order
to obtain M-compatible projection operators of degree p, we introduced the degree
preserving SBP operators by Friedrich et al. [39], where the degree of the norm
matrix is increased to ≥ 2p. Given a set of M-compatible projection operators
we introduced the non-conforming method by first focusing on p refinement. We
then adapt the results from p refinement to obtain an energy stable scheme even
for meshes with h refinement. At last, we implemented the non-conforming SBP
method. Here, we verified that the scheme is high-order and looked at the different
error terms and maximum CFL numbers. We observed, that the non-conforming
SBP scheme with degree preserving operators of Friedrich et al. [39] had a higher
EOC as the classical SBP operators. Remarkably, even though the convergence
order is one order higher, the maximum time step is not affected when considering
classical SBP operators or degree preserving SBP operators. Besides analyzing
the time step and errors of the scheme, we verified numerically that the non-
conforming SBP scheme is energy stable/conservative and primary conservative
considering arbitrary random initial conditions and an arbitrary distributions of
SBP operators in the elements.
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4. Entropy Stable and Primary
Conservative Summation-by-Parts
Methods for Non-Linear Hyperbolic
Systems on Conforming Meshes

In the last two chapters we introduced SBP methods for solving the linear ad-
vection equation. These methods build the foundation of solving more complex
hyperbolic systems. In comparison to Chapter 2 and 3 we now consider a general
form of systems of hyperbolic conservation laws. In one spatial dimension a system
with NEq equations is defined as

∂U
∂t

+ ∂F(U)
∂x

= 0, (4.1)

with U := [U1, . . . ,UNEq ]T and similar for F . Note that, in contrast to the scalar
case, U and F are vectors as we consider a system of conservation laws. There
are several problems modeled by (4.1), e.g. the Shallow Water equations without
bottom topography

∂

∂t

(
h
hν

)
+ ∂

∂x

(
hν

hν2 + 1
2gh

2

)
=
(

0
0

)
, (4.2)

where h ≥ 0 denotes the water height and ν is the velocity with the gravita-
tional constant g > 0. Another representative of (4.1) are the compressible Euler
equations

∂

∂t

 ρ
ρν
E

+ ∂

∂x

 ρν
ρν2 + P
(E + P)ν

 =

0
0
0

 , (4.3)

where ρ denotes the density, ν the velocity, E the total energy, P the pressure,
where P = (γ − 1)(E − 1

2ρv
2) and γ the adiabatic coefficient with γ = 1.4.

In contrast to the LAE, solutions of non-linear conservation laws can be dis-
continuous regardless of the initial condition. This violates the model (4.1) as it
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assumes a differentiable solution. Therefore, we seek solutions of the weak for-
mulation (e.g. (2.128)) of hyperbolic systems. However, weak solutions are not
unique and thus can behave unphysical [85]. Thus, we focus on solutions which
obey the second law of thermodynamics, saying that the total entropy of a physi-
cal system can only increase. The interpretation of the entropy is problem specific
(e.g. energy for the LAE), see [22]. We describe the entropy function by S(U).
Furthermore, we introduce entropy variables V :=

(
∂S
∂U1 , . . . ,

∂S
∂UNEq

)T
and thus we

get the relationship
∂S
∂t

=
NEq∑
i=1

∂S
∂U i

∂U i

∂t
= VT ∂U

∂t
. (4.4)

The mathematical definition of S is adapted from [51].

Definition 10. Entropy Function
A scalar function S = S(U) is an entropy function if it is strongly convex and the
corresponding entropy variables satisfy the compatibility condition

VT ∂F
∂x

= ∂F ent

∂x
, (4.5)

where F ent denotes the entropy flux.

Remark 11. Here, the entropy variables are obtained by considering a given strongly
convex entropy function. However, Mock [86] proved that a strongly convex en-
tropy function exists if the Jacobian matrix ∂U

∂V is symmetric positive definite and
∂F
∂V is symmetric for a given set of variables V .
Due to the convexity of S the Hessian ∂2S

∂U2 = ∂V
∂U is symmetric positive definite

and thus, yields to a one-to-one mapping from the conserved variables to the
entropy variables. Typically, the entropy function and the entropy flux are denoted
as an entropy-entropy flux pair (S,F ent). A connection between this pair and
(U ,F) is given by the potential-potential flux pair (Ψu,Ψf )[115]

Ψu = VTU − S, (4.6)
Ψf = VTF −F ent. (4.7)

With the entropy variables we can contract (4.1) with VT and get a scalar conser-
vation law for the mathematical entropy function

VT ∂U
∂t

+ VT ∂F(U)
∂x

= 0,

⇔ ∂S
∂t

+ ∂F ent

∂x
= 0.

(4.8)
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Applying the divergence theorem over the domain Ω = [xL, xR] results in a global
conservation statement for the entropy∫

Ω

∂S
∂t

dΩ + F ent
∣∣∣xR
xL

= 0, (4.9)

so conservation laws are entropy conservative for smooth solutions. However, dis-
continuities in the form of shocks can develop in finite time for non-linear problems
despite smooth initial data. Therefore, the integral statement of (4.9) is not strictly
valid and does not account for the dissipation of the entropy at the shock [115].
From a physical point of view, the total entropy of a physical system can only
increase. In contrast, from a mathematical view we are concerned of bounding
the solution by initial and boundaries conditions in terms of stability (e.g. the
energy stability for the LAE). Therefore, we consider the mathematical entropy
to be a decreasing quantity in time. So, their is a sign issue and thus different
interpretations for mathematical and physical entropy. For more informations see
[85]. In this work we interpret the entropy mathematically. Due to dissipation in
the entropy we enforce that the entropy satisfies the entropy inequality∫

Ω

∂S
∂t

dΩ + F ent
∣∣∣xR
xL
≤ 0. (4.10)

Note, that in comparison to the LAE we avoid discussing the boundary conditions
and well-posedness. Details on well-posedness can be found in [35]. Deriving
appropriate boundaries conditions depends on the corresponding conservation laws
and have been presented in e.g. [34] for the Burgers’ equation and in [92, 95]
for the Navier-Stokes equations. However, as we consider a general system of
hyperbolic equations, we will not focus on physically relevant boundary conditions
and set the boundary conditions to be periodic, i.e. for a closed system. Therefore,
F ent(t, xL) = F ent(t, xR) and thus the inequality (4.10) becomes∫

Ω

∂S
∂t

dΩ ≤ 0. (4.11)

Note, that (4.11) is a more general definition of the energy estimate (2.11) for
the LAE (with periodic boundary conditions). For the LAE the energy estimate
(2.11) bounds the total energy and thus the solution cannot explode, for which
we denoted the LAE as energy stable. For the entropy inequality (4.11) the total
entropy cannot grow, for which we denote the hyperbolic system (4.1) as entropy
stable. As the entropy function is convex it follows that all conservative variables
are bounded under certain assumptions (e.g. positive water height h > 0 for Shal-
low Water Equations), see [115]. Thus, the continuous entropy analysis provides
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an insightful L2 stability estimate for the hyperbolic system of conservation laws
[30, 52, 114]. Therefore, we are interested in discretely mimicking the inequality
(4.11).

In this chapter we introduce numerical schemes which discretely mimic the en-
tropy stability inequality (4.11). These schemes are denoted as entropy stable
schemes. Such methods were first derived in a finite volume framework by Tad-
mor in 1987 [113]. Over the ensuing years there have been numerous investigations
into entropy stable schemes [10, 33, 47, 62, 68, 102, 113, 115, 122]. We investigate
in entropy stable methods as these are more robust compared to methods that do
not consider the entropy, especially for turbulent flows [7, 46, 107, 123].

4.1. Entropy Stable Summation-by-Parts Methods for One
Dimensional Hyperbolic Systems of Conservation Laws

In this section we will introduce primary conservative and entropy stable discretiza-
tions for non-linear systems of hyperbolic conservation laws. As in Chapters 2 and
3 we use SBP operators to discretize derivatives. However, in comparison to the
chapters before, we provide a general framework as we do not focus on a specific
set of equations, but on an arbitrary non-linear hyperbolic system of conservation
laws with an entropy function S(U). Such a system can be numerically solved
by first dividing the domain Ω into NQ non-overlapping elements as in (2.45) and
performing the approximation (2.98).

ωi
∂ui
∂t

+
N∑
k=0

Qikfk = δiN [f − f ∗]N − δi0 [f − f ∗]0 , (4.12)

where ui =
(
u1
i , . . . , u

NEq
i

)T
for i = 0, . . . , N and similar for f on each element.

Note, that (4.12) differs slightly from (2.98) as from now on the entries of ui refer
to the equations of the hyperbolic system. However, for scalar conservation laws
(4.12) and (2.98) are algebraically equivalent. To derive an entropy stable scheme
we first define the terms primary conservative and entropy stable.
Definition 11. Primary Conservative Schemes for One Dimensional Hy-
perbolic Systems of Conservation Laws
A semi-discrete method approximating a hyperbolic system of conservation laws
is said to be primary conservative if

NQ∑
q=1

∆x
2

N∑
i=0

ωi
∂uqi
∂t

= 0, (4.13)
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assuming periodic boundary conditions.

Definition 12. Entropy Stable Schemes for One Dimensional Hyperbolic
Systems of Conservation Laws
A semi-discrete method approximating a hyperbolic system of conservation laws
is said to be entropy stable if

NQ∑
q=1

∆x
2

N∑
i=0

ωi
∂Sqi
∂t
≤ 0, (4.14)

assuming periodic boundary conditions.

Remark 12. Definition 12 is similar to the Definition (2.131) for the LAE when
considering periodic boundary conditions and setting S = 1

2U
2. Definition 12 can

be interpreted as a generalization of the definition of energy stability for the LAE.
Here, for simplicity, we assumed that all elements have the same width and thus

∆x remains constant. Note, that in comparison to Definitions 5 and 6, we set the
boundary conditions to be periodic. For the discretization (4.12) the scheme is
primary conservative. This can be shown by re-deriving the steps of the proof of
Theorem 2 in a one-to-one fashion. However, discretization (4.12) is not entropy
stable when considering non-linear physical fluxes. Therefore, we must modify the
discretization. To do so, we introduce skew-symmetric discretizations in Section
4.1.1. An even more general entropy stable discretization is presented in Section
4.1.2. Both of these methods depend on split forms of the PDE and are equivalent
for problems as Burgers’ or Shallow Water equations, which will be demonstrated.

4.1.1. Skew-Symmetric Discretization

In this section we introduce a skew-symmetric discretization for non-linear prob-
lems. Such discretizations are entropy stable and rely on split forms of the con-
servation law. The choice of the corresponding split form is problem specific.
Therefore, we begin with the simplest prototype of a non-linear conservation law:
The Burgers’ equation.

∂U
∂t

+ ∂

∂x

(1
2U

2
)

= 0. (4.15)

As for the LAE, the Burgers’ equation is a scalar equation with entropy/energy of
S = 1

2U
2. Note, that in this chapter we aim to derive entropy stable discretizations

for non-linear systems. However, in terms of simplicity and understanding the
idea of skew-symmetric discretizations based on split forms, the scalar Burgers’
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equation is sufficient. Simply discretizing the Burgers’ equation with (4.12) is not
energy stable. This can be shown analyzing

∂ui
∂t

+
N∑
k=0

Dik

(1
2u

2
k

)
= SATi, (4.16)

where we divided (4.12) by ωi for i = 0, . . . , N and replaced the surface con-
tribution by an appropriate SAT . Assuming that norm matrix M is diagonal
(Mij = δijωi), we apply the energy method by multiplying the discretization (4.16)
with ωiui and summing over all i =, 0, . . . , N

N∑
i=0

ωi
1
2
∂u2

i

∂t
+

N∑
i=0

N∑
k=0

uiQik

(1
2u

2
k

)
=

N∑
i=0

ωiuiSATi. (4.17)

In the last section the discrete volume integral for the LAE reduced to surface
evaluations. However, this does not hold for non-linear flux function, as for the
Burgers’ equation the term

N∑
i=0

N∑
k=0

uiQiku
2
k, (4.18)

cannot be simplified to evaluations on the surface of the element. To overcome
this difficulty we derive a discrete skew-symmetric discretization. The main idea
is rewriting the spatial derivative ∂

∂x
in terms of split forms. For example, in the

work of Gassner [42] the spatial derivative of the Burgers’ flux is written as

∂U
∂t

+ α

(
1
2
∂U2

∂x

)
+ (1− α)

(
U ∂U
∂x

)
= 0, (4.19)

for α ∈ [0, 1]. Note, that (4.15) and (4.19) are algebraically equivalent due to
the chain rule 1

2
∂U2

∂x
= U ∂U

∂x
. Discretizing (4.19) with SBP operators gives us the

discretization
∂ui
∂t

+ α
N∑
k=0

Dik

(1
2u

2
k

)
+ (1− α)

N∑
k=0

uiDikuk = SATi, (4.20)

where the boundary term SAT remains the same as in (4.16). Note, that even
though (4.15) and (4.19) are equivalent at a continuous level, this does not hold
at a discrete level for (4.16) and (4.20). Here, for an appropriate choice of α
the discretization (4.20) is entropy stable. We show this by applying the energy
method

N∑
i=0

ωi
1
2
∂u2

i

∂t
+ α

2

N∑
i=0

N∑
k=0

uiQiku
2
k + (1− α)

N∑
i=0

N∑
k=0

u2
iQikuk =

N∑
i=0

ωiuiSATi. (4.21)
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Due to the SBP property (2.64) we know
N∑
i=0

N∑
k=0

uiQiku
2
k =

N∑
i=0

N∑
k=0

uiBiku
2
k −

N∑
i=0

N∑
k=0

u2
iQikuk, (4.22)

and therefore
N∑
i=0

ωi
1
2
∂u2

i

∂t
+ α

2
(
u3
N − u3

0

)
+
(

1− 3α
2

) N∑
i=0

N∑
k=0

u2
iQikuk =

N∑
i=0

ωiuiSATi. (4.23)

Finally, by setting α = 2
3 the volume term vanishes and the discrete energy growth

reduces to evaluations at the surface of the element. Therefore, the discretization

∂ui
∂t

+ 2
3

N∑
k=0

Dik

(1
2u

2
k

)
+ 1

3

N∑
k=0

uiDikuk = SATi, (4.24)

is entropy stable provided an appropriate numerical surface flux.
Remark 13. Discretization (4.24) is entropy conservative considering the numerical
surface flux given in [42]

f ∗EC(uL, uR) = 1
6

((
uL
)2

+ uLuR +
(
uR
)2
)
. (4.25)

Entropy stability is then ensured by including numerical dissipation.
Remark 14. Discretization (4.24) with the numerical surface flux (4.25) is entropy
conservative for diagonal norm matrices. For dense norm matrix an entropy con-
servative discretization has been purposed by [101].
Skew-symmetric discretizations can be found in numerous papers as in [7, 43,

47, 68, 118]. As mentioned before, the choice of the split form and the result-
ing discretization depends on the corresponding conservation law. Also, when
considering problems such as the compressible Euler equations, an explicit skew-
symmetric form to obtain an entropy stable scheme is (up to now) not known.
In order to derive an entropy stable scheme for a general system of hyperbolic
conservation laws we next introduce the SBP Flux Difference scheme by Fisher
and Carpenter [33].

4.1.2. Summation-by-Parts Flux Difference Scheme

In the section we discuss the SBP Flux Difference method by Fisher and Car-
penter [33]. As for the skew-symmetric discretization the Flux Difference scheme
is constructed such that the discrete growth in entropy purely depends on the
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surfaces of each element. Here, results from entropy stable finite volume schemes
as in [62, 102, 112, 113, 115, 121, 122] are adapted to high-order SBP schemes.
For more details on finite volume schemes see [74]. Here, we review entropy sta-
ble/conservative finite volume schemes on a domain Ω = [xL, xR] ⊂ R. A semi-
discrete first order finite volume method on NQ elements with fixed width ∆x is
defined by

∂ui
∂t

+ 1
∆x

(
f ∗i+1 − f ∗i

)
= 0, (4.26)

where ui =
(
u1
i , . . . , u

NEq
i

)T
and

f ∗i := f ∗(ui,ui−1), (4.27)
for i = 2, . . . , NQ and f ∗1 := f(u1),f ∗NQ+1 := f(uNQ) needed for primary conser-
vation [115]. As noted in [33] a finite volume method is entropy conservative if it
discretely approximates ∫

Ω

∂S
∂t

dΩ + F ent
∣∣∣xR
xL

= 0. (4.28)

In terms of deriving an entropy conserving scheme we assume that the numerical
flux satisfies

f ∗(ui,uj) = f ∗(ui,uj), (4.29)
f ∗(ui,ui) = f(ui). (4.30)

Fluxes fulfilling (4.29) and (4.30) are denoted as symmetric and consistent, respec-
tively.

To obtain the discrete entropy function S we multiply (4.26) with the discrete
entropy variables vTi and sum over all elements

NQ∑
i=1
vTi
∂ui
∂t

+ 1
∆x

NQ∑
i=1

(
vTi f

∗(ui+1,ui)− vTi f ∗(ui,ui−1)
)

= 0,

⇔
NQ∑
i=1

∆x∂Si
∂t

+
vTNQf(uNQ)− vT1 f(u1)−

NQ−1∑
i=1

(vi+1 − vi)T f ∗(ui+1,ui)
 = 0,

(4.31)
In order to include the entropy flux we use f ent = vTf −Ψf and get
NQ∑
i=1

∆x∂Si
∂t︸ ︷︷ ︸

≈
∫

Ω
∂S
∂t

dΩ

+ f entNQ
− f ent1︸ ︷︷ ︸

≈Fent
∣∣∣xR
xL

= −Ψf
NQ

+ Ψf
1 +

NQ−1∑
i=1

(vi+1 − vi)T f ∗(ui+1,ui)︸ ︷︷ ︸
=(∗)

. (4.32)
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Here, the left hand side is a first order approximation of the left hand side of
(4.28). So the finite volume scheme is said to be entropy conservative if (∗) = 0.
As −Ψf

NQ
+ Ψf

1 = −∑NQ−1
i=1

(
Ψf
i+1 −Ψf

i

)
we get

(∗) =
NQ−1∑
i=1

(vi+1 − vi)T f ∗(ui+1,ui)−
(
Ψf
i+1 −Ψf

i

)
. (4.33)

So, in order to obtain an entropy conservative scheme, the entropy conserving flux
needs to satisfy the so called Tadmor Shuffle condition [115]

(vi+1 − vi)T f ∗(ui+1,ui) = Ψf
i+1 −Ψf

i , (4.34)

for i = 1, . . . , NQ. Using a finite volume method with a numerical flux satisfy-
ing the Tadmor Shuffle condition (4.34) gives us a low-order entropy conservative
scheme. Over the last decades their have been several publications extending such
spatial methods to high-order spatial approximations with particular finite volume
reconstruction techniques, e.g. [37, 73].

In 2013, the work of Fisher and Carpenter [33] opened a new avenue for discrete
entropy analysis for arbitrary high-order SBP methods by considering low-order
entropy conservative fluxes satisfying the Tadmor Shuffle condition (4.34). Their
method is referred to as the Flux Difference method. The key concept is to rewrite
a SBP scheme into an equivalent sub-cell finite volume differencing method using
a staggered grid. Let ξ̄l denote the nodes on the staggered grid with the represen-
tative flux f̄l for l = 0, . . . , N + 1. The staggered grid consists of nodes of the size
N + 2 (one more than for the SBP operator) and is illustrated for the LGL nodes
with N = 3 in Figure 4.1

ξ0 ξ1 ξ2 ξ3

ξ̄0 ξ̄1 ξ̄2 ξ̄3 ξ̄4

Figure 4.1.: One dimensional staggered grid for four LGL nodes.

We rewrite the SBP scheme in terms of a sub-cell finite volume method by
replacing the volume integral (4.12) in terms of

N∑
k=0

Qikfk =
N+1∑
l=0

∆ilf̄l, (4.35)
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for i = 0, . . . , N . Here, the differencing matrix ∆ ∈ RN×N+1 is defined by

∆ :=


−1 1 0 . . . . . . 0
0 −1 1 0 . . . 0
... . . . . . . . . . . . . ...
0 . . . 0 −1 1 0
0 . . . . . . 0 −1 1

 . (4.36)

The values of f̄l for l = 0, . . . , N + 1 on the staggered grid satisfying (4.35) are
calculated by

f̄l :=


f0 if l = 0,
f0 +∑N

k=0
∑i−1
l=0 Qlkfk for l = 1, . . . , N,

fN if l = N + 1.
(4.37)

The corresponding nodes on the staggered grid are obtained by exchanging fl with
the nodes of the SBP operator ξl. So an algebraically equivalent discretization of
(4.12) on an element Eq is given by

ωi
∂ui
∂t

+
N+1∑
k=0

∆ikf̄k = δiN [f − f ∗]N − δi0 [f − f ∗]0 , (4.38)

or
∂ui
∂t

+ 1
ωi

(
f̄i+1 − f̄i

)
= δiN

ωi
[f − f ∗]N −

δi0
ωi

[f − f ∗]0 , (4.39)

for i = 0, . . . , N . Considering (4.37) for f̄ , then the scheme is equivalent to the
the standard SBP discretization (4.12). As pointed out in Section 4.1.1 such a
discretization is not necessarily entropy stable/conservative. Therefore, Fisher
and Carpenter replaced f̄l by a symmetric numerical flux f̄ ∗l := f̄ ∗ (ul,ul−1) for
l = 1, . . . , N and f̄ ∗0 := f0, f̄

∗
N+1 := fN . Including this flux we obtain the modified

discretization
∂ui
∂t

+ 1
ωi

(
f̄ ∗i+1 − f̄ ∗i

)
= δiN

ωi
[f − f ∗]N −

δi0
ωi

[f − f ∗]0 , (4.40)

for i = 0, . . . , N . Here, the left hand side is similar to the left hand side of the
finite volume discretization (4.26). So, (4.40) is a finite volume differencing type
where the element E is divided into N + 1 sub-elements of size ωi for i = 0, . . . , N .
This is the crux of the Flux Difference scheme as we can use entropy conservative
numerical surface fluxes from finite volume methods and thus, set f̄ ∗ to satisfy
the Tadmor Shuffle condition (4.34). Note, that this modification does not effect
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primary conservation as ∑N
i=0 ωi

∂ui
∂t

= f ∗N − f ∗0 due to a telescopic sum. In order
to obtain the discrete growth in entropy we multiply (4.40) by ωivTi and sum over
all i = 0, . . . , N

N∑
i=0

ωiv
T
i

∂ui
∂t

+
N∑
i=0
vTi

(
f̄ ∗i+1 − f̄ ∗i

)
= vTN [f − f ∗]N − v

T
0 [f − f ∗]0 . (4.41)

By applying analogous steps as for the finite volume discretization and using that
f ent = vTf −Ψf we obtain

N∑
i=0

ωi
∂Si
∂t

+
[
vTf −Ψf

]
N
−
[
vTf −Ψf

]
0

= vTN [f − f ∗]N − v
T
0 [f − f ∗]0 ,

⇔
N∑
i=0

ωi
∂Si
∂t

= −
[
vTf ∗ −Ψf

]
N

+
[
vTf ∗ −Ψf

]
0
.

(4.42)

So the discrete entropy growth reduces to evaluations on the element surface. To
finally verify that the Flux Difference scheme is entropy conservative we look at
the discrete entropy growth at an interior interface denoted by ISt with a left and
right state.

ISt =
(
vR − vL

)T
f ∗ −

(
Ψf,R −Ψf,L

)
. (4.43)

Again, choosing f ∗ to satisfy the Tadmor Shuffle condition (4.34), we find that
ISt = 0 and thus, we obtain an entropy conservative scheme. In addition, the
scheme remains entropy stable by including numerical dissipation at the element
interfaces as in [18, 36, 118].

The discretization (4.40) is entropy conservative for systems of hyperbolic conser-
vation laws assuming that the numerical fluxes f̄ ∗ and f ∗ satisfy the Tadmor Shuf-
fle condition (4.34). Many such entropy conservative numerical flux functions are
available for systems of hyperbolic conservation laws, e.g. the compressible Euler
equations [18, 62] and are denoted by f ∗EC , where the index "EC" refers to "entropy
conservation". However, classical FV approximations (without reconstruction) are
low-order methods. Therefore, instead of directly setting f̄ ∗ = f ∗EC , Fisher and
Carpenter [33] modified the discretization to obtain a high-order scheme.

Focusing on (4.35) we see

1
ωi

(
f̄i+1 − f̄i

)
=

N∑
k=0

Dikfk = ∂F(ui)
∂x

+O(∆xp+1), (4.44)
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for i = 0, . . . , N and f̄ defined in (4.37). Therefore, we need to choose f̄ ∗ so that

1
ωi

(
f̄ ∗i+1 − f̄ ∗i

)
= ∂F(ui)

∂x
+O(∆xp+1). (4.45)

Additionally, in order not to violate entropy conservation, the following equation
needs to hold

N∑
i=0
vTi

(
f̄ ∗i+1 − f̄ ∗i

)
= f entN − f ent0 . (4.46)

A suitable choice for f̄ ∗i with i = 1, . . . , N has been derived by Fisher and Car-
penter [33]. Here, they set

f̄ ∗i =
N∑
m=i

i−1∑
l=0

2Qlmf
∗
EC(ul,um). (4.47)

The equation (4.47) is a sufficient for an entropy stable/conservative scheme as
shown in Lemma 4.

Lemma 4. Considering (4.47), then

1
ωi

(
f̄ ∗i+1 − f̄ ∗i

)
=

N∑
j=0

2Dijf
∗
EC(ui,uj), (4.48)

for i = 0, . . . , N is a degree p approximation of ∂F(ui)
∂x

, meaning

N∑
j=0

2Dijf
∗
EC(ui,uj) = ∂F(ui)

∂x
+O(∆xp+1). (4.49)

Additionally, (4.47) satisfies

N∑
i=0

ωiv
T
i

 N∑
j=0

2Dijf
∗
EC(ui,uj)

 = f entN − f ent0 , (4.50)

for which discretization (4.40) is entropy stable/conservative.

Proof. The proof can be found in [33].

Adapting the results from Lemma 4 we obtain the primary conservative, entropy
stable/conservative and high-order Flux Difference discretization

∂ui
∂t

+
N∑
k=0

2Dikf
∗
EC(ui,uk) = δiN

ωi
[f − f ∗]N −

δi0
ωi

[f − f ∗]0 . (4.51)
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for i = 0, . . . , N . Remarkably, the Flux Difference discretization does not di-
rectly imply a skew-symmetric discretizations based on split forms. Therefore, the
discretization holds for a general conservation law with an entropy function S, as-
suming that a finite volume numerical flux f ∗EC exists which satisfies the Tadmor
Shuffle condition (4.34).

Connection to Split Forms

In the previous sections we introduced the Flux Difference discretization derived
from a finite volume background. Remarkably, the discretization in certain cases
also recovers a split form like the skew-symmetric discretization in section 4.1.1.
We demonstrate this by focusing first on the Burgers’ equation. Here, an entropy
conservative flux which satisfies the Tadmor Shuffle condition (4.34) is given in
(4.25). Analyzing the volume contribution of (4.51) we get

N∑
k=0

2Dikf
∗
EC(ui,uk) = 1

3

N∑
k=0

Dik

(
u2
k + uiuk + u2

i

)
,

= 1
3

(
N∑
k=0

Diku
2
k + ui

N∑
k=0

Dikuk + u2
i

N∑
k=0

Dik

)
.

(4.52)

The differentiation matrix is of degree p > 0, so it holds ∑N
k=0 Dik = 0 and thus

N∑
k=0

2Dikf
∗
EC(ui,uk) = 1

3

N∑
k=0

Diku
2
k + 1

3ui
N∑
k=0

Dikuk. (4.53)

Note that the right hand side is equivalent to the volume contribution of the skew-
symmetric discretization in (4.24). Therefore, the Flux Difference and the skew-
symmetric discretization are equivalent. So, the Flux Difference discretization can
be interpreted as a numerical approximation of the split form

N∑
k=0

2Dikf
∗
EC(ui,uk) ≈

2
3

(
1
2
∂U2

∂x

)
+ 1

3

(
U ∂U
∂x

)
. (4.54)

This result does not only hold for the Burgers’ equation, but also for other systems
of conservation laws, as e.g. for the Shallow Water equations with no bottom
topography (4.2). Here, a numerical flux satisfying the Tadmor Shuffle condition
(4.34) is given in [47] and is defined by

f ∗EC =
(

{h}{ν}
{h}{ν}2 + 1

2g{h
2}

)
, (4.55)
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where {} defines the mean of the two states, e.g. {h} := 1
2

(
hL + hR

)
. With this

numerical flux the Flux Difference scheme has the following volume contribution
N∑
k=0

2Dikf
∗
EC(ui,uk),

=
N∑
k=0

Dik

(
1
2hkνk + 1

2hiνk + 1
2νihk1

4hkν
2
k + 1

2hiνiνk + 1
2νihkνk + 1

4hiν
2
k + 1

4ν
2
i hk + 1

2gh
2
k

)
,

(4.56)

which is a discrete approximation of the split form
N∑
k=0

2Dikf
∗
EC(ui,uk)

≈

 1
2
∂hν
∂x

+ 1
2

(
h∂ν
∂x

+ ν ∂h
∂x

)
1
4
∂hν2

∂x
+ 1

2

(
hν ∂ν

∂x
+ ν ∂hν

∂x

)
+ 1

4

(
h∂ν

2

∂x
+ ν2 ∂h

∂x

)
+ 1

2
∂h2

∂x

 , (4.57)

where the right hand side is equivalent to the physical flux of (4.2) due to the
product rule.

Considering different numerical fluxes based on the mean {} and its products one
can recast different split forms into the Flux Difference framework. A list of such
numerical fluxes with their corresponding approximated split forms is provided for
the compressible Euler equations in [46]. If it is possible to always recast a split
form from a numerical flux, e.g. for the compressible Euler equations using the
Ismail-Roe flux [62], is still an open question. Due to the work of Tadmor [112]
we know that a skew-symmetric form exists. However, we do not need the explicit
skew-symmetric form to obtain an entropy stable scheme.

4.2. Entropy Stable Summation-by-Parts Methods for Two
Dimensional Hyperbolic Systems of Conservation Laws

In this section we extend the Flux Difference discretization (4.51) to two dimen-
sional conservation laws. A two dimensional system of hyperbolic conservation
laws with NEq equations is given by

∂U
∂t

+ ∂F
∂x

+ ∂G
∂y

= 0, (4.58)

where U ,F ,G ∈ RNEq , t ∈ [0, T ] ⊂ R and Ω ⊂ R2. As for the one dimensional case
we assume that (4.58) is equipped with periodic boundary conditions. To derive
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the discretization, we subdivide Ω in NQ non-overlapping quadrilateral elements
and focus on the transformed conservation law in Section 2.2 (Equation (2.121))
on a single element Eq. Considering a mapping χ : Ω̂→ E with (x, y)T = χ(ξ, η),
where Ω̂ = [−1,+1]× [−1,+1] describes the reference space, then the transformed
conservation law on Ω̂ is defined by [67]

J
∂U
∂t

+ ∂F̃
∂ξ

+ ∂G̃
∂η

= 0, (4.59)

with J = ∂y
∂η

∂x
∂ξ
− ∂x

∂η
∂y
∂ξ

and the contravariant fluxes

F̃ := F ∂y

∂η
− G ∂x

∂η
,

G̃ := G ∂x
∂ξ
−F ∂y

∂ξ
.

(4.60)

Next, we discuss the discretization of (4.59). As in Section 4.1.2 we are interested
in primary conservative and entropy stable schemes. The definition of primary
conservation and entropy stability for two dimensional hyperbolic systems is given
in Definitions 13 and 14.

Definition 13. Primary Conservative Schemes for Two Dimensional Hy-
perbolic Systems of Conservation Laws
A semi-discrete method approximating two dimensional hyperbolic systems of
conservation laws is said to be primary conservative if

NQ∑
q=1

N∑
i,j=0

Jijωiωj
∂uij
∂t

= 0, (4.61)

when considering periodic boundary conditions.

Definition 14. Entropy Stable Schemes for Two Dimensional Hyperbolic
Systems of Conservation Laws
A semi-discrete method approximating two dimensional hyperbolic systems of
conservation laws is said to be entropy stable if

NQ∑
q=1

N∑
i,j=0

Jijωiωj
∂Sij
∂t
≤ 0, (4.62)

when considering periodic boundary conditions.
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The transformed conservation law (4.59) can be solved on a single element using
a standard SBP discretization as presented in Section 2.2, which is

Jijωiωj
∂uij
∂t

+ ωj

([
f̃ ∗Nj − f̃Nj

]
δiN −

[
f̃ ∗0j − f̃0j

]
δi0 +

N∑
k=0

Qikf̃kj

)

+ ωi

(
[g̃∗iN − g̃iN ] δNj − [g̃∗i0 − g̃i0] δ0j +

N∑
l=0

Qjlg̃il

)
= 0,

(4.63)

for i, j = 0, . . . , N . As for the one dimensional case the discretization (4.63) is not
entropy stable due to non-linear terms. Therefore, we use the tensor product and
obtain the two dimensional Flux Difference discretization

Jijωiωj
∂uij
∂t

+ ωj

([
f̃ ∗Nj − f̃Nj

]
δiN −

[
f̃ ∗0j − f̃0j

]
δi0 + 2

N∑
k=0

Qikf̃
# (ukj,uij)

)

+ ωi

(
[g̃∗iN − g̃iN ] δNj − [g̃∗i0 − g̃i0] δ0j + 2

N∑
l=0

Qjlg̃
# (uil,uij)

)
= 0,

(4.64)
for i, j = 0, . . . , N . Here, we present the Flux Difference discretization in a general
from on a quadrilateral element. The numerical fluxes f̃#, g̃# are denoted as
numerical volume fluxes whereas f̃ ∗, g̃∗ are the numerical surface fluxes. The
numerical volume and surface fluxes are both symmetric and consistent (f̃#(a, b) =
f̃#(b, a) and f̃#(a, a) = f̃(a) for a, b ∈ R). Choosing different volume fluxes
f̃#, g̃# one can reconstruct different split forms [46]. For the purpose constructing
entropy stable/conservative schemes we choose f̃# = f̃ ∗EC and g̃# = g̃∗EC such
that the volume fluxes satisfy the Tadmor Shuffle conditions (4.34)

(vi − vj)T f̃#(ui,uj) = Ψ̃f
i − Ψ̃f

j ,

(vi − vj)T g̃#(ui,uj) = Ψ̃g
i − Ψ̃g

j ,
(4.65)

with
Ψ̃f := Ψf ∂y

∂η
−Ψg ∂x

∂η
, Ψ̃g := Ψg ∂x

∂ξ
−Ψf ∂y

∂ξ
. (4.66)

The choice of the numerical surface fluxes f̃ ∗ and g̃∗ will be discussed later.
When focusing on a Cartesian mesh the contravariant fluxes and potentials reduce
to the physical fluxes and potentials scaled by the width and height respectively

f̃ = ∆y
2 f̃ , Ψ̃f = ∆y

2 Ψf ,

g̃ = ∆x
2 g̃, Ψ̃g = ∆x

2 Ψg.

(4.67)
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Therefore, we denote contravariant fluxes and potentials on Cartesian elements as
scaled fluxes and scaled potentials. Based on a Cartesian mesh we prove that (4.64)
is a primary conservative and entropy stable/conservative discretization. To do so,
we first derive the discrete growth in the primary quantity and entropy on a single
element in Lemma 5.

Lemma 5. The discrete growths of the primary quantities and entropy on a single
element of discretization (4.64) are

N∑
i,j=0

Jijωiωj
∂uij
∂t

= −
N∑
j=0

ωj
(
f̃Nj − f̃0j

)
−

N∑
i=0

ωi (g̃iN − g̃i0) . (4.68)

and
N∑

i,j=0
Jijωiωj

∂Sij
∂t

=−
N∑
j=0

ωj

([
vT f̃ ∗ − Ψ̃f

]
Nj
−
[
vT f̃ ∗ − Ψ̃f

]
0j

)

−
N∑
i=0

ωi
([
vT g̃∗ − Ψ̃g

]
iN
−
[
vT g̃∗ − Ψ̃g

]
i0

)
.

(4.69)

Proof. We first prove (4.68). Therefore, we sum over all nodes of the Flux Differ-
ence discretization (4.64) for i, j = 0, . . . , N .

N∑
i,j=0

Jijωiωj
∂uij
∂t

=−
N∑

i,j=0
ωj

([
f̃ ∗Nj − f̃Nj

]
δiN −

[
f̃ ∗0j − f̃0j

]
δi0 + 2

N∑
k=0

Qikf̃
# (ukj,uij)

)

−
N∑

i,j=0
ωi

(
[g̃∗iN − g̃iN ] δNj − [g̃∗i0 − g̃i0] δ0j + 2

N∑
l=0

Qjlg̃
# (uil,uij)

)
.

(4.70)

Rearranging the sums gives
N∑

i,j=0
Jijωiωj

∂uij
∂t

=−
N∑
j=0

ωj

([
f̃ ∗Nj − f̃Nj

]
−
[
f̃ ∗0j − f̃0j

]
+ 2

N∑
i=0

N∑
k=0

Qikf̃
# (ukj,uij)

)

−
N∑
i=0

ωi

[g̃∗iN − g̃iN ]− [g̃∗i0 − g̃i0] + 2
N∑
j=0

N∑
l=0

Qjlg̃
# (uil,uij)

 .
(4.71)
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Due to the SBP property (2.64) we know that 2Q = Q + QT + B and thus

2
N∑
i=0

N∑
k=0

Qikf̃
# (ukj,uij)

=
N∑
i=0

N∑
k=0

Qikf̃
# (ukj,uij)−

N∑
i=0

N∑
k=0

Qkif̃
# (ukj,uij)

+
N∑
i=0

N∑
k=0

Bikf̃
# (ukj,uij) ,

(4.72)

As f̃# is symmetric and consistent and due to B = diag(−1, 0, . . . , 0,+1) we obtain

2
N∑
i=0

N∑
k=0

Qikf̃
# (ukj,uij)

=
N∑
i=0

N∑
k=0

Qikf̃
# (ukj,uij)−

N∑
i=0

N∑
k=0

Qikf̃
# (ukj,uij)

+ f̃# (uNj,uNj)− f̃# (u0j,u0j) ,
=f̃ (uNj)− f̃ (u0j) = f̃Nj − f̃0j,

(4.73)

and with an analogous derivation for the volume integral with respect to g̃# we
find

2
N∑
l=0

Qjlg̃
# (uil,uij) = g̃iN − g̃i0. (4.74)

In total this gives
N∑

i,j=0
Jijωiωj

∂uij
∂t

=−
N∑
j=0

ωj
([
f̃ ∗Nj − f̃Nj

]
−
[
f̃ ∗0j − f̃0j

]
+ f̃Nj − f̃0j

)

−
N∑
i=0

ωi ([g̃∗iN − g̃iN ]− [g̃∗i0 − g̃i0] + g̃iN − g̃i0) ,
(4.75)

and thus we obtain (4.68)

N∑
i,j=0

ωiωjJij
∂uij
∂t

= −
N∑
j=0

ωj
(
f̃ ∗Nj − f̃ ∗0j

)
−

N∑
i=0

ωi (g̃∗iN − g̃∗i0) . (4.76)

Next, we derive the discrete growth in entropy on an element and show that the
growth reduces to evaluations at the element surface due to the SBP property
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(2.64) and the symmetric, consistent fluxes f̃# and g̃#. Therefore, we contract
the Flux Difference discretization (4.64) with the entropy variables vij as in [34, 45]
and sum over all nodes

N∑
i,j=0

Jijωiωjv
T
ij

∂uij
∂t

,

=−
N∑

i,j=0
ωj

([
vT f̃ ∗ − vT f̃

]
Nj
δiN −

[
vT f̃ ∗ − vT f̃

]
0j
δi0

)

−
N∑

i,j=0
ωj

(
2

N∑
k=0

Qikv
T
ijf̃

# (ukj,uij)
)
,

−
N∑

i,j=0
ωi
([
vT g̃∗ − vT g̃

]
iN
δNj −

[
vT g̃∗ − vT g̃

]
i0
δ0j
)

−
N∑

i,j=0
ωi

(
2

N∑
l=0

Qjlv
T
ijg̃

# (uil,uij)
)
.

(4.77)

As we focus on semi-discrete schemes we assume continuity in time. Due to the
definition of the entropy function it holds ∂Sij

∂t
= vTij

∂uij
∂t

. Rearranging the sums
we obtain

N∑
i,j=0

Jijωiωj
∂Sij
∂t

,

=−
N∑
j=0

ωj

([
vT f̃ ∗ − vT f̃

]
Nj
−
[
vT f̃ ∗ − vT f̃

]
0j

+ 2
N∑
i=0

N∑
k=0

Qikv
T
ijf̃

# (ukj,uij)
)

−
N∑
i=0

ωi

[vT g̃∗ − vT g̃]
iN
−
[
vT g̃∗ − vT g̃

]
i0

+ 2
N∑
j=0

N∑
l=0

Qjlv
T
ijg̃

# (uil,uij)
 ,
(4.78)

Focusing on the volume contribution with respect to f̃# and using the SBP prop-
erty (2.64) we get

2
N∑
i=0

N∑
k=0

Qikv
T
ijf̃

# (ukj,uij)

=
N∑
i=0

N∑
k=0

Qikv
T
ijf̃

# (ukj,uij)−
N∑
i=0

N∑
k=0

Qkiv
T
ijf̃

# (ukj,uij)

+
N∑
i=0

N∑
k=0

Bikv
T
ijf̃

# (ukj,uij) .

(4.79)
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Due to the symmetry and consistency of f̃# and the definition of the boundary
matrix B we obtain

2
N∑
i=0

N∑
k=0

Qikv
T
ijf̃

# (ukj,uij)

=
N∑
i=0

N∑
k=0

Qikv
T
ijf̃

# (ukj,uij)−
N∑
i=0

N∑
k=0

Qijv
T
kjf̃

# (ukj,uij)

+ vTNjf̃ (uNj)− vT0jf̃ (u0j) ,

=
N∑
i=0

N∑
k=0

Qik (vij − vkj)T f̃# (ukj,uij) + vTNjf̃Nj − vT0jf̃0j.

(4.80)

As f̃# satisfies the Tadmor Shuffle condition (4.34) we arrive at

2
N∑
i=0

N∑
k=0

Qikv
T
ijf̃

# (ukj,uij)

=
N∑
i=0

N∑
k=0

Qik

(
Ψ̃f
ij − Ψ̃f

kj

)
+ vTNjf̃Nj − vT0jf̃0j,

=
N∑
i=0

(
Ψ̃f
ij

N∑
k=0

Qik −
N∑
k=0

QikΨ̃f
kj

)
+ vTNjf̃Nj − vT0jf̃0j.

(4.81)

Assuming that the differentiation matrix D is of degree p > 0 (consistency of the
differentiation matrix), then D1 = 0⇔ Q1 = 0 and thus ∑N

k=0 Qik = 0. Therefore
(4.81) reduces to

2
N∑
i=0

N∑
k=0

Qikv
T
ijf̃

# (ukj,uij) = −
N∑
i=0

N∑
k=0

QikΨ̃f
kj + vTNjf̃Nj − vT0jf̃0j. (4.82)

Due to the SBP property we know Qik = Bik − Qki which yields

2
N∑
i=0

N∑
k=0

Qikv
T
ijf̃

# (ukj,uij) =
N∑
k=0

Ψ̃f
kj

N∑
i=0

Qki −
N∑
i=0

N∑
k=0

BikΨ̃f
kj

+ vTNjf̃Nj − vT0jf̃0j.

(4.83)

Again, using the consistency of the differentiation matrix ∑N
i=0 Qki = 0 and due to

the definition of B we find

2
N∑
i=0

N∑
k=0

Qikv
T
ijf̃

# (ukj,uij) = −Ψ̃f
Nj + Ψ̃f

0j + vTNjf̃Nj − vT0jf̃0j. (4.84)
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Similarly, doing the same derivations for the volume contribution with respect to
g̃# we get

2
N∑
j=0

N∑
l=0

Qjlv
T
ijg̃

# (uil,uij) = −Ψ̃g
iN + Ψ̃g

i0 + vTiN g̃iN − vTi0f̃i0. (4.85)

In total, we obtain the following discrete growth in discrete entropy
N∑

i,j=0
Jijωiωj

∂Sij
∂t

,

=−
N∑
j=0

ωj

([
vT f̃ ∗ − vT f̃

]
Nj
−
[
vT f̃ ∗ − vT f̃

]
0j

)

+
N∑
j=0

ωj
(
Ψ̃f
Nj − Ψ̃f

0j − vTNjf̃Nj + vT0jf̃0j
)

−
N∑
i=0

ωi
([
vT g̃∗ − vT g̃

]
iN
−
[
vT g̃∗ − vT g̃

]
i0

)

+
N∑
i=0

ωi
(
Ψ̃g
iN − Ψ̃g

i0 − vTiN g̃iN + vTi0f̃i0
)
,

(4.86)

which finally leads to (4.69)

N∑
i,j=0

Jijωiωj
∂Sij
∂t

=−
N∑
j=0

ωj

([
vT f̃ ∗ − Ψ̃f

]
Nj
−
[
vT f̃ ∗ − Ψ̃f

]
0j

)

−
N∑
i=0

ωi
([
vT g̃∗ − Ψ̃g

]
iN
−
[
vT g̃∗ − Ψ̃g

]
i0

)
.

(4.87)

In Lemma 5 we found that the growth in primary quantities and in entropy is
reduced to evaluations at the element surface when considering a Cartesian mesh.
The key of proving this result was using SBP operators and special numerical vol-
ume fluxes f̃# = f̃ ∗EC , g̃

# = g̃∗EC for the Flux Difference discretization. However,
the proof of Lemma 5 is not valid for curvilinear elements as the non-constant
metric terms introduce further non-linearities. Therefore, a modification of the
discretization needs to be considered. The modified discretization is presented in
Appendix A.2.
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Focusing on Cartesian meshes and applying the results of Lemma 5 we prove
primary conservation and entropy stability. Therefore, we need to specify the
numerical surface fluxes f̃ ∗. On a Cartesian mesh these are defined by f̃ ∗ = ∆y

2 f
∗

and g̃∗ = ∆x
2 g
∗. The entropy stable surface fluxes f ∗ES and g∗ES are

f ∗ES(uL,uR) = f ∗EC(uL,uR)− λf
2 K

(
vR − vL

)
,

g∗ES(uL,uR) = g∗EC(uL,uR)− λg
2 K

(
vR − vL

)
.

(4.88)

We interpret the fluxes (4.88) as a combination of an entropy conserving flux minus
a dissipation term. As pointed out in Section 4.1.2 the numerical surface fluxes
f ∗EC and g∗EC are entropy conservative, which will be proved later in Theorem 8.

In order to dissipate the total discrete entropy we need to consider a dissipation
term. This is indispensable for non-linear problem as these usually develop shocks
in finite time even when considering smooth initial data, for which the total entropy
should dissipate. Thus, we include an interface dissipation term in the sense of Lax-
Friedrichs. Here, λf > 0 and λg > 0 denote the maximum absolute eigenvalue of
the Jacobians of the physical fluxes F and G respectively to approximate the wave
speed [116]. For a classical Lax-Friedrichs dissipation term one typically includes
the jump in the conservative variables uR − uL. However, when considering the
jump in the conservative variables the numerical surface fluxes are not necessarily
entropy stable. Therefore, we introduce a positive definite dissipation matrix K to
approximate the jump in the entropy variables vR − vL

uR − uL ≈ K
(
vR − vL

)
. (4.89)

So K approximates the dissipation term of a classical Lax-Friedrichs flux. The
positive definite dissipation matrix K depends on the corresponding system of con-
servation laws. Such matrices are given for numerous conservation laws, e.g. for
the compressible Euler equations [46] or the Ideal Magnetohydrodynamics (MHD)
equations [120].

With the numerical surface fluxes (4.88) we will prove in Theorem 8 that the
two dimensional Flux Difference discretization (4.64) is primary conservative and
entropy stable.

Theorem 8. Considering a Cartesian mesh for the discretization (4.64), where
f#, g# satisfy the Tadmor Shuffle condition (4.34). Then the scheme is primary
conservative and entropy stable when using the numerical surface fluxes (4.88).

108



4. SBP Methods for Non-Linear Systems on Conforming Meshes

Proof. The proof is done in a similar fashion to Theorem 3. We first sum (4.68)
and (4.69) over all elements to obtain the discrete growth of the primary quantities
and entropy. Due to Lemma 5 the total discrete growths depends on the interfaces
of the elements. We look at a vertical interior interface. The contribution for the
horizontal interfaces is done in an analogous fashion. The terms referring to a
vertical interior interfaces are

IUt :=
N∑
j=0

ωjf̃
∗,R
0j −

N∑
j=0

ωjf̃
∗,L
Nj , (4.90)

ISt :=
N∑
j=0

ωj
[
vR,T f̃ ∗,R − Ψ̃f,R

]
0j
−

N∑
j=0

ωj
[
vL,T f̃ ∗,L − Ψ̃f,L

]
Nj
, (4.91)

where the superscripts L and R refer to the left and right element, respectively.
Here, IUt and ISt are an approximation the surface integral of ∂U

∂t
and ∂S

∂t
on a

single interface. From now on we ignore the first index of the numerical surface,
entropy variables and potentials as these remain constant throughout this proof.

IUt :=
N∑
j=0

ωjf̃
∗,R
j −

N∑
j=0

ωjf̃
∗,L
j , (4.92)

ISt :=
N∑
j=0

ωj
[
vR,T f̃ ∗,R − Ψ̃f,R

]
j
−

N∑
j=0

ωj
[
vL,T f̃ ∗,L − Ψ̃f,L

]
j
, (4.93)

For a conforming mesh the numerical flux is unique at an interface, meaning f̃ ∗ :=
f̃ ∗,L = f̃ ∗,R which directly gives us

IUt =
N∑
j=0

ωjf̃
∗
j −

N∑
j=0

ωjf̃
∗
j = 0, (4.94)

which indicates primary conservation. Note, that the derivation holds independent
of the choice of the numerical surface flux. For entropy stability however we need
to consider the fluxes (4.88). We focus on (4.93) and include these fluxes

ISt = ∆y
2

N∑
j=0

ωj

(
vR,T

(
f ∗EC −

λf
2 K

(
vR − vL

))
−Ψf,R

)
j

− ∆y
2

N∑
j=0

ωj

(
vL,T

(
f ∗EC −

λf
2 K

(
vR − vL

))
−Ψf,L

)
j

.

(4.95)
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Rearranging terms gives us

ISt = ∆y
2

N∑
j=0

ωj

((
vR − vL

)T
f ∗EC −

(
Ψf,R −Ψf,L

))
j

− ∆y
2
λf
2

N∑
j=0

ωj

((
vR − vL

)T
K
(
vR − vL

))
j
.

(4.96)

Due to the Tadmor Shuffle condition (4.34) the first sum vanishes and thus

ISt = −∆yλf
4

N∑
j=0

ωj

((
vR − vL

)T
K
(
vR − vL

))
j
. (4.97)

The remaining term intervenes due to the dissipation term. When ignoring the
dissipation term, then ISt = 0 and thus we obtain an entropy conservative scheme.
As we consider positive quadrature weights and K is symmetric positive definite
we arrive at

ISt = − ∆yλf
4︸ ︷︷ ︸
≥0

N∑
j=0

ωj︸︷︷︸
>0

((
vR − vL

)T
K
(
vR − vL

))
j︸ ︷︷ ︸

≥0

≤ 0. (4.98)

and thus indicates entropy stability.

Note, that this proof relied on Cartesian quadrilateral elements. However, the
Flux Difference discretization can be applied to different geometries, e.g. triangu-
lar/tetrahedral elements [17, 20, 21].

To summarize, we extended the SBP method from linear to non-linear prob-
lems. For non-linear problems the standard SBP discretization is not entropy
stable. Therefore, we modified the SBP method by the high-order Flux Difference
discretization of Fisher and Carpenter [33]. Here, we introduced an additional
numerical flux on the volume part of the SBP method to adapt derivations from
finite volume schemes. As long as the numerical volume flux satisfies the Tadmor
Shuffle condition (4.34) we can prove that the discrete growth of entropy is reduced
to evaluations on the surface of the element. Finally, by choosing an appropriate
numerical surface fluxes we obtain a provably primary conservative and entropy
stable scheme for arbitrary SBP operators.
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4.3. Numerical Verification of Summation-by-Parts Schemes
for Non-Linear Problems

In this section we verify high-order convergence as well as primary conservation
and entropy stability/conservation of the SBP Flux Difference discretization (4.64)
for non-linear systems of conservation laws. For all numerical results presented in
this section we consider the two dimensional compressible Euler equations

ρ
ρν1
ρν2
E


t

+


ρν1

ρν2
1 + P
ρν1ν2

ν1(E + P)


x

+


ρν2
ρν1ν2
ρν2

2 + P
ν2(E + P)


y

=


0
0
0
0

 , (4.99)

on Ω ⊂ R2 and t ∈ [0, T ] ⊂ R+ with E = 1
2ρ(ν2

1 + ν2
2) + P

γ−1 and the adiabatic
coefficient γ = 1.4. For the Euler equations the entropy function is defined by [38]

S = − ρ

γ − 1 log
(
P
ργ

)
, (4.100)

The entropy variables are given by

V = ∂S
∂U =


γ−s
γ−1 − β (ν2

1 + ν2
2)

2βν1
2βν2
−2β

 , (4.101)

with β = ρ
2P and s = log(P)− γ log(ρ). For the compressible Euler equations we

consider the Ismail and Roe entropy conserving flux for f ∗EC and g∗EC [62]. These
fluxes have been constructed to satisfy the Tadmor Shuffle condition (4.34) and so
they are used to obtain an entropy stable numerical scheme. We set the volume
fluxes f# = f ∗EC and g# = g∗EC . The numerical surface fluxes are calculated by
(4.88)

f ∗(uL,uR) = f ∗EC(uL,uR)− σλf2 K
(
vR − vL

)
,

g∗(uL,uR) = g∗EC(uL,uR)− σλg2 K
(
vR − vL

)
,

(4.102)

where we included σ ∈ [0, 1] to control the amount of dissipation. The dissipation
matrix K can be found in [46]. The maximum eigenvalue λf on an interface in
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y-direction is given by

λf,L = max
{
||νL1 + cL||∞, ||νL1 ||∞, ||νL1 − cL||∞

}
,

λf,R = max
{
||νR1 + cR||∞, ||νR1 ||∞, ||νR1 − cR||∞

}
,

λf = max {λf,L;λf,R} ,

(4.103)

where the superscript L and R refer to left and right element connected through
the vertical interface and c =

√
γP
ρ
, see [38]. The maximum eigenvalue λg on an

interface in x-direction is obtained in a similar fashion to (4.103) by replacing the
velocity ν1 by ν2. The choice of σ in (4.102) will vary in this section. In terms of
verifying high-order convergence of the entropy stable scheme we set σ = 1. When
verifying entropy conservation or stability we consider σ = 0 as well as σ = 1.

As in Section 2.3 and 3.5 we use the five-stage, fourth-order low-storage Runge-
Kutta method of Carpenter and Kennedy [14]. The explicit time step ∆t is selected
by the CFL condition [38]

∆t := CFL
mini{∆xi

2
∆yi

2 }
(N + 1)λmax

, (4.104)

where ∆xi and ∆yi denote the width in x- and y-direction of the i-th element,
N + 1 the number of nodes and λmax denotes the maximum eigenvalue of the flux
Jacobians λmax = max{λf , λg} over every node in the whole domain. Note, that
this CFL condition is equivalent to the CFL condition in Section 3.5 for the LAE
as λmax = max{a, b}.

In this section, we verify the EOC as well as conservation of the primary quan-
tities and entropy for the SBP scheme. In addition, we numerically demonstrate
the robustness of entropy stable schemes.

4.3.1. Comparison and Convergence of Summation-by-Parts Schemes

For the numerical convergence experiments we consider the isentropic vortex ad-
vection problem taken from [19]. Here, we set the domain to be Ω = [0, 10]×[0, 10].
The initial conditions are

ρ

ν1

ν2

P

 (0, x, y) =


T

1
γ−1

1− (y − 5)κ(r)
1 + (x− 5)κ(r)

T
γ
γ−1

 , (4.105)
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where

r(x, y) =
√

(x− 5)2 + (y − 5)2,

T (x, y) =1− γ − 1
2γ κ(r2),

κ(r) =εeα(1−r2),

(4.106)

with ε = 5
2π and α = 0.5. With these initial condition the vortex is advected along

the diagonal of the domain. We impose Dirichlet boundary conditions using the
exact solution which is

U(t, x, y) = U0(x− t, y − t). (4.107)

We run the simulation to T = 1 with CFL = 1. We consider SBP operators as
DG, FD and HGTL with polynomial degrees p = 2, 3. As in Section 2.3.1 we focus
on different mesh levels where we increase the number of elements in each level
to obtain the EOC. We choose N + 1 = 4(p + 1) nodes in one dimension and
22d elements for FD and HGTL operators in the d-th mesh level. As DG opera-
tors consist of N + 1 = p + 1 nodes in one dimension we choose 22d+4 elements
in the d-th mesh level. Therefore, we get DOFSd = (p + 1)222d+4 in the d-th
level and thus we can compare the errors for the DG, FD and HGTL operators
while DOFSd = (p+ 1)222d+4 remains constant. For systems of conservation laws
DOFS refers to the degrees of freedom per equation. Note, that we consider the
two dimensional compressible Euler equations and thus we obtain a L2 error for
all four conservative variables. In Table 4.1-4.2 we present the average L2 error in
terms of readability.

As for the results produced for the LAE in Section 2.3.1 the FD operator has
a better error than the DG operator for p = 2. When increasing the degree to
p = 3 we see that the error of the DG operator is smaller than for FD. However,
for p = 2, 3 the error of the HGTL operator is smaller than for FD and DG.

For this test case the HGTL operator behaved the best. However, all schemes
have a convergence rate near p + 1 and therefore are high-order methods. This
is the same result as verified with the standard SBP discretization (4.63) for the
LAE on a conforming mesh in Section 2.3.1. Applying the same convergence test
with the standard SBP discretization for the compressible Euler equations would
also obtain a convergence rate of p + 1. However, such a scheme would not be
entropy stable.
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EOC for the SBP Flux Difference discretization with DG, FD and HGTL
operators for p = 2,3.

DOFS L2DG EOCDG L2FD EOCFD L2HGTL EOCHGTL

576 1.61E-01 1.10E-01 8.71E-02
2304 3.51E-02 2.2 1.96E-02 2.5 1.41E-02 2.6
9216 6.03E-03 2.5 3.51E-03 2.5 2.42E-03 2.5
36864 1.07E-03 2.5 4.96E-04 2.8 3.38E-04 2.8
147456 2.04E-04 2.4 8.38E-05 2.6 5.74E-05 2.6
589824 3.45E-05 2.6 1.23E-05 2.8 8.24E-06 2.8

Table 4.1.: Setting p = 2, T = 1, CFL = 1 and the number of nodes per element in one
dimension for FD and HGTL operators to N + 1 = 12.

DOFS L2DG EOCDG L2FD EOCFD L2HGTL EOCHGTL

1024 4.77E-02 5.45E-02 2.09E-02
4096 4.72E-03 3.3 5.02E-03 3.4 1.56E-03 3.7
16384 4.13E-04 3.5 4.03E-04 3.6 8.80E-05 4.1
65536 2.58E-05 4.0 2.58E-05 4.0 5.85E-06 3.9
262144 1.58E-06 4.0 1.81E-06 3.8 4.12E-07 3.8
1048576 9.87E-08 4.0 1.38E-07 3.7 2.97E-08 3.8

Table 4.2.: Setting p = 3, T = 1, CFL = 1 and the number of nodes per element in one
dimension for FD and HGTL operators to N + 1 = 16.

In the next section we numerically verify primary conservation as well as entropy
stability/conservation. In addition, we demonstrate the increased robustness of
entropy stable schemes by comparing a simulation with the SBP Flux Difference
discretization (4.64) and the standard SBP discretization (4.63).

4.3.2. Numerical Verification of Primary Conservation and Entropy Stability

In this section we numerically verify primary conservation and entropy stabil-
ity/conservation for the SBP Flux Difference scheme. We first demonstrate pri-
mary and entropy conservation which was the result of Theorem 8 when setting
σ = 0, so the numerical surface flux reduces to the entropy conservative flux of
Ismail and Roe [62] without dissipation. We consider a mesh with 10×10 elements
and periodic boundary conditions. Each element is fitted with a HGTL operator
of degree p = 2 and N + 1 = 12 nodes. However, the choice of the operator is
arbitrary provided that the operator satisfies the SBP property. To calculate the
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growth in the total discrete primary quantities and entropy we rewrite the Flux
Difference discretization (4.64) by

Jijωiωj
∂uij
∂t

= Res (u)ij , (4.108)

where

Res (u)ij =− ωj
([
f̃ ∗Nj − f̃Nj

]
δiN −

[
f̃ ∗0j − f̃0j

]
δi0 + 2

N∑
k=0

Qikf̃
# (ukj,uij)

)

− ωi
(

[g̃∗iN − g̃iN ] δNj − [g̃∗i0 − g̃i0] δ0j + 2
N∑
l=0

Qjlg̃
# (uil,uij)

)
.

(4.109)
The growth in the discrete entropy is computed by contracting (4.108) with the
vector of entropy variables

Jijωiωjv
T
ij

∂uij
∂t

= vTijRes (u)ij

⇔ Jijωiωj
∂Sij
∂t

= vTijRes (u)ij
(4.110)

as ∂
∂t
S = vT ∂u

∂t
(continuity in time) we obtain the temporal derivative of the

entropy at each node. As shown in Theorem 8, the scheme is primary and entropy
conservative when no interface dissipation is included, meaning that σ = 0. In
addition, when assuming periodic boundary conditions the terms on the boundary
of the domain vanish and thus we get

NQ∑
q=1

 N∑
i,j=0

Jijωiωj
∂uqij
∂t

 = 0,

NQ∑
q=1

 N∑
i,j=0

Jijωiωj
∂Sqij
∂t

 = 0,
(4.111)

for all time. To verify this result numerically we insert (4.108) and (4.110) and
calculate

U tot
t :=

NQ∑
q=1

 N∑
i,j=0

Res
(
uqij
) ,

Stott :=
NQ∑
q=1

 N∑
i,j=0

vTijRes
(
uqij
) .

(4.112)
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We claim that with this setup the scheme is fully conservative independent of
the initial condition. Therefore, we consider randomly constructed discontinuous
initial conditions

ρ
u
v
p

 =


ϑ1,1
ϑ1,2
ϑ1,3
ϑ1,4

 if x ≤ y,


ρ
u
v
p

 =


ϑ2,1
ϑ2,2
ϑ2,3
ϑ2,4

 if x > y. (4.113)

Here ϑk,l are uniformly generated random numbers in [0, 1]. We calculate U tot
t

and Stott for 1000 different initial conditions which gives us (U tot
t )lk and (Stott )k for

k = 1, . . . , 1000 and l = 1, . . . , 4. Within the euclidean norm we obtain the results
in Table 4.3.

Verification of primary and entropy conservation for the SBP Flux
Difference scheme

||Stott ||2 ||(U tot
t )1,:||2 ||(U tot

t )2,:||2 ||(U tot
t )3,:||2 ||(U tot

t )4,:||2
9.63E-14 4.93E-15 2.17E-14 5.31E-14 8.18E-15

Table 4.3.: Calculating the growth of the total discrete primary quantities U tot
t and

entropy Stott for 1000 different random initial conditions with the Flux Dif-
ference discretization. The average growth is presented within the euclidean
norm. All values are near machine precision which demonstrates primary
and entropy conservation.

In Table 4.3 we verify primary and entropy conservation. In comparison, when
considering the same setup with the standard SBP discretization (4.63) we verify
primary conservation but not entropy conservation, see Table 4.4.

Calculating the total discrete growth in the primary quantities and entropy
with the standard SBP discretization

||Stott ||2 ||(U tot
t )1,:||2 ||(U tot

t )2,:||2 ||(U tot
t )3,:||2 ||(U tot

t )4,:||2
6.70E-01 8.61E-15 2.83E-14 6.93E-15 9.86E-14

Table 4.4.: Calculating the growth of the total discrete primary quantities U tot
t and

entropy Stott for 1000 different random initial conditions with the standard
SBP discretization. The growth is presented within the euclidean norm.
Here, we verify conservation of the primary quantities but not of the entropy.

116



4. SBP Methods for Non-Linear Systems on Conforming Meshes

Next, we run a simulation in time to demonstrate the increased robustness of
the entropy stable SBP Flux Difference scheme. Therefore, we approximate the
total entropy as a function of time

Stot :=
NQ∑
q=1

 N∑
i,j=0

JijωiωjS
q
ij

 , (4.114)

over the time domain t ∈ [0, T ], where we choose T = 25 and CFL = 0.5. We
adapt the discontinuous initial condition from [38]

ρ
ν1
ν2
P

 =


1.08
0.2
0.01
0.95

 if x ≤ y,


ρ
ν1
ν2
P

 =


1

10−12

10−12

1

 if x > y, (4.115)

and consider periodic boundaries. We solve the compressible Euler equations with
the Flux Difference scheme and the standard SBP method. In Figure 4.2 we plot
the temporal evolution of the total entropy for the for both schemes.
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Figure 4.2.: Evolution of the total discrete entropy. The SBP Flux Difference scheme
conserves the total discrete entropy whereas the entropy explodes for the
standard SBP method. At t ≈ 0.95 the standard SBP scheme crashes.

The Flux Difference scheme conserves the total discrete entropy. However, for
the classical SBP method we observe an unpredictable behavior of the total discrete
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entropy at t ≈ 0.95 and the simulation crashes. This has been verified for CFL =
0.5; 0.25; 0.125; 0.0625 and demonstrates the enhanced robustness of entropy
conserving/stable schemes. As the Flux Difference method does not crash we
run the simulation until T = 25. Moreover, we also verify entropy stability by
including dissipation setting σ = 1. For this test we use the same configuration as
for verifying entropy conservation (HGTL operator with p = 2 and N + 1 = 12)
and set CFL = 0.5. The total discrete primary quantities and entropy for σ = 0
and σ = 1 are plotted in Figure 4.3 and 4.4.
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Figure 4.3.: Evolution of the total
discrete entropy of the
solution with and with-
out dissipation. We
see that the total dis-
crete entropy is con-
served when no inter-
face dissipation is in-
cluded and decays with
interface dissipation.
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Figure 4.4.: A plot that demon-
strates the discrete
conservation of the
primary quantities.
The plot does not
depend on interface
dissipation.

Here, the total primary quantities are conserved while at the same time the total
entropy decays/remains constant (depending on the choice of σ). We note, that
the plot of the total discrete primary quantities remains the same whether or not
interface dissipation is included.
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4.4. Summary

In this chapter we introduced primary conservative and entropy stable SBP meth-
ods for non-linear hyperbolic systems of conservation laws. For simplicity we first
focused on problems with one dimensional space. When solving such systems us-
ing standard SBP methods introduced in Chapter 2 we do not necessarily obtain
a physical relevant solution. Therefore, we seek numerical solutions which dis-
cretely obey the second law of thermodynamics. Here, we introduced the concept
of entropy stability by introducing the entropy function S which can be inter-
preted as an extension of the theory for linear stability described in Chapter 2.
The goal of the chapter was to derive high-order primary conservative and en-
tropy stable schemes. Hence, we introduced skew-symmetric discretizations based
on split forms of the corresponding conservation laws. A more general approach
deriving entropy stable schemes was given by Fisher and Carpenter [33]. They
invented the high-order Flux Difference discretization adapting knowledge from fi-
nite volume schemes and extending these results to high-order SBP methods. The
skew-symmetric and the Flux Difference discretizations are equivalent. However,
the Flux Difference method is not instructed to know the explicit split form of
the conservation laws and therefore can be applied to, e.g. the compressible Euler
equations. We applied the Flux Difference discretization to problems with a two
dimensional spatial domain and mathematically proved that this method is pri-
mary conservative and entropy stable. Next, we implemented the Flux Difference
method and applied it to the Euler equations. We observed that this method is
high-order accurate considering DG, FD and HGTL operators. Besides the high-
order property we numerically verified primary conservation and entropy stabil-
ity/conservation. In addition, we demonstrated that entropy stable/conservative
schemes are more robust by setting up runs with a discontinuous initial condition.
Here, the standard SBP scheme crashes whereas the SBP Flux Difference method
remains stable.

All the schemes and results presented in this chapter relied on a conforming
mesh. As for the LAE we will extend the Flux Difference discretization to a
non-conforming mesh in the next chapter.
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5. Entropy Stable and Primary
Conservative Summation-by-Parts
Methods for Non-Linear Hyperbolic
Systems on Non-Conforming Meshes

In this chapter we introduce an entropy stable and primary conservative SBP
method for solving non-linear systems of conservation laws on non-conforming
meshes. Solving such non-linear problems on non-conforming meshes was first
investigated for DG methods by Kopriva [69]. Kopriva introduced the mortar
method coupling non-conforming elements through an intermediate grid. The
method was provably primary conservative on curvilinear h/p non-conforming
meshes, but not entropy stable. After the breakthrough of Fisher and Carpen-
ter [33] deriving the Flux Difference discretization (4.64) in 2013, high-order en-
tropy stable become more popular for SBP methods. In 2016, Carpenter et al.
[16] were the first researchers to extend the SBP Flux Difference method to a
curvilinear p non-conforming mesh. Focusing on a Cartesian mesh, Friedrich et
al. [38] were the first to extend the SBP Flux Difference scheme on a h/p non-
conforming mesh. The investigation of primary conservative and entropy stable
SBP schemes on curvilinear meshes with h refinement is an ongoing research topic.

Here, we will introduce the entropy stable h/p non-conforming SBP method
by Friedrich et al. [38]. As described in Chapter 3, the fundamental difference
between a conforming and non-conforming scheme is the calculation of the nu-
merical surface flux. For non-conforming meshes a point-to-point transfer is not
possible and therefore projection operators must be introduced. Here, we consider
the same projection operators as in Section 3.2. Unfortunately, the construction
of non-conforming numerical surface fluxes for non-linear problems is not a sim-
ple extension of the linear surface fluxes for the LAE in (3.43). To point out the
difficulties we focus on a scalar conservation law and an algebraic non-conforming
mesh (p refinement), see Figure 5.1.
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Figure 5.1.: Non-conforming mesh with p refinement.

In Chapter 3 the construction of the numerical surface fluxes on the left and
right element f ∗,L and f ∗,R has been done by projecting the conservative variables
from one side to another. For the scalar LAE on a conforming mesh the central
flux f ∗EC = 1

2

(
f(uL) + f(uR)

)
is energy conservative. On a non-conforming mesh

the energy conservative flux for the LAE is given by

f ∗,LEC,i = f ∗EC

NR∑
k=0

[PR2L]ik u
R
k , u

L
i

 ,
f ∗,REC,j = f ∗EC

uRj , NL∑
k=0

[PL2R]jk u
L
k

 .
(5.1)

for i = 0, . . . , NL and j = 0, . . . , NR. The key to prove energy conservation was
the M-compatibility condition (3.2)

PTR2LML = MRPL2R. (5.2)

This condition depends linearly on the projection operators and thus, we can recast
the proof of entropy conservation for linear problems on a conforming mesh to a
non-conforming. However, for non-linear problems we replace f ∗EC with a more
complicated entropy conservative numerical flux that features possible polynomial
or rational non-linearities as well as strong cross coupling between the left and
right solution states, e.g. [18, 36, 42]. This introduces complications which do not
necessarily maintain that the scheme is entropy conservative. A simple example,
consider the Burgers’ equation. For a conforming mesh the entropy conservative
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numerical flux is given by [42]

f ∗EC = 1
6
(
(uL)2 + uLuR + (uR)2

)
. (5.3)

Constructing the non-conforming numerical surface flux using (5.1) we obtain

f ∗,LEC,i = 1
6

(uLi )2
+ uLi

NR∑
k=0

[PR2L]ik u
R
k

+
NR∑
k=0

[PR2L]ik u
R
k

2
 ,

f ∗,REC,j = 1
6


NL∑
k=0

[PL2R]jk u
L
k

2

+
NL∑
k=0

[PL2R]jk u
L
k

uRj +
(
uRj
)2

 .
(5.4)

for i = 0, . . . , NL and j = 0, . . . , NR. However, it is not obvious how to treat non-
linear projections, e.g. the operation to compute the square of ∑NL

k=0 [PL2R]jk uLk
and ∑NR

k=0 [PR2L]ik uRk will change the total discrete entropy. Recasting the entropy
conservation proof from a conforming to a non-conforming mesh as for linear prob-
lems does not work as the M-compatibility condition (5.2) depends linearly on the
projection operators and thus the non-linear projection terms within the proof do
not vanish. Therefore, we need a further modification to the surface fluxes to
guarantee entropy stability.

In Section 5.1 we introduce how such fluxes are calculated to obtain entropy
stable SBP schemes for non-conforming meshes. To conclude, we verify the theo-
retical derivations through a variety of numerical test cases in Section 5.2.

5.1. Non-Conforming Discrete Analysis for Non-Linear
Problems

This section is structured in a one-to-one fashion to Section 3.4. Throughout we
focus on a Cartesian mesh. First, in Section 5.1.1, we address the issues associ-
ated with p refinement. We build on the p refinement result to construct entropy
conservative numerical surface fluxes for h refinement in Section 5.1.2. Then, Sec-
tion 5.1.3 describes how additional dissipation can be included at non-conforming
interfaces to guarantee entropy stability.

5.1.1. Non-Conforming Nodal Distributions

In this section we introduce how to create a fully conservative scheme on a mesh
with p refinement. As shown in Chapter 4, Lemma 5, the discrete growth of the
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primary quantities and entropy on a single element reduces to
N∑

i,j=0
Jijωiωj

∂uij
∂t

= −
N∑
j=0

ωj
(
f̃Nj − f̃0j

)
−

N∑
i=0

ωi (g̃iN − g̃i0) . (5.5)

and
N∑

i,j=0
Jijωiωj

∂Sij
∂t

=−
N∑
j=0

ωj

([
vT f̃ ∗ −Ψf

]
Nj
−
[
vT f̃ ∗ −Ψf

]
0j

)

−
N∑
i=0

ωi
([
vT g̃∗ −Ψg

]
iN
−
[
vT g̃∗ −Ψg

]
i0

)
.

(5.6)

Due to the Flux Difference form and the use of SBP operators the discrete growth
of the quantities reduce to evaluations at the element interfaces. In order to obtain
a primary and entropy conservative or, in other words, fully conservative scheme,
the terms on the interior interfaces need to vanish. These terms are defined by

IUt :=
NR∑
j=0

ωRj f̃
∗,R
j −

NL∑
j=0

ωLj f̃
∗,L
j , (5.7)

ISt :=
NR∑
j=0

ωRj
[
vR,T f̃ ∗,R −Ψf,R

]
j
−

NL∑
j=0

ωLj
[
vL,T f̃ ∗,L −Ψf,L

]
j
, (5.8)

which are almost the same terms as in (4.92) and (4.93). However, as we consider
non-conforming elements we introduce the index L and R on N and ω.

Here we address the importance of choosing an appropriate numerical surface
flux f̃ ∗,R and f̃ ∗,L. Assume we have an entropy conservative flux f̃ ∗EC for a con-
forming mesh satisfying the Tadmor Shuffle Condition(

vR − vL
)T
f̃ ∗EC(uR,uL) = Ψ̃f,R − Ψ̃f,L. (5.9)

Simply applying (5.1) is insufficient for an entropy conservative scheme due to non-
linear projection terms. The key to obtain non-conforming entropy conservative
fluxes is not to project the conservative variables u but projecting the surface flux
f ∗EC in terms of

f ∗,LEC,i =
NR∑
k=0

[PR2L]ik f
∗
EC(uLi ,uRk ),

f ∗,REC,j =
NL∑
k=0

[PL2R]jk f
∗
EC(uLk ,uRj ),

(5.10)
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for i = 0, . . . , NL and j = 0, . . . , NR. For a Cartesian mesh the scaled numerical
fluxes are given by f̃ ∗,LEC,i = ∆y

2 f
∗,L
EC,i and f̃

∗,R
EC,j = ∆y

2 f
∗,R
EC,j. Note, that in (5.10) we

observe only linear projections.
Remark 15. Focusing on the LAE with f ∗EC(uR, uL) = 1

2

(
f(uR) + f(uL)

)
we see

that (5.10) and (5.1) are equivalent as

f ∗,LEC,i =
NR∑
k=0

[PR2L]ik f
∗
EC(uLi , uRk ),

= 1
2

NR∑
k=0

[PR2L]ik f(uRk ) + f(uLi )
NR∑
k=0

[PR2L]ik

 . (5.11)

Assuming that the PR2L can project a constant exactly
(∑NR

k=0 [PR2L]ik = 1
)
and

including f(u) = au we get

f ∗,LEC,i = 1
2

a NR∑
k=0

[PR2L]ik u
R
k + auLi

 = f ∗EC

uLi , NR∑
k=0

[PR2L]ik u
R
k

 , (5.12)

which is precisely (5.1). However, considering the non-linear Burgers’ equation we
notice a difference. Setting f ∗EC = 1

6

(
(uL)2 + uLuR + (uR)2

)
in (5.10) we get

f ∗,LEC,i = 1
6

(uLi )2
NR∑
k=0

[PR2L]ik + uLi

NR∑
k=0

[PR2L]ik u
R
k +

NR∑
k=0

[PR2L]ik (uRk )2

 . (5.13)

Again, assuming that PR2L can project a constant exactly we obtain

f ∗,LEC,i = 1
6

(uLi )2 + uLi

NR∑
k=0

[PR2L]ik u
R
k +

NR∑
k=0

[PR2L]ik (uRk )2

 . (5.14)

Here, (5.1) and (5.10) are nearly the same, but for (5.10) the projection operator
is outside of the square and therefore we only have a linear projection.
With this construction of a linear projection we prove that the non-conforming

SBP Flux Difference scheme is fully conservative in Theorem 9.

Theorem 9. The SBP Flux Difference discretization (4.64) with the numerical
surface fluxes (5.10) is fully conservative on an algebraic non-conforming Carte-
sian mesh, provided that f ∗EC satisfies the Tadmor Shuffle condition (5.9) and the
projection operators satisfy the M-compatibility condition (5.2).
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Proof. First, we prove primary conservation. Therefore, equation (5.7) needs to
vanish. We include the numerical fluxes derived from (5.10) in (5.7) and obtain

IUt =
NR∑
j=0

ωRj

NL∑
k=0

[PL2R]jk f̃
∗
EC(uLk ,uRj )−

NL∑
j=0

ωLj

NR∑
k=0

[PR2L]jk f̃
∗
EC(uLj ,uRk ). (5.15)

Due to M-compatibility condition (5.2) we know ωRj [PL2R]jk = ωLk [PR2L]kj. This
gives

IUt =
NR∑
j=0

NL∑
k=0

ωRj [PL2R]jk f̃
∗
EC(uLk ,uRj )−

NL∑
j=0

NR∑
k=0

ωRk [PL2R]kj f̃
∗
EC(uLj ,uRk ), (5.16)

and rearranging indices we obtain
IUt = 0, (5.17)

which indicates primary conservation.

Next, we show that the non-conforming scheme is entropy conservative. To do
so, ISt needs to be zero. Therefore, we substitute the scaled fluxes from (5.10) in
(5.8).

ISt =
NR∑
j=0

ωRj

vR,Tj

NL∑
k=0

[PL2R]jk f̃
∗
EC(uLk ,uRj )− Ψ̃f,R

j


−

NL∑
j=0

ωLj

vL,Tj

NR∑
k=0

[PR2L]jk f̃
∗
EC(uLj ,uRk )− Ψ̃f,L

j

 .
(5.18)

Assuming that the projection operators can project a constant exactly, (5.18) is
equivalent to

ISt =
NR∑
j=0

ωRj

vR,Tj

NL∑
k=0

[PL2R]jk f̃
∗
EC(uLk ,uRj )− Ψ̃f,R

j

NL∑
k=0

[PL2R]jk


−

NL∑
j=0

ωLj

vL,Tj

NR∑
k=0

[PR2L]jk f̃
∗
EC(uLj ,uRk )− Ψ̃f,L

j

NR∑
k=0

[PR2L]jk

 .
(5.19)

Rearranging sums we obtain

ISt =
NR∑
j=0

NL∑
k=0

ωRj [PL2R]jk
[
vR,Tj f̃ ∗EC(uLk ,uRj )− Ψ̃f,R

j

]

−
NL∑
j=0

NR∑
k=0

ωLj [PR2L]jk
[
vL,Tj f̃ ∗EC(uLj ,uRk )− Ψ̃f,L

j

]
.

(5.20)
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Due to the linear dependence of the projection operators we apply the M-compatibility
condition ωRj [PL2R]jk = ωLk [PR2L]kj and find

ISt =
NR∑
j=0

NL∑
k=0

ωRj [PL2R]jk
[
vR,Tj f̃ ∗EC(uLk ,uRj )− Ψ̃f,R

j

]

−
NL∑
j=0

NR∑
k=0

ωRk [PL2R]kj
[
vL,Tj f̃ ∗EC(uLj ,uRk )− Ψ̃f,L

j

]
.

(5.21)

By rearranging the indices we arrive at

ISt =
NR∑
j=0

NL∑
k=0

ωRj [PL2R]jk
[(
vR,Tj − vL,Tk

)
f̃ ∗EC(uLk ,uRj )−

(
Ψ̃f,R
j − Ψ̃f,L

k

)]
. (5.22)

Finally, as f ∗EC satisfies the Tadmor Shuffle condition (5.9) we obtain

ISt =
NR∑
j=0

NL∑
k=0

ωRj [PL2R]jk 0 = 0, (5.23)

which indicates entropy conservation. As ISt and IUt are both zero we have
derived an fully conservative algebraic non-conforming SBP scheme.

With this proof, we can construct entropy conservative schemes on algebraic
non-conforming meshes (p refinement). To introduce additional flexibility, we next
consider geometric non-conforming discretizations (h refinement).

5.1.2. Non-Conforming Interfaces with Hanging Corners

Building on the fully conservative, algebraic non-conforming SBP method for
non-linear problems in Section 5.1.1 we now focus on handling meshes with non-
conforming interfaces (h refinement). Therefore, we focus on the same mesh setup
as in Section 3.4.2 in Figure 3.9, where we discussed h refinement for linear prob-
lems. Here, we considered an element R with height ∆R connected to NE ele-
ments denoted by Li with height ∆Li , for i = 1, . . . , NE. Following the analogous
steps as in Section 3.4.2 we obtain projection matrices satisfying the modified
M-compatibility condition

∆LiPTR2LiMLi = ∆RMRPLi2R, i = 1, . . . , NE, (5.24)

or
∆Li [PR2Li ]kjωLik = ∆Rω

R
j [PLi2R]jk, i = 1, . . . , NE, (5.25)
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for j = 0, . . . , NR and k = 0, . . . , NLi . Due to the construction of the projection
operators it holds that

PR2Li1R = 1Li , for i = 1, . . . , NE,
NE∑
i=1

PL12R1Li = 1R,
(5.26)

where 1Li denotes a one vector of size NLi + 1. A component-wise expression of
(5.26) is

NR∑
l=0

[PR2Li ]jl = 1, for i = 1, . . . , NE,

NE∑
i=1

NLi∑
l=0

[PL12R]kl

 = 1,
(5.27)

with j = 0, . . . , NR and k = 0, . . . , NLi .

Next, we require a numerical surface flux to couple the elements Li for i =
1, . . . , NE with R. In order to obtain a fully conservative scheme we focus on all
terms defined on the interface connecting Li and R. As for (5.7) and (5.8) these
terms are

IUt :=
NR∑
j=0

ωRj f̃
∗,R
j −

NE∑
i=1

NLi∑
j=0

ωLij f̃
∗,Li
j , (5.28)

ISt :=
NR∑
j=0

ωRj
[
vR,T f̃ ∗,R − Ψ̃f,R

]
j
−

NE∑
i=1

NLi∑
j=0

ωLij
[
vLi,T f̃ ∗,Li − Ψ̃f,Li

]
j
. (5.29)

In order to obtain a fully conservative scheme (5.28) and (5.29) should be zero.
The appropriate numerical surface flux is given by extending the geometric non-
conforming fluxes (5.10) for non-linear problems in Section 5.1.2 by

f ∗,LiEC,k =
NR∑
l=0

[PR2Li ]klf ∗EC(uLik ,uRl ),

f ∗,REC,j =
NE∑
m=1

NLi∑
l=0

[PLm2R]jlf ∗EC(uLml ,uRj )
 ,

(5.30)

for j = 0, . . . , NR and k = 0, . . . , NLi where i = 1, . . . , NE. As we focus on
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Cartesian meshes we obtain the scaled fluxes by multiplying (5.30) with the cor-
responding metric terms or, in this case, with half the element height. So

f̃ ∗,LiEC,k = ∆Li

2 f ∗,LiEC,k,

f̃ ∗,REC,j = ∆R

2 f ∗,REC,j.

(5.31)

Note, that as we focus on a geometric non-conforming mesh it holds ∆Li 6= ∆R.
We will show that these fluxes give us a fully conservative scheme for non-linear
problems on geometric non-conforming meshes.

Theorem 10. Consider the non-conforming fluxes (5.30) and (5.31). Then the
SBP Flux Difference discretization (4.64) is fully conservative on a geometric non-
conforming Cartesian mesh.

Proof. As for the proof of Theorem 9 we first prove primary conservation. Inserting
the fluxes (5.30) in IUt we get

IUt =
NR∑
j=0

ωRj

NE∑
i=1

NLi∑
l=0

[PLi2R]jl
∆R

2 f̃ ∗EC(uLil ,uRj )


−
NE∑
i=1

NLi∑
j=0

ωLij

NR∑
l=0

[PR2Li ]jl
∆Li

2 f̃ ∗EC(uLij ,uRl ).

(5.32)

Rearranging terms gives

IUt =
NE∑
i=1

NR∑
j=0

NLi∑
l=0

∆R

2 ωRj [PLi2R]jlf ∗EC(uLil ,uRj )

−
NE∑
i=1

NLi∑
j=0

NR∑
l=0

∆Li

2 ωLij [PR2Li ]jlf ∗EC(uLij ,uRl ),
(5.33)

and by indexing we arrive at

IUt = 1
2

NE∑
i=1

NLi∑
j=0

NR∑
l=0

(
∆Rω

R
l [PLi2R]lj −∆Liω

Li
j [PR2Li ]jl

)
f ∗EC(uLij ,uRl ). (5.34)

Finally, due to the the modified M-compatibility condition (5.27) we obtain

IUt = 1
2

NE∑
i=1

NLi∑
j=0

NR∑
l=0

0f ∗EC(uLij ,uRl ) = 0, (5.35)
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for which primary conservation holds.

Focusing on entropy conservation we look at ISt (5.29) and include the numerical
fluxes (5.30)

ISt =
NR∑
j=0

∆R

2 ωRj

vR,Tj

NE∑
i=1

NLi∑
l=0

[PLi2R]jlf ∗EC(uLil ,uRj )
−Ψf,R

j


−

NE∑
i=1

NLi∑
j=0

∆Li

2 ωLj

vLi,Tj

NR∑
l=0

[PR2Li ]jlf ∗EC(uLij ,uRl )−Ψf,Li
j

 ,
(5.36)

where we rewrite the scaled entropy potentials in terms of Ψ̃f,R = ∆R

2 Ψf,R. As for
the proof of Theorem 9 we include (5.27) (sums of the projection operators are
equal to one) for the further course of the proof. Therefore, (5.36) is equivalent to

ISt =
NR∑
j=0

∆R

2 ωRj

vR,Tj

NE∑
i=1

NLi∑
l=0

[PLi2R]jlf ∗EC(uLil ,uRj )
−Ψf,R

j

NE∑
i=1

NLi∑
l=0

[PL12R]jl


−

NE∑
i=1

NLi∑
j=0

∆Li

2 ωLj

vLi,Tj

NR∑
l=0

[PR2Li ]jlf ∗EC(uLij ,uRl )−Ψf,Li
j

NR∑
l=0

[PR2Li ]jl

 .
(5.37)

Analogously to Theorem 9 we rewrite the sums

ISt =
NE∑
i=1

NR∑
j=0

NLi∑
l=0

∆R

2 ωRj [PLi2R]jl
(
vR,Tj f ∗EC(uLil ,uRj )−Ψf,R

j

)

−
NE∑
i=1

NLi∑
j=0

NR∑
l=0

∆Li

2 ωLj [PR2Li ]jl
(
vLi,Tj f ∗EC(uLij ,uRl )−Ψf,Li

j

)
,

(5.38)

and perform a re-indexing to find

ISt =
NE∑
i=1

NR∑
j=0

NLi∑
l=0

∆R

2 ωRj [PLi2R]jl
(
vR,Tj f ∗EC(uLil ,uRj )−Ψf,R

j

)

−
NE∑
i=1

NR∑
j=0

NLi∑
l=0

∆Li

2 ωLl [PR2Li ]lj
(
vLi,Tl f ∗EC(uLil ,uRj )−Ψf,Li

l

)
.

(5.39)

Next, we apply the modified M-compatibility condition (5.27) and simplify to
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obtain

ISt =
NE∑
i=1

NR∑
j=0

NLi∑
l=0

∆R

2 ωRj [PLi2R]jl
((
vRj − v

Li
l

)T
f ∗EC(uLil ,uRj )−

(
Ψf,R
j −Ψf,Li

l

))
,

(5.40)
and, finally, apply the Tadmor Shuffle condition (5.9) to show the desired result

ISt =
NE∑
i=1

NR∑
j=0

NLi∑
l=0

∆R

2 ωRj [PLi2R]jl0 = 0, (5.41)

and thus obtain entropy conservation.

We derived a fully conservative scheme for h/p non-conforming meshes. Note,
that the proofs of Theorems 9 and 10 are general for any hyperbolic PDE with
physical fluxes f , g where we have a mathematical entropy function. Next, we
include interface dissipation to obtain an entropy stable scheme.

5.1.3. Including Dissipation within the Numerical Surface Flux

Considering shocks, the mathematical entropy should decay, which the numerical
scheme should reflect. Therefore, we modify the numerical fluxes in Section 5.1.1
and 5.1.2 by a dissipation term. This term provides an entropy stable numerical
flux which at the same time maintains primary conservative. As such, we seek a
dissipation term for the entropy stable flux such that

IUt = 0,
ISt ≤ 0. (5.42)

We focus on the general h/p non-conforming mesh, where neither nodal distribu-
tion nor the interfaces coincide. Therefore, we focus on a mesh like that in Figure
3.9. We construct the entropy stable flux by combining the results of includ-
ing dissipation for non-conforming fluxes for linear problems in Section 3.4.3 and
for conforming fluxes for non-linear problems in Section 4.2. Merging the fluxes
(3.69),(3.70) and (4.88) together we have

f ∗,LiES,k = f ∗,LiEC,k −
λf
2 Kk

NR∑
l=0

[PR2Li ]klvRl − vLik

 , (5.43)

f ∗,RES,j = f ∗,REC,j −
λf
2

NE∑
i=1

NLi∑
l=0

[PLi2R]jlKl

 NR∑
m=0

[PR2Li ]lmvRm − vLil

 , (5.44)
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where λf denotes the maximum eigenvalue of the Jacobian of F , see (4.103).
The positive definite dissipation matrix is constructed based on PR2Liv

R and vLi ,
so K := K

(
PR2Liv

R,vLi
)
. Again, the scaled fluxes are given by (5.31), mean-

ing f̃ ∗,LiES,k = ∆Li

2 f
∗,Li
ES,k and f̃ ∗,RES,j = ∆R

2 f
∗,R
ES,j. We prove primary conservation and

entropy stability in Theorem 11.

Theorem 11. Consider the numerical surface fluxes (5.43) and (5.44), then we
obtain a primary conservative and entropy stable discretization on a h/p non-
conforming mesh.

Proof. In order to obtain a primary conservative and entropy stable discretization
on a h/p non-conforming mesh we need to satisfy the conditions (5.42). Therefore,
we include the scaled numerical surface fluxes of (5.43) and (5.44) in (5.28)

IUt =
NR∑
j=0

ωRj

f̃ ∗,REC,j − λf∆R

4

NE∑
i=1

NLi∑
l=0

[PLi2R]jlKl

 NR∑
m=0

[PR2Li ]lmvRm − vLil


−

NE∑
i=1

NLi∑
k=0

ωLik

f̃ ∗,LiEC,k −
λf∆Li

4 Kk

NR∑
l=0

[PR2Li ]klvRl − vLik

 .
(5.45)

As proven in the Theorem 10 the fluxes f̃ ∗,REC,j and f̃
∗,Li
EC,k are primary conservative

and thus cancel each other out. This reduces IUt to

IUt =− λf
4

NE∑
i=1

NR∑
j=0

NLi∑
l=0

∆Rω
R
j [PLi2R]jlKl

 NR∑
m=0

[PR2Li ]lmvRm − vLil


+ λf

4

NE∑
i=1

NLi∑
k=0

∆Liω
Li
k Kk

NR∑
l=0

[PR2Li ]klvRl − vLik

 .
(5.46)

Applying the modified M-compatibility equation (5.25) we get

IUt =− λf
4

NE∑
i=1

NR∑
j=0

NLi∑
l=0

∆Liω
Li
l [PR2Li ]ljKl

 NR∑
m=0

[PR2Li ]lmvRm − vLil


+ λf

4

NE∑
i=1

NLi∑
k=0

∆Liω
Li
k Kk

NR∑
l=0

[PR2Li ]klvRl − vLik

 .
(5.47)
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Rearranging terms and using the fact that the projection operator PR2Li can
project a constant exactly, see (5.27), we obtain

IUt =− λf
4

NE∑
i=1

NLi∑
l=0

∆Liω
Li
l Kl

 NR∑
m=0

[PR2Li ]lmvRm − vLil

 NR∑
j=0

[PR2Li ]lj︸ ︷︷ ︸
=1

+ λf
4

NE∑
i=1

NLi∑
k=0

∆Liω
Li
k Kk

NR∑
l=0

[PR2Li ]klvRl − vLik

 .
(5.48)

Finally, by re-indexing we get

IUt =− λf
4

NE∑
i=1

NLi∑
l=0

∆Liω
Li
l Kl

 NR∑
m=0

[PR2Li ]lmvRm − vLil


+ λf

4

NE∑
i=1

NLi∑
l=0

∆Liω
Li
l Kl

 NR∑
m=0

[PR2Li ]lmvRm − vLil

 = 0,

(5.49)

which proves that the numerical surface fluxes are primary conservative. Next, we
prove entropy stability and include the interface fluxes in (5.29). As f ∗,LiEC,k and
f ∗,REC,j are provable entropy conservative we only pay attention to the dissipation
terms in (5.29).

ISt =− λf
4

NR∑
j=0

∆Rω
R
j v

R,T
j

NE∑
i=1

NLi∑
l=0

[PLi2R]jlKl

 NR∑
m=0

[PR2Li ]lmvRm − vLil


+ λf

4

NE∑
i=1

NLi∑
k=0

∆Liω
L
k v

Li,T
k Kk

NR∑
l=0

[PR2Li ]klvRl − vLik

 .
(5.50)

First, we reorder the sums

ISt =− λf
4

NE∑
i=1

NR∑
j=0

NLi∑
l=0

∆Rω
R
j [PLi2R]jlvR,Tj Kl

 NR∑
m=0

[PR2Li ]lmvRm − vLil


+ λf

4

NE∑
i=1

NLi∑
k=0

∆Liω
L
k v

Li,T
k Kk

NR∑
l=0

[PR2Li ]klvRl − vLik

 .
(5.51)
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Again, using the modified M-compatibility equation (5.25) we obtain

ISt =− λf
4

NE∑
i=1

NR∑
j=0

NLi∑
l=0

∆Liω
Li
l [PR2Li ]ljv

R,T
j Kl

 NR∑
m=0

[PR2Li ]lmvRm − vLil


+ λf

4

NE∑
i=1

NLi∑
k=0

∆Liω
L
k v

Li,T
k Kk

NR∑
l=0

[PR2Li ]klvRl − vLik

 .
(5.52)

Next, we rearrange terms

ISt =− λf
4

NE∑
i=1

NLi∑
l=0

∆Liω
Li
l

NR∑
j=0

[PR2Li ]ljvRj

T Kl

 NR∑
m=0

[PR2Li ]lmvRm − vLil


+ λf

4

NE∑
i=1

NLi∑
l=0

∆Liω
L
l

(
vLil

)T
Kl

 NR∑
m=0

[PR2Li ]lmvRm − vLil

 .
(5.53)

Thus, we have the expression

ISt = −λf4

NE∑
i=1

NLi∑
l=0

∆Liω
Li
l

 NR∑
m=0

[PR2Li ]lmvRm − vLil

T Kl

 NR∑
m=0

[PR2Li ]lmvRm − vLil

 .
(5.54)

Finally, as Kl is a symmetric positive definite matrix we know NR∑
m=0

[PR2Li ]lmvRm − vLil

T Kl

 NR∑
m=0

[PR2Li ]lmvRm − vLil

 ≥ 0, (5.55)

and as λf ,∆Li , ω
Li
l > 0 for l = 0, . . . , NLi+1 and i = 1, . . . , NE we obtain

ISt ≤ 0. (5.56)

Thus, the numerical surface fluxes (5.43) and (5.44) lead to a primary conservative
and entropy stable scheme for non-linear problems on h/p non-conforming meshes.

Note, that the proof of Theorem 11 referred to a mesh with hanging corners.
Obtaining the entropy stable flux for pure p refinement is done by setting NE = 1.
Also, we point out that the dissipation term in (5.43) and (5.44) is non-symmetric.
A discussion on non-symmetric dissipation terms can be found in Section 3.4.3 be-
neath (3.78) and (3.79).
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To summarize, in this section we derived a primary conservative and entropy
stable scheme for non-linear problems on h/p non-conforming meshes. The deriva-
tions combined the machinery for non-conforming SBP methods for the LAE in
Section 3.4 with the SBP Flux Difference scheme in Section 4.1.2. First, we de-
scribed how to create such entropy conservative non-conforming schemes on al-
gebraic non-conforming meshes. Based on these results we extended the scheme
for geometric non-conforming meshes. In order to obtain entropy stability we
introduced a dissipation term within the numerical flux.

5.2. Numerical Verification of Non-Conforming
Summation-by-Parts Schemes for Non-Linear Problems

In this section we verify properties as high-order, primary conservation and entropy
stability/conservation of the non-conforming SBP Flux Difference scheme. As in
Section 4.3 we consider the two dimensional compressible Euler equations. As in
all numerical result sections before (Section 2.3, 3.5 and 4.3), we use the five-stage,
fourth-order low-storage Runge-Kutta method of Carpenter and Kennedy[14] to
integrate in time. The time step is selected by the CFL condition

∆t := CFL
mini{∆xi

2
∆yi

2 }
maxj{Nj + 1}λmax

, (5.57)

where ∆xi and ∆yi denote the width in x- and y-direction of the i-th element,
Nj + 1 denotes the number of nodes in the j-th element and λmax denotes the
maximum eigenvalue of the flux Jacobians λmax = max{λf , λg} over every node
in the whole domain. Note, that this CFL condition is equivalent to (4.104) for a
conforming mesh as Nj = N would remain constant for all elements.

In order to apply the SBP Flux Difference scheme we will consider a h/p non-
conforming mesh. Therefore, we focus on meshes with a "two-to-one" coupling,
see Figure 3.10, and the same projection operators as in Section 3.5. With the
projection operators we discuss the construction of the numerical fluxes. As the
numerical volume flux is independent of the mesh structure (conforming or non-
conforming), we set f# = f ∗EC and g# = g∗EC . For the numerical surface flux,
however, we need to consider projection operators for the interface coupling. We
set these fluxes to be

f ∗,LiES,k = f ∗,LiEC,k − σ
λ

2 Kk

NR∑
l=0

[PR2Li ]klvRl − vLik

 , (5.58)
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f ∗,RES,j = f ∗,REC,j − σ
λ

2

NE∑
i=1

NLi∑
l=0

[PLi2R]jlKl

 NR∑
m=0

[PR2Li ]lmvRm − vLil

 , (5.59)

where these fluxes are equivalent to (5.43) and (5.44) with σ = 1. We introduced
σ to switch between an entropy conservative (σ = 0) and an entropy stable scheme
(σ = 1). For h refinement we have NE = 2 as we focus on a "two-to-one" coupling
and for p refinement we have NE = 1.

As for all numerical result sections before, we calculate the EOC and verify
conservation of the primary quantities and entropy for the non-conforming Flux
Difference SBP scheme. In addition, we compare this scheme with the Mortar
element method [69] to demonstrate the enhanced robustness of entropy sta-
ble/conservative schemes.

5.2.1. Comparison and Convergence of Summation-by-Parts Schemes for
Non-Linear Problems

In this section we combine the setup of Section 3.5 and 4.3. For the convergence
study we consider the isentropic vortex advection problem (4.105) from Section
4.3 with Ω = [0, 10] × [0, 10], final time T = 1 with CFL = 0.4 and Dirichlet
boundary conditions. We set σ = 1 to obtain an entropy stable scheme. The non-
conforming mesh for the convergence tests are adapted from Section 3.5, see Figure
3.11, with elements types A,B and C. Considering this mesh we have h, p and h/p
non-conforming interfaces. For the first test we analyse the convergence rate of
the scheme where all elements have SBP operators with a degree p differentiation
matrix. As in Section 3.5 we focus on DP, FD and HGTL operators where

• Element A has 22 nodes in x- and y-direction,

• Element B has 24 nodes in x- and y-direction,

• Element C has 22 nodes in x- and y-direction,

and p = 2, 3. As an reminder, FD and HGTL operators consist of a norm matrix
of degree 2p−1. Therefore, all projection operators are not of degree p, see Section
(3.2.3). For the DP operators however the corresponding norm matrix is of degree
2p and thus all projection operators are of degree p. Therefore, we intuitively
expect a better convergence rate for such SBP operators. We obtain the following
L2 errors and experimental convergence rates in Table 5.1 and 5.2
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EOC for the non-conforming SBP Flux Difference discretization with DP,
FD and HGTL operators for p = 2,3.

DOFS L2DP EOCDP L2FD EOCFD L2HGTL EOCHGTL

1544 2.42E-01 6.09E-01 6.72E-01
6176 4.98E-02 2.3 1.65E-01 1.9 1.78E-01 1.9
24704 6.67E-03 2.9 2.75E-02 2.6 2.86E-02 2.6
98816 8.30E-04 3.0 3.61E-03 2.9 3.80E-03 2.9
395264 1.03E-04 3.0 4.84E-04 2.9 5.37E-04 2.8

Table 5.1.: Set p = 2, CFL = 0.4 and T = 1 for the non-conforming SBP Flux Difference
scheme.

DOFS L2DP EOCDP L2FD EOCFD L2HGTL EOCHGTL

1544 1.06E-01 2.86E-01 2.73E-01
6176 1.78E-02 2.6 3.83E-02 2.9 3.79E-02 2.8
24704 1.45E-03 3.6 2.01E-03 4.3 1.78E-03 4.4
98816 8.08E-05 4.2 1.17E-04 4.1 7.38E-05 4.6
395264 4.34E-06 4.2 8.06E-06 3.9 5.54E-06 3.7

Table 5.2.: Set p = 3, CFL = 0.4 and T = 1 for the non-conforming SBP Flux Difference
scheme.

The presented L2 errors in Table 5.1 and 5.2 are averaged errors over all four
conserved variables. Here, DOFS refers to the degrees of freedom for each Euler
equation. As in Section 3.5 we obtain an EOC of about p + 1 for DP operators.
The convergence rate for FD and HGTL operators are slightly smaller than p+ 1
and the errors are larger as for the DP operator. A better EOC and L2 error
was expected for DP operators, due to projection operators of a higher degree.
Comparing FD and HGTL we observe a slightly better error for the FD operators
for p = 2 and a better error for the HGTL operators for p = 3.

Another interesting discussion is the choice of the CFL number. The choice of
CFL = 0.4 was chosen as the SBP Flux Difference Scheme with DP operators of
degree p = 2, 3 crashes for CFL = 0.5. This even happens for HGTL with p = 3.
Increasing the CFL number in increments of 0.1 the non-conforming SBP Flux
Difference method with FD operators crashes at CFL = 0.8 for p = 2 and at
CFL = 0.7 for p = 3. Therefore, the non-conforming scheme enjoys the flexibility
of taking bigger time steps when considering FD operators.
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For considering a mixture of polynomial degrees within the non-conforming SBP
Flux Difference scheme we focus on DG operators with the following setup

• Element A with DG operators of degree pA = p in x- and y-direction,

• Element B with DG operators of degree pB = p+ 1 in x- and y-direction,

• Element C with DG operators of degree pC = p in x- and y-direction,

for p = 2, 3. The L2 errors and EOC for the non-conforming SBP Flux Difference
method with DG operators is provided in Table 5.3 and 5.4.

EOC for the non-conforming SBP Flux Difference discretization with DG
operators for p = 2,3.

DOFS L2DG EOCDG

136 7.75E-02
544 1.51E-02 2.4
2176 3.30E-03 2.2
8704 7.72E-04 2.1
34816 1.75E-04 2.1

CFL = 0.5

Table 5.3.: Set p = 2, CFL = 0.4
and T = 1 for the non-
conforming SBP Flux
Difference scheme with
DG operators.

DOFS L2DG EOCDG

228 1.99E-02
912 2.32E-03 3.1
3648 1.95E-04 3.6
14592 1.71E-05 3.5
58368 1.68E-06 3.4

CFL = 0.5

Table 5.4.: Set p = 3, CFL = 0.4
and T = 1 for the non-
conforming SBP Flux
Difference scheme with
DG operators.

In Table 5.3 and 5.4 the non-conforming SBP Flux Difference scheme obtains
EOC ≈ p for an even p and EOC ≈ p+ 1

2 for an odd p. Not obtaining a conver-
gence rate of p + 1 matches the result for the non-conforming SBP method with
DG operators for the LAE in Section 3.5. However, the L2 error is significantly
small compared with those of the DP, FD and HGTL operator despite the fact
we have a smaller EOC. As considering elements where the differentiation matrix
is of higher degree (element type B is of degree p + 1) a smaller error is reason-
able. More interesting is the fact that this setup, where certain DG operators
are of degree p + 1, is not restricted to a CFL number of 0.4 like for the DP
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and HGTL operators. When increasing the CFL number in increments of 0.1,
the non-conforming SBP Flux Difference scheme with DG operators crashes at
CFL = 0.7 for p = 2 and at CFL = 0.6 for p = 3.

To summarize, considering DP operators for the non-conforming SBP Flux Dif-
ference discretization we obtain an EOC ≈ p + 1. For FD and HGTL operators
the EOC is slightly smaller. However, considering the FD operators we can take
larger time steps. For DG operators the time step needs to be chosen smaller then
for the FD operators, but larger as for DP and HGTL operators. Even though
the DG operators suffer from a lose in the EOC, their L2 error is significantly
small. Due to all these different observation (EOC, L2 error and CFL number)
we cannot claim which operator is the "best", but all operators can be taken into
consideration for the entropy stable non-conforming SBP Flux Difference method.

5.2.2. Numerical Verification of Primary Conservation and Entropy Stability

In this section we numerically verify primary conservation and entropy stabil-
ity/conservation for the SBP Flux Difference scheme and compare this method
with the state-of-the-art Mortar element approach developed by Kopriva [69]. The
Mortar element method was constructed based on DG operators. Therefore, we
focus on such operators throughout this section.

First, we verify that the scheme is fully conservative. Therefore we set σ =
0 within (5.58) and (5.59). We consider the mesh in Figure 3.11(c) with DG
operators of degree pA = pC = 3 and pB = 4. The methodology of verifying
that the scheme is fully conservative is done in an analogous fashion as in Section
4.3. We calculated the growth of the total discrete primary quantity U tot

t and
entropy Stott by (4.112) with the random initial condition (4.113). We repeat these
calculations 1000 times and obtain (U tot

t )lk and (Stott )k for k = 1, . . . , 1000 and
l = 1, . . . , 4. Within the euclidean norm we obtain the results in Table 5.5 Here,
we verify primary and entropy conservation. In comparison, when considering the
same setup with the Mortar element method we verify primary conservation but
not entropy conservation, see Table 5.6. To demonstrate the increased robustness
of entropy stable schemes we calculate the discrete entropy in time by (4.114)
with the initial condition (4.115). We plot the total discrete entropy for the SBP
Flux Difference scheme and the Mortar element method in Figure 5.2. Here, the
SBP Flux Difference scheme conserves the total entropy. However, for the mortar
method we observe an unpredictable behavior of the entropy and note that at
t ≈ 0.82 it even crashes. This has been verified for CFL = 0.5; 0.25; 0.125; 0.0625
and demonstrates the enhanced robustness of entropy conserving/stable schemes.
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Verification of primary and entropy conservation for the non-conforming
SBP Flux Difference method

||Stott ||2 ||(U tot
t )1,:||2 ||(U tot

t )2,:||2 ||(U tot
t )3,:||2 ||(U tot

t )4,:||2
6.31e-14 3.98E-15 2.38E-14 1.22E-15 8.44E-14

Table 5.5.: Calculating the growth of the total discrete primary quantities U tot
t and

entropy Stott for 1000 different random initial conditions with the non-
conforming SBP Flux Difference discretization. The average growth is pre-
sented within the euclidean norm. All values are near machine precision
which demonstrates primary and entropy conservation.

Calculating the growth in the primary quantities and entropy with the
non-conforming Mortar method

||Stott ||2 ||(U tot
t )1,:||2 ||(U tot

t )2,:||2 ||(U tot
t )3,:||2 ||(U tot

t )4,:||2
1.36 3.01E-14 1.84E-14 2.30E-14 8.41E-14

Table 5.6.: Calculating the growth of the total discrete primary quantities U tot
t and

entropy Stott for 1000 different random initial conditions with the Mortar
method. The growth is presented within the euclidean norm. Here, we verify
conservation of the primary quantities but not of the entropy.

For the robust non-conforming SBP Flux Difference scheme we run the simulation
to T = 25 with CFL = 0.5. Besides conservation, we also run this test case
for an entropy stable flux setting σ = 1. The total discrete entropy and primary
quantities of the non-conforming SBP Flux Difference scheme are plotted in Figure
5.3 and 5.4. Here, we see that the total discrete entropy is conserved when no
interface dissipation is included (σ = 0) and that the total discrete entropy decays
with interface dissipation (σ = 1). The total discrete primary quantities in Figure
5.4 remains constant over time no matter if dissipation is included or not. Thus
we numerically verified primary conservation and entropy stability/conservation
of the h/p non-conforming SBP Flux Difference method.

5.3. Summary

In this chapter we derived the h/p non-conforming primary conservative and en-
tropy stable SBP Flux Difference scheme for non-linear problems. The idea was to
combine the non-conforming SBP method for linear problems from Chapter 3 and
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Figure 5.2.: Evolution of the total discrete entropy. The SBP Flux Difference scheme
conserves the total discrete entropy whereas the entropy becomes unstable
for the Mortar Method at t ≈ 0.82.

the conforming SBP Flux Difference method for non-linear problems from Chap-
ter 4. We presented the modification to extend the projection procedure in the
context of non-conforming linear problems to non-conforming non-linear problems
in a stable manner. For linear problems the numerical surface flux was calculated
by projecting the conserved variables from the neighbors into the corresponding
element and then including this projected neighbor value into the numerical sur-
face flux (5.1). Using this strategy for non-linear problems gives us non-linear
projection terms which do not necessary lead to an entropy stable scheme. The
key of obtaining such a scheme for non-linear problems is not projecting the con-
served variables, but the numerical flux itself (5.10). Based on this modification
we only consider linear projections and thus we obtained the primary conservative
and entropy stable SBP Flux Difference scheme for h/p non-conforming meshes,
where neither the nodes nor the interface of two neighboring elements need to
coincide. We implemented the method and applied it to the two dimensional
compressible Euler equations for different SBP operators. Here, we demonstrated
high-order accuracy of the scheme. Throughout this work, we are interested in
primary conservation and entropy stability. We demonstrate these properties for
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the non-conforming SBP Flux Difference scheme. Also, we compared this method
with the well-known Mortar element method [69], which is designed to be primary
conservative but is not entropy stable/conservative. Through numerical tests we
verified that the entropy stable SBP Flux Difference scheme is more robust. This,
again, shows the benefit of considering entropy stable schemes.
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6. Entropy Stable and Primary
Conservative Summation-by-Parts
Space-Time Methods for Non-Linear
Hyperbolic Systems

In the last chapters we derived entropy stable schemes on non-conforming meshes.
All introduced schemes were built on semi-discrete discretizations (method of
lines), where we discretized the spatial domain and assumed continuity in time.
Focusing on a one dimensional conservation law, we constructed entropy conser-
vative discretizations such that

∫
Ω

∂S
∂t

dΩ ≈
NQ∑
q=1

∆x
2

N∑
i=0

ωi
∂Sqi
∂t

= 0. (6.1)

Focusing on a smooth solution we know that the continuous total entropy is con-
served over time due to the fundamental theorem of calculus∫

Ω
S(T, ·) dΩ =

∫
Ω
S(0, ·) dΩ. (6.2)

When calculating the total discrete entropy with a semi-discrete scheme we do
not necessarily obtain the discrete version of (6.2) to machine precision. For semi-
discrete discretization we get a discrete system of ODEs for the conserved variables
which are then solved by a Runge-Kutta time integration method. Due to the time
integration method we introduce temporal errors within the entropy. When nu-
merically verifying entropy conservation of a scheme we need to shrink the time
step as in [7, 10, 17, 20, 21, 36] to reduce the time integration error. So in order
to conserve the total discrete entropy we are limited to a small time step.

In this chapter we introduce a fully-discrete numerical scheme which bounds
the total discrete entropy in a space-time slab. In the literature there are high-
order entropy conservative (or stable) space-time schemes available, e.g. [29, 37],
however they assume exact integration of the variational forms in the space-time
formulation. This is problematic because aliasing errors introduced by inexact
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quadratures are unavoidable (or at least cannot be avoided in practical simula-
tions) for conservation laws like the compressible Euler equations, e.g. [46, 88].
So, the design of numerical methods that are entropy stable/conservative in a
fully-discrete space-time domain is an important step in the development of en-
tropy stable numerical methods.

Here, we introduce the SBP space-time method developed by Friedrich et al.
[40]. This scheme referred to discontinuous Galerkin operators which satisfy the
SBP property. However, it can be applied to any SBP operator. The crux is to
approximate the discrete derivative in time with SBP operators, as we previously
did in space, which leads to a fully-discrete space-time scheme. There is past work
applying SBP operators to temporal derivatives to prove energy stability for linear
problems [8, 79, 91]. Friedrich et al. [40] generalized this SBP stability analysis
to non-linear problems and derived a fully-discrete entropy analysis to approx-
imate solutions of a general non-linear conservation law with inexact numerical
integration.

6.1. Discrete Analysis for Summation-by-Parts Space-Time
Methods

In this section we derivative the SBP space-time method. As the main focus
is on the temporal discretization we consider (for simplicity) a one dimensional
conservation law

∂U
∂t

+ ∂F(U)
∂x

= 0, (6.3)

on Ω = [xL, xR] and t ∈ [0, T ]. The extension to multiple spatial dimensions is
straight forward as presented in [40]. The SBP space-time method relies on the
Flux Difference discretization by Fisher and Carpenter [33]. Therefore, we review
the theory on entropy conservative finite volume schemes in Section 6.1.1. Based
on the finite volume result we derive the high order SBP space-time method in
Section 6.1.2. With the space-time method we discuss the advantages of applying
such a scheme to a non-conforming mesh in Section 6.1.3.

6.1.1. Review of Finite Volume Methods

We review the theory on entropy conservative finite volume methods. For a semi-
discrete analysis this has been done in Section 4.1.2. The semi-discrete low-order
finite volume discretization is given by integration of (6.3) in space and considering
NQ elements with the solution vector uj for j = 1, . . . , NQ. We obtain
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∂uj+1

∂t
+ 1

∆x
(
f ∗j+1 − f ∗j

)
= 0, (6.4)

with j = 0, . . . , NQ − 1 and

f ∗j := f ∗(uj+1,uj), (6.5)

for j = 1, . . . , NQ − 1 and f ∗0 = f(u1) and f ∗NQ = f(uNQ). For simplicity we as-
sume that all elements are uniformly distributed with width ∆x. The semi-discrete
finite volume method (6.4) is provable entropy conservative if the numerical sur-
face flux satisfies the Tadmor Shuffle condition (5.9), see Section 4.1.2.

Fully-discrete finite volume methods are obtained by not only integrating (6.3)
in space, but also in time. We describe such a scheme by

1
∆t

(
u∗i+1,j+1 − u∗i,j+1

)
+ 1

∆x
(
f ∗i,j+1 − f ∗i,j

)
= 0, (6.6)

with j = 0, . . . , NQ − 1, i = 1, . . . , Nt where Nt denotes the number of elements in
time and

u∗i,j := u∗(ui+1,j,ui,j), (6.7)
for i = 2, . . . , Nt and u∗1,j = u1,j and u∗Nt+1,j = uNt,j. Here, we note that (6.6) is
an atypical formulation of a finite volume method as we introduced a numerical
state function for the conserved variables u∗ as in [49]. The origin of introducing
such states was to handle discontinuous solutions by approximating a Riemann
problem. Here, the solution to the Riemann problem is given by an upwind state,
see [116]. Even from a physical point of view this is logical as time moves linearly
forward. With the upwind state u∗i,j = ui,j the discretization remains to be

1
∆t (ui+1,j+1 − ui,j+1) + 1

∆x
(
f ∗i,j+1 − f ∗i,j

)
= 0, (6.8)

which is equivalent to

ui+1,j+1 = ui,j+1 −
∆t
∆x

(
f ∗i,j+1 − f ∗i,j

)
. (6.9)

Here (6.9) is a more commonly used description of a fully-discrete finite volume
method and can be found in e.g. [74]. Also (6.9) algebraically equivalent to the
semi-discrete formulation (6.4) when applying the explicit Euler time integration
method (index i + 1 on the left hand side, index i on the right hand side). Still,
for further extension we focus on discretization (6.6) with a general numerical state.

144



6. SBP Space-Time Methods for Non-Linear Systems

In order to derive a fully-discrete entropy conservative scheme, we want the
scheme to mimic (6.2). Therefore, we need to specify the numerical state u∗. In
the entropy analysis we contract (6.6) with the entropy variables and sum over all
nodes in space and time

∆x
Nt∑
i=1

NQ∑
j=1
vTi,j

(
u∗i+1,j − u∗i,j

)
+ ∆t

Nt∑
i=1

NQ∑
j=1
vTi,j

(
f ∗i,j − f ∗i,j−1

)
= 0. (6.10)

Assuming that f ∗ satisfies the Tadmor Shuffle condition (5.9) then we found in
Section 4.1.2 that

NQ∑
j=1
vTi,j

(
f ∗i,j − f ∗i,j−1

)
= f enti,NQ

− f enti,1 , (6.11)

so the sum reduces to the evaluation of the entropy flux on the boundary of the
domain. Considering periodic boundary conditions it holds f enti,NQ

= f enti,1 and thus
(6.10) reduces to

∆x
NQ∑
j=1


Nt∑
i=1
vTi,j

(
u∗i+1,j − u∗i,j

)
︸ ︷︷ ︸

(∗)

 = 0. (6.12)

For simplicity we analyse the term within the brackets. As the second index j
remains constant we ignore it for now.

(∗) =
Nt∑
i=1
vTi

(
u∗i+1 − u∗i

)

= vTNtuNt − v
T
1 u1 −

Nt−1∑
i=1

(vi+1 − vi)T u∗i .
(6.13)

Next, to obtain the entropy function we use the definition of entropy potential Ψu

in (4.6) where Ψu = vTu− S to find

(∗) = SNt + Ψu
Nt − S1 −Ψu

1 −
Nt−1∑
i=1

(vi+1 − vi)T u∗(ui+1,ui). (6.14)

Finally, as Ψu
Nt −Ψu

1 = ∑Nt−1
i=1

(
Ψu
i+1 −Ψu

i

)
we arrive at

(∗) = SNt − S1 −
(
Nt−1∑
i=1

(vi+1 − vi)T u∗(ui+1,ui)−
(
Ψu
i+1 −Ψu

i

))
. (6.15)
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Including this in (6.12) and incorporating the index j we have

−∆x
NQ∑
j=1

(
Nt−1∑
i=1

(vi+1,j − vi,j)T u∗(ui+1,j,ui,j)−
(
Ψu
i+1,j −Ψu

i,j

))

+ ∆x
NQ∑
j=1

(SNt,j − S1,j) = 0.
(6.16)

Assuming that the numerical state u∗ satisfies the condition
Nt−1∑
i=1

(vi+1 − vi)T u∗(ui+1,ui) = Ψu
i+1 −Ψu

i , (6.17)

then (6.16) reduces to

∆x
NQ∑
j=1

SNt,j = ∆x
NQ∑
j=1

S1,j. (6.18)

which is a discrete mimic of (6.2). Thus, choosing the numerical state of the the
conservative variables to satisfy (6.17) we obtain a fully-discrete entropy conser-
vative scheme.

Obviously, the condition (6.17) is closely related to the Tadmor Shuffle condi-
tion (5.9). This is not unexpected as the derivations of the flux has been done
in a one-to-one fashion as in Section 4.1.2. Here, we denote (6.17) as the time
dependent Tadmor Shuffle condition.

A disadvantage of the fully-discrete finite volume scheme (6.10) is that we have
to solve all degrees of freedom simultaneously, as the system is fully coupled. For
the fully coupled finite volume scheme (6.10) this gives a high computational cost.
Therefore, the practicality of such an entropy conservative scheme is questionable.
In comparison, a semi-discrete scheme calculates a numerical solution time step by
time step. Thus, information is only needed from the last time step which avoids
the global coupling. In [40], Friedrich et al. developed a SBP scheme considering
numerical volume and surface states for u as for the Flux Difference method of
Fisher and Carpenter [33]. In order to calculate the numerical solution time slab
by time slab, the numerical surface state is chosen to be an upwind state. The
volume flux, however, is set to satisfy the time dependent Tadmor Shuffle condition
(6.17). Therefore, we construct a fully-discrete entropy stable scheme where the
computational cost is competitive with a semi-discrete scheme using an implicit
Runge-Kutta time integration method in time [8].
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6.1.2. Summation-by-Parts Space-Time Methods

In this section we will derive the primary conservative and entropy stable SBP
space-time scheme of Friedrich et al. [40]. Therefore, we focus on a one dimen-
sional system of conservation laws (6.3) on Ω = [xL, xR] with the time dimension
t ∈ [0, T ]. We treat the temporal dimension like a spatial dimension. As such,
we discretize the space-time domain [0, T ]× Ω into non-overlapping quadrilateral
elements is illustrated in Figure 6.1.

x

t

∆t

∆x ∆x ∆x

Figure 6.1.: Space-time discretization with red marked DOFS on a conforming mesh in
a space-time slab. The figure is reproduced from [41].

Let Nt denote the number of elements in time and NQ denote the number of
elements in space. For simplicity, we assume that all elements are distributed
uniformly with width ∆x and height ∆t. Note, that even though we focus on a
conservation law with only one spatial dimension the space-time scheme is a two
dimensional discretization as we also discretize in time. We denote the (m,n)-th
element for m = 1, . . . , Nt and n = 1, . . . , NQ with Em,n := [tm, tm+1]× [xn, xn+1].
We derive the space-time discretization using the DG ansatz as in [40]. Thus,
we multiply the conservation law with an arbitrary discontinuous test function
φ := φ(t, x) and integrate in space and time over the element Em,n∫

Em,n

(
∂U
∂t

+ ∂F(U)
∂x

)
φ dEm,n = 0. (6.19)

As for semi-discrete schemes we transform (6.19) from the space-time element Em,n
into the reference space Ω̂ = [−1,+1]2. The transformation is given by the affine
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maps

τ(t) =2 t− tm
tm+1 − tm

− 1,

ξ(x) =2 x− xn
xn+1 − xn

− 1.
(6.20)

Note, that in comparison to a semi-discrete discretization we also transform the
time variable into the [−1 + 1]. This gives

2
∆t

∫ 1

−1

∫ 1

−1

∂U
∂τ

φ dτdξ + 2
∆x

∫ 1

−1

∫ 1

−1

∂F
∂ξ

φ dτdξ = 0. (6.21)

To obtain the weak formulation as in Section 2.1.3 we perform integration-by-parts
in t and x to obtain

2
∆t

∫ 1

−1

(
Uφ

∣∣∣+1

−1
−
∫ 1

−1
U ∂φ

∂τ
dτ

)
dξ

+ 2
∆x

∫ 1

−1

(
Fφ

∣∣∣+1

−1
−
∫ 1

−1
F ∂φ

∂ξ
dξ

)
dτ = 0.

(6.22)

Here, we remove derivatives from U and F onto the test function φ. For the
space-time DGSEM ansatz we approximate the solution U and the flux F on the
element Em,n by polynomials

U(τ, ξ) ≈
N∑

i,j=0
uij`i(τ)`j(ξ),

F(τ, ξ) ≈
N∑

i,j=0
fij`i(τ)`j(ξ),

(6.23)

where `i is a Lagrange polynomial of degree p = N defined as in (2.75). Here,
we set the nodal distribution τi and ξi for i = 0, . . . , N to be the LGL nodes. In
general the number of nodes can be chosen differently and, therefore, it is possible
for the Lagrange polynomials in τ - and ξ-directions to be polynomials of different
degrees. However, for simplicity, we set the nodes in τ - and ξ-direction to be the
same. To derive a space-time scheme of degree p we assume that φ consists of a
basis of the Lagrange polynomials in terms of

φ :=
N∑

i,j=0
φij`i(τ)`j(ξ). (6.24)
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As the choice of φij is arbitrary we seek a numerical solution which satisfies

2
∆t

∫ 1

−1

(
U`i

∣∣∣+1

−1
−−

∫ 1

−1
U ∂`i
∂τ

dτ

)
`j(ξ) dξ

+ 2
∆x

∫ 1

−1

(
F`j

∣∣∣+1

−1
−
∫ 1

−1
F ∂`j
∂ξ

dξ

)
`i(τ) dτ = 0,

(6.25)

for all i, j = 0, . . . , N . Inserting the DG approximation (6.23), numerical surface
flux f ∗ and state u∗ and approximating the integrals with LGL quadrature as in
Section 2.2 we obtain the implicit weak space-time discretization

2ωj
∆t

(
u∗NjδiN − u∗0jδi0 −

N∑
l=0

Qliulj

)

+2ωi
∆x

(
f ∗iNδNj − f ∗i0δ0j −

N∑
l=0

Qljfil

)
= 0.

(6.26)

Performing summation-by-parts we get the algebraically equivalent implicit strong
space-time formulation

2ωj
∆t

(
[u∗ − u]Nj δiN − [u∗ − u]0j δi0 +

N∑
l=0

Qilulj

)

+2ωi
∆x

(
[f ∗ − f ]iN δNj − [f ∗ − f ]i0 δ0j +

N∑
l=0

Qjlfil

)
= 0.

(6.27)

However, from the semi-discrete analysis we know that this discretization is not
entropy stable. Therefore, we replace the volume flux in time and space by the
numerical volume state u# and flux f#. By following the same idea as for Flux
Difference discretization (4.64) we now have

2ωj
∆t

(
[u∗ − u]Nj δiN − [u∗ − u]0j δi0 + 2

N∑
l=0

Qilu
#(ulj,uij)

)

+2ωi
∆x

(
[f ∗ − f ]iN δNj − [f ∗ − f ]i0 δ0j + 2

N∑
l=0

Qjlf
#(uil,uij)

)
= 0,

(6.28)

where we set the numerical volume fluxes to f# = f ∗EC and u# = u∗EC with

(vil − vij)T f ∗EC(uil,uij) = Ψf
il −Ψf

ij, (6.29)
(vlj − vij)T u∗EC(ulj,uij) = Ψu

lj −Ψu
ij, (6.30)
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where v represent the entropy variables and Ψu and Ψf are the entropy poten-
tial and entropy flux potential. There are numerous fluxes for f ∗EC that satisfy
(6.29) as pointed out in Section 4.1.2. Numerical volume states for which (6.30)
holds have been derived for the compressible Euler, Shallow Water and Ideal MHD
equations and can be found in [40]. The modification of including the numerical
volume flux and state does not violate the high-order accuracy as shown by Fisher
and Carpenter [33]. The surface flux will be specified later.

Next, we define primary conservation and entropy stability for a fully-discrete
system. We motivate the definition of primary conservation by focusing on the one
dimensional conservation law (6.3). Integrating in space [xL, xR] and time [0, T ]
we get ∫ T

0

∫ xR

xL

∂U
∂t

dxdt+
∫ T

0

∫ xR

xL

∂F
∂x

dxdt = 0,

⇔
∫ xR

xL
(U(T, x)− U(0, x)) dx+

∫ T

0
(F(t, xR)−F(t, xL)) dt = 0.

(6.31)

Assuming periodic boundary conditions in space (F(t, xR) = F(t, xL)) we arrive
at ∫ xR

xL
U(T, x) dx =

∫ xR

xL
U(0, x) dx. (6.32)

We want the scheme to mimic (6.32). Therefore, we need to include further
notation. As we consider Nt elements in time and NQ elements in space, we denote
the solution on the element Em,n for m = 1, . . . , Nt and n = 1, . . . , NQ by umn,
see Figure 6.2. The definition of primary conservation for space-time methods is
given in Definition 15.
Definition 15. Primary Conservative Schemes for Space-Time Methods
A fully-discrete method approximating one dimensional hyperbolic systems of
conservation laws is primary conservative if

NQ∑
n=1

∆x
2

N∑
j=0

ωju
Nt,n
Nj =

NQ∑
n=1

∆x
2

N∑
j=0

ωjU(t = 0, xn(ξj)), (6.33)

assuming periodic boundary conditions in space. Here xn refers to a mapping from
the reference space into the physical spatial space of E1,n.
The definition of entropy stability is done in a similar way. By contracting the

conservation law (6.3) with the entropy variables and integrating in space and time
we get∫ xR

xL
(S(T, x)− S(0, x)) dx+

∫ T

0

(
F ent(t, xR)−F ent(t, xL)

)
dt = 0. (6.34)
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x

t

Numerical solution at t = T →

Initial solution U(0, ·) →

u1,1 . . . u1,n . . . u1,NQ

...
...

...

um,1 . . . um,n . . . um,NQ

...
...

...

uNt,1 . . . uNt,n . . . uNt,NQ

Figure 6.2.: Notation for space-time discretization. The figure is reproduced from [41].

Considering periodic boundary conditions in space and allowing the total entropy
to dissipate to reflect the correct physical behaviour we want the numerical scheme
to mimic ∫ xR

xL
S(T, x) dx ≤

∫ xR

xL
S(0, x) dx. (6.35)

With this condition we define entropy stability for a fully-discrete scheme.

Definition 16. Entropy Stable Schemes for Space-Time Methods
A fully-discrete method approximating one dimensional hyperbolic systems of con-
servation laws is entropy stable if

NQ∑
n=1

∆x
2

N∑
j=0

ωjS
Nt,n
Nj ≤

NQ∑
n=1

∆x
2

N∑
j=0

ωjS(t = 0, xn(ξj)), (6.36)

assuming periodic boundary conditions in space. Again, xn refers to a mapping
from the reference space into the physical spatial space of E1,n.
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To prove primary conservation we sum over all nodes of the space-time dis-
cretization (6.28) in order to mimic the temporal and spatial integration over the
conserved variables. Mimicking the integration over the entropy function to prove
entropy stability is done by contracting (6.28) with the entropy variables vij and
summing over all nodes. The resulting terms are presented in Corollary 1. As we
focus on a single element we drop the indices (m,n) on u∗ for the sake of clarity.

Corollary 1. Summing over all nodes of (6.28) gives

∆x
2

N∑
j=0

ωj
(
u∗Nj − u∗0j

)
+ ∆t

2

N∑
i=0

ωi (f ∗iN − f ∗i0) = 0. (6.37)

In addition, contracting (6.28) with the entropy variables vij and summing over
all nodes yields

∆x
2

N∑
j=0

ωj

([
vTu∗ −Ψu

]
Nj
−
[
vTu∗ −Ψu

]
0j

)

+∆t
2

N∑
i=0

ωi
([
vTf ∗ −Ψf

]
iN
−
[
vTf ∗ −Ψf

]
i0

)
= 0.

(6.38)

Proof. The proof follows identical steps as given for Lemma 5.

As for the continuous analysis the approximated integrals reduce to surface eval-
uations. It is important to note, that this happens due to SBP operators. Next,
we examine the surface contributions. Here, we need to specify the numerical sur-
face fluxes. The surface flux f ∗ is constructed using f# and including interface
dissipation as in Chapter 4, Equation (4.88). We denote this surface flux by f ∗ES.
As time always moves forward, it is reasonable to choose u∗ to be an upwind
state. Therefore, we can solve for U time slab by time slab and need only store
the numerical solution at the current time slab due to the weak coupling in time.
This leads to a non fully coupled system. As we consider a SBP operator for the
time integration, the SBP space-time scheme is (from a computational efficiency
standpoint) compatible with a semi-discrete scheme with an implicit Runge-Kutta
method with N Runge-Kutta steps [8]. We denote the upwind state as u∗ES.

We reiterate, that numerical volume states satisfying the time dependent Tadmor
Shuffle condition (6.17) have been derived for compressible Euler, Shallow Water
and Ideal MHD equations in [40]. In addition, Friedrich et al. have shown that
for these set of equations the upwind state satisfies the inequality

(vlj − vij)T u∗ES(ulj,uij) ≤ Ψu
lj −Ψu

ij. (6.39)
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With this inequality we prove entropy stability of the fully-discrete SBP space-time
method.

Theorem 12. Consider the SBP space-time scheme (6.28) with Dirichlet bound-
ary conditions in time. Assume that the temporal numerical surface flux is the
upwind state u∗ = u∗ES satisfying the inequality (6.39) and assume that the spa-
tial numerical surface flux f ∗ = f ∗ES is computed as in (4.88). Then the SBP
space-time method is primary conservative and entropy stable.

Proof. For proving primary conservation we need to sum (6.37) over all elements
to find

Nt∑
m=1

NQ∑
n=1

∆x
2

N∑
j=0

ωj
(
um,n,∗Nj − um,n,∗0j

)
+ ∆t

2

N∑
i=0

ωi (fm,n,∗iN − fm,n,∗i0 )
 = 0. (6.40)

Rearranging the sums gives us
NQ∑
n=1

∆x
2

N∑
j=0

ωj
Nt∑
m=1

(
um,n,∗Nj − um,n,∗0j

)

+
Nt∑
m=1

∆t
2

N∑
i=0

ωi

NQ∑
n=1

(fm,n,∗iN − fm,n,∗i0 ) = 0.

(6.41)

As we focus on a conforming mesh the numerical surface flux and state are uniquely
defined on the interface and therefore, it holds um−1,n,∗

Nj = um,n,∗0j for m = 2, . . . , Nt

and fm,n−1,∗
iN = fm,n,∗i0 for n = 2, . . . , NQ. Thus, due to telescoping we find

NQ∑
n=1

∆x
2

N∑
j=0

ωj
(
uNt,n,∗Nj − u1,n,∗

0j

)
+

Nt∑
m=1

∆t
2

N∑
i=0

ωi
(
f
m,NQ,∗
iN − fm,1,∗i0

)
= 0. (6.42)

Considering periodic boundary conditions in space we get
NQ∑
n=1

∆x
2

N∑
j=0

ωju
Nt,n,∗
Nj =

NQ∑
n=1

∆x
2

N∑
j=0

ωju
1,n,∗
0j . (6.43)

As we consider an upwind state and Dirichlet boundary conditions in time we
know uNt,n,∗Nj = uNt,nNj and u1,n,∗

0j = U(0, xnj ) with xnj := xn(ξj) and thus, obtain

NQ∑
n=1

∆x
2

N∑
j=0

ωju
Nt,n
Nj =

NQ∑
n=1

∆x
2

N∑
j=0

ωjU(t = 0, xnj ). (6.44)
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So the approximation of the spatial integral of U at t = 0 is the same as the
approximated spatial integral of the numerical solution at t = T . This gives us
the definition of primary conservation (6.33).

To prove entropy stability for the SBP space-time scheme we sum (6.38) over
all elements in space and time

Nt∑
m=1

NQ∑
n=1

∆x
2

N∑
j=0

ωj

([
vTu∗ −Ψu

]m,n
Nj
−
[
vTu∗ −Ψu

]m,n
0j

)

+
Nt∑
m=1

NQ∑
n=1

∆t
2

N∑
i=0

ωi
([
vTf ∗ −Ψf

]m,n
iN
−
[
vTf ∗ −Ψf

]m,n
i0

)
= 0.

(6.45)

Rearranging the sums gives
NQ∑
n=1

∆x
2

N∑
j=0

ωj

(
Nt∑
m=1

[
vTu∗ −Ψu

]m,n
Nj
−

Nt∑
m=1

[
vTu∗ −Ψu

]m,n
0j

)
︸ ︷︷ ︸

=:(DT )nj

+
Nt∑
m=1

∆t
2

N∑
i=0

ωi

NQ∑
n=1

[
vTf ∗ −Ψf

]m,n
iN
−

NQ∑
n=1

[
vTf ∗ −Ψf

]m,n
i0


︸ ︷︷ ︸

=:(DS)nj

= 0.
(6.46)

We next analyse (DT )nj and (DS)mj individually. We start with (DS)mj which is
algebraically equivalent to

(DS)mj =
NQ−1∑
n=1

[
vTf ∗ −Ψf

]m,n
iN
−

NQ∑
n=2

[
vTf ∗ −Ψf

]m,n
i0

+
[
vTf ∗ −Ψf

]m,NQ
iN

−
[
vTf ∗ −Ψf

]m,1
i0

.

(6.47)

Again, as we focus on a conforming mesh, it holds fm,n−1,∗
iN = fm,n,∗i0 for n =

2, . . . , NQ and m = 1, . . . , Nt and fm,1,∗iN = f
m,NQ,∗
i0 due to periodic boundary

conditions in space. Thus, we obtain

(DS)mj =−
NQ∑
n=2

((
vm,ni0 − vm,n−1

iN

)T
fm,n,∗i0 −

(
Ψf,m,n
i0 −Ψf,m,n−1

iN

))
−
((
vm,1i0 − v

m,NQ
iN

)T
fm,1,∗i0 −

(
Ψf,m,1
i0 −Ψf,m,NQ

iN

))
.

(6.48)
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Due to the proof of Theorem 8, where we showed that (4.91) is ≤ 0, we get(
vm,ni0 − vm,n−1

iN

)T
fm,n,∗i0 −

(
Ψf,m,n
i0 −Ψf,m,n−1

iN

)
≤ 0(

vm,1i0 − v
m,NQ
iN

)T
fm,1,∗i0 −

(
Ψf,m,1
i0 −Ψf,m,NQ

iN

)
≤ 0.

(6.49)

Thus, we arrive at
(DS)mj ≥ 0. (6.50)

Next, we analyse (DT )nj . Here, (DT )nj is

(DT )nj =
Nt−1∑
m=1

[
vTu∗ −Ψu

]m,n
Nj
−

Nt∑
m=2

[
vTu∗ −Ψu

]m,n
0j

,

+
[
vTu∗ −Ψu

]Nt,n
Nj
−
[
vTu∗ −Ψu

]1,n
0j
.

(6.51)

We choose Dirichlet boundary conditions such that uNt,n,∗Nj = uNt,nNj and u1,n,∗
0j =

U(0, xnj ).

(DT )nj =−
Nt∑
m=2

((
vm,n0j − v

m−1,n
Nj

)T
um,n,∗0j −

(
Ψu,m,n

0j −Ψu,m−1,n
Nj

))
+
[
vNt,n,TNj uNt,nNj −Ψu,Nt,n

Nj

]
−
[
v1,n,TU(0, xnj )−Ψu,1,n

]
0j
.

(6.52)

Assuming that the upwind state satisfies inequality (6.39), then the sum in (6.52)
is less than or equal zero. Thus, we find

(DT )nj ≥
(
vNt,n,TNj uNt,nNj −Ψu,Nt,n

Nj

)
−
(
v1,n,T

0j U(0, xnj )−Ψu,1,n
0j

)
. (6.53)

As the entropy is defined by S = vTu−Ψu (4.6) we know

(DT )nj ≥ SNt,nNj −
(
v1,n,T

0j U(0, xnj )−Ψu,1,n
0j

)
. (6.54)

In order to include the exact initial entropy at t = 0 we add and subtract S(0, xnj )
to obtain

(DT )nj ≥S
Nt,n
Nj − S(0, xnj )

+ S(0, xnj )− v1,n,T
0j U(0, xnj ) + Ψu,1,n

0j .
(6.55)

As S(0, xnj ) = V(0, xnj )TU(0, xnj )−Ψu(0, xnj ), Equation (6.55) becomes

(DT )nj ≥S
Nt,n
Nj − S(0, xnj )

−
((
v1,n

0j − V(0, xnj )
)T

U(0, xnj )−
(
Ψu,1,n

0j −Ψu(0, xnj )
))

.
(6.56)
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Here, U(0, xnj ) can be interpreted as an upwind state at t = 0

U(0, xnj ) = u∗ES
(
U(0, xnj ),u1,n

0j

)
, (6.57)

and, therefore, due to (6.39) it holds(
V(0, xnj )− v1,n

0j

)T
U(0, xnj )−

(
Ψu(0, xnj )−Ψu,1,n

0j

)
≤ 0. (6.58)

Including this result in (6.56) we obtain

(DT )nj ≥ SNt,nNj − S(0, xnj ). (6.59)

Inserting the estimates of (DS)mj , Equation (6.50), and (DT )nj , Equation (6.59),
in (6.46) we arrive at

0 =
NQ∑
n=1

∆x
2

N∑
j=0

ωj (DT )nj︸ ︷︷ ︸
≥SNt,nNj −S(0,xnj )

+
Nt∑
m=1

∆t
2

N∑
i=0

ωi (DS)nj︸ ︷︷ ︸
≥0

,

≥
NQ∑
n=1

∆x
2

N∑
j=0

ωj
(
SNt,nNj − S(0, xnj )

)
.

(6.60)

Finally, we rearrange the inequality and get
NQ∑
n=1

∆x
2

N∑
j=0

ωjS
Nt,n
Nj ≤

NQ∑
n=1

∆x
2

N∑
j=0

ωjS(0, xnj ), (6.61)

which is precisely the definition of entropy stability (6.36).

Here, we note that this proof holds independent of the size of the time step. In
comparison, a semi-discrete entropy conservative scheme needs to consider a small
time step in order to observe discrete entropy conservation in practice [118].

To summarize, we proved primary conservation and entropy stability requir-
ing a numerical flux in space f ∗EC satisfying the Tadmor Shuffle condition (5.9)
and a numerical state in time u∗EC satisfying the time dependent Tadmor Shuf-
fle condition (6.17). Provided that the upwind state satisfies the time dependent
inequality (6.39) we can apply the entropy stable SBP space-time scheme to an
arbitrary conservation law. The extension to higher spatial dimension problems is
straightforward using the tensor product ansatz [40].

156



6. SBP Space-Time Methods for Non-Linear Systems

Remark 16. In terms of numerical testing we are interested in deriving entropy
conservative schemes. Here, as for the semi-discrete analysis, we chose the numer-
ical surface flux to be the entropy conserving flux f ∗ = f ∗EC and chose periodic
boundaries in space. In time we do the same approach setting u∗ = u∗EC at all in-
terior interfaces. We note, that this choice couples all elements of the fully-discrete
system. For the numerical state at the boundary we still consider an upwind state
and Dirichlet boundary conditions. Thus, the initial condition is incorporated at
t = 0. Re-deriving the proof of Theorem 12 with these assumptions we obtain

(DS)mj =0,

(DT )nj =SNt,nNj −
(
v1,n,T

0j U(0, xnj )−Ψu,1,n
0j

)
.

(6.62)

Including this in (6.46) it holds that

NQ∑
n=1

∆x
2

N∑
j=0

ωj
(
SNt,nNj −

(
v1,n,T

0j U(0, xnj )−Ψu,1,n
0j

))
= 0. (6.63)

Here, v1,n,T
0j U(0, xnj )−Ψu,1,n

0j is an approximation to the entropy function at t = 0.
For verifying a correct implementation of the SBP space-time method we will
numerically verify that (6.63) holds in Section 6.2.
In the next section we extend the entropy stable and primary conservative SBP

space-time scheme to a non-conforming mesh and discuss the advantages of com-
bining non-conforming elements with space-time schemes.

6.1.3. Extension to Non-Conforming Elements

In this section we extend the SBP space-time scheme to non-conforming meshes.
As described for semi-discrete schemes, non-conforming elements have the flexibil-
ity to distribute arbitrary number of nodes within an element without consider-
ing the nodal distribution of its neighbors. For fully-discrete space-time schemes
we additionally have the flexibility to chose different nodal distributions in time.
For a conservation law with one spatial dimension such a mesh is presented in
Figure 6.3. The numerical fluxes f ∗ at the non-conforming interfaces are con-
structed as in (4.88) where we need to incorporate projection operators satisfying
the M-compatibility condition (3.2). Including these fluxes within the SBP space-
time scheme we obtain a non-conforming primary conservative and entropy stable
method. This can be proven in a one-to-one fashion by applying the proof of
Theorem 12 and using the M-compatibility condition as in the Theorem 9. Thus,
we obtain an entropy stable scheme which allows us to take a different number of
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x

t

Figure 6.3.: Example of a non-conforming mesh where the nodal distributions in time
do not coincide.

nodes in time for each element locally and thus to control the error introduced by
the time integration method.

This method is similar to the local time stepping approach investigated by Win-
ters [119], where different time steps where considered for different elements. How-
ever, the local time stepping method is more coding intensive. In comparison, a
non-conforming SBP space-time scheme is simpler to implement as we only need
to consider projection operators at non-conforming interfaces. Therefore, non-
conforming space-time methods are an attractive alternative when considering
different temporal discretizations for different elements.

6.1.4. Implicit Solver

The SBP space-time method described considers an implicit solver in each time
slab. Therefore, we rewrite discretization (6.28) with a compact notation

H(ũ) = 0, (6.64)

with ũ ∈ RNQ(N+1)2 . The vector ũ includes all degrees of freedom over the spatial
elements within a time step. Here, H(·) describes the SBP space-time discretiza-
tion. Note, that this system is non-linear as we consider non-linear physical fluxes
F . One possible solving technique is using Newton’s method

∇H(ũn)w̃n+1 = −H(ũn),
ũn+1 = w̃n+1 + ũn,

(6.65)
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where n ≥ 0 describes the number of iteration steps. Newton’s method is in-
structed to the Jacobian ∇H(·) in each iteration. The evaluation of the Jacobian
can be very cumbersome for highly non-linear fluxes. To avoid these complexities
we use Jacobian-free Newton-Krylov solvers as in [6]. Newton-Krylov methods,
e.g. Generalized minimal residual method (GMRES), are not instructed to know
the analytic expression of the matrix ∇H(·). They only need the evaluation of the
Jacobian multiplied with a vector∇H(ũn)z̃. This evaluation can be approximated
using the Fréchet derivative

∇H(ũn)z̃ ≈ H(ũn + εz̃)−H(ũn)
ε

, (6.66)

for ε > 0. With this approximation we do not need the explicit form of the matrix
∇H. So this approach is free of the Jacobian matrix and therefore is denoted as
Jacobian-free. With this machinery we generated numerical results as presented
in the next section.

6.2. Numerical Verification of Summation-by-Parts
Space-Time Schemes

In this section we verify properties as high-order, primary conservation and en-
tropy stability of the SBP space-time scheme. We focus on the one dimensional
compressible Euler equations as defined in (4.3). For all presented results we used
the implicit solver in Section 6.1.4 with the GMRES method and ε = 10−3. As
in all numerical result sections before we first verify high-order convergence for
different SBP operators in Section 6.2.1. Then, we numerically verify primary
conservation and entropy stability in Section 6.2.2.

6.2.1. Comparison and Convergence of Summation-by-Parts Space-Time
Schemes

To verify that the SBP space-time method is high-order we examine the conver-
gence rate to an exact solution of the PDE. Instead of deriving an exact solution
for the one dimensional compressible Euler equations we use the method of man-
ufactured solutions and introduce the resulting system

∂

∂t

 ρ
ρν
E

+ ∂

∂x

 ρν
ρν2 + P
(E + P)ν

 =

ζ1(t, x)
ζ2(t, x)
ζ3(t, x)

 , (6.67)
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on Ω = [0, 1] and t ∈ [0, T ] with T = 1. We set the manufactured solution to be

U =

 2 + sin (2π(x− t))
2 + sin (2π(x− t))

(2 + sin (2π(x− t)))2

 . (6.68)

This state is a smooth analytical solution of (6.67) if we consider the source term

ζ =

 0
π(γ−1)

2 cos (2π(x− t))
π(γ−1)

2 cos (2π(x− t))

 . (6.69)

Due to the solution (6.68) we consider periodic boundary conditions in space and
Dirichlet boundary conditions in time. In order to avoid a global coupling of
all DOFS we choose the temporal numerical surface state u∗ to be the upwind
state. The entropy stable volume state u# for the Euler equations is taken from
Friedrich et al. [40]. For the spatial volume flux f# we consider the one dimen-
sional Ismail-Roe flux [62]. The choice of the spatial surface flux f ∗ depends on
the corresponding mesh. Here, we differ between conforming and non-conforming
meshes.

Conforming Mesh

On a conforming mesh we set the numerical surface flux f ∗ to be (4.88) with in-
terface dissipation to obtain an entropy stable scheme. Let p denote the degree of
the SBP operators defined on N + 1 nodes in space and time. For the convergence
tests we set the number of elements in space to be equal the number of elements in
time NQ = Nt. Therefore, we solve for NQ(N + 1)2 DOFS in each time step. For
the convergence tests we set NQ = 1, 2, 4, 8. The averaged L2 errors and EOC for
FD and HGTL operators are given in Table 6.1-6.2. For p = 2 we obtain a better
L2 error for the HGTL operators. This result is the same as for the semi-discrete
schemes on a conforming mesh described in Section 2.3 and 4.3. For p = 3 we
observe an EOC slightly higher than p + 1. For p = 2 however the EOC moves
around p+ 1

2 . Supposedly, the mesh resolution needs to be more dense for the EOC
to convergence against p+1. Note, that we only considered four convergence runs,
whereas in the other numerical result sections for semi-discrete schemes we had
more runs for even more DOFS. This is due to the increased CPU time for the
space-time scheme. For the SBP space-time method the CPU time is increased
due to the temporal discretization and the (non-preconditioned) implicit solver.
Therefore, we only present results for runs which have finished within 200 hours.
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EOC for the SBP space-time discretization with FD and HGTL operators
for p = 2,3.

DOFS L2FD EOCFD L2HGTL EOCHGTL

144 8.48E-03 4.45E-03
288 8.33E-04 3.3 5.50E-04 3.0
576 6.52E-05 3.7 4.52E-05 3.6
1152 1.30E-05 2.3 7.98E-06 2.5

Table 6.1.: Setting p = 2, T = 1 and the number of nodes to N + 1 = 12 for the entropy
stable SBP space-time scheme.

DOFS L2FD EOCFD L2HGTL EOCHGTL

256 1.35E-03 2.84E-04
512 4.76E-05 4.8 1.37E-05 4.4
1024 5.37E-06 3.1 1.20E-06 3.5
2048 3.20E-07 4.1 5.97E-08 4.3

Table 6.2.: Setting p = 3, T = 1 and the number of nodes to N + 1 = 16 for the entropy
stable SBP space-time scheme.

The DG operator only consists of N + 1 = p + 1 nodes in one dimension.
When setting the degree of the SBP operator and the number of elements in space
and time to be the same we generate more runs when doubling the number of
DOFS. The results for DG are presented in Table 6.3 and 6.4. Here, we observe
significantly better L2 errors. For p = 2 we are close to an EOC of p + 1 and for
p = 3 we hit p+ 1. Note, that for the DG operator with p = 3 we did not generate
a run for 2048 DOFS as we did for the FD and HGTL operator due to the high
CPU time. Therefore, the run time in our code is higher for DG operators when
considering the same number of DOFS.
Remark 17. Note, that these numbers in Table 6.3 and 6.4 differ from those in [40]
as Friedrich et al. considered the kinetic energy preserving flux by Ranocha [99].

Non-Conforming Mesh

To obtain an entropy stable flux on a non-conforming mesh we consider the surface
flux f ∗ as in (5.43). We focus on a similar setup as for the conforming mesh by
setting the degree of the SBP operators and the number of elements in space and
time to be the same, so p remains constant and the number of elements in each
dimension are the same Nt = NQ. Moreover, since we focus on a non-conforming
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EOC for the SBP space-time discretization with DG operators for p = 2,3.

DOFS L2DG EOCDG

18 5.98E-02
36 9.51E-03 2.7
72 9.74E-04 3.3
144 1.13E-04 3.1
288 1.60E-05 2.8
576 2.24E-06 2.8
1152 3.39E-07 2.7

Table 6.3.: DG operator of degree
p = 2 and T = 1 for
the entropy stable SBP
space-time scheme.

DOFS L2DG EOCDG

32 1.63E-02
64 5.58E-04 4.9
128 5.15E-05 3.4
256 6.79E-06 2.9
512 3.14E-07 4.4
1024 2.02E-08 4.0

Table 6.4.: DG operator of degree
p = 3 and T = 1 for
the entropy stable SBP
space-time scheme.

mesh we consider different nodal distributions. First, we focus on DP, FD and
HGTL operators. Let the first NQ

2 spatial elements defined on the spatial domain
Ω1 = [0, 1

2 ] consist of 22 nodes in space and of 24 nodes in time. The second half of
spatial elements defined on Ω2 = [1

2 , 1] has 24 nodes in space and 22 nodes in time.
Therefore, we have non-conforming interfaces at [0, T ] × {1

2}. The construction
of the projection operators for these interfaces can be found in Section 3.2. We
solve for DOFS = 22× 24NQ in each time slab. For the convergence tests we set
NQ = 2, 4, 8. The averaged L2 errors and EOC for DP, FD and HGTL operators
are given in Table 6.5-6.6. Here, we obtain the best L2 error for the DP operators.
This result is not too surprising as the projection operators for DP operators are
of one degree higher than for FD and HGTL operators due to a norm matrix of
degree ≥ 2p, see Section 3.2.3. The EOC for DP operators is close to p + 1.
Comparing FD and HGTL operators we obtain a better error for FD operators for
p = 2, whereas the error for HGTL operators is smaller for p = 3. For p = 2 the
FD operator is close to an EOC of p+1, where the EOC of the HGTL operator is
near p+ 1

2 . For p = 3 however the HGTL operators obtains an EOC of p+ 1 even
though we consider projection operators of degree p− 1, whereas the FD operator
is near an EOC of p.

Next, we couple different polynomial degrees within the non-conforming SBP
space-time scheme considering DG operators. Let pt and px denote the polyno-
mial degree of the DG operator in time and space, respectively. We set these

162



6. SBP Space-Time Methods for Non-Linear Systems

EOC for the non-conforming SBP space-time discretization with DP, FD
and HGTL operators for p = 2,3.

DOFS L2DP EOCDP L2FD EOCFD L2HGTL EOCHGTL

1056 2.78E-03 3.94E-03 6.00E-03
2112 4.59E-04 2.6 5.51E-04 2.8 1.01E-03 2.6
4224 6.75E-05 2.8 7.74E-05 2.8 1.65E-04 2.6

Table 6.5.: Setting p = 2 and T = 1 for the non-conforming entropy stable SBP space-
time scheme. The errors have been produced considering the one dimensional
Euler equations and using different SBP operators.

DOFS L2DP EOCDP L2FD EOCFD L2HGTL EOCHGTL

1056 5.44E-05 1.34E-04 8.22E-05
2112 6.47E-06 3.1 2.61E-05 2.4 1.73E-05 2.2
4224 4.72E-07 3.8 2.89E-06 3.2 1.09E-06 4.0

Table 6.6.: Setting p = 3 and T = 1 for the non-conforming entropy stable SBP space-
time scheme. The errors have been produced considering the one dimensional
Euler equations and using different SBP operators.

degrees for all elements in Ω1 to be pt = p and px = p+ 1. All elements in Ω2 are
set to have pt = p + 1 and px = p. The results for non-conforming SBP space-
time scheme with DG operators for p = 2, 3 and averaged L2 errors are presented
in Table 6.7-6.8. For both tables we observe an EOC of p + 1

2 , supposedly due
to projection operators of degree p − 1. The final runs for p = 2, 3 consist of
DOFS = 26(p + 1)p. For FD, HGTL and DP operators however, we obtained
results for DOFS = 4224, which is three times more DOFS than 26(p + 1)p for
p = 2, 3. Therefore, the SBP space-time scheme performs faster for FD, HGTL and
DP operators. Still, we observe a better L2 error when considering DG operators.
For p = 2 and DOFS = 768 the error is smaller than for all other runs in Table
6.6 for DOFS = 1056. This result is remarkable, as the DG space-time scheme
consists of differentiation matrices of degree p = 2 in certain elements, whereas the
differentiation matrices of the runs in Table 6.6 are all of degree p = 3. So even
though we consider certain elements with lower degree differentiation matrices and
a lower number of DOFS, the SBP space-time scheme with DG operators has a
smaller L2 error.

Here, we do not want to claim which operator is the best. The DG operator

163



6. SBP Space-Time Methods for Non-Linear Systems

EOC for the non-conforming SBP space-time discretization with DG
operators for p = 2,3.

DOFS L2DG EOCDG

24 5.96E-02
48 6.27E-03 3.2
96 7.43E-04 3.1
192 9.06E-05 3.0
384 1.37E-05 2.7
768 2.22E-06 2.6

Table 6.7.: Non-Conforming en-
tropy stable SBP
space-time scheme
with T = 1 for the
one dimensional Euler
equations with DG
operators and p = 2.

DOFS L2DG EOCDG

40 8.73E-03
80 5.21E-04 4.1
160 5.53E-05 3.2
320 6.87E-06 3.0
640 5.42E-07 3.7
1280 4.89E-08 3.5

Table 6.8.: Non-conforming en-
tropy stable SBP
space-time scheme
with T = 1 for the
one dimensional Euler
equations with DG
operators and p = 3.

is the most accurate in this test, but it has the highest cost in terms of CPU
time in our implementation. The SBP space-time scheme is faster considering FD,
HGTL or DP operators, but therefore they are less accurate. This result holds for
conforming and non-conforming meshes.

6.2.2. Numerical Verification of Primary Conservation and Entropy Stability

In this section we numerically verify primary conservation and entropy stabil-
ity/conservation. Here, we purely focus on DG operators. Again, we set the
domain to be Ω = [0, 1] and t ∈ [0, T ] with T = 1. The boundary conditions
are set to be periodic in space and Dirichlet in time. For all tests we consider a
non-conforming mesh with four elements in space E1, . . . , E4. Each element Ei is
defined on the spatial domain [(i− 1)1

4 , i
1
4 ] for i = 1, . . . , 4. The elements E1 and

E2 consist of DG operators with degree px = 1 in space and with degree pt = 2 in
time. For elements E3 and E4 the DG operators are of degree px = 2 in space and
with degree pt = 1 in time.

First we will perform an entropy conservation check. This is done by setting the
temporal numerical states to be u∗ = u# = u∗EC and the spatial numerical fluxes
to be f ∗ = f# = f ∗EC . This leads to a fully coupled system. With this setup it
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should hold that

∆S :=
NQ∑
n=1

∆x
2

N∑
j=0

ωj
(
SNt,nNj −

(
v1,n,T

0j U(0, xnj )−Ψu,1,n
0j

))
, (6.70)

is equal to zero, see (6.63). A scheme satisfying this condition is denoted as entropy
conservative as v1,n,T

0j U(0, xnj ) − Ψu,1,n
0j is a high-order approximation of S1,n

0j . In
addition, to verify primary conservation we define

∆U :=
NQ∑
n=1

∆x
2

N∑
j=0

ωj
(
uNt,nNj − U(t = 0, xn(ξj))

)
, (6.71)

which should be 0 due to the definition of primary conservation (6.33). In terms of
verifying a correct implementation we calculate ∆S and ∆U with the discontinuous
initial condition

ρν
P

 =

1 + ϑ1,1
1 + ϑ1,2
1 + ϑ1,3

 if x ≤ 1
2 ,

ρν
P

 =

1 + ϑ2,1
1 + ϑ2,2
1 + ϑ2,3

 if x > 1
2 . (6.72)

Here ϑk,l are uniformly generated random numbers in [0, 0.1]. We calculate ∆U
and ∆S for 1000 different initial conditions which gives us (∆U)lk and (∆S)k for
k = 1, . . . , 1000 and l = 1, . . . , 3. In each run we consider three elements in space
Nt = 3. Within the euclidean norm we obtain the results in Table 6.9.
Verification of primary and entropy conservation for the SBP space-time

scheme

||∆S||2 ||(∆U)1,:||2 ||(∆U)2,:||2 ||(∆U)3,:||2
-1.81E-15 6.30266E-16 5.84621E-16 1.93807E-17

Table 6.9.: Calculating ∆U and ∆S for 1000 different random initial conditions with
the SBP space-time scheme. The average growth is presented within the
euclidean norm. All values are near machine precision which demonstrates
primary and entropy conservation.

In Table 6.9 we verify primary and entropy conservation. Finally, we will verify
entropy stability. Therefore, we consider the initial conditionρν

P

 =

1
0
1

 if x ≤ 1
2 ,

ρν
P

 =

1.125
1

1.1

 if x > 1
2 . (6.73)
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In terms of including interface dissipation we set the numerical surface state u∗ to
be the upwind state and f ∗ to be calculated by (5.43). Considering Nt = 128 we
calculate the total discrete primary quantity and entropy at t = 0 after each time
slab by

Stot0 :=
NQ∑
n=1

∆x
2

N∑
j=0

ωjS(0, xnj ),

Stotm :=
NQ∑
n=1

∆x
2

N∑
j=0

ωjS
m,n
Nj ,

U tot
0 :=

NQ∑
n=1

∆x
2

N∑
j=0

ωjU(0, xnj ),

U tot
m :=

NQ∑
n=1

∆x
2

N∑
j=0

ωju
m,n
Nj ,

(6.74)

form = 1, . . . , Nt. The plot of these quantities is given in Figure 6.4 and 6.5. Here,
we see that the total discrete entropy decays whereas the total discrete primary
quantities remain constant. This indicates that the SBP space-time scheme by
Friedrich et al. [40] is primary conservative and entropy stable.

6.3. Summary

In this chapter we presented the primary conservative and entropy stable SBP
space-time method for non-linear conservation laws first presented by Friedrich et
al. [40]. Here, special attention was given to the temporal approximation as dis-
crete entropy analysis is typically done on the semi-discrete level. The derivative
in time was approximated with a high-order differentiation matrix satisfying the
SBP property. As for the discretization in space the temporal part of the varia-
tional formulation consists of a volume and surface part. As in the Flux Difference
discretization by Fisher and Carpenter [33] we introduced numerical volume and
surface states. The volume state should satisfy a time dependent Tadmor Shuffle
condition (6.17) and the surface state is chosen to be an upwind state provided
that it satisfies the time dependent inequality (6.39). Such states have been de-
rived by Friedrich et al. [40] for the compressible Euler, Shallow Water or Ideal
MHD equations. In particular for the Euler equations we provide numerical results
to verify the proven properties as high-order, primary conservation and entropy
stability of the SBP space-time scheme. In addition, we extended the SBP space-
time scheme to a non-conforming mesh. This advantageous approach gives us the
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Figure 6.4.: Evolution of the total
discrete entropy Stotm
for m = 0, . . . , Nt with
the SBP space-time
scheme using the
upwind state in time
and the Ismail-Roe
flux with interface
dissipation in space.
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Figure 6.5.: Evolution of the to-
tal discrete primary
quantities U tot

m for
m = 0, . . . , Nt. These
remain constant over
time verifying that
the SBP space-time
scheme is primary
conservative.

flexibility of choosing different nodal distributions in space and at the same time
maintaining a high-order scheme which is primary conservative and entropy stable
as verified in the numerical result section.

Besides of these nice theoretical properties the space-time method has a draw-
back. In comparison to a semi-discrete code the SBP space-time method has a
high CPU run time. One reason for a higher run time is because the space-time
scheme is instructed to an implicit solver in each time slab. Such solvers are run
time intensive, especially without considering preconditioners. For this reason we
only presented results for the one dimensional compressible Euler equations. In
order to apply the SBP space-time method to higher dimensions, more investi-
gation is necessary to reduce the CPU time. The development of efficient high
dimensional SBP space-time schemes is left for future work. Therefore, we focus
on semi-discrete approaches in the next chapter.
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For the multitude of real world applications we want to simulate the behaviour of
fluids around complex geometries. In order to obtain such a mesh we are instructed
to the use of mesh generators. Many of these mesh generators have been developed
over the last decades. Generators relying on triangular/tetrahedral elements are
given in [48, 64, 106]. In order to apply the tensor product based SBP Flux Differ-
ence scheme we are instructed to meshes with quadrilateral/hexahedral elements.
For such meshes their are generators, e.g. HOPR (High Order Preprocessor) by
Hindenlang, Bolemann and Munz [59] or the mesh generator by Yuan and Kopriva
[124]. These generators rely on complex algorithms for the generation of meshes
[104]. In Figure 7.1 we present a conforming quadrilateral mesh around an air foil
constructed by HOPR.

Figure 7.1.: Two dimensional conforming quadrilateral mesh around an air foil con-
structed by HOPR [59]. The picture is taken from the HOPR manual.

However, the construction of these meshes, especially for three dimensional prob-
lems, can be computationally very expensive for complex geometries. Thus, it can
take more time to generate the mesh than to simulate the fluid flow [61]. Another
issue is that the resulting mesh on conforming grids is unstructured, for which
it is more complicated to find the neighbours of a given element. As described
in the chapters before, we have the theory and machinery for high-order primary
conservative and entropy stable schemes on non-conforming meshes. Therefore,
we focus on the construction of "more simpler" non-conforming meshes.
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A simple approach for the adaptive construction of quadrilateral meshes around
complex geometries is the Cartesian cut cell method. The conceptual idea is to
"cut" the geometry out of a Cartesian background mesh. An example focusing on
a cylinder is illustrated in Figure 7.2 and 7.3.

Figure 7.2.: Cartesian background
mesh considering a
cylinder.

Figure 7.3.: "Cut out" the subdo-
mains which are inside
the cylinder.

We define Cartesian elements on all remaining subdomains in Figure 7.3. In
order to resolve the geometry surface with quadrilateral elements more refinement
is necessary. Here, we subdivide all subdomains within Figure 7.2 which interact
with the geometry by a two-refinement step [104]. Here, we again perform the
strategy cutting out subdomains if they interact with the geometry.

Figure 7.4.: Subdivide all subdo-
mains which interact
with the cylinder.

Figure 7.5.: "Cut out" the subdo-
mains which hit or are
inside the cylinder.
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Again, we define Cartesian elements on all remaining subdomains in Figure 7.5.
Here, the meshes in Figure 7.3 and 7.5 are denoted as Cartesian cut cell meshes at
the first and second refinement level, respectively. This strategy can be repeated
recursively depending on the number of refinement levels defined by the user. In
Figure 7.6 and 7.7 we present the cut cell meshes at the third and fourth refinement
level, respectively.

Figure 7.6.: Cartesian cut cell mesh
at the third refinement
level.

Figure 7.7.: Cartesian cut cell mesh
at the fourth refine-
ment level.

Depending on the number of refinement levels we obtain a structured non-
conforming mesh. The structure is explained in Section 7.1.1. The resulting cut cell
mesh has a fine resolution near the surface of the geometry and a coarse resolution
else where. Such meshes are of special interest when one is purely interested in the
fluid flow around an object and not in the far field. An advantageous feature of cut
cell methods is that they are non-body-fitted [1], i.e. the volume mesh structure
is independent of the surface discretization. Thus, the mesh results in Cartesian
elements for which we can use tensor product SBP operators. Also, the cut cell
technique of generating meshes is fast and simple. Therefore, such mesh gener-
ation schemes have gained popularity over the last years as in [1, 5, 61, 63, 76, 117].

A disadvantage of Cartesian cut cell methods is that they have been designed
for low-order methods as curved surfaces of the geometries are approximated by
straight interfaces of the Cartesian elements, see Figure 7.7. In order to construct
high-order schemes on cut cell meshes, we need to pay special attention to the
subdomains interacting with the geometry surface in the final refinement level.
These subdomains are denoted as final-cut domains.

High-order cut cell methods on triangular elements have been purposed by
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[32, 87, 110]. Depending on the geometry the final-cut domains do not necessarily
have to be triangles. Therefore, depending on the element shape, new quadra-
ture rules are constructed on the curved polyhedral final-cut domains. Thus, the
final-cut domains are set to be elements. To adapt this strategy, while at the
same time ensuring an entropy stable simulation, we would need to construct
multidimensional SBP operators on these curved polyhedral final-cut domains
[25, 28, 55, 56, 57]. However, this process is cumbersome as we need to construct
such a multidimensional SBP operator for each final-cut domain individually with
arbitrary polyhedral elements.

In this work we decompose the resulting final-cut domains into curved quadrilat-
eral elements. Therefore, we do not have to construct a new set of SBP operators
and simply apply tensor product SBP operators from Section 2.1. In two dimen-
sional space the decomposition of a polyhedral domain into quadrilateral elements
is always possible [98]. In three dimensional space it is still an open question if a
polyhedral can be decomposed by hexahedral elements [77, 78, 105]. Focusing on
the cylinder as in Figure 7.7 we present the resulting mesh in Figure 7.8.

Figure 7.8.: Generated non-conforming mesh with quadrilateral elements based on the
cut cell technique. The elements at the cylinder surface are curved in order
to obtain a high-order mesh.
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Note, that the resulting mesh in Figure 7.8 is a h/p non-conforming mesh with
curved elements as the interfaces do not coincide and the nodal distribution of
each element can differ. As mentioned in Chapter 5 the development of primary
conservative and entropy stable SBP schemes with non-conforming curved inter-
faces is an ongoing research topic. Therefore, we ensure that all curved interfaces
are conforming interfaces. This can be ensured by decomposing final-cut domains
with the same SBP operator and nodes.

In this chapter we discuss the the implementation of the mesh generator in
Section 7.1. Based on this mesh generator, we apply the final simulations of this
work in Section 7.2; the flow around a NACA0012 air foil.

7.1. Mesh Generator Implementation

In this section we discuss the implementation of the mesh generation strategy based
on the cut cell approach and final-cut domain decomposition. In order to obtain a
structured cut cell mesh we first introduce the quadtree data structure in Section
7.1.1. The decomposition of the final-cut domains is discussed in Section 7.1.2.
Without any further modification we are likely to obtain badly shaped elements,
e.g. elements with a very small Jacobian. Therefore, we introduce an element
merging strategy in Section 7.1.3. Also, within the cut cell approach, we obtain
non-conforming interfaces with hanging corners, see Figure 3.9 with an arbitrary
amount of hanging corners. In theory, we know how to couple this elements to
obtain a primary conservative and entropy stable simulation. However, most open
source codes, e.g. FLUXO [46], and the self implemented code within this work
is limited to a "two-to-one" coupling, see Figure 3.10. Therefore, we propose an
additional strategy to ensure a "two-to-one" coupling in Section 7.1.4. With all
these strategies and approaches we present a set of meshes for different types of
complex geometries in Section 7.1.5.

7.1.1. Quadtree Data Structure

The adaptive cut cell mesh generation technique begins with a Cartesian back-
ground mesh. Each subdomain of the background mesh is assigned with a quadtree.
Such a tree consists of leaves with four children. Provided a subdomain of the
background mesh does not interact with the geometry, we set the subdomain to
be a Cartesian element. The quadtree of this subdomain consists of a single leaf
without any children, where the leaf is equipped with the element number. More
interesting is the structure when the subdomain of the background mesh interacts
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with the geometry. As the background subdomain is divided into four smaller
subdomains, we set the root of the quadtree to have four children where each child
is a representative of one smaller subdomain. If a smaller child subdomain hits
the geometry, we equip the corresponding leaf with another four children. Other-
wise, the smaller child subdomain does not touch the geometry and we define an
element. Therefore, the corresponding leaf does not have any children and is at-
tached with the element number (or a default value if the subdomain is completely
within the geometry). We repeat this recursive process depending on the number
of refinement levels. Thus, the height of the corresponding quadtree depends on
the number of refinement levels. An example of a mesh and its resulting quadtree
with two refinement levels is given in Figure 7.9 and 7.10.

Figure 7.9.: Generated non-
conforming mesh
equipped with ele-
ment/subdomain
numbers.

1 2 6

3 4 -1 5

Figure 7.10.: Corresponding struc-
tured quadtree. The
blue nodes denote the
Cartesian elements.
The red nodes denote
a curved subdomain.

Here, we need to pay special attention to the curved subdomain attached with
the number −1. The negative sign denotes that we are on a final-cut domain
where each final-cut domain is attached with a different negative number. As
such domains are not necessarily quadrilaterals, as in Figure 7.9, we decompose
the domain as described in Section 7.1.2. Therefore, during the mesh generation
process, we store all curved elements within a Curvlist. This Curvlist maps the
negative final-cut domain number to the numbers of the corresponding curved
elements. Additionally, the curved elements store the negative number of the
final-cut domain and the leaf position within the quadtree. Based on the Curvlist,
we obtain the element neighbors by simply moving along the structured quadtree,
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which is a benefit of structured meshes.

7.1.2. Final-Cut Domain Decomposition

In this section we discuss possible curved quadrilateral element decomposition
strategies of final-cut domains. Here, we make the following assumptions

• A geometry, e.g. a cylinder, is not fully inside a final-cut domain. Thus, the
geometry and the final-cut domain always intersect.

• When considering a flow around more than one geometry, e.g. air foil with
multiple components (see Section 7.1.5), we assume that only one geometry
cuts a final-cut domain.

Both of these assumptions are reasonable considering a fine mesh resolution near
the geometry surface and thus, small final-cut domains.

Within our code we implement numerous decomposition strategies depending
on how the geometry hits the final-cut domain. Here, we present some of the most
common decomposition techniques in Figure 7.11 based on a smooth geometry.

1

2

(a) One corner is covered by
the geometry. Decompose
the final-cut domain into
two curved quadrilateral
elements.

1

(b) Two corners are cov-
ered by the geometry.
Here, a decomposition
of the final-cut domain
is not necessary as the
resulting polyhedral is a
curved quadrilateral el-
ement.

1

2

3

(c) Three corners are covered
by the geometry. Decom-
pose the final-cut domain
into three curved quadrilat-
eral elements.

Figure 7.11.: The three most common decomposition strategies. The geometry is col-
ored grey. All resulting elements within the final-cut domain are curved
quadrilateral elements.
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For small final-cut domains the geometry generally covers one, two or three cor-
ners of the Cartesian subdomain. Depending on the the number of corners the
remaining final-cut domain represents a different type of polyhedral with five, four
or three corners. As our code is restricted to elements with four corners, we de-
compose the final-cut domains as presented in Figure 7.11 such that only curved
quadrilateral elements remain. Additionally, we implement decomposition strate-
gies when the geometry interacts with the subdomain but does not cover a single
corner or covers all corners. However, this scenario is unlikely when considering
small final-cut domains.

Remark 18. In Figure 7.11 (c) we obtain hanging corners which can lead to h
non-conforming interfaces. However, even though the elements are curved, the
interface with the hanging corner is straight. Therefore, the metric terms on the
interface remain constant and thus, we can couple elements in an entropy stable
way as done for Cartesian elements.
Besides checking if the corners of the Cartesian subdomain are in- or outside of

the geometry, we need to check if the interfaces between two non-covered corners
are cut by the geometry. Also, it is necessary to check if a interface between two
covered corners is not fully covered by the geometry, see Figure 7.12.

1

2

3

4

(a) The geometry cuts an
interface between two
non-covered corners.

1

2

(b) The geometry does not
fully cover an inter-
face between two cov-
ered corners

Figure 7.12.: Special cases of the geometry cutting a Cartesian subdomain.

All the above presented decomposition strategies assume a smooth geometry.
For geometries with sharp corners, e.g. the tail of an air foil, we need to consider
different decomposition techniques. Within our code we implemented decomposi-
tion strategies where the final-cut domain can have up to one sharp corner. An
example is given in Figure 7.13.
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1 2

34

Figure 7.13.: The geometry with a sharp corner cuts the Cartesian subdomain. The
final-cut domain is decomposed into four quadrilateral elements.

In our code we stored the sharp corners in a Cornerlist. So, if a sharp corner from
the Cornerlist is within a final-cut domain, we consider a different decomposition
strategy. In this work we only considered geometries where the exact position of
a sharp corner is known. For arbitrary geometries, however, the amount of sharp
corners can be numerous and apriori not known. Algorithms for detecting sharp
corners can be found in [75, 125].

The interface curves of the remaining curved quadrilateral elements are approxi-
mated by a polynomial of degree p, where p denotes the degree of the differentiation
matrix within the curved element. For more, details see Appendix A.1. Based on
the presented strategies we obtain non-conforming meshes for flows around com-
plex geometries as a cylinder, NACA0012 air foil and an air foil with multiple
components. However, within this mesh generation strategy we can obtain badly
shaped elements. Therefore, we discuss the element merging technique to improve
the overall mesh quality in the next section.

7.1.3. Element Merging

For meshes with badly shaped elements a very small explicit time is necessary to
obtain a stable simulation. In this section we focus on avoiding such badly shape
elements within our mesh. Let E denote an arbitrary element. To indicate if an
element is baldy shaped, we introduce an indicator function Φ with Φ : E → [0, 1].
An element is said to be badly shaped if the indicator function is smaller than a
certain tolerance Φmin. Mathematically speaking, an element is badly shaped if

Φ(E) ≤ Φmin. (7.1)
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Here, we discuss the choice of the indicator function Φ. On curved meshes the
time step is defined by the CFL condition

∆t := CFL

maxj{Nj + 1}
Jmin
λmax

, (7.2)

where Jmin denotes the minimum Jacobian over all elements, Nj + 1 denotes the
number of nodes in the j-th element and λmax denotes the maximum eigenvalue of
the flux Jacobians over all elements. In order to increase the time step defined by
(7.2) we seek for curved elements with a large minimum Jacobian. However, small
Jacobians are indispensable when considering a fine discretization at the geometry
surface. Therefore, we define the indicator function Φ by the ratio of the minimum
and maximum value of the Jacobian J(E) on the element E

Φ(E) := mini,j=0,...,N J(E)ij
maxi,j=0,...,N J(E)ij

. (7.3)

This indicator function can also be found in the verdict library [108]. When
focusing on a Cartesian element it holds Φ(E) = 1 independent of the element
size, as the Jacobian remains constant on all nodes within the element. For curved
elements it holds that Φ(E) ≤ 1.
Remark 19. Within the verdict library [108] their are numerous different types
of indicator functions based on triangular/tetrahedral or quadrilateral/hexahedral
elements.
With the indicator function (7.3) and a given limit Φmin we discuss how to avoid

badly shaped elements in the mesh. Each curved element has stored the position
of the its final-cut leaf within the quadtree, see Section 7.1.1. Assuming that we
consider more than one refinement level within the mesh generation process, the
final-cut leaf always has a parent, see Figure 7.14 and 7.15. The idea of avoiding
badly shaped elements is to merge the corresponding final-cut domain with all its
siblings into one element. The new final-cut domain is stored on the parent node.
As this domain is larger than before, the corresponding decomposed elements are
more likely to have a better shape, see Figure 7.16 and 7.17. If the new elements
are still badly shaped, we apply the same strategy again by merging elements.
This recursive process is repeated until all elements are not badly shaped or until
the whole quadtree is merged together to a single root.
Remark 20. When merging a final-cut domain special attention must be paid if
the neighbor is also a final-cut domain. In order to obtain at least a "two-to-one"
coupling between the elements of these two domains, it can be necessary to merge
the neighbored final-cut domain even if it is well shaped. Even though we focus
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Figure 7.14.: A non-conforming
with two refinement
levels. We obtain
badly shaped ele-
ments in the final-cut
domain with the
number −1.

1 2 6

3 4 -1 5

Figure 7.15.: The badly shaped ele-
ments are represented
by the leaf number−1
in the quadtree.

on curved elements we can handle "two-to-one" couplings in an entropy stable way
as two neighbored final-cut domains are connected by a straight line, see Remark
18.

Figure 7.16.: Generated non-
conforming mesh
with better shaped
elements due to the
merging procedure.

1 2 -1 6

Figure 7.17.: Corresponding struc-
tured quadtree. The
former final-cut do-
main and its siblings
have been merged
to a larger final-cut
domain with better
shaped elements.
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7.1.4. Two-to-One Coupling

In this section we discuss how to ensure a "two-to-one" coupling as in Figure 3.10.
With such a coupling an element can only have up to two neighbors on an in-
terface. This simplifies the implementation of the non-conforming entropy stable
simulation. Here, the quadtree structure of the mesh is helpful to guarantee a
"two-to-one" coupling.

We demonstrate the procedure by focusing on an element Ex. This element is
represented by a leaf with a corresponding height within the quadtree. Due to the
structured quadtree we can easily identify all the neighbor elements. If a neighbor
element has the same height, than Ex and its neighbor element have a conform-
ing interface or, in other words, we have a "one-to-one" coupling. However, if the
height of Ex and its neighbor differs by one refinement level, then the elements
are connected by a "two-to-one" coupling. Again, we can see the advantages of cut
cell mesh as the quadtree describes how elements are coupled with each other.

Here, we discuss the issue when the element Ex and its neighbor differs by more
than one refinement level. Here, we do not have a "one-to-one" and "two-to-one"
coupling, see Figure 7.18 and 7.19.

Figure 7.18.: Generated non-
conforming where the
element Ex has more
than two neighbors
at the top interface.

. . .. . .

. . . . . .

. . . . . .

Ex

Ey Ez

Ew

Figure 7.19.: The corresponding
structured quadtree.
Here, the height of
Ex and the neighbor
elements Ey and Ez
differ by two.

In Figure 7.18 we see that Ex has three neighbors at the top interface (Ey, Ez and
Ew). Therefore, a "two-to-one" coupling is not possible. This can also be observed
by looking at the corresponding quadtree in Figure 7.19 as the leaf height of Ex
and the neighbors Ey, Ez differ by two. Therefore, we need to modify our mesh.

179



7. Mesh Generation and Applications

The modification is obtained by subdividing the element Ex into four subelements
as in Figure 7.20 and 7.21.

Figure 7.20.: Subdivide Ex into
four smaller elements.
Here, we obtain a
mesh with a "two-to-
one" and "one-to-one"
coupling.

. . .. . .

. . . . . . . . .

. . . . . .

Ex1 Ex2 Ex3 Ex4

Ey Ez

Ew

Figure 7.21.: The corresponding
structured quadtree.
Here, the height of
Ex1 , . . . , Ex4 and the
neighbor elements
Ey, Ez, Ew only differ
by one refinement
level or are the same.

Due to the subdivision we obtain four new elements Ex1 , . . . , Ex4 in Figure 7.20.
We interpret this subdivision in the quadtree in Figure 7.21 by attaching four
children to the leaf of Ex. Therefore, the height of Ex4 and the neighbor elements
Ey, Ez only differ by one, which indicates a "two-to-one" coupling. In addition,
the height of Ex3 and Ew are the same, which indicates a conforming interface
("one-to-one" coupling) between the two elements, see Figure 7.20.

For this example we subdivided the element Ex once into four smaller elements.
In general, a subdivision can be done multiple times depending on the height of
the element leaf and its neighbour. With this recursive process we ensure a "one-
to-one" or "two-to-one" coupling.

7.1.5. Non-Conforming Meshes for Complex Geometries

Based on the presented mesh generation strategies in Sections 7.1.1-7.1.4 we gen-
erate numerous meshes. First we present meshes around a cylinder in Ω =
[0, 1] × [0, 1]. The center of the cylinder is set to

(
1
2 ,

1
2

)
with a radius of 0.15.

The Cartesian background mesh is constructed by NQx × NQy subdomains with
NQx = NQy = 4. We chose to have eight refinement levels for the mesh. On each
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element of the mesh we define DG operators of degree p = 3. To finally obtain
the resulting mesh we need to specify the limit Φmin in order to determine if an
element is badly shaped (7.1). Here, we generated three different meshes with
Φmin = 0; 0.1; 0.2 in Figure 7.22

(a) Φmin = 0. (b) Φmin = 0.1. (c) Φmin = 0.2.

Figure 7.22.: Generated non-conforming meshes with LGL nodes surrounding a cylinder
with three different Φmin values.

In Figure 7.22(a) no element merging has been done. Here, we have a very finer
resolution near the cylinder surface. However, as we set Φmin = 0, elements can
occur which drastically reduce the time step for explicit time marching. When
increasing Φmin = 0.1 as in Figure 7.22(b) we obtain a less fine mesh at the cylin-
der surface, but therefore the elements are better shaped. Finally, considering
Φmin = 0.2 as in Figure 7.22(c) we obtain a coarse mesh with even better shaped
elements. For all the elements E in Figure 7.22(a)-(c) it holds Φ(E) > Φmin.

Next, we presented meshes around a NACA0012 air foil in Ω = [−1.05, 1.95] ×
[−2

3 ,
2
3 ]. As for the cylinder we set the Cartesian background mesh to have NQx ×

NQy subdomains with NQx = NQy = 4. Again, we chose eight refinement levels for
the mesh and consider DG operators of degree p = 3 on each element. The three
presented meshes in Figure 7.23 are constructed by setting Φmin = 0; 0.04; 0.1. As
for the cylinder we obtain a very fine mesh in Figure 7.23(a), a less finer mesh in
Figure 7.23(b) and a coarse mesh in Figure 7.23(c). All three meshes consist of
well shaped elements (based on the Φmin value).

Finally, we present meshes around an air foil with three components. We set
Ω = [−1.5, 1.5]× [−3, 3]. Here, we choose a larger background mesh to ensure that
all subdomains do not cut two geometries at the same time. We set NQx = NQy =
20. Here, we fix the number of refinement levels to six. Considering DG operators
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(a) Φmin = 0 (b) Φmin = 0.04 (c) Φmin = 0.1

Figure 7.23.: Generated non-conforming meshes with LGL nodes surrounding a
NACA0012 air foil with three different Φmin values.

of degree p = 3 on each element and Φmin = 0; 0.01 we obtain the meshes in Figure
7.24(a)-(b).

(a) Φmin = 0 (b) Φmin = 0.01

Figure 7.24.: Generated non-conforming meshes with LGL nodes surrounding air foil
with three components. Here, we considered two different Φmin values.

The mesh in Figure 7.24(a) is very fine at the element surface. However, when
increasing Φmin to 0.01 we obtain final cut domains which consists of curved ele-
ments which are conforming with the background mesh in Figure 7.24(b). Also, our
code could not ensure that these curved elements are well shaped (some elements
E exist with Φ(E) ≤ Φmin). Further element merging of the final-cut domains is
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not possible as the corresponding quadtree only consists of a single root. Here,
different decomposition strategies need to be taken into account to obtain a mesh
with well shaped elements.

Here, we demonstrated the speed and the simplicity of the mesh generator. We
highlight, that all the meshes have been generated using the same code by only
changing the geometry data. This again shows that the generator is fully adaptive
independent of the corresponding geometry. For meshes, e.g. air foil with three
components, we need to consider different decomposition techniques to obtain a
mesh with well shaped element. Defining these decomposition strategies is left for
future work.

7.2. Application: Flow around a NACA0012 Air Foil

In this section we apply the primary conservative and entropy stable SBP Flux
Difference scheme on the generated non-conforming cut cell mesh with final-cut
domains decomposed into curved elements. Here, the discretization on Carte-
sian elements is given by (4.64), where as the discretization on curved elements
is presented in Appendix A.2. Here, we point out the advantageous features of
non-conforming meshes. Therefore, we focus on the two dimensional compressible
Euler equations defined in (4.99). The numerical volume fluxes are set to be the
Ismail-Roe fluxes and the surface fluxes are set to be the non-conforming Ismail-
Roe fluxes with interface dissipation (4.88).

For the final application, we consider the NACA0012 air foil. We are interested
in the fluid flow at the surface of the air foil. Therefore, the cut cell mesh with
curved elements is well suited as it has a fine resolution at the air foil surface and a
coarse resolution in the far field. We consider the domain Ω = [−4; 4.55]× [−4; 4]
and choose the Cartesian background mesh to consist of 4 × 4 subdomains. The
number of refinement levels is set to four. We detect badly shaped elements by
choosing Φmin = 0.02. On all elements we consider DG operators. However, it
would be possible to consider any other SBP operator to obtain a primary con-
servative and entropy stable simulation. For all elements defined on the Cartesian
background mesh (elements at the zero-th refinement level) we set the operators
to have a degree of p = 3. All refined elements have a degree of p = 6. Thus, we
obtain a fully h/p non-conforming mesh. The resulting mesh is given in Figure
7.25. The mesh in Figure 7.25 consists of DOFS = 1760. Here, we observe coarse
elements near the boundary of the domain and fine elements near the geometry
surface. Generating a conforming mesh with the same properties is cumbersome
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Figure 7.25.: Non-conforming mesh to simulate a flow around a NACA0012 air foil. The
mesh consists of DOFS = 1760.

as they are instructed to remove any hanging corners. In addition, conforming
meshes need to consider the same SBP operators with the same degree and thus,
considering lower degree SBP operators on elements in the far field is not possible.
The simplest approach of generating a conforming mesh around the NACA0012
air foil is given by considering the cut cell technique without any refinement levels.
Decomposing the final-cut domains into curved elements at the zero-th refinement
level gives us a conforming mesh as in Figure 7.26. In order to obtain the same res-
olution at the surface of the air foil as in Figure 7.25 we set the background mesh
to consist of 16 × 16 Cartesian subdomains. By defining DG operators of degree
p = 6 on each element the resolution of the surface elements in Figure 7.25 and in
Figure 7.26 are the same. Here, the conforming mesh consists of DOFS = 12740
which is seven times more DOFS as for the non-conforming mesh. With these
two meshes we simulate a flow around a NACA0012 air foil.
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Figure 7.26.: Conforming mesh to simulate a flow around a NACA0012 air foil with
DOFS = 12740.

We set the constant initial conditions to be
ρ
ν1
ν2
P

 =


1

cos(θ)
sin(θ)

1
γ(Ma)2

 , (7.4)

with adiabatic coefficient γ = 1.4, Mach number Ma = 0.3 and θ = 0.0349066.
We consider Dirichlet boundary conditions defined by (7.4). At the surface of the
air foil we define reflecting boundary conditions

ρ
ν1
ν2
P


reflect

:=


ρ−

ν−1 − 2(n1ν
−
1 + n2ν

−
2 )n1

ν−2 − 2(n1ν
−
1 + n2ν

−
2 )n2

P−

 , (7.5)

where (ρ−, ν−1 , ν−2 ,P−) denote the inner state and n = (n1, n2)T denotes the out-
ward pointing approximated normal vector. We set T = 0.5 and CFL = 1. Note,
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that we do not reach a steady state. However, reaching a steady state is not nec-
essary to demonstrate the advantages of non-conforming meshes. The simulation
results of a flow around the NACA0012 air foil are given in Fig 7.27.

(a) Non-conforming mesh. (b) Conforming mesh.

Figure 7.27.: Plot of the density ρ at T = 0.5 on two different meshes.

Here, we plotted the density with the mesh to distinguish between the con-
forming and non-conforming simulation. For both simulations we obtained the
following CPU run times
• Non-conforming simulation: 2873 seconds,

• Conforming simulation: 17632 seconds.
Here, the CPU run time for the conforming simulation is six times more expensive
than the non-conforming simulation, presumably due to the reduced number of
DOFS. A factor of six is a significant speed up which demonstrates the beneficial
properties of non-conforming meshes.

Besides focusing on the CPU run time we are interested in the fluid behaviour.
Here, comparing these two plots we notice slightly more smearing of the density
in the far field on the non-conforming mesh. This result was predictable as the
non-conforming mesh has a coarser resolution in the far field. For analyzing the
flow behaviour at the surface of the air foil we zoom in the plots of Figure 7.27.
The zoomed in plots are presented in Figure 7.28.
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(a) Density on a non-conforming mesh. (b) Density on a conforming mesh.

Figure 7.28.: Plot of the density ρ at T = 0.5 on two different meshes. The plot is
zoomed in on [−0.5, 1.5]× [−0.75, 0.75].

Here, we do not plot the interface lines of the mesh in Figure 7.28(a) and (b)
as these are the same for both meshes near the geometry surface. For both plots
we cannot see any difference in the eyeball norm, despite the fact that the non-
conforming mesh has a coarse mesh resolution is the far field. So, we obtain the
same results at the air foil surface (with the naked eye) for both meshes. However,
we generated these results more than six times faster on a non-conforming mesh.

7.3. Summary

In this chapter we introduced a modified cut cell approach for generating non-
conforming meshes around complex geometries, e.g. a cylinder or an air foil. Typ-
ically, cut cell meshes are constructed for low-order schemes on Cartesian meshes.
Therefore, we introduced curved elements near the surface of the complex geome-
try to obtain a high-order mesh representation. Here, the surface is approximated
by degree p polynomials, where p denotes the degree of the SBP operator. The cut
cell approach is advantageous, as it is a fully adaptive and fast method generating
structured meshes around complex geometries.

We discussed the implementation of the cut cell method using a quadtree which
gives a fully structured Cartesian mesh. Decomposing the final-cut domains into
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curved elements we obtained a mesh with a high-order approximation of the surface
of a complex geometry. Additionally, we introduced further mesh modification to
obtain better shaped elements and an easier implementation. With the generator
we presented non-conforming meshes around cylinders and air foils with multiple
components.

Finally, we applied the non-conforming primary conservative and entropy stable
SBP scheme to simulate a flow around a NACA0012 air foil. Here, we consider
a conforming and a non-conforming mesh. Due to the cut cell approach the non-
conforming mesh had a coarse resolution in the far field and a fine resolution at
the geometry surface for the non-conforming mesh. As conforming meshes are less
flexible all elements are instructed to have the same fine mesh resolution. Thus, by
constructing a conforming mesh in the same simple fashion as the non-conforming
mesh, we obtain seven times more degrees of freedom. However, when comparing
the flow at the air foil surface both simulations show the same fluid behaviour, see
Figure 7.28. Comparing the CPU run time, the non-conforming simulation was
six times faster than the conforming simulation. Thus, we obtain a large reduction
of computational costs considering non-conforming elements.
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In this work we introduced high-order primary conservative and entropy stable
summation-by-parts (SBP) schemes for systems of hyperbolic conservation laws.
Such methods have been developed over the last years. However, most methods
rely on a point-to-point transfer at the interfaces between two elements for which
the mesh flexibility is limited. Therefore, we described how to extend high-order
primary conservative and entropy stable schemes to a non-conforming mesh.

This work began focusing on the simplest conservation law: the linear advec-
tion equation (or LAE). Based on the LAE we introduced finite difference SBP
operators (FD operators) and the multi-block SBP-SAT discretization to obtain a
primary conservative and energy stable scheme in Chapter 2. Besides focusing on
finite differences we introduced a discretization based on a discontinuous Galerkin
approach. Even though finite difference and discontinuous Galerkin follow a dif-
ferent motivation, both presented approaches in this work belonged to the class of
SBP schemes. This indicates the broad variety of SBP methods. Besides focusing
on FD and DG operators we introduced the HGTL operators.

We extended the SBP scheme to a h/p non-conforming mesh in Chapter 3.
As the construction of entropy stable methods on curved meshes with h non-
conforming interfaces is still not known, we purely focus on Cartesian elements. In
order to connect the non-conforming elements we introduced projection operators.
Focusing on the construction of these operators we discussed the importance of the
M-compatibility condition to ensure energy/entropy stability. Unfortunately, the
compatibility condition occurs a degree reduction of the projection operator due to
the accuracy of SBP norm matrices. Therefore, we introduced degree preserving
SBP operators for which the corresponding projection operators is of the same
degree as the differentiation matrix. Thus, considering such SBP operators the
non-conforming scheme obtained the same convergence rate as on a conforming
mesh.

For non-linear conservation laws deriving high-order primary conservative and
entropy stable schemes is more complicated, as discussed in Chapter 4. Here,
we introduced split forms and corresponding skew-symmetric discretizations. A
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breakthrough within the research field of high-order entropy stable methods is the
SBP Flux Difference method which requires no knowledge of an explicit skew-
symmetric form. However, in certain cases, as for the Burgers’ or the Shallow Wa-
ter equations, the SBP Flux Difference method recovers known skew-symmetric
discretizations. Additionally, we verified the robustness of entropy stable schemes
by comparing simulations of the SBP Flux Difference method with the standard
SBP discretization.

Next, we discussed non-conforming schemes for non-linear conservation laws.
A state-of-the-art scheme is the Mortar method which is primary conservative,
but not entropy stable. To obtain an entropy stable scheme for non-linear con-
servation laws on non-conforming meshes, we extended the SBP Flux Difference
scheme to h/p non-conforming Cartesian meshes in Chapter 5. Here, we combined
the ideas of Chapters 3 and 4. Additionally, we paid special attention to the inter-
face coupling. In order to avoid non-linear projection terms we consider pure linear
projections of the numerical surface flux. Thus, the proof of primary conservation
and entropy stability was done in a one-to-one fashion as for linear conservation
laws. Again, we demonstrated the enhanced robustness of entropy stable schemes
by comparing simulations of the non-conforming SBP Flux Difference scheme with
the Mortar method.

All presented schemes in Chapters 2-5 concerned semi-discrete schemes. Thus,
when applying time integration methods with a large time step we introduce tem-
poral errors which can lead to an unpredictable behaviour of the entropy. There-
fore, we introduced the fully-discrete space-time entropy stable method in Chapter
6. The main idea is to discretize the temporal derivative in a similar fashion as for
the SBP Flux Difference scheme specifying numerical volume and surface states
for the numerical solution. The high-order primary conservative and entropy sta-
ble SBP space-time method can be applied on conforming and non-conforming
elements. For non-conforming elements we obtain the additional flexibility to con-
sider different nodal distributions in time for different elements. Besides all these
advantageous results the SBP space-time method has high computational costs
because it is fully implicit. Thus, from a today’s point of view we recommend to
consider semi-discrete schemes.

In order to obtain non-conforming meshes around complex geometries we in-
troduced a mesh generation strategy based on a cut cell approach in Chapter 6.
By introducing conforming curved elements at the geometry surface and element
merging/refinement strategies we obtained meshes around cylinders and air foils.
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As a final application we simulated a flow around a NACA0012 air foil using the
high-order primary conservative and entropy stable SBP Flux Difference scheme.
Here, we focused on a non-conforming as well as a conforming mesh, where both
meshes had the same refinement at the geometry surface. For both simulations we
could not see any differences of the flow behaviour near the surface of the air foil.
However, the non-conforming simulation was about six times faster and its mesh
had seven times less degrees of freedom than the conforming mesh.

8.1. Conclusion

Entropy stable schemes are beneficial as they have enhanced robustness. When
deriving high-order primary conservative and entropy stable schemes it is a suit-
able choice to consider SBP operators. These operators discretely mimic the
integration-by-parts rule. Here, we introduced FD, DG, HGTL and DP opera-
tors. All these operators had advantageous features as small errors, large stable
time steps or a higher accurate norm matrix demonstrated in Sections 2.3, 3.5, 4.3
and 6.2. The choice of the "best" operator depends on the user preferences (CPU
run time versus accuracy), problem (linear or non-linear problem) and mesh (con-
forming or non-conforming mesh). However, as long as the operators are SBP
operators we obtain a high-order primary conservative and entropy stable scheme.

At the beginning of this work, we asked the question if it is possible to maintain
the properties of a conforming SBP scheme (e.g. SBP Flux Difference scheme) as
convergence order, primary conservation and entropy stability to a non-conforming
mesh. The answer to this question is: yes!

Non-conforming elements are advantageous. We obtain the ability to arbitrary
refine elements independent of their neighbours. Therefore, we can control the
mesh resolution, e.g. a fine resolution near a geometry surface and a coarse reso-
lution in the far field as in Chapter 7. Compared with simulations on conforming
meshes the use of non-conforming methods can lead to a massive savings of CPU
time. Additionally, as the interfaces of non-conforming elements to do necessar-
ily have to coincide the issue of mesh generation becomes much simpler. Further
flexibility is given as we can switch between different SBP operators on differ-
ent elements within the same simulation. Therefore, it is reasonable to consider
non-conforming elements in future work.
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8.2. Outlook

Within all numerical schemes presented in this work we relied on the use of SBP
operators. The development of such operators is ongoing research, especially con-
structing degree preserving operators for non-conforming applications. Due to the
work of Ranocha [99] and Chan [17] it is possible to consider SBP operators where
the boundary points are not included and thus, additional degrees of freedom are
given which can be optimized.

From a practical point of view a large range of problems are defined in three
dimensional space. Therefore, further implementations must be done, e.g. for
the mesh generation strategy we need to extend the quadtree to an octree and
to consider decomposition strategies for final-cut domains in a three dimensional
domain. In general, further decomposition strategies should be considered even
for two dimensional meshes in order to obtain better shaped elements. However,
due to use of the tensor product, the theory on entropy stable schemes and non-
conforming elements does not change. Especially, the development of a higher
dimensional primary conservative and entropy stable code is necessary for space-
time applications. In order to speed up the space-time code further investigations
need to be done. A possibility is the use of suitable preconditioners to solve the
linear system for the numerical solution.

In the research field of non-conforming elements the next milestone is to derive
primary conservative and entropy stable schemes which can handle curved inter-
faces with hanging corners (h refinement). This would include further flexibility
for the mesh generation, e.g. by including a non-conforming boundary layer. Thus,
investigations on non-conforming elements is still ongoing research.
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A. Appendix

A.1. Primary Conservative and Energy Stable Discretization
for the Linear Advection Equation on Conforming Curved
Elements

Herein, we provide a primary conservative and entropy stable discretization of
the two dimensional LAE on a curvilinear, conforming mesh. The standard SBP
discretization (2.129) is insufficient as the non-constant metric terms introduce
non-linearities as e.g. F̃ = ãU can be interpreted as a non-linear term. Therefore,
we consider a skew-symmetric discretization is in Section 4.1.1. We focus on the
transformed two dimensional conservation law (2.121) with F̃ = ãU and G̃ = b̃U

J
∂U
∂t

+ ∂ (ãU)
∂ξ

+
∂
(
b̃U
)

∂η
= 0. (A.1)

with ã := ∂y
∂η
a− ∂x

∂η
b and b̃ := ∂x

∂ξ
b− ∂y

∂ξ
a. Due to the product rule an algebraically

equivalent form of (A.1) is given by

J
∂U
∂t

+ 1
2
∂ãU
∂ξ

+ 1
2

(
ã
∂U
∂ξ

+ U ∂ã
∂ξ

)
+ 1

2
∂b̃U
∂η

+ 1
2

(
b̃
∂U
∂η

+ U ∂b̃
∂η

)
= 0. (A.2)

Instead of discretizing (A.1) we focus on (A.2). Using the tensor product the two
dimensional discretization on an element with N + 1 nodes in ξ- and η-direction
we get

Jijωiωj
∂uij
∂t

+ ωj(Dx)ij + ωi(Dy)ij = 0, (A.3)

1



A. Appendix

where uij denotes the discrete solution for i, j = 0, . . . , N and

(Dx)ij :=1
2

(
N∑
m=0

Qimã
p
mjumj + ãpij

N∑
m=0

Qimumj + uij
N∑
m=0

Qimã
p
mj

)
−
(
δiN [ãpu− f̃ ∗]Nj − δi0[ãpu− f̃ ∗]0j

)
,

(Dy)ij :=1
2

(
N∑
m=0

Qjmb̃
p
imuim + b̃pij

N∑
m=0

Qjmuim + uij
N∑
m=0

Qjmb̃
p
im

)
−
(
δjN [b̃pu− g̃∗]iN − δj0[b̃pu− g̃∗]i0

)
,

(A.4)

with i, j = 0, . . . , N . Here, ãp and b̃p are defined by

ãp := ∂yp

∂η
a− ∂xp

∂η
b b̃p := ∂xp

∂ξ
b− ∂yp

∂ξ
a. (A.5)

The terms xp, yp are physical coordinates of the curved element approximated by
a polynomial of degree p, where p denotes the degree of the differentiation matrix
D [65]. As xp, yp are of degree p we can evaluate their derivatives exactly using
the differentiation matrix D

∂xpij
∂ξ

=
N∑
m=0

Dim(xp)mj,
∂xpji
∂η

=
N∑
m=0

Djm(xp)im,

∂ypij
∂ξ

=
N∑
m=0

Dim(yp)mj,
∂ypji
∂η

=
N∑
m=0

Djm(yp)im,
(A.6)

with i, j = 0, . . . , N . In terms of readability we set xξ = ∂xp

∂ξ
, xη = ∂xp

∂η
, yξ =

∂yp

∂ξ
, yη = ∂yp

∂η
, which are denoted as approximated metric terms. As xp, y,p are

smooth functions it holds due to Schwarz’ theorem
∂

∂ξ

∂yp

∂η
= ∂

∂η

∂yp

∂ξ
,

∂

∂ξ

∂xp

∂η
= ∂

∂η

∂xp

∂ξ
.

(A.7)

In addition, as xp, yp are of degree p an algebraically equivalent representation of
(A.7) is given by

N∑
m=0

Dim(yη)mj =
N∑
m=0

Djm(yξ)im, (A.8)

and
N∑
m=0

Dim(xη)mj =
N∑
m=0

Djm(xξ)im, (A.9)

2



A. Appendix

with i, j = 0, . . . , N . The equations (A.8) and (A.9) are denoted as metric identi-
ties, and are indispensable for proving free stream preservation and energy stability
as shown below.
Remark 21. We do not consider the exact metric terms, as these can be described
by an arbitrary function (and not by a polynomial of degree p). Thus, they do not
necessarily satisfy the metric identities (A.8) and (A.9).
First, we verify that discretization (A.3) is free stream preservative, meaning that

when the initial solution is constant, then the solution should remain constant over
time. Mathematically speaking, ∂uij

∂t
should be zero when setting uij constant for

all i, j = 0, . . . , N . Setting all uij = 1 we look at Dx,Dy:

(Dx)ij =1
2

(
N∑
m=0

Qimã
p
mj + ãpij

N∑
m=0

Qim +
N∑
m=0

Qimã
p
mj

)
,

(Dy)ij =1
2

(
N∑
m=0

Qjmb̃
p
im + b̃pij

N∑
m=0

Qjm +
N∑
m=0

Qjmb̃
p
im

)
.

(A.10)

The surface terms vanish as we assume that the numerical flux is consistent, mean-
ing f̃ ∗(1, 1) = f(1) = ãp. As we consider SBP operators of degree p > 0, we know
that ∑N

m=0 Qim = 0 which yields

(Dx)ij =
N∑
m=0

Qimã
p
mj, (Dy)ij =

N∑
m=0

Qjmb̃
p
im. (A.11)

Including this in (A.3) we get

Jijωiωj
∂uij
∂t

+ ωj
N∑
m=0

Qimã
p
mj + ωi

N∑
m=0

Qjmb̃
p
im = 0. (A.12)

Since Qim = ωiDim we divide by ωiωj and obtain

Jij
∂uij
∂t

+
N∑
m=0

Dimã
p
mj +

N∑
m=0

Djmb̃
p
im = 0. (A.13)

As ãp = yηa− xηb and b̃p = xξb− yξa we get

Jij
∂uij
∂t

+ a

(
N∑
m=0

Dim(yη)mj −
N∑
m=0

Djm(yξ)im
)

+ b

(
N∑
m=0

Djm(xξ)im −
N∑
m=0

Dim(xη)mj
)

= 0.
(A.14)

3



A. Appendix

Due to the construction of the discrete metric terms the metric identities (A.8)
and (A.9) hold and we obtain

∂uij
∂t

= 0, (A.15)

for i, j = 0, . . . , N . Therefore, a constant solution remains constant over time.

Secondly we will proof conservation for the primary quantity. Therefore, we
consider discretization (A.3) and sum over all nodes i, j = 0, . . . , N to approximate
the integral over ∂U

∂t

N∑
i,j=0

Jijωiωj
∂uij
∂t

+
N∑
j=0

ωj
N∑
i=0

(Dx)ij +
N∑
i=0

ωi
N∑
j=0

(Dy)ij = 0, (A.16)

We focus on
N∑
i=0

(Dx)ij =1
2

N∑
i=0

(
N∑
m=0

Qimãmjumj + ãij
N∑
m=0

Qimumj + uij
N∑
m=0

Qimãmj

)

−
N∑
i=0

(
δiN [ãu− f̃ ∗]Nj − δi0[ãu− f̃ ∗]0j

)
.

(A.17)

Setting u:j := (u0j, . . . , uNj)T and ã:j := (ã0j, . . . , ãNj)T we can rewrite (A.17) by
N∑
i=0

(Dx)ij =1
2
(
1TQ (ã:j ◦ u:j) + ãT:jQu:j + uT:jQã:j

)
− [ãu− f̃ ∗]Nj + [ãu− f̃ ∗]0j,

(A.18)

where ◦ denotes the Hadamard product (elementwise multiplication). We focus on
the volume parts of (A.18) and as we consider SBP operators we know Q+QT = B
with B = diag(−1, . . . ,+1) which gives us

1TQ (ã:j ◦ u:j) = ãNjuNj − ã0ju0j + (ã:j ◦ u:j)T Q1︸︷︷︸
=0

= ãNjuNj − ã0ju0j, (A.19)

and

ãT:jQu:j + uT:jQã:j = ãT:jQu:j + ãT:jQTu:j = ãNjuNj − ã0ju0j. (A.20)

Including this in (A.18) we get
N∑
i=0

(Dx)ij =ãNjuNj − ã0ju0j − [ãu− f̃ ∗]Nj + [ãu− f̃ ∗]0j,

=f̃ ∗Nj − f̃ ∗0j.
(A.21)
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By doing the same derivations for ∑N
j=0(Dy)ij we get

N∑
j=0

(Dy)ij = g̃∗iN − g̃∗i0. (A.22)

All together this gives us
N∑

i,j=0
Jijωiωj

∂uij
∂t

+
N∑
j=0

ωj
(
f̃ ∗Nj − f̃ ∗0j

)
+

N∑
i=0

ωi (g̃∗iN − g̃∗i0) = 0, (A.23)

Next, we focus on the growth of the primary quantity on the interior interfaces.
Focusing on an interface with respect to f̃ ∗ we get

IUt = −
N∑
j=0

ωj f̃
∗,L
Nj +

N∑
j=0

ωj f̃
∗,R
0j . (A.24)

Note, that ωj does not have a superscript index L or R as we focus on a conforming
mesh and thus all SBP operators in each element are the same. On a conforming
mesh we set f̃ ∗j := f̃ ∗,LNj = f̃ ∗,R0j and obtain

IUt = −
N∑
j=0

ωj f̃
∗
j +

N∑
j=0

ωj f̃
∗
j = 0. (A.25)

So the terms which remain to describe the growth of the primary quantity are
defined on the boundary. This indicates primary conservation. Note, that this
holds independent of the choice of the numerical surface flux.

Next, we will proof energy stability. Therefore we multiply (A.3) by the solution
uij sum over all i, j = 0, . . . , N to approximate the integral of ∂

∂t

(
1
2U

2
)

N∑
i,j=0

Jijωiωj
∂

∂t

(1
2u

2
ij

)
+

N∑
j=0

ωj
N∑
i=0

uij(Dx)ij +
N∑
i=0

ωi
N∑
j=0

uij(Dy)ij = 0. (A.26)

We focus on
N∑
i=0

uij(Dx)ij

=1
2

(
N∑
i=0

uij
N∑
m=0

Qimãmjumj +
N∑
i=0

uij ãij
N∑
m=0

Qimumj +
N∑
i=0

u2
ij

N∑
m=0

Qimãmj

)

−
N∑
i=0

uij
(
δiN [ãu− f̃ ∗]Nj − δi0[ãu− f̃ ∗]0j

)
,

(A.27)
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or in a more compact matrix vector notation we get
N∑
i=0

uij(Dx)ij

=1
2

(
uT:jQ (ã:j ◦ u:j) + (u:j ◦ ã:j)T Qu:j +

(
u2

:j

)T
Qã:j

)
− [ãu2 − uf̃ ∗]Nj − [ãu2 − uf̃ ∗]0j.

(A.28)

Due to the SBP property we know

uT:jQ (ã:j ◦ u:j) + (u:j ◦ ã:j)T Qu:j = ãNju
2
Nj − ã0ju

2
0j, (A.29)

which leads to
N∑
i=0

uij(Dx)ij = 1
2
(
u2

:j

)T
Qã:j −

[1
2 ãu

2 − uf̃ ∗
]
Nj

+
[1
2 ãu

2 − uf̃ ∗
]

0j
. (A.30)

Doing the same derivations we get
N∑
j=0

uij(Dy)ij = 1
2
(
u2
i:

)T
Qb̃i: −

[1
2 b̃u

2 − ug̃∗
]
iN

+
[1
2 b̃u

2 − ug̃∗
]
i0
. (A.31)

In total this gives us
N∑
i=0

N∑
j=0

Jijωiωj
∂

∂t

(1
2u

2
ij

)

=
N∑
j=0

ωj
1
2
(
u2

:j

)T
Qã:j −

[1
2 ãu

2 − uf̃ ∗
]
Nj

+
[1
2 ãu

2 − uf̃ ∗
]

0j

+
N∑
i=0

ωi
1
2
(
u2
i:

)T
Qb̃i: −

[1
2 b̃u

2 − ug̃∗
]
iN

+
[1
2 b̃u

2 − ug̃∗
]
i0
.

(A.32)

Next, we focus on the volume parts of (A.32) denoted by V P , where

V P =
N∑
j=0

ωj
1
2
(
u2

:j

)T
Qã:j +

N∑
i=0

ωi
1
2
(
u2
i:

)T
Qb̃i:. (A.33)

Rewriting V P and using Q = MD gives us

V P = 1
2

N∑
j,k=0

ωjωku
2
kj

N∑
m=0

Dkmãmj + 1
2

N∑
i,k=0

ωiωku
2
ik

N∑
m=0

Dkmb̃im. (A.34)
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Rearranging the sums we get

V P = 1
2

N∑
i,j=0

ωiωju
2
ij

(
N∑
m=0

Dimãmj +
N∑
m=0

Djmb̃im

)
. (A.35)

Focusing on the term within in brackets and using ã = yηa−xηb and b̃ = xξb−yξa
we get

N∑
m=0

Dimãmj +
N∑
m=0

Djmb̃im = a

(
N∑
m=0

Dim(yη)mj −
N∑
m=0

Djm(yξ)im
)

+ b

(
N∑
m=0

Djm(xξ)im −
N∑
m=0

Dim(xη)mj
)
,

= 0.

(A.36)

as we assume that the metric terms satisfy the metric identities (A.8) and (A.9).
Therefore, we get V P = 0 and thus the discrete growth for the total energy reduces
to surface contributions

N∑
i=0

N∑
j=0

Jijωiωj
∂

∂t

(1
2u

2
ij

)
=−

[1
2 ãu

2 − uf̃ ∗
]
Nj

+
[1
2 ãu

2 − uf̃ ∗
]

0j

−
[1
2 b̃u

2 − ug̃∗
]
iN

+
[1
2 b̃u

2 − ug̃∗
]
i0
.

(A.37)

Again, we focus on an interior interface. Due to the conformity of the mesh and
get

IEt =
N∑
j=0

ωj

[1
2 ã
(
uL
)2
− uLf̃ ∗,L

]
Nj
−

N∑
j=0

ωj

[1
2 ã
(
uR
)2
− uRf̃ ∗,R

]
0j
, (A.38)

setting f̃ ∗j := f̃ ∗,LNj = f̃ ∗,R0j and ignoring the first index within uL, uR, ã and b̃ (as
these are always constant) we get

IEt =
N∑
j=0

ωj

(1
2 ã
(
uL
)2
− uLf̃ ∗ − 1

2 ã
(
uR
)2

+ uRf̃ ∗
)
j
. (A.39)
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Rewriting the contravariant fluxes in terms of f ∗ and g∗ we obtain

IEt =
N∑
j=0

ωj

(1
2 (yηa− xηb)

(
uL
)2
− uL (yηf ∗ − xηg∗)

)

−
N∑
j=0

ωj

(1
2 (yηa− xηb)

(
uR
)2

+ uR (yηf ∗ − xηg∗)
)
j
,

=
N∑
j=0

ωj

(
yη

(1
2a
(
uL
)2
− uLf ∗ − 1

2a
(
uR
)2

+ uRf ∗
))

j

−
N∑
j=0

ωj

(
xη

(1
2b
(
uL
)2
− uLg∗ − 1

2b
(
uR
)2

+ uRg∗
))

j
.

(A.40)

We set the numerical fluxes to be

f ∗ := a
uR + uL

2 −

 yη√
y2
η + x2

η

 |a|
2
(
uR − uL

)
,

g∗ := b
uR + uL

2 −

 −xη√
y2
η + x2

η

 |b|
2
(
uR − uL

)
.

(A.41)

Including these fluxes in (A.40) we get

IEt ==− |a|2

N∑
j=0

ωj

 y2
η√

y2
η + x2

η

(
uR − uL

)2

j

− |b|2

N∑
j=0

ωj

 x2
η√

y2
η + x2

η

(
uR − uL

)2

j

,

≤− min{|a|, |b|}
2

N∑
j=0

ωj

 y2
η√

y2
η + x2

η

(
uR − uL

)2
+

x2
η√

y2
η + x2

η

(
uR − uL

)2

j

,

≤− σmin{|a|, |b|}
2

N∑
j=0

ωj
(√

y2
η + x2

η

)
j

(
uR − uL

)2

j︸ ︷︷ ︸
≥0

≤ 0,

(A.42)

So the scheme is provable energy stable and primary conservative on a curvilinear
mesh. To summarize, in comparison to the discretization on a Cartesian mesh,

8
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we considered a skew-symmetric discretization (A.3). Assuming that the discrete
metric terms satisfy the metric identities (A.8) and (A.9) we proved that the
discretization is primary conservative and energy stable.

A.2. Primary Conservative and Entropy Stable Discretization
for Hyperbolic Systems of Conservation Laws on
Conforming Curved Elements

Herein, we provide a discretization of two dimensional hyperbolic systems with
NEq equations on a curvilinear, conforming mesh. The standard Flux Difference
discretization (4.64) is insufficient as the non-constant metric terms introduce fur-
ther non-linearities. Therefore, we consider the two dimensional tensor product
discretization on an arbitrary element with N nodes in x- and y-direction, where
uij denotes the discrete solution for i, j = 0, . . . , N (compare Appendix A.1)

Jijωiωj
∂uij
∂t

+ ωj(Dx)ij + ωi(Dy)ij = 0, (A.43)

with
(Dx)ij :=

N∑
m=0

Qim

(
f̃#(uij,umj) + f̃#(umj,uij)

)
−
(
δiN [f̃ − f̃ ∗]Nj − δi0[f̃ − f̃ ∗]0j

)
,

(Dy)ij :=
N∑
m=0

Qjm

(
g̃#(uij,uim) + g̃#(uim,uij)

)
− (δjN [g̃ − g̃∗]iN − δj0[g̃ − g̃∗]i0) .

(A.44)

Here, u,f and g denote vectors of size NEq. The contravariant fluxes are defined
by

f̃ := yηf − xηg,
g̃ := xξg − yξf ,

(A.45)

where the approximated metric terms yη, xη, yξ, xξ are constructed as in Appendix
A.1. Thus, they satisfy the metric identities

N∑
m=0

Dim(yη)mj =
N∑
m=0

Djm(yξ)im, (A.46)

and
N∑
m=0

Dim(xη)mj =
N∑
m=0

Djm(xξ)im, (A.47)

9
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Within discretization (A.43) the two point volume flux is defined by

f̃#(uij,umj) := (yη)ijf#(uij,umj)− (xη)ijg#(uij,umj),
g̃#(uij,umj) := (xξ)ijg#(uij,umj)− (yξ)ijf#(uij,umj).

(A.48)

We note that in comparison to the Cartesian case the two point volume flux is not
symmetric as the metric terms refer to the first entry. Here, we set the volume
fluxes to f# = f ∗EC and g# = g∗EC where these fluxes satisfy the Tadmor Shuffle
condition

(vij − vmj)Tf ∗EC(uij,umj) = (Ψf
ij −Ψf

mj),
(vij − vmj)Tg∗EC(uij,umj) = (Ψg

ij −Ψg
mj),

(A.49)

where v denotes the entropy variables and Ψf ,Ψg denote the flux potentials.

First we will prove free stream preservation, see Appendix A.1. Therefore we
set all values of f and g to be constant vectors denoted by Cf and Cg. Looking
at Dx,Dy we get

(Dx)ij =
N∑
m=0

Qim ((yη)ijCf − (xη)ijCg + (yη)mjCf − (xη)mjCg) ,

(Dy)ij =
N∑
m=0

Qjm ((xξ)ijCg − (yξ)ijCf + (xξ)imCg − (yξ)imCf ) .
(A.50)

Due to consistency of the the numerical fluxes f̃#, g̃#, f̃ ∗, g̃∗ the surface parts
vanish and the volume fluxes remain constant. Rewriting Q = MD we get (A.43)

Jijωiωj
∂uij
∂t

=− ωiωj
N∑
m=0

Dim ((yη)ijCf − (xη)ijCg + (yη)mjCf − (xη)mjCg)

− ωiωj
N∑
m=0

Djm ((xξ)ijCg − (yξ)ijCf + (xξ)imCg − (yξ)imCf ) .

(A.51)

Dividing by ωiωj and rearranging terms we obtain

Jij
∂uij
∂t

=−Cf
N∑
m=0

Dim ((yη)ij + (yη)mj − (yξ)ij − (yξ)im)

−Cg
N∑
m=0

Dim ((xξ)ij + (xξ)im − (xη)ij − (xη)mj) .
(A.52)
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As the differentiation matrix is of degree p > 0 we know ∑N
m=0 Dim = 0 and thus

Jij
∂uij
∂t

=−Cf
(

N∑
m=0

Dim(yη)mj −
N∑
m=0

Dim(yξ)im
)

−Cg
(

N∑
m=0

Dim(xξ)im −
N∑
m=0

Dim(xη)mj
)
.

(A.53)

Due to the metric identities (A.46) and (A.47) we obtain
∂uij
∂t

= 0, (A.54)

which indicates free stream preservation.

Secondly we will proof conservation for the primary quantities. Therefore we
sum (A.43) over all i, j = 0, . . . , N to approximate the discrete integral of ∂U

∂t

N∑
i,j=0

Jijωiωj
∂uij
∂t

+
N∑
j=0

ωj
N∑
i=0

(Dx)ij +
N∑
i=0

ωi
N∑
j=0

(Dy)ij = 0, (A.55)

Focusing on ∑N
i,j=0 ωj(Dx)ij we get

N∑
i=0

(Dx)ij =
N∑
i=0

N∑
m=0

Qimf̃
#(uij,umj) +

N∑
i=0

N∑
m=0

Qimf̃
#(umj,uij)

−
N∑
i=0

(
δiN [f̃ − f̃ ∗]Nj − δi0[f̃ − f̃ ∗]0j

)
,

(A.56)

Using the SBP property Q = B− QT we obtain
N∑
i=0

(Dx)ij =
N∑
i=0

N∑
m=0

Qimf̃
#(uij,umj)−

N∑
i=0

N∑
m=0

Qmif̃
#(umj,uij)

+
N∑
i=0

N∑
m=0

Bimf̃
#(umj,uij)− [f̃ − f̃ ∗]Nj + [f̃ − f̃ ∗]0j,

(A.57)

By rearranging indices the two sum with Q included cancel each other out and
due to the structure of B = diag(−1, 0, . . . , 0,+1) and the consistency of f̃# it
remains

N∑
i=0

(Dx)ij = f̃(uNj)− f̃(u0j)− [f̃ − f̃ ∗]Nj + [f̃ − f̃ ∗]0j,

= f̃ ∗Nj − f̃ ∗0j.
(A.58)
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By doing the same derivations for ∑N
j=0(Dy)ij we get

N∑
j=0

(Dy)ij = g̃∗iN − g̃∗i0 (A.59)

All together this gives us
N∑
i=0

N∑
j=0

Jijωiωj
∂uij
∂t

= −
N∑
j=0

ωjf̃
∗
Nj +

N∑
j=0

ωjf̃
∗
0j −

N∑
i=0

ωig̃
∗
iN +

N∑
j=0

ωjg̃
∗
i0. (A.60)

Focusing on a single interior interface we get

IUt = −
N∑
j=0

ωjf̃
∗,L
Nj +

N∑
j=0

ωjf̃
∗,R
0j . (A.61)

Note, that ωj does not have a superscript index L or R as we focus on a conform-
ing mesh and thus all SBP operators in each element are the same. Due to the
conforming mesh we set f̃ ∗j := f̃ ∗,LNj = f̃ ∗,R0j and arrive at

IUt = −
N∑
j=0

ωjf̃
∗
j +

N∑
j=0

ωjf̃
∗
j = 0, (A.62)

which indicates primary conservation.

Next, we will proof entropy stability. Therefore we contract (A.43) by the en-
tropy variables vij and sum over all i, j = 0, . . . , N to approximate the discrete
integral of ∂S

∂t

N∑
i,j=0

Jijωiωjv
T
ij

∂uij
∂t

+
N∑
j=0

ωj
N∑
i=0
vTij(Dx)ij +

N∑
i=0

ωi
N∑
j=0
vTij(Dy)ij = 0 (A.63)

We focus on ∑N
i=0 v

T
ij(Dx)ij an get

N∑
i=0
vTij(Dx)ij =

N∑
i=0

N∑
m=0

Qimv
T
ijf̃

#(uij,umj) +
N∑
i=0

N∑
m=0

Qimv
T
ijf̃

#(umj,uij)

−
N∑
i=0

(
δiN [vT f̃ − vT f̃ ∗]Nj − δi0[vT f̃ − vT f̃ ∗]0j

)
.

(A.64)
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Using the SBP property Q = B− QT we obtain
N∑
i=0
vTij(Dx)ij =

N∑
i=0

N∑
m=0

Qimv
T
ijf̃

#(uij,umj)−
N∑
i=0

N∑
m=0

Qmiv
T
ijf̃

#(umj,uij)

+
N∑
i=0

N∑
m=0

Bimv
T
ijf̃

#(umj,uij)

− [vT f̃ − vT f̃ ∗]Nj + [vT f̃ − vT f̃ ∗]0j.

(A.65)

Rearranging terms, using the structure of B and due to consistency of f̃# we get
N∑
i=0
vTij(Dx)ij =

N∑
i=0

N∑
m=0

Qim (vij − vmj)T f̃#(uij,umj) + vTNjf̃ ∗Nj − vT0jf̃ ∗0j. (A.66)

Next, we focus on the volume part of (A.66)

N∑
i=0

N∑
m=0

Qim (vij − vmj)T f̃#(uij,umj),

=
N∑
i=0

N∑
m=0

Qim(yη)ij (vij − vmj)T f#(uij,umj)

−
N∑
i=0

N∑
m=0

Qim(xη)ij (vij − vmj)T g#(uij,umj).

(A.67)

Using the Tadmor shuffle condition (A.49) we can rewrite (A.67) with the entropy
flux potentials

N∑
i=0

N∑
m=0

Qim (vij − vmj)T f̃#(uij,umj),

=
N∑
i=0

N∑
m=0

Qim

(
(yη)ij

(
Ψf
ij −Ψf

mj

)
− (xη)ij

(
Ψg
ij −Ψg

mj

))
,

=
N∑
i=0

(yη)ij
(

Ψf
ij

N∑
m=0

Qim −
N∑
m=0

QimΨf
mj

)

−
N∑
i=0

(xη)ij
(

Ψg
ij

N∑
m=0

Qim −
N∑
m=0

QimΨg
mj

)
.

(A.68)
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Assuming that ∑N
m=0 Qim = 0 (SBP operator of degree p > 0) we get
N∑
i=0

N∑
m=0

Qim (vij − vmj)T f̃#(uij,umj),

=
N∑
i=0

(
−(yη)ij

N∑
m=0

QimΨf
mj + (xη)ij

N∑
m=0

QimΨg
mj

)
.

(A.69)

Again, applying the SBP property we get
N∑
i=0

N∑
m=0

Qim (vij − vmj)T f̃#(uij,umj)

=
N∑
i=0

(
(yη)ij

N∑
m=0

QmiΨf
mj − (yη)ij

N∑
m=0

BimΨf
mj

)

−
N∑
i=0

(
(xη)ij

N∑
m=0

QmiΨg
mj − (xη)ij

N∑
m=0

BimΨg
mj

)
.

(A.70)

By rearranging terms we obtain
N∑
i=0

N∑
m=0

Qim (vij − vmj)T f̃#(uij,umj)

=
N∑
m=0

Ψf
mj

N∑
i=0

Qmi(yη)ij − (yη)NjΨf
Nj + (yη)0jΨf

0j

−
N∑
m=0

Ψg
mj

N∑
i=0

Qmi(xη)ij + (xη)NjΨg
Nj − (xη)0jΨg

0j.

(A.71)

By rewriting the potentials in terms of a contravariant potential defined by
Ψ̃f := yηΨf − xηΨg, (A.72)

we get
N∑
i=0

N∑
m=0

Qim (vij − vmj)T f̃#(uij,umj)

=
N∑
m=0

Ψf
mj

N∑
i=0

Qmi(yη)ij −
N∑
m=0

Ψg
mj

N∑
i=0

Qmi(xη)ij − Ψ̃f
Nj + Ψ̃f

0j.

(A.73)

Including this result into (A.66) yields
N∑
i=0
vTij(Dx)ij =

N∑
m=0

Ψf
mj

N∑
i=0

Qmi(yη)ij −
N∑
m=0

Ψg
mj

N∑
i=0

Qmi(xη)ij

+ vTNjf̃ ∗Nj − Ψ̃f
Nj − vT0jf̃ ∗0j + Ψ̃f

0j.

(A.74)
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Doing the same analysis for ∑N
j=0 v

T
ij(Dy)ij leads to

N∑
j=0
vTij(Dy)ij =

N∑
m=0

Ψg
im

N∑
j=0

Qmj(xξ)ij −
N∑
m=0

Ψf
im

N∑
j=0

Qmj(yξ)ij

+ vTiN g̃∗iN − Ψ̃g
iN − vTi0g̃∗i0 + Ψ̃g

i0.

(A.75)

With (A.74) and (A.75) we can evaluate the total discrete entropy growth (A.63)

N∑
i,j=0

Jijωiωj
∂Sij
∂t

=−
N∑
j=0

ωj

(
N∑
m=0

Ψf
mj

N∑
i=0

Qmi(yη)ij −
N∑
m=0

Ψg
mj

N∑
i=0

Qmi(xη)ij
)

−
N∑
j=0

ωj
(
vTNjf̃

∗
Nj − Ψ̃f

Nj − vT0jf̃ ∗0j + Ψ̃f
0j

)

−
N∑
i=0

ωi

 N∑
m=0

Ψg
im

N∑
j=0

Qmj(xξ)ij −
N∑
m=0

Ψf
im

N∑
j=0

Qmj(yξ)ij


−

N∑
i=0

ωi
(
vTiN g̃

∗
iN − Ψ̃g

iN − vTi0g̃∗i0 + Ψ̃g
i0

)
.

(A.76)

We rearrange the volume parts and by using Q = MD we get
N∑

i,j=0
Jijωiωj

∂Sij
∂t

=
N∑

i,j=0
ωiωjΨf

ij

(
N∑
m=0

Djm(yξ)im −
N∑
m=0

Dim(yη)mj
)

+
N∑

i,j=0
ωiωjΨg

ij

(
N∑
m=0

Dim(xη)mj −
N∑
m=0

Djm(xξ)im
)

−
N∑
j=0

ωj
(
vTNjf̃

∗
Nj − Ψ̃f

Nj − vT0jf̃ ∗0j + Ψ̃f
0j

)

−
N∑
i=0

ωi
(
vTiN g̃

∗
iN − Ψ̃g

iN − vTi0g̃∗i0 + Ψ̃g
i0

)
.

(A.77)
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Due to the metric identities (A.46) and (A.47) we finally obtain
N∑

i,j=0
Jijωiωj

∂Sij
∂t

=−
N∑
j=0

ωj

([
vT f̃ ∗ − Ψ̃f

]
Nj
−
[
vT f̃ ∗ − Ψ̃f

]
0j

)

−
N∑
i=0

ωi
([
vT g̃∗ − Ψ̃g

]
iN
−
[
vT g̃∗ − Ψ̃g

]
i0

)
.

(A.78)

We see that all the volume parts vanish and therefore te total growth in entropy
reduces to evaluations at the element surface. As we focus a conforming mesh we
consider a single interior interface and get

ISt =
N∑
j=0

ωj

([
vR,T f̃ ∗,R − Ψ̃f,R

]
0j
−
[
vL,T f̃ ∗,L − Ψ̃f,L

]
Nj

)
. (A.79)

Note, that as we are on a conforming mesh the weights ωj on the left and right
element are the same and thus, they are not reliant on a superscript L or R. Setting
f̃ ∗j := f̃ ∗,LNj = f̃ ∗,R0j and ignoring the first index within vL, Ψ̃f,L and vR, Ψ̃f,R (as
these are always constant) we arrive at

ISt =
N∑
j=0

ωj

((
vR − vL

)T
f̃ ∗ −

(
Ψ̃f,R − Ψ̃f,L

))
j
. (A.80)

Next, we rewrite the contravariant fluxes in terms of
f̃ ∗ = yηf

∗ − xηg∗, (A.81)
and (A.80) is equivalent to

ISt =
N∑
j=0

ωj

(
yη

((
vR − vL

)T
f ∗ −

(
Ψf,R −Ψf,L

)))
j

−
N∑
j=0

ωj

(
xη

((
vR − vL

)T
g∗ −

(
Ψg,R −Ψg,L

)))
j
.

(A.82)

To finalize the proof of entropy stability we need to specify the numerical surface
flux and set

f ∗ES(uR,uL) := f ∗EC(uR,uL)−
 yη√

y2
η + x2

η

 λF
2 K

(
vR − vL

)
,

g∗ES(uR,uL) := g∗EC(uR,uL)−
 −xη√

y2
η + x2

η

 λG
2 K

(
vR − vL

)
,

(A.83)
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whereλF , λG denote the absolute maximum eigenvalue of the Jacobian of F and G.
Here, K denotes a symmetric positive definite dissipation matrix with K

(
vR − vL

)
≈(

uR − uL
)
, for more information see Chapter 4. Including (A.83) in (A.80) we

get

ISt =
N∑
j=0

ωj

(
yη

((
vR − vL

)T
f ∗EC −

(
Ψf,R −Ψf,L

)))
j

− λF
2

N∑
j=0

ωj

 y2
η√

y2
η + x2

η

(vR − vL)T K
(
vR − vL

)
j

+
N∑
j=0

ωj

(
xη

((
vR − vL

)T
g∗EC −

(
Ψg,R −Ψg,L

)))
j

− λG
2

N∑
j=0

ωj

 x2
η√

y2
η + x2

η

(vR − vL)T K
(
vR − vL

)
j

.

(A.84)

As f# and g# satisfy the Tadmor Shuffle condition (A.49) we obtain

ISt =− λF
2

N∑
j=0

ωj

 y2
η√

y2
η + x2

η

(vR − vL)T K
(
vR − vL

)
j

− λG
2

N∑
j=0

ωj

 x2
η√

y2
η + x2

η

(vR − vL)T K
(
vR − vL

)
j

,

≤− min{λF , λG}
2

N∑
j=0

ωj

 y2
η + x2

η√
y2
η + x2

η

(vR − vL)T K
(
vR − vL

)
j

.

(A.85)

As K is positive semi definite
(
vR − vL

)T
K
(
vR − vL

)
> 0 and therefore

ISt ≤−
min{λF , λG}

2

N∑
j=0

ωj
(√

y2
η + x2

η

)
j

((
vR − vL

)T
K
(
vR − vL

))
j︸ ︷︷ ︸

≥0

,

≤0.

(A.86)

This inequality holds for all interior interfaces and therefore the curvilinear dis-
cretization (A.43) is provably primary conservative and entropy stable for an ar-
bitrary conservation law. Here, it is necessary that a numerical flux exists which
satisfies the Tadmor Shuffle condition (A.49) and that the metric terms satisfy the
metric identities (A.46),(A.47).
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