2,241 research outputs found

    An algorithm to assemble gene-protein-reaction associations for genome-scale metabolic model reconstruction

    Get PDF
    The considerable growth in the number of sequenced genomes and recent advances in Bioinformatics and Systems Biology fields have provided several genome-scale metabolic models (GSMs) that have been used to provide phenotype simulation methods. Given their importance in biomedical research and biotechnology applications (e.g. in Metabolic Engineering efforts), several workflows and computational platforms have been proposed for GSM reconstruction. One of the challenges of these methods is related to the assignment of gene-protein-reaction (GPR) associations that allow to add transcriptional/ translational information to GSMs, a task typically addressed through manual literature curation. This work proposes a novel algorithm to create a set of GPR rules, based on the integration of the information provided by the genome annotation with information on protein composition and function (protein complexes, sub-units, iso-enzymes, etc.) provided by the UniProt database. The methods are validated by using two state-of-the-art models for E. coli and S. cerevisiae, with competitive results.The work is partially funded by ERDF - European Regional Development Fund through the COMPETE Programme ( operational programme for competitiveness) and by National Funds through the FCT ( Portuguese Foundation for Science and Tech- nology) within projects ref. COMPETE FCOMP-01-0124-FEDER-015079 and PEst-OE/EEI/UI0752/2011

    Genome-wide semi-automated annotation of transporter systems

    Get PDF
    Usually, transport reactions are added to genome-scale metabolic models (GSMMs) based on experimental data and literature. This approach does not allow associating specific genes with transport reactions, which impairs the ability of the model to predict effects of gene deletions. Novel methods for systematic genome-wide transporter functional annotation and their integration into GSMMs are therefore necessary. In this work, an automatic system to detect and classify all potential membrane transport proteins for a given genome and integrate the related reactions into GSMMs is proposed, based on the identification and classification of genes that encode transmembrane proteins. The Transport Reactions Annotation and Generation (TRIAGE) tool identifies the metabolites transported by each transmembrane protein and its transporter family. The localization of the carriers is also predicted and, consequently, their action is confined to a given membrane. The integration of the data provided by TRIAGE with highly curated models allowed the identification of new transport reactions. TRIAGE is included in the new release of merlin, a software tool previously developed by the authors, which expedites the GSMM reconstruction processes.This work was partially supported by a PhD grant (SFRH /BD/47307/2008) and by the ERDF—European Regional Development Fund through the COMPETE Programme (operational programme for competitiveness), and National Funds through the FCT within the projects FCOMP-01-0124-FEDER-009707 (HeliSysBio—molecular Systems Biology in Helicobacter pylori) and PTDC/EIAEIA/115176/2009. The authors would also like to thank the FCT Strategic Project PEst-OE/EQB/LA0023/2013 and the Projects “BioInd - Biotechnology and Bioengineering for improved Industrial and Agro-Food processes”, REF. NORTE-07-0124-FEDER-000028 and “PEM – Metabolic Engineering Platform”, project number 23060 , both cofunded by the Programa Operacional Regional do Norte (ON.2 – O Novo Norte), QREN, FEDER.info:eu-repo/semantics/publishedVersio

    A review of methods for the reconstruction and analysis of integrated genome-scale models of metabolism and regulation

    Get PDF
    The current survey aims to describe the main methodologies for extending the reconstruction and analysis of genome-scale metabolic models and phenotype simulation with Flux Balance Analysis mathematical frameworks, via the integration of Transcriptional Regulatory Networks and/or gene expression data. Although the surveyed methods are aimed at improving phenotype simulations obtained from these models, the perspective of reconstructing integrated genome-scale models of metabolism and gene expression for diverse prokaryotes is still an open challenge.This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UIDB/04 469/2020 unit and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020 -Programa Operacional Regional do Norte. Fernando Cruz holds a doctoral fellowship (SFRH/BD/139198/2018) funded by the FCT. This study was supported by the European Commission through project SHIKIFACTORY100 -Modular cell factories for the production of 100 compounds from the shikimate pathway (Reference 814408). The submitted manuscript has been created by UChicago Argonne, LLC as Operator of Argonne National Laboratory (`Argonne') under Contract No. DE-AC02-06CH11357 with the U.S. Department of Energy. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan.info:eu-repo/semantics/publishedVersio

    Developing methods for the context-specific reconstruction of metabolic models of cancer cells

    Get PDF
    Dissertação de mestrado em BioinformáticaThe recent advances in genome sequencing technologies and other high-throughput methodologies allowed the identification and quantification of individual cell components. These efforts led to the development of genome-scale metabolic models (GSMMs), not only for humans but also for several other organisms. These models have been used to predict cellular metabolic phenotypes under a variety of physiological conditions and contexts, proving to be useful in tasks such as drug discovery, biomarker identification and interactions between hosts and pathogens. Therefore, these models provide a useful tool for targeting diseases such as cancer, Alzheimer or tuberculosis. However, the usefulness of GSSMs is highly dependent on their capabilities to predict phenotypes in the array of different cell types that compose the human body, making the development of tissue/context-specific models mandatory. To address this issue, several methods have been proposed to integrate omics data, such as transcriptomics or proteomics, to improve the phenotype prediction abilities of GSSMs. Despite these efforts, these methods still have some limitations. In most cases, their usage is locked behind commercially licensed software platforms, or not available in a user-friendly fashion, thus restricting their use to users with programming or command-line knowledge. In this work, an open-source tool was developed for the reconstruction of tissue/context-specific models based on a generic template GSMM and the integration of omics data. The Tissue-Specific Model Reconstruction (TSM-Rec) tool was developed under the Python programming language and features the FASTCORE algorithm for the reconstruction of tissue/context-specific metabolic models. Its functionalities include the loading of omics data from a variety of omics databases, a set of filtering and transformation methods to adjust the data for integration with a template metabolic model, and finally the reconstruction of tissue/context-specific metabolic models. To evaluate the functionality of the developed tool, a cancer related case-study was carried. Using omics data from 314 glioma patients, the TSM-Rec tool was used to reconstruct metabolic models of different grade gliomas. A total of three models were generated, corresponding to grade II, III and IV gliomas. These models were analysed regarding their differences and similarities in reactions and pathways. This comparison highlighted biological processes common to all glioma grades, and pathways that are more prominent in each glioma model. The results show that the tool developed during this work can be useful for the reconstruction of cancer metabolic models, in a search for insights into cancer metabolism and possible approaches towards drug-target discovery.Os avanços recentes nas tecnologias de sequenciação de genomas e noutras metodologias experimentais de alto rendimento permitiram a identificação e quantificação dos diversos componentes celulares. Estes esforços levaram ao desenvolvimento de Modelos Metabólicos à Escala Genómica (MMEG) não só de humanos, mas também de diversos organismos. Estes modelos têm sido utilizados para a previsão de fenótipos metabólicos sob uma variedade de contextos e condições fisiológicas, mostrando a sua utilidade em áreas como a descoberta de fármacos, a identificação de biomarcadores ou interações entre hóspede e patógeno. Desta forma, estes modelos revelam-se ferramentas úteis para o estudo de doenças como o cancro, Alzheimer ou a tuberculose. Contudo, a utilidade dos MMEG está altamente dependente das suas capacidades de previsão de fenótipos nos diversostipos celulares que compõem o corpo humano, tornando o desenvolvimento de modelos específicos de tecidos uma tarefa obrigatória. Para resolver este problema, vários métodos têm proposto a integração de dados ómicos como os de transcriptómica ou proteómica para melhorar as capacidades preditivas dos MMEG. Apesar disso, estes métodos ainda sofrem de algumas limitações. Na maioria dos casos o seu uso está confinado a plataformas ou softwares com licenças comerciais, ou não está disponível numa ferramenta de fácil uso, limitando a sua utilização a utilizadores com conhecimentos de programação ou de linha de comandos. Neste trabalho, foi desenvolvida uma ferramenta de acesso livre para a reconstrução de modelos metabólicos específicos para tecidos tendo por base um MMEG genérico e a integração de dados ómicos. A ferramenta TSM-Rec (Tissue-Specific Model Reconstruction), foi desenvolvida na linguagem de programação Python e recorre ao algoritmo FASTCORE para efetuar a reconstrução de modelos metabólicos específicos. As suas funcionalidades permitem a leitura de dados ómicos de diversas bases de dados ómicas, a filtragem e transformação dos mesmos para permitir a sua integração com um modelo metabólico genérico e por fim, a reconstrução de modelos metabólicos específicos. De forma a avaliar o funcionamento da ferramenta desenvolvida, esta foi aplicada num caso de estudo de cancro. Recorrendo a dados ómicos de 314 pacientes com glioma, usou-se a ferramenta TSM-Rec para a reconstrução de modelos metabólicos de gliomas de diferentes graus. No total, foram desenvolvidos três modelos correspondentes a gliomas de grau II, grau III e grau IV. Estes modelos foram analisados no sentido de perceber as diferenças e as similaridades entre as reações e as vias metabólicas envolvidas em cada um dos modelos. Esta comparação permitiu isolar processos biológicos comuns a todos os graus de glioma, assim como vias metabólicas que se destacam em cada um dos graus. Os resultados obtidos demonstram que a ferramenta desenvolvida pode ser útil para a reconstrução de modelos metabólicos de cancro, na procura de um melhor conhecimento do metabolismo do cancro e possíveis abordagens para a descoberta de fármacos

    MetRxn: a knowledgebase of metabolites and reactions spanning metabolic models and databases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Increasingly, metabolite and reaction information is organized in the form of genome-scale metabolic reconstructions that describe the reaction stoichiometry, directionality, and gene to protein to reaction associations. A key bottleneck in the pace of reconstruction of new, high-quality metabolic models is the inability to directly make use of metabolite/reaction information from biological databases or other models due to incompatibilities in content representation (i.e., metabolites with multiple names across databases and models), stoichiometric errors such as elemental or charge imbalances, and incomplete atomistic detail (e.g., use of generic R-group or non-explicit specification of stereo-specificity).</p> <p>Description</p> <p>MetRxn is a knowledgebase that includes standardized metabolite and reaction descriptions by integrating information from BRENDA, KEGG, MetaCyc, Reactome.org and 44 metabolic models into a single unified data set. All metabolite entries have matched synonyms, resolved protonation states, and are linked to unique structures. All reaction entries are elementally and charge balanced. This is accomplished through the use of a workflow of lexicographic, phonetic, and structural comparison algorithms. MetRxn allows for the download of standardized versions of existing genome-scale metabolic models and the use of metabolic information for the rapid reconstruction of new ones.</p> <p>Conclusions</p> <p>The standardization in description allows for the direct comparison of the metabolite and reaction content between metabolic models and databases and the exhaustive prospecting of pathways for biotechnological production. This ever-growing dataset currently consists of over 76,000 metabolites participating in more than 72,000 reactions (including unresolved entries). MetRxn is hosted on a web-based platform that uses relational database models (MySQL).</p

    Blueprint: descrição da complexidade da regulação metabólica através da reconstrução de modelos metabólicos e regulatórios integrados

    Get PDF
    Tese de doutoramento em Biomedical EngineeringUm modelo metabólico consegue prever o fenótipo de um organismo. No entanto, estes modelos podem obter previsões incorretas, pois alguns processos metabólicos são controlados por mecanismos reguladores. Assim, várias metodologias foram desenvolvidas para melhorar os modelos metabólicos através da integração de redes regulatórias. Todavia, a reconstrução de modelos regulatórios e metabólicos à escala genómica para diversos organismos apresenta diversos desafios. Neste trabalho, propõe-se o desenvolvimento de diversas ferramentas para a reconstrução e análise de modelos metabólicos e regulatórios à escala genómica. Em primeiro lugar, descreve-se o Biological networks constraint-based In Silico Optimization (BioISO), uma nova ferramenta para auxiliar a curação manual de modelos metabólicos. O BioISO usa um algoritmo de relação recursiva para orientar as previsões de fenótipo. Assim, esta ferramenta pode reduzir o número de artefatos em modelos metabólicos, diminuindo a possibilidade de obter erros durante a fase de curação. Na segunda parte deste trabalho, desenvolveu-se um repositório de redes regulatórias para procariontes que permite suportar a sua integração em modelos metabólicos. O Prokaryotic Transcriptional Regulatory Network Database (ProTReND) inclui diversas ferramentas para extrair e processar informação regulatória de recursos externos. Esta ferramenta contém um sistema de integração de dados que converte dados dispersos de regulação em redes regulatórias integradas. Além disso, o ProTReND dispõe de uma aplicação que permite o acesso total aos dados regulatórios. Finalmente, desenvolveu-se uma ferramenta computacional no MEWpy para simular e analisar modelos regulatórios e metabólicos. Esta ferramenta permite ler um modelo metabólico e/ou rede regulatória, em diversos formatos. Esta estrutura consegue construir um modelo regulatório e metabólico integrado usando as interações regulatórias e as ligações entre genes e proteínas codificadas no modelo metabólico e na rede regulatória. Além disso, esta estrutura suporta vários métodos de previsão de fenótipo implementados especificamente para a análise de modelos regulatórios-metabólicos.Genome-Scale Metabolic (GEM) models can predict the phenotypic behavior of organisms. However, these models can lead to incorrect predictions, as certain metabolic processes are controlled by regulatory mechanisms. Accordingly, many methodologies have been developed to extend the reconstruction and analysis of GEM models via the integration of Transcriptional Regulatory Network (TRN)s. Nevertheless, the perspective of reconstructing integrated genome-scale regulatory and metabolic models for diverse prokaryotes is still an open challenge. In this work, we propose several tools to assist the reconstruction and analysis of regulatory and metabolic models. We start by describing BioISO, a novel tool to assist the manual curation of GEM models. BioISO uses a recursive relation-like algorithm and Flux Balance Analysis (FBA) to evaluate and guide debugging of in silico phenotype predictions. Hence, this tool can reduce the number of artifacts in GEM models, decreasing the burdens of model refinement and curation. A state-of-the-art repository of TRNs for prokaryotes was implemented to support the reconstruction and integration of TRNs into GEM models. The ProTReND repository comprehends several tools to extract and process regulatory information available in several resources. More importantly, this repository contains a data integration system to unify the regulatory data into standardized TRNs at the genome scale. In addition, ProTReND contains a web application with full access to the regulatory data. Finally, we have developed a new modeling framework to define, simulate and analyze GEnome-scale Regulatory and Metabolic (GERM) models in MEWpy. The GERM model framework can read a GEM model, as well as a TRN from different file formats. This framework assembles a GERM model using the regulatory interactions and Genes-Proteins-Reactions (GPR) rules encoded into the GEM model and TRN. In addition, this modeling framework supports several methods of phenotype prediction designed for regulatory-metabolic models.I would like to thank Fundação para a Ciência e Tecnologia for the Ph.D. studentship I was awarded with (SFRH/BD/139198/2018)

    Can the Genomics of the Gut Microbiota in Stool Samples be Analyzed by MERLIN?

    Get PDF
    Metagenomics is important in studying microorganisms that live in microbial communities, particularly those that inhabit the human body. For example, the gut microbiota is a community of microorganisms inhabit the human gut and interact with humans via secondary metabolites. Secondary metabolites produced by the gut microbiota are extremely important and are used as precursors for a variety of human needs, such as short chain fatty acids (SCFA). There have been reports of functional secondary metabolites produced by various gut microbiota, but none have yet been used on the Merlin platform. In this article, we'll look at how the Merlin platform can analyze the gut microbiota community. Metabolic Models Reconstruction using Genome-Scale Information (MERLIN) is a bioinformatics tool that can analyze the functional microbial community as well as the taxonomy of these bacteria

    Genome-scale metabolic model of the human pathogen Candida albicans: a promising platform for drug target prediction

    Get PDF
    Candida albicans is one of the most impactful fungal pathogens and the most common cause of invasive candidiasis, which is associated with very high mortality rates. With the rise in the frequency of multidrug-resistant clinical isolates, the identification of new drug targets and new drugs is crucial in overcoming the increase in therapeutic failure. In this study, the first validated genome-scale metabolic model for Candida albicans, iRV781, is presented. The model consists of 1221 reactions, 926 metabolites, 781 genes, and four compartments. This model was reconstructed using the open-source software tool merlin 4.0.2. It is provided in the well-established systems biology markup language (SBML) format, thus, being usable in most metabolic engineering platforms, such as OptFlux or COBRA. The model was validated, proving accurate when predicting the capability of utilizing different carbon and nitrogen sources when compared to experimental data. Finally, this genome-scale metabolic reconstruction was tested as a platform for the identification of drug targets, through the comparison between known drug targets and the prediction of gene essentiality in conditions mimicking the human host. Altogether, this model provides a promising platform for global elucidation of the metabolic potential of C. albicans, possibly guiding the identification of new drug targets to tackle human candidiasis.“Fundação para a Ciência e a Tecnologia” (FCT) [Contract PTDC /BII-BIO/28216/2017] and by Programa Operacional Regional de Lisboa 2020 [LISBOA-01-0145-FEDER-022231], through the Biodata.pt Research Infrastructure. Funding received by iBB-Institute for Bioengineering and Biosciences from FCT [Contract UIDB/04565/2020]info:eu-repo/semantics/publishedVersio

    An insight towards food-related microbial sets through metabolic modelling and functional analysis

    Get PDF
    The dietary food digestion depends on the human gastrointestinal tract, where host cells and gut microbes mutually interact. This interplay may also mediate host metabolism, as shown by microbial-derived secondary bile acids, needed for receptor signalling. Microbes are also crucial in the production of fermented foods, such as wine and dairy. Kefir is fermented milk processed by the symbiotic community of bacteria and yeasts. One such species is a yeast Kluyveromyces marxianus. Its thermotolerance is a desired trait in biotechnology since it may reduce the cooling demands during cultivation.The systems biology tools allow analysing various size microbial communities under the different functional scope. For example, the homology prediction tools can give detailed functional insights when working with metagenomics data. The whole-cell metabolic processes can be summarised in genome-scale metabolic models (GEMs), which enable to predict the metabolic capabilities and allow for the integration of omics data.The work shown in this thesis includes i) in silico analysis of food-related microbes; ii) the development of GEMs and RAVEN. With a focus on bile acid metabolism, hundreds of human gut microbes were annotated based on metagenomics data, thereby suggesting the differences in the potential for bile acid processing between healthy and diseased subjects. These findings may be exploitable once aiming to restore the bile acid metabolism for the patients having inflammatory bowel disease. Also, the metabolism of yeast K. marxianus was characterised in genome-scale. Two K. marxianus strains from kefir grains were isolated, sequenced, assembled, and functionally annotated. They were compared with the other ten strains, providing the core and dispensable physiological features for K. marxianus. Furthermore, the first GEM for K. marxianus, namely iSM996, was reconstructed. It was integrated with transcriptomics data to predict its metabolic capabilities in rich medium and high-temperature conditions. The results might be useful to optimise strain-specific medium for high-temperature applications. The final paper comprises the efforts to improve the usability for RAVEN, a toolbox for GEM reconstruction and analysis. Altogether the outcomes of this thesis suggest the potential applications for medicine and industrial biotechnology, which may be facilitated by the newly upgraded RAVEN toolbox
    corecore