
Universidade do Minho
Escola de Engenharia

Fernando João Pereira da Cruz

Blueprint: Documenting the complexity
of metabolic regulation by reconstruction
of integrated metabolic-regulatory models

October 2022U
M

in
ho

 |
 2

02
2

Fe
rn

an
do

 J
oã

o
Pe

re
ira

 d
a

Cr
uz

B
lu

ep
ri

nt
: D

oc
um

en
tin

g
th

e
co

m
pl

ex
ity

 o
f m

et
ab

ol
ic

 r
eg

ul
at

io
n

by
 r

ec
on

st
ru

ct
io

n
of

 in
te

gr
at

ed
 m

et
ab

ol
ic

-r
eg

ul
at

or
y

m
od

el
s

Universidade do Minho
School of Engineering

Fernando João Pereira da Cruz

Blueprint: Documenting the complexity of

metabolic regulation by reconstruction of

integrated metabolic-regulatory models

Doctorate Thesis

Doctorate in Biomedical Engineering

Work developed under the supervision of:
Professor Oscar Dias
Professor Miguel Rocha
Professor José Pedro Faria

October, 2022

COPYRIGHT AND TERMS OF USE OF THIS WORK BY A THIRD PARTY

This is academic work that can be used by third parties as long as internationally accepted rules and good

practices regarding copyright and related rights are respected.

Accordingly, this work may be used under the license provided below.

If the user needs permission to make use of the work under conditions not provided for in the indicated

licensing, they should contact the author through the RepositoriUM of Universidade do Minho.

License granted to the users of this work

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

CC BY-NC-SA 4.0

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

This document was created with the (pdf/Xe/Lua)LATEX processor and the NOVAthesis template (v6.9.15) [1].

ii

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://github.com/joaomlourenco/novathesis

Acknowledgements

I would like to thank Fundação para a Ciência e Tecnologia for the Ph.D. studentship I was awarded

with (SFRH/BD/139198/2018). This work is only possible due to their support. I would also like to thank

the Centre of Biological Engineering at the University of Minho for hosting me and providing an excellent

working environment.

Após estes anos, após esta viagem, após linhas e linhas de código, após linhas e linhas de artigos,

após linhas e linhas de tese, serei finalmente simples e breve. Estes anos são viagem! E, portanto,

guardo em mim todas as suas passagens com muito carinho e gratidão a todos que dela fizeram parte.

Agradeço aos meus orientadores, em especial ao professor Oscar Dias e professor Miguel Rocha,

todo o apoio, inspiração e amizade nesta viagem.

Agradeço aos meus amigos, em especial Alexandre, Marta, Capela, Emanuel, Sequeira, Fernanda,

Nuno, Diogo, Miguel, e Zé, toda a paciência e suporte nesta viagem.

Agradeço aos meus pais e irmã (pota lima ahah) todo apoio, carinho e amor que sempre tiveram

para comigo. Sem sombra de dúvida são os grandes obreiros do melhor de mim.

Agradeço à Coralie toda a amizade, carinho, e amor! Mas, agradeço-te principalmente por me acom-

panheres nesta viagem!

iii

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have not used

plagiarism or any form of undue use of information or falsification of results along the process leading to

its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the Universidade do

Minho.

,
(Place) (Date)

(Fernando João Pereira da Cruz)

iv

Resumo

Blueprint: Descrição da complexidade da regulação metabó-
lica através da reconstrução de modelos metabólicos e regula-
tórios integrados

Um modelo metabólico consegue prever o fenótipo de um organismo. No entanto, estes modelos

podem obter previsões incorretas, pois alguns processos metabólicos são controlados por mecanismos

reguladores. Assim, várias metodologias foram desenvolvidas para melhorar os modelos metabólicos

através da integração de redes regulatórias. Todavia, a reconstrução de modelos regulatórios e metabó-

licos à escala genómica para diversos organismos apresenta diversos desafios.

Neste trabalho, propõe-se o desenvolvimento de diversas ferramentas para a reconstrução e análise

de modelos metabólicos e regulatórios à escala genómica. Em primeiro lugar, descreve-se o Biological

networks constraint-based In Silico Optimization (BioISO), uma nova ferramenta para auxiliar a curação

manual de modelos metabólicos. O BioISO usa um algoritmo de relação recursiva para orientar as previ-

sões de fenótipo. Assim, esta ferramenta pode reduzir o número de artefatos em modelos metabólicos,

diminuindo a possibilidade de obter erros durante a fase de curação.

Na segunda parte deste trabalho, desenvolveu-se um repositório de redes regulatórias para proca-

riontes que permite suportar a sua integração em modelos metabólicos. O Prokaryotic Transcriptional

Regulatory Network Database (ProTReND) inclui diversas ferramentas para extrair e processar informa-

ção regulatória de recursos externos. Esta ferramenta contém um sistema de integração de dados que

converte dados dispersos de regulação em redes regulatórias integradas. Além disso, o ProTReND dispõe

de uma aplicação que permite o acesso total aos dados regulatórios.

Finalmente, desenvolveu-se uma ferramenta computacional no MEWpy para simular e analisar mode-

los regulatórios e metabólicos. Esta ferramenta permite ler um modelo metabólico e/ou rede regulatória,

em diversos formatos. Esta estrutura consegue construir um modelo regulatório e metabólico integrado

usando as interações regulatórias e as ligações entre genes e proteínas codificadas no modelo metabó-

lico e na rede regulatória. Além disso, esta estrutura suporta vários métodos de previsão de fenótipo

implementados especificamente para a análise de modelos regulatórios-metabólicos.

Palavras-chave: Modelo metabólico à escala genómica, Rede regulatória, Metabolismo, Regulação

genética

v

Abstract

Blueprint: Documenting the complexity of metabolic regulation
by reconstruction of integrated metabolic-regulatory models

Genome-Scale Metabolic (GEM) models can predict the phenotypic behavior of organisms. However,

these models can lead to incorrect predictions, as certain metabolic processes are controlled by regulatory

mechanisms. Accordingly, many methodologies have been developed to extend the reconstruction and

analysis of GEM models via the integration of Transcriptional Regulatory Network (TRN)s. Nevertheless,

the perspective of reconstructing integrated genome-scale regulatory and metabolic models for diverse

prokaryotes is still an open challenge.

In this work, we propose several tools to assist the reconstruction and analysis of regulatory and

metabolic models. We start by describing BioISO, a novel tool to assist the manual curation of GEM

models. BioISO uses a recursive relation-like algorithm and Flux Balance Analysis (FBA) to evaluate and

guide debugging of in silico phenotype predictions. Hence, this tool can reduce the number of artifacts in

GEM models, decreasing the burdens of model refinement and curation.

A state-of-the-art repository of TRNs for prokaryotes was implemented to support the reconstruction

and integration of TRNs into GEM models. The ProTReND repository comprehends several tools to extract

and process regulatory information available in several resources. More importantly, this repository con-

tains a data integration system to unify the regulatory data into standardized TRNs at the genome scale.

In addition, ProTReND contains a web application with full access to the regulatory data.

Finally, we have developed a new modeling framework to define, simulate and analyze GEnome-scale

Regulatory and Metabolic (GERM) models in MEWpy. The GERM model framework can read a GEM

model, as well as a TRN from different file formats. This framework assembles a GERM model using

the regulatory interactions and Genes-Proteins-Reactions (GPR) rules encoded into the GEM model and

TRN. In addition, this modeling framework supports several methods of phenotype prediction designed

for regulatory-metabolic models.

Keywords: Genome-scale metabolic model, Transcriptional Regulatory Network, Metabolism, Gene

regulation

vi

Contents

List of Figures x

List of Tables xiii

Acronyms xiv

1 Introduction 1

1.1 Context and Motivation . 1

1.2 Research Objectives . 2

1.3 Outline . 3

2 Background 5

2.1 The control of gene expression . 6

2.2 From high-throughput measurement techniques to the transcriptome 8

2.3 Resources of regulatory data . 10

2.4 Resources of genomics and proteomics data . 14

2.5 Transcriptional regulatory networks . 14

2.6 Reconstruction of transcriptional regulatory networks 17

2.7 Reconstruction of genome-scale metabolic models 20

2.8 Integrated models . 23

2.9 Integrating transcriptional regulatory networks 27

2.10 Integrating gene expression data . 29

2.11 Synopsis . 30

3 Assisting the curation of genome-scale metabolic models 34

3.1 Introduction . 35

3.2 Survey of gap-find and gap-fill tools . 36

3.3 BioISO implementation . 37

vii

3.3.1 BioISO’s algorithm . 37

3.3.2 BioISO’s applications . 42

3.4 Materials and Methods . 43

3.4.1 BioISO’s algorithm depth analysis . 43

3.4.2 Exhaustive-search versus guided-search 44

3.4.3 BioMeneco - embedding BioISO in Meneco 44

3.5 Results . 45

3.5.1 Overview of BioISO’s assessment . 45

3.5.2 BioISO’s algorithm depth analysis . 46

3.5.3 Exhaustive-search versus guided-search 51

3.5.4 BioMeneco - embedding BioISO in Meneco 54

4 Database of prokaryotic transcriptional regulatory networks 58

4.1 Introduction . 59

4.2 Data integration system . 60

4.2.1 Data warehousing . 60

4.2.2 Overview of the data integration system 61

4.2.3 Central data storage sub-system . 64

4.2.4 Data lake sub-system . 67

4.2.5 Data extraction sub-system . 68

4.2.6 Data transformation sub-system . 72

4.2.7 Knowledge expansion sub-system . 74

4.2.8 Data integration sub-system . 78

4.2.9 Data loading sub-system . 83

4.2.10 The first version of ProTReND’s database 84

4.3 Data integration results . 85

4.3.1 Overview of the data integration results 85

4.3.2 Integration report . 86

4.3.3 CDS topology . 94

4.4 ProTReND web application . 99

4.4.1 A user-friendly hub of regulatory interactions 99

4.4.2 Implementation . 100

4.4.3 Browse regulatory interactions . 101

4.4.4 Data access . 107

4.4.5 Contributing to ProTReND . 108

5 Definition and analysis of integrated metabolic-regulatory models 110

5.1 Introduction . 111

viii

5.2 MEWpy: a strain optimization workbench in Python 111

5.3 A framework for integrated models in MEWpy 113

5.3.1 Overview of the genome-scale regulatory-metabolic model framework . . . 113

5.3.2 Genome-scale regulatory-metabolic model 115

5.3.3 Variables of genome-scale regulatory-metabolic models 118

5.3.4 Input/output tools for genome-scale regulatory-metabolic models 120

5.3.5 Phenotype prediction using genome-scale regulatory-metabolic models . . 122

5.3.6 Strain optimization using genome-scale regulatory-metabolic models 127

5.4 Working with genome-scale regulatory-metabolic models in MEWpy 129

5.4.1 Model workflow . 129

5.4.2 Model analysis workflow . 133

5.4.3 Model optimization workflow . 139

6 Conclusion 141

6.1 Main contributions . 141

6.2 Publications . 142

6.3 Future work . 144

Bibliography 145

Annexes

I Supplementary Material 162

I.1 Supplementary material 1 . 162

I.2 Supplementary material 2 . 162

I.3 Supplementary material 3 . 162

I.4 Supplementary material 4 . 162

I.5 Supplementary material 5 . 162

I.6 Supplementary material 6 . 163

I.7 Supplementary material 7 . 163

I.8 Supplementary material 8 . 163

I.9 Supplementary material 9 . 163

I.10 Supplementary material 10 . 163

I.11 Supplementary material 11 . 163

I.12 Supplementary material 12 . 164

I.13 Supplementary material 13 . 164

ix

List of Figures

1 Different potential stages of regulation in prokaryotic organisms. 6

2 Regulation of the lac operon in Escherichia coli. 8

3 Available techniques for measuring the transcriptome. 10

4 Example of a TRN. 15

5 Different TRNs graphs categories. 16

6 Difference between structure and function of TRNs graphs. 17

7 Workflow for reconstructing TRNs using integrative approaches. 19

8 Reconstruction of a GEM model. 21

9 Overview of several methods for integrating additional constraints into GEM models based

on the regulation of metabolism. 24

10 Two examples of the integration of TRNs (A and C) or gene expression data (B and D) into

GEM models . 26

11 Classification of methods aimed at the reconstruction of integrated genome-scale models of

metabolism and gene expression. 32

12 A small-scale metabolic network to showcase BioISO’s algorithm. 38

13 Evaluation of reaction R11 with BioISO. 39

14 The hierarchical tree-based structure imposed by the recursive relation-like computational

method implemented in BioISO. 40

15 Summary of the reactions (left panel) and metabolites (right panel) analyzed by BioISO for

published GEM models. 48

16 Calculated ratios of dead-end metabolites for the maximization of growth (upper panel) and

compound production (bottom panel). 49

17 Assessment of the relevance of guided (BioISO and Meneco) versus exhaustive searches

(fastGapFill) for gap-finding. 53

18 An Extract-Transform-Load (ETL)-based pipeline to populate a data warehouse. 60

19 Architecture of the data integration system implemented in the ProTReND repository. . . 63

x

20 Main namespaces and relationships in ProTReND’s Central Data Storage (CDS). 67

21 Example of the integration of regulatory interactions in the CDS. 81

22 Example of a ProTReND identifier for a regulatory object. 83

23 ETL pipeline used to populate ProTReND’s database. 85

24 Distribution of objects stored in the ProTReND database by their entity. 86

25 Integration results of ProTReND’s ETL pipeline summarized by the main entities and sources. 89

26 Summary of the trimming procedure performed in the ProTReND database. 90

27 Analysis of the regulatory data available in ProTReND by the data source. 91

28 Out-degree (Kout) frequency by the data source in ProTReND database. 92

29 Results of the analysis of the knowledge expansion sub-system in the ProTReND repository. 94

30 Density distribution of regulators, genes, Transcription Factor Binding Site (TFBS)s and reg-

ulatory interactions per organism. 95

31 Organisms having the largest out-degrees regarding regulators, genes, TFBSs and regulatory

interactions. 96

32 Density distribution of genes, TFBSs and regulatory interactions per regulator. 98

33 Regulatory families having the largest out-degree regarding regulators. 99

34 Architecture of ProTReND web application. 101

35 Example of the information available for an organism in ProTReND. 102

36 Example of the organism network section in ProTReND. 102

37 Example of the graph network and Hierarchical Edge Bundling (HEB) visualizations for an

organism in ProTReND. 103

38 Example of the regulators’ data table in ProTReND. 103

39 Example of the information available for a regulator in ProTReND. 104

40 Example of the information available for a regulator’s motif in ProTReND. 105

41 Example of the information available for a regulatory interaction in ProTReND. 106

42 Example of the search engine in ProTReND. 107

43 Example of ProTReND community application. 109

44 Overview of MEWpy framework. 112

45 Overview of the GERM model framework in MEWpy. 114

46 Architecture of a GERM model. 116

47 Architecture of the GERM model variables. 119

48 Architecture of mewpy.io tools. 121

49 Architecture of the GERM model analysis tools using Unified Modeling Language (UML). 124

50 GERM model loading with the mewpy.io tools. 130

51 GERM model manipulation using the Model interface. 131

52 Manipulation of GERM model variables using the Variable interface. 132

53 Assembly of single- and multi-type GERM model variables using the Variable interface. . 133

xi

54 Phenotype prediction workflow using the GERM model framework. 135

55 Regulatory Flux Balance Analysis (rFBA) phenotype prediction workflow using the GERM

model framework. 136

56 Steady-state Regulatory Flux Balance Analysis (SR-FBA) phenotype prediction workflow using

the GERM model framework. 137

57 Probabilistic Regulation of Metabolism (PROM) phenotype prediction workflow using the

GERM model framework. 138

58 CoRegFlux phenotype prediction workflow using the GERM model framework. 139

59 Example of an OptORF optimization problem. 140

xii

List of Tables

1 Online resources having transcriptional information. 12

2 Dead-end metabolites identified by BioISO in the iDS372 model. 54

3 Dead-end metabolites identified by BioISO in the iJO1366 model. 55

4 Extracted resources of regulatory data. 69

5 Transformation of the regulatory data by source. 73

6 Integration results reported by the ETL pipeline used to assemble ProTReND database. . 87

7 Engines available in the mewpy.io module. 123

8 Optimization problems available in the mewpy.problems module. 128

9 Case studies used to showcase the GERM model framework. 134

xiii

Acronyms

AdaM Adaptation of Metabolism (p. 30)

API Application Programming Interface (pp. 59, 64, 67, 70, 71, 74–77, 100, 101, 107, 108)

BioISO Biological networks constraint-based In Silico Optimization (pp. v, vi, x, xiii, 35, 37–57, 141,

142, 144, 162, 163)

BPCY Biomass-Product Coupled Yield (pp. 113, 140)

cDNA Complementary Deoxyribonucleic Acid (p. 9)

CDS Central Data Storage (pp. xi, 61–68, 72, 74–87, 90, 93, 94, 99–101, 108, 163)

ChIP Chromatin Immunoprecipitation (p. 9)

ChIP-chip Chromatin Immunoprecipitation-Microarray (pp. 8–10, 13)

ChIP-seq Chromatin Immunoprecipitation Sequencing (pp. 8–10, 13)

COBRA Constraint-Based Reconstruction and Analysis (p. 1)

CRUD Create, Read, Update and Delete (pp. 64, 67, 100, 101, 108)

CSO Computational Strain Optimization (pp. 111, 126)

CSV Comma Separated Values (pp. 68, 70, 100, 107, 114, 120, 121, 123, 130, 142)

DBMS Database Management System (pp. 61, 64, 67, 101, 108)

DBTBS Database of Transcriptional regulation in Bacillus subtilis (pp. 12, 13, 71, 73, 75, 84–86,

91)

dFBA Dynamic Flux Balance Analysis (pp. 29, 30)

DNA Deoxyribonucleic Acid (pp. 6–10, 56, 66, 76)

DNA-seq DNA-sequencing (p. 1)

DOI Digital Object Identifier (pp. 74, 105)

EA Evolutionary Algorithm (pp. 112, 113, 129)

xiv

EFM Elementary Flux Mode (p. 30)

EGRIN Environment and Gene Regulatory Influence Network (p. 28)

ETL Extract-Transform-Load (pp. x, xi, xiii, 60–62, 67, 68, 77, 78, 82–87, 89, 90, 142)

FASTA FAST-All (pp. 104, 105, 107)

FBA Flux Balance Analysis (pp. vi, 22, 28, 29, 35, 40–42, 45, 47, 113–115, 122, 125–127)

FTP File Transfer Protocol (p. 75)

FVA Flux Variability Analysis (pp. 22, 29, 113, 126)

GA Genetic Algorithm (p. 113)

GAMS General Algebraic Modeling System (p. 36)

GEM Genome-Scale Metabolic (pp. vi, x, 1–3, 20–33, 35–37, 42–46, 48, 53, 112–116, 118–120,

122, 123, 129, 130, 134, 140–142, 144, 163, 164)

GEO Gene Expression Omnibus (pp. 9, 13)

GERM GEnome-scale Regulatory and Metabolic (pp. vi, xi–xiii, 113, 114, 116, 119, 121, 123, 124,

127–142, 144, 163, 164)

GIMME Gene Inactivity Moderated by Metabolism and Expression (p. 30)

GPR Genes-Proteins-Reactions (pp. vi, 20, 25, 27, 112, 114, 117, 120, 123, 125, 126, 128, 129)

GUI Graphical User Interface (pp. 27, 111, 144)

GX-FBA Gene Expression Flux Balance Analysis (pp. 29, 30, 32)

HEB Hierarchical Edge Bundling (pp. xi, 103)

HTML HyperText Markup Language (p. 70)

HypE Hypervolume Estimation algorithm (p. 113)

IDREAM Integrated Deduced REgulation And Metabolism (pp. 28, 31, 111, 128, 129)

JSON JavaScript Object Notation (pp. 62, 63, 68, 70, 71, 74, 75, 84, 100, 107, 114, 116, 121, 123,

142)

KEGG Kyoto Encyclopedia of Genes and Genomes (pp. 13, 36, 37, 45, 74, 77, 93)

lMOMA linear Minimization of Metabolic Adjustment (pp. 113, 128)

LP Linear Programming (pp. 22, 124)

M3D Many Microbe Microarrays Database (p. 13)

MADE Metabolic Adjustment by Differential Expression (pp. 27, 29, 31, 32)

xv

METRADE Metabolic and Transcriptomics Adaptation Estimator (pp. 30, 31)

MIAME Minimum Information About a Microarray Experiment (pp. 9, 13)

MILP Mixed-Integer Linear Programming (pp. 27, 29, 124, 126, 136)

MINSEQE Minimum Information About a Next-generation Sequencing Experiment (p. 9)

MOEA Multi-objective Evolutionary Algorithm (pp. 113, 129)

MOMA Minimization of Metabolic Adjustment (pp. 113, 128)

mRNA Messenger Ribonucleic Acid (pp. 6, 9, 66)

MySQL My Structured Query Language (pp. 62, 101, 108)

NCBI National Center for Biotechnology Information (pp. 14, 68, 70, 71, 74–78, 93, 101, 102,

104–106)

NGS Next Generation Sequencing (pp. 1, 9, 13)

NSGA Non-sorting Genetic Algorithm (p. 113)

ODB Operon DataBase (pp. 70, 71, 73, 79, 84–86)

ODE Ordinary Differential Equation (pp. 20, 21)

OGM Object Graph Mapping (pp. 62, 63, 67)

pFBA Parsimonious Flux Balance Analysis (pp. 22, 30, 33, 113–115, 122, 125, 127)

PMID PubMed Identifier (pp. 66, 70, 71, 74, 79, 105)

PROM Probabilistic Regulation of Metabolism (pp. xii, 28, 111, 113–115, 122, 126, 136, 138, 142)

ProTReND Prokaryotic Transcriptional Regulatory Network Database (pp. v, vi, x, xi, xiii, 59, 61–69, 72,

74, 77, 79, 81–87, 89–94, 96–109, 141, 142, 144)

PSSM Position-Specific Scoring Matrix (p. 77)

PWM Position Weight Matrix (pp. 19, 77, 104, 105)

RefSeq NCBI Reference Sequence Database (pp. 14, 75, 76, 93, 101)

rFBA Regulatory Flux Balance Analysis (pp. xii, 27, 111, 113–115, 122, 125, 126, 135, 136, 142)

RIPTiDe Reaction Inclusion by Parsimony and Transcript Distribution (pp. 30, 31)

RNA Ribonucleic Acid (pp. 6–10, 56, 69)

RNA-seq RNA-sequencing (pp. 1, 8–10, 13, 30)

ROOM Regulatory on/off Minimization of Metabolic flux changes (pp. 113, 128)

SA Simulated Annealing (p. 113)

SBML Systems Biology Markup Language (pp. 21, 27, 37, 42, 114, 120–123, 130, 142)

SBML-qual SBML Qualitative (pp. 27, 120, 123)

SMD Stanford Microarray Database (p. 13)

xvi

SPEA2 Strength Pareto Evolutionary Algorithm (p. 113)

SR-FBA Steady-state Regulatory Flux Balance Analysis (pp. xii, 27, 111, 113–115, 122, 124, 126,

133, 135–137, 142)

SRA Sequence Read Archive (p. 13)

sRNA small RNA (pp. 66, 69, 71, 86)

STRING Search Tool for Retrieval of Interacting Genes/Proteins (p. 13)

TEAM Temporal Expression-based Analysis of Metabolism (p. 30)

TF Transcription Factor (pp. 7, 9, 10, 12–17, 19, 20, 28, 59, 66, 69, 71, 72)

tFBA Transcriptional-controlled Flux Balance Analysis (p. 29)

TFBS Transcription Factor Binding Site (pp. xi, 7–10, 12, 13, 19, 20, 33, 59, 66, 67, 69–74, 77,

79–81, 84–86, 89–92, 94–98, 102, 104, 105, 108)

TIGER Toolbox for Integrating Genome-scale Metabolism (pp. 27, 31, 111)

TRANSFAC TRANScription FACtor database (pp. 104, 107)

TrEMBL Translated European Molecular Biology Laboratory (p. 14)

TRFBA Transcriptional Regulated Flux Balance Analysis (pp. 28, 31, 111)

TRN Transcriptional Regulatory Network (pp. vi, x, 2, 3, 9–11, 13–20, 23–29, 31–33, 59, 61, 68,

70, 71, 75, 84, 85, 87, 89, 90, 93, 94, 96, 97, 101–104, 107, 114–116, 118–120, 122, 123,

128, 130, 132, 134, 140–142, 144, 163, 164)

tRNA Transfer RNA (p. 65)

TSV Tabular Separated Values (pp. 70, 71)

TXT Text File (pp. 68, 123)

UML Unified Modeling Language (pp. xi, 116, 119, 121, 124)

UniProt Universal Protein Resource (pp. 14, 75–79, 101, 102, 104–106)

UniProtKB Universal Protein Resource Knowledgebase (pp. 14, 68, 70, 76, 77, 79)

XLSX Excel Microsoft Office Open XML Format Spreadsheet File (pp. 71, 100, 107)

XML Extensible Markup Language (pp. 100, 107, 123)

YEASTRACT YEAst Search for Transcriptional Regulators And Consensus Tracking (p. 28)

xvii

1

Introduction

1.1 Context and Motivation

The volume of omics data is rising at an unprecedented scale due to the advent of Next Generation

Sequencing (NGS) techniques, such as DNA-sequencing (DNA-seq) and RNA-sequencing (RNA-seq) [2].

As a result, high-throughput large-scale omics experiments are nowadays highly used to study the molec-

ular machinery of many organisms at the systems level. For instance, the increase of publicly available

genome sequences and gene expression data has enabled systems biology to thrive in this high-throughput

era [3].

Systems biology is often described as a multidisciplinary field that provides quantitative and qualitative

descriptions of biological systems. The reconstruction of in silico networks and models, leveraged by the

large volume of omics data, allows modeling cells’ behavior over time in a wide range of different conditions

[4].

The reconstruction of comprehensive metabolic models at the genome scale using genomics data is

common practice in systems biology [5]–[11]. Nevertheless, the reconstruction process is still challenging

for high-quality reconstructions [12]. In the bottom-up reconstruction approach, model validation and

manual curation can be laborious tasks and most bottlenecks derive from accumulated errors requiring

complex and unique solutions [13]. On the other hand, the top-down reconstruction approach can quickly

generate a gapless simulation-ready model [14]. Yet, the latter approach adds several artifacts to the

metabolic network.

A major drawback of GEM models is the inability to account for gene regulation [15]. This can lead

to incorrect phenotype predictions for prokaryotes in several environmental conditions, as the proteome

of these organisms usually changes as the environmental conditions do. A regulatory layer can be added

to GEM models to overcome this limitation. This additional regulatory layer can be integrated into GEM

models for tailoring tendencies in the flux distributions, thus preventing false positive phenotype simula-

tions. Despite the efforts for the integration of gene regulation into GEM models, most of the methods

still fail to outperform Constraint-Based Reconstruction and Analysis (COBRA) methods [16]. This sug-

gests that promising results reported by these methods can be artifacts that do not scale well to different

1

CHAPTER 1. INTRODUCTION

GEM models and regulatory data. Hence, reconstructing integrated regulatory-metabolic models for many

prokaryotes is still a complex endeavor.

The reconstruction of TRNs has become a hot topic in computational biology [17]–[19]. However,

the inference of TRNs from gene expression data is an underdetermined problem where many solutions

can explain the data equally well [15]. More importantly, most of these methodologies are unavailable to

all organisms due to the lack of transcriptomics data. To overcome this limitation, approaches based on

comparative genomics tools can extrapolate well-known TRNs of model organisms to poorly studied organ-

isms. For that, state-of-the-art regulatory information is mandatory, as these would ease the development

of automated tools for reconstructing TRNs.

The following chapters will address the implementation of computational tools to assist the recon-

struction and analysis of integrated regulatory-metabolic models at the genome scale. In the first phase,

we implemented a computational tool to assist the curation of GEM models, as gaps in the metabolic

network might hinder the integration of regulatory networks. In the second phase, we will detail the devel-

opment of a repository of regulatory information for prokaryotic organisms. This user-friendly resource of

regulatory data supports TRN inferring tools, thus easing the development of novel regulatory networks.

Moreover, such a repository is also a useful resource of TRNs for reconstructing integrated regulatory-

metabolic models. The third phase of this work will focus on developing methods for the reconstruction

and analysis of integrated regulatory-metabolic models. These methods allow integrating TRNs into ex-

isting GEM models to perform phenotype prediction in complex environmental and genetic conditions.

Ultimately, these approaches will be used to obtain new insights regarding the complexity of metabolic

regulation in prokaryotic organisms.

1.2 Research Objectives

The main goal of this work is to develop computational tools for the reconstruction and analysis of

integrated regulatory-metabolic models. First, we will describe a user-friendly tool to assist the curation of

high-quality GEM models in a bottom-up reconstruction approach. Next, the collection of multiple TRNs

into a unified resource of regulatory information will be addressed. Finally, this project will address the

development of several tools for integrating TRNs into GEM models. As the control of gene expression is

a complex process in prokaryotic organisms and even more in eukaryotes, all tools to be developed will

mainly focus on the regulation of metabolism in prokaryotic organisms. However, future endeavors may

extend the scope of this platform.

The computational tools developed in the context of this project will be available to the scientific

community easing access to a framework for obtaining and integrating regulatory data into metabolic

models. Ultimately, this framework can be extended to support the inference of novel in silico networks

leading to new insights regarding the cellular mechanisms that control gene expression and metabolism

in prokaryotes.

2

1.3. OUTLINE

For that, the following objectives are to be accomplished:

• To develop an objective-oriented application for easing manual curation steps when debugging in

silico metabolic networks;

• To collect relevant regulatory information and TRNs for prokaryotic organisms into a unified and

integrated data repository;

• To provide easy access to the repository of regulatory data capable of supporting TRN inferring

tools and integration with GEM models;

• To develop computational tools for extending GEM models with TRNs and representing integrated

regulatory-metabolic models;

• To collect and implement appropriate phenotype prediction methods for integrated regulatory-

metabolic models.

1.3 Outline

This document is divided into six chapters and outlined as follows:

• The current chapter consists of the context and motivation for the reconstruction and analysis of

integrated regulatory-metabolic models. In addition, the main objectives associated with this project

are also briefly introduced together with the outline of this thesis;

• Chapter 2 consists of a detailed collection of concepts and subjects fundamental for understanding

the regulation of metabolism in prokaryotic organisms. The first phase will address regulatory

resources and the reconstruction of TRNs, while the second phase addresses the reconstruction of

GEM models using the bottom-up approach. Finally, the integration of a regulatory layer into GEM

models will be thoroughly discussed;

• Chapter 3 addresses the implementation of a user-friendly computational tool to assist the manual

curation of GEM models. The potential of this tool to guide the debugging of model reconstructions

is then assessed with the results of two other state-of-the-art tools;

• In chapter 4, the reconstruction of a unified and integrated repository of regulatory information for

prokaryotes will be addressed. Likewise, this chapter also encompasses the design and imple-

mentation of a web application to access multiple TRNs and to ease the curation of the collected

regulatory data;

• Chapter 5 comprehends the development of computational tools for representing regulatory- metabolic

models. This chapter also includes the implementation of several methods for phenotype prediction

with integrated models;

3

CHAPTER 1. INTRODUCTION

• Chapter 6 includes a brief synopsis of this project. An assessment of the results obtained in this

work is also provided together with new strategies to improve the presented computational tools.

4

2

Background

The work presented in this chapter has also been partially published in the

following publications:

• Cruz, F., Lima, D., Faria, J. P., Rocha, M., Dias, O. (2020). Towards

the Reconstruction of Integrated Genome-Scale Models of Metabolism

and Gene Expression. In: Fdez-Riverola, F., Rocha, M., Mohamad, M.,

Zaki, N., Castellanos-Garzón, J. (eds) Practical Applications of Com-

putational Biology and Bioinformatics, 13th International Conference.

PACBB 2019. Advances in Intelligent Systems and Computing, vol 1005.

Springer, Cham.

• Cruz, F., Faria, J. P., Rocha, M., Rocha, I., Dias, O. (2020). A review of

methods for the reconstruction and analysis of integrated genome-scale

models of metabolism and regulation. Biochemical Society Transactions.

5

CHAPTER 2. BACKGROUND

2.1 The control of gene expression

In prokaryotic organisms, the proteome usually changes as the environmental conditions do, thereby

reflecting the cell response to the ever-changing environment by making use of a variety of regulatory

mechanisms.

As depicted in figure 1, the control of gene expression can take place at several stages of regulation

[20]. However, the regulation of transcription initiation is most likely the primary stage for controlling gene

expression in prokaryotic cells [21].

Figure 1: Different potential stages of regulation in prokaryotic organisms. Each stage can be associated
with several regulatory mechanisms that influence the cellular concentration of a given protein. Tran-
scription initiation, translation, posttranslational modifications of proteins, protein targeting, and allosteric
regulation are examples of potential stages and mechanisms of regulation in prokaryotic organisms.

Transcription is initiated when the holoenzyme Ribonucleic Acid (RNA) polymerase binds to a specific

region of Deoxyribonucleic Acid (DNA) known as the promoter [21]. Promoters are usually characterized by

a DNA consensus sequence, even if these sequences vary considerably within the genome. The binding

affinity of RNA polymerase is influenced by the variety of promoter sequences and the rate at which

transcription is initiated. Hence, promoters are often classified as strong or weak promoters due to this

control over the initiation of transcription.

Many of the principles assumed in regulating prokaryotic gene expression are based on the fact that

genes are clustered into operons, thus being regulated together [21]. An operon stands for a group of

genes linearly and sequentially disposed of, such that a single functional Messenger Ribonucleic Acid

(mRNA) molecule that contains the information for the synthesis of multiple related proteins is transcribed

at once. According to the organization of a prokaryotic genome, operons can be considered the primary

units of regulation of gene expression. A well-known example, namely the lac operon in Escherichia coli

[22], [23], is described in figure 2. In this case, the operon contains the genes required to consume

lactose inside the cell.

6

2.1. THE CONTROL OF GENE EXPRESSION

Operons often comprise additional regulatory DNA sequences known as cis-regulatory, cis-acting el-

ements or TFBS. These specific sites, where gene transcription regulatory proteins bind, also take part

directly or indirectly in the initiation of transcription [21]. In this primary mechanism for controlling gene

expression, the other peers that bind to TFBS are known as regulators or Transcription Factor (TF). These

regulatory proteins are trans-regulatory or trans-acting elements that either induce or repress the expres-

sion of a given gene. Besides the fundamental biological machinery described so far, there are many other

regulatory mechanisms for controlling gene expression in prokaryotes, such as transcriptional attenuation

and gene regulation by recombination [20] or regulators of the holoenzyme RNA polymerase called global

regulators (e.g. sigma factors) [24]. In the case of the lac operon in E. coli [22], [23], the lacI regulator

represses the transcription of the operon by binding to the TFBS located inside the operon (figure 2).

The regulation of transcription initiation is fundamentally different in prokaryotic and eukaryotic or-

ganisms [24], [25]. In bacteria, a given regulator might influence the expression of one or more operons.

As such, a new level of abstraction called regulon was created for describing a network of operons being

controlled by the same regulator or TF [21]. Simple regulons (comprising only a few operons) tend to be

co-expressed together under several conditions (if not all), thereby revealing expression modularity [26],

[27]. Hence, the bacterial regulatory machinery is robust and often maintains reproducible responses to

an ever-changing environment [28].

On the other hand, the presence of intra-operonic promoters may result in gene-intraspecific expres-

sion patterns (and not regulon-specific) for specific environmental conditions [29], [30]. Moreover, com-

plex regulatory mechanisms may also exhibit highly specific expression behaviors, which may also provide

flexibility to bacterial regulatory networks [31].

Regarding the ubiquity of global regulators, these are TFs that directly bind to the RNA polymerase

controlling gene expression at the promoters, and thus downregulating or upregulating global transcription

[24].

Metabolism and regulation of gene expression are two of the main biological systems of a prokaryotic

cell. According to previous findings, these two systems are intrinsically interconnected, as metabolism

is controlled by enzyme levels, which in turn are regulated by the transcription initiation [23], [32], [33].

Furthermore, simple regulatory motifs can have specific functions inside the cell, such as controlling an

entire metabolic pathway [34], [35]. Figure 2 highlights a well-known example where metabolism is regu-

lated through the control of gene expression, namely the lactose catabolism in E. coli [23]. When lactose

is absent, the transcription of the lac operon is inhibited by the binding of the lacI regulator to the TFBS

located inside the operon. Nevertheless, other layers, such as post-transcriptional modifications, allosteric

regulation, or thermodynamics, are also in control of the metabolism [36], [37]. It is also noteworthy that

the role of transcription in regulating microbial metabolic fluxes can occasionally be minimal compared to

the remarkable plasticity of the cellular metabolic state [38].

7

CHAPTER 2. BACKGROUND

Figure 2: Regulation of the lac operon in Escherichia coli. The lacI regulator prevents the transcription of
the operon by binding to the TFBS within the promoter region when lactose is absent inside the cell.

2.2 From high-throughput measurement techniques to the

transcriptome

According to the experimental design, gene expression data can be classified in steady-state [39]–

[43] or dynamic/time-series [44], [45], in which gene expression levels can be measured at a single time

point or during consecutive ones, respectively.

Although dynamic gene expression datasets offer more detail about the transcriptome, these are per

se harder to conduct, involving laborious computational analysis. Perturbations comprising metabolic,

proteomic, or genetic manipulations can also be added to the biochemical assays [46], [47].

Techniques for measuring genome-wide gene expression are usually based on RNA profiling. Example

of these techniques are DNA microarrays [48]–[51] and RNA-seq [52]–[56], as shown in figure 3. On

the other hand, genome binding and occupancy experiments provide additional insights regarding the

cell regulatory mechanism, namely, the DNA spots where proteins bind are less used. Examples of

these techniques are Chromatin Immunoprecipitation-Microarray (ChIP-chip) [57]–[59] and Chromatin

Immunoprecipitation Sequencing (ChIP-seq) [60], [61], as illustrated in figure 3.

DNA microarrays were the first high-throughput technology aimed at simultaneously measuring a

large number of gene expression levels. This technique was, therefore, responsible for the first impulse

towards understanding the control of gene expression in prokaryotic cells [48], [50]. DNA microarrays

are based on the hybridization of thousands of short DNA fragments (probes), disposed on a substrate

chip, with thousands of genomic regions of the organism of interest. As a result, one can retrieve an

estimated concentration of the transcripts of a cell population. The probes’ design can introduce bias to

the assay, eventually leading to some limitations. Besides the bias problem, DNA microarrays are also

extremely sensitive to the quality of the experiments, as results obtained from similar experiments vary

8

2.2. FROM HIGH-THROUGHPUT MEASUREMENT TECHNIQUES TO THE TRANSCRIPTOME

from laboratory to laboratory [49] or have high noise-to-signal ratio levels [51].

ChIP-chip overcomes some of the expression profiling limitations [59]. This technique combines

Chromatin Immunoprecipitation (ChIP) with array hybridization. The immunoprecipitation experimental

technique ChIP allows determining whether a given set of proteins interact with DNA. This can be of great

use to identify which genome regions TFs bind to. Thus, protein-DNA interactions can be simultaneously

identified and quantified on a genome-wide scale [57], [58]. Despite the advantage of identifying TFBS,

ChIP-chip-based studies are rare and considerably expensive, when compared to the counterpart technique

DNA microarray.

The advent of NGS technologies revolutionized molecular biology research, giving rise to an unprece-

dented amount of public available genome sequences for a wide variety of organisms [2]. As a result,

RNA-seq has also emerged as a RNA profiling technique capable of measuring transcript abundances

[52]–[56]. RNA-seq is based on the reverse transcription of fragmented RNA, previously obtained from

a cell population in a given state. Usually, after sequencing and mapping the resulting Complementary

Deoxyribonucleic Acid (cDNA) to a reference genome, the number of fragments mapping a given gene

(usually normalized) stands for a raw level of gene expression [62]. In addition to the straightforward mea-

surement of raw gene expression levels, this technology can also be used to directly measure other forms

of RNA besides mRNA [56]. Moreover, RNA-seq opens the possibility to a vast variety of experiments and

biochemical assays, while avoiding the drawbacks of DNA microarrays, namely the bias associated with

probe design and the high noise-to-signal ratio levels [63].

ChIP-seq is the result of applying NGS technologies to genome binding and occupancy experiments,

thereby enabling whole-genome ChIP assays at a faster pace [60]. This technique is of particular interest

for reconstructing TRN, as it allows identifying where regulators bind in the genome sequence of the

organism of interest and the potentiality of quantifying these regulatory interactions [61].

The rise of experiments for measuring gene expression levels across various environmental and genetic

conditions also brought new problems and challenges, namely the lack of standards and guidelines for

publishing and sharing data from heterogeneous sources. Following the standards proposed in both

Minimum Information About a Microarray Experiment (MIAME) [64] and Minimum Information About a

Next-generation Sequencing Experiment (MINSEQE), gene expression data from heterogeneous sources

can now be stored efficiently in both Gene Expression Omnibus (GEO) [65] and ArrayExpress [66].

9

CHAPTER 2. BACKGROUND

Figure 3: Available techniques for measuring the transcriptome. Available techniques for measuring the
transcriptome of prokaryotic cells, namely DNA microarrays, RNA-seq, ChIP-chip and ChIP-seq. In this
example, the experimental design is based on the genetic perturbation of several TFs in the organism of
interest.

All transcriptomics techniques mentioned so far can yield gene expression data extremely useful for

reconstructing a TRN of a given organism. These methodologies cover and measure distinct aspects of the

organisms’ regulatory machinery. Single gene expression levels or co-expression patterns can be inferred

from simple steady-state gene expression datasets obtained with RNA profiling techniques [39], [40], [42],

[43]. The causality of regulatory interactions, on the other hand, can be inferred from steady-state gene

expression datasets obtained with genome binding and RNA profiling techniques while introducing genetic

perturbations to the organism of interest [46], [47]. Moreover, new layers of detail such as the dynamics

of several regulatory processes can also be achieved by the analysis of dynamic gene expression datasets

[44], [45].

2.3 Resources of regulatory data

The resources of regulatory data can be divided into three groups:

• Databases of transcriptional information;

• Databases of gene expression data;

• Literature.

Many databases contain transcriptional data regarding the biological elements responsible for con-

trolling gene expression, including valuable information regarding promoters, TFs, TFBS and target genes.

10

2.3. RESOURCES OF REGULATORY DATA

On the other hand, a restricted number of databases of gene expression data centralizes most of the

gene expression data currently available. Both types of databases (transcriptional information and gene

expression data) must be seen as complementary resources of regulatory information pivotal for the re-

construction of prokaryotic TRNs.

Databases of prokaryotic transcriptional information provide information regarding regulatory events

inside the cell. Databases of transcriptional information can be classified as organism-specific and non-

organism-specific. Table 1 presents relevant databases containing transcriptional information, highlighting

the type of regulatory data and its representativeness.

11

CHAPTER 2. BACKGROUND

Table 1: Online resources having transcriptional information. Summary of the most relevant databases
of transcriptional information, classified by their representativeness and type of regulatory data.

Database Organism Regulatory information
RegulonDB [67] Escherichia coli promoters, TFs, target genes,

TFBS, operon, regulatory inter-
actions and sigma factors

EcoCyc [68] Escherichia coli regulatory and metabolic inte-
gration

DBTBS [69] Bacillus subtilis TFs, target genes, TFBS,
operon, regulatory interactions
and sigma factors

MTRBRegList [70] Mycobacterium tuberculosis promoters, TFs, target genes,
TFBS

CoryneRegNet [71] Corynebacterium Corynebacterial gene regulatory
networks with TFs and target
genes

cTFbase [72] Cyanobacteria putative TFs

CollecTF [73] multiple TFs, target genes, TFBS and reg-
ulatory interactions

RegPrecise [74] multiple TFs, target genes, TFBS and reg-
ulatory interactions

PRODORIC2 [75] multiple TFs, target genes, TFBS

Abasy [76] multiple global gene regulatory networks
with TFs and target genes

SwissRegulon [77] multiple TFs and TFBS

ODB [78] multiple operons

footprintDB [79] multiple TFs

Most organism-specific databases describe thoroughly well-known bacteria, such as E. coli, Bacillus

subtilis andMycobacterium tuberculosis, or groups of bacteria, such as Gamma-proteobacteria, Mycobac-

teria, and Cyanobacteria. For instance, RegulonDB comprises a set of curated regulatory interactions

taking place in E. coli [67]. The authors present this database as a unified resource for gram-negative

bacterium transcriptional regulation. Likewise, Database of Transcriptional regulation in Bacillus subtilis

12

2.3. RESOURCES OF REGULATORY DATA

(DBTBS) also comprises a collection of experimentally validated regulatory interactions for B. subtilis [69].

Organism-specific databases can be seen as gold standards of known regulatory interactions taking

place in a given prokaryotic organism. Therefore, the contents of these databases can be used to assess

state-of-the-art methods aimed at inferring high-quality TRNs.

On the other hand, non-organism-specific databases of transcriptional information offer limited infor-

mation, even if for vast phylogenetic clades. In fact, these databases are considered less comprehensive,

as the retrieved regulatory information is usually limited to TFs, TFBS, operons, or target genes. For

example, RegPrecise holds transcriptional information for at least 14 taxonomic groups of bacteria [74].

This collection of transcriptional regulons, inferred from high-quality manually-curated data, is also com-

plemented with comparative-genomics approaches [74]. Collectf is an online database of experimentally

validated TFBSs in several prokaryotic organisms [73].

Besides databases storing regulatory data only, other online resources, such as Search Tool for Re-

trieval of Interacting Genes/Proteins (STRING) [80], Kyoto Encyclopedia of Genes and Genomes (KEGG)

[81], and BioCyc [82], store relevant transcriptional information for either single or large collections of

prokaryotic organisms while providing several other forms of biological data.

Databases of gene expression data can house large datasets for a wide diversity of organisms, in-

cluding bacteria. GEO [65] and ArrayExpress [66] are two of the most widely known databases of gene

expression data. Both GEO and ArrayExpress have the advantage of being MIAME compliant and thus

being the major hub for sharing the transcriptome of prokaryotic organisms. These databases provide

query and browsing tools for analyzing and retrieving gene expression data.

Other databases of gene expression data derived from microarray and RNA-seq experiments are

COLOMBOS [83] and Many Microbe Microarrays Database (M3D) [84]. These databases comprise a

comprehensive compendium of processed bacterial gene expression data useful to reconstruct TRNs.

Stanford Microarray Database (SMD) is one of the oldest online resources for storing raw and normalized

data, obtained from microarray experiments [85].

Recently, the Sequence Read Archive (SRA) platform has emerged as a prominent resource of biolog-

ical sequence data, due to the development of NGS technologies [86]. This database provides a public

archive of sequenced reads for a large variety of organisms, including prokaryotes. One may access the

SRA platform for finding new experiments involving the measurement of prokaryotic transcriptomes using

either RNA-seq and ChIP-seq.

Several TRNs have been published throughout the years for prokaryotic organisms. Well-known

prokaryotes such as E. coli, B. subtilis and M. tuberculosis are well represented in the literature, having

comprehensive TRNs with hundreds of regulators and thousands of target genes. For instance, several

authors have reconstructed high-quality TRNs for Escherichia coli K-12 MG1655 [46], [87] by combining

experimental ChIP-chip and ChIP-seq data with the state-of-the-art network available in RegulonDB [67].

Likewise, two published TRNs of Bacillus subtilis 168 encompass more than 200 regulators each. These

networks have been assembled using literature, DBTBS [69] and transcriptomics data. Turkarslan et al

[47] has published a TRN forMycobacterium tuberculosis H37Rv using ChIP-seq and gene expression data

13

CHAPTER 2. BACKGROUND

analysis. Interestingly, several TRNs have also been published for non-model prokaryotic organisms [17],

[45], [88]–[97]. Nevertheless, most of these TRNs are highly based in data-driven approaches missing

the proficiency of manual curation or a characterization at the genome-scale.

2.4 Resources of genomics and proteomics data

Resources of genomics and proteomics data can greatly help extend traditional TRNs. The character-

ization of TRNs at the genome scale is pivotal for reconstructing novel networks and multi-scale models.

Universal Protein Resource (UniProt) and National Center for Biotechnology Information (NCBI) are usually

considered two central hubs for genomics and proteomics data.

Universal Protein Resource Knowledgebase (UniProtKB) consists of a collection of functional informa-

tion for proteins [98]. This repository contains amino acid sequences, protein functional and structural

annotation, and links to external yet useful resources. The UniProtKB is divided into two sections, namely

Swiss-Prot and Translated European Molecular Biology Laboratory (TrEMBL). While the former encom-

passes only high-quality records for many proteins, the latter contains a massive collection of computa-

tionally annotated records lacking revision and curation.

NCBI is an online resource that provides a series of databases containing several forms of biological

data and relevant bioinformatics tools [99]. GenBank is an open-access widely used database of nucleotide

sequences available at NCBI [100]. On the other hand, NCBI Reference Sequence Database (RefSeq)

database contains annotated and curated nucleotide sequences and the corresponding protein products

[101]. These repositories provide public access to relevant information for the structural and functional

annotation of many genomes. Another relevant resource available at NCBI is PubMed. This database

consists of a large collection of biomedical literature. NCBI also includes a database that attempts to

incorporate phylogenetic and taxonomic knowledge for many organisms named NCBI Taxonomy Database

[102].

2.5 Transcriptional regulatory networks

A TRN can be represented by a bipartite graph model according to definition 2.5.1 [26]. In this

bipartite graph, the vertices correspond to either TFs or target genes, while edges determine the links

between these two regulatory elements, often a causal relationship. Figure 4 depicts the transformation

of a TRN, comprising one TF controlling the expression of two target genes, into a graph-based structure.

Theorem 2.5.1. Definition of a Transcriptional Regulatory Network

Let 𝐺 = {𝐸,𝑉 } be the bipartite graph of a given transcriptional regulatory network where 𝑉 is the

set of vertices that stand for either TFs or target genes and 𝐸 the set of edges defining the links between

the vertices (usually the causal relationship between TFs or target genes).

14

2.5. TRANSCRIPTIONAL REGULATORY NETWORKS

Figure 4: Example of a TRN. Example of the transformation of a TRN, comprising one TF acting over the
expression of two target genes, into a TRN bipartite graph model.

TRN graphs are usually classified according to the causality of the relationships between the vertices

[19]. That is if there are enough pieces of evidence on a regulatory interaction between two vertices,

namely one TF that exerts control over a target gene, this TRN sub-graph can be classified as directed,

regardless of the nature of this relationship (inhibition or activation). However, if no direction can be

inferred between the vertices, this sub-graph is called undirected. In this case, there are no pieces of

evidence to infer if a gene exerts control or influences the expression of another gene and vice versa.

Ideally, a weighted TRN graph is obtained when both the nature and direction of the causality between

two vertices are known. For that, one should infer whether a TF activates or silences the target gene.

TRNs can also be divided according to the temporal dimension. Whereas dynamic TRNs are usually

inferred from time-series gene expression data, static TRNs can be obtained from regular transcriptomics

datasets [103]. Figure 5 illustrates all categories of TRNs, namely directed, undirected, weighted and

dynamic graphs. Note that, the first tree examples can also be thought of as static graphs.

15

CHAPTER 2. BACKGROUND

Figure 5: Different TRNs graphs categories. Example of TRNs graphs categories: undirected (A); directed
(B); weighted (C); dynamic (D). Each of the first tree examples can also be thought of as static TRNs
graphs.

As shown in figures 6 A and B, TRNs can also be decomposed by the inherent structure and regula-

tory function [104], respectively. Whereas the structure or topology of the TRN reveals which TFs control

the expression of the target genes, the regulatory function, usually represented by a mathematical for-

mulation, determines how one or more TFs exert such control, describing or quantifying the expression

levels of target genes. The analysis of the TRN structure can suggest the presence of regulatory motifs

or modules, namely groups of co-expressed genes associated with a shared regulatory program or sub-

networks of interconnected regulators and target genes. Regulatory functions, on the other hand, are used

for determining the expression level of target genes as a function of the TF expression level or state.

16

2.6. RECONSTRUCTION OF TRANSCRIPTIONAL REGULATORY NETWORKS

Figure 6: Difference between structure and function of TRNs graphs. The structure (A) of a TRN graph
defines which TFs are connected to a given target gene. The function (B) of a TRN graph determines how
a TF is connected to a target quantifying the expression levels of the target as a result of the connections.

Inferring TRNs is fundamentally an underdetermined problem associated with a large search space

where many solutions explain the data equally well [15], [26], [105]. High-quality transcriptional informa-

tion is scarce in databases or literature, being narrowed down to a few well-studied organisms (see section

2.3). The number of potential regulatory interactions between a TF and target genes is considerably larger

than the actual true biological interactions. Given the example of the latest TRN for B. subtilis [106], with

275 regulators out of 4237 protein encoding genes, 1165175 regulatory interactions (275 regulators x

4237 genes) would be possible without combinatorial regulation. Even if filtering out potential regulatory

interactions that poorly explain the gene expression data of this bacterium, the resulting number of solu-

tions is still prohibitively large. In addition to the large search space, prokaryotic TRNs are typically very

sparse, meaning that the number of false positive regulatory interactions predicted by the reconstruction

methods is also a subject of concern.

To tackle the underdetermined problem, most approaches implement optimization strategies, with

different mathematical formulations filtering the most inadequate solutions in a time-efficient way. Another

approach regularly used to overcome the large search space is the integration of different layers and

sources of regulatory information.

2.6 Reconstruction of transcriptional regulatory networks

Methods for reconstructing TRNs have been extensively reviewed in the literature [15], [18], [19], [26],

[104], [107], [108]. In fact, there is a panoply of classification systems and procedures. As new methods

are released each year, the complexity increases. Hence, assigning classes to these new approaches

can be a complicated task. More importantly, this reveals that standard platforms and methodologies to

assemble TRNs using diverse sources of regulatory information, such as gene expression data [65], [66]

or transcriptional information [67], [69], [109], are still missing.

17

CHAPTER 2. BACKGROUND

Nevertheless, an integrative workflow for reconstructing bacterial TRNs has been proposed by Faria

et al [15]. The authors suggested that comparative-genomics approaches, namely the inference of TRNs

using template curated networks and the prediction of cis-regulatory elements, can be integrated with the

output of de novo reverse engineering tools. The workflow depicted in figure 7 addresses the possibility

of reconstructing TRNs for poorly described prokaryotic organisms using a variety of sources of regulatory

information.

18

2.6. RECONSTRUCTION OF TRANSCRIPTIONAL REGULATORY NETWORKS

Figure 7: Workflow for reconstructing TRNs using integrative approaches. Workflow for reconstructing
TRNs using de novo reverse engineering tools combined with comparative-genomics approaches, namely
template-network-based and cis-regulatory elements detection, as suggested by Faria et al [15]. Template-
network-based methods rely mostly on experimentally defined networks to perform a search for ortholo-
gous genes in the genome of the organism of interest. Methods based on the detection of cis-regulatory
elements are aimed at identifying regulatory interactions between TF and target genes using collections
of TFBS to create PWMs. These PWMs are then used to search the corresponding interactions in the
genome of interest. de novo reverse engineering tools use gene expression data to determine regulatory
interactions.

Template-network methodologies are based on the conservation of prokaryotic TRNs across evolution

[31], [110], [111]. As described by Faria et al [15], template-network-based methods usually perform a

search for orthologous genes in the genome of the organism of interest to propagate TRNs to strains of

19

CHAPTER 2. BACKGROUND

well-characterized model organisms or closely related ones.

Cis-regulatory elements detection relies on the assumption that a regulatory interaction between a

given TF and target gene can be inferred from the detection of the TFBS. The prediction of these cis-

regulatory elements is a problem in which computational methods can assist [104], [112]. Although these

computational tools are unable to infer a complete TRN from binding site data, they can be integrated into

the following workflow towards such a goal. The principles of this methodology were implemented by

Alkema et al [113] in Regulogger and the RegPredict web-based platform [114].

De novo reverse engineering tools are widely used for inferring TRNs from gene expression data. A

vast repertoire of computational tools based on the de novo reverse engineering approach can be found

in the literature, and consequently numerous ways to classify these tools [18], [19], [107]. Nevertheless,

de novo reverse engineering methods are usually classified by mathematical formulation. Data-driven

methods are usually based on the following:

• Correlation (e.g. COREGNET [115]);

• Information-theoretic (e.g. Faith et al [94]);

• Boolean algebra (e.g. ModEnt [116]);

• Regression-based (e.g. GENIE3 [117]);

• Ordinary Differential Equation (ODE)s (e.g. Inferelator [105]);

• Bayesian models (e.g. Gat-Viks et al [118]).

2.7 Reconstruction of genome-scale metabolic models

The generation of GEM models is a common practice in systems biology. The reconstruction of

these comprehensive models, through modeling techniques and genomics data, allows predicting cells’

metabolic behavior [12], [13], [119].

As presented in figure 8, a GEM model is an in silico representation of the biochemical reactions

taking place within the metabolism of a given organism [120]. A genome-wide functional annotation that

provides the required metabolic information over the organism of interest should be performed to assem-

ble this representation. This information is linked to existing metabolic knowledge retrieved essentially

from biochemical databases and literature. These steps help to create the reaction set, upon which the

metabolic network is assembled.

The link from metabolic genes to proteins (mainly enzymes or membrane transporter proteins), as

well as from proteins to reactions, is established by GPR associations. GPR associations must be cau-

tiously defined during the reconstruction, taking into account isoenzymes, protein complexes, and cascade

reactions, through the use of AND or OR Boolean rules [13].

20

2.7. RECONSTRUCTION OF GENOME-SCALE METABOLIC MODELS

In the next iteration, biomass and organism-specific constraints are formulated from the retrieved

knowledge to assemble a final stoichiometric model. The final GEM model may then be exported in a

standard format, such as the Systems Biology Markup Language (SBML) [121]. Several platforms, such

as merlin [122], ModelSEED [123], RAVEN [124], and CarveMe [14], have been developed specifically for

performing or assisting in the reconstruction of these models [125].

Figure 8: Reconstruction of a GEM model. Reconstruction of a GEM model involving four steps: (A)
Genome annotation; (B) GEM network assembly; (C) GEM model assembly; (D) GEM model validation.

The classic principles of chemical engineering are used to infer the dynamic mass balances of all

metabolites in the Genome-scale metabolic network. A single ODE is created for each metabolite, ac-

counting for its stoichiometry in the whole reaction set. Due to the lack of kinetic rates for all reactions

in the ODE set, a steady-state approximation is used to reduce the mass balances to a set of linear

equations. In a pseudo-steady-state paradigm, the concentration of a metabolite is assumed to remain

constant throughout time [12].

When used to determine flux values, the set of linear equations defines a linear system, typically

21

CHAPTER 2. BACKGROUND

underdetermined, as the number of fluxes is much higher than the number of mass balance constraints,

also referred to as the null space of S [126]. Additional mass balance constraints can be added to the

system to limit the flux that each reaction can accommodate by fixing both lower and upper bounds.

The system can be solved mathematically transforming it into an optimization problem, using several

constraint-based approaches to predict the phenotypic behavior of the organism under a wide variety

of environmental and genetic conditions. One of the most popular approaches is the FBA framework

[126]. FBA can compute an optimal solution, out of the feasible space determined by both mass balance

and flux constraints using Linear Programming (LP). FBA requires the definition of an objective function,

which should be relevant to the undergoing problem. This is commonly defined as the maximization or

minimization of a specific metabolic flux (e.g., biomass reaction), and quantitatively determines how much

each reaction contributes to a phenotype [12]. Notation 2.1 shows the definition of an objective function,

whereas notations 2.2 and 2.3 represent the optimization problem constraints:

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 → 𝑍 (2.1)

𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 → 𝑆 ∗ 𝑣 = 0 (2.2)

𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 → 𝛼 𝑗 ≤ 𝑣 𝑗 ≤ 𝛽 𝑗 , 𝑗 = 1, ..., 𝑁 (2.3)

Where:

• 𝑍 is the linear objective function;

• 𝑣 is the flux vector (includes exchange fluxes);

• 𝑆 is the stoichiometric matrix (columns represent reaction fluxes and rows the metabolites mass

balances);

• 𝛼 𝑗 and 𝛽 𝑗 are the lower and upper bounds, respectively.

Parsimonious Flux Balance Analysis (pFBA) [127] and Flux Variability Analysis (FVA) [128] are al-

ternative mathematical frameworks that also employ LP to analyze in silico flux distributions. This set

of tools is extremely helpful for validating a reconstructed model using experimental data of the or-

ganism of interest (figure 8). COBRA Toolbox [129], COBRApy [130], OptFlux [131], and ReFramed

(https://github.com/cdanielmachado/reframed) are prominent computational tools that have implemented

these methods.

Although GEM models have proven to be valuable throughout the years [5]–[10], [132], there are

limitations. Indeed, they are not yet capable of accounting for biological regulatory phenomena, such as

the control of gene expression [15]. The lack of the regulatory layer in these models can lead to erroneous

22

2.8. INTEGRATED MODELS

in silico phenotype simulations, due to the lack of constraints that allow reaching the most accurate flux

distribution according to experimental data.

Several methods have been proposed to improve phenotype simulations obtained from GEM models,

which will be herein surveyed. Most of these new methodologies are aimed at combining additional layers

of omics data, namely transcriptomics, to limit the cone of allowable flux distributions. Also, these methods

often resort to the integration of gene expression data and/or regulatory information obtained from TRNs

being, therefore, prominent efforts made towards the reconstruction of integrated metabolic-regulatory

models. The utilization of these integrated models can be useful to improve phenotype simulations or

extend the analysis of regular GEM models.

2.8 Integrated models

Combining regulatory elements with information on metabolic stoichiometry is a complex task. There

are many ways of controlling metabolism [20], which are well represented in the large diversity of methods

proposed to quantify such influence [15], [16], [36], [133]–[143]. Nevertheless, the common denominator

is that most methods start with GEM models.

In detail, several of these methods integrate complete functional TRNs [144]–[152] or gene expression

data [153]–[163] into GEM models, whereas others impose additional constraints using the information

on allosteric and post-translational modifications [36], [142], [143]. A different strategy is a combination of

multiple layers of regulation [133], [137], [138], [141]. For higher eukaryotes such as humans, the control

of gene expression also plays an essential role in the differentiation between different tissues or cell types.

Thus, algorithms for tailoring a GEM models according to a specific cell line or tissue, commonly referred

to as context-specific models, have been proposed [139], [164]–[172]. These principles and their main

implementations are depicted in Figure 9.

Surveying all approaches is out of the scope of this project. The following sections will cover the

integration of TRNs or gene expression data into GEM models, focusing on controlling gene expression at

the transcriptional level. Figure 10 highlights both approaches, namely the integration of TRNs (Figure 10

A) and gene expression data (Figure 10 B) into GEM models.

The differences between the integration of TRNs and gene expression data into GEM models are

associated with the type and amount of data that these sources can offer to the metabolic landscape of

GEM models.

Methods capable of integrating TRNs into GEM models provide comprehensive knowledge regarding

the metabolic and regulatory events occurring inside the cell at the genome-scale. As a result, both

regulatory and metabolic networks can be analyzed together at the genome-scale, extending the range

of applications of a regular GEM model. On the other hand, gene expression data comprises a set of

snapshots of the transcriptome for several experimental conditions. Thus, a gene expression dataset can

solely offer gene expression levels at a given experimental condition.

23

CHAPTER 2. BACKGROUND

Figure
9:O

verview
ofseveralm

ethods
forintegrating

additionalconstraints
into

GEM
m
odels

based
on

the
regulation

ofm
etabolism

.W
hereas

som
e
m
ethods

integrate
com

plete
functionalTRN

s
or

gene
expression

data
into

GEM
m
odels,others

im
pose

further
constraints

based
on

allosteric
and

post-translational
m
odifications.Additionally,otherm

ethods
integrate

m
ultiple

om
ics

layers
ofregulation

ofm
etabolism

.Forhighereukaryotes
such

as
hum

ans,context-specific
m
odels

have
also

been
based

on
tailoring

the
flux

cone
ofsolutions.

24

2.8. INTEGRATED MODELS

The group of methods aimed at integrating gene expression data with GEMmodels comprises methods

using only transcriptomics data for tailoring the flux distributions, so no structure or rules describing the

regulatory interactions are observed in this class of methods. Thus, the integration of gene expression

data focuses on improving the prediction of flux distributions, rather than the study and analysis of an

additional biochemical network at the genome-scale.

Methods have also been classified according to the main formulations, as previously suggested by

Machado et al [16]. Organizingmethods into containers, according to their main formulations and features,

facilitates the decision process when selecting an adequate method for the existing constraints and data

sources. Hence, methods were classified into discrete (Figure 10 C) or continuous (Figure 10 D), according

to whether phenotype simulations were performed with discrete, namely Boolean logic (“ON/OFF”), or

continuous constraints.

Accordingly, a method is systematically classified as discrete if the result of the integration is a Boolean

value (e.g., 1 for ”ON” and 0 for “OFF”), imposing additional constraints on the system. These methods

are also referred to as ”switch” methods since TRN or gene expression data switch reactions on or off.

The state of a given metabolic gene is determined by evaluating the Boolean regulatory rule or thresh-

olding the gene expression level. Then, metabolic reactions mapped to metabolic genes are accessed

according to the GPR rules to determine the resulting states. Thus, reactions having a one-to-one direct

GPR rule are active/inactive according to the state of the metabolic gene. Reactions catalyzed by enzyme

complexes, encoded by multiple yet mandatory genes, are considered inactive if at least one metabolic

gene is unavailable. In contrast, reactions catalyzed by isoenzymes, namely multiple enzymes catalyzing

the same reaction, are considered active if at least one metabolic gene is active.

Alternatively, there are methods aimed at circumventing the rigid Boolean logic, called ”valve” meth-

ods, which impose continuous constraints to adjust a given flux distribution gradually and according to

penalties, expression scores, or normalized expression levels obtained from the gene expression data.

Typically, continuous integration is performed by implementing slack variables in the constraints’ formu-

lations, altering the reactions’ bounds. The slack variable represents penalties, expression scores, or

normalized expression levels retrieved from gene expression data for the metabolic genes associated with

a given reaction. As before, the reactions’ state is obtained from the metabolic genes using the GPR rules,

selecting the best penalty, expression score, or normalized expression level for the slack variable.

When a set of isozymes catalyzes a given reaction, the methodology for assigning a value to the

slack variable comprises several distinct approaches. These include: methods in which the slack variable

assumes the maximum expression score of the associated genes; methods where the slack variable

takes the sum of expression scores of all genes encoding the isozymes catalyzing a single reaction; and,

methods in which the reaction is replicated, according to the number of isozymes, and each new reaction

is associated with one, and one only, gene.

Regarding reactions catalyzed by an enzyme complex, a group of methods establishes that the mini-

mum expression score of all encoding genes is assigned to the slack variable. In contrast, other methods

define the utilization of the geometric or arithmetic mean of the expression score of all genes associated

25

CHAPTER 2. BACKGROUND

with an enzyme complex or isozymes.

Furthermore, methods capable of integrating gene expression data into GEMmodels were also divided

into single-condition (Figure 10 A) or multi-condition (Figure 10 B). Notice that this classification was not

used to classify those methods aimed at integrating TRNs into GEM models, as will be explained next.

Methods were classified as single-condition (Figure 10 A) or multi-condition (Figure 10 B) according to

whether phenotype simulations were performed for one or more conditions/states in the gene expression

dataset, respectively. For instance, a given method is considered multi-condition if it adjusts the flux cone

of solutions by considering all conditions in the gene expression dataset or the gene differential expression

between two conditions. Otherwise, the methods are classified as single-condition.

Notice that the latter classification was not used to classify those methods aimed at integrating TRNs

into GEM models. Methods capable of integrating TRNs into GEM models do not require a gene expres-

sion dataset, thus classifying them into single- or multi-condition would be meaningless. Other methods

capable of assembling and integrating TRNs into GEM models often use the whole dataset and perform

condition-specific phenotype simulations. Hence, classifying these methods as single-condition would be

misleading.

Figure 10: Two examples of the integration of TRNs (A and C) or gene expression data (B and D) into
GEM models. The integration of TRNs (A) does not require gene expression data, while methods that
integrate gene expression data (B) are capable of tailoring the flux cone of solutions by accounting for
one (single-condition) or more (multi-condition) conditions in the gene expression dataset. Both types of
integration can be mediated by discrete (C) or continuous (D) variables.

26

2.9. INTEGRATING TRANSCRIPTIONAL REGULATORY NETWORKS

An analysis of these methods, encompassing the year of publication, availability of a tool with a

user-friendly interface (namely a Graphical User Interface (GUI) without the requirement of coding skills),

type of reaction constraint formulation, as well as the organism used for proof of concept has also been

conducted. This information is available in supplementary material I.1. Figure 11 provides, on the other

hand, a complete understanding of the methods described next, as well as their categorization according

to the classification axes described above.

2.9 Integrating transcriptional regulatory networks

For simulation purposes, the first attempts to integrate TRNs within GEM models, namely rFBA [32],

[144], [173], [174], SR-FBA [145], and the method proposed by Herrgård et al [147], are based on the

switch approach, to complement the metabolic system with additional constrains outlining which genes

are activated or silenced in the network for specific stimuli.

As proof of concept, rFBA was successfully used to create the first integrated genome-scale model of

metabolism and gene expression for E. coli [173], [174]. In this reconstruction, as well as in the integrated

network of S. cerevisiae provided by Herrgård et al [147], Boolean networks collected from literature were

integrated through a set of GPR rules with the GEM model imposing regulatory events as additional time-

dependent constraints.

On the other hand, SR-FBA performs steady-state simulations by including all valid metabolic and

regulatory constraints in the system in a single step through a Mixed-Integer Linear Programming (MILP)

formulation. For that, nested Boolean expressions are formulated as a set of linear constraints by recur-

sively iterating over the structure of the regulatory layer and GPR rules to add auxiliary variables repre-

senting intermediate Boolean terms [145]. As shown in Figure 11, these methods have been classified as

discrete, and none provides a user-friendly interface without the requirement of coding skills.

Two platforms, namely Toolbox for Integrating Genome-scale Metabolism (TIGER) [152] and FlexFlux

[151], have been developed for integrating Boolean-based TRNs into models. TIGER can convert a series

of logic Boolean rules, which can be thought of as a Boolean TRN, into a set of mixed-integer inequalities.

Then, several algorithms for integrating gene expression data into the metabolic model and simulating

phenotypic behavior can be implemented in the toolbox. Other implementations already available in

this toolbox, such as Metabolic Adjustment by Differential Expression (MADE) [162], can be used for

simulations.

FlexFlux differs from TIGER insofar as it is the only tool that provides a user-friendly interface for

integrating TRNs into GEM models. This computational tool developed in Java® allows the input of SBML

[121] with the SBML Qualitative (SBML-qual) extension. SBML-qual is the standard file format extension

for storing and sharing qualitative multi-state TRNs [175]. In this way, a regular SBML file can hold a

computer representation of qualitative models of biological networks. Qualitative multi-state regulatory

networks can then be used to determine multi-state qualitative constraints for metabolic flux analyses

27

CHAPTER 2. BACKGROUND

using FBA. Furthermore, FlexFlux allows the translation of the discrete qualitative states into continuous

intervals, thereby constraining a reaction flux continuously or discretely [151].

PROM [146], PROM2.0 [176], and Integrated Deduced REgulation And Metabolism (IDREAM) [150]

are all based on a probabilistic model for TRNs, which are integrated with a constraint-based model using a

continuous method. PROM and PROM2.0 were the first attempts to circumvent the previous rigid discrete

constraints added to a GEM model by setting the reactions’ flux bounds proportional to the probabilities of

their associated metabolic genes. In turn, the probability of a metabolic gene being activated in the whole

set of conditions is defined together from the TRN and gene expression dataset provided as input. In short,

PROM approaches can determine the probability of a given gene being or not activated when the set of

regulating TFs is either activated or silenced. The probability is calculated according to the frequency of

each gene active in the dataset (of either perturbed or over/under-expressed TFs). Likewise, the effect of

perturbations on the regulatory network can also be robustly predicted.

Although PROM-based approaches are probably the best examples for integrating both TRNs and

gene expression data into a GEM model, the gene expression dataset must have a large number of

measurements per condition. PROM and PROM2.0 have been validated with E. coli and M. tuberculosis

experimental gene expression data and the respective TRNs.

The IDREAM method resulted from the combination of Environment and Gene Regulatory Influence

Network (EGRIN) [95], [177] and PROM frameworks to create an enhanced genome-scale model of

metabolism and gene expression for Saccharomyces cerevisiae [150]. Contrariwise to the previous ap-

proaches, this methodology has used a de novo reverse engineering method called EGRIN to complement

the yeast TRN collected from the database YEAst Search for Transcriptional Regulators And Consensus

Tracking (YEASTRACT) [178]. Then, the phenotype simulations are conducted similarly as in the PROM-

based approaches.

Transcriptional Regulated Flux Balance Analysis (TRFBA) [149] and CoRegFlux [148] also provide a

framework for the integration of gene expression data and TRNs in a continuous manner. Whereas the

former requires a TRN for the organism of interest, the latter provides tools for inferring the regulatory

network from gene expression data using CoRegNet [115]. Nevertheless, CoRegFlux allows us to use a

curated TRN rather than using the provided data-driven method.

Regarding the TRFBA methodology, this FBA-based approach considers gene expression levels as two

additional types of continuous constraints. The first is represented by a constant parameter that converts

the gene expression levels to the upper bounds of the reactions. The second type of linear constraint to

be added to the system can be thought of as the linear regression of each target gene from the regulating

TFs.

CoRegFlux differs from TRFBA in that it uses a statistical reverse engineering method to infer targets

of a given set of regulators at the genome scale. Then, the influence score (similar to correlation scores

for activation or repression) of each regulator in the set of target genes is calculated with CoRegNet from

a large gene expression training dataset. Influence scores are used to train a linear model capable of

predicting the gene expression of metabolic genes using a new gene expression dataset. These predicted

28

2.10. INTEGRATING GENE EXPRESSION DATA

levels of expression are then translated into flux bounds for the phenotype simulations using FBA or

Dynamic Flux Balance Analysis (dFBA) [179].

The methods capable of integrating TRNs into GEM models addressed herein are available in supple-

mentary material I.1.

2.10 Integrating gene expression data

Themethod proposed by Åkesson et al [163] and MADE [162] were the earliest approaches for tailoring

the flux cone of solutions using discrete variables obtained solely from gene expression data. In the case

of the method developed by Åkesson et al [163], a reaction is simply switched “off” with a zero flux bound

if the associated genes are found to be under-expressed in the corresponding condition (single-condition

method). MADE, on the other hand, tries to surpass the problem of arbitrary thresholding under-expression

by considering multiple conditions (multi-condition method). Statistical significance between changes in

gene expression levels across sequential conditions is calculated to infer whether a gene is activated [162].

E-Flux [180] and the method proposed by Lee et al [161] have introduced several novelties when

compared with the previous methodologies. These methods were the first attempts to constrain an FBA-

based model using continuous variables. Nevertheless, these approaches are radically different. E-Flux

directly maps gene expression levels into flux-bound constraints, assuming the maximum flux of a given

reaction to be a linear function of the expression of the associated genes in the same condition (single-

condition method). Lee and coworkers [161] do not introduce or alter flux bound constraints directly into

the GEM model. An alternative objective function that minimizes the distance between flux distributions

and gene expression data is applied for each phenotype simulation (single-condition method).

The Transcriptional-controlled Flux Balance Analysis (tFBA) method, proposed by van Berlo et al [160],

is aimed at overcoming the problem of setting an arbitrary threshold to determine whether a gene is ac-

tivated or not. The tFBA assumption is that differential gene expression between two conditions should

also be reflected in the flux of the reactions associated with this gene. For that, the authors formulated

constraints defining upper and lower limits for fluxes according to the gene expression, assuming their

transgression is possible. The optimization problem (MILP formulation) consists of finding the flux distri-

bution that minimizes the number of transgressions.

The method developed by Fang et al [159] is based on the differential gene expression between two

conditions, namely reference and perturbed conditions. This method assumes that the flux distribution

of a reference condition can be determined using the FBA or FVA frameworks, while the differential gene

expression between the reference and perturbed conditions is used for tailoring the flux distribution of the

perturbed one. Also, this method considers the variation of the biomass composition between reference

and perturbed conditions.

As with tFBA [160] and the method proposed by Fang et al [159], the Gene Expression Flux Balance

Analysis (GX-FBA) method [158] also determines the flux distribution for the reference condition using FBA.

29

CHAPTER 2. BACKGROUND

Then, GX-FBA employs a new objective function and new constraints derived from the difference between

reference and perturbed states to perform the in-silico phenotype simulation of the latter state. A wide

range of phenomena associated with temperature and known to induce virulence in the gram-negative

bacterium Yersinia pestis was used as proof of concept.

Temporal Expression-based Analysis of Metabolism (TEAM) [157] and Adaptation of Metabolism (AdaM)

[156] are the only methods developed for integrating time-series gene expression data into constraint-

based models. The former uses dFBA [181] to predict time-series flux distributions based on tempo-

ral gene expression profiles. Using a cost minimization scheme similar to the strategy proposed in the

context-specific Gene Inactivity Moderated by Metabolism and Expression (GIMME) method [166], TEAM

is capable of determining the flux distribution of a GEM model, constrained with gene expression levels of

each time step in the dataset. TEAM was tested with time-series gene expression data from Shewanella

oneidensis.

AdaM consists of a flux-based bilevel optimization problem that extracts minimal operating networks

from a given GEM model [156]. This algorithm infers minimal operating networks in agreement with the

differential gene expression pattern between time steps. Then, Elementary Flux Mode (EFM)s [182] are

computed with these minimal operating networks rather than computing the flux distributions at each

time step. Reactions are weighted according to the number of EFMs in which these are present. The

optimization problem consists of finding the minimal network having the largest weight.

Angione et al [154], [155] formulated methods, for example, the Metabolic and Transcriptomics Adap-

tation Estimator (METRADE), aimed at measuring the adaptability to a changing environmental condition

over time. These approaches have provided equally valid methodologies for integrating gene expression

data in metabolic networks. In short, these methods have modeled both the upper and lower bounds of

each reaction as a continuous logarithmic function of the associated gene expression levels.

Reaction Inclusion by Parsimony and Transcript Distribution (RIPTiDe) [153] is aimed at circumventing

the assumption that reaction fluxes are directly related to the gene expression levels for a given condition.

Instead, the authors have proposed an unsupervised method that assigns weights (continuous variables)

to reactions according to the normalized expression levels of associated genes over the entire dataset.

Then, a pFBA simulation considering these linear coefficients is performed. The novelty of this method

consists of its validation with precise transcript abundance obtained with RNA-seq.

The methods capable of integrating gene expression data into GEM models addressed herein are

available in supplementary material I.1.

2.11 Synopsis

The reconstruction of GEM models is common practice in systems biology nowadays. The advent of

the GEM model reconstruction for many organisms was facilitated by the adoption of standard protocols

[13], as well as the existence of user-friendly computational tools [122], [123], capable of assembling

30

2.11. SYNOPSIS

these models from different genomic, enzymatic, and stoichiometric data. Nevertheless, the simulation

of GEM models still presents today false-positive phenotypes for several environmental conditions.

The reconstruction of TRNs is a well-known strategy in systems biology for understanding the regulatory

machinery of a given organism [19], [26], [107]. Although there are many methodologies for assembling

a TRN, standard protocols and computational platforms are yet missing to support the reconstruction

of TRNs for less described organisms using different data sources. The workflow suggested by Faria et

al [15] highlighted several methodologies that can be combined to extend the reconstruction of TRNs to

more bacterial species. To the best of our knowledge little progress has been made to provide a user-

friendly platform capable of achieving such a goal. More importantly, the reconstruction of genome-scale

TRNs using such integrative workflow would be pivotal for the reconstruction and simulation of integrated

models.

The integration of the control of gene expression into GEM models has been surveyed in this work. A

systematic classification that grasps the difference between the several methodologies, capable of inte-

grating and simulating regulatory events into GEM models was proposed herein. Although some reviewed

methods have already been surveyed before [15], [16], [134]–[136], [140], [183], TIGER, FlexFlux, ME-

TRADE, IDREAM, TRFBA, CoRegFlux, RIPTiDe, and the method proposed by Angione et al have never

been addressed elsewhere in reviews, to the best of our knowledge. Moreover, a detailed categorization

that highlights the methodologies used to perform the integration of the regulatory layer into GEM models

has not been provided. This systematic categorization can guide the decision process of selecting the

most adequate method of integration and simulation.

As shown in Figure 11, there are several methods and toolboxes capable of integrating and simulating

TRNs into GEM models using a discrete approach [144], [145], [147], [151], [152]. The TRNs used by

these methods and toolboxes were mainly reconstructed from literature, which might be a time-consuming

approach. The remaining methods allow assembling TRNs from gene expression data using de novo

reverse engineering methods. The resulting TRNs can be integrated and simulated with a given GEM

model. FlexFlux is the prominent exception as it can perform the integration of the TRN in the GEM model

using either discrete or continuous variables.

To date, only two prokaryotic organisms, E. coli [144]–[146], [149], [151] and M. tuberculosis [146],

[176], and the yeast S. cerevisiae [147]–[150], [152], have integrated genome-scale models as a result of

the integration of complete TRNs into a metabolic network. Nevertheless, some of these reconstructions

still require gene expression datasets, namely several methods in the continuous sub-group.

Regarding the methods for integrating gene expression data, most of these have provided means for

integrating transcriptomics data as continuous constraints from one or more conditions (Figure 11). Only

the method proposed by Åkesson et al [163], as well as MADE [162], use discrete variables to simulate

integrated models of metabolism and gene expression. Besides E. coli, M. tuberculosis, and S. cerevisiae,

methods for integrating gene expression data have also provided integrated models for S. oneidensis [157]

and Y. pestis [158].

31

CHAPTER 2. BACKGROUND

Figure 11: Classification of methods aimed at the reconstruction of integrated genome-scale models of
metabolism and gene expression. These methods have been divided according to the integration of TRNs
(white boxes) or solely gene expression data into GEM models. Discrete and continuous categories were
used to classify these methods according to the usage of discrete, namely Boolean logic (“on/off”), or
continuous constraints. Methods capable of integrating gene expression data into GEM models have been
further divided into single-condition (orange circles) and multi-condition (blue ellipses) whether phenotype
simulations were performed for one or more conditions/states in the gene expression dataset, respectively.
Each inner circle stands for a prokaryotic organism, while the outer circle stands for the baker’s yeast
Saccharomyces cerevisiae.

A vast diversity of methods for the integration of gene expression data in GEM models has been found.

Yet, most methods require large gene expression datasets to be robust, which might not be the case for all

organisms. Other methods resort to mapping levels of gene expression directly with the reactions bounds,

which again might not be the best approach [16], [38], [183].

Furthermore, the methods for integrating gene expression data with metabolic models previously

evaluated by Machado and coworkers [16], namely E-Flux, MADE, GX-FBA, and the method developed

by Lee et al [161] have shown to perform poorly in the designed benchmark. None of the methods have

32

2.11. SYNOPSIS

outperformed each other in the phenotype simulations or pFBA, which indicates that the promising results

reported by these methods seem to be mere artifacts related to rigid constraints created around the nature

of the gene expression dataset.

The reconstruction of integrated models using TRNs is, in theory, more useful than merely integrating

gene expression data into GEM models. Integrated models that result from the integration of TRNs provide

comprehensive knowledge regarding the metabolic and regulatory events happening inside the cell, thus

leading to a broader range of applications when compared to a regular GEM model [184], [185].

Moreover, the diversity of methods for reconstructing TRNs using different data sources, such as gene

expression, TFBS, or comparative genomics analysis, eases the reconstruction of TRNs for most prokary-

otic organisms having a sequenced genome [15]. However, the absence of a user-friendly computational

tool based on the ensemble of these different approaches is missing. In contrast, the same strategy has

yielded results in the reconstruction of GEM models [14], [122]–[125], [129], [186]. In short, the exis-

tence of standardized protocols and easy-to-use computational tools for the generation of GEM models

has eased its practice in systems biology to study the metabolism of many organisms. In contrast, the

absence of computational tools that ease the reconstruction of TRNs from different sources of regulatory

data hindered a similar approach.

The major obstacle when using the methods described in this survey to simulate integrated genome-

scale models of metabolism and gene expression is not reproducing their results, but rather extending

their implementations to other organisms and case studies. This hurdle poses a stiff challenge for using

these methods out of the scope they were aimed at during development. The requirement for large

gene expression datasets with specific experimental conditions, the usage of TRNs reconstructed solely

from literature, and the output of biased results strictly related to rigid constraints, are specific indicators

of issues preventing the scaling-up of the reconstruction and analysis of integrated models. In short,

there is a vast diversity of methods capable of integrating and simulating the effect of regulation into the

metabolism, though few approaches ease the reconstruction of these integrated models.

Hence, the perspective of reconstructing integrated metabolic-regulatory models for diverse prokary-

otes is still a complex endeavor. The implementation of a user-friendly computational framework that

does not require coding skills and is capable of running a semi-automated pipeline for reconstructing

TRNs or analyzing gene expression data, and performing its integration into standard GEM models, would

be a clear breakthrough towards the reconstruction and simulation of integrated genome-scale models

of metabolism and gene expression. This hypothetical computational tool should be able to combine

different sources of regulatory information that are seldom combined.

33

3

Assisting the curation of genome-scale metabolic

models

The work presented in this chapter is currently pending review:

• Cruz, F., Capela, J., Ferreira, E. C., Rocha, M., Dias, O.

BioISO: an objective-oriented application for assisting the curation of

genome-scale metabolic models. Submitted. Pre-print available at:

https://doi.org/10.1101/2021.03.07.434259

34

https://doi.org/10.1101/2021.03.07.434259

3.1. INTRODUCTION

3.1 Introduction

The reconstruction of GEM model models is a challenging process [13]. Model validation and manual

curation can be laborious tasks [12] and most bottlenecks derive from accumulated errors, which require

complex and unique solutions. For instance, when a metabolic network is converted into a stoichiometric

model, FBA oftenmispredicts the organism’s experimental growth rate due to errors like missing or blocked

reactions and dead-end metabolites (gaps), among others.

The reconstruction of GEM models can follow two diverse paradigms: bottom-up [13] and top-down

[14].

The fast and automated top-down paradigm does not resort to gap-filling procedures. This approach

reconstructs a universal GEM model curated previously for the most common errors [14]. This univer-

sal simulation-ready model is then converted to an organism-specific model by carving reactions and

metabolites for which evidence is missing. Thus, the top-down paradigm can be extremely useful in creat-

ing microbial community models by merging the automated single-species models into community-scale

networks [14].

Unlike the top-down paradigm, the widely-used bottom-up paradigm consists of four main steps: draft

reconstruction based on genome functional annotation; refinement and curation of the draft reconstruc-

tion; conversion to stoichiometric model; model validation [13]. The last steps of a bottom-up reconstruc-

tion usually include several time-consuming and repetitive tasks to fix errors that emerged during the draft

reconstruction, thus solving the discrepancy between the predicted phenotype and experimental results.

While mistakes can be solved using manual curation, there are several gap-find and gap-fill tools to ac-

celerate the debugging process. Gap-finding algorithms aim to find either missing or blocked reactions

and dead-end metabolites in a draft reconstruction, whereas gap-filling ones are responsible for finding

potential solutions to the errors mentioned above.

To the best of our knowledge, the reconstruction of high-quality GEM models is frequently based on

the bottom-up approach involving manual curation and human intervention. In our view of a parsimonious

bottom-up reconstruction, the metabolic network can be divided into smaller yet insightful modules based

on the studied phenotype. Then, recursive relations can be used to divide metabolic networks into smaller

modules directly associated with the objective phenotype. FBA simulations applied over surrogate reac-

tions designed explicitly for each module can unveil the minor manual curation tasks that often increment

the reconstruction’s quality and resolve the metabolic gaps for such a module.

With this methodology in mind, BioISO was designed to automatize the search for reactions and

metabolites associated with a given objective, narrowing the search space. More importantly, BioISO

is a user-friendly gap-finding tool that allows users to analyze gaps and errors quickly. Reactions and

metabolites are appropriately evaluated by BioISO that uses FBA over surrogate reactions. Then, the

results are presented in a graphical user interface embedded in both a web server and merlin so that the

debugging process can be easy to follow and repeat.

35

CHAPTER 3. ASSISTING THE CURATION OF GENOME-SCALE METABOLIC MODELS

3.2 Survey of gap-find and gap-fill tools

Most state-of-the-art tools for debugging draft reconstructions comprehend both automated gap-finding

and gap-filling procedures [187]–[190]. Nevertheless, other tools were developed for only one of these

procedures [129], [191], [192]. Besides, gap-find and gap-fill tools can also be separated according to

the gap-finding and gap-filling methodology. Several gap-find and gap-fill state-of-the-art tools have been

described with further detail being given in the supplementary material I.2 and I.3.

Regarding gap-finding algorithms, tools such as biomassPrecursorCheck [129], and Meneco [187]

are based on guided-search algorithms to identify gaps or errors directly associated with a given objec-

tive/reaction. Both tools check the metabolic network topological features to find gaps, asserting the

existence of a given metabolite’s predecessors and successors. The COBRA Toolbox’s BiomassPrecursor-

Check tool searches for predecessors immediately upstream of the biomass reaction of a given model,

whereas Meneco performs the gap search according to a set of seed and target metabolites provided as

input. However, the search depth of the latter may encompass the whole metabolic network.

On the other hand, gapFind/gapFill [188], fastGapFill [189], and Gauge [190] are based on exhaustive

searches. Thus, these methodologies identify gaps all over the metabolic network, regardless of a given

objective. GapFind/gapFill and fastGapFill highlight gaps using a stoichiometry-like approach. These

methods search the stoichiometric matrix for no-production and no-consumption metabolites. Alterna-

tively, Gauge combines Flux Coupling Analysis and gene expression data to propose gaps in a draft GEM

model.

Regarding gap-fill, all available tools require a dataset of metabolic reactions, usually retrieved from

a biochemical database (e.g., KEGG [81], BiGG Models [193], or MetaCyc [82]), to resolve metabolic

gaps [187]–[192]. Besides a database of metabolic reactions, both Gauge [190] and Mirage [192] re-

quire gene expression data. Smiley [191] relies on additional growth phenotype data to identify minimal

environmental conditions for which the model mispredicted growth and non-growth phenotypes. Meneco,

gapFind/gapFill, fastGapFill, Gauge and Smiley consider the minimal reaction set of the whole dataset

to resolve every single gap. Alternatively, Mirage considers a pan-metabolic network that assures flux

through all metabolites, followed by a pruning step to reduce the large set of solutions. Thus, the solution

set is often the result of two very different gap-filling approaches, namely the parsimonious and pruning

approaches.

Most state-of-the-art tools for debugging draft reconstructions rely on proprietary software, such as

MATLAB (Mathworks®) or General Algebraic Modeling System (GAMS). From the above-mentioned tools,

Meneco is the only freely available to the community, as it is available as a Python package. It is worth

noticing, though, that all tools require coding skills. More importantly, most tools require and return

excessively verbose outputs, such as large arrays of missing metabolites and even greater sets of potential

solutions. The analysis of these results can be challenging for wet-lab scientists without coding skills or

data analysis expertise.

Furthermore, gap-filling tools usually warn that gaps might result from missing mappings between

36

3.3. BIOISO IMPLEMENTATION

the metabolites’ abbreviations and the reference database identifiers. Besides the mapping’s limitations,

several tools require different format files for the metabolic data, such as SBML (e.g., Meneco), KEGG

reaction database LST format file (e.g., fastGapFill), customised text files (e.g., gapFind/gapFill), or data

structures (e.g., Gauge). On the other hand, other tools lack information on how a different source of

solutions can be used (e.g., Mirage and Smiley).

The introduction of artifacts in metabolic networks can hinder GEM model’s applications, such as

metabolic engineering and drug-targeting tasks. These issues may be extremely relevant for organisms

that have evolved due to a combination of extensive loss-of-function events and acquisition of key genes

via horizontal gene transfer during co-evolution with well-defined and constant ecological niches [194]–

[196]. Moreover, although loss-of-function genetic variants are frequently associated with severe clinical

phenotypes, several events are also present in healthy individuals’ genomes, making it essential to assess

their impact [197].

Hence, automated approaches, and especially gap-fill tools, must be used very carefully, taking into

consideration the issues raised above. Otherwise, the offered automation can be a counterproductive

solution for the manual curation steps performed during high-quality reconstructions. Furthermore, the

usability of gap-fill approaches can be vastly improved.

3.3 BioISO implementation

3.3.1 BioISO’s algorithm

BioISO requires a constraint-based model and the reaction to be evaluated, which defines the linear

programming problem’s objective function. A recursive relation-like algorithm is then used to build a

hierarchical structure according to the metabolites and reactions associated with this objective.

BioISO is herein showcased through the analysis of a small-scale metabolic network, represented in

figure 12, having 12 intracellular and two extracellular metabolites, 12 reactions, and two compartments

(extracellular and intracellular). In this metabolic network, the reaction identified by R8 is considered

missing, blocked, or incorrectly formulated, while the identifier R11 refers to the reaction to be evaluated.

37

CHAPTER 3. ASSISTING THE CURATION OF GENOME-SCALE METABOLIC MODELS

Figure 12: A small-scale metabolic network to showcase BioISO’s algorithm. Metabolites and reactions
are represented in the metabolic network as white nodes and black-directed arrows. The extracellular
boundary is represented as a dashed line. The reactions are listed alongside the metabolic network.
In this metabolic network, the reaction identified by R8 is considered missing, blocked, or incorrectly
formulated..

BioISO starts by finding the set of metabolites associated with the reaction submitted for evaluation,

namely reaction R11. The tool will discover metabolites J, L, I, and M as the subsequent nodes since these

metabolites are involved in R11 (figure 13). A set of reactions is then created for each node and populated

with the reactions associated with each metabolite. Thus, BioISO will retrieve four reactions sets, one for

each metabolite (figure 13).

Meanwhile, BioISO assembles a hierarchical tree-based structure, depicted in figure 14. The tool

identifies as precursors (reactants) or successors (products) the metabolites associated with the submitted

reaction (R11). Thus, J, L, and I (reactants) and M (product) involved in rection R11 were separated into

two different branches: precursors and successors, respectively.

38

3.3. BIOISO IMPLEMENTATION

In the next recursive call, BioISO retrieves metabolites G, H, F, M, J, L, I, and Mext from reactions

R8, R9, R10, and R12 (figure 13), while adding the precursors G, H, F, and M, and the successors J, L, I,

and Mext to the tree-based structure (figure 14). These reactions are either consuming or producing the

metabolites identified in the previous step.

Figure 13: Evaluation of reaction R11 with BioISO. BioISO finds the set of metabolites associated with
reaction R11, which in this case corresponds to metabolites J, L, I, and M. For the next call, BioISO finds
metabolites G, H, J, L, F, I, M, and Mext in the reactions R8, R9, R10 and R12 and so forth.

39

CHAPTER 3. ASSISTING THE CURATION OF GENOME-SCALE METABOLIC MODELS

Figure 14: The hierarchical tree-based structure imposed by the recursive relation-like computational
method implemented in BioISO. The hierarchical tree-based structure, imposed by the recursive relation-
like computational method implemented in BioISO, is outlined. BioISO finds the set of precursors and
successors in the first level, which in this case correspond to metabolites J, L, I, and M, respectively.
For the next level, BioISO finds the precursors G, H, F for the previous precursors J, L, I, which are also
successors of themselves. On the other branches, M is its precursor, while Mext is the successor. BioISO
has implemented a cache memory system of all simulations performed during the recursion. Thus, nodes
colored in blue are only evaluated once, as they were already evaluated in those specific conditions.

The stopping condition, namely BioISO’s depth, represents the number of recursive calls performed

during the metabolic network analysis. For instance, varying BioISO’s depth from 1 to 3 allows running

the tool from shallow to guided or nearly exhaustive searches, depending on the metabolic network’s size

and arborescence.

The methodology for finding and assessing metabolites and reactions is detailed in algorithms 1-4 of

supplementary material I.4. The first algorithm, labeled BioISO (algorithm 1 of supplementary material

I.4), is the core logic supporting the methodology proposed in this work. BioISO uses the algorithm 2

of supplementary material I.4 to find and evaluate (using FBA) reactions associated with nodes. More

importantly, BioISO uses a more comprehensive approach to assess reactants (precursors) and prod-

ucts (successors), as demonstrated in algorithms 3 (testReactant) and 4 (testProduct) of supplementary

material I.4, respectively.

In detail, a precursor (reactant) is considered a positive assessment if the metabolic model can

40

3.3. BIOISO IMPLEMENTATION

produce it (connected metabolite). Thus, a reactant is a product elsewhere in the metabolic network;

otherwise, it would not be available for the objective reaction. Hence, BioISO evaluates an unbalanced

reaction explicitly designed to allow metabolite accumulation in the metabolic model. The evaluation is

successful if the model can attain non-zero flux in the FBA solution for this surrogate reaction.

As described in notation 3.1, 3.2, 3.3, and 3.4, when evaluating the reaction R11, BioISO will evaluate

the precursor I by adding an unbalanced reaction R13, which takes I as a reactant and whose lower and

upper bounds are set to zero and plus-infinity, respectively.

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 → 𝑣13 (3.1)

𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 → 𝑆 ∗ 𝑣 = 0 (3.2)

𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 → 𝛼 𝑗 ≤ 𝑣 𝑗 ≤ 𝛽 𝑗 , 𝑗 = 1, ..., 𝑁 (3.3)

𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 → 0 ≤ 𝑣13 ≤ +∞ (3.4)

Where:

• 𝑣13 is the linear objective function for maximization of reaction R13.

• 𝑣 is the flux vector.

• 𝑆 is the stoichiometric matrix (columns represent reaction fluxes and rows the metabolites’ mass

balances).

• 𝛼 𝑗 and 𝛽 𝑗 are the lower and upper bounds, respectively.

Furthermore, a similar reaction is included in the model for each reactant to prevent the seldom cases

in which all reactants are forcibly produced by reactions that produce/synthesize the assessed metabolite.

Likewise, BioISO creates unbalanced reactions that allow the uptake of all products associated with

the evaluated reaction. These reactions are included in the model to prevent the unlikely scenario that the

model forcibly needs to consume/metabolize such products to synthesize the precursor.

On the other hand, a successor (product) is considered a positive assessment if the metabolic

model can consume it (connected metabolite). Thus, a product is a reactant elsewhere in the metabolic

network. As described in the testing of precursor I, BioISO also creates an unbalanced reaction for the suc-

cessor. However, this reaction is now explicitly designed to allow the metabolite uptake in the metabolic

model. Thus, the minimization of this uptake reaction is now the objective function of the FBA simulation.

In other words, the model should metabolize/consume the precursor metabolite, obtaining an optimal

non-zero flux solution through the unbalanced reaction.

41

CHAPTER 3. ASSISTING THE CURATION OF GENOME-SCALE METABOLIC MODELS

A detailed description of the BioISO workflow to search and assert gaps is provided in supplemen-

tary material I.4. In short, the procedure to split the objective into two sub-problems and evaluate both

metabolites and reactions follows the workflow below:

• collect the reactions associated with each metabolite to be evaluated.

• maximize/minimize the reactions and assess the outcome of the FBA solution.

• from such reactions, find the precursor (reactants) and successor (products) metabolites.

• create unbalanced reactions allowing accumulation or uptake of the metabolites.

• maximize/minimize the unbalanced reactions and assess the outcome of the FBA solutions.

An analysis of BioISO’s relation-like algorithm’s complexity, together with the recursion tree method

visualization, is also provided in supplementary material I.4.

3.3.2 BioISO’s applications

BioISO is a package developed in Python 3 using the FBA framework implemented in COBRApy [130].

BioISO relies on COBRApy to read GEMmodels written in the SBML [198]. The IBM CPLEX solver (v. 1210)

is used by default to solve multiple linear programming problems formulated with the FBA framework,

although any solver supported by COBRApy can be used. BioISO’s source code, validation procedures,

and examples can be obtained from the GitHub repository at https://github.com/BioSystemsUM/bioiso.

A Dockerised Flask application has been implemented to make BioISO available to all scientific com-

munity at bioiso.bio.di.uminho.pt. This web service allows users to submit a GEM model in the SBML file

format and evaluate a specific reaction in the model. BioISO’s web service will then return a user-friendly

web page highlighting the metabolic network’s blocked reactions and dead-end metabolites according to

the submitted reaction. Finally, the user is encouraged to navigate through the set of dead-end metabolites

intuitively.

Besides the web service application, BioISO is also available as a plugin for merlin [199], an open-

source and user-friendly resource that hastens the reconstruction of GEM models. This plugin allows

BioISO to supply an equally user-friendly view of the errors associated with a given model reconstructed

within merlin.

Finally, instructions to run BioISO in the available applications and interpret the expected results are

also available at bioiso.bio.di.uminho.pt/tutorial.

42

https://github.com/BioSystemsUM/bioiso
https://bioiso.bio.di.uminho.pt
https://bioiso.bio.di.uminho.pt/tutorial

3.4. MATERIALS AND METHODS

3.4 Materials and Methods

3.4.1 BioISO’s algorithm depth analysis

BioISO’s algorithm depth analysis was performed in parallel for both objective functions, namely

growth and compound production maximization. This assessment allowed setting shallow, guided, or

nearly exhaustive searches with BioISO to assess the algorithm’s robustness. BioISO’s algorithm depth

analysis was performed in five state-of-the-art GEM models: iDS372 (Streptococcus pneumoniae) [8];

iJO1366 (Escherichia coli) [11]; iBsu1103 (Bacillus subtilis) [10]; iTO977 (Saccharomyces cerevisiae)

[200]; iOD907 (Kluyveromyces lactis) [9].

For instance, five incomplete models were created for the growth maximization analysis by removing

the following reactions from the E. coli iJO1366 model ([11]), one at a time: SDPTA; IMPC; MEPCT;

NNDPR; SERAT. The incomplete models were evaluated by setting BioISO’s algorithm depth level at 1 and

growthmaximization as the objective function (Ec_biomass_iJO1366_core_53p95M). This procedure was

repeated for the remaining models, with depth levels of 2 and 3, and compound production maximization

analysis.

Then, two metrics were proposed to evaluate the gap-finding performance: the ratio of dead-end

metabolites and the ratio of blocked reactions. These metrics were used to quantify the search space

associated with debugging gaps and errors. As shown in definition 3.5, the ratio of dead-end metabolites

for the objective-oriented search space (demooss) is a function of the number of metabolites that a guided-

search tool evaluates as unsuccessful (dead-end metabolite) divided by the size of the objective-oriented

search space (ooss). The ratio of dead-end metabolites for the whole search space (demwss) is a function

of the number of found dead-end metabolites divided by the wss, as described in definition 3.6. Definitions

3.7 and 3.8 describe a similar approach to calculate the ratio of blocked reactions for the objective-oriented

search (brooss) and the whole search (brwss) spaces, respectively.

Dead-end metabolite of the objective-oriented search space

𝑑𝑒𝑚𝑜𝑜𝑠𝑠 =

∑
𝐷𝑒𝑎𝑑𝐸𝑛𝑑𝑀𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒𝑠∑
𝐶𝑜𝑣𝑒𝑟𝑒𝑑𝑀𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑒𝑠

(3.5)

Dead-end metabolite of the whole search space

𝑑𝑒𝑚𝑤𝑠𝑠 =

∑
𝐷𝑒𝑎𝑑𝐸𝑛𝑑𝑀𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒𝑠∑

𝑀𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑒𝑠
(3.6)

Blocked reaction of the objective-oriented search space

𝑏𝑟𝑜𝑜𝑠𝑠 =

∑
𝐵𝑙𝑜𝑐𝑘𝑒𝑑𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠∑
𝐶𝑜𝑣𝑒𝑟𝑒𝑑𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠

(3.7)

43

CHAPTER 3. ASSISTING THE CURATION OF GENOME-SCALE METABOLIC MODELS

Blocked reaction of the whole search space

𝑏𝑟𝑤𝑠𝑠 =

∑
𝐵𝑙𝑜𝑐𝑘𝑒𝑑𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠∑

𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠
(3.8)

Objective functions, settings, evaluation metrics, and methodologies used to introduce gaps in state-

of-the-art GEM models used during the algorithm depth analysis can also be consulted in detail at supple-

mentary materials I.5 and I.6.

3.4.2 Exhaustive-search versus guided-search

The exhaustive-search versus guided-search analysis was performed for both iDS372 [8] and iJO1366

[11] models to assess the relevance of guided (BioISO and Meneco [187]) and exhaustive searches (fast-

GapFill [189]) for gap-finding.

BioISO was used as described in the previous section for a depth level of 2.

All metabolites available in the extracellular compartment of the iDS372 or iJO1366 models were

used as seed metabolites to run Meneco gap-finding methodology. Likewise, the set of target metabolites

was comprised of precursors and successors of the evaluated reactions. The set of dead-end metabolites

was determined through Meneco’s get_unproducible method. Note that Meneco cannot assert blocked

reactions. Thus, the set of blocked reactions could not be determined.

fastGapFill was used to assess the whole search space by accounting for errors and gaps. fastGapFills’

gapFind and findBlockedReaction methods were used to determine dead-end metabolites and blocked

reactions, respectively, in the incomplete models.

The metrics described in the previous section were then used to assess the tools’ performance: the

ratio of dead-end metabolites and the ratio of blocked reactions. Supplementary materials I.4 and I.5

present all details about the assessment of BioISO with Meneco and fastGapFill.

3.4.3 BioMeneco - embedding BioISO in Meneco

The BioMeneco analysis was performed for the iDS372 [8] and iJO1366 [11] models to assess the

integration of BioISO as Meneco’s gap-finding algorithm.

Meneco’s topological search finds dead-end metabolites, so the gaps associated with them can be

filled with reactions from a universal database. The novelty of Meneco is that it allows selecting which

gaps should be filled by tweaking the set of target metabolites. Hence, BioMeneco, BioISO’s integration

with Meneco, was performed to assess whether BioISO can suggest the right set of targets to be used as

input in Meneco.

Reactions R04568_C3_cytop and SO4tex were removed from the iDS372 and iJO1366 models, re-

spectively, to perform this assessment for growth validation. Meneco was then used to generate potential

solutions for both models using two sets of target metabolites in parallel:

44

3.5. RESULTS

• The set of target metabolites comprised precursors and successors of the evaluated reaction in

each model.

• The set of target metabolites was formulated based on identifying dead-end metabolites by BioISO.

BiGG Models [193] universal database was used as the source of metabolic reactions for the test

iJO1366 model, while KEGG [81] was used to solve gaps in the iDS372 model.

3.5 Results

3.5.1 Overview of BioISO’s assessment

BioISO aims to identify errors that emerge during the bottom-up reconstruction of high-quality GEM

models. Errors such as missing or blocked reactions and dead-end metabolites are often met during model

debugging and refinement. Thus, BioISO is based on a recursive-like algorithm to guide the search for

metabolic gaps associated with a given objective. Throughout BioISO’s objective-oriented search, multiple

FBA simulations are used to assert real metabolic gaps. Hence, we propose a tool capable of reducing

large search spaces and asserting real metabolic gaps to accelerate time-consuming and laborious manual

curation tasks.

Most state-of-the-art tools for debugging draft reconstructions aim to find and solve a wide range of

problems. These tools are commonly used in automatic gap-find and gap-filling routines. For instance,

Meneco, gapFind/gapFill, fastGapFill, Gauge, Smiley and Mirage are gap-fill tools aimed at finding and

solving errors accumulated during the draft reconstruction.

GapFind/gapFill, fastGapFill, and Gauge exhaustive-search tools attempt to assert gaps throughout

the whole metabolic network. Then, these tools enumerate minimal solutions (set of reactions) to solve

the highlighted gaps. Alternatively, Mirage and Smiley add new reactions to the model without an initial

gap scan, forcing model predictions to match the experimental data.

On the other hand, Meneco’s guide-search algorithm searches for gaps according to a set of seed and

target metabolites. Then, this tool enumerates a minimal set of reactions that can restore the flux to all

dead-end metabolites identified during the topological search.

Likewise, BioISO seeks dead-end metabolites downstream and upstream of a user-defined objective.

Additionally, BioISO performs multiple FBA simulations of custom unbalanced reactions during the topo-

logical search to evaluate whether a given metabolite is being consumed or produced.

More importantly, BioISO is the only tool freely available to all scientists. That is, BioISO is the only

user-friendly gap-finding tool, providing a graphical user interface embedded in both a web server and

merlin. Thus, our tool allows users to analyze gaps and errors without requiring coding skills or additional

metabolic data such as growth phenotype data or biochemical databases. Moreover, BioISO is a ready-

to-use and relatively fast method, allowing users to run this tool iteratively during model reconstruction.

45

CHAPTER 3. ASSISTING THE CURATION OF GENOME-SCALE METABOLIC MODELS

A summary of all features used to compare BioISO with several gap-find and gap-filling tools is available

in supplementary materials I.2 and I.3.

BioISO’s validation includes three assessments:

• BioISO’s algorithm depth analysis.

• Exhaustive-search versus guided-search.

• BioMeneco – embedding BioISO in Meneco [187].

The first analysis was aimed at assessing BioISO’s shallow, guided, or nearly exhaustive searches for

metabolic gaps in five state-of-the-art models. The second analysis allowed us to assess the relevance

of guided- and exhaustive-searches for gap-finding. In this assessment, we have compared BioISO and

Meneco guide-searches against fastGapFill exhaustive-search. Finally, the last analysis showcases the

outcome of setting BioISO as Meneco’s gap-finding algorithm.

3.5.2 BioISO’s algorithm depth analysis

BioISO was used to analyze several published GEM models for two objective functions: growth and

compound production maximization. The workflow and methodology used to assess BioISO’s algorithm

robustness are described above together with supplementary materials I.5 and I.6.

BioISO’s analysis included different settings, namely varying the algorithm’s depth from 1 to 3, allow-

ing to set BioISO for shallow, guided, or nearly exhaustive searches.

BioISO’s depth level of 1 assesses the nearest neighbors (successors and precursors metabolites)

and their associated reactions. According to figure 15, BioISO analyses less than 50% of all reactions for

growth maximization. The number of blocked reactions is significantly reduced at depth level 1 (less than

12%), except for the iJO1366 [11] and iBsu1103 [10] models (figure 15 and supplementary material I.6).

Likewise, BioISO only covers less than 10% of all metabolites for growth maximization (figure 15). As a

result, the number of dead-end metabolites found by BioISO at a depth level of 1 is less than 3 for all

models (figure 15 and supplementary material I.6). The level of insight provided by BioISO for shallow

searches is significantly reduced and similar to the biomassPrecursorsCheck tool from COBRA Toolbox

[129] or Meneco [187].

Increasing the depth level to 2 allows the evaluation of more reactions. As demonstrated in figure

15, 50% or more of the reactions are assessed in all models. Whereas BioISO analyses nearly a quarter

of all metabolites in the iOD907 [9] and iTO977 [200] models, this coverage increases up to 60% in the

iJO1366 [11] and iBsu1103 [10] models. In contrast, only 15% of all metabolites have been covered by

BioISO in the iDS372 [8] model. BioISO also detects more blocked reactions and dead-end metabolites for

guided searches. The percentage of blocked reactions varies between 20% and 40%, and the percentage

of dead-end metabolites between 2% and 12% (figure 15 and supplementary material I.6).

46

3.5. RESULTS

At a depth level of 3, a nearly exhaustive search is performed as BioISO analyses more than 70% of

both metabolites and reactions (figure 15 and supplementary material I.6). Likewise, the percentage of

detected blocked reactions and dead-end metabolites increases up to 65% and 30%, respectively.

As detailed in supplementary material I.6, similar results were obtained for the maximization of com-

pound production. However, the number of metabolites covered in the iTO977 model is considerably

lower than the remaining models at depth levels 2 and 3.

Figure 15 also presents BioISO’s computation time for each model during growth maximization as a

function of the depth level. BioISO was considerably faster for shallow searches (depth level of 1) in all

models for growth (figure 15 and supplementary material I.6) and compound production (supplementary

material I.6) maximization. According to figure 15, BioISO required computation time for a depth level

of 2 varies between 2 and 144 seconds during growth maximization. During the compound production

maximization, BioISO takes between 4 and 74 seconds (supplementary material I.6). The computation

time of BioISO increases significantly at the depth level of 3. At this depth, BioISO’s computation time

can attain around 600 and 405 seconds when maximizing growth (figure 15 and supplementary material

I.6) and compound production (supplementary material I.6), respectively.

Hence, BioISO’s computation time significantly depends on the size of the covered search space. In

turn, the covered search space increases with the depth of the search and the model’s size. Although

navigating the network through the newmetabolites and reactionsmight not be time-consuming, evaluating

numerous metabolites and reactions using the FBA framework requires time.

The dead-end metabolites and blocked reactions ratios were calculated as denoted in definitions 3.5,

3.6, 3.7, and 3.8. Figure 16 highlights the ratios of dead-end metabolites obtained for growth and com-

pound production analysis in all models. Both dead-end metabolites and blocked reactions ratios are also

available in the supplementary material I.6.

At a depth level of 1, the ratio of blocked reactions for the objective-oriented search (broos) varies

between 0.3 and 0.9. In contrast, the homologous ratio for the whole-space search (brwss) varies between

0.02 and 0.25 (supplementary material I.6).

Regarding the ratios of dead-end metabolites, BioISO attains markedly small ratios for the whole-

space search (demwss) at a depth level of 1, namely obtaining ratios smaller than 0.1 in all models for both

objective functions (figure 16 and supplementary material I.6). However, the ratio of dead-end metabolites

for the objective-oriented search (demoos) can peak up to 0.35 (figure 16 and supplementary material I.6)

and 0.85 (figure 16 and supplementary material I.6) in the growth and compound production analysis,

respectively.

47

CHAPTER 3. ASSISTING THE CURATION OF GENOME-SCALE METABOLIC MODELS

Figure 15: Summary of the reactions (left panel) and metabolites (right panel) analyzed by BioISO for pub-
lished GEM models. BioISO was used to analyze 5 state-of-the-art models (iBsu1103, iDS372, iJO1366,
iOD907, and iTO977) with added gaps. BioISO’s analysis included different algorithm settings, namely
varying the depth from 1 to 3 for each objective function, which will control the number of recursive calls
for precursors and successors. This allowed running BioISO’s algorithm for shallow, guided, or nearly
exhaustive searches, depending on the size and arborescence of the metabolic network. BioISO’s com-
putation time was recorded in seconds (s) together with missing (non-covered by BioISO) reactions and
metabolites, non- and dead-end metabolites, non- and blocked reactions.

The brwss ratios increase significantly when raising the depth to level 2 (BioISO guided search), whereas

broos ones remain roughly the same as in the previous level. The brwss ratio can vary from 0.23 to 0.43

(supplementary material I.6) and from 0.23 to 0.36 (supplementary material I.6) for the growth and

compound production analysis, respectively.

48

3.5. RESULTS

The demoos ratio tends to increase as a response to BioISO’s guided search (depth level of 2) in the

iBsu1103, iJO1366, and iTO977 models during the growth maximization analysis (figure 16). In contrast

to the previous trend, the demoos ratio tends to decrease in the iDS372 and iOD907 models. Regarding

the maximization of compound production, BioISO also attains higher demoos ratios in both iJO1366 and

iTO977 models at a depth level of 2 (guided search). Nevertheless, the demoos ratio obtained in the

iBsu1103 model is smaller in comparison to the value obtained for the shallow search (depth level of 1).

Figure 16: Calculated ratios of dead-end metabolites for the maximization of growth (upper panel) and
compound production (bottom panel). BioISO was used to analyze 5 state-of-the-art models (iBsu1103,
iDS372, iJO1366, iOD907, and iTO977) with added gaps. BioISO’s analysis included different algorithm
settings, namely varying the depth from 1 to 3 for each objective function, which will control the number
of recursive calls for precursors and successors. This allowed running BioISO’s algorithm for shallow,
guided, or nearly exhaustive searches, depending on the size and arborescence of the metabolic network.
demooss and demwss stand for the ratios of dead-end metabolites for the objective-oriented search and
whole search spaces.

In general, the demwss ratio tends to increase as a response to BioISO’s guided search (depth level

of 2) in all models for both objective functions, though not exceeding 0.221. As shown in figure 16 and

49

CHAPTER 3. ASSISTING THE CURATION OF GENOME-SCALE METABOLIC MODELS

supplementary material I.6, the demwss ratio ranges between 0.01 (iOD907 model) and 0.13 (iBsu1103

model) for the growth maximization analysis. During the compound production maximization analysis, the

demwss ratio is less than 0.1 in all models except for the iDS372 model, where it peaks at 0.221 (figure

16 and supplementary material I.6).

Using BioISO for nearly exhaustive searches (depth level of 3) returns broos ratios between 0.41 and

0.81, whereas the brwss ratio varies between 0.35 and 0.66 for both objective functions (supplementary

material I.6). As for detecting dead-end metabolites during the growth maximization analysis, BioISO’s

nearly exhaustive search attains the highest demoos and demwss ratios of 0.455 and 0.327 in the iDS372

model (figure 16), respectively. Regarding the compound production maximization, BioISO peaked for a

depth level of 3 demooss and demwss ratios of 0.737 and 0.602 in the iDS372 model (figure 16), respec-

tively.

Although the broos ratio oscillates when rising depth, the brwss tends to increase steadily. Similarly, the

demwss also tends to increase with depth for both objective functions, whereas the demoos ratio mimics

the oscillatory behaviour of the broos ratio. The oscillatory behavior of the broos and demoos ratios is heavily

pronounced between depths 1 and 2, which can be associated with the reduced level of detail that BioISO

can provide for shallow searches.

The high brwss ratios obtained for all levels are likely associated with the fact that BioISO does not pre-

vent circular dependencies nor by-products accumulation when testing reactions. The interactive output

of BioISO in both the webserver and merlin guides the user through the dead-end metabolites (precursors

and successors having an unsuccessful evaluation) while evaluating the reactions for guidance and further

insight.

When testing metabolites, BioISO’s strategy to prevent circular dependencies and by-product accu-

mulation, as well as the isolated evaluation of precursors and successors, seems to have a greater impact

on reducing the set of dead-end metabolites. The demwss ratio is significantly smaller for shallow and

guided searchers across all models for both objective functions.

Furthermore, although BioISO has attained demwss ratios higher than 0.4 for two models during the

compound production maximization analysis with a depth level of 3, this ratio remains below 0.33 in all

models during the growth maximization analysis. The demwss ratios higher than 0.4 obtained with nearly

exhaustive searches of BioISO may be associated with the factual metabolic gaps that do not need to be

corrected or might not be associated with the desired phenotype.

For example, BioISO has systematically attained higher ratios for all metrics when assessing the

iDS372 incomplete models for both objective functions. These higher scores may be associated with

poor connectivity of most metabolites involved in the metabolic pathways analyzed by BioISO, as parasitic

organisms evolve in rich media, thus developing auxotrophies [8], [194], [201]. Hence, it is worth noticing

that the identified dead-end metabolites might be associated with real metabolic gaps that should not be

gap-filled.

In short, BioISO scores most of the smaller demwss ratios at the depth level of 2 (guided search).

Moreover, the gap between demwss and demoos ratios also starts to narrow for BioISO’s guided search.

50

3.5. RESULTS

The small difference between both metrics suggests that most dead-end metabolites suggested by BioISO

are a direct outcome of the network gaps introduced during the validation. Hence, BioISO can suggest

a higher number of dead-end metabolites associated with the objective while maintaining the curation

efforts at a minimum.

Therefore, a depth level of 2 was selected as the default level for running BioISO after analysing

all demwss. Using this depth value, BioISO can guide the search to identify errors in a given metabolic

network, without evaluating only the direct precursors and successors, such as biomassPrecursorsCheck

[129] and Meneco [187], or the burden of evaluating the whole network, such as fastGapFill [189] and

gapFind/gapFill [188].

Furthermore, a significant part of the metabolic network associated with a given objective is analyzed

by the tool for a guided search (depth level of 2), while the required computation time is significantly lower.

3.5.3 Exhaustive-search versus guided-search

The exhaustive-search versus guided-search assessment was designed to compare the results of two

guided-search tools, namely BioISO (guided search – depth level of 2) and Meneco [187], with fast-

GapFill [189] exhaustive-search application. The iJO1366 and iDS372 models obtained for the growth

maximization analysis were used in this assessment. The workflow and methodology used to compare

exhaustive-searches against guided-searches are described above together with supplementary materials

I.5 and I.6. Figure 17 exhibits a summary of dead-end metabolites and blocked reactions ratios calculated

for each tool.

According to figure 17 and supplementary material I.6, Meneco performed the poorest in identifying

metabolic gaps. Besides the poor performance in assessing dead-end metabolites, it does not provide

insights into blocked reactions.

The number of covered metabolites when using Meneco is the same as the number of metabolites

selected for target metabolites, as this tool only evaluates target metabolites. No information is provided

about other metabolites in the metabolic network.

Hence, although Meneco obtained the lowest demwss ratios in both models (figure 17), the tool sug-

gests the absence of biosynthetic pathways to synthesize all metabolites in the covered search space,

thus obtaining the highest demoos ratios in both models (figure 17). In short, most metabolites analyzed

by this tool were evaluated as dead-end metabolites in the incomplete models.

fastGapFill provides, on the other hand, a level of insight much larger than Meneco, analyzing all reac-

tions and metabolites in all models (figure 17 and supplementary material I.6). However, the exhaustive-

search tool is associated with two significant drawbacks. Firstly, fastGapFill is the slowest tool (supple-

mentary material I.6). Secondly, this gap-filling tool highlights numerous blocked reactions and dead-end

metabolites, according to figure 17, which might hinder a fast and precise identification of a de facto error

in the network, such as the ones introduced in this validation procedure.

51

CHAPTER 3. ASSISTING THE CURATION OF GENOME-SCALE METABOLIC MODELS

For example, fastGapFill has attained higher demwss ratios (figure 17) for the model of the less de-

scribed and smaller genome’s organism (Streptococcus pneumoniae), which has probably evolved through

a combination of extensive loss-of-function events during the co-evolution with well-defined and constant

ecological niches [8], [194], [201].

Although Meneco has obtained smaller demwss scores than BioISO, the level of insight provided by

the gap-filling tool for both metabolic networks are significantly lower than the detail provided by our tool.

When comparing the demoos ratios, it is clear the lack of insight provided by Meneco, as most of the

metabolites covered by Meneco are highlighted as dead-end metabolites. On the other hand, BioISO can

be more effective and precise by suggesting fewer dead-ends out of the examined metabolites pool (figure

17 and supplementary material I.6).

According to figure 17, BioISO attained lower brwss and demwss ratios than fastGapFill in both models.

Hence, such smaller brwss and demwss ratios suggest that BioISO is more capable of reducing the whole-

space search to fewer dead-end metabolites than the gap-filling tool.

52

3.5. RESULTS

Figure 17: Assessment of the relevance of guided (BioISO and Meneco) versus exhaustive searches (fast-
GapFill) for gap-finding. BioISO, Meneco, and fastGapFill were used to highlight gaps in two state-of-the-art
models (iDS372 and iJO1366), with added gaps. The ratios of dead-end metabolites (demooss and demwss)
and blocked reactions (brooss and brwss) for both objective-oriented search (ooss) and whole search (wss)
spaces were then calculated for each tool.

When debugging and validating the model for specific objective functions, such as growth maximiza-

tion, BioISO seems better suited for reducing the search space for errors and gaps in metabolic networks

than the other tools analyzed in this assessment. This advantage allows spending less time debugging

unrealistic errors or gaps. Furthermore, as BioISO reduces the search space for errors, it also favors par-

simonious alterations to the draft metabolic network. As a result, BioISO can be of paramount importance

for the high-quality bottom-up reconstruction of GEM models during the manual curation stage. However,

it should be noticed that Meneco and fastGapFill have been designed to be essentially gap-fill tools. Thus,

these tools use different approaches than BioISO to find errors.

53

CHAPTER 3. ASSISTING THE CURATION OF GENOME-SCALE METABOLIC MODELS

3.5.4 BioMeneco - embedding BioISO in Meneco

BioMeneco, BioISO’s integration with Meneco [187], was developed to determine whether the former

can improve the latter results by narrowing the search space for the gap-filling task. For that, reac-

tions R04568_C3_cytop and SO4tex were removed from the iDS372 and iJO1366 models, respectively.

Meneco was then used to generate potential solutions for restoring models’ prediction of a growth pheno-

type based on BioISO suggestions for the set of targets (primary input for Meneco).

All metabolites identified as not being produced or consumed by BioISO in the iDS372 model are

reported in table 2. These metabolites have been selected for the set of target metabolites after a brief

analysis of the BioISO’s output.

In the iDS372 model, BioISO indicated that reaction R04568_C3_cytop might be associated with the

synthesis of a precursor of the lipidic and lipoteichoic acid pathways. Most dead-end metabolites identified

by BioISO were associated with metabolites C01356_cytop and C06042_cytop, which are biomass precur-

sors representing the lipid and lipoteichoic acid cellular biomass fractions, respectively. These suggestions

are in agreement with the metabolites being synthesized by the reaction removed from the model. Reac-

tion R04568_C3_cytop is associated with the synthesis of trans-Tetradec-2-enoyl-(acp) (C05760_cytop),

which in turn is a precursor of the compound Tetradecanoyl-(acp) C05761_cytop) involved in the fatty acid

biosynthesis pathway.

Table 2: Dead-end metabolites identified by BioISO in the iDS372 model. Metabolites identified by
BioISO as not being produced or consumed (dead-end metabolites) by the iDS372 model missing
R04568_C3_cytop reaction.

Dead-End metabolite Connected dead-end metabolites

C01356_cytop (Lipid)

C05980_cytop
C06040_cytop
C04046_cytop
C00344_cytop

C06042_cytop (Lipoteichoic acid)
C00116_cytop
C00162_cytop

Besides the dead-end metabolites shown in table 2, BioISO suggested an unsuccessful evaluation of

all remaining biomass precursors and successors. Nevertheless, only the lipid and lipoteichoic acid com-

pounds were identified as dead-end metabolites. The remaining biomass precursors and successors refer

to the special cases reported in the tutorial at bioiso.bio.di.uminho.pt/tutorial. Briefly, these metabolites

were unsuccessfully evaluated due to a missing or impaired reaction downstream, namely the biomass

reaction.

The corresponding precursors and successors of all neighbor metabolites were classified as non-

dead-end metabolites, except for several precursors and successors of the lipid and lipoteichoic acid

compounds.

54

https://bioiso.bio.di.uminho.pt/tutorial

3.5. RESULTS

All metabolites identified as not being produced or consumed by BioISO in the incomplete iJO1366

model, reported in table 3, were selected for the set of target metabolites.

BioISO has indicated that the missing SO4tex reaction might be associated with synthesizing a precur-

sor for sulfur metabolism. Most dead-end metabolites identified by BioISO were linked to the iron-sulfur

clusters, biotin, bis-molybdopterin guanine dinucleotide, and sulfate biomass precursors, which are all

associated with the sulfur requirements of E. coli. These results are in line with the transport of sulfate to

the periplasm by the removed reaction. The SO4tex reaction is responsible for transporting sulfate from

the extracellular medium to the periplasm, which is then transported to the cytoplasm.

BioISO suggested more dead-end metabolites than the precursors described in table 3, absent from

the set of target metabolites for the iJO1366 model. BioISO negatively evaluated the biomass precursors

mobd_c, sheme_c, cl_c, and 2ohph_c. Nevertheless, these metabolites have been ignored as dead-end

metabolites, as they refer to the special cases reported in the tutorial at bioiso.bio.di.uminho.pt/tutorial.

The precursors of these metabolites are being produced, and the successors are consumed, except for the

biomass. Thus, BioISO highlighted these metabolites because the biomass reaction is, actually, the only

consumption site available. These metabolites are an example of unsuccessful evaluations that should be

easily detected in the user-friendly output returned by the web server and merlin. Moreover, the automatic

tools would deal with such cases as regular gaps and incorrectly resolve them.

Table 3: Dead-end metabolites identified by BioISO in the iJO1366 model. Metabolites identified by
BioISO as not being produced or consumed (dead-end metabolites) by the iJO1366 model missing SO4tex
reaction.

Dead-End metabolite Connected dead-end metabolites

2fe2s_c ([2Fe-2S] iron-sulphur cluster)

4fe4s_c
lipopb_c
iscu_DASH_2fe2s_c
iscu_c
sufbcd_DASH_2fe2s_c
sufbcd_c

4fe4s_c ([4Fe-4S] iron-sulphur cluster)
iscu_DASH_4fe4s_c
sufbcd_DASH_4fe4s_c
3fe4s_c

bmocogdp_c (bis-molybdopterin guanine dinu-
cleotide)

bmoco1gdp_c

btn_c (Biotin)
btn_p
btnso_c
2fe1s_c

so4_c (Sulphate) so4_p

55

https://bioiso.bio.di.uminho.pt/tutorial

CHAPTER 3. ASSISTING THE CURATION OF GENOME-SCALE METABOLIC MODELS

Metabolites identified by BioISO as not being produced or consumed (dead-end metabolites) by the

iJO1366 model missing SO4tex reaction.

The gap-filling solutions suggested by Meneco for the incomplete iDS372 model are satisfactory. The

proposed solutions could restore flux through the biomass reaction and thus through all sets of targets

initially proposed. Meneco suggests adding reaction R04568 (which was previously removed for this test)

to restore the metabolic model.

Nevertheless, other solutions may add artifacts in the iDS372 model. Reactions R11633, R09085,

R11636, R11634, R11671 and R00183 are equally recommended to restore flux throughout the set of

targets. However, these reactions are not involved in synthesizing or consuming missing biomass pre-

cursors or successors. Most reactions are involved in the synthesis of biomass precursors not affected

by the removed reaction, such as the R11636 (dCTP synthesis), R09085 (carbon metabolism), R11634

(dATPsynthesis), and R11633 (dGTP synthesis). Other reactions are involved in synthesizing metabolites

not required for S. pneumoniae’s growth. Only reactions suggested in the pool named One minimal com-

pletion were considered. Nevertheless, Meneco provides a complete enumeration of all combinations of

minimal completions.

BioMeneco recommended, on the other hand, a reduced pool of gap-filling solutions. In this case,

BioMeneco suggested reaction R04568, but now only three reactions (R11671, R00182, and R09085)

have been equally proposed. As neither RNA nor DNA were included in the set of target metabolites, all

reactions previously suggested to restore the synthesis of purines and pyrimidines have been discarded.

Meneco restored the test iJO1366 model for six biomass precursors while indicating 35 unrecon-

structable targets. Meneco identified the so4_cmetabolite, one of the biomass precursors affected by the

removal of the SO4tex reaction, as reconstructable. Nevertheless, the removed reaction did not affect the

remaining metabolites for which Meneco could restore flux.

More importantly, Meneco’s output does not comprise the SO4tex reaction in the set of gap-filling

solutions to restore flux through all biomass precursors. More surprisingly, the SO4tex reaction was

not included in any combination of minimal completions obtained through the complete enumeration of

solutions. Furthermore, other potential solutions can lead to the introduction of artifacts in the iJO1366

model. For example, all reactions included in the One minimal completion set of solutions are transport

reactions for biomass precursors not affected when reducing the iJO1366 model.

Interestingly, only the reaction SO4tex has been suggested by BioMeneco to restore flux through all

missing biomass precursors and successors in the test iJO1366 model. Moreover, as none of the other

biomass precursors was included in the set of target metabolites, all reactions involved in the transport of

co-factors, ions, and amino acids were discarded from the One minimal completion pool.

Therefore, BioISO can be used to decrease large search spaces associated with model debugging

procedures. Besides proposing a user-friendly application to guide the search for dead-end metabolites,

we have showcased that BioISO can also facilitate high-quality bottom-up reconstructions by adjusting the

guided-search gap-filling tool Meneco. For that, we suggest BioMeneco as an iterative process comprising

two separate tasks:

56

3.5. RESULTS

• running BioISO to identify the set of metabolites not being produced or consumed (dead-end

metabolites).

• running Meneco using the set of metabolites highlighted earlier as target metabolites to obtain

parsimonious solutions to complete draft metabolic networks.

57

4

Database of prokaryotic transcriptional regulatory

networks

The work presented in this chapter corresponds to the following publications:

• Lima, D., Cruz, F., Rocha, M., Dias, O. (2021). Reconciliation of Reg-

ulatory Data: The Regulatory Networks of Escherichia coli and Bacil-

lus subtilis. In: Panuccio, G., Rocha, M., Fdez-Riverola, F., Mohamad,

M., Casado-Vara, R. (eds) Practical Applications of Computational Bi-

ology & Bioinformatics, 14th International Conference (PACBB 2020).

PACBB 2020. Advances in Intelligent Systems and Computing, vol 1240.

Springer, Cham.

• Cruz, F., Lima, D., Rocha, M., Dias, O. ProTReND: a database of prokary-

otic genome-scale TRNs. In preparation.

58

4.1. INTRODUCTION

4.1 Introduction

The number of databases storing biological data has increased significantly with the development of

high-throughput techniques to measure the transcriptome of living organisms and the implementation of

new algorithms in bioinformatics. For prokaryotes, in particular, there are several databases of regula-

tory information. Over the last decades, databases of regulatory information [67], [69], [71], [73], [74],

[76] have become significantly more extensive, containing information on promoters, TFs, genes, TFBS,

operons, regulatory interactions, effectors, and gene expression data.

Although the proliferation of resources of regulatory data can contribute significantly to understanding

gene regulation in prokaryotes, it can also lead to undesirable side effects in the regulatory data ecosystem.

This proliferation can be considered a significant drawback in biological data management [202]. In

general, there are a series of reasons for the expansion of resources of regulatory data:

• The access to most regulatory data is hampered due to the absence of Application Programming

Interface (API)s;

• The resource is closed to external researchers, preventing community contributions to curate and

improve regulatory data;

• The database is strictly focused on a specific topic of research (e.g., an organism or type of regu-

latory data), leading to data duplication in other resources;

• The resource maintenance is inconsistent throughout time, in that one experiences considerable

periods of downtime and fungible records in new releases.

Also, as a consequence of this rich ecosystem, one can easily find incoherent information, dead

records, and circular references among these databases of regulatory information. Besides, maintaining

this large ecosystem requires time-consuming human effort to keep all data clean and updated. Hence,

data management systems are now highly relevant to store a large volume of biological data, avoiding its

dispersion [203].

With this in mind, we have developed a framework capable of assembling an integrated database

of TRNs. ProTReND comprises several tools to extract and process regulatory information dispersed

into several data sources. The data integration system includes several rules to unify the transformed

regulatory data, resolving the same entities to a common reference space. In addition, a dedicated web

application has been created for ProTReND, allowing users easy access to the integrated regulatory data.

This web application also enables community contributions to curate the available regulatory data or to

add new regulatory interactions.

59

CHAPTER 4. DATABASE OF PROKARYOTIC TRANSCRIPTIONAL REGULATORY NETWORKS

4.2 Data integration system

4.2.1 Data warehousing

The assembly of an integrated data management system is often motivated by the need for centralized

access to multiple data sources, easing the analysis of different sources, but sharing identical attributes.

Notably, an integrated database often supports new computational tools.

The data integration process requires meticulous planning and schematization to handle several levels

of data heterogeneity. Hence, several standardized procedures to ease the data integration of heteroge-

neous sources are currently available. Data warehousing allows the unification of dispersed data into

an integrated structure [204]. This methodology comprehends several steps based on ETL tools [205].

ETL tools must extract data from heterogeneous sources, transform and map the collected data to the

correct format and structure, and ultimately load the transformed data into a unified database. Figure 18

describes a simple pipeline to populate a data warehouse using ETL tools.

Figure 18: An ETL-based pipeline to populate a data warehouse. An ETL tool extracts, transforms, and
loads heterogeneous data from different sources into a data warehouse.

There are several advantages to using ETL tools to assemble an integrated data management system.

For instance, ETL tools implement a standardized protocol for data maintenance that allows automated

periodic updates. In addition, other data sources can be integrated without breaking the existing system.

Hence, the ETL pipeline provides a generic architecture for data warehousing. However, one must imple-

ment new tools to extract and transform a new data source. Furthermore, the integration rules to resolve

data heterogeneity must still rely on domain-specific knowledge.

60

4.2. DATA INTEGRATION SYSTEM

4.2.2 Overview of the data integration system

The data integration system proposed in this work comprises an ETL tool to populate a data warehouse

with relevant regulatory information. The database of integrated prokaryotic TRNs consists of a graph

store model using Neo4j Database Management System (DBMS). The ProTReND repository comprises the

integrated database and all tools implemented in the data integration system. These tools are available

at the https://github.com/cruz-f/protrend-database GitHub repository.

The ProTReND repository has the following sub-systems:

• Data extraction sub-system;

• Data transformation sub-system;

• Knowledge expansion sub-system;

• Data integration sub-system;

• Data loading sub-system;

• Data lake sub-system;

• CDS sub-system.

In addition to the data integration system tools, the ProTReND repository also comprehends a web

application with access to the CDS. Furthermore, we have added a contributing system to this web appli-

cation allowing users to submit new records or update existing ones.

Figure 19 describes the architecture of the data integration system. In the first phase, data is extracted

from relevant resources of regulatory data and saved in the data lake sub-system. Then, the transformation

sub-system processes the collected data. Meanwhile, this sub-system also identifies relevant biological

entities (e.g. organisms, regulators, genes, etc) and related properties to be annotated in the knowledge

expansion sub-system. Once the enrichment is complete, the integration sub-system applies a series of

integration rules. In addition, this sub-system also tries to resolve new or existing objects in the CDS.

In the meantime, extracted, transformed, and integrated objects are stored in the data lake sub-system.

Finally, the data loading sub-system is responsible for creating or updating records in the CDS according

to the results obtained in the integration sub-system.

Regarding the architecture of the ETL tools, the ProTReND framework comprises several Python mod-

ules implementing the data integration system defined in figure 19. The data extraction module (A)

contains web-scraping tools to collect and store regulatory data in the data lake (B), a file storage system.

Data processing is available in the data transformation module (C). This module contains methods and

algorithms designed to transform and clean objects found in a specific resource. The transformation tool

exchanges objects with the knowledge expansion sub-system (D). This system comprises Bioapis, Annota-

tion, BindingSiteAlignment, and Motif modules containing several tools to enrich and annotate regulatory

61

https://github.com/cruz-f/protrend-database

CHAPTER 4. DATABASE OF PROKARYOTIC TRANSCRIPTIONAL REGULATORY NETWORKS

objects using biochemical databases and bioinformatics algorithms. The transform tool then stores the

results in the data lake as JavaScript Object Notation (JSON) files. The data integration sub-system (E)

applies a set of rules to the objects stored in the data lake. This tool determines which objects should be

created or updated on the CDS. ProTReND identifiers are assigned to new objects by the data integration

tool. The data loading sub-system (F) uses neomodel Object Graph Mapping (OGM) to load objects and

relationships into the CDS sub-system (G). Finally, the CDS sub-system contains the Model tool, which

implements the graph store data model.

The Pipeline tool is responsible for running the ETL tool in the correct order. In addition, the data

integration system comprises other utilities, such as the Logging and Report tools.

In parallel, the web application (H) provides user-friendly tools to access and visualize the regulatory

data in the CDS. This tool is based on the Django, Django REST, and My Structured Query Language

(MySQL) frameworks.

The ProTReND repository consists of autonomous applications that have been containerized using

Docker. In detail, the CDS sub-system is available as an independent app running in a Docker container.

The remaining ETL tools are also available in another Docker container running in parallel.

62

4.2. DATA INTEGRATION SYSTEM

Figure 19: Architecture of the data integration system implemented in the ProTReND repository. The
extraction sub-system is responsible for extracting relevant data sources using scraping techniques or
manual download. The extracted data is automatically saved in the data lake sub-system as JSON files,
among others. Regulatory data is transformed and processed in the transformation sub-system using
pandas Python package. Transformed objects are annotated and enriched next in the knowledge expansion
sub-system using the Biopython Python package and biochemical databases. The integration sub-system
is responsible for applying a series of rules to objects that ensure uniqueness and normalization. Finally,
the loading sub-system uploads integrated objects into the CDS using neomodel, a Neo4j OGM. The web
application contains several tools for data access and visualization using the CDS. The data integration
system, CDS, and web application are autonomous systems containerized using Docker.

63

CHAPTER 4. DATABASE OF PROKARYOTIC TRANSCRIPTIONAL REGULATORY NETWORKS

4.2.3 Central data storage sub-system

The CDS sub-system contains the ProTReND graph database, which stores key biological entities asso-

ciated with gene regulation in prokaryotic organisms. A DBMS consists of an interface that allows storing,

accessing, organizing, and querying a database. For that, DBMS support standard APIs performing Cre-

ate, Read, Update and Delete (CRUD) operations to the data stored in the database. In a graph database,

data is represented through graphs using nodes and edges. Both nodes and edges can represent entities,

as these can hold attributes of a specific data type. Nevertheless, nodes usually represent entities with as

many properties as required, while edges represent the relationships between entities and can also hold

properties. Neo4j is one of the most common DBMSs using the graph store model [206]. Cypher is the

standard API for performing CRUD operations in Neo4j. Graph databases can be used to support data

warehousing, as these DBMSs can easily be extended to new domains storing other entities with minor

effort.

The CDS follows several generic rules adapted from graph theory that define the graph structure in

the CDS. The following symbols will be used in these generic rules.

• Parenthesis, (), are used to define a tuple;

• Braces, , are used to define a dictionary of attributes;

• Double quotes, ”, are used to define the real values of an attribute;

• ≡ is used to define an equivalent object;

• 𝑛 is used to define namespace;

• 𝑎𝑡𝑡𝑟 is used to define attribute;

• 𝑖𝑑 is used to define unique identifier attribute;

Following object definition (4.2.1), an object is an instance of any entity, such as an organism, regu-

lator, or gene. The object has a unique identifier assigned in the data warehouse methodology and must

be associated with a namespace according to the entity. Finally, an object can have many attributes or

properties that can hold data of many types.

Theorem 4.2.1. Object definition

An object is a tuple 𝑜 = (𝑖𝑑, 𝑛, 𝑎𝑡𝑡𝑟), such that,

• 𝑖𝑑 stands for the unique identifier

• 𝑛 stands for the object namespace

• 𝑎𝑡𝑡𝑟 stands for the set of attributes/properties associated with the object

64

4.2. DATA INTEGRATION SYSTEM

Following definition 4.2.2, a relationship is a directed edge between two objects, which must be

distinct from each other. Furthermore, a relationship is associated with a namespace according to the

type of interaction between the two objects (e.g., HAS). Finally, a relationship can have many attributes or

properties that can hold data of many types. Note that two objects can have multiple relationships in the

same namespace.

Theorem 4.2.2. Relationship definition

A relationship is a tuple 𝑒 = (𝑜1, 𝑜2, 𝑛, 𝑎𝑡𝑡𝑟), such that,

• 𝑒 is a directed edge between two objects, namely 𝑜1 and 𝑜2

• 𝑜1 and 𝑜2 must be distinct so 𝑜1 ≠ 𝑜2

• 𝑛 stands for the relationship namespace

• 𝑎𝑡𝑡𝑟 stands for the set of attributes/properties associated with the relationship

Following definition 4.2.3, the CDS comprises a single universal graph that includes all objects and

relationships. In the CDS, two objects are differen only if their identifiers and namespaces are different

(definition 4.2.4).

Theorem 4.2.3. Central Data Storage definition

The Central Data Storage is a tuple 𝐺 = (𝑉 , 𝐸), such that,

• 𝐺 is a universal graph

• 𝑉 is the set of all objects

• 𝐸 is the set of all edges

Theorem 4.2.4. Different objects definition

Let 𝑜𝑎 = (𝑖𝑑𝑎, 𝑛𝑎, 𝑎𝑡𝑡𝑟𝑎) ∈ 𝑉 and 𝑜𝑏 = (𝑖𝑑𝑏, 𝑛𝑏, 𝑎𝑡𝑡𝑟𝑏) ∈ 𝑉 , then 𝑜𝑎 ≠ 𝑜𝑏 if 𝑖𝑑𝑎 ≠ 𝑖𝑑𝑏 ∧ 𝑛𝑎 ≠ 𝑛𝑏

ProTReND’s database comprehends 13 entities. Each entity represents a namespace in the CDS

universal graph, and all objects available in the database are associated with a single namespace as

defined above in section 4.2.1. In detail, the following entities are available in ProTReND’s database:

• Effector - An effector object can represent a metabolic compound, Transfer RNA (tRNA), or pro-

tein sub-unit that belongs to a regulatory protein complex. Effectors can bind non-covalently to an

allosteric regulatory site influencing interactions between regulators and genes. Alternatively, effec-

tors can also represent biological processes or environmental conditions that alter the regulatory

effect of regulatory interactions.

65

CHAPTER 4. DATABASE OF PROKARYOTIC TRANSCRIPTIONAL REGULATORY NETWORKS

• Evidence - An evidence object represents the experimental or computational technique used to infer

a given regulatory interaction. There can be specific evidence objects, such as directed mutagene-

sis or gene expression profiling, and generic evidence objects, such as predicted or experimental.

• Gene - A gene object represents a DNA segment transcribed and translated into a protein. In the

CDS, most genes are target genes in that expression levels are determined by regulators.

• Motif - A motif object represents a series of aligned fixed-length TFBS associated with a single

regulator.

• Operon - An operon object represents a set of genes regularly transcribed as a single functional

mRNA molecule encoding the genetic information for synthesizing one or more proteins.

• Organism - An organism object represents an organic living system. Note that the ProTReND

repository only contains prokaryotic organisms.

• Pathway - A pathway object represents a biochemical pathway associated with a given regulator or

gene.

• Publication - A publication object represents a journal or book citation referenced with a PubMed

Identifier (PMID).

• Regulator - A regulator object represents a regulatory protein of one of the following types: TF;

transcription attenuator; transcription terminator; sigma factor; small RNA (sRNA). Regulators are

responsible for controlling gene expression upon binding specific sites in the genome.

• Regulatory Family - A regulatory family object represents a family of regulatory proteins that can

share similar regulatory processes or sequence similarities.

• Regulatory Interaction - A regulatory interaction object represents the control of a gene’s expression

mediated by a regulator upon binding a given TFBS in association with a given effector. Regulatory

interactions are associated with the regulatory effect, namely the activation or repression of the

gene expression.

• Source - A source object represents a resource of regulatory data extracted in the ProTReND repos-

itory.

• TFBS - A TFBS object represents a physical DNA sequence also referred to as a binding site.

Regulators bind to TFBS to control gene expression.

Figure 20 portrays the main entities and relationships in the CDS, while supplementary material I.8

contains the schema for the namespaces, attributes, and relationships. Organism, Regulator, Gene,

and TFBS are highly interconnected in the CDS. Likewise, Regulatory Interaction comprises the central

66

4.2. DATA INTEGRATION SYSTEM

relationships in the CDS, also having connections with Publication, Evidence, and Effector. The CDS also

contains Regulator - Regulatory Family and Gene - Operon relationships. Motif entity is mainly associated

with TFBS and Regulator. Note that ProTReND’s database contains more relationships than the ones

defined in Figure 20. For instance, Source entity contains connections with all objects integrated in the

CDS. Hence, we have selected the main entities and relationships in the CDS to ease the visualization of

the database connectivity.

Figure 20: Main namespaces and relationships in ProTReND’s CDS. Namespaces are depicted on the left
and right axis representing the source and target nodes, respectively. The arcs between namespaces stand
for relationships in the CDS. All relationships are bi-directional in the CDS. For instance, the Regulatory
Family entity is associated with the Regulator entity as the Regulator entity is related to the Regulatory
Family.

ProTReND database runs over the Neo4j DBMS. In detail, neomodel, an OGM for the Neo4j graph

database built on top of Python’s neo4j driver, was used to implement the graph data model defined above

4.2.3. An OGM is a technique based on the object-oriented programming paradigm. Thus, neomodel

allows performing CRUD operations using simple Python objects. Neomodel’s simple yet powerful API is

used in all ETL tools instead of Neo4j’s query language, Cypher.

4.2.4 Data lake sub-system

In the present context, a data lake is a schemaless and unstructured data storage technique to store

raw data from several sources. Whereas data warehouses are analytical-oriented data storage systems

that are usually optimized for a set of analyses and reports, data lakes can store all types of data without

prior design and effort. Structured and unstructured raw data are often held in data lakes as extracted.

Then, a particular share of the stored data can be further processed for a specific analysis.

67

CHAPTER 4. DATABASE OF PROKARYOTIC TRANSCRIPTIONAL REGULATORY NETWORKS

ProTReND’s data integration system comprises a data lake sub-system to store extracted data into

several raw format files, such as JSON, Comma Separated Values (CSV), XLSX spreadsheet, and Text File

(TXT). In addition, the data lake also contains data created by the transform, integration, and load tools.

Data available in the knowledge expansion sub-system is also stored in the data lake in the form of SQLite

databases and JSON format files.

ProTReND’s data lake is organized into a hierarchical file storage system. In detail, the name and

version of the data source are used to create the directories hierarchy. For instance, a directory named

regulondb-0.0.2 contains all files obtained from RegulonDB [67] in the second extraction. Many files are

stored in several formats within each directory. Besides, these files can have been generated at each

stage of the ETL pipeline or data integration system. For instance, the directory bioapi cache contains

many SQLite databases with cached records of NCBI and UniProtKB used in the ETL tools.

In short, the data lake fundamentally differs from the CDS, which consists of a graph database opti-

mized to analyze and visualize regulatory information. In contrast, the data lake contains all structured

and unstructured files to assemble the CDS, which can also support particular queries and analyses.

4.2.5 Data extraction sub-system

The data extraction sub-system contains all tools to collect regulatory data from distinct sources. This

system comprehends seven databases of regulatory data and three TRNs available from the literature.

Table 4 contains the resources of regulatory information selected at this stage together with the type of

extraction performed and entities referenced.

68

4.2. DATA INTEGRATION SYSTEM

Table 4: Extracted resources of regulatory data. Summary of the resources extracted in ProTReND. The
resources are identified by name, reference, type, taxonomic coverage, and data type.

Resource Type Organism Extraction Data
Abasy [76] database Bacteria manual TF and gene

CollecTF [73] database Prokaryota scraping regulon, gene,
TFBS, evidence
and publication

CoryneRegNet
[71]

database Bacteria manual TF, sRNA, sigma
factor, gene, bind-
ing site, evidence
and publication

DBTBS [69] database B. subtilis scrapping TF, sigma factor,
gene, TFBS and
family

ODB [78] database Prokaryota manual operon and gene

RegPrecise [74] database Prokaryota scrapping regulon, sRNA,
gene, TFBS, effec-
tor, pathway, RNA
family, TF family
and publication

RegulonDB [67] database E. coli manual TF, sigma factor,
sRNA, gene, bind-
ing site, effector,
evidence and pub-
lication

Fang et al [207] literature E. coli manual TF and gene

Faria et al [106] literature B. subtilis manual TF, sigma factor,
sRNA, gene and
metabolite

Turkarslan et al
[47]

literature M. tuberculosis manual TF and gene

Third-party resources provide data in different formats. Furthermore, external resources may have

different notations to the same entity or property. Hence, the data extraction sub-system comprehends an

extraction tool for each data source. Web scraping is used to collect regulatory data from CollecTF [73],

69

CHAPTER 4. DATABASE OF PROKARYOTIC TRANSCRIPTIONAL REGULATORY NETWORKS

RegPrecise [74], and DBTBS [69], as these resources do not have a RESTfull API or user-friendly tool to

download all data. The copyright licences and web robots file (robots.txt) have been consulted before the

web scraping process to verify copyright infringements.

On the other hand, the data sources Abasy [76], CoryneRegNet [71], Operon DataBase (ODB) [78],

and RegulonDB [67] have been obtained manually from the resources’ websites. The copyright licenses

have been consulted before downloading the regulatory data to verify copyright infringements. In this case,

the raw format files downloaded from these resources were added directly to the data lake. Finally, the

published TRNs of E. coli, B. subtilis, andM. tuberculosis were available in the supplementary materials of

each work. The following paragraphs contain a detailed description of the entities and properties extracted

for each data source.

Abasy - The Abasy database [76] allows downloading state-of-the-art TRNs in the JSON format file.

We have downloaded nine TRNs containing many regulatory interactions between regulators and target

genes identified by the gene locus tag or name. In addition to the TRN JSON file, the Abasy database

also provides a Tabular Separated Values (TSV) format file containing the following information for all

regulators and target genes: gene locus tag; gene name; NCBI gene identifier; UniProtKB accession;

synonyms; product. Supplementary material I.9 fully describes the regulatory information collected from

Abasy.

CollecTF - The CollecTF database [73] contains regulatory interactions and binding site motifs for

several bacteria. Although this database allows downloading regulatory interactions by taxonomy, we have

implemented a web scraping tool to collect the data automatically. This web scraping tool is based on

Scrapy, an open-source web-crawling tool in Python. The web scraping tool starts by listing all bacteria

documented in CollecTF using a custom parser to process the downloaded HyperText Markup Language

(HTML) content. Then, a new web crawling process retrieves regulators, operons, genes, TFBSs, and

evidence information for each organism’s web page. Finally, the web scraping tool automatically yields

a JSON report of all items gathered in CollecTF. Supplementary material I.9 contains the web-crawled

content for organisms, regulators, operons, genes, TFBS, and experimental evidence.

CoryneRegNet - The CoryneRegNet database [71] is a collection of experimentally validated and com-

putationally predicted TRNs for Corynebacteria. In addition, this database comprises state-of-the-art reg-

ulatory networks for E. coli, B. subtilis, and M. tuberculosis. We have retrieved experimentally validated

TRNs of Corynebacterium glutamicum, E. coli, B. subtilis, and M. tuberculosis from the database’s web-

site. The TRNs are in CSV format files, including many regulatory interactions between regulators and

target genes. Locus tags, regulatory effect, operon, TFBS, evidence, and PMID are associated with each

regulatory interaction. Supplementary material I.9 fully describes the regulatory information available in

the CoryneRegNet database.

70

4.2. DATA INTEGRATION SYSTEM

DBTBS - The DBTBS database [69] contains experimentally validated regulatory interactions and TFBS

for B. subtilis. However, to our knowledge, DBTBS does not have an API to obtain the regulatory data.

Thus, we have implemented another web scraping tool to collect the bacterium regulatory information

automatically. This tool parses all regulators associated with the bacterium and retrieves gene and TFBS

information from each regulator web page. Finally, all items gathered in the DBTBS database are stored

into a JSON report file. Supplementary material I.9 contains the web-crawled content for regulators, genes,

and TFBS.

ODB - The ODB [78] is a compendium of known and predicted operons in microbial genomes. The

data manually collected from ODB contains a list of operons, including the following information: ODB

identifier; NCBI taxonomy identifier; operon name; locus tags of the operon genes; product; PMIDs. The

supplementary material I.9 contains all information regarding the operons obtained at the ODB.

RegPrecise - RegPrecise database [74] is a comprehensive collection of regulons found in prokaryotic

organisms. This database is the largest resource of regulatory data addressed in this work. Although

RegPrecise allows downloading regulators, genes, and TFBS, there is no programmatic access via an API

to collect this content automatically. Hence, we have implemented another web scraping tool to auto-

matically extract the regulatory information available in RegPrecise. This tool first parses the taxonomy

collection web page containing a list of all microbial genomes. Then, the web crawling procedure down-

loads the regulons associated with each organism. In RegPrecise, the regulon web page contains relevant

information about the regulator, regulated operons, and TFBS. In addition, the web scraping tool extracts

information regarding each regulon’s regulatory family, effector, and metabolic pathway. Supplementary

material I.9 fully describes the regulatory information available in the RegPrecise database.

RegulonDB - The RegulonDB database [67] is the most comprehensive resource of regulatory data for

E. coli. This database comprises a state-of-the-art TRN at the genome-scale for E. coli K12. In this work,

we have downloaded TSV format files containing version 10.6 of RegulonDB. The TSV format files com-

prise information for the following entities: effector; evidence; gene; publication; TF; sRNA; sigma factor;

regulatory family; binding site. Additionally, E. coli TRN is divided into four different files named genetic

network, regulatory interaction, srna interaction, and tf gene interaction. Each file contains many regula-

tory interactions between regulators and target genes. Supplementary material I.9 contains examples of

the regulatory content in the RegulonDB database.

Literature - The TRNs of E. coli, B. subtilis, andM. tuberculosiswere obtained from the works by Fang et

al [207], Faria et al [106], and Turkarslan et al [47] in Excel Microsoft Office Open XML Format Spreadsheet

File (XLSX) format, respectively. These networks contain numerous regulatory interactions, including the

following properties: regulator locus tag; gene locus tag; regulatory effect; metabolite (whenever available);

71

CHAPTER 4. DATABASE OF PROKARYOTIC TRANSCRIPTIONAL REGULATORY NETWORKS

and regulatory mechanism (e.g., TF and sigma factor). Supplementary material I.9 fully describes the

regulatory data obtained from the published literature.

4.2.6 Data transformation sub-system

External data sources may have different notations and namespaces for the same entities and prop-

erties. Therefore, the transformation sub-system should resolve all third-party terms for a single entity or

property in the CDS.

In detail, the transform tool applies a transformation function to the extracted data (definition 4.2.5).

This function is responsible for mapping raw unstructured objects and relevant properties to graph objects

(check definition 4.2.1). Likewise, the transform function is also responsible for resolving the namespace

of these raw unstructured objects.

Theorem 4.2.5. Object transformation

𝑓 : 𝑜𝑟 → 𝑜𝑎, such that 𝑜𝑟 is a raw and unstructured object in the extracted data and 𝑜𝑎 =

(𝑖𝑑𝑎, 𝑛𝑎, 𝑎𝑡𝑡𝑟𝑎) is a graph object to be integrated into the CDS

The transform tool identifies relationships in the extracted data, creating graph edges between trans-

formed objects (check definition 4.2.2). In addition, this tool creates relationships between data sources

and transformed objects, tracking the source of the regulatory data in the CDS. Table 5 summarizes the

transformed objects by data source, while the supplementary material I.9 provides detailed transformation

functions for each external data source.

A particular transform function resolves regulatory interactions extracted from CollecTF and RegPre-

cise. These databases contain multiple regulatory interactions between regulators and operons. However,

ProTReND’s database model only supports regulatory interactions between regulators and genes. There-

fore, the transform functions of CollecTF and RegPrecise split regulatory interactions by the genes asso-

ciated with the regulated operon, as gene regulation often occurs at the operon level in prokaryotes [20].

Besides, these resources do not provide details regarding the type of regulatory interaction or intra-specific

gene regulation.

The transform tool contains several data processing operations, such as handling missing and remov-

ing duplicate data, and manipulating data types. Furthermore, the transform tool includes some standard

operations:

• Removing white space from locus tags and names;

• Removing non-alphanumeric characters from locus tags and names;

• Removing non-nucleotide characters from TFBS data;

• Removing poorly annotated objects;

72

4.2. DATA INTEGRATION SYSTEM
Ta
bl
e
5:

Tr
an
sf
or
m
at
io
n
of
th
e
re
gu
la
to
ry
da
ta
by

so
ur
ce
.S

um
m
ar
y
of
th
e
tra
ns
fo
rm

at
io
ns

pe
rfo
rm

ed
in
th
e
da
ta
tra
ns
fo
rm

at
io
n
su
b-
sy
st
em

ac
co
rd
in
g
to
th
e

so
ur
ce

of
re
gu
la
to
ry
da
ta
.A

bu
lle
tp
oi
nt
m
ar
ks

th
e
tra
ns
fo
rm

at
io
n
of
ra
w
un
st
ru
ct
ur
ed

ob
je
ct
s
ex
tra
ct
ed

fro
m
a
sp
ec
ifi
c
re
so
ur
ce

in
to
gr
ap
h
ob
je
ct
s
be
lo
ng
in
g

to
a
gi
ve
n
na
m
es
pa
ce
.

En
tit
y

Ab
as
y
[7
6]

C
ol
le
cT

F
[7
3]

C
or
yn
e-

Re
gN

et
[7
1]

D
B
TB

S
[6
9]

O
D
B
[7
8]

Re
gP

re
ci
se

[7
4]

Re
gu

lo
nD

B
[6
7]

Li
te
ra
tu
re

[4
7]
,

[1
06
],

[2
07
]

Ef
fe
ct
or

•
•

•

Ev
id
en

ce
•

•
•

•

G
en

e
•

•
•

•
•

•
•

•

O
pe

ro
n

•

O
rg
an

is
m

•
•

•
•

•
•

•
•

Pa
th
w
ay

•

Pu
bl
ic
at
io
n

•
•

•
•

•
•

Re
gu

la
to
r

•
•

•
•

•
•

•

Re
gu

la
to
ry

Fa
m
ily

•
•

•

Re
gu

la
to
ry

In
te
ra
ct
io
n

•
•

•
•

•
•

•

TF
B
S

•
•

•
•

•

73

CHAPTER 4. DATABASE OF PROKARYOTIC TRANSCRIPTIONAL REGULATORY NETWORKS

• Removing incorrect or less relevant properties.

The ProTReND repository comprises a custom transformation tool for each extracted data source.

Each component is responsible for applying the correct transformation function and cleaning operations

to the raw regulatory data. For that, we have used the pandas Python package, which is a tool for data

manipulation. Finally, the transformation tool stores all transformed objects into JSON format files in the

data lake sub-system.

In addition, the transform tool includes two custom components named motif and trimmer. While the

former collects unaligned TFBS in the CDS to assemble binding site motifs, the latter is responsible for

trimming orphan objects found in the CDS.

4.2.7 Knowledge expansion sub-system

A preliminary analysis of the extracted data revealed that most objects missed relevant properties to

perform the data integration routines. The purpose of the knowledge expansion sub-system is to retrieve

standardized nomenclature, identifiers, and functional annotations for the main entities. In addition, these

tools have contributed to the enrichment and contextualization of the extracted data.

Effector - Most effectors retrieved in the data extraction sub-system consist of metabolic compounds.

Thus, effector objects have been completed with metabolic information from the KEGG database [81].

The effector annotation tool uses the KEGG list of chemical compounds retrieved with the database API.

The name of each effector was sought in this list of chemical compounds to obtain the set of similar KEGG

compounds. The Whoosh Python package, a fast text search engine, was used to find KEGG compounds

matching the effectors’ names. Ultimately, KEGG compound data was stored in the data lake and loaded

into the CDS.

Pathway - Some resources included the biological pathways associated with the regulatory proteins.

Thus, pathway objects have been extracted, transformed, and associated with regulator objects. In addi-

tion, pathway objects have been completed with additional metabolic information from the KEGG database.

The pathway annotation tool retrieves the list of all KEGG metabolic pathways and searches for the most

similar ones using the pathway’s name. As with the effector annotation tool, we have used the Whoosh

search engine to find close KEGG pathways. KEGG pathway data is stored in the data lake and loaded

into the CDS.

Publication - Most resources comprised publication sets linked to regulatory interactions or regulators.

The publication tool can fetch the citation record from the PubMed database using the PMID and retrieve

the following information: Digital Object Identifier (DOI); title; author; year of publication. This tool is based

on the Biopython Python package [208] to automatically access the NCBI Entrez API [209] and download

74

4.2. DATA INTEGRATION SYSTEM

the mentioned information. Ultimately, publication data has been stored in the data lake and loaded into

the CDS.

Organism - Organisms have different nomenclatures, identifiers, and taxonomy classifications across

different data sources. For instance, some databases only contain the species name, while others include

an internal identifier but no external references. The NCBI taxonomy database allows retrieving the stan-

dardized name and universal NCBI taxonomy identifier for a given organism. Hence, we have developed

an organism annotation tool based on the Biopython package and Entrez API to automatically fetch taxon-

omy records from the NCBI taxonomy database using the species name. The taxonomy records contain

the NCBI assembly, GenBank, and RefSeq genome accessions of the organism’s representative genome.

Furthermore, we have collected NCBI File Transfer Protocol (FTP) addresses associated with the GenBank

and RefSeq genome accessions.

The organism data retrieved by the organism annotation tool is added to each organism object and

saved in the data lake. More importantly, these annotations are essential to integrate organisms into the

CDS. However, some species names returned empty results from the NCBI taxonomy database, as these

were obsolete or poorly annotated in the extracted resources. Thus, we have manually collected additional

data for these organisms.

GenBank genomes - A database of regulatory data should encompass genomics and proteomics

data whenever possible. Integrating nucleotide and amino acid sequences with regulators and genes

can boost future analysis and TRN inference tools. More importantly, mapping genes in the organism

genome is mandatory to assemble TRNs at the genome scale. Therefore, the knowledge expansion

sub-system comprises a database of genome sequences retrieved from the GenBank database. The

representative genome sequence of a given organism was obtained using the NCBI FTP address linked

to the organism’s GenBank accession. The downloaded GenBank files were parsed with the Biopython

Python package to retrieve the following gene information: locus tag, name, synonyms, UniProt accession,

GenBank accession, nucleotide sequence, gene start, end, and strand. In addition, amino acid sequences

were retrieved by translating nucleotide sequences using Biopython. For each organism in the CDS, a

JSON file containing the relevant genome sequence data was stored in the data lake and used later in the

gene annotation tool.

Gene - Regulators and genes obtained from external resources often miss persistent non-ambiguous

identifiers and external references. For instance, the DBTBS database only has gene names for regulators

and genes. Although CollecTF contains name and UniProt accession for all regulators, several UniProt

accessions are incorrectly assigned to proteins of other organisms. Interestingly, only RegulonDB and

Abasy contain proper references between genes locus tags and references to genomics databases like

NCBI gene and GenBank. The remaining databases solely contain genes’ locus tags and names, which

can hinder a standard identification of regulators and gene objects in the CDS.

75

CHAPTER 4. DATABASE OF PROKARYOTIC TRANSCRIPTIONAL REGULATORY NETWORKS

The standard representation of these objects is highly relevant in the data integration system. Regula-

tors and genes should be combined with functional, genomics, and proteomics information, namely locus

tag, name, synonyms, function, description, nucleotide sequence, amino acid sequence, DNA strand,

and both start and stop position in the representative genome. In addition, regulators and genes should

contain external references, such as NCBI gene identifier, NCBI protein identifier, GenBank accession,

RefSeq accession, and UniProt accession. Otherwise, the identification of genes using only one reference

can be faulty.

The gene annotation tool can retrieve relevant information from genomics and proteomics databases,

improving the standard representation of regulators and genes in the CDS. Gene annotation comprehends

the following steps:

1. If the UniProt accession of a given gene or regulator is available, its protein record is obtained from

UniProtKB. Otherwise, a combined query is submitted to UniProtKB using the organism’s NCBI

taxonomy identifier and the gene locus tag or name. In this case, we have selected the first protein

record matching the gene locus tag and organism identifier submitted in the query. The UniProtKB

protein record allows obtaining the locus tag, name, synonyms, function, description, and amino

acid sequence for a given gene or regulator. UniProt RESTful API is used to query and download

protein records from the UniProtKB database.

2. If the NCBI protein identifier, GenBank accession or RefSeq accession is available, the correspond-

ing protein record is obtained from NCBI protein database. Otherwise, a combined query is sub-

mitted to this database using the organism’s NCBI taxonomy identifier and the gene locus tag or

name. In this case, we have selected the first record matching the gene locus tag submitted in the

query. The NCBI protein record allows obtaining the locus tag, synonyms, amino acid sequence,

GenBank, and RefSeq accessions for a given gene or regulator. The Biopython package and Entrez

API are used to query and download records from NCBI protein database.

3. If the NCBI gene identifier is available, its gene record is obtained from the NCBI gene database.

Otherwise, a combined query is submitted to this database using the organism’s NCBI taxonomy

identifier and the gene locus tag or name. In this case, we select the first record matching the gene

locus tag submitted in the query. The NCBI gene record contains the locus tag, name, synonyms,

function, and genomic positions such as strand, start and stop. As with the NCBI protein database,

Biopython and Entrez API are used to query and download records from the NCBI gene database.

4. The UniProt accession found for a given gene or regulator is used in UniProt’s ID mapping tool.

This tool allows mapping UniProt accessions to identifiers of other databases, such as the NCBI

gene, NCBI protein, GenBank, and RefSeq. The purpose is to complete the first steps, as missing

identifiers and accessions were found.

76

4.2. DATA INTEGRATION SYSTEM

5. The information retrieved from UniProtKB, NCBI protein and NCBI gene databases is merged into a

single annotation for a given gene or regulator. Overlapping or inconsistent information is merged

according to the order of the steps. That is, data obtained from UniProtKB database takes prece-

dence over NCBI protein and NCBI gene databases, as UniProt accessions are stable and persistent

throughout time [98]. Although we have obtained several outdated or migrated records from the

NCBI protein and NCBI gene databases, these records have still been used to perform the gene

annotation.

6. Finally, the GenBank genomes database was used to standardize the locus tag, name, nucleotide

sequence, amino acid sequence, and gene coordinates. In detail, we have used the gene’s locus

tag, synonyms, UniProt accession, and GenBank accession obtained so far to find related infor-

mation in the genomes database. As a result, matching genes were updated with the locus tag,

name, nucleotide sequence, amino acid sequence, and gene coordinates of the GenBank genomes

database.

Motif - Motif search tools use PWMs or Position-Specific Scoring Matrix (PSSM)s inferred from aligned

fixed-length TFBS data to discover novel binding sites in target genomes. However, most databases

contain unaligned variable-length binding sites associated with regulators. To ease motif searches us-

ing ProTReND’s TFBS data, we have included a tool to perform binding site alignment in the knowledge

expansion sub-system.

The motif annotation tool is based on the LASAGNA package, an algorithm for TFBS alignment [210].

The set of binding sites associated with a regulator is compiled from the CDS and submitted to LASAGNA.

This algorithm performs a length-aware binding site alignment and returns aligned fixed-length sequences.

LASAGNA can add gaps to each sequence to perform the alignment successfully. Then, the motif anno-

tation tool can infer the consensus sequence, PWM, PSSM and motif logo using the aligned TFBS. All

generated motifs have been stored in the data lake and loaded into the CDS. Motifs stored in the CDS only

contain the aligned binding site sequences, as the remaining information can be easily generated from

the binding sequences.

The knowledge expansion sub-system comprehends a series of independent modules and compo-

nents in the ProTReND repository. The annotation component is responsible for performing the above

annotation routines and merging the collected data into the transformed objects. The component named

bioapis contains all tools to access the KEGG, NCBI and UniProt databases. This component also imple-

ments a caching system to improve the performance of the ETL tool, as fetching information to external

resources via API is time-consuming. The cache system uses DiskCache, a disk file-backed cache software

built in Python. All queries performed to KEGG, NCBI and UniProt databases are hashed using the query

arguments as keys, and stored in SQLite databases. Cache databases are stored in the data lake, allowing

their portability and versioning. Finally, binding site alignment and descriptors components implement

TFBS alignment and motif reconstruction strategies.

77

CHAPTER 4. DATABASE OF PROKARYOTIC TRANSCRIPTIONAL REGULATORY NETWORKS

4.2.8 Data integration sub-system

The same object can have slightly different terms and annotations across multiple data sources.

Transformation and knowledge expansion tools help reduce this data heterogeneity. Nevertheless, an

integration tool is still mandatory to merge duplicated entries and perform data normalization. The purpose

of an integration tool is to apply a set of rules to transformed objects enabling a centralized and unified

view of the heterogeneous regulatory data compiled so far in the ETL tool.

Overall, transformation and integration sub-systems comprise the cornerstone of the data integration

system and impose data constraints in the CDS. However, the transform tool has not applied any inte-

gration rule per se, because the namespace resolution and object annotation do not prevent obtaining

duplicated objects. For instance, the data lake contains many duplicated objects extracted from different

data sources. The following paragraphs fully describe the integration rules applied to all entities in the

CDS based on their primary properties.

Effector, evidence, pathway, and regulatory family - The property name is the primary key to

formulating a generic integration rule for effectors, evidence, pathways, and regulatory families due to the

scarcity of information obtained for these entities. Definition 4.2.6 is used to merge data from different

sources regarding objects of the mentioned entities. Therefore, the integration process removed the

effector, evidence, pathway, and regulatory family objects missing the name property.

Theorem 4.2.6. Definition of equivalent objects by name

Let 𝑜𝑎 = (𝑖𝑑𝑎, 𝑛𝑎, ”𝑛𝑎𝑚𝑒𝑎”, ...) ∈ 𝑉 and 𝑜𝑏 = (𝑖𝑑𝑏, 𝑛𝑏, ”𝑛𝑎𝑚𝑒𝑏”, ...) ∈ 𝑉 , then 𝑜𝑎 ≡ 𝑜𝑏 if

𝑛𝑎 = 𝑛𝑏 ∧ 𝑛𝑎, 𝑛𝑏 ∈ (”𝐸𝑓 𝑓 𝑒𝑐𝑡𝑜𝑟”, ”𝐸𝑣𝑖𝑑𝑒𝑛𝑐𝑒”, ”𝑃𝑎𝑡ℎ𝑤𝑎𝑦”, ”𝑅𝑒𝑔𝑢𝑙𝑎𝑡𝑜𝑟𝑦𝐹𝑎𝑚𝑖𝑙𝑦”) and ”𝑛𝑎𝑚𝑒𝑎” =

”𝑛𝑎𝑚𝑒𝑏”.

Organism - Name and NCBI taxonomy identifier properties are the primary keys to setting organisms’

integration rule in the CDS. Following definition 4.2.7, organisms are equivalent across data sources if the

name and NCBI taxonomy identifier are identical.

Theorem 4.2.7. Definition of equivalent organisms

Let𝑜𝑎 = (𝑖𝑑𝑎, 𝑛𝑎, ”𝑛𝑎𝑚𝑒𝑎”, ”𝑛𝑐𝑏𝑖𝑇𝑎𝑥𝑜𝑛𝑜𝑚𝑦𝑎”, ...) ∈ 𝑉 and𝑜𝑏 = (𝑖𝑑𝑏, 𝑛𝑏, ”𝑛𝑎𝑚𝑒𝑏”, ”𝑛𝑐𝑏𝑖𝑇𝑎𝑥𝑜𝑛𝑜𝑚𝑦𝑏”, ...)
∈ 𝑉 , then𝑜𝑎 ≡ 𝑜𝑏 if𝑛𝑎 = ”𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑚”∧𝑛𝑏 = ”𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑚”, ”𝑛𝑎𝑚𝑒𝑎” = ”𝑛𝑎𝑚𝑒𝑏”, and ”𝑛𝑐𝑏𝑖𝑇𝑎𝑥𝑜𝑛𝑜𝑚𝑦𝑎” =

”𝑛𝑐𝑏𝑖𝑇𝑎𝑥𝑜𝑛𝑜𝑚𝑦𝑏”.

Regulator and gene - Locus tag and UniProt accession properties are the primary keys to set the

integration rule for regulators and genes. Following definition 4.2.8, regulators and genes are equivalent

across data sources if they have the same locus tag and UniProt accession. The locus tag is available

across most data sources and standardized in the knowledge expansion sub-system using the GenBank

genomes database. Furthermore, the integration tool removes regulators and genes missing the locus tag

78

4.2. DATA INTEGRATION SYSTEM

property. The UniProt accession is also available in most regulators and genes. In addition, the UniProt

accession is a persistent identifier in the UniProtKB database.

Theorem 4.2.8. Definition of equivalent regulators and genes

Let𝑜𝑎 = (𝑖𝑑𝑎, 𝑛𝑎, ”𝑙𝑜𝑐𝑢𝑠𝑇𝑎𝑔𝑎”, ”𝑢𝑛𝑖𝑝𝑟𝑜𝑡𝐴𝑐𝑐𝑒𝑠𝑠𝑖𝑜𝑛𝑎”, ...) ∈ 𝑉 and𝑜𝑏 = (𝑖𝑑𝑏, 𝑛𝑏, ”𝑙𝑜𝑐𝑢𝑠𝑇𝑎𝑔𝑏”, ”𝑢𝑛𝑖𝑝𝑟𝑜𝑡𝐴𝑐𝑐𝑒𝑠𝑠𝑖𝑜𝑛𝑏”, ...)
∈ 𝑉 , then 𝑜𝑎 ≡ 𝑜𝑏 if 𝑛𝑎 = 𝑛𝑏 ∧ 𝑛𝑎, 𝑛𝑏 ∈ (”𝑅𝑒𝑔𝑢𝑙𝑎𝑡𝑜𝑟”, ”𝐺𝑒𝑛𝑒”), ”𝑙𝑜𝑐𝑢𝑠𝑇𝑎𝑔𝑎” = ”𝑙𝑜𝑐𝑢𝑠𝑇𝑎𝑔𝑏”, and

”𝑢𝑛𝑖𝑝𝑟𝑜𝑡𝐴𝑐𝑐𝑒𝑠𝑠𝑖𝑜𝑛𝑎” = ”𝑢𝑛𝑖𝑝𝑟𝑜𝑡𝐴𝑐𝑐𝑒𝑠𝑠𝑖𝑜𝑛𝑏”.

Regulators and genes have a second data constraint based on the assumption that one regulator or

gene can only be associated with a single organism. Hence, regulatory data is normalized at the genome

scale, as regulators and genes must be distinct across organisms.

Operon - The ODB identifier is available to all operons retrieved from ODB. Hence, the ODB identifier

is the primary key for formulating the integration rule of operons (definition 4.2.9). Nevertheless, the

integration of operons in ProTReND’s repository was limited to operons having genes integrated into the

CDS. An operon is integrated into ProTReND’s database if one of the operon genes is available in the CDS

at the time of the integration. As with regulators and genes, operons must be associated with a single

organism.

Theorem 4.2.9. Definition of equivalent operons

Let 𝑜𝑎 = (𝑖𝑑𝑎, 𝑛𝑎, ”𝑜𝑑𝑏𝑖𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑒𝑟𝑎”, ...) ∈ 𝑉 and 𝑜𝑏 = (𝑖𝑑𝑏, 𝑛𝑏, ”𝑜𝑑𝑏𝑖𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑒𝑟𝑏”, ...) ∈ 𝑉 , then
𝑜𝑎 ≡ 𝑜𝑏 if 𝑛𝑎 = ”𝑂𝑝𝑒𝑟𝑜𝑛” ∧ 𝑛𝑏 = ”𝑂𝑝𝑒𝑟𝑜𝑛” and ”𝑜𝑑𝑏_𝑖𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑒𝑟𝑎” = ”𝑜𝑑𝑏_𝑖𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑒𝑟𝑏”.

Publication - The PMID property is the primary key to setting the integration rule of publications in the

CDS (definition 4.2.10). The citation identifier is retrieved from the PubMed database and assigned to all

publications in the publication annotation tool. The integration process removes all publication objects

missing a PMID.

Theorem 4.2.10. Definition of equivalent publications

Let 𝑜𝑎 = (𝑖𝑑𝑎, 𝑛𝑎, ”𝑝𝑚𝑖𝑑𝑎”, ...) ∈ 𝑉 and 𝑜𝑏 = (𝑖𝑑𝑏, 𝑛𝑏, ”𝑝𝑚𝑖𝑑𝑏”, ...) ∈ 𝑉 , then 𝑜𝑎 ≡ 𝑜𝑏 if 𝑛𝑎 =

”𝑃𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛” ∧ 𝑛𝑏 = ”𝑃𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛” and ”𝑝𝑚𝑖𝑑𝑎” = ”𝑝𝑚𝑖𝑑𝑏”.

Regulatory interaction - A star shape schema is often used to model data in a data warehouse [204],

[211]. This schema contains a fact table at the center to power data analyses. The fact table should not

store data directly, but rather foreign keys of the multiple dimensions in the data warehouse. Dimension

tables should be related to the fact table and store the relevant properties of each dimension.

Regulatory interactions are the primary event in ProTReND’s repository. Therefore, the regulatory

interaction entity in the CDS is ProTReND’s facts table, and all objects having the RegulatoryInteraction

namespace are nodes or rows of this fact table. A regulatory interaction object contains the organism,

regulator, gene, TFBS, and effector foreign keys.

79

CHAPTER 4. DATABASE OF PROKARYOTIC TRANSCRIPTIONAL REGULATORY NETWORKS

Equivalent regulatory interactions have been detected across multiple data sources using a combi-

nation of all foreign keys and the regulatory effect. Thus, regulatory interactions are equivalent if the

combination of the related organism, regulator, gene, TFBS, effector, and regulatory effect are identical

(definition 4.2.11). A composed hashable key has been added to all regulatory interactions to ease their

integration. This key is composed of all foreign keys mentioned above plus the regulatory effect of the

regulatory interaction.

Figure 21 provides an example of the integration process performed in regulatory interactions. Note

that both TFBS and effector foreign keys are not required to create a regulatory interaction object, as most

resources of regulatory data miss information for these dimensions. Consequently, regulatory interactions

having the same organism, regulator, gene, and regulatory effect might still be different objects in the CDS

due to the presence or absence of TFBS and effector foreign keys.

Theorem 4.2.11. Definition of equivalent regulatory interactions

Let𝑜𝑎 = (𝑖𝑑𝑎, 𝑛𝑎, ”𝑜𝑟𝑔𝑎𝑛𝑖𝑠𝑚𝑎”, ”𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑜𝑟𝑎”, ”𝑔𝑒𝑛𝑒𝑎”, ”𝑡 𝑓 𝑏𝑠𝑎”, ”𝑒 𝑓 𝑓 𝑒𝑐𝑡𝑜𝑟𝑎”, ”𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑜𝑟𝑦_𝑒 𝑓 𝑓 𝑒𝑐𝑡𝑎”) ∈
𝑉 and𝑜𝑏 = (𝑖𝑑𝑏, 𝑛𝑏, ”𝑜𝑟𝑔𝑎𝑛𝑖𝑠𝑚𝑏”, ”𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑜𝑟𝑏”, ”𝑔𝑒𝑛𝑒𝑏”, ”𝑡 𝑓 𝑏𝑠𝑏”, ”𝑒 𝑓 𝑓 𝑒𝑐𝑡𝑜𝑟𝑏”, ”𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑜𝑟𝑦_𝑒 𝑓 𝑓 𝑒𝑐𝑡𝑏”) ∈
𝑉 , then 𝑜𝑎 ≡ 𝑜𝑏 if the following conditions are satisfied:

• 𝑛𝑎 = ”𝑅𝑒𝑔𝑢𝑙𝑎𝑡𝑜𝑟𝑦𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛” ∧ 𝑛𝑏 = ”𝑅𝑒𝑔𝑢𝑙𝑎𝑡𝑜𝑟𝑦𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛”

• ”𝑜𝑟𝑔𝑎𝑛𝑖𝑠𝑚𝑎” = ”𝑜𝑟𝑔𝑎𝑛𝑖𝑠𝑚𝑏”

• ”𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑜𝑟𝑎” = ”𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑜𝑟𝑏”

• ”𝑔𝑒𝑛𝑒𝑎” = ”𝑔𝑒𝑛𝑒𝑏”

• ”𝑡 𝑓 𝑏𝑠𝑎” = ”𝑡 𝑓 𝑏𝑠𝑏”

• ”𝑒 𝑓 𝑓 𝑒𝑐𝑡𝑜𝑟𝑎” = ”𝑒 𝑓 𝑓 𝑒𝑐𝑡𝑜𝑟𝑏”

• ”𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑜𝑟𝑦𝑒 𝑓 𝑓 𝑒𝑐𝑡𝑎” = ”𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑜𝑟𝑦𝑒 𝑓 𝑓 𝑒𝑐𝑡𝑏”

80

4.2. DATA INTEGRATION SYSTEM

Figure 21: Example of the integration of regulatory interactions in the CDS. The collection of data from
different sources can lead to duplicated data. Moreover, regulatory interactions found in external sources
often miss normalization. In ProTReND, regulatory interactions are normalized based on the organism,
regulator, gene, TFBS, effector and regulatory effect. Therefore, the regulatory interactions fact table can
be used to visualize the relationships among the primary dimensions of the CDS.

TFBS - Structural and genomics information compose the integration rule of TFBSs in the CDS (defini-

tion 4.2.12). Binding site data such as the nucleotide sequence, strand, and both start and stop positions

can be used to establish equivalent TFBSs. Nevertheless, there is still a remote possibility that two bind-

ing sites from different organisms may contain the same structural and genomic information. Therefore,

TFBS objects contain the organism’s foreign key. TFBS objects include a composed hashable key com-

prehending the organism’s foreign key plus the structural information of the binding site. As for the TFBS

nucleotide sequence, the organism foreign key is mandatory in TFBS objects. Thus, the integration pro-

cess removes TFBS objects missing these two properties while merging those that share the same two

properties.

Theorem 4.2.12. Definition of equivalent TFBSs

Let 𝑜𝑎 = (𝑖𝑑𝑎, 𝑛𝑎, ”𝑜𝑟𝑔𝑎𝑛𝑖𝑠𝑚𝑎”, ”𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑎”, ”𝑠𝑡𝑟𝑎𝑛𝑑𝑎”, ”𝑠𝑡𝑎𝑟𝑡𝑎”, ”𝑠𝑡𝑜𝑝𝑎”, ...) ∈ 𝑉 and 𝑜𝑏 =

81

CHAPTER 4. DATABASE OF PROKARYOTIC TRANSCRIPTIONAL REGULATORY NETWORKS

(𝑖𝑑𝑏, 𝑛𝑏, ”𝑜𝑟𝑔𝑎𝑛𝑖𝑠𝑚𝑏”, ”𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑏”, ”𝑠𝑡𝑟𝑎𝑛𝑑𝑏”, ”𝑠𝑡𝑎𝑟𝑡𝑏”, ”𝑠𝑡𝑜𝑝𝑏”, ...) ∈ 𝑉 , then 𝑜𝑎 ≡ 𝑜𝑏 if the follow-

ing conditions are satisfied:

• 𝑛𝑎 = ”𝑇𝐹𝐵𝑆” ∧ 𝑛𝑏 = ”𝑇𝐹𝐵𝑆”

• ”𝑜𝑟𝑔𝑎𝑛𝑖𝑠𝑚𝑎” = ”𝑜𝑟𝑔𝑎𝑛𝑖𝑠𝑚𝑏”

• ”𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑎” = ”𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑏”

• ”𝑠𝑡𝑟𝑎𝑛𝑑𝑎” = ”𝑠𝑡𝑟𝑎𝑛𝑑𝑏”

• ”𝑠𝑡𝑎𝑟𝑡𝑎” = ”𝑠𝑡𝑎𝑟𝑡𝑏”

• ”𝑠𝑡𝑜𝑝𝑎” = ”𝑠𝑡𝑜𝑝𝑏”

Motif - The CDS can only store one motif object per regulator. Following integration rule 4.2.13, two

motif objects are equivalent if their regulator foreign keys are also different.

Theorem 4.2.13. Definition of equivalent motifs

Let 𝑜𝑎 = (𝑖𝑑𝑎, 𝑛𝑎, ”𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑜𝑟𝑎”, ...) ∈ 𝑉 and 𝑜𝑏 = (𝑖𝑑𝑏, 𝑛𝑏, ”𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑜𝑟𝑏”, ...) ∈ 𝑉 , then 𝑜𝑎 ≡ 𝑜𝑏 if
𝑛𝑎 = ”𝑀𝑜𝑡𝑖 𝑓 ” ∧ 𝑛𝑏 = ”𝑀𝑜𝑡𝑖 𝑓 ” and ”𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑜𝑟𝑎” = ”𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑜𝑟𝑏”.

Source - Source objects are created manually in the CDS as new data sources are added to the ETL

tool. Thus, the data integration system does not implement any integration rule for source objects.

The transform component of the ETL tool comprehends the integration sub-system. The transformer

of each data source is responsible for applying a transform function to the extracted data and using

the knowledge expansion sub-system to improve the annotation of the transformed objects. Then, each

transformer uses the generic integration tool to filter objects that must be integrated and loaded into the

CDS.

The integration tool first standardizes the primary keys used in the integration rules of each entity as

follows: text format conversion, lowercase format conversion, and removal of leading and trailing spaces.

Then, the entity integration rules determine whether an object is integrated into the CDS. For that, the

integration tool takes a snapshot of ProTReND’s database and compares incoming objects with the objects

present in the database. As a result, objects are marked to be created or updated in the CDS. In a worst-

case scenario, a given object can be removed from the integration process if it does not meet the integration

rules defined earlier. Finally, all integrated objects are stored in the data lake to be loaded into the CDS

later.

The integration tool assigns a single and universal identifier to the integrated objects. ProTReND’s

identifier is a property common to all entities and used as the primary key in the CDS. ProTReND’s

identifiers are generated automatically in sequential order for each new object. On the other hand, objects

marked to be updated do not take a new identifier, as only non-primary properties will be updated. Figure

82

4.2. DATA INTEGRATION SYSTEM

22 portrays an example of a ProTReND identifier containing the immutable PRT initials, a string entity-

based code, and a numeric increment-based code.

Figure 22: Example of a ProTReND identifier for a regulatory object. The ProTReND identifier contains
the immutable ProTReND initials, a string entity-based code (regulator in this example), and a numeric
increment-based code.

Once all objects are fully integrated into the CDS, the integration tool standardizes objects’ relation-

ships. Relationships are created in the transformation sub-system linking different objects by their primary

keys. However, objects can be removed from the integration system, making some relationships obsolete.

Furthermore, the data loading sub-system can only create edges in the CDS using ProTReND identifiers.

Hence, the integration tool inspects all connections to find corresponding ProTReND identifiers. This

lookup procedure is performed based on the objects’ primary keys, which have been stored with the

connections in the transformation sub-system.

4.2.9 Data loading sub-system

Hitherto, the ETL tool is mainly composed of a set of custom-tailored tools, as the extraction, transfor-

mation, and integration of heterogeneous data require different procedures. For instance, some sources

covered in this repository are organism-specific, while others contain regulatory data for many prokaryotes.

Hence, the tools implemented to deal with these dimensions must be fundamentally different.

On the other hand, the ProTReND repository has a single data loading tool. The integration tool has

already performed iterative findings of duplicated objects according to the entities’ primary keys, so the

loading tool does not have to deal with data normalization and integration. Moreover, integrated objects

are available as structured and standardized objects in the data lake.

The data loading sub-system fetches integrated objects stored in the data lake automatically. Then,

this tool uses the CDS data model to trim irrelevant properties and add two timestamps. One stands for

the time of object creation, while the other corresponds to the time of the last update. Finally, according

to the instructions left by the integration tool, the loading tool automatically creates or updates nodes in

the CDS with the related properties.

83

CHAPTER 4. DATABASE OF PROKARYOTIC TRANSCRIPTIONAL REGULATORY NETWORKS

Regarding relationships, the data loading sub-system automatically reads files from the data lake

containing edge information. In detail, the data lake contains JSON files that store relationships for many

objects. These files have been generated by the integration tool and contain the ProTReND identifier of

the source and destination node. Thus, the loading tool is responsible for finding both objects in the CDS

and creating the relationship between them with the corresponding properties.

Objects are transformed, integrated, and loaded independently on the CDS. Alternatively, the loading

tool can only create relationships if the source and target objects are available on the CDS. Hence, objects

can be created without relationships unless this violates their integration rules (mandatory foreign keys).

Finally, the data loading sub-system performs a final trimming procedure to circumvent orphan objects

(objects without relationships) in the CDS.

4.2.10 The first version of ProTReND’s database

The ETL pipeline comprises several steps to populate the CDS. Although each step is autonomous,

the order by which each data source is integrated into the CDS can yield slightly different results. Objects

can be updated with distinct values, as these are not always the same across databases. According to

the integration sub-system, a new object is not created if a similar object is already available in the CDS.

Instead, the object in the CDS is updated with the most recent information.

Non-organism-specific databases were firstly integrated into ProTReND’s database in the following

order: CollecTF; RegPrecise; Abasy; CoryneRegNet. A preliminary analysis found that these databases

might contain less detail about a single organism than organism-specific resources. Then, ETL tool inte-

grated the published TRNs, DBTBS, and RegulonDB to complete the objects related to E. coli, B. subtilis,

and M. tuberculosis. ODB was the last database to be integrated into the repository. Then, the Motif

transformer listed all regulators and related TFBS to generate binding motifs. Finally, the ETL ran the

trimming procedure to clean orphan objects.

Figure 23 depicts the ETL pipeline execution order used to populate ProTReND’s database.

84

4.3. DATA INTEGRATION RESULTS

Figure 23: ETL pipeline used to populate ProTReND’s database. Non-organism-specific databases,
namely CollecTF, RegPrecise, Abasy, and CoryneRegNet, were integrated first. Then, published TRNs
and organism-specific database DBTBS and RegulonDB were integrated into the repository. ODB is the
last external resource to be integrated into the database. The last steps include generating motifs and a
trimming procedure.

4.3 Data integration results

4.3.1 Overview of the data integration results

ProTReND is vastly composed of regulatory interactions. According to figure 24, the regulatory inter-

action facts table accounts for around 47% of all objects in the CDS. Genes, TFBSs, and operons also

make up a significant share of all objects stored in the database, attaining around 47% of all objects.

Regulators and motifs are equally represented on the CDS, with around 3% of all objects, indicating that

most regulators must have a binding motif. Finally, organisms and other objects account for nearly 1% of

all objects in the CDS. The distribution of objects according to their namespace mirrors the graph store

model design implemented in the CDS. This graph store model is based on a facts table for regulatory

interactions associated with the primary dimensions: organism, regulator, gene, and TFBS.

85

CHAPTER 4. DATABASE OF PROKARYOTIC TRANSCRIPTIONAL REGULATORY NETWORKS

Figure 24: Distribution of objects stored in the ProTReND database by their entity. The treemap shows
the relative frequency associated with the main ProTReND entities, namely Regulatory Interaction, Gene,
TFBS, operons, regulators, motifs, and organisms. Other entities such as effectors, pathways, regulatory
families, evidence, and publications are included in the group named ”other”.

4.3.2 Integration report

The ETL pipeline reports the results obtained in the extract, transform, integrate and load sub-systems.

The reporting tool collects objects at each step for a given regulatory resource integrated into the CDS.

Table 6 contains the integration results obtained with the ETL tool.

According to figure 25, the number of genes and regulators extracted from RegPrecise has dropped

significantly in the transform sub-system. This decline might be associated with the fact that, due to the

ambiguity and lack of data at the genome scale, the transformation tool ignored sRNAs from RegPrecise.

Consequently, genes associated with these sRNAs have also been ignored. The sRNAs extracted from

RegPrecise are identified with the regulatory family name and shared among several organisms. Besides,

the knowledge expansion sub-system attained poor results when annotating sRNAs. Another significant

decline is observed in genes, operons, and publications extracted from ODB (table 6). The transform tool

for ODB removes operons missing connections with the genes available in the CDS.

The extract sub-system often includes duplicated data for some entities. For example, figure 25

reports a substantial decrease of TFBS in the DBTBS and regulators in the CollecTF databases due to the

redundancy of these objects in the extract sub-system.

Regarding the integration sub-system, the number of integrated objects drops significantly in the

latest data sources. Figure 25 indicates that multiple organisms, genes, and regulators transformed from

Abasy, CoryneRegNet, literature, DBTBS, and RegulonDB already existed in the CDS, as the number of

new objects registered in the integration sub-system is lower than in the transform sub-system. On the

other hand, CollecTF and RegPrecise were the first resources to be integrated, thus attaining the same

numbers in the transform and integration sub-system. However, both TFBSs and regulatory interactions

86

4.3. DATA INTEGRATION RESULTS
Ta
bl
e
6:

In
te
gr
at
io
n
re
su
lts

re
po
rte
d
by

th
e
ET
L
pi
pe
lin
e
us
ed

to
as
se
m
bl
e
Pr
oT
Re
N
D
da
ta
ba
se
.
Da

ta
ba
se
s
of
re
gu
la
to
ry

da
ta

an
d
TR
N
s
av
ai
la
bl
e
in
th
e

lit
er
at
ur
e
ar
e
lis
te
d
by

th
e
ex
tra
ct
,t
ra
ns
fo
rm

,i
nt
eg
ra
te
an
d
lo
ad

su
b-
sy
st
em

.
Ea
ch

st
ep

re
po
rts

th
e
nu
m
be
ro
fo
bj
ec
ts
as
so
ci
at
ed

w
ith

a
da
ta
ba
se

en
tit
y
fo
ra

re
gu
la
to
ry
re
so
ur
ce
.
Re
gu
la
to
ry
re
so
ur
ce
s
m
is
si
ng

ob
je
ct
s
of
a
gi
ve
n
en
tit
y
ar
e
m
ar
ke
d
w
ith

a
hy
ph
en

(-)
.
Th
e
nu
m
be
ro
fo
bj
ec
ts
ob
se
rv
ed

in
th
e
in
te
gr
at
io
n

su
b-
sy
st
em

re
pr
es
en
ts
th
e
nu
m
be
ro
fn
ew

ob
je
ct
s
to
be

in
te
gr
at
ed

in
to
th
e
CD

S.

So
ur
ce

Sy
st
em

Ef
fe
ct
or

Ev
id
en

ce
G
en

e
O
pe

ro
n

O
rg
an

is
m

Pa
th
w
ay

Pu
bl
ic
at
io
n

Re
gu

la
to
r

R.
Fa

m
ily

R.
In
te
ra
ct
io
n

TF
B
S

Ab
as
y

ex
tra
ct

-
-

11
66
2

-
9

-
-

70
7

-
11
33
2

-
tra
ns
fo
rm

-
-

11
54
3

-
9

-
-

70
7

-
11
33
2

-
in
te
gr
at
e

-
-

94
23

-
3

-
-

52
6

-
11
32
9

-
lo
ad

-
-

94
23

-
3

-
-

52
6

-
11
32
9

-

Co
lle
cT
F

ex
tra
ct

-
56

19
80

-
15
3

-
52
6

34
2

-
25
39

36
49

tra
ns
fo
rm

-
56

19
76

-
15
3

-
52
6

23
6

-
25
39

35
79

in
te
gr
at
e

-
56

19
76

-
15
3

-
52
6

23
0

-
25
39

35
79

lo
ad

-
56

19
76

-
15
3

-
52
6

23
0

-
25
39

35
79

Co
ry
ne
Re
gN

et

ex
tra
ct

-
3

39
21

-
4

-
46
5

53
9

-
90
51

48
41

tra
ns
fo
rm

-
3

38
81

-
4

-
46
5

53
8

-
90
51

44
79

in
te
gr
at
e

-
3

41
9

-
0

-
44
1

16
8

-
88

44
44
79

lo
ad

-
3

41
9

-
0

-
44
1

16
8

-
88

44
44
79

DB
TB

S

ex
tra
ct

-
-

68
2

-
1

-
81
9

10
9

2
11
63

13
74

tra
ns
fo
rm

-
-

68
2

-
1

-
81
9

10
9

2
11
63

96
5

in
te
gr
at
e

-
-

20
-

0
-

46
2

0
2

10
00

96
5

lo
ad

-
-

20
-

0
-

46
2

0
2

10
00

96
5

Li
te
ra
tu
re

ex
tra
ct

14
0

-
48
59

-
3

-
-

53
0

-
12
05
7

-
tra
ns
fo
rm

14
0

-
48
59

-
3

-
-

53
0

-
12
05
7

-
in
te
gr
at
e

90
-

64
9

-
0

-
-

29
-

95
49

-
lo
ad

90
-

64
9

-
0

-
-

29
-

95
49

-

O
DB

ex
tra
ct

-
-

32
32
95
9

61
35
32
0

-
-

48
5

-
-

-
-

tra
ns
fo
rm

-
-

12
15
6

22
90
5

-
-

13
7

-
-

-
-

in
te
gr
at
e

-
-

49
2

22
90
5

-
-

66
-

-
-

-
lo
ad

-
-

49
2

22
90
5

-
-

66
-

-
-

-

Re
gP
re
ci
se

ex
tra
ct

30
8

-
11
67
16

-
52
4

28
7

31
1

15
43
2

17
1

15
58
93

62
48
3

tra
ns
fo
rm

30
8

-
89
24
5

-
52
4

28
7

31
1

11
60
5

17
1

15
58
93

61
96
5

in
te
gr
at
e

30
8

-
88
47
7

-
46
0

28
7

29
9

11
51
8

17
1

15
58
93

61
96
5

lo
ad

30
8

-
88
47
7

-
46
0

28
7

29
9

11
51
8

17
1

15
58
93

61
96
5

Re
gu
lo
nD

B

ex
tra
ct

13
7

12
7

41
68

-
1

-
16
73
0

19
9

52
11
38
4

61
24

tra
ns
fo
rm

13
7

12
7

40
85

-
1

-
16
73
0

19
9

52
11
38
4

61
24

in
te
gr
at
e

10
3

12
3

15
65

-
0

-
16
62
8

7
30

65
40

61
17

lo
ad

10
3

12
3

15
65

-
0

-
16
62
8

7
30

65
40

61
17

87

CHAPTER 4. DATABASE OF PROKARYOTIC TRANSCRIPTIONAL REGULATORY NETWORKS

are notable exceptions to the decline in the integration sub-system. Integration rules created for these

objects are based on data normalization involving properties that usually do not match across databases.

88

4.3. DATA INTEGRATION RESULTS

Figure 25: Integration results of ProTReND’s ETL pipeline summarized by the main entities and sources.
Databases of regulatory data and TRNs available in the literature are separated by rows. Effectors, genes,
organisms, regulators, and TFBS are divided into columns. Each chart depicts the number of objects
streaming from the extract to the load sub-systems. Regulatory resources missing objects of a given entity
are marked with a blank chart. The area under the line represents the number of objects observed in the
following sub-systems: extract (E), transform (T), integration (I), and load (L).

89

CHAPTER 4. DATABASE OF PROKARYOTIC TRANSCRIPTIONAL REGULATORY NETWORKS

In ProTReND, regulatory interactions must include foreign keys for organisms, regulators, genes,

TFBS, and effectors. Whereas several regulatory resources provide regulatory interactions that follow this

definition, other resources include non-intuitive and indirect associations between these entities in mul-

tiple files. To avoid reporting raw regulatory interactions from some sources and transformed objects

from others, we have decided that the number of regulatory interactions is determined in the transform

sub-system.

The last step of the ETL pipeline consists of a trimming procedure to remove objects missing relation-

ships and other errors. For instance, regulators missing relationships with genes or vice-versa are removed

from the database during the trimming procedure. Likewise, organisms missing links to regulators and

genes are removed from the CDS. Figure 26 reports the relative frequency of removed objects in this

procedure. The relative frequency is determined by the number of objects before the trimming procedure

divided by the number of objects available in the CDS. Numerous publications and evidence were not

associated with regulatory interactions and regulators and were thus removed from the database. These

objects, mainly obtained from RegulonDB, were associated with other entities not included in ProTReND,

such as promoters and signals. A few organisms, effectors, and regulatory families were also removed

from the CDS due to missing relationships with regulator objects.

Figure 26: Summary of the trimming procedure performed in the ProTReND database. The relative
frequency of objects removed during the trimming procedure is depicted for each entity. The relative
frequency is determined by the number of objects before the trimming procedure divided by the number
of objects available in the CDS.

The current version of ProTReND comprehends seven resources of regulatory data and three TRNs

90

4.3. DATA INTEGRATION RESULTS

retrieved from the literature. Figure 27 contains an analysis of the relationships between objects and reg-

ulatory sources available in ProTReND’s database. This analysis is based on the number of relationships

between objects and sources for each entity. The relative frequency of one source is determined by the

number of relationships of this source divided by the number of all source relationships.

Figure 27: Analysis of the regulatory data available in ProTReND by the data source. The frequency of
relationships between objects and regulatory sources was surveyed in ProTReND database. For a database
entity, the relative frequency was determined as the number of relationships of a single source divided
by the total of source-like relationships. The data sources’ relative frequency has been stacked into a
horizontal bar for each entity.

According to figure 27, RegPrecise is the primary source of regulatory data in ProTReND accounting

for numerous organisms, TFBSs, regulatory interactions, regulators, and genes, among others. Abasy

database is also linked to a significant share of regulators, genes, and regulatory interactions. Likewise,

many regulators, genes, and regulatory interactions have been extracted from CoryneRegNet, also linked

to a significant number of TFBS. However, Abasy and CoryneRegNet only contain data for 9 organisms in

total. In contrast to the large number of organisms directly linked to CollecTF, this database has provided

fewer interactions than RegulonDB (an organism-specific database) and literature. DBTBS is a notable

exception, as a small volume of regulatory data has been extracted for B. subtilis in this database. It

is worth noting that one object can be linked to several regulatory sources. Thus, the relative frequency

mentioned above cannot be interpreted as the percentage of objects that belong to a given source. Figure

28 highlights the out-degree (Kout) of effectors, genes, organisms, regulators, regulatory families, regula-

tory interactions, and TFBSs by source. The out-degree of an object stands for the number of outgoing

relationships with other objects. In this case, the out-degree is determined by the relationships associated

with source nodes.

91

CHAPTER 4. DATABASE OF PROKARYOTIC TRANSCRIPTIONAL REGULATORY NETWORKS

Figure 28: Out-degree (Kout) frequency by the data source in ProTReND database. The source out-degree
(Kout) of effectors, genes, organisms, regulators, regulatory families, regulatory interactions, and TFBSs
is calculated by the number of outgoing relationships towards objects of the source namespace.

Most objects are linked to a single resource of regulatory information (figure 28). This observation

goes in line with the fact that most data has been extracted from RegPrecise, while other databases

contributed with significantly less data. Nevertheless, objects obtained from the remaining databases are

also linked to RegPrecise, as some effectors, genes, organisms, regulators, and regulatory families have

out-degrees superior to one. Regulatory interactions and TFBSs have fewer integrations across the data

sources, as these objects systematically rank out-degrees of one due to complex integration rules.

92

4.3. DATA INTEGRATION RESULTS

The knowledge expansion sub-system was designed to enhance the annotation of organisms, regu-

lators, genes, effectors, pathways, and publications often missing relevant data to assemble TRNs at the

genome scale. Figure 29 shows that the knowledge expansion sub-system has significantly improved the

functional annotation of regulators and genes. In addition, this system retrieved genomics and proteomics

data often missing in the extracted regulatory sources. Around 90% of regulators and genes comprehend

genomic coordinates, gene sequence, protein sequence, and external references to genomics and pro-

teomics databases, except RefSeq accession, which is present in around 75% of these objects.

Furthermore, all organisms integrated into the CDS have been associated with the corresponding NCBI

taxonomy identifier, and 99% of the prokaryotes are linked to the GenBank, RefSeq and NCBI assembly

databases. Likewise, all publications in ProTReND database are linked to the PubMed database.

According to figure 29, around 85% of effectors have been linked to at least one KEGG compound.

Nevertheless, most pathways integrated into the database are not associated with any KEGG pathway.

93

CHAPTER 4. DATABASE OF PROKARYOTIC TRANSCRIPTIONAL REGULATORY NETWORKS

Figure 29: Results of the analysis of the knowledge expansion sub-system in the ProTReND repository.
Properties’ relative frequency is determined by the number of objects having the property divided by the
total of objects in the CDS.

4.3.3 CDS topology

The analysis of the CDS topology consists of a survey of the TRNs compiled in the data integration

system. Figure 30 contains the organism density distribution as a function of the number of regulators,

genes, TFBSs, and regulatory interactions. The density distribution, based on the organism-entity out-

degree (Kout), indicates how frequently organisms are associated with regulators, genes, TFBSs, and

regulatory interactions. For example, organism PRT.ORG.0000012 (B. subtilis 168) has a regulator out-

degree of 246, as this organism is associated with 246 distinct regulators. Nevertheless, the probability

94

4.3. DATA INTEGRATION RESULTS

obtained by the density function for a regulator out-degree of 246 can be very low, as few organisms can be

associated with 246 (or similar) distinct regulators. In fact, figure 30 contains logarithmized out-degrees

(𝑙𝑛𝐾𝑜𝑢𝑡), as a few organisms are associated with numerous regulators, genes, TFBSs, and regulatory

interactions. Besides, the range of the regulators’ out-degree is significantly inferior to the range of the

genes, TFBSs, and regulatory interactions out-degree.

Figure 30: Density distribution of regulators, genes, TFBSs and regulatory interactions per organism. A
probability density function estimates the density distribution based on the organism-entity out-degree
(Kout). Due to the different range of values among entities, out-degrees were logarithmized (𝑙𝑛𝐾𝑜𝑢𝑡).
Moreover, a small share of organisms is associated with numerous regulators, genes, TFBSs, and reg-
ulatory interactions, following an exponential distribution. The median out-degree (white dot) between
organisms and entities is plotted together with the interquartile range (thick black horizontal bar). The
density estimation corresponds to the area of the violin plot.

According to figure 30, the median out-degree between organisms and regulators is significantly in-

ferior to the median of out-degrees for genes, TFBS, and regulatory interactions. Organisms are more

frequently associated with about ln 18 (2.89) regulators, ln 118 (4.77) genes, ln 71 (4.26) TFBS, and

ln 169 (5.13) regulatory interactions. The density distribution also shows a small number of organisms

associated with fewer regulators, genes, TFBS, and regulatory interactions. On the other hand, small den-

sity values estimated in higher out-degrees indicate that a small number of organisms have out-degrees

95

CHAPTER 4. DATABASE OF PROKARYOTIC TRANSCRIPTIONAL REGULATORY NETWORKS

superior to the median values. Organism-specific databases or published TRNs have likely increased the

volume of regulatory interactions in these organisms. Figure 31 contains the top 20 organisms in terms

of out-degree for regulators, genes, TFBSs, and regulatory interactions, showing the composition of the

most well-represented TRNs in the ProTReND database.

Figure 31: Organisms having the largest out-degrees regarding regulators, genes, TFBSs and regulatory
interactions. Top 20 organisms ranking the highest out-degrees (Kout) for regulators, genes, TFBSs, and
regulatory interactions. The organisms are labeled by their scientific name.

B. subtilis 168, E. coli K-12 and M. tuberculosis H37Rv are well documented in the organism-specific

databases and published TRNs. Consequently, these bacteria have high out-degrees for regulators, genes,

TFBS, and regulatory interactions. In detail, B. subtilis 168 is associated with more regulators than E. coli

K-12, though the lactic acid bacterium has fewer relationships with genes and TFBSs. Hence, E. coli K-12

96

4.3. DATA INTEGRATION RESULTS

TRN has significantly more regulatory interactions than the network of B. subtilis 168. Interestingly, C.

glutamicum ATCC 13032 and P. aeruginosa PAO1 are also highly represented in ProTReND. The former

bacterium is well documented with regulators, genes, TFBSs, and regulatory interactions in CoryneRegNet,

while Abasy contains an extensive TRN for P. aeruginosa PAO1.

The regulatory data associated with the remaining organisms are mainly retrieved from RegPrecise

and CollecTF. For instance, the regulators associated with the remaining 15 organisms were extracted

exclusively from these two data sources. Overall, the out-degree distribution in the remaining 15 organisms

is homogeneous, having fewer genes, TFBS, and regulatory interactions than the top 5 bacteria.

Regarding the regulators’ out-degree distribution, figure 32 contains the logarithmized out-degrees

(𝑙𝑛𝐾𝑜𝑢𝑡) between regulators and genes, TFBSs, and regulatory interactions. As before, a small share

of regulators is associated with multiple genes, TFBSs, and regulatory interactions, thus following an

exponential distribution. The natural logarithm of the regulator-entity out-degree allows standardizing large

values that can hinder the estimation of the density function.

97

CHAPTER 4. DATABASE OF PROKARYOTIC TRANSCRIPTIONAL REGULATORY NETWORKS

Figure 32: Density distribution of genes, TFBSs and regulatory interactions per regulator. A probabil-
ity density function estimates the density distribution based on the regulator-entity out-degree (Kout).
Out-degrees were logarithmized (𝑙𝑛𝐾𝑜𝑢𝑡) as a small share of organisms is associated with numerous
regulators, genes, TFBSs, and regulatory interactions, following an exponential distribution. The median
out-degree (white dot) between organisms and entities is plotted together with the interquartile range (thick
black horizontal bar). The density estimation corresponds to the area of the violin plot.

Figure 32 shows that median out-degrees are similar across genes, TFBSs, and regulatory interac-

tions. Regulators are more frequently associated with around five (ln 1.61) genes, three (ln 1.1) genes,

and seven (ln 1.95) regulatory interactions. Regulators are associated with fewer genes, TFBS, and

regulatory interaction, as the density probabilities are higher for smaller out-degrees. Nevertheless,

regulators can be related to a large number of interactions. For example, global transcription factors

PRT.REG.0000202 (B0683/fur regulator in E. coli), PRT.REG.0000198 (B3357/crp regulator in E. coli),

and PRT.REG.0011761 (BSU_25200/sigA sigma factor in B. subtilis) are associated with more than 500

genes each.

The most well-represented regulatory families in ProTReND are presented in figure 33. Most families

depicted in this figure are well documented in the literature, RegPrecise, and RegulonDB. For instance, the

98

4.4. PROTREND WEB APPLICATION

GntR [212] and LacI [213] families attained high out-degrees, being the most prevalent families associated

with regulators stored in the CDS. Likewise, TetR [214], Fur [215], and MerR [216] families are also broadly

available in the CDS, having relationships with around 600 regulators each.

Figure 33: Regulatory families having the largest out-degree regarding regulators. Top 10 regulatory
families with the highest out-degrees (Kout) for regulators.

4.4 ProTReND web application

4.4.1 A user-friendly hub of regulatory interactions

ProTReND web application is designed to be a user-friendly tool to visualize regulatory interactions

available in ProTReND’s database. Besides visualizing organisms, regulators, genes, and interactions,

one can download manually or programmatically all regulatory data compiled within ProTReND. The web

application allows users to contribute to ProTReND’s database using the user-friendly community’s graphi-

cal interface. The next sections will demonstrate the most relevant features of ProTReND’s web application.

ProTReND is available at protrend.bio.uminho.pt.

99

https://protrend.bio.di.uminho.pt

CHAPTER 4. DATABASE OF PROKARYOTIC TRANSCRIPTIONAL REGULATORY NETWORKS

4.4.2 Implementation

ProTReND web application is implemented using the Django framework in Python. The architecture of

this web application is available in figure 34. The web application follows the model-template-views pattern

adopted by Django, which encourages the implementation of object-oriented models for handling CRUD

operations in databases. Hence, the Django framework is highly compatible with the graph store model

adopted in the CDS. Furthermore, the django-neomodel plugin, an extension of neomodel for Django,

was used to link ProTReND’s database to the development of the web application. As a result, the web

application is based on the data warehouse reconstructed in the data integration system.

The Django REST framework plugin was used to implement ProTReND’s RESTful API. This plugin al-

lows serializing database objects into several formats, such as JSON, Extensible Markup Language (XML),

CSV, and XLSX, and provides a browsable interface for the API.

The web application contains a powerful search engine created with the Whoosh Python package. Or-

ganisms, regulators, genes, interactions, effectors, pathways, and regulatory families have been retrieved

from the database and indexed as documents to create the search index.

The user-friendly community application has been implemented with the django-material plugin. This

plugin creates a web-based single-page application supporting CRUD operations in a relational database.

Each community object contains a list and detail view based on table-like and form-like layouts. These

views were created to visualize, create, update and delete a single table entry in the relational database.

Hence, a new database has been designed to store user contributions in the community web application.

100

4.4. PROTREND WEB APPLICATION

Figure 34: Architecture of ProTReND web application. The web application retrieves data from the CDS
using the Django framework. Regulatory data can also be automatically retrieved using ProTReND API
implemented with the Django REST framework. Users can contribute to ProTReND in the community
application implemented with the django-material plugin. This user interface performs CRUD operations
to a relational database implemented with MySQL DBMS. The web application has been containerized
into several autonomous sub-applications.

An in-house server hosts the ProTReND web application at protrend.bio.uminho.pt containerized with

Docker.

4.4.3 Browse regulatory interactions

Users can browse the list of organisms available in ProTReND. In the organism’s view, one can find

the ProTReND identifier, scientific name, and NCBI taxonomy identifier and the link to the detailed view

of each organism. This view also contains statistics for the organism-regulator distribution, most frequent

organisms by regulator number, among others.

The detailed view of a given organism includes relevant taxonomy information, such as scientific

name, species, strain, and NCBI taxonomy identifier. Figure 35 shows external references that link the

organism’s genome and proteome in the following databases: RefSeq, GenBank, NCBI Assembly, and

UniProt. The statistics of the prokaryote’s TRN are also available on the organism web page comprising,

for instance, regulator-gene distributions. The organism view lists all resources of regulatory information

used to compile the prokaryote TRN. The source of the regulatory data is cross-referenced to the organism’s

detailed web page in the resource whenever possible.

101

https://protrend.bio.di.uminho.pt

CHAPTER 4. DATABASE OF PROKARYOTIC TRANSCRIPTIONAL REGULATORY NETWORKS

Figure 35: Example of the information available for an organism in ProTReND. The detailed web page of
an organism (e.g., B. subtilis subsp. subtilis str. 168) contains relevant taxonomy information, such as
scientific name, species, strain, and NCBI taxonomy identifier together with external references.

TRNs are the main focus of ProTReND web application. The network section contains data tables to

visualize and search a given organism’s TRN. As shown in figure 36, these data tables contain information

regarding regulators, genes, TFBSs, and regulatory interactions associated with a given organism. More

importantly, regulators, genes, and interactions listed in the network section contain links to their detailed

web pages or external references (UniProt and NCBI).

Figure 36: Example of the organism network section in ProTReND. The detailed web page of an organism
(e.g., B. subtilis subsp. subtilis str. 168) includes data tables listing regulators, genes, TFBS, and regula-
tory interactions available in the TRN.

102

4.4. PROTREND WEB APPLICATION

The detailed organism view also contains tools to ease TRN visualization. For example, users can

select up to 15 regulators to visualize corresponding regulatory interactions in the graph network and HEB

tools. Figure 37 depicts the regulatory interactions associated with the regulators PRT.REG.0016169 and

PRT.REG.0016176 in the graph network and HEB tools.

Figure 37: Example of the graph network and HEB visualizations for an organism in ProTReND. The
detailed web page of an organism (e.g., B. subtilis subsp. subtilis str. 168) includes graph network (A)
and HEB (B) tools to ease the visualization of regulatory interactions associated with regulators (e.g.,
PRT.REG.0016169 and PRT.REG.0016176).

The regulators’ view includes a data table to browse and search the list of regulators by their unique

identifier, locus tag, and name. One can find the link to the detailed view of a given regulator in this table.

For example, figure 38 highlights a search for all lexa regulators. In addition to the list of regulators, this

view also contains several statistics for the regulator-gene distribution, most frequent regulators by gene

number, among others.

Figure 38: Example of the regulators’ data table in ProTReND. The Regulators web page allows browsing
and searching all regulators (e.g., lexa regulators) in ProTReND.

103

CHAPTER 4. DATABASE OF PROKARYOTIC TRANSCRIPTIONAL REGULATORY NETWORKS

Users can access the regulator’s detailed web page to obtain information about functional annotation,

genomics, proteomics, statistics, sources, organisms, regulatory families, metabolic pathways, binding

motifs, and sub-networks. Figure 39(A) depicts the web page of regulator b4043 of E. coli, including

ProTReND identifier, locus tag, name, synonyms, mechanism, function, and description. The detail section

also contains external references found for the regulator in NCBI’s and UniProt’s genomics and proteomics

databases. Genomics and proteomics data can also be downloaded in the FAST-All (FASTA) and GenBank

file formats. This view also includes statistics regarding the sub-network directly associated with the

regulator. As with the organism web page, the source of the regulatory data is cross-referenced to the

regulator’s detailed web page in the resource whenever possible (Figure 39(B)). One can also access the

regulatory family and metabolic pathways associated with the regulator.

Figure 39: Example of the information available for a regulator in ProTReND. The detailed web page of
a regulator (e.g., b4043 in E. coli) contains relevant information, such as locus tag, name, synonyms,
mechanism, function, and description together with external references (A). This view also contains cross-
references to the resources of regulatory data found to be associated with the regulator (B).

The binding site motif section contains information about the regulator’s motif. As described in figure

40, one can visualize the motif’s consensus sequence, logo, PWM, binding sites, and aligned binding

sites. Besides, it is possible to download the motif in the JASPAR and TRANScription FACtor database

(TRANSFAC) format.

The regulator’s network section allows browsing and searching the sub-TRN for effectors, genes, TFBS,

and regulatory interactions. This section is similar to the organism’s network section, containing several

data tables listing the records associated with the regulator’s sub-network.

The detailed gene view is similar to the regulator web page, as it contains detailed information about

functional annotation, genomics, proteomics, sources, and organism. In addition, the gene web page

lists all operons associated with the respective gene. As with the regulator web page, genomics and

104

4.4. PROTREND WEB APPLICATION

Figure 40: Example of the information available for a regulator’s motif in ProTReND. The detailed web page
of a regulator (e.g., b4043 in E. coli) contains a binding site motif section comprising relevant information,
such as consensus sequence, logo, PWM, binding sites, and aligned binding sites.

proteomics data can be downloaded in FASTA and GenBank file formats or consulted in NCBI’s and

UniProt’s databases.

Users can access regulatory interactions by browsing either organisms’ or regulators’ web pages.

Nevertheless, one can also access the details of a given regulatory interaction by opening the detailed

interaction view. For example, figure 41 highlights the regulatory interaction PRT.RIN.0001021 between

regulator b4043 and gene b1183. Additionally, if available, a regulatory interaction web page shows

effector and TFBS data. Finally, publications associated with the regulatory interaction can be accessed

at the journal’s website or PubMed using the PMID or DOI.

105

CHAPTER 4. DATABASE OF PROKARYOTIC TRANSCRIPTIONAL REGULATORY NETWORKS

Figure 41: Example of the information available for a regulatory interaction in ProTReND. The detailed web
page of a regulatory interaction (e.g., PRT.RIN.0001021) highlights regulator and gene data together with
the list of relevant publications.

ProTReND also provides the confidence level for organisms, regulators, genes, and regulatory inter-

actions. The detailed web page of each record contains a ranked scale that varies from ”no evidence” to

”manual revision” levels. The confidence level indicates the status of the information associated with the

record. For instance, figure 41 indicates that regulatory interaction PRT.RIN.0001021 has been confirmed

in the literature but has not yet been reviewed by our team or contributor.

The search engine available in ProTReND web application can be used to find organisms, regulators,

genes, effectors, pathways, and regulatory families. The search engine allows simple queries, such as

ProTReND identifiers, locus tags, names, and accessions (UniProt and NCBI). Nevertheless, the search

engine also supports complex queries. For instance, one can search the combination of multiple attributes

of the same entity, such as the search of regulator PRT.REG.0000205 using the locus tag b4043 and name

lexa (Figure 42 (A)). Likewise, the search engine also supports queries that combine multiple attributes

of different entities, such as the search for regulator PRT.REG.0000205 using regulator name lexa and

organism name E. coli (Figure 42 (B)). The search engine accepts vague terms allowing misspellings and

similar terms. As vague term queries often yield many results, the search results are compiled into data

tables according to the returned records and ordered by the search score. The Whoosh package calculates

the score according to the object’s relevance to the search query.

106

4.4. PROTREND WEB APPLICATION

Figure 42: Example of the search engine in ProTReND. Example of the search results obtained for a
simple (A) (e.g., regulator locus tag b4043 and name lexa) and complex (B) (e.g., regulator name lexa
and organism name E. coli) queries.

4.4.4 Data access

All regulatory data included in ProTReND can be downloaded on the web pages mentioned above or

in the browsable API. The web pages of a given organism, regulator, gene, and interaction contain direct

links to manually download the object in the JSON, XML, CSV and XLSX format. For instance, one can

download the TRN of a given organism by accessing the organism’s web page. Additionally, the download

button can redirect users to the record information in the browsable API. Genomics information can be

downloaded manually from regulator and gene pages in the FASTA and GenBank format files. Likewise,

the motif associated with a given regulator can be downloaded manually from the regulator’s page in the

JASPAR and TRANSFAC formats.

Tables containing all organisms and regulators can also be manually downloaded in the JSON, XML,

CSV and XLSX formats. However, the exported files will only contain the information presented in each

data table. Likewise, tables comprising, for instance, organism networks, regulators sub-networks, or

results of the search engine can be downloaded in the same formats.

The RESTful API available at protrend.bio.di.uminho.pt/api is an important feature of ProTReND’s web

application. This tool allows users to obtain ProTReND’s data by performing programmed requests. The

web API is divided into list and detail views for each entity. Each view supports the following application

formats: JSON; XML; CSV; XLSX. Both Swagger and redoc documentation is available for ProTReND’s

API. One can access the examples of the API documentation to optimize the programmatic access to the

107

https://protrend.bio.di.uminho.pt/api/
https://protrend.bio.di.uminho.pt/api/swagger/
https://protrend.bio.di.uminho.pt/api/redoc/

CHAPTER 4. DATABASE OF PROKARYOTIC TRANSCRIPTIONAL REGULATORY NETWORKS

database. Finally, a browsable API is also available at ProTReND, so one can visualize the format of the

list and detail views.

4.4.5 Contributing to ProTReND

ProTReND community is a single-page application allowing users to contribute to ProTReND’s database.

To use ProTReND community, one must first register as a user. The user management system allows

registering and logging users based on e-mail authentication. Registered users can use the community’s

user-friendly interface to perform one of the following contributions:

• Suggest new objects to ProTReND database;

• Suggest updates to existing objects in the ProTReND database;

• Suggest the removal of incorrect objects in the ProTReND database;

• Access the status of a given object in the ProTReND database.

Users’ contributions are not directly added to ProTReND’s database. The community application is

designed asynchronously. Thus, the current state of the CDS does not yet include any user contribution.

Alternatively, the community application is considered another resource of regulatory data that can be inte-

grated into the CDS using the data integration system mentioned above. Thus, the community application

is based on a new relational database implemented with the MySQL DBMS. The following tables/entities

are available in ProTReND community:

• Effector

• Gene

• Interaction

• Organism

• Regulator

• TFBS

• Community user

All CRUD operations executed by a user are only stored in the community’s relational database. Then,

these contributions must be manually revised by our team and integrated into the CDS.

Users can contribute with new effectors, genes, interactions, organisms, regulators, and TFBS. The

community interface contains customized forms having specific fields and validation according to the

entity (Figure 43 (A)). One should fill the object form with relevant information and save the changes to

108

4.4. PROTREND WEB APPLICATION

submit a contribution. Once a contribution is made, it is listed in the corresponding data table of the

community interface (Figure 43 (B)). One can create a new interaction to establish relationships among

new objects in the community interface.

Figure 43: Example of ProTReND community application. Example of the effector form that can be used
to create a new effector object (A). Example of all effectors added to the ProTReND community application
(B).

109

5

Definition and analysis of integrated

metabolic-regulatory models

The work presented in this chapter was partially published in the following

publication:

• Pereira, V., Cruz, F., Rocha, M. (2021). MEWpy: a computational strain

optimization workbench in Python, Bioinformatics, Volume 37, Issue 16,

Pages 2494–2496.

110

5.1. INTRODUCTION

5.1 Introduction

The analysis of integrated genome-scale models of metabolism and regulation has been growing in

recent years. Methods based on the switch approach, namely rFBA [144] and SR-FBA [145], limit the flux

space of solutions with discrete constraints inferred from the state of metabolic and regulatory genes. On

the other hand, valve-based techniques, namely PROM [146], IDREAM [150], CoRegFlux [148], and TRFBA

[149], are not so deterministic, putting forward continuous constraints derived from gene expression data.

Despite the growth of methods to analyze integrated models, most tools are not easy to use out of

their scope. These tools tend not to scale well with other case studies, apart from the ones in the original

publications. TIGER [152] and FlexFlux [151] toolboxes ease the utilization of modeling techniques such

as the mentioned above. Nevertheless, TIGER is available in the MATLAB proprietary language, while

FlexFlux is a command-line-based tool with a simple GUI offering limited capabilities. In the latter, model

inspection, analysis, and simulation are limited to a few command-line functions. OptFlux [217], a user-

friendly tool for constraint-based modeling, allows analyzing integrated models using rFBA or SR-FBA. Still,

it lacks the most recent methods based on the valve approach.

With this in mind, we have implemented several tools to define, simulate, analyze and optimize inte-

grated models of metabolism and regulation in MEWpy. MEWpy is a metabolic engineering workbench

implemented in the Python programming language. This package offers several methods to perform

phenotype simulation and strain optimization using constraint-based models, as well as more recent

paradigms. In addition, MEWpy allows the prediction of phenotypes using metabolic and regulatory-

derived constraints, a feature added in this work.

5.2 MEWpy: a strain optimization workbench in Python

MEWpy offers a metabolic modeling framework implemented in Python. This framework includes phe-

notype simulation and strain optimization algorithms based on GECKO models [218], OptORF [219], and

OptRAM [185], circumventing some limitations of other open-source Computational Strain Optimization

(CSO) frameworks, such as OptFlux [217] and CAMEO [220]. The architecture of MEWpy comprehends

several components, namely model definition, problem representation, phenotype prediction, and opti-

mization, as described in figure 44.

111

CHAPTER 5. DEFINITION AND ANALYSIS OF INTEGRATED METABOLIC-REGULATORY MODELS

Figure 44: Overview of MEWpy framework. The MEWpy framework comprehends several components,
such as problem representation (targets and strategies), phenotype prediction, and problem optimization
(objectives and EAs). The evolutionary computation engine is responsible for suggesting modifications to
the targets using a given strategy. These modifications should favor a desired metabolic engineering goal
(e.g., compound production) encoded in the objective functions.

MEWpy’s problem representation comprehends the following items:

• constraint-based modeling framework (metabolic, enzymes, or regulatory constraints);

• modification targets (reactions, genes, enzymes, or regulators);

• modification strategies (deletion or over/under expression).

MEWpy supports COBRApy [130] and Reframed (https://github.com/cdanielmachado/reframed)

constraint-based modeling frameworks for model representation and phenotype simulation. These frame-

works comprehend useful representations of genes, metabolites, and reactions available in a GEM model.

Furthermore, MEWpy uses the phenotype prediction methods available in COBRApy and Reframed to

evaluate different phenotypes resulting from over-expression, under-expression, and deletion of genes and

reactions. In detail, MEWpy can convert gene modifications into additional flux constraints using the GPR

rules available in the model. Regarding reaction modifications, flux constraints are added directly to the

problem by altering reactions’ bounds.

In addition to the constraint-based modeling frameworks, MEWpy supports the representation of en-

zymes using GECKO [218] and sMOMENT [221] models. MEWpy can convert enzymatic expression data

into additional constraints leading to accurate phenotype predictions. Thus, one can also perform strain

optimization based on enzyme modifications, namely over-expression, under-expression, and deletion of

enzymes.

112

https://github.com/cdanielmachado/reframed

5.3. A FRAMEWORK FOR INTEGRATED MODELS IN MEWPY

Lastly, the integration of gene regulation in GEM models was seamlessly implemented in MEWpy’s

ecosystem, in the context of this thesis. The GERM modeling framework comprehends several tools

to represent and simulate regulatory and metabolic models. Also, one can perform strain optimization

based on regulatory constraints. In detail, MEWpy includes the OptORF strategy that allows the deletion of

regulators. Alternatively, OptRAM’s implementation considers the over-expression and under-expression

of regulators.

The phenotype prediction component includes several methods to predict the behavior of a given

strain in several conditions. For example, MEWpy can predict mutant phenotypes encompassing several

modifications described above. The different phenotype prediction methods are seamlessly provided by

COBRApy or Reframed. Users can use a unified interface to perform the following simulation methods:

FBA, pFBA, Minimization of Metabolic Adjustment (MOMA), linear Minimization of Metabolic Adjustment

(lMOMA), Regulatory on/off Minimization of Metabolic flux changes (ROOM), and FVA. Alternatively, one

can use the mewpy.germ module described in this chapter, for phenotype prediction based on integrated

metabolic-regulatory models, as it is fully integrated with the phenotype prediction interface.

The optimization component includes methods based on EAs to find modifications favoring a given

phenotype. In detail, an EA iteratively generates and combines modifications (population of solutions)

using one of the abovementioned strategies. At each generation, the EA selects solutions (sets of modi-

fications) with higher probabilities associated with the fittest candidates and recombines those to create

new ones. Solutions are assessed using one or more optimization objectives designed for the metabolic

engineering goal. Notably, MEWpy can use Multi-objective Evolutionary Algorithm (MOEA)s to solve strain

engineering problems composed of multiple optimization objectives, such as weighted yield, Biomass-

Product Coupled Yield (BPCY), product yield, and the number of modifications. MOEAs can attain several

modifications favoring the trade-off between different objectives in a single run. MEWpy provides a simple

EA interface to handle single (e.g., Genetic Algorithm (GA) and Simulated Annealing (SA)) and multiple

objective problems (e.g., Strength Pareto Evolutionary Algorithm (SPEA2), Non-sorting Genetic Algorithm

(NSGA), and Hypervolume Estimation algorithm (HypE)) via the Inspyred [222] and JMetalPy [223] en-

gines.

5.3 A framework for integrated models in MEWpy

5.3.1 Overview of the genome-scale regulatory-metabolic model

framework

The mewpy.germ module supports the definition, simulation, and analysis of integrated models of

regulation and metabolism, named GERM models hereafter. For example, the mewpy.germ module in-

cludes phenotype prediction methods, such as rFBA, SR-FBA, PROM, and CoRegFlux. Figure 45 provides

an overview of the mewpy.germ module.

113

CHAPTER 5. DEFINITION AND ANALYSIS OF INTEGRATED METABOLIC-REGULATORY MODELS

Figure 45: Overview of the GERM model framework in MEWpy. Users can load GERM models from sepa-
rate files, such as SBML and CSV. The model input/output tools can generate a GERM model containing
metabolic and regulatory contents. The analysis of GERM models is based on several phenotype predic-
tions methods, such as FBA, pFBA, rFBA, SR-FBA, PROM, and CoRegFlux.

A GERM model can represent the integration of a TRN into a GEM model. Accordingly, the GERM

model comprehends metabolic variables, such as reactions, metabolites, and genes, as well as regulatory

variables, such as interactions, targets, and regulators. Furthermore, the GERM model integrates GPR

rules in the GEM model with Boolean algebra expressions defining regulatory interactions in TRNs.

The mewpy.germ input/output tools can read GEM models available in the SBML file format and

TRNs in the SBML and CSV file formats. In addition, one can load a GERM model using JSON and other

structures.

The following methods are available in the mewpy.germ module to predict the phenotypic behavior of

an organism in a wide range of metabolic, regulatory, and genetic conditions:

114

5.3. A FRAMEWORK FOR INTEGRATED MODELS IN MEWPY

• FBA - Computes a flux distribution that achieves the optimal growth rate in metabolic models;

• pFBA - Computes a flux distribution that achieves the optimal growth rate while minimizing the total

sum of fluxes;

• rFBA - Computes a flux distribution that achieves the optimal growth rate though limited by the

effect of regulatory interactions in the flux distribution;

• SR-FBA - Computes a flux and regulatory distribution simultaneously to attain the optimal growth

rate;

• PROM - Analysis of regulatory mutants using a continuous approach to limit the flux distribution;

• CoRegFlux - Computes a flux distribution that achieves the optimal growth rate based on a contin-

uous approach to limit the flux of reactions using gene expression.

5.3.2 Genome-scale regulatory-metabolic model

Themewpy.germmodule implements a framework that supports inspecting andmanipulatingmetabolic

and regulatory models. On the one hand, this framework includes a set of structures designed to repre-

sent the main features of a GEM model. On the other hand, the mewpy.germ module provides a simple

interface to work with TRNs. In detail, theModel ecosystem is the main interface to access and manipulate

integrated models. Custom Python objects represent the variables available in the TRN and GEM model

that live together in the Model class (mewpy.germ.models). Figure 46 shows the software architecture

responsible for representing integrated models of metabolism and regulation.

115

CHAPTER 5. DEFINITION AND ANALYSIS OF INTEGRATED METABOLIC-REGULATORY MODELS

Figure 46: Architecture of a GERM model. The representation of Model, MetabolicModel and Regula-
toryModel using UML. In addition, a Model object can be associated with an HistoryManager, a set of
Variables, and LinearProblems.

The Model class defines simple and generic attributes, such as id and name, but misses most of

the features available in TRNs and GEM models. In turn, MetabolicModel and RegulatoryModel classes

extend the Model parent class to implement specific representations of metabolic and regulatory objects,

respectively.

A Model object follows a dictionary-like interface that implements the get, add, remove, and update

methods. In detail, the add method can store variables in the model containers, namely dictionary-like

attributes indexing variables objects by their identifiers (dictionary keys). For example, a MetabolicModel

instance contains variables of type Gene in the genes’ container. The remove method is responsible for

removing variables from the Model containers. Lastly, the get method retrieves the variable object using

its identifier. Model containers implement Python’s property descriptor protocol, so getting and setting

routines can use the abovementioned methods.

The Serializer class implements serialization routines for the Model framework. All model objects

can be serialized and deserialized into dictionaries, JSON, and pickle files. The Serializer is a mix-in

116

5.3. A FRAMEWORK FOR INTEGRATED MODELS IN MEWPY

class that both Model and Variable can use. The Serializer class converts relevant Model attributes to

native-serializable Python objects.

Model instances can be associated with several phenotype prediction methods in the simulators’

attribute. In detail, the synergy model-simulator follows the observer pattern. The attach method links

LinearProblem objects to the model instance and the notify method warns simulators about the latest

model changes. That is, multiple LinearProblem instances subscribe to a single Model instance. Then,

the Model instance is responsible for notifying the subscribers about the latest news. In this observer

pattern, LinearProblem objects must update variables and constraints according to the latest state of the

Model instance.

Model instances support reversible and temporary changes using the HistoryManager class. This

class implements a command pattern to queue redoable and undoable instructions about the operations

performed in a single Model instance. The undo, redo, reset and restore methods execute the queued

commands according to the related resolution order.

The Model factory pattern can generate dynamic model types. For example, the factory constructor

can create an integrated MetabolicRegulatoryModel class derived from the MetabolicModel and Regula-

toryModel classes. Accordingly, one can dynamically create an object of the MetabolicRegulatoryModel

class using the from_types polymorphic constructor.

The MetabolicModel class extends the parent Model class to implement the following attributes:

• genes: The genes’ container stores variables of type gene;

• metabolites: The metabolites’ container stores variables of type metabolite;

• reactions: The reactions’ container stores variables of type reaction;

• objective: The objective’s container stores variables that define the objective function. This con-

tainer keeps variables as keys and coefficients as the corresponding values;

• gprs: The GPRs’ container stores the Boolean algebra expressions associated with reactions;

• compartments: The compartments’ container stores model compartments;

• external_compartment: The external_compartment attribute consists of the compartment most

well represented in the boundary reactions (unbalanced reactions having reactants or products);

• exchanges: The exchanges’ container stores variables of type reaction. Exchange reactions are

boundary reactions (unbalanced reactions having reactants or products) associated with the exter-

nal compartment;

• demands: The demands’ container stores variables of type reaction. Demand reactions are irre-

versible boundary reactions not associated with the external compartment;

117

CHAPTER 5. DEFINITION AND ANALYSIS OF INTEGRATED METABOLIC-REGULATORY MODELS

• sinks: The sinks’ container stores variables of type reaction. Sink reactions are reversible boundary

reactions not associated with the external compartment.

The RegulatoryModel class extends the parent Model class to implement the following attributes:

• interactions: The interactions’ container stores variables of type interaction;

• targets: The targets’ container stores variables of type target;

• regulators: The regulators’ container stores variables of the type regulator;

• environmental_stimuli: The environmental_stimuli’ container stores variables of type regulator;

Environmental stimuli (also named effectors) are regulators not regulated by other regulators;

• compartments: The compartments’ container stores model compartments;

• regulatory_reactions: The regulatory_reactions’ container stores variables of type regulator and

reaction;

• regulatory_metabolites: The regulatory_metabolites’ container stores variables of the type regulator

and metabolite;

5.3.3 Variables of genome-scale regulatory-metabolic models

The mewpy.germ.variables sub-module includes several structures representing variables usually

found in TRNs and GEM models. These structures provide a clear and straightforward interface to in-

spect and manipulate the main features of reactions, and interactions, among other variables. Figure

47 shows the software architecture used to represent metabolic and regulatory variables, namely genes,

metabolites, reactions, interactions, targets, and regulators.

118

5.3. A FRAMEWORK FOR INTEGRATED MODELS IN MEWPY

Figure 47: Architecture of the GERMmodel variables. The representation of Variable,Metabolite, Reaction,
Gene, Regulator, Interaction and Target using UML. In addition, a Variable object is often associated with
other variables, a Model object, and Expressions.

The Variable class contains generic attributes widely spread in metabolic and regulatory variables,

namely id, name, and aliases. In addition, the Variable interface includes a generic update method to

change the value of a given attribute. Variables can be associated with a single Model instance in the

model attribute. Hence, the Variable class supports temporary and reversible changes using the model’s

HistoryManager implementation. As with the Model class, the Variable structure uses the serialization

routines implemented in the Serializer mix-in.

Gene, Target, and Regulator sub-classes implement abstractions of genes, targets, and regulators

available in TRNs and GEMmodels. These sub-classes are very similar, sharing standard features, such as

119

CHAPTER 5. DEFINITION AND ANALYSIS OF INTEGRATED METABOLIC-REGULATORY MODELS

coefficients, is_active, and ko. On the other hand, a gene is often associated with several reactions, while

regulators are usually related to interactions and targets. Finally, a Target instance should be associated

with a single regulatory interaction and related regulators.

The Metabolite sub-class represents standard features of chemical compounds, namely charge, for-

mula, atoms, and molecular weight. Moreover, this sub-class contains the compartment attribute, as

metabolites are always associated with a cellular compartment in GEM models. Finally, Metabolite in-

stances are related to several reactions and sometimes exchange reactions.

The Interaction sub-class represents regulatory rules (Boolean algebra expressions) involving a single

Target instance with many Regulator instances. One can use the add_target and remove_target interfaces

to change the Target instance and the add_regulatory_event and remove_regulatory_event methods to

change the regulatory rules.

In detail, the regulatory_events attribute implements a Python dictionary holding pairs of target co-

efficients and Expression instances. An Expression instance represents the Boolean algebra expression

encoding the regulatory rule of a given target gene. The mewpy.germ.algebra sub-module can parse reg-

ulatory rules in the string format to Symbolic objects using the following operators: AND (&), OR (|), Not
(), Greater (>), GreaterEqual (≥), Less (<), and LessEqual (≤). Regulatory operands, on the other hand,
are converted into Symbol instances that can be associated with Regulator instances. Hence, Expression

instances can be evaluated using the regulators’ coefficients.

The Reaction class includes the main attributes of reactions in constraint-based modeling, namely

bounds (tuple of lower and upper bounds), stoichiometry (metabolites-coefficient dictionary), and GPR rule

(Expression object). In addition, Reaction instances have simple methods to add or removeMetabolite and

Expression instances to the stoichiometry and gpr attributes, respectively. Finally, one can inspect many

helpful attributes of a reaction object, such as products, reactants, compartments, reversibility, equation,

genes, gene_protein_reaction_rule, boundary, mass_balance, and charge_balance.

The Variable factory pattern can be used to create dynamic variable types. For example, the integrated

TargetRegulator class can be derived from the Target and Regulator classes using the factory method.

Accordingly, users can use the from_types’ polymorphic constructor to obtain integrated variables that

include the abovementioned representations and methods. Integrated classes reduce the burden of main-

taining duplicated objects in a single Model instance. Besides, the Variable factory pattern circumvents

code duplication and the implementation of complex sub-classes using inheritance.

5.3.4 Input/output tools for genome-scale regulatory-metabolic models

Themewpy.iomodule comprises file parsers implemented to extract relevant information of TRNs and

GEM models. GEM models are widely available in the SBML file format, while TRNs are often encoded

into CSV files or SBML files using the SBML-qual plugin.

The software architecture implemented in the mewpy.io module follows the builder design pattern.

This architecture’s main advantage is modularity: a single parser can build a model from a TRN or GEM

120

5.3. A FRAMEWORK FOR INTEGRATED MODELS IN MEWPY

file, while multiple parsers can read an integrated model simultaneously. Figure 48 highlights the builder

architecture, including the Director and Builder classes that can parse relevant information from different

files to assemble parts of an integrated model.

Figure 48: Architecture of mewpy.io tools. The representation of the builder pattern implemented in the
mewpy.io module using UML. The Director class generates a Model instance by orchestrating several
Reader objects. In turn, the Reader class encapsulates an Engine object that is responsible for read-
ing/writing GERM model files (e.g., SBML, CSV, and JSON).

The Director class is initiated with one or more steps (builders) and defines how to execute them.

On the other hand, Builder instances take the engine, io, and config attributes. In addition, the Reader

and Writer sub-classes extend the base Builder representation to implement the read and write methods.

Although the read and write methods could have been implemented in the Builder class directly, these

sub-classes present a familiar interface to users.

121

CHAPTER 5. DEFINITION AND ANALYSIS OF INTEGRATED METABOLIC-REGULATORY MODELS

The Builder is mainly a wrapper of an Engine instance. The Engine class is an interface (abstract) class

having the following methods: open, parse, read, write, close, and clean. Hence, the Engine sub-classes

must implement in these methods file-specific routines to parse and handle input/output resources. For

example, the MetabolicSBML sub-class implements the tools to parse metabolic information of an SBML

file into aModel instance. Alternatively, an Engine instance can also write metabolic or regulatory contents

to a specific file type.

Each Engine instance comprehends two main steps, parsing and reading, that must be called in two

different stages by the Director instance. Engines’ parse method collects information into a DataTransfer-

Object object that can hold raw data before model building takes place. This object is shared with other

Engine instances to ease the integration of metabolic and regulatory information into the same Model

instance. Variables having the same identifier across different files are stored in the same record within

the DataTransferObject object. Variables’ types are also saved in the DataTransferObject. After calling the

parse method of all Engine instances, the Director calls the read method next. This method re-collects

raw integrated data from the DataTransferObject object to build a specific part of the Model instance.

Table 7 summarizes all engines in the mewpy.io module according to the associated file format and

extracted information.

Finally, the mewpy.io module includes several utility functions to read and write integrated models,

such as the read_model, read_csv, read_json, read_sbml, and write_model. These functions provide a

simple interface to read and write models.

5.3.5 Phenotype prediction using genome-scale regulatory-metabolic

models

The analysis of integrated models of metabolism and regulation includes several phenotype predic-

tion methods, available in the mewpy.germ.analysis sub-module. One can use constraint-based modeling

approaches such as FBA and pFBA. More importantly, this sub-module includes methods to predict phe-

notypes using models resulting from the integration of TRNs into GEM models, using both discrete- (rFBA

and SR-FBA) and continuous-based (PROM and CoRegFlux) methods. Figure 49 outlines the software

architecture of the mewpy.germ.analysis sub-module.

122

5.3. A FRAMEWORK FOR INTEGRATED MODELS IN MEWPY
Ta
bl
e
7:

En
gi
ne
s
av
ai
la
bl
e
in
th
e
m
ew

py
.io

m
od
ul
e.

Th
e
GE

RM
m
od
el
in
pu
t/
ou
tp
ut
to
ol
s
ar
e
de
sc
rib
ed

in
te
rm

s
of
th
e
fil
e
fo
rm

at
an
d
da
ta
ty
pe

ha
nd
le
d
by

th
e
en
gi
ne
.
In
ad
di
tio
n,
a
br
ie
fd
es
cr
ip
tio
n
of
th
e
en
gi
ne

im
pl
em

en
ta
tio
n
is
al
so

pr
ov
id
ed
.

En
gi
ne

Fi
le

fo
rm

at
D
at
a

D
es
cr
ip
tio

n
Bo
ol
ea
nR
eg
ul
at
or
yC
SV

CS
V
or
TX
T

re
gu
la
to
ry

in
te
ra
ct
io
ns

di
vid

ed
in
to

tw
o
co
lu
m
ns
:
ta
rg
et
,
Bo
ol
ea
n
al
ge
-

br
a
ex
pr
es
si
on

w
ith

re
gu
la
to
rs

pa
rs
er

fo
r
a
TR
N

en
co
de
d
in
to

a
CS

V
us
in
g

pa
nd
as

pa
ck
ag
e

an
d

m
ew

py
.g
er
m
.a
lg
eb
ra
m
od
ul
e.

Co
Ex
pr
es
si
on
Re
gu
la
to
ry
CS

V
CS

V
or
TX
T

re
gu
la
to
ry

in
te
ra
ct
io
ns

di
vid

ed
in
to

th
re
e
co
lu
m
ns
:
ta
rg
et
,c
o-
ac
tiv
at
or
s,

co
-re
pr
es
so
rs

pa
rs
er

fo
r
a
TR
N

en
co
de
d
in
to

a
CS

V
us
in
g

pa
nd
as

pa
ck
ag
e

an
d

m
ew

py
.g
er
m
.a
lg
eb
ra
m
od
ul
e.

Ta
rg
et
Re
gu
la
to
rR
eg
ul
at
or
yC
SV

CS
V
or
TX
T

re
gu
la
to
ry

in
te
ra
ct
io
ns

di
vid

ed
in
to

tw
o
co
lu
m
ns
:
ta
rg
et
an
d
re
gu
la
to
r

pa
rs
er

fo
r
a
TR
N

en
co
de
d
in
to

a
CS

V
us
in
g

pa
nd
as

pa
ck
ag
e

an
d

m
ew

py
.g
er
m
.a
lg
eb
ra
m
od
ul
e.

M
et
ab
ol
ic
SB

M
L

SB
M
L
or
XM

L
ge
ne
s,

m
et
ab
ol
ite
s
an
d

re
ac
tio
ns

(w
/
GP

Rs
)

pa
rs
er

fo
r
a
GE

M
m
od
el

en
co
de
d

in
to

a
SB

M
L
us
in
g
py
th
on
-li
bs
bm

l
pa
ck
ag
e.

Re
gu
la
to
ry
SB

M
L

SB
M
L
or
XM

L
Ta
rg
et
s,

re
gu
la
to
rs
,
an
d
re
gu
la
to
ry

in
te
ra
ct
io
ns

en
co
de
d
in
to
th
e
SB

M
L-

qu
al
pl
ug
in

pa
rs
er

fo
r
a

TR
N

en
co
de
d

in
to

th
e
SB

M
L-q

ua
lp
lu
gi
n
us
in
g
py
th
on
-

lib
sb
m
lp
ac
ka
ge
.

Co
br
aM

od
el

Py
th
on

ob
je
ct

ge
ne
s,

m
et
ab
ol
ite
s
an
d

re
ac
tio
ns

(w
/
GP

Rs
)

CO
BR

Ap
y’
s
M
od
el
ob
je
ct
pa
rs
er
.

Re
fra
m
ed
M
od
el

Py
th
on

ob
je
ct

ge
ne
s,

m
et
ab
ol
ite
s
an
d

re
ac
tio
ns

(w
/
GP

Rs
)

Re
fra
m
ed
’s
CB

M
od
el
ob
je
ct
pa
rs
er
.

JS
O
N

JS
O
N

GE
RM

m
od
el
va
ria
bl
es

JS
O
N

fil
e

cr
ea
te
d

by
m
ew

py
.g
er
m
.m
od
el
s

or
m
ew

py
.g
er
m
.v
ar
ia
bl
es

m
od
ul
es
.

123

CHAPTER 5. DEFINITION AND ANALYSIS OF INTEGRATED METABOLIC-REGULATORY MODELS

Figure 49: Architecture of the GERM model analysis tools using UML. LinearProblem is the base class
for all phenotype prediction methods implemented in the mewpy.germ.analysis sub-module. This class
represents a LP containing linear variables and constraints inferred from a Model object. All phenotype
prediction methods are associated with a Solver instance and generate aModelSolution upon optimization.

The LinearProblem class is the base representation for linear programming and MILP problems, in-

cluding the variables, constraints, and objective attributes. Regarding the LinearProblem interface, the Lin-

earProblem class includes the add_constraints, remove_constraints, add_variables, remove_variables,

and set_objective methods to operate linear variables and constraints.

Linear variables and constraints are represented in the VariableContainer and ConstraintContainer

classes, respectively. These container-like classes can group mid-term variables and constraints generated

by some phenotype prediction methods. For instance, SR-FBA creates mid-term variables and constraints

for operators in Boolean algebra expressions. The mid-term variables and constraints are stored in the

same VariableContainer and ConstraintContainer instances, easing their traceability and operation.

The LinearProblem class retrieves linear variables and constraints from a Model object. Therefore,

sub-classes of LinearProblem must implement the build method responsible for converting model vari-

ables into linear constraints and variables. Then, the build_solver method populates a Solver (mewpy.

solvers) instance with the resulting objective, variables, and constraints. This method uses the Solver

class interface to create a linear problem (problem) in one of the solvers supported by MEWpy (CPLEX,

GUROBI, and OptLang).

124

5.3. A FRAMEWORK FOR INTEGRATED MODELS IN MEWPY

After building the linear problem, one can use the optimizemethod to solve the problem. Internally, the

optimization is performed using the solvemethod of the Solver class. Hence, the signature of the optimize

method includes a dictionary of solver-specific arguments, such as the objective, constraints, get_values,

among others. For example, one can temporarily change the objective function or bounds using the solver-

specific arguments. Seldom, phenotype prediction methods implement different versions of the optimize

method having additional arguments, such as the initial_state. The optimization returns a ModelSolution

instance, including the status, objective, and solution values. Furthermore, the ModelSolution object

provides user-friendly methods (e.g., to_frame, to_series, and to_summary) to visualize the solution.

LinearProblem instances are asynchronous by default, meaning constraints are not updated each

time the model changes. Therefore, to synchronize a LinearProblem, one must re-run the build method

to retrieve the latest state. On the other hand, a Model instance can notify LinearProblem instances about

the latest changes using the observer pattern. In this case, variables and constraints are updated before

optimization.

The FBA class is an extension of the LinearProblem class and implements a mathematical approach

to represent and analyze metabolic reactions available in a metabolic network [126]. According to the FBA

formulation, the build method infers steady-state mass balance constraints using the model metabolites

and reactions. The following techniques extend the FBA class to reuse these mass balance constraints.

The pFBA parent class implements a phenotype prediction method to find the optimal distribution of

the flow of metabolites that maximizes biomass production, while minimizing the total sum of fluxes in the

metabolic network [127]. Accordingly, the build method reformulates the objective function derived from

the FBA implementation.

rFBA inherits the buildmethod of the FBA class, as both techniques share the same linear problem for-

mulation. However, the rFBA method differs from FBA by accounting for the regulatory state of the model

in the flux distribution [144]. The rFBA method is detailed in the 2.9 section. First, rFBA’s optimizemethod

performs a synchronous evaluation of the regulatory network using an initial regulatory state (effectors’

coefficients). This simulation allows inferring the coefficients of all regulators in the regulatory networks.

In the second step, the optimize method performs a second evaluation of all regulatory interactions in

the regulatory model to determine the metabolic state (coefficients of target/metabolic genes). GPR rules

available in the metabolic model are evaluated next with the resulting metabolic state and translated into

a set of constraints limiting the flux of the model reactions.

rFBA can infer the initial regulatory state as follows:

• If the regulator is a regulatory metabolite, rFBA uses the absolute value of the lower bound of the

exchange reaction;

• If the regulator is a regulatory reaction, rFBA uses the absolute value of its upper bound;

• Otherwise, rFBA uses the maximum coefficient (often one) of a regulator.

125

CHAPTER 5. DEFINITION AND ANALYSIS OF INTEGRATED METABOLIC-REGULATORY MODELS

Nevertheless, some initial states might lead to the deletion of essential genes and reactions and yield

infeasible solutions. To mitigate conflicts in the initial state of the regulatory network, one can use the

mewpy.germ.analysis.find_conflicts function. This method can find regulatory states that lead to deletions

of essential genes and reactions, thus hindering optimal growth.

SR-FBA is a phenotype prediction method integrating simultaneously regulatory and mass balance

constraints [145]. This method is detailed in 2.9 section. The SR-FBA class represents a set of mixed-

integer linear constraints retrieved from the integrated model. In detail, the build method creates mid-

term linear variables and constraints according to the operators and operands of each Boolean algebra

expression available in the model (regulatory events and GPR rules). SR-FBA’s optimization uses MILP to

find an optimal flux distribution compatible with regulatory and metabolic constraints.

The PROM class implements a probabilistic-based technique to predict the phenotype of regulatory

mutants. According to PROM’s description in section 2.9, this method uses the probability of a metabolic

gene being active to limit the flux of model reactions [146]. The probability of a metabolic gene be-

ing transcribed is calculated for the number of samples in which the gene is active, while the related

regulator is inactive. Metabolic gene probability can be calculated using the mewpy.germ.analysis. tar-

get_regulator_interaction_probability function. Finally, reaction bounds are proportional to the probability

of the related genes.

The CoRegFlux technique uses multiple linear regression models to predict the levels of expression of

metabolic genes as a function of the regulators’ co-expression (co-activators and co-repressors). According

to CoRegFlux’s description in section 2.9, the predicted levels of expression are translated into limiting

flux bounds [148]. First, CoRegFlux uses gene expression data and regulators’ influence scores (inferred

with CoRegNet [115]) to train linear regression models. Linear regression models can be trained using

the mewpy.germ.analysis.pre- dict_gene_expression. Then, these models are used to make predictions

in another gene expression dataset. Finally, the optimize method uses a continuous approach to limit the

flux distribution according to the soft plus activation of the predicted expression.

The mewpy.germ.analysis module also includes several functions to analyze integrated models of

metabolism and regulation. For example, one can perform an FVA analysis (mewpy.germ.analysis.fva

or mewpy.germ.analysis.ifva) using FBA, rFBA, or SR-FBA techniques. Likewise, the analysis module

comprises functions to perform fast analysis of reactions, genes, and regulators perturbations.

MEWpy’s phenotype prediction component uses external packages, such as COBRApy and Reframed,

to evaluate different phenotypes within the CSO framework. Nevertheless, this module provides a common

interface to seamlessly integrate other modeling frameworks. In detail, the Simulator class implemented in

mewpy.simulation determines an interface for phenotype simulators. For example, the Simulation class

available in mewpy.simulation.cobra sub-module implements a phenotype simulator for the COBRApy

modeling framework. In this sub-class of Simulator, one has access to simple representations of genes,

metabolites, and reactions available in the Model object of COBRApy. Moreover, simulation methods

available in the COBRApy package are seamlessly provided in the simulate method of the Simulation

class.

126

5.3. A FRAMEWORK FOR INTEGRATED MODELS IN MEWPY

The GERMmodel framework is integrated into MEWpy’s phenotype predictionmodule, so users can ac-

cess a common interface to perform phenotype prediction using GERM, COBRApy, and Reframed models.

Moreover, implementing the GERM model simulator allows using this modeling framework in the strain op-

timization routines. In detail, the Simulation sub-class available in the sub-modulemewpy.simulation.germ

implements a GERM model simulator by extending the Simulator class. This sub-class implements a sim-

ulate method that uses the FBA and pFBA simulation methods implemented in the mewpy.germ.analysis

sub-module. Furthermore, one can initiate the GERM model simulator using themewpy.simulation.get_si-

mulator function. This function accepts a GERM model object returning the corresponding simulator.

5.3.6 Strain optimization using genome-scale regulatory-metabolic

models

MEWpy’s optimization component is based on evolutionary computation to solve an optimization

problem. Optimization problems encompass the modeling framework, the objective functions, the mod-

ification targets, and strategies. Whereas optimization problems can include a combination of inde-

pendent objective functions, targets and strategies are sometimes limited to the modeling framework.

Yet, mewpy.problems module includes several tools implementing problems for over-expression, under-

expression, and deletion of variables in the modeling framework. Table 8 summarizes the optimization

problems available in MEWpy according to the modification targets, strategies, and modeling framework.

127

CHAPTER 5. DEFINITION AND ANALYSIS OF INTEGRATED METABOLIC-REGULATORY MODELS

Table 8: Optimization problems available in themewpy.problemsmodule. MEWpy’s optimization problems
are described in terms of modeling framework and both modification strategy and target.

Optimization prob-
lem

Target Strategy Modeling frame-
work

RKOProblem Reactions Deletion COBRApy, Reframed,
and GERM models

ROUProblem Reactions Over and under expres-
sion

COBRApy, Reframed,
and GERM models

GKOProblem Genes Deletion COBRApy, Reframed,
and GERM models

GOUProblem Genes Over and under expres-
sion

COBRApy, Reframed,
and GERM models

GeckoKOProblem Enzymes Deletion GECKO or sMOMENT
models implemented
with COBRApy or
Reframed

GeckoOUProblem Enzymes Over and under expres-
sion

GECKO or sMOMENT
models implemented
with COBRApy or
Reframed

OptORFProblem Regulators Deletion GERM models

OptRamProblem Regulators Over and under expres-
sion

IDREAM integrated net-
work based implemen-
tation

As the GERM model framework is integrated into MEWpy’s phenotype prediction module, users can

create optimization problems that encompass the over-expression, under-expression, and deletion of re-

actions and genes available in a GERM model. Nevertheless, the GERM model framework is still missing

a few phenotype prediction methods, namely MOMA, lMOMA, and ROOM.

OptORF is an algorithm for strain optimization that suggests perturbations to genes and regulators si-

multaneously [219]. This optimization framework proposes evolutionary strain designs using an integrated

regulatory and metabolic model. In OptORF’s original formulation, GPR rules are translated directly into

linear constraints using a Boolean algebra approach. Consequently, reactions are blocked by deleting

the associated genes in the linear problem. Likewise, integrating TRNs into the metabolic network is also

implemented using a Boolean algebra approach. Metabolic genes can be switched on or off according

to the linear relationship of the associated regulators. These linear relationships are directly added to the

128

5.4. WORKING WITH GENOME-SCALE REGULATORY-METABOLIC MODELS IN MEWPY

linear problem through binary variables and constraints obtained from the regulatory network.

In the context of this work, the OptORFProblem class implements an adapted version of the original

OptORF problem published by Kim and Reed [219]. In this OptORF-adapted version, GPR rules and regu-

latory interactions are not converted into linear constraints using the Boolean algebra approach. Instead,

both regulatory and metabolic networks are evaluated using the binary values suggested for regulators

and genes. Then, reactions are removed according to the state of metabolic genes. In detail, the OptORF-

Problem class extends the AbstractKOProblem abstract interface, which is the base class for the deletion

modification strategy. The adapted version of OptORF is based on the synchronous evaluation of the

regulatory network represented in a GERM model. In the first step, the initial regulatory state (effectors’

coefficients) and the candidate state (regulator deletions) are combined to evaluate the regulatory inter-

actions in the GERM model. This simulation determines the coefficients of regulators and target genes.

In the second step, the OptORFProblem class solves the metabolic state by evaluating the Boolean GPR

rules available in the metabolic model. Finally, the resulting metabolic state is translated into a set of

constraints limiting the flux of the model reactions.

The OptORFProblem class is seamlessly integrated into the evolutionary computation framework of

MEWpy. One can run OptORF’s optimization task using the EA class with several objective functions. At

each generation, the EA class suggests new candidate regulatory mutants that favor the desired metabolic

engineering goal.

OptRAM is an alternative strain optimization method that suggests deletion, over and under expres-

sion modifications to metabolic genes and regulators simultaneously [185]. This optimization framework

does not require a regulatory network, as it is based on the IDREAM computational tool. IDREAM is an

integrated framework that can infer regulatory networks using gene expression data. The expression lev-

els of metabolic genes are inferred using the expression of corresponding regulators. Then, OptRAM can

translate the expression levels of metabolic genes into flux constraints using the GPR rules of the GEM

model. As regards the strain optimization engine, OptRAM uses simulated annealing to suggest a series

of perturbations to the expression of regulators towards the overproduction of the compound of interest.

OptRAM has been previously implemented in MEWpy beyond the context of this work. The implementation

of OptRAM in MEWpy can use MOEAs to combine different optimization objectives.

5.4 Working with genome-scale regulatory-metabolic models

in MEWpy

5.4.1 Model workflow

The following section comprises a detailed example of working with an integrated model of metabolism

and regulation in MEWpy. In this example, the integrated E. coli core GERM model published by Orth et

al. [224] will be used to showcase the capabilities of the GERM model framework. Furthermore, MEWpy

129

CHAPTER 5. DEFINITION AND ANALYSIS OF INTEGRATED METABOLIC-REGULATORY MODELS

documentation also includes a more extended version of the examples described in this sub-chapter at

MEWpy examples repository and MEWpy documentation.

The integrated E. coli core GERM model has been retrieved from the original publication [224] and

is available in two separate files: GEM model in the SBML file format (MEWpy examples repository) and

TRN in the CSV file format (MEWpy examples repository).

The function mewpy.io.read_model was used to read the E. coli integrated model. Figure 50 shows

the read_model signature, including a GEM model reader using the MetabolicSBML engine and the TRN

reader using the BooleanRegulatoryCSV engine. Note that both readers have been initiated with specific

arguments, such as filename, sep, id_col, and rule_col, among others.

Figure 50: GERM model loading with themewpy.io tools. A GERM model can be loaded from two separate
files using the GEM model reader (MetabolicSBML) and TRN reader (BooleanRegulatoryCSV).

In the Jupyter Notebook cell, one can visualize the contents of the integrated E. coli core GERM model.

TheModel representation includes the identifier, name, types, compartments, and the total metabolic and

regulatory variables available in the model.

Users can inspect metabolic and regulatory containers in Jupyter Notebook. Figure 51 shows a short

version of the reactions and interactions available in the integrated E. coli core GERM model. The model

130

https://github.com/BioSystemsUM/mewpy/blob/master/examples/GERM_Models.ipynb
https://mewpy.readthedocs.io/en/latest/germ.html
https://github.com/BioSystemsUM/mewpy/blob/master/examples/models/germ/e_coli_core.xml
https://github.com/BioSystemsUM/mewpy/blob/master/examples/models/germ/e_coli_core_trn.csv

5.4. WORKING WITH GENOME-SCALE REGULATORY-METABOLIC MODELS IN MEWPY

containers are standard Python dictionaries storing the model variables.

A GERM model supports the inspection and manipulation of metabolic and regulatory variables using

the get, add, update, and removemethods. For example, figure 51 shows how to access, add, and remove

the Crp regulator (b3357) of the E. coli model. In addition, a GERM model supports temporary changes

using the with model context manager.

Figure 51: GERM model manipulation using the Model interface. Inspection and manipulation of a GERM
model is available using the Model containers (model.interactions and model.reactions) and operations
(model.get, model.add, and model.remove).

The integrated E. coli core GERM model includes various variables with different attributes. For ex-

ample, figure 52 shows the characteristics of the ACKr reaction and b0721 regulatory interaction.

131

CHAPTER 5. DEFINITION AND ANALYSIS OF INTEGRATED METABOLIC-REGULATORY MODELS

Figure 52: Manipulation of GERM model variables using the Variable interface. Inspection and manipula-
tion of the ACKr reaction and b0721 regulatory interaction using the Variable framework.

Variables can be created using the Reaction, Metabolite, Gene, Interaction, Target, and Regulator

classes (Figure 53). Alternatively, integrated models often include multi-type variables comprising different

groups of attributes. For instance, metabolic genes tend to be the target variables of a TRN. Figure 53

shows the b0001 variable of type gene and target. This variable contains the attributes represented

in the Gene and Target classes. Figure 53 also highlights how to create multi-type variables using the

from_types polymorphic constructor of the Variable class. Integrating metabolic and regulatory attributes

into the same object provides a simple interface for reconstructing and analyzing integrated models.

132

5.4. WORKING WITH GENOME-SCALE REGULATORY-METABOLIC MODELS IN MEWPY

Figure 53: Assembly of single- and multi-type GERM model variables using the Variable interface. The
b0003 interaction can be created from a Boolean regulatory rule associated with the single-type b0003
target variable. Alternatively, one can create integrated multi-type variables, such as the b0001 metabolic
gene and regulatory target.

5.4.2 Model analysis workflow

The following section comprises several examples to analyze integrated models of metabolism and reg-

ulation in MEWpy. Table 9 includes the case studies used to showcase the capabilities of themewpy.germ.analysis

framework. Furthermore, MEWpy’s documentation comprehends a more extended version of the exam-

ples described in this sub-chapter at MEWpy examples repository and MEWpy documentation.

Figure 54 shows the main attributes of an SR-FBA instance created with the integrated E. coli core

GERM model and the ModelSolution object obtained after the phenotype prediction. In addition, all meth-

ods have a fast one-line function to run the phenotype prediction. These functions only return the objective

133

https://github.com/BioSystemsUM/mewpy/blob/master/examples/GERM_Models_analysis.ipynb
https://mewpy.readthedocs.io/en/latest/germ.html

CHAPTER 5. DEFINITION AND ANALYSIS OF INTEGRATED METABOLIC-REGULATORY MODELS
Table

9:
Case

studies
used

to
showcase

the
GERM

m
odelfram

ework.
SeveralGERM

m
odels

are
described

in
term

s
ofidentifier,organism

,GEM
m
odel,trn,

content,and
availability.

M
odel

O
rganism

G
EM

m
odel

TRN
C
ontent

G
ene

expression
data

Availability

E.colicore
m
odel

Escherichia
coli

K-
12

M
G1655

E.
coli

core
GEM

m
odel[224]

E.
coli

core
TRN

[224]
137

m
etabolic

genes,
95

re-
actions,

and
159

regulatory
interactions

-
Supplem

entatry
m
aterialI.9

iM
C1010

[144]
Escherichia

coli
K-

12
M
G1655

E.coliiJR904
GEM

m
odel[225]

E.
coli

iM
C1010

TRN
[144]

904
m
etabolic

genes,
931

re-
actions,

and
1010

regulatory
interactions

-
Supplem

entatry
m
aterialI.10

iN
J661

[146]
M
ycobacterium

tu-
berculosis

H
37Rv

M
.

tuberculosis
iN
J661

GEM
m
odel

[226]

M
.

tuberculosis
H
37Rv

TRN
pub-

lished
by

Balazsiet
al.

[227]

691
m
etabolic

genes,
1028

reactions,
and

2018
regulatory

interactions

Gene
expression

dataset
w
ith

437
experim

ents
(reg-

ulator
deletions)

[146]

Supplem
entatry

m
aterialI.11

iM
M
904

[148]
Saccharom

yces
cerevisiae

S288C
S.

cerevisiae
iM
M
904

GEM
m
odel[228]

S.
cerevisiae

S288C
TRN

in-
ferred

by
CoRegN

et
[115]

904
m
etabolic

genes,
1557

reactions,
and

3748
regulatory

interactions

Gene
expression

dataset
of

247
experim

ents
[84],

influence
scores

in-
ferred

by
CoRegN

et
[115],

and
another

gene
expression

dataset
of

12-tim
e

points
[229]

Supplem
entatry

m
aterialI.12

134

5.4. WORKING WITH GENOME-SCALE REGULATORY-METABOLIC MODELS IN MEWPY

value of the solution. Phenotype prediction methods can be attached to GERM models using the argu-

ment attach. This option allows synchronizing simulation objects with model changes before optimization.

Besides, one can connect many simulation methods to a single Model instance.

Figure 54: Phenotype prediction workflow using the GERM model framework. SR-FBA analysis of the
integrated E. coli core GERMmodel. Users can load GERMmodels using MEWpy input/output tools. Then,
an integrated phenotype prediction can be performed using the build-optimize workflow implemented in
all phenotype prediction methods.

rFBA and SR-FBA techniques follow a discrete approach to limit the flux space of solutions using

the state of metabolic and regulatory genes. rFBA accepts an initial regulatory state to evaluate the

model regulatory interactions. The mewpy.germ.analysis.find_conflicts method assists the design of an

initial state that leads to feasible solutions and optimal growth rates. Figure 55 shows how find_conflicts

function can be used to find conflicting regulatory states in the integrated iMC1010 GERM model. This

method suggests that three essential genes (b2574, b1092, and b3730) are repressed by three regulators

(b4390, Stringent, and b0676). However, some regulators do not hinder growth directly. For example,

figure 55 shows that regulator-target b4390 is only active with high-NAD environmental stimuli. Figure 55

shows an rFBA analysis of the iMC1010 GERM model. In this case, the initial regulatory state suggested

135

CHAPTER 5. DEFINITION AND ANALYSIS OF INTEGRATED METABOLIC-REGULATORY MODELS

by the find_conflicts method has been used to obtain a wild-type growth rate of 0.8518 ℎ−1.

Figure 55: rFBA phenotype prediction workflow using the GERMmodel framework. rFBA analysis of the in-
tegrated iMC1010 GERM model of E. coli. Users can load GERM models using MEWpy input/output tools.
Then, the initial regulatory state, a critical step in rFBA method, can be inferred with the find_conflicts
function. Finally, an integrated phenotype prediction can be performed using the build-optimize workflow
implemented in all phenotype prediction methods. The optimize method accepts rFBA’s initial regulatory
state and generates a phenotype prediction solution.

On the other hand, one can perform an SR-FBA analysis without an initial regulatory state. SR-FBA

uses MILP to find a regulatory state with an optimal growth rate. Figure 56 shows an SR-FBA analysis of

the integrated iMC1010 GERM model.

PROM and CoRegFlux techniques circumvent the discrete approach implemented in rFBA and SR-

FBA by limiting the flux of reactions according to the model regulatory interactions and gene expression

dataset.

PROM limits the flux of each reaction according to the probability of related genes being active while the

related regulator is inactive. The mewpy.omics module includes several tools to perform the quantile pre-

processing pipeline described by Chandrasekaran et al. [146]. Then, themewpy.germ.analysis.target_regu-

lator_interaction_probability function can be used to infer PROM’s initial regulatory state. Figure 57 shows

the inference of the target-regulator probability using the integrated iNJ661 GERM model and the gene

expression dataset published by Chandrasekaran et al. [146].

136

5.4. WORKING WITH GENOME-SCALE REGULATORY-METABOLIC MODELS IN MEWPY

Figure 56: SR-FBA phenotype prediction workflow using the GERM model framework. SR-FBA analysis of
the integrated iMC1010 GERM model of E. coli. Users can load GERM models using MEWpy input/output
tools. Then, an integrated phenotype prediction can be performed using the build-optimize workflow
implemented in all phenotype prediction methods.

137

CHAPTER 5. DEFINITION AND ANALYSIS OF INTEGRATED METABOLIC-REGULATORY MODELS

Figure 57: PROM phenotype prediction workflow using the GERM model framework. PROM analysis of
the integrated iNJ661 GERM model of M. tuberculosis. Users can load GERM models using MEWpy
input/output tools. The probability of related genes being active when a regulator is deleted can be in-
ferred using the quantile_pipeline and mewpy.analysis.target_regulator_interaction_probability functions.
Finally, an integrated phenotype prediction can be performed using the build-optimize workflow imple-
mented in all phenotype prediction methods. The optimize method accepts PROM’s initial regulatory
state and generates a phenotype prediction solution for each regulator deletion.

138

5.4. WORKING WITH GENOME-SCALE REGULATORY-METABOLIC MODELS IN MEWPY

Alternatively, CoRegFlux limits the flux of each reaction to the levels of expression of the related

genes using a softplus activation function [148]. One can use themewpy.germ.analysis.predict_gene_ex-

pression function to create multiple linear regression models capable of predicting the levels of expression

of metabolic genes. Then, the predicted levels can be used in the CoRegFlux analysis. Figure 58 shows

how to perform the CoRegFlux analysis in the integrated iMM904 GERM model for the first time-point,

before glucose depletion, according to the gene expression dataset published by Brauer et al. [229].

Figure 58: CoRegFlux phenotype prediction workflow using the GERM model framework. CoRegFlux
analysis of the integrated iMM904 GERM model of S. cerevisiae. Users can load GERM models using
MEWpy input/output tools. Gene expression predictions can be inferred for each experiment using the
mewpy.analysis.predict_gene_expression function. Finally, an integrated phenotype prediction can be
performed using the build-optimize workflow implemented in all phenotype prediction methods. The
optimizemethod accepts CoRegFlux’s initial regulatory state and generates a phenotype prediction solution
for each experiment.

5.4.3 Model optimization workflow

MEWpy provides a common interface to define an optimization problem. One can easily create op-

timization tasks with different modeling frameworks, modification targets, and strategies. The following

sub-chapter describes how to create an optimization problem using the integrated iMC1010 GERM model

published by Covert et al. [144]. MEWpy’s documentation includes an extended version of the examples

described in this sub-chapter at MEWpy examples repository and MEWpy documentation.

139

https://github.com/BioSystemsUM/mewpy/blob/master/examples/scripts/optorf.py
https://mewpy.readthedocs.io/en/latest/problems.html#optorf-example

CHAPTER 5. DEFINITION AND ANALYSIS OF INTEGRATED METABOLIC-REGULATORY MODELS

In this example, an OptORF problem encompasses the GERM model, two objective functions (e.g.

WYIELD and BPCY), and the metabolic engineering goal, namely succinate production. Figure 59 shows

how to read the iMC1010 GERM model from the GEM model and TRN files. Users can define an initial

regulatory state that favors optimal growth or compound production. WYIELD and BPCY classes can be

used to define objective functions towards succinate production. The OptORFProblem is initiated with the

iMC1010 GERM model, WYIELD and BPCY objective functions, and initial regulatory state (figure 59). The

evolutionary computation engine is then used to solve the optimization problem for a maximum of 10

generations using multi-processing.

Figure 59: Example of an OptORF optimization problem. An OptORFProblem can take a GERM model
(e.g., iMC1010 GERMmodel),WYIELD and BPCY objective functions, and initial regulatory state. Then, the
EA engine is responsible for finding a population favoring the metabolic engineering goal (e.g., succinate
production).

140

6

Conclusion

6.1 Main contributions

The present work comprehends several tools to assist the reconstruction and analysis of regulatory

and metabolic models at the genome-scale. The following tools and databases have been developed under

the scope of this thesis:

• BioISO - A tool to assist the curation of GEM models;

• ProTReND - A database of prokaryotic TRNs;

• GERM model framework in MEWpy - Definition and analysis of GERM models.

Despite the variety of modeling frameworks focussed on GEM models and TRNs, the reconstruction

and analysis of integrated GERMmodels has not been a common procedure for non-model organisms. The

methodologies proposed throughout the years are difficult to adopt and often unavailable to the scientific

community. Furthermore, the reconstruction of high-quality GEM models and TRNs can be affected by

laborious tasks and missing data.

With this in mind, the outcomes of this thesis can be used to obtain new insights regarding the molec-

ular mechanisms that control gene expression and metabolic processes. Additionally, all computational

tools developed under the scope of this thesis are available to the scientific community. In addition, most

of these tools provide a user-friendly interface to bypass barriers in reconstructing GEM models and TRNs.

Lastly, a simple yet modular modeling framework, providing several methods to analyze integrated GERM

models, has been delivered to the community. This modeling framework can leverage gene expression

data and biological networks to improve phenotype predictions and extend the scope of GEM models and

TRNs.

The first outcome of this work consists of BioISO, a user-friendly tool capable of performing guided

searches of gaps in metabolic networks. This tool aims to help scientists without coding skills reconstruct

high-quality GEMmodels, leveraging bottom-up reconstructions that require intensive manual curation and

human intervention. Several state-of-the-art gap-finding tools have been compared with BioISO, which

141

CHAPTER 6. CONCLUSION

emerged as the only open-source tool ready to be used by the scientific community. Moreover, since

BioISO does not perform gap-filling, it is not associated with this technique’s significant drawbacks, such

as poor usability, the need for additional data, and recommending biological artifacts due to the lack of

evidence for the solutions. Moreover, BioISO has been validated with GEMs available in the literature.

When debugging and validating the model for specific objective functions, such as growth maximization,

BioISO seems better suited for reducing the search space for errors and gaps in metabolic networks than

other tools.

The second outcome of this thesis is ProTReND, a state-of-the-art repository of genome-scale TRNs

for many prokaryotes. This repository includes a robust data integration system unifying regulatory data

available in several organism-specific and non-organism-specific databases and literature. The data inte-

gration system follows a modular ETL pipeline that can be extended with other resources of regulatory

data. Furthermore, ProTReND’s repository comprehends a knowledge expansion sub-system that has

contributed greatly to improving regulatory data quality. The regulatory data integrated into ProTReND

describes regulatory interactions between roughly 12300 regulators and 99500 genes for more than 500

organisms. Notably, this repository also includes binding site data, and effector information, among other

elements of gene regulation in prokaryotes. All regulatory data is accessible at protrend.bio.di.uminho.pt.

Besides being available through a web application, users can also obtain ProTReND’s data programmati-

cally at protrend.bio.di.uminho.pt/api. Lastly, ProTReND community is a single-page web application that

allows users, after a short registration, to contribute to the database.

The GERM model framework implemented within MEWpy is the last output of this thesis. This mod-

eling framework offers several tools to represent and analyze the integration of TRNs into GEM models.

Users can read separately GEM models, TRNs, and GERM models from SBML, CSV, and JSON files. A

GERM model is represented in MEWpy by a set of integrated metabolic and regulatory variables. One can

use the framework to inspect and manipulate attributes of GERM models. For instance, this framework

can parse Boolean algebra expressions into object-oriented regulatory interactions containing a target and

several regulators. More importantly, the GERM model framework contains several phenotype prediction

methods oriented to analyze the regulatory and metabolic layer. rFBA and SR-FBA are two discrete-based

approaches to analyze the integration of regulatory interactions into metabolic reactions. Alternatively,

the GERM model framework includes the PROM and CoRegFlux continuous-based approaches. The lat-

ter phenotype prediction methods are aimed at tailoring the flux space of solutions using the TRN and

transcriptomics data.

6.2 Publications

The present thesis has contributed to several publications. The following have been submitted and

accepted during the development of this work, some of which developed with the collaboration of other

researchers in the host research group:

142

https://protrend.bio.di.uminho.pt/
https://protrend.bio.di.uminho.pt/api

6.2. PUBLICATIONS

• Cruz, F., Lima, D., Faria, J. P., Rocha, M., Dias, O. (2020). Towards the Reconstruction of Inte-

grated Genome-Scale Models of Metabolism and Gene Expression. In: Fdez-Riverola, F., Rocha,

M., Mohamad, M., Zaki, N., Castellanos-Garzón, J. (eds) Practical Applications of Computational

Biology and Bioinformatics, 13th International Conference. PACBB 2019. Advances in Intelligent

Systems and Computing, vol 1005. Springer, Cham.

• Cruz, F., Faria, J. P., Rocha, M., Rocha, I., Dias, O. (2020). A review of methods for the reconstruc-

tion and analysis of integrated genome-scale models of metabolism and regulation. Biochemical

Society Transactions.

• Lima, D., Cruz, F., Rocha, M., Dias, O. (2021). Reconciliation of Regulatory Data: The Regula-

tory Networks of Escherichia coli and Bacillus subtilis. In: Panuccio, G., Rocha, M., Fdez-Riverola,

F., Mohamad, M., Casado-Vara, R. (eds) Practical Applications of Computational Biology & Bioin-

formatics, 14th International Conference (PACBB 2020). PACBB 2020. Advances in Intelligent

Systems and Computing, vol 1240. Springer, Cham.

• Pereira, V., Cruz, F., Rocha, M. (2021). MEWpy: a computational strain optimization workbench in

Python, Bioinformatics, Volume 37, Issue 16, Pages 2494–2496.

The following have been submitted (available as a pre-print) and are waiting for revision:

• Cruz, F., Capela, J., Ferreira, E. C., Rocha, M., Dias, O. BioISO: an objective-oriented application

for assisting the curation of genome-scale metabolic models. Submitted. Pre-print available at:

https://doi.org/10.1101/2021.03.07.434259

The following are currently under preparation for submission:

• Cruz, F., Lima, D., Rocha, M., Dias, O. ProTReND: a database of prokaryotic genome-scale TRNs.

In preparation.

Finally, the following articles were also published during the doctoral program, but were not included

in this thesis:

• Capela, J., Lagoa, D., Rodrigues, R., Cunha, E., Cruz, F., Barbosa, A., Bastos, J., Lima, D., Ferreira,

E. C., Rocha, M., Dias, O. (2022). merlin, an improved framework for the reconstruction of high-

quality genome-scale metabolic models. Nucleic Acids Research, Volume 50, Issue 11, Pages

6052–6066.

• Cruz, F., Lagoa, D., Mendes, J. Rocha, I., Ferreira, E. C., Rocha, M., Dias, O. (2019). SamPler – a

novel method for selecting parameters for gene functional annotation routines. BMC Bioinformatics

20, 454.

143

https://doi.org/10.1101/2021.03.07.434259

CHAPTER 6. CONCLUSION

• Oliveira, A., Cunha, E., Cruz, F., Ribeiro, J., Sequeira, J. C., Sampaio, M., Dias, O. (2022). Towards

a Multivariate Analysis of Genome-Scale Metabolic Models Derived from the BiGGModels Database.

In: Rocha, M., Fdez-Riverola, F., Mohamad, M.S., Casado-Vara, R. (eds) Practical Applications of

Computational Biology & Bioinformatics, 15th International Conference (PACBB 2021). PACBB

2021. Lecture Notes in Networks and Systems, vol 325. Springer, Cham.

• Oliveira, A., Cunha, E., Cruz, F., Ribeiro, J., Sequeira, J. C., Sampaio, M., Sampaio, C., Dias, O.

(2022). Systematic assessment of template-based genome-scale metabolic models created with

the BiGG Integration Tool. Journal of Integrative Bioinformatics, Volume 19, Number 3, Pages

20220014.

6.3 Future work

The development of the above-mentioned tools also raised several questions and future improve-

ments. In short, the accessibility and interoperability of the methodologies implemented in the scope of

this work can be further improved. For instance, BioISO can be extended to guide the manual curation

of integrated GERM models using the modeling framework implemented in MEWpy. In addition, the high-

quality bottom-up reconstruction workflow suggested in BioISO can be added to the user-friendly GUI so

users can visualize parsimonious solutions (when compared to other tools) for each dead-end metabo-

lite. Furthermore, the GERM model framework can also include a set of tools to load TRNs available in

the ProTReND database. The implementation of this feature would improve the interoperability between

ProTReND and MEWpy, easing the integration of TRNs into GEM models.

ProTReND can also be expanded into a knowledgebase supporting the inference of novel TRNs. In

detail, this database can serve as the base for several computational tools to reconstruct novel TRNs using

the genomics and proteomics data associated with the TRNs. Likewise, ProTReND can be used to search

for novel binding sites, thus assisting the reconstruction of novel regulatory networks. The integration of

these tools with a GUI supporting the manual curation of the TRNs resulting into high-quality regulatory

data for an organism of interest.

Lastly, the GERM model framework should be thoroughly assessed using known and novel case stud-

ies. Assessing the phenotype prediction and strain optimization methods implemented in this modeling

framework could help further validate its resourcefulness for the scientific community. Furthermore, de-

veloping a GUI for the GERM model framework can make this tool accessible to a significant share of the

scientific community.

144

Bibliography

[1] J. M. Lourenço, The NOVAthesis LATEX Template User’s Manual, NOVA University Lisbon, 2021.

[2] S. Mukherjee, D. Stamatis, J. Bertsch, et al., “Genomes OnLine Database (GOLD) v.6: data up-

dates and feature enhancements”, Nucleic Acids Research, vol. 45, no. D1, pp. D446–D456,

Jan. 2017.

[3] A. N. Gray, B.-M. Koo, A. L. Shiver, J. M. Peters, H. Osadnik, and C. A. Gross, “High-throughput

bacterial functional genomics in the sequencing era”, Current Opinion in Microbiology, vol. 27,

pp. 86–95, Oct. 2015.

[4] J. Nielsen, “Systems Biology of Metabolism”, Annual Review of Biochemistry, vol. 86, no. 1,

pp. 245–275, Jun. 2017.

[5] J. S. Edwards and B. O. Palsson, “Systems properties of the Haemophilus influenzae Rdmetabolic

genotype”, Journal of Biological Chemistry, vol. 274, no. 25, pp. 17 410–17 416, Jun. 1999.

[6] A. Bordbar and B. O. Palsson, “Using the reconstructed genome-scale human metabolic network

to study physiology and pathology.”, Journal of internal medicine, vol. 271, no. 2, pp. 131–41,

Feb. 2012.

[7] C. Bro, B. Regenberg, J. Förster, and J. Nielsen, “In silico aided metabolic engineering of Sac-

charomyces cerevisiae for improved bioethanol production.”, Metabolic engineering, vol. 8, no. 2,

pp. 102–11, Mar. 2006.

[8] O. Dias, J. Saraiva, C. Faria, M. Ramirez, F. Pinto, and I. Rocha, “iDS372, a Phenotypically Rec-

onciled Model for the Metabolism of Streptococcus pneumoniae Strain R6”, Frontiers in Microbi-

ology, vol. 10, no. JUN, p. 1283, Jun. 2019.

[9] O. Dias, R. Pereira, A. K. Gombert, E. C. Ferreira, and I. Rocha, “iOD907, the first genome-scale

metabolic model for the milk yeast Kluyveromyces lactis”, Biotechnology Journal, vol. 9, no. 6,

pp. 776–790, Jun. 2014.

145

BIBLIOGRAPHY

[10] C. S. Henry, J. F. Zinner, M. P. Cohoon, and R. L. Stevens, “iBsu1103: A new genome-scale

metabolic model of Bacillus subtilis based on SEED annotations”, Genome Biology, vol. 10, no. 6,

Jun. 2009.

[11] J. D. Orth, T. M. Conrad, J. Na, et al., “A comprehensive genome-scale reconstruction of Es-

cherichia coli metabolism–2011.”, Molecular systems biology, vol. 7, p. 535, Oct. 2011.

[12] O. Dias and I. Rocha, “Systems Biology in Fungi”, in Molecular Biology of Food and Water Borne

Mycotoxigenic and Mycotic Fungi, R. Paterson, Ed., Boca Raton: CRC Press, 2015, ch. 6, pp. 69–

92.

[13] I. Thiele and B. Ø. Palsson, “A protocol for generating a high-quality genome-scale metabolic

reconstruction”, Nature Protocols, vol. 5, no. 1, pp. 93–121, Jan. 2010.

[14] D. Machado, S. Andrejev, M. Tramontano, and K. R. Patil, “Fast automated reconstruction of

genome-scale metabolic models for microbial species and communities”, Nucleic Acids Research,

vol. 46, no. 15, pp. 7542–7553, Sep. 2018.

[15] J. P. Faria, R. Overbeek, F. Xia, M. Rocha, I. Rocha, and C. S. Henry, “Genome-scale bacterial tran-

scriptional regulatory networks: reconstruction and integrated analysis with metabolic models”,

Briefings in Bioinformatics, vol. 15, no. 4, pp. 592–611, Jul. 2014.

[16] D. Machado and M. Herrgård, “Systematic Evaluation of Methods for Integration of Transcriptomic

Data into Constraint-Based Models of Metabolism”, PLoS Computational Biology, vol. 10, no. 4,

C. D. Maranas, Ed., e1003580, Apr. 2014.

[17] D. Marbach, J. C. Costello, R. Küffner, et al., “Wisdom of crowds for robust gene network infer-

ence”, Nature Methods, vol. 9, no. 8, pp. 796–804, Aug. 2012.

[18] V. A. Huynh-Thu and G. Sanguinetti, “Gene Regulatory Network Inference: An Introductory Sur-

vey”, in Methods in Molecular Biology, vol. 1883, Humana Press Inc., 2019, pp. 1–23.

[19] S. Barbosa, B. Niebel, S. Wolf, K. Mauch, and R. Takors, “A guide to gene regulatory network

inference for obtaining predictive solutions: Underlying assumptions and fundamental biological

and data constraints”, Biosystems, vol. 174, pp. 37–48, Dec. 2018.

[20] D. L. Nelson and M. M. Cox, Lehninger Principles of Biochemistry, 6th edit. W.H. Freeman, 2008,

p. 1328.

[21] H. Lodish, B. Arnold, Z. S Lawrence, M. Paul, B. David, and D. James, Molecular Cell Biology,

4th editio, W. H. Freeman, Ed. New York, 2000.

[22] C. Willson, D. Pebrin, M. Cohn, F. Jacob, and J. Monod, “Non-inducible mutants of the regulator

gene in the “lactose” system of Escherichia coli”, Journal of Molecular Biology, vol. 8, no. 4,

pp. 582–592, Apr. 1964.

[23] F. Jacob and J. Monod, Genetic regulatory mechanisms in the synthesis of proteins, 1961.

146

BIBLIOGRAPHY

[24] D. F. Browning and S. J. W. Busby, “Local and global regulation of transcription initiation in bac-

teria”, Nature Reviews Microbiology, vol. 14, no. 10, pp. 638–650, Oct. 2016.

[25] K. Struhl, “Fundamentally Different Logic of Gene Regulation in Eukaryotes and Prokaryotes”,

Cell, vol. 98, no. 1, pp. 1–4, Jul. 1999.

[26] R. De Smet and K. Marchal, Advantages and limitations of current network inference methods,

2010.

[27] S. A. Teichmann and M. Babu, “Conservation of gene co-regulation in prokaryotes and eukary-

otes”, Trends in Biotechnology, vol. 20, no. 10, pp. 407–410, Oct. 2002.

[28] R. Bonneau, Learning biological networks: From modules to dynamics, 2008.

[29] A. Fadda, A. C. Fierro, K. Lemmens, P. Monsieurs, K. Engelen, and K. Marchal, “Inferring the

transcriptional network of Bacillus subtilis”, Molecular BioSystems, vol. 5, no. 12, pp. 1840–

1852, 2009.

[30] B. K. Cho, K. Zengler, Y. Qiu, et al., “The transcription unit architecture of the Escherichia coli

genome”, Nature Biotechnology, vol. 27, no. 11, pp. 1043–1049, Nov. 2009.

[31] I. Lozada-Chavez, S. C. Janga, and J. Collado-Vides, “Bacterial regulatory networks are extremely

flexible in evolution”, Nucleic Acids Research, vol. 34, no. 12, pp. 3434–3445, Jul. 2006.

[32] M. W. Covert, C. H. Schilling, and B. Palsson, “Regulation of Gene Expression in Flux Balance

Models of Metabolism”, Journal of Theoretical Biology, vol. 213, no. 1, pp. 73–88, Nov. 2001.

[33] C. H. Yeang and M. Vingron, “A joint model of regulatory and metabolic networks”, BMC Bioin-

formatics, vol. 7, Jul. 2006.

[34] J. J. Tyson and B. Novák, “Functional Motifs in Biochemical Reaction Networks”, Annual Review

of Physical Chemistry, vol. 61, no. 1, pp. 219–240, Mar. 2010.

[35] T. M. Ramseier, S. Bledig, V. Michotey, R. Feghali, and M. H. Saier, “The global regulatory protein

FruR modulates the direction of carbon flow in Escherichia coli”, Molecular Microbiology, vol. 16,

no. 6, pp. 1157–1169, 1995.

[36] D. Machado, M. J. Herrgård, and I. Rocha, “Modeling the Contribution of Allosteric Regulation

for Flux Control in the Central Carbon Metabolism of E. coli”, Frontiers in Bioengineering and

Biotechnology, vol. 3, p. 154, Oct. 2015.

[37] L. Gerosa and U. Sauer, Regulation and control of metabolic fluxes in microbes, Aug. 2011.

[38] K. Kochanowski, U. Sauer, and V. Chubukov, Somewhat in control-the role of transcription in

regulating microbial metabolic fluxes, Dec. 2013.

[39] P. Nicolas, U. Mäder, E. Dervyn, et al., “Condition-dependent transcriptome reveals high-level reg-

ulatory architecture in Bacillus subtilis.”, Science (New York, N.Y.), vol. 335, no. 6072, pp. 1103–

6, Mar. 2012.

147

BIBLIOGRAPHY

[40] J. M. Buescher, W. Liebermeister, M. Jules, et al., “Global network reorganization during dy-

namic adaptations of Bacillus subtilis metabolism.”, Science (New York, N.Y.), vol. 335, no. 6072,

pp. 1099–103, Mar. 2012.

[41] Y. K. Wang, D. G. Hurley, S. Schnell, C. G. Print, and E. J. Crampin, “Integration of Steady-State

and Temporal Gene Expression Data for the Inference of Gene Regulatory Networks”, PLoS ONE,

vol. 8, no. 8, S. D. Peddada, Ed., e72103, Aug. 2013.

[42] T. T. Perkins, R. A. Kingsley, M. C. Fookes, et al., “A strand-specific RNA-seq analysis of the

transcriptome of the typhoid bacillus Salmonella typhi”, PLoS Genetics, 2009.

[43] K. C. Kao, Y. L. Yang, R. Boscolo, C. Sabatti, V. Roychowdhury, and J. C. Liao, “Transcriptome-

based determination of multiple transcription regulator activities in Escherichia coli by using net-

work component analysis”, Proceedings of the National Academy of Sciences of the United States

of America, vol. 101, no. 2, pp. 641–646, Jan. 2004.

[44] O. J. Shaw, C. Harwood, L. J. Steggles, and A. Wipat, “SARGE: A tool for creation of putative

genetic networks”, Bioinformatics, vol. 20, no. 18, pp. 3638–3640, Dec. 2004.

[45] W. A. Schmitt, R. M. Raab, and G. Stephanopoulos, “Elucidation of gene interaction networks

through time-lagged correlation analysis of transcriptional data”, Genome Research, vol. 14, no. 8,

pp. 1654–1663, Aug. 2004.

[46] X. Fang, A. Sastry, N. Mih, et al., “Global transcriptional regulatory network for Escherichia coli

robustly connects gene expression to transcription factor activities.”, Proceedings of the National

Academy of Sciences of the United States of America, vol. 114, no. 38, pp. 10 286–10 291, Sep.

2017.

[47] S. Turkarslan, E. J. R. Peterson, T. R. Rustad, et al., “A comprehensive map of genome-wide gene

regulation in Mycobacterium tuberculosis”, Scientific Data, vol. 2, p. 150 010, Mar. 2015.

[48] P. O. Brown and D. Botstein, “Exploring the new world of the genome with dna microarrays”,

Nature Genetics, vol. 21, no. 1S, p. 37, 1999.

[49] M. Eisenstein, Microarrays: Quality control, 2006.

[50] R. A. Young, “Biomedical Discovery with DNA Arrays”, Cell, vol. 102, no. 1, pp. 9–15, Jul. 2000.

[51] R. Edgar, Challenge of choosing right level of microarray detail [2], 2006.

[52] L. D. Poulsen and J. Vinther, “RNA-Seq for Bacterial Gene Expression”, Current Protocols in Nu-

cleic Acid Chemistry, 2018.

[53] K. James, S. J. Cockell, and N. Zenkin, “Deep sequencing approaches for the analysis of prokary-

otic transcriptional boundaries and dynamics”, Methods, vol. 120, pp. 76–84, May 2017.

[54] A. Conesa, P. Madrigal, S. Tarazona, et al., “A survey of best practices for RNA-seq data analysis”,

Genome Biology, vol. 17, no. 1, p. 13, Dec. 2016.

148

BIBLIOGRAPHY

[55] J. P. Creecy and T. Conway, Quantitative bacterial transcriptomics with RNA-seq, 2015.

[56] Z. Wang, M. Gerstein, and M. Snyder, RNA-Seq: A revolutionary tool for transcriptomics, 2009.

[57] B. Ren, F. Robert, J. J. Wyrick, et al., “Genome-wide location and function of DNA binding pro-

teins.”, Science (New York, N.Y.), vol. 290, no. 5500, pp. 2306–9, Dec. 2000.

[58] V. R. Iyer, C. E. Horak, C. S. Scafe, D. Botstein, M. Snyder, and P. O. Brown, “Genomic binding sites

of the yeast cell-cycle transcription factors SBF and MBF”, Nature, vol. 409, no. 6819, pp. 533–

538, Jan. 2001.

[59] T. H. Kim and B. Ren, “Genome-Wide Analysis of Protein-DNA Interactions”, Annual Review of

Genomics and Human Genetics, 2006.

[60] J. Galagan, A. Lyubetskaya, and A. Gomes, “ChIP-Seq and the Complexity of Bacterial Transcrip-

tional Regulation”, in Springer, Berlin, Heidelberg, 2012, pp. 43–68.

[61] P. J. Park, ChIP-seq: Advantages and challenges of a maturing technology, Oct. 2009.

[62] C. Evans, J. Hardin, and D. M. Stoebel, “Selecting between-sample RNA-Seq normalization meth-

ods from the perspective of their assumptions”, Briefings in bioinformatics, vol. 19, no. 5, pp. 776–

792, Sep. 2018.

[63] E. R. Mardis, The impact of next-generation sequencing technology on genetics, Mar. 2008.

[64] A. Brazma, P. Hingamp, J. Quackenbush, et al., “Minimum information about a microarray exper-

iment (MIAME)—toward standards for microarray data”, Nature Genetics, vol. 29, no. 4, pp. 365–

371, Dec. 2001.

[65] T. Barrett, S. E. Wilhite, P. Ledoux, et al., “NCBI GEO: archive for functional genomics data sets—

update”, Nucleic Acids Research, vol. 41, no. D1, pp. D991–D995, Nov. 2012.

[66] N. Kolesnikov, E. Hastings, M. Keays, et al., “ArrayExpress update—simplifying data submissions”,

Nucleic Acids Research, vol. 43, no. D1, pp. D1113–D1116, Jan. 2015.

[67] A. Santos-Zavaleta, M. Sánchez-Pérez, H. Salgado, et al., “A unified resource for transcriptional

regulation in Escherichia coli K-12 incorporating high-throughput-generated binding data into Reg-

ulonDB version 10.0”, BMC Biology, vol. 16, no. 1, p. 91, Dec. 2018.

[68] I. M. Keseler, A. Mackie, A. Santos-Zavaleta, et al., “The EcoCyc database: reflecting new knowl-

edge about <i>Escherichia coli</i> K-12”, Nucleic Acids Research, vol. 45, no. D1, pp. D543–

D550, Jan. 2017.

[69] N. Sierro, Y. Makita, M. de Hoon, and K. Nakai, “DBTBS: a database of transcriptional regula-

tion in Bacillus subtilis containing upstream intergenic conservation information”, Nucleic Acids

Research, vol. 36, no. suppl_1, pp. D93–D96, Jan. 2008.

149

BIBLIOGRAPHY

[70] P.-E. Jacques, A. L. Gervais, M. Cantin, et al., “MtbRegList, a database dedicated to the analy-

sis of transcriptional regulation in Mycobacterium tuberculosis”, Bioinformatics, vol. 21, no. 10,

pp. 2563–2565, May 2005.

[71] M. T. D. Parise, D. Parise, R. B. Kato, et al., “CoryneRegNet 7, the reference database and analysis

platform for corynebacterial gene regulatory networks”, Scientific Data 2020 7:1, vol. 7, no. 1,

pp. 1–9, May 2020.

[72] J. Wu, F. Zhao, S. Wang, et al., “cTFbase: a database for comparative genomics of transcription

factors in cyanobacteria”, BMC Genomics, vol. 8, no. 1, p. 104, Apr. 2007.

[73] S. Kılıç, D. M. Sagitova, S. Wolfish, et al., “From data repositories to submission portals: rethinking

the role of domain-specific databases in CollecTF”, Database, vol. 2016, baw055, Apr. 2016.

[74] P. S. Novichkov, A. E. Kazakov, D. A. Ravcheev, et al., “RegPrecise 3.0 – A resource for genome-

scale exploration of transcriptional regulation in bacteria”, BMC Genomics, vol. 14, no. 1, p. 745,

Nov. 2013.

[75] D. Eckweiler, C.-A. Dudek, J. Hartlich, D. Brötje, and D. Jahn, “PRODORIC2: the bacterial gene

regulation database in 2018”, Nucleic Acids Research, vol. 46, no. D1, pp. D320–D326, Jan.

2018.

[76] J. M. Escorcia-Rodríguez, A. Tauch, and J. A. Freyre-González, “Abasy Atlas v2.2: The most com-

prehensive and up-to-date inventory of meta-curated, historical, bacterial regulatory networks,

their completeness and system-level characterization”, Computational and Structural Biotechnol-

ogy Journal, vol. 18, pp. 1228–1237, Jan. 2020.

[77] M. Pachkov, I. Erb, N. Molina, and E. van Nimwegen, “SwissRegulon: a database of genome-wide

annotations of regulatory sites”, Nucleic Acids Research, vol. 35, no. Database, pp. D127–D131,

Jan. 2007.

[78] S. Okuda and A. C. Yoshizawa, “ODB: a database for operon organizations, 2011 update”, Nucleic

Acids Research, vol. 39, no. Database, pp. D552–D555, Jan. 2011.

[79] A. Sebastian and B. Contreras-Moreira, “footprintDB: a database of transcription factors with

annotated cis elements and binding interfaces”, Bioinformatics, vol. 30, no. 2, pp. 258–265,

Jan. 2014.

[80] D. Szklarczyk, A. L. Gable, D. Lyon, et al., “STRING v11: Protein-protein association networks

with increased coverage, supporting functional discovery in genome-wide experimental datasets”,

Nucleic Acids Research, vol. 47, no. D1, pp. D607–D613, Jan. 2019.

[81] M. Kanehisa, M. Furumichi, M. Tanabe, Y. Sato, and K. Morishima, “KEGG: new perspectives on

genomes, pathways, diseases and drugs”, Nucleic Acids Research, vol. 45, no. D1, pp. D353–

D361, Jan. 2017.

150

BIBLIOGRAPHY

[82] R. Caspi, T. Altman, R. Billington, et al., “The MetaCyc database of metabolic pathways and

enzymes and the BioCyc collection of Pathway/Genome Databases”, Nucleic Acids Research,

vol. 42, no. D1, pp. D459–D471, Jan. 2014.

[83] M. Moretto, P. Sonego, N. Dierckxsens, et al., “COLOMBOS v3.0: leveraging gene expression

compendia for cross-species analyses”, Nucleic Acids Research, vol. 44, no. D1, pp. D620–

D623, Jan. 2016.

[84] J. J. Faith, M. E. Driscoll, V. A. Fusaro, et al., “Many Microbe Microarrays Database: uniformly nor-

malized Affymetrix compendia with structured experimental metadata”, Nucleic Acids Research,

vol. 36, no. Database, pp. D866–D870, Dec. 2007.

[85] G. Sherlock, “The Stanford Microarray Database”, Nucleic Acids Research, vol. 29, no. 1, pp. 152–

155, Jan. 2001.

[86] R. Leinonen, H. Sugawara, and M. Shumway, “The sequence read archive”, Nucleic Acids Re-

search, vol. 39, no. SUPPL. 1, Jan. 2011.

[87] Y. Gao, J. T. Yurkovich, S. W. Seo, et al., “Systematic discovery of uncharacterized transcription

factors in Escherichia coli K-12 MG1655”, Nucleic Acids Research, vol. 46, no. 20, pp. 10 682–

10 696, Aug. 2018.

[88] D. A. Rodionov, P. S. Novichkov, E. D. Stavrovskaya, et al., “Comparative genomic reconstruc-

tion of transcriptional networks controlling central metabolism in the Shewanella genus”, BMC

Genomics, 2011.

[89] A. de Jong, M. E. Hansen, O. P. Kuipers, M. Kilstrup, and J. Kok, “The Transcriptional and Gene

Regulatory Network of Lactococcus lactis MG1363 during Growth in Milk”, PLoS ONE, vol. 8,

no. 1, Jan. 2013.

[90] D. A. Rodionov, I. A. Rodionova, X. Li, et al., “Transcriptional regulation of the carbohydrate uti-

lization network in Thermotoga maritima”, Frontiers in Microbiology, vol. 4, no. AUG, 2013.

[91] H. Barzantny, J. Schröder, J. Strotmeier, E. Fredrich, I. Brune, and A. Tauch, “The transcriptional

regulatory network of Corynebacterium jeikeium K411 and its interaction with metabolic routes

contributing to human body odor formation”, Journal of Biotechnology, vol. 159, no. 3, pp. 235–

248, Jun. 2012.

[92] K. Brinkrolf, I. Brune, and A. Tauch, “The transcriptional regulatory network of the amino acid

producer Corynebacterium glutamicum”, Journal of Biotechnology, vol. 129, no. 2, pp. 191–211,

Apr. 2007.

[93] D. A. Ravcheev, A. A. Best, N. V. Sernova, M. D. Kazanov, P. S. Novichkov, and D. A. Rodionov,

“Genomic reconstruction of transcriptional regulatory networks in lactic acid bacteria”, BMC Ge-

nomics, vol. 14, no. 1, p. 94, Feb. 2013.

151

BIBLIOGRAPHY

[94] J. J. Faith, B. Hayete, J. T. Thaden, et al., “Large-scale mapping and validation of Escherichia coli

transcriptional regulation from a compendium of expression profiles”, PLoS Biology, 2007.

[95] R. Bonneau, M. T. Facciotti, D. J. Reiss, et al., “A Predictive Model for Transcriptional Control of

Physiology in a Free Living Cell”, Cell, vol. 131, no. 7, pp. 1354–1365, Dec. 2007.

[96] J. K. Fredrickson, M. F. Romine, A. S. Beliaev, et al., Towards environmental systems biology of

Shewanella, Aug. 2008.

[97] E. Galán-Vásquez, B. Luna, and A. Martínez-Antonio, “The Regulatory Network of Pseudomonas

aeruginosa”, Microbial Informatics and Experimentation, vol. 1, no. 1, p. 3, 2011.

[98] T. UniProt Consortium, “UniProt: the universal protein knowledgebase”, Nucleic Acids Research,

vol. 46, no. 5, pp. 2699–2699, Mar. 2018.

[99] N. R. NCBI Resource Coordinators, “Database resources of the National Center for Biotechnology

Information.”, Nucleic acids research, vol. 44, no. D1, pp. 7–19, Jan. 2016.

[100] D. A. Benson, M. Cavanaugh, K. Clark, et al., “GenBank”, Nucleic Acids Research, vol. 41, no. D1,

pp. D36–D42, Nov. 2012.

[101] T. Tatusova, S. Ciufo, B. Fedorov, K. O’Neill, and I. Tolstoy, “RefSeq microbial genomes database:

New representation and annotation strategy”, Nucleic Acids Research, vol. 42, no. D1, pp. 553–

559, Jan. 2014.

[102] C. L. Schoch, S. Ciufo, M. Domrachev, et al., “NCBI Taxonomy: a comprehensive update on cura-

tion, resources and tools”, Database : the journal of biological databases and curation, vol. 2020,

2020.

[103] G. Zheng and T. Huang, “The reconstruction and analysis of gene regulatory networks”, in Meth-

ods in Molecular Biology, vol. 1754, Humana Press Inc., 2018, pp. 137–154.

[104] D. Thompson, A. Regev, and S. Roy, “Comparative Analysis of Gene Regulatory Networks: From

Network Reconstruction to Evolution”, Annual Review of Cell and Developmental Biology, vol. 31,

no. 1, pp. 399–428, Nov. 2015.

[105] R. Bonneau, D. J. Reiss, P. Shannon, et al., “The inferelator: An algorithn for learning parsimonious

regulatory networks from systems-biology data sets de novo”, Genome Biology, 2006.

[106] J. P. Faria, R. Overbeek, R. C. Taylor, et al., “Reconstruction of the Regulatory Network for Bacillus

subtilis and Reconciliation with Gene Expression Data”, Frontiers in Microbiology, vol. 7, p. 275,

Mar. 2016.

[107] G. Karlebach and R. Shamir, “Modelling and analysis of gene regulatory networks”, Nature Re-

views Molecular Cell Biology, vol. 9, no. 10, pp. 770–780, Oct. 2008.

[108] D. A. Rodionov, “Comparative Genomic Reconstruction of Transcriptional Regulatory Networks in

Bacteria”, 2007.

152

BIBLIOGRAPHY

[109] P. S. Novichkov, T. S. Brettin, E. S. Novichkova, et al., “RegPrecise web services interface: pro-

grammatic access to the transcriptional regulatory interactions in bacteria reconstructed by com-

parative genomics”, Nucleic Acids Research, vol. 40, no. W1, W604–W608, Jul. 2012.

[110] M. S. Gelfand, Evolution of transcriptional regulatory networks in microbial genomes, Jun. 2006.

[111] M. Madan Babu, S. A. Teichmann, and L. Aravind, “Evolutionary Dynamics of Prokaryotic Tran-

scriptional Regulatory Networks”, Journal of Molecular Biology, vol. 358, no. 2, pp. 614–633,

Apr. 2006.

[112] M. Tompa, N. Li, T. L. Bailey, et al., Assessing computational tools for the discovery of transcription

factor binding sites, 2005.

[113] W. B. L. Alkema, B. Lenhard, and W. W. Wasserman, “Regulog analysis: Detection of conserved

regulatory networks across bacteria: Application to Staphylococcus aureus”, Genome Research,

2004.

[114] P. S. Novichkov, D. A. Rodionov, E. D. Stavrovskaya, et al., “RegPredict: An integrated system for

regulon inference in prokaryotes by comparative genomics approach”, Nucleic Acids Research,

2010.

[115] R. Nicolle, F. Radvanyi, and M. Elati, “COREGNET: reconstruction and integrated analysis of co-

regulatory networks”, Bioinformatics, vol. 31, no. 18, pp. 3066–3068, Sep. 2015.

[116] G. Karlebach and R. Shamir, “Constructing logical models of gene regulatory networks by inte-

grating transcription factor-DNA interactions with expression data: An entropy-based approach”,

Journal of Computational Biology, vol. 19, no. 1, pp. 30–41, Jan. 2012.

[117] V. A. Huynh-Thu, A. Irrthum, L. Wehenkel, and P. Geurts, “Inferring regulatory networks from

expression data using tree-based methods”, PLoS ONE, 2010.

[118] I. Gat-Viks and R. Shamir, “Refinement and expansion of signaling pathways: The osmotic re-

sponse network in yeast”, Genome Research, vol. 17, no. 3, pp. 358–367, Mar. 2007.

[119] I. Rocha, J. Förster, and J. Nielsen, “Design and Application of Genome-Scale Reconstructed

Metabolic Models”, Methods in Molecular Biology, vol. 416: Microbial Gene Essentiality, vol. 416,

pp. 409–431, 2007.

[120] A. M. Feist, M. J. Herrgård, I. Thiele, J. L. Reed, and B. Palsson, “Reconstruction of biochemical

networks in microorganisms”, Nature Reviews Microbiology, vol. 7, no. 2, pp. 129–143, 2009.

[121] M. Hucka, A. Finney, H. M. Sauro, et al., “The systems biology markup language (SBML): a

medium for representation and exchange of biochemical network models.”, Bioinformatics (Ox-

ford, England), vol. 19, no. 4, pp. 524–31, Mar. 2003.

[122] O. Dias, M. Rocha, E. C. Ferreira, and I. Rocha, “Reconstructing genome-scale metabolic models

with merlin”, Nucleic Acids Research, vol. 43, no. 8, pp. 3899–3910, Apr. 2015.

153

BIBLIOGRAPHY

[123] C. S. Henry, M. DeJongh, A. A. Best, P. M. Frybarger, B. Linsay, and R. L. Stevens, “High-

throughput generation, optimization and analysis of genome-scale metabolic models.”, Nature

biotechnology, vol. 28, no. 9, pp. 977–82, Sep. 2010.

[124] R. Agren, L. Liu, S. Shoaie, W. Vongsangnak, I. Nookaew, and J. Nielsen, “The RAVEN Toolbox

and Its Use for Generating a Genome-scale Metabolic Model for Penicillium chrysogenum”, PLoS

Computational Biology, vol. 9, no. 3, C. D. Maranas, Ed., e1002980, Mar. 2013.

[125] J. P. Faria, M. Rocha, I. Rocha, and C. S. Henry, “Methods for automated genome-scale metabolic

model reconstruction”, Biochemical Society Transactions, vol. 46, no. 4, pp. 931–936, Aug. 2018.

[126] J. D. Orth, I. Thiele, and B. O. Palsson, “What is flux balance analysis?”, Nature Publishing Group,

vol. 28, no. 3, pp. 245–248, 2010.

[127] N. E. Lewis, K. K. Hixson, T. M. Conrad, et al., “Omic data from evolved E. coli are consistent with

computed optimal growth from genome-scale models.”, Molecular systems biology, vol. 6, no. 1,

p. 390, Jul. 2010.

[128] S. Gudmundsson and I. Thiele, “Computationally efficient flux variability analysis”, BMC Bioinfor-

matics, vol. 11, no. 1, p. 489, Dec. 2010.

[129] L. Heirendt, S. Arreckx, T. Pfau, et al., “Creation and analysis of biochemical constraint-based

models using the COBRA Toolbox v.3.0”, Nature Protocols, vol. 14, no. 3, pp. 639–702, Mar.

2019.

[130] A. Ebrahim, J. A. Lerman, B. O. Palsson, and D. R. Hyduke, “COBRApy: COnstraints-Based Re-

construction and Analysis for Python”, BMC Systems Biology, vol. 7, no. 1, p. 74, Aug. 2013.

[131] P. Vilaça, I. Rocha, and M. Rocha, “A computational tool for the simulation and optimization of

microbial strains accounting integrated metabolic/regulatory information”, Biosystems, vol. 103,

no. 3, pp. 435–441, Mar. 2011.

[132] J. D. Orth, T. M. Conrad, J. Na, et al., “A comprehensive genome�scale reconstruction of Es-

cherichia coli metabolism—2011”, Molecular Systems Biology, vol. 7, no. 1, p. 535, Jan. 2011.

[133] J. A. Lerman, D. R. Hyduke, H. Latif, et al., “In silico method for modelling metabolism and gene

product expression at genome scale”, Nature Communications, vol. 3, no. 1, p. 929, Jan. 2012.

[134] A. S. Blazier and J. A. Papin, “Integration of expression data in genome-scale metabolic network

reconstructions”, Frontiers in Physiology, vol. 3, p. 299, Aug. 2012.

[135] J. Kim and J. L. Reed, “Refining metabolic models and accounting for regulatory effects”, Current

Opinion in Biotechnology, vol. 29, pp. 34–38, Oct. 2014.

[136] S. Imam, S. Schäuble, A. N. Brooks, N. S. Baliga, and N. D. Price, “Data-driven integration of

genome-scale regulatory andmetabolic networkmodels.”, Frontiers in microbiology, vol. 6, p. 409,

2015.

154

BIBLIOGRAPHY

[137] E. J. O’Brien and B. O. Palsson, “Computing the functional proteome: recent progress and future

prospects for genome-scale models”, Current Opinion in Biotechnology, vol. 34, pp. 125–134,

Aug. 2015.

[138] E. J. O’Brien, J. Utrilla, and B. O. Palsson, “Quantification and Classification of E. coli Proteome

Utilization and Unused Protein Costs across Environments”, PLOS Computational Biology, vol. 12,

no. 6, C. D. Maranas, Ed., e1004998, Jun. 2016.

[139] S. Opdam, A. Richelle, B. Kellman, S. Li, D. C. Zielinski, and N. E. Lewis, “A Systematic Evaluation

of Methods for Tailoring Genome-Scale Metabolic Models”, Cell Systems, vol. 4, no. 3, pp. 318–

329, Mar. 2017.

[140] T. Hao, D. Wu, L. Zhao, Q. Wang, E. Wang, and J. Sun, The genome-scale integrated networks in

microorganisms, Feb. 2018.

[141] C. J. Lloyd, A. Ebrahim, L. Yang, et al., “COBRAme: A computational framework for genome-scale

models of metabolism and gene expression”, PLOS Computational Biology, vol. 14, no. 7, A. E.

Darling, Ed., e1006302, Jul. 2018.

[142] E. Brunk, R. L. Chang, J. Xia, et al., “Characterizing posttranslational modifications in prokaryotic

metabolism using a multiscale workflow”, Proceedings of the National Academy of Sciences,

vol. 115, no. 43, pp. 11 096–11 101, Oct. 2018.

[143] E. Gonçalves, M. Sciacovelli, A. S. Costa, et al., “Post-translational regulation of metabolism in

fumarate hydratase deficient cancer cells”, Metabolic Engineering, vol. 45, pp. 149–157, Jan.

2018.

[144] M. W. Covert, E. M. Knight, J. L. Reed, M. J. Herrgard, and B. O. Palsson, “Integrating high-

throughput and computational data elucidates bacterial networks”, Nature, vol. 429, no. 6987,

pp. 92–96, May 2004.

[145] T. Shlomi, Y. Eisenberg, R. Sharan, and E. Ruppin, “A genome-scale computational study of the

interplay between transcriptional regulation and metabolism.”, Molecular systems biology, vol. 3,

p. 101, Apr. 2007.

[146] S. Chandrasekaran and N. D. Price, “Probabilistic integrative modeling of genome-scale metabolic

and regulatory networks in Escherichia coli and Mycobacterium tuberculosis.”, Proceedings of the

National Academy of Sciences of the United States of America, vol. 107, no. 41, pp. 17 845–50,

Oct. 2010.

[147] M. J. Herrgård, B.-S. Lee, V. Portnoy, and B. Ø. Palsson, “Integrated analysis of regulatory and

metabolic networks reveals novel regulatory mechanisms in Saccharomyces cerevisiae.”, Genome

research, vol. 16, no. 5, pp. 627–35, May 2006.

[148] D. T. Banos, P. Trébulle, and M. Elati, “Integrating transcriptional activity in genome-scale models

of metabolism”, BMC Systems Biology, vol. 11, no. S7, p. 134, Dec. 2017.

155

BIBLIOGRAPHY

[149] E. Motamedian, M. Mohammadi, S. A. Shojaosadati, and M. Heydari, “TRFBA: an algorithm to

integrate genome-scale metabolic and transcriptional regulatory networks with incorporation of

expression data”, Bioinformatics, vol. 33, no. 7, btw772, Jan. 2017.

[150] Z. Wang, S. A. Danziger, B. D. Heavner, et al., “Combining inferred regulatory and reconstructed

metabolic networks enhances phenotype prediction in yeast”, PLOS Computational Biology, vol. 13,

no. 5, J. Nielsen, Ed., e1005489, May 2017.

[151] L. Marmiesse, R. Peyraud, and L. Cottret, “FlexFlux: combining metabolic flux and regulatory

network analyses”, BMC Systems Biology, vol. 9, no. 1, p. 93, Dec. 2015.

[152] P. A. Jensen, K. A. Lutz, and J. A. Papin, “TIGER: Toolbox for integrating genome-scale metabolic

models, expression data, and transcriptional regulatory networks”, BMC Systems Biology, vol. 5,

no. 1, p. 147, Sep. 2011.

[153] M. L. Jenior, T. J. Moutinho, B. V. Dougherty, and J. A. Papin, “Transcriptome-guided parsimo-

nious flux analysis improves predictions with metabolic networks in complex environments”, PLoS

Computational Biology, vol. 16, no. 4, e1007099, Apr. 2020.

[154] C. Angione and P. Lió, “Predictive analytics of environmental adaptability in multi-omic network

models”, Scientific Reports, vol. 5, Oct. 2015.

[155] C. Angione, M. Conway, and P. Lió, “Multiplex methods provide effective integration of multi-omic

data in genome-scale models”, BMC Bioinformatics, vol. 17, no. S4, p. 83, Feb. 2016.

[156] N. Töpfer, S. Jozefczuk, and Z. Nikoloski, “Integration of time-resolved transcriptomics data with

flux-based methods reveals stress-induced metabolic adaptation in Escherichia coli”, BMC Sys-

tems Biology, vol. 6, Nov. 2012.

[157] S. B. Collins, E. Reznik, and D. Segrè, “Temporal Expression-based Analysis of Metabolism”, PLoS

Computational Biology, vol. 8, no. 11, Nov. 2012.

[158] A. Navid and E. Almaas, “Genome-level transcription data of Yersinia pestis analyzed with a New

metabolic constraint-based approach”, BMC Systems Biology, vol. 6, Dec. 2012.

[159] X. Fang, A. Wallqvist, and J. Reifman, “Modeling Phenotypic Metabolic Adaptations of Mycobac-

terium tuberculosis H37Rv under Hypoxia”, PLoS Computational Biology, vol. 8, no. 9, Sep. 2012.

[160] R. J. P. van Berlo, D. de Ridder, J.-M. Daran, P. A. S. Daran-Lapujade, B. Teusink, and M. J. T. Rein-

ders, “Predicting Metabolic Fluxes Using Gene Expression Differences As Constraints”, IEEE/ACM

Transactions on Computational Biology and Bioinformatics, vol. 8, no. 1, pp. 206–216, Jan. 2011.

[161] D. Lee, K. Smallbone, W. B. Dunn, et al., “Improving metabolic flux predictions using absolute

gene expression data”, BMC Systems Biology, vol. 6, no. 1, p. 73, Jun. 2012.

[162] P. A. Jensen and J. A. Papin, “Functional integration of a metabolic network model and expression

data without arbitrary thresholding”, Bioinformatics, vol. 27, no. 4, pp. 541–547, Feb. 2011.

156

BIBLIOGRAPHY

[163] M. Åkesson, J. Förster, and J. Nielsen, “Integration of gene expression data into genome-scale

metabolic models”, Metabolic Engineering, vol. 6, no. 4, pp. 285–293, Oct. 2004.

[164] L. Jerby, T. Shlomi, and E. Ruppin, “Computational reconstruction of tissue-specific metabolic

models: Application to human liver metabolism”, Molecular Systems Biology, vol. 6, 2010.

[165] T. Shlomi, M. N. Cabili, M. J. Herrgård, B. Palsson, and E. Ruppin, Network-based prediction of

human tissue-specific metabolism, Sep. 2008.

[166] S. A. Becker and B. O. Palsson, “Context-specific metabolic networks are consistent with experi-

ments”, PLoS Computational Biology, vol. 4, no. 5, May 2008.

[167] H. Zur, E. Ruppin, and T. Shlomi, “iMAT: An integrative metabolic analysis tool”, Bioinformatics,

vol. 26, no. 24, pp. 3140–3142, Dec. 2010.

[168] R. Agren, S. Bordel, A. Mardinoglu, N. Pornputtapong, I. Nookaew, and J. Nielsen, “Reconstruction

of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using

INIT”, PLoS Computational Biology, vol. 8, no. 5, May 2012.

[169] Y. Wang, J. A. Eddy, and N. D. Price, “Reconstruction of genome-scale metabolic models for 126

human tissues using mCADRE”, BMC Systems Biology, vol. 6, Dec. 2012.

[170] B. J. Schmidt, A. Ebrahim, T. O. Metz, J. N. Adkins, B. Ø. Palsson, and D. R. Hyduke, “GIM3E:

condition-specific models of cellular metabolism developed from metabolomics and expression

data”, Bioinformatics, vol. 29, no. 22, pp. 2900–2908, Nov. 2013.

[171] S. Rossell, M. A. Huynen, and R. A. Notebaart, “Inferring Metabolic States in Uncharacterized

Environments Using Gene-Expression Measurements”, PLoS Computational Biology, vol. 9, no. 3,

2013.

[172] A. Schultz and A. A. Qutub, “Reconstruction of Tissue-Specific Metabolic Networks Using CORDA”,

PLoS Computational Biology, vol. 12, no. 3, Mar. 2016.

[173] M. W. Covert and B. O. Palsson, “Constraints-based models: Regulation of Gene Expression Re-

duces the Steady-state Solution Space”, Journal of Theoretical Biology, vol. 221, no. 3, pp. 309–

325, Apr. 2003.

[174] M. W. Covert and B. Ø. Palsson, “Transcriptional regulation in constraints-based metabolic models

of Escherichia coli.”, The Journal of biological chemistry, vol. 277, no. 31, pp. 28 058–64, Aug.

2002.

[175] C. Chaouiya, D. Bérenguier, S. M. Keating, et al., “SBML qualitative models: a model representa-

tion format and infrastructure to foster interactions between qualitative modelling formalisms and

tools”, BMC Systems Biology, vol. 7, no. 1, p. 135, Dec. 2013.

[176] S. Ma, K. J. Minch, T. R. Rustad, et al., “Integrated Modeling of Gene Regulatory and Metabolic Net-

works in Mycobacterium tuberculosis”, PLOS Computational Biology, vol. 11, no. 11, e1004543,

Nov. 2015.

157

BIBLIOGRAPHY

[177] A. N. Brooks, D. J. Reiss, A. Allard, et al., “A system�level model for the microbial regulatory

genome”, Molecular Systems Biology, vol. 10, no. 7, p. 740, Jul. 2014.

[178] M. C. Teixeira, P. T. Monteiro, M. Palma, et al., “YEASTRACT: An upgraded database for the anal-

ysis of transcription regulatory networks in Saccharomyces cerevisiae”, Nucleic Acids Research,

vol. 46, no. D1, pp. D348–D353, Jan. 2018.

[179] R. Mahadevan, J. S. Edwards, and F. J. Doyle, “Dynamic Flux Balance Analysis of diauxic growth

in Escherichia coli”, Biophysical Journal, vol. 83, no. 3, pp. 1331–1340, 2002.

[180] C. Colijn, A. Brandes, J. Zucker, et al., “Interpreting Expression Data with Metabolic Flux Models:

Predicting Mycobacterium tuberculosis Mycolic Acid Production”, PLoS Computational Biology,

vol. 5, no. 8, J. A. Papin, Ed., e1000489, Aug. 2009.

[181] R. Mahadevan and C. H. Schilling, “The effects of alternate optimal solutions in constraint-based

genome-scale metabolic models”, Metabolic Engineering, vol. 5, no. 4, pp. 264–276, 2003.

[182] S. Schuster, D. A. Fell, and T. Dandekar, “A general definition of metabolic pathways useful for sys-

tematic organization and analysis of complex metabolic networks”, Nature Biotechnology, vol. 18,

no. 3, pp. 326–332, 2000.

[183] R. Vivek-Ananth and A. Samal, “Advances in the integration of transcriptional regulatory informa-

tion into genome-scale metabolic models”, Biosystems, vol. 147, pp. 1–10, Sep. 2016.

[184] J. Kim and J. L. Reed, “No Title”, vol. 4, no. 1, p. 53, Apr. 2010.

[185] F. Shen, R. Sun, J. Yao, et al., “OptRAM: In-silico strain design via integrative regulatory-metabolic

network modeling”, PLOS Computational Biology, vol. 15, no. 3, C. A. Ouzounis, Ed., e1006835,

Mar. 2019.

[186] J. Monk, J. Nogales, and B. O. Palsson, “Optimizing genome-scale network reconstructions”,

Nature Biotechnology, vol. 32, no. 5, pp. 447–452, May 2014.

[187] S. Prigent, C. Frioux, S. M. Dittami, et al., “Meneco, a Topology-Based Gap-Filling Tool Applicable

to Degraded Genome-Wide Metabolic Networks”, PLOS Computational Biology, vol. 13, no. 1, C.

Kaleta, Ed., e1005276, Jan. 2017.

[188] V. Satish Kumar, M. S. Dasika, and C. D. Maranas, “Optimization based automated curation of

metabolic reconstructions”, BMC Bioinformatics, vol. 8, no. 1, p. 212, Jun. 2007.

[189] I. Thiele, N. Vlassis, and R. M. Fleming, “FASTGAPFILL: Efficient gap filling in metabolic networks”,

Bioinformatics, vol. 30, no. 17, pp. 2529–2531, Sep. 2014.

[190] Z. Hosseini and S. A. Marashi, “Discovering missing reactions of metabolic networks by using

gene co-expression data”, Scientific Reports, vol. 7, no. 1, pp. 1–12, Feb. 2017.

[191] J. L. Reed, T. R. Patel, K. H. Chen, et al., “Systems approach to refining genome annotation”,

Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 46,

pp. 17 480–17 484, Nov. 2006.

158

BIBLIOGRAPHY

[192] E. Vitkin and T. Shlomi, “MIRAGE: a functional genomics-based approach for metabolic network

model reconstruction and its application to cyanobacteria networks”, Genome biology, vol. 13,

no. 11, R111, Nov. 2012.

[193] Z. A. King, J. Lu, A. Dräger, et al., “BiGG Models: A platform for integrating, standardizing and

sharing genome-scale models”, Nucleic Acids Research, vol. 44, no. D1, pp. D515–D522, Jan.

2016.

[194] K. S. Makarova, A. Slesarev, Y. Wolf, et al., “Comparative genomics of the lactic acid bacteria.”,

Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 42,

pp. 15 611–15 616, 2006.

[195] A. Bolotin, B. Quinquis, P. Renault, et al., “Complete sequence and comparative genome analy-

sis of the dairy bacterium Streptococcus thermophilus.”, Nature biotechnology, vol. 22, no. 12,

pp. 1554–8, 2004.

[196] M. van de Guchte, S. Penaud, C. Grimaldi, et al., “The complete genome sequence of Lactobacil-

lus bulgaricus reveals extensive and ongoing reductive evolution.”, Proceedings of the National

Academy of Sciences of the United States of America, vol. 103, no. 24, pp. 9274–9, 2006.

[197] K. A. Pagel, V. Pejaver, G. N. Lin, et al., “When loss-of-function is loss of function: Assessing

mutational signatures and impact of loss-of-function genetic variants”, in Bioinformatics, vol. 33,

Oxford University Press, Jul. 2017, pp. i389–i398.

[198] M. Hucka, F. T. Bergmann, A. Dräger, et al., “The Systems Biology Markup Language (SBML):

Language Specification for Level 3 Version 2 Core”, Journal of integrative bioinformatics, vol. 15,

no. 1, Mar. 2018.

[199] J. Capela, D. Lagoa, R. Rodrigues, et al., “merlin, an improved framework for the reconstruction of

high-quality genome-scale metabolic models”, Nucleic Acids Research, vol. 50, no. 11, pp. 6052–

6066, Jun. 2022.

[200] T. Österlund, I. Nookaew, S. Bordel, and J. Nielsen, “Mapping condition-dependent regulation of

metabolism in yeast through genome-scale modeling”, BMC Systems Biology, vol. 7, no. 1, p. 36,

Apr. 2013.

[201] J. Hoskins, J. Alborn, J. Arnold, et al., “Genome of the bacterium Streptococcus pneumoniae

strain R6”, Journal of Bacteriology, vol. 183, no. 19, pp. 5709–5717, Oct. 2001.

[202] C. Goble and R. Stevens, “State of the nation in data integration for bioinformatics”, Journal of

Biomedical Informatics, vol. 41, no. 5, pp. 687–693, Oct. 2008.

[203] K. Dolinski and O. G. Troyanskaya, “Implications of Big Data for cell biology”, https://doi.org/10.1091/mbc.E13-

12-0756, vol. 26, no. 14, pp. 2575–2578, Oct. 2017.

[204] R. Kimball and M. Ross, The data warehouse toolkit : the complete guide to dimensional modeling,

2nd Edition. Wiley, 2002.

159

BIBLIOGRAPHY

[205] Z. E. Akkaoui, E. Zimányi, J.-N. Mazón, and J. Trujillo, “A Model-Driven Framework for ETL Process

Development”, Proceedings of the ACM 14th international workshop on Data Warehousing and

OLAP - DOLAP ’11, 2011.

[206] F. Holzschuher and R. Peinl, “Performance of Graph Query Languages Comparison of Cypher,

Gremlin and Native Access in Neo4j”, Proceedings of the Joint EDBT/ICDT 2013 Workshops on

- EDBT ’13, 2013.

[207] X. Fang, A. Sastry, N. Mih, et al., “Global transcriptional regulatory network for Escherichia coli

robustly connects gene expression to transcription factor activities”, Proceedings of the National

Academy of Sciences of the United States of America, vol. 114, no. 38, pp. 10 286–10 291, Sep.

2017.

[208] P. J. Cock, T. Antao, J. T. Chang, et al., “Biopython: freely available Python tools for computa-

tional molecular biology and bioinformatics”, Bioinformatics, vol. 25, no. 11, pp. 1422–1423,

Jun. 2009.

[209] E. W. Sayers, E. E. Bolton, J. R. Brister, et al., “Database resources of the national center for

biotechnology information”, Nucleic acids research, vol. 50, no. D1, pp. D20–D26, Jan. 2022.

[210] C. Lee and C. H. Huang, “LASAGNA: A novel algorithm for transcription factor binding site align-

ment”, BMC Bioinformatics, vol. 14, no. 1, pp. 1–13, Mar. 2013.

[211] N. Dedić and C. Stanier, “An evaluation of the challenges of multilingualism in data warehouse

development”, ICEIS 2016 - Proceedings of the 18th International Conference on Enterprise In-

formation Systems, vol. 1, pp. 196–206, 2016.

[212] I. A. Suvorova, Y. D. Korostelev, and M. S. Gelfand, “GntR Family of Bacterial Transcription Factors

and Their DNA Binding Motifs: Structure, Positioning and Co-Evolution”, PLOS ONE, vol. 10, no. 7,

e0132618, 2015.

[213] F. M. Camas, E. J. Alm, and J. F. Poyatos, “Local Gene Regulation Details a Recognition Code

within the LacI Transcriptional Factor Family”, PLOS Computational Biology, vol. 6, no. 11, e1000989,

Nov. 2010.

[214] A. L. Colclough, J. Scadden, and J. M. Blair, “TetR-family transcription factors in Gram-negative

bacteria: Conservation, variation and implications for efflux-mediated antimicrobial resistance”,

BMC Genomics, vol. 20, no. 1, pp. 1–12, Oct. 2019.

[215] B. Troxell and H. M. Hassan, “Transcriptional regulation by Ferric Uptake Regulator (Fur) in

pathogenic bacteria”, Frontiers in cellular and infection microbiology, vol. 3, no. OCT, 2013.

[216] N. L. Brown, J. V. Stoyanov, S. P. Kidd, and J. L. Hobman, “The MerR family of transcriptional

regulators”, FEMS Microbiology Reviews, vol. 27, no. 2-3, pp. 145–163, Jun. 2003.

[217] I. Rocha, P. Maia, P. Evangelista, et al., “OptFlux: an open-source software platform for in silico

metabolic engineering.”, BMC systems biology, vol. 4, no. 1, p. 45, 2010.

160

BIBLIOGRAPHY

[218] B. J. Sánchez, C. Zhang, A. Nilsson, P.-J. Lahtvee, E. J. Kerkhoven, and J. Nielsen, “Improving

the phenotype predictions of a yeast genome-scale metabolic model by incorporating enzymatic

constraints.”, Molecular systems biology, vol. 13, no. 8, p. 935, Aug. 2017.

[219] J. Kim and J. L. Reed, “OptORF: Optimal metabolic and regulatory perturbations for metabolic

engineering of microbial strains.”, BMC systems biology, vol. 4, no. 1, p. 53, Apr. 2010.

[220] J. G. Cardoso, K. Jensen, C. Lieven, et al., “Cameo: A Python Library for Computer AidedMetabolic

Engineering and Optimization of Cell Factories”, ACS Synthetic Biology, vol. 7, no. 4, pp. 1163–

1166, Apr. 2018.

[221] P. S. Bekiaris and S. Klamt, “Automatic construction of metabolic models with enzyme con-

straints”, BMC Bioinformatics, vol. 21, no. 1, pp. 1–13, Jan. 2020.

[222] A. Tonda, “Inspyred: Bio-inspired algorithms in Python”, Genetic Programming and Evolvable

Machines, vol. 21, no. 1-2, pp. 269–272, Jun. 2020.

[223] A. Benítez-Hidalgo, A. J. Nebro, J. García-Nieto, I. Oregi, and J. Del Ser, “jMetalPy: a Python Frame-

work for Multi-Objective Optimization with Metaheuristics”, Swarm and Evolutionary Computation,

vol. 51, Mar. 2019.

[224] J. D. Orth, R. M. T. Fleming, and B. Ø. Palsson, “ Reconstruction and Use of Microbial Metabolic

Networks: the Core Escherichia coli Metabolic Model as an Educational Guide ”, EcoSal Plus,

vol. 4, no. 1, Jan. 2010.

[225] J. L. Reed, T. D. Vo, C. H. Schilling, and B. O. Palsson, “An expanded genome-scale model of

Escherichia coli K-12 (iJR904 GSM/GPR).”, Genome biology, vol. 4, no. 9, pp. 1–12, Aug. 2003.

[226] N. Jamshidi and B. Palsson, “Investigating the metabolic capabilities of Mycobacterium tuberculo-

sis H37Rv using the in silico strain iNJ661 and proposing alternative drug targets”, BMC systems

biology, vol. 1, Jun. 2007.

[227] G. Balázsi, A. P. Heath, L. Shi, and M. L. Gennaro, “The temporal response of the Mycobacterium

tuberculosis gene regulatory network during growth arrest”, Molecular Systems Biology, vol. 4,

no. 1, p. 225, Nov. 2008.

[228] M. L. Mo, B. Palsson, and M. J. Herrgård, “Connecting extracellular metabolomic measurements

to intracellular flux states in yeast”, BMC Systems Biology, vol. 3, no. 1, pp. 1–17, Mar. 2009.

[229] M. J. Brauer, A. J. Saldanha, K. Dolinski, and D. Botstein, “Homeostatic adjustment and metabolic

remodeling in glucose-limited yeast cultures”,Molecular Biology of the Cell, vol. 16, no. 5, pp. 2503–

2517, May 2005.

This document was created with the (pdf/Xe/Lua)LATEX processor and the NOVAthesis template (v6.9.15) [1]. 12cc90221730b8ba41bb3b1f8b517acd

[1] J. M. Lourenço, The NOVAthesis LATEX Template User’s Manual, NOVA University Lisbon, 2021.

161

https://github.com/joaomlourenco/novathesis

I

Supplementary Material

I.1 Supplementary material 1

Supplementary material 1 – File with the year of publication, availability of a tool with a user-friendly

interface (namely a GUI without the requirement of coding skills), type of reaction constraint formulation,

as well as the organism used for proof of concept in the methods for integrating TRNs into GEMs. Available

at https://doi.org/10.1042/BST20190840.

I.2 Supplementary material 2

Supplementary material 2 – A comparison of BioISO with other state-of-the-art tools for gap-finding

and gap-filling. Available at https://www.dropbox.com/s/kl35hexineyz377/supp_2.pdf?dl=1.

I.3 Supplementary material 3

Supplementary material 3 – A suvery of several state-of-the-art tools for gap-finding and gap-filling.

Available at https://www.dropbox.com/s/rl4qsc4rsxufuy4/supp_3.xlsx?dl=1.

I.4 Supplementary material 4

Supplementary material 4 – A detailed description of BioISO’s workflow, algorithm, and runtime anal-

ysis. Available at https://www.dropbox.com/s/m8hxbyoa7apmk4n/supp_4.pdf?dl=1.

I.5 Supplementary material 5

Supplementary material 5 – A detailed description of BioISO’s validation methodology and materials.

Available at https://www.dropbox.com/s/04y4m6hiop6t8ya/supp_5.pdf?dl=1.

162

https://doi.org/10.1042/BST20190840
https://www.dropbox.com/s/kl35hexineyz377/supp_2.pdf?dl=1
https://www.dropbox.com/s/rl4qsc4rsxufuy4/supp_3.xlsx?dl=1
https://www.dropbox.com/s/m8hxbyoa7apmk4n/supp_4.pdf?dl=1
https://www.dropbox.com/s/04y4m6hiop6t8ya/supp_5.pdf?dl=1

I.6. SUPPLEMENTARY MATERIAL 6

I.6 Supplementary material 6

Supplementary material 6 – Results obtained in the BioISO’s assessments: BioISO’s depth analysis

and exhaustive versus guided-searches. Available at https://www.dropbox.com/s/0m0j859cpce4bmg/supp_6.xlsx?dl=1.

I.7 Supplementary material 7

Supplementary material 7 – The detailed schema used to represent the graph store model of the CDS

database. This schema includes all entities, relationships, and properties implemented in the CDS graph

store model. Available at https://www.dropbox.com/s/8v1x9cz7iil2ts5/supp_7.xlsx?dl=1.

I.8 Supplementary material 8

Supplementary material 8 – Survey all objects and properties extracted from the resources of regu-

latory data. In addition to extracted data, this survey includes mapping between extracted and transformed

objects integrated later into theCDS. Available at https://www.dropbox.com/s/nwwdreriyd8s7jn/supp_8.xlsx?dl=1.

I.9 Supplementary material 9

Supplementary material 9 – The integrated E. coli core model. This GERM model comprehends the

E. coli core GEM model [224] and E. coli core TRN [224] . Available at MEWpy examples - e_coli_core.xml

and MEWpy examples - e_coli_core_trn.csv.

I.10 Supplementary material 10

Supplementary material 10 – The integrated E. coli core model [224]. This GERM model compre-

hends the E. coli core GEM model [224] and E. coli core TRN [224]. Available at MEWpy examples -

e_coli_core.xml and MEWpy examples - e_coli_core_trn.csv.

I.11 Supplementary material 11

Supplementary material 11 – The integrated iMC1010 model [144]. This GERM model comprehends

the E. coli iJR904 GEM model [225] and E. coli iMC1010 TRN [144]. Available at MEWpy examples -

iJR904.xml and MEWpy examples - iMC1010.csv.

163

https://www.dropbox.com/s/0m0j859cpce4bmg/supp_6.xlsx?dl=1
https://www.dropbox.com/s/8v1x9cz7iil2ts5/supp_7.xlsx?dl=1
https://www.dropbox.com/s/nwwdreriyd8s7jn/supp_8.xlsx?dl=1
https://github.com/BioSystemsUM/mewpy/blob/master/examples/models/germ/e_coli_core.xml
https://github.com/BioSystemsUM/mewpy/blob/master/examples/models/germ/e_coli_core_trn.csv
https://github.com/BioSystemsUM/mewpy/blob/master/examples/models/germ/e_coli_core.xml
https://github.com/BioSystemsUM/mewpy/blob/master/examples/models/germ/e_coli_core.xml
https://github.com/BioSystemsUM/mewpy/blob/master/examples/models/germ/e_coli_core_trn.csv
https://github.com/BioSystemsUM/mewpy/blob/master/examples/models/germ/iJR904.xml
https://github.com/BioSystemsUM/mewpy/blob/master/examples/models/germ/iJR904.xml
https://github.com/BioSystemsUM/mewpy/blob/master/examples/models/germ/iMC1010.csv

ANNEX I. SUPPLEMENTARY MATERIAL

I.12 Supplementary material 12

Supplementary material 12 – The integrated iNJ661 model [146]. This GERM model comprehends

the M. tuberculosis iNJ661 GEM model and M. tuberculosis H37Rv TRN published by Balazsi et al.

[227]. It also includes a gene expression dataset with 437 experiments (regulator deletions) [146].

Available at MEWpy examples - iNJ661.xml, MEWpy examples - iNJ661_trn.csv, and MEWpy examples -

iNJ661_gene_expression.csv.

I.13 Supplementary material 13

Supplementary material 13 – The integrated iMM904 model [148]. This GERM model comprehends

the S. cerevisiae iMM904 GEM model [228] and S. cerevisiae S288C TRN inferred by CoRegNet [115]. It

also includes a gene expression dataset of 247 experiments [84], influence scores inferred by CoRegNet

[115], and another gene expression dataset of 12-time points [229]. Available at MEWpy examples -

iMM904.xml, MEWpy examples - iMM904_trn.csv, MEWpy examples - iMM904_gene_expression.csv,

MEWpy examples - iMM904_influence.csv, and MEWpy examples - iMM904_experiments.csv.

164

https://github.com/BioSystemsUM/mewpy/blob/master/examples/models/germ/iNJ661.xml
https://github.com/BioSystemsUM/mewpy/blob/master/examples/models/germ/iNJ661_trn.csv
https://github.com/BioSystemsUM/mewpy/blob/master/examples/models/germ/iNJ661_gene_expression.csv
https://github.com/BioSystemsUM/mewpy/blob/master/examples/models/germ/iNJ661_gene_expression.csv
https://github.com/BioSystemsUM/mewpy/blob/master/examples/models/germ/iMM904.xml
https://github.com/BioSystemsUM/mewpy/blob/master/examples/models/germ/iMM904.xml
https://github.com/BioSystemsUM/mewpy/blob/master/examples/models/germ/iMM904_trn.csv
https://github.com/BioSystemsUM/mewpy/blob/master/examples/models/germ/iMM904_gene_expression.csv
https://github.com/BioSystemsUM/mewpy/blob/master/examples/models/germ/iMM904_influence.csv
https://github.com/BioSystemsUM/mewpy/blob/master/examples/models/germ/iMM904_experiments.csv

	Front Matter
	Front Page
	Copyright
	Acknowledgements
	Statement
	Resumo
	Abstract
	Contents
	List of Figures
	List of Tables
	Acronyms

	1 Introduction
	1.1 Context and Motivation
	1.2 Research Objectives
	1.3 Outline

	2 Background
	2.1 The control of gene expression
	2.2 From high-throughput measurement techniques to the transcriptome
	2.3 Resources of regulatory data
	2.4 Resources of genomics and proteomics data
	2.5 Transcriptional regulatory networks
	2.6 Reconstruction of transcriptional regulatory networks
	2.7 Reconstruction of genome-scale metabolic models
	2.8 Integrated models
	2.9 Integrating transcriptional regulatory networks
	2.10 Integrating gene expression data
	2.11 Synopsis

	3 Assisting the curation of genome-scale metabolic models
	3.1 Introduction
	3.2 Survey of gap-find and gap-fill tools
	3.3 BioISO implementation
	3.3.1 BioISO's algorithm
	3.3.2 BioISO's applications

	3.4 Materials and Methods
	3.4.1 BioISO's algorithm depth analysis
	3.4.2 Exhaustive-search versus guided-search
	3.4.3 BioMeneco - embedding BioISO in Meneco

	3.5 Results
	3.5.1 Overview of BioISO's assessment
	3.5.2 BioISO's algorithm depth analysis
	3.5.3 Exhaustive-search versus guided-search
	3.5.4 BioMeneco - embedding BioISO in Meneco

	4 Database of prokaryotic transcriptional regulatory networks
	4.1 Introduction
	4.2 Data integration system
	4.2.1 Data warehousing
	4.2.2 Overview of the data integration system
	4.2.3 Central data storage sub-system
	4.2.4 Data lake sub-system
	4.2.5 Data extraction sub-system
	4.2.6 Data transformation sub-system
	4.2.7 Knowledge expansion sub-system
	4.2.8 Data integration sub-system
	4.2.9 Data loading sub-system
	4.2.10 The first version of ProTReND's database

	4.3 Data integration results
	4.3.1 Overview of the data integration results
	4.3.2 Integration report
	4.3.3 CDS topology

	4.4 ProTReND web application
	4.4.1 A user-friendly hub of regulatory interactions
	4.4.2 Implementation
	4.4.3 Browse regulatory interactions
	4.4.4 Data access
	4.4.5 Contributing to ProTReND

	5 Definition and analysis of integrated metabolic-regulatory models
	5.1 Introduction
	5.2 MEWpy: a strain optimization workbench in Python
	5.3 A framework for integrated models in MEWpy
	5.3.1 Overview of the genome-scale regulatory-metabolic model framework
	5.3.2 Genome-scale regulatory-metabolic model
	5.3.3 Variables of genome-scale regulatory-metabolic models
	5.3.4 Input/output tools for genome-scale regulatory-metabolic models
	5.3.5 Phenotype prediction using genome-scale regulatory-metabolic models
	5.3.6 Strain optimization using genome-scale regulatory-metabolic models

	5.4 Working with genome-scale regulatory-metabolic models in MEWpy
	5.4.1 Model workflow
	5.4.2 Model analysis workflow
	5.4.3 Model optimization workflow

	6 Conclusion
	6.1 Main contributions
	6.2 Publications
	6.3 Future work

	Bibliography
	I Supplementary Material
	I.1 Supplementary material 1
	I.2 Supplementary material 2
	I.3 Supplementary material 3
	I.4 Supplementary material 4
	I.5 Supplementary material 5
	I.6 Supplementary material 6
	I.7 Supplementary material 7
	I.8 Supplementary material 8
	I.9 Supplementary material 9
	I.10 Supplementary material 10
	I.11 Supplementary material 11
	I.12 Supplementary material 12
	I.13 Supplementary material 13

		2023-02-03T11:23:47+0000
	Braga

	

