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Abstract (89/250) 12 

The current survey aims to describe the main methodologies for extending the 13 
reconstruction and analysis of genome-scale metabolic models and phenotype 14 
simulation with Flux Balance Analysis mathematical frameworks, via the integration of 15 
Transcriptional Regulatory Networks and/or gene expression data. Although the 16 
surveyed methods are aimed at improving phenotype simulations obtained from these 17 
models, the perspective of reconstructing integrated genome-scale models of 18 
metabolism and gene expression for diverse prokaryotes is still an open challenge.  19 

 20 

Introduction 21 

High-throughput large-scale omics experiments are nowadays disseminated in 22 
biochemical research, supporting the study of the genomics, transcriptomics, and 23 
metabolomics layers of the cellular’s molecular machinery. Currently, the volume of 24 
studies in the different omics fields has provided means for systems biology to thrive 25 
(1). This interdisciplinary field proposes differentiated approaches, such as the 26 
reconstruction of in silico networks and models, to provide quantitative and qualitative 27 
descriptions of biological systems as a whole.  28 

 29 

Reconstruction of GSMMs 30 

Nowadays, the generation of Genome-Scale Metabolic  Models (GSMMs) is a 31 
common practice in systems biology. The reconstruction of these comprehensive 32 
models, through modeling techniques and genomics data, allows predicting cells’ 33 
metabolic behavior (2–4).  34 



A GSMM is an in silico representation of the biochemical reactions taking place within 35 
a the metabolism of a given organism (5). A genome-wide functional annotation that 36 
provides the required metabolic information over the organism of interest should be 37 
performed to assemble this representation. This information is linked to existing 38 
metabolic knowledge retrieved essentially from biochemical databases and literature. 39 
These steps help to create the reaction set, upon which the metabolic network is 40 
assembled. 41 

The link from metabolic genes to proteins (mainly enzymes or membrane transporter 42 
proteins), as well as from proteins to reactions, is established by Gene-Protein-Reaction 43 
(GPR) associations. GPR associations must be cautiously defined during the 44 
reconstruction, taking into account isoenzymes, protein complexes and cascade 45 
reactions (3), through the use of AND or OR Boolean rules. 46 

In the next iteration, biomass and organism-specific constraints are formulated from 47 
the retrieved knowledge to assemble a final stoichiometric model. The final GSMM may 48 
then be exported in a standard format, such as the Systems Biology Markup Language 49 
(SBML) (6). Several platforms, such as merlin (7), ModelSEED (8), RAVEN (9) and 50 
CarveMe (10), have been developed specifically for performing or assisting the 51 
reconstruction of these models (11).  52 

The classic principles of chemical engineering are used to infer the dynamic mass 53 
balances of all metabolites in the metabolic network. A single ordinary differential 54 
equation (ODE) is created for each metabolite, accounting for its stoichiometry in the 55 
whole reaction set. Due to the lack of kinetic rates for all reactions in the ODE set, a 56 
steady-state approximation is used to reduce the mass balances to a set of linear 57 
equations. In a pseudo-steady-state paradigm, the concentration of a metabolite is 58 
assumed to remain constant throughout time (4). 59 

When used to determine flux values, the set of linear equations defines a linear 60 
system, typically underdetermined, as the number of fluxes is much higher than the 61 
number of mass balance constraints, also referred to as the null space of S (12). 62 
Additional mass balance constraints can be added to the system to limit the flux that 63 
each reaction can acomodate by the imposition of both lower and upper bounds. 64 

The system can be solved mathematically transforming it into an optimization 65 
problem,using several constraint-based approaches to predict the phenotypic behavior 66 
of the organism on a wide variety of environmental and genetic conditions. One of the 67 
most popular approaches is the Flux Balance Analysis (FBA) framework (12). FBA can 68 
compute an optimal solution, out of the feasible space determined by both mass 69 
balance and flux constraints using linear programming (LP). FBA requires the definition 70 
of an objective function, which should be relevant to the undergoing problem, which is 71 
commonly defined as the maximization or minimization of a specific metabolic flux (e.g., 72 
biomass reaction), and quantitatively determines how much each reaction contributes 73 
to a phenotype (4). 74 



Parsimonious Flux Balance Analysis (pFBA) (13) and Flux Variability Analysis (FVA) 75 
(14), are  alternative mathematical frameworks that also employ LP to allow analyzing 76 
in silico flux distributions. This set of tools is extremely helpful for validating a 77 
reconstructed model using experimental data of the organisms of interest. COnstraint-78 
Based Reconstruction and Analysis (COBRA) Toolbox (15), COBRApy (16), OptFlux (17), 79 
and ReFramed (https://github.com/cdanielmachado/reframed) are prominent 80 
computational tools that have implemented these methods. 81 

Although GSMMs have proven to be valuable throughout the years (18–24), there 82 
are limitations. Indeed, they are not yet capable of accounting for biological regulatory 83 
phenomena, such as the control of gene expression (25). The lack of this additional layer 84 
of information in these models can lead to erroneous in silico phenotype simulations, 85 
due to the lack of constraints that allow reaching the most accurate flux distribution 86 
according to experimental data. 87 

Several methods have been proposed to improve phenotype simulations obtained 88 
from GSMMs, which will be herein surveyed. Most of these new methodologies are 89 
aimed at combining additional layers of omics data, namely transcriptomics, to limit the 90 
cone of allowable flux distributions. Also, these methods often resort to the integration 91 
of gene expression data and/or regulatory information obtained from Transcriptional 92 
Regulatory Networks (TRN)s being, therefore, prominent efforts made towards the 93 
reconstruction of integrated genome-scale models of metabolism and gene expression. 94 
The utilization of these integrated models can be useful to improve phenotype 95 
simulations or extend the analysis of regular GSMMs. 96 

 97 

Reconstruction of TRNs 98 

A TRN can be represented as a bipartite graph that comprehends vertices and edges. 99 
Vertices are usually regulators and target genes, whereas edges determine how these 100 
regulatory elements are connected and interact with each other, often under a causal 101 
relationship.  102 

Inferring TRNs is fundamentally an underdetermined problem associated with a large 103 
search space where many solutions explain the data equally well (25,26). High-quality 104 
transcriptional information is scarce, in databases or literature and focused on a few 105 
well-studied organisms. Thus, the number of potential regulatory interactions between 106 
a Transcription Factor (TF) and target genes is considerably larger than the actual true 107 
biological interactions. 108 

Although methods for reconstructing TRNs have been extensively reviewed in the 109 
literature (25–31), there are a panoply of classification systems and procedures. 110 
Moreover, as new methods are released each year, the complexity increases. Hence, 111 
assigning classes to these new approaches can be a complicated task. More importantly, 112 
this reveals that standard platforms and methodologies to assemble TRNs using diverse 113 



sources of regulatory information, such as gene expression data (32,33) or 114 
transcriptional information (34–36), are still missing.    115 

Nevertheless, an integrative workflow for reconstructing bacterial TRNs has been 116 
proposed by Faria et al. 2014 (25). The authors suggested that comparative-genomics 117 
approaches, namely the inference of TRNs using template curated networks and the 118 
prediction of cis-regulatory elements, can be integrated with the output of de novo 119 
reverse engineering tools. This workflow addresses the possibility of reconstructing 120 
TRNs for less described prokaryotic organisms using a variety of sources of regulatory 121 
information. 122 

Template-network methodologies are based on the conservation of prokaryotic TRNs 123 
across evolution (37–39). As described by Faria et al. 2014 (25), template-network-based 124 
methods usually perform a search for orthologous genes in the genome of the organism 125 
of interest to propagate TRNs to strains of a well-characterized model organisms or 126 
closely related ones.  127 

Cis-regulatory elements detection rely on the assumption that a regulatory 128 
interaction between a given TF and target gene can be inferred from the detection of 129 
the Transcription Factor Binding Sites (TFBS). The prediction of these cis-regulatory 130 
elements is a problem in which computational methods can assist (27,40). Although 131 
these computational tools are unable to infer a complete TRN from TFBS data, they can 132 
be integrated in the following workflow towards such a goal. The principles of this 133 
methodology were implemented by Alkema et al. 2004 (41) in Regulogger and the 134 
RegPredict web-based platform (42). 135 

De novo reverse engineering tools are widely used for inferring TRNs from gene 136 
expression data. Indeed, a vast repertoire of computational tools based on the de novo 137 
reverse engineering approach can be found in the literature, and consequently 138 
numerous ways to classify these tools (28–30). Nevertheless, de novo reverse 139 
engineering methods are usually classified by mathematical formulation. Hence, to 140 
highlight the most used mathematical formulations, data-driven methods are usually 141 
based on the following:  142 

 Correlation (e.g. COREGNET (43)),  143 
 Information-theoretic (e.g. (44)),  144 
 Boolean algebra  (making use of the widely known binary operators AND, OR, 145 

and NOT to describe regulatory interactions (45), e.g. ModEnt (46)),  146 
 Regression-based (e.g. GENIE3 (47)), 147 
 ODEs (e.g. Inferelator (48)),  148 
 Bayesian models (e.g. Gat-Viks et al 2007 (49)),  149 

Available state-of-the-art TRNs’ reconstructions for prokaryotic organisms include 150 
well-known prokaryotic organisms such as Escherichia coli (50,51), Bacillus subtilis 151 
(52,53) and Mycobacterium tuberculosis (54), having hundreds of regulators and 152 
thousands of target genes. These TRNs can, therefore, be used as gold-standards in the 153 
template-network-based approach or supervised methods. Interestingly, other TRNs for 154 



prokaryotic organisms less described in the literature or having less amount of gene 155 
expression data (44,55–61), are also available, though in less number. 156 

The TRNs available in the literature are usually the result of a specific gene expression 157 
data-driven analysis or the collection of regulatory information from literature and 158 
databases. Although these TRNs can be used in the comparative genomics or data-159 
driven approaches, not all of them can be easily integrated in GSMMs, as only genome-160 
scale TRNs are actually useful for the integration and simulation of integrated models.  161 

 162 

Integrated models 163 

Combining regulatory elements with information on metabolic stoichiometry is a 164 
complex task. There are many ways for controlling metabolism (62), which are well 165 
represented in the large diversity of methods proposed to quantify such influence 166 
(25,63–75). Nevertheless, the common denominator is that most methods start with 167 
GSMMs. 168 

In detail, several of these methods integrate complete functional TRNs (76–84) or 169 
gene expression data (85–95) into GSMMs, whereas others impose additional 170 
constraints using information on allosteric and post-translational modifications 171 
(66,67,73). A different strategy is the combination of multiple layers of regulation 172 
(63,65,72,74). For higher eukaryotes such as humans, the control of gene expression 173 
also plays an essential role in the differentiation between different tissues or cell-types. 174 
Thus, algorithms for tailoring a GSMM according to a specific cell-line or tissue, 175 
commonly referred to as context-specific models, have been proposed (75,96–104). 176 
These principles and their main implementations are depicted in the Figure 1. 177 

 178 

Figure 1: Overview of several methods for integrating additional constraints into 179 
GSMMs based on the regulation of metabolism. Whereas some methods integrate 180 
complete functional TRNs or gene expression data into GSMMs, others impose further 181 
constraints based on allosteric and post-translational modifications. Additionally, other 182 
methods integrate multiple omics layers of regulation of metabolism. For higher 183 
eukaryotes such as humans, context-specific models have also been based on tailoring 184 
the flux cone of solutions. 185 

Surveying all approaches is out of the scope of this review. The following sections will 186 
cover the integration of TRNs or gene expression data into GSMMs, focusing on the 187 
control of gene expression at the transcriptional level. Figure 2 highlights both 188 
approaches, namely the integration of TRNs (Figure 2 A) and gene expression data 189 
(Figure 2 B) into GSMMs. 190 

The differences between the integration of TRNs and gene expression data into 191 
GSMMs are associated with the type and amount of data that these sources can offer 192 
to the metabolic landscape of GSMMs. 193 



Methods capable of integrating TRNs into GSMMs provide comprehensive 194 
knowledge regarding the metabolic and regulatory events occurring inside the cell at 195 
the genome-scale. As a result, both regulatory and metabolic networks can be analyzed 196 
together at the genome-scale, extending the range of applications of a regular GSMM. 197 

On the other hand, gene expression data comprehend a set of snapshots of the 198 
transcriptome for several experimental conditions. Thus, a gene expression dataset can 199 
solely offer gene expression levels at a given experimental condition. 200 

The group of methods aimed at integrating gene expression data with GSMM’s 201 
comprises methods using only transcriptomics data for tailoring the flux distributions, 202 
so no structure or rules describing the regulatory interactions are observed in this class 203 
of methods. Thus, the integration of gene expression data focuses on improving the 204 
prediction of flux distributions, rather than the study and analysis of an additional 205 
biochemical network at the genome-scale. 206 

Methods have also been classified according to the main formulations, as previously 207 
suggested by Machado et al. 2014 (70). Organizing methods into containers, according 208 
to their main formulations and features, facilitates the decision process when selecting 209 
an adequate method for the existing constraints and data sources. 210 

Hence methods were classified into discrete (Figure 2 C) or continuous (Figure 2 D), 211 
according to whether phenotype simulations were performed with discrete, namely 212 
Boolean logic (“ON/OFF”), or continuous constraints.  213 

Accordingly, a method is systematically classified as discrete if the result of the 214 
integration is a Boolean value (e.g., 1 for ”ON” and 0 for “OFF”), imposing additional 215 
constraints on the system. These methods are also referred to as switch, since TRN or 216 
gene expression data switch reactions on or off. The state of a given metabolic gene is 217 
determined by evaluating either the Boolean regulatory rule or thresholding the gene 218 
expression level. Then, metabolic reactions mapped to metabolic genes are accessed 219 
according to the GPR rules to determine the resulting states. Thus, reactions having a 220 
one-to-one direct GPR rule are active/inactive according to the state of the metabolic 221 
gene. Reactions catalyzed by enzyme complexes, encoded by multiple yet mandatory 222 
genes, are considered inactive if at least one metabolic gene is not available. In contrast, 223 
reactions catalyzed by isoenzymes, namely multiple enzymes catalyzing the same 224 
reaction, are considered active if at least one metabolic gene is active. 225 

Alternatively, there are methods aimed at circumventing the rigid Boolean logic, 226 
called valve methods, which impose continuous constraints to adjust a given flux 227 
distribution gradually and according to penalties, expression scores, or normalized 228 
expression levels obtained from the gene expression data. Typically, continuous 229 
integration is performed through the implementation of slack variables in the 230 
constraints’ formulations, altering the reactions’ bounds. The slack variable represents 231 
penalties, expression scores, or normalized expression levels retrieved from gene 232 
expression data for the metabolic genes associated with a given reaction. As before, the 233 
state of the metabolic reactions mapped to metabolic genes is assessed through GPR 234 



rules, through selecting the best penalty, expression score, or normalized expression 235 
level for the slack variable. 236 

The methodology for assigning a value to the slack variable, when a set of isozymes 237 
catalyzes a given reaction, comprises several distinct approaches. These include: 238 
methods in which the slack variable assumes the maximum expression score of the 239 
associated genes; methods where the slack variable takes the sum of expression scores 240 
of all genes encoding the isozymes catalyzing a single reaction; and, methods in which 241 
the reaction is replicated, according to the number of isozymes, and each new reaction 242 
is associated with one, and one only, gene. 243 

Regarding reactions catalyzed by an enzyme complex, a group of methods establishes 244 
that the minimum expression score of all encoding genes is assigned to the slack 245 
variable. In contrast, other methods define the utilization of either the geometric or 246 
arithmetic mean of the expression score of all genes associated with an enzyme complex 247 
or isozymes, respectively. 248 

Furthermore, methods capable of integrating gene expression data into GSMMs were 249 
also divided into single-condition (Figure 2 A) or multi-condition (Figure 2 B). Notice that 250 
this classification was not used to classify those methods aimed at integrating TRNs into 251 
GSM models, as it will be explained next.  252 

Methods were classified as single-condition (Figure 1 A) or multi-condition (Figure 1 253 
B) according to whether phenotype simulations were performed for one or more 254 
conditions/states in the gene expression dataset, respectively. For instance, a given 255 
method is considered multi-condition if it adjusts the flux cone of solutions by 256 
considering all conditions in the gene expression dataset or the gene differential 257 
expression between two conditions. Otherwise, the methods are classified as single-258 
condition.  259 

Notice that the latter classification was not used to classify those methods aimed at 260 
integrating TRNs into GSMMs. Methods capable of integrating TRNs into GSMMs do not 261 
require a gene expression dataset, thus  classifying them into single- or multi-condition 262 
would be meaningless. Other methods capable of assembling and integrating TRNs into 263 
GSM models GSMMs often use the whole dataset and can then perform condition-264 
specific phenotype simulations. Hence, classifying these methods as single-condition 265 
would be misleading. 266 

 267 

Figure 2: Two examples of the integration of TRNs (A and C) or gene expression data 268 
(B and D) into GSMMs. The integration of TRNs (A) does not require gene expression 269 
data, while methods that integrate gene expression data (B) are capable of tailoring the 270 
flux cone of solutions by accounting for one (single-condition) or more (multi-condition) 271 
conditions in the gene expression dataset. Both types of integration can be mediated by 272 
discrete (C) or continuous (D) variables. 273 



An analysis of these methods, encompassing the year of publication, availability of a 274 
tool with a user-friendly interface (namely a Graphical User Interface (GUI) without the 275 
requirement of coding skills), type of reaction constraint formulation, as well as the 276 
organism used for proof of concept has also been conducted. This information is 277 
available at the supplementary material 1. Figure 3 provides, on the other hand, a 278 
complete understanding of the methods described next, as well as their categorization 279 
according to the classification axes described above. 280 

 281 

Integrating TRNs 282 

For simulation purposes, the first attempts to integrate TRNs within GSMMs, namely 283 
Regulatory Flux Balance Analysis (rFBA) (76,105–107), Steady-state Regulatory Flux 284 
Balance (SR-FBA) (77) and the method proposed by Herrgård et al. 2006 (79), are based 285 
on the switch approach, to complement the metabolic system with additional constrains 286 
outlining which genes are activated or silenced in the network for specific stimuli. 287 

As proof of concept, rFBA was successfully used to create the very first integrated 288 
genome-scale model of metabolism and gene expression for E. coli (106,107). In this 289 
reconstruction, as well as in the integrated network of S. cerevisiae provided by Herrgård 290 
et al. 2006 (79), a Boolean network collected from literature was integrated through a 291 
set of GPR rules with the GSMM imposing regulatory events as additional time-292 
dependent constraints. On the other hand, SR-FBA performs steady-state simulations by 293 
including all valid metabolic and regulatory constraints in the system in a single step, 294 
through a Mixed-Integer Linear Programming (MILP) formulation. For that, nested 295 
Boolean expressions are formulated as a set of linear constraints, by recursively iterating 296 
over the structure of the regulatory layer and GPR rules, to add auxiliary variables 297 
representing intermediate Boolean terms (77). As shown in Figure 3, these methods 298 
have been classified as discrete, and none provides a user-friendly interface without the 299 
requirement of coding skills. 300 

Two platforms, namely Toolbox for Integrating Genome-scale Metabolism (TIGER) 301 
(84) and FlexFlux (83), have been developed for integrating Boolean-based TRNs into 302 
GSMMs. TIGER can convert a series of logic Boolean rules, which can be thought of as a 303 
Boolean TRN, into a set of mixed-integer inequalities. Then, several algorithms for 304 
integrating gene expression data into the metabolic model and simulating phenotypic 305 
behavior can be implemented in the toolbox. Other implementations already available 306 
in this toolbox, such as Metabolic Adjustment by Differential Expression (MADE) (95), 307 
can be used for simulations. 308 

FlexFlux differs from TIGER insofar as it is the only tool that provides a user-friendly 309 
interface for the integration of TRNs into GSMMs. This computational tool developed in 310 
Java® allows the input of Systems Biology Markup Language (SBML) (6) with the SBML 311 
Qualitative (SBML-qual) extension. SBML-qual is the standard file format extension for 312 
storing and sharing qualitative multi-state TRNs (108). In this way, a regular SBML file 313 
can hold a computer representation of qualitative models of biological networks. 314 



Qualitative multi-state regulatory networks can then be used to determine multi-state 315 
qualitative constraints for metabolic flux analyses using FBA. Furthermore, FlexFlux 316 
allows the translation of the discrete qualitative states into continuous intervals, 317 
thereby constraining a reaction flux continuously or discretely (83). 318 

Probabilistic Regulation of Metabolism (PROM) (78), PROM2.0 (109), and Integrated 319 
Deduced REgulation And Metabolism (IDREAM) (82) are all based on a probabilistic 320 
model for TRNs, which are integrated with a constraint-based model using a continuous 321 
method. PROM and PROM2.0 were the first attempts to circumvent the previous rigid 322 
discrete constraints added to a GSMM by setting the reactions’ flux bounds proportional 323 
to the probabilities of their associated metabolic genes. In turn, the probability of a 324 
metabolic gene being activated in the whole set of conditions is defined together from 325 
the TRN and gene expression dataset provided as input. In short, PROM approaches can 326 
determine the probability of a given gene being or not activated, when the set of 327 
regulating TFs is either activated or silenced. The probability is calculated according to 328 
the frequency that each gene is active in the dataset (of either perturbed or over/under-329 
expressed TFs). Likewise, the effect of perturbations on the regulatory network can also 330 
be robustly predicted. 331 

Although PROM-based approaches are probably the best examples for integrating 332 
both TRNs and gene expression data into a GSMM, the gene expression dataset must 333 
have a large number of measurements per condition. PROM and PROM2.0 have been 334 
validated with E. coli and M. tuberculosis experimental gene expression data and the 335 
respective TRNs. 336 

The IDREAM method resulted from the combination of Environment and Gene 337 
Regulatory Influence Network (EGRIN) (55,110) and PROM frameworks to create an 338 
enhanced genome-scale model of metabolism and gene expression for Saccharomyces 339 
cerevisiae (82). Contrariwise to the previous approaches, this methodology has used a 340 
de novo reverse engineering method called EGRIN to complement the yeast TRN 341 
collected from the database YEAst Search for Transcriptional Regulators And Consensus 342 
Tracking (YEASTRACT) (111). Then, the phenotype simulations are conducted in a similar 343 
way as in the PROM-based approaches. 344 

Transcriptional Regulated Flux Balance Analysis (TRFBA) (81) and CoRegFlux (80) also 345 
provide a framework for the integration of gene expression data and TRNs in a 346 
continuous manner. Whereas the former requires a TRN for the organism of interest, 347 
the latter provides tools for inferring the regulatory network from gene expression data 348 
using CoRegNet (43). Nevertheless, CoRegFlux allows us to use a curated TRN rather 349 
than using the provided data-driven method. 350 

Regarding the TRFBA methodology, this FBA-based approach considers gene 351 
expression levels as two additional types of continuous constraints. The first is 352 
represented by a constant parameter that converts the gene expression levels to the 353 
upper bounds of the reactions. The second type of linear constraints to be added to the 354 



system can be thought of as the linear regression of each target gene from the regulating 355 
TFs. 356 

CoRegFlux differs from TRFBA in that it uses a statistical reverse engineering method 357 
to infer targets of a given set of regulators at the genome-scale. Then, the influence 358 
score (similar to correlation scores for activation or repression) of each regulator in the 359 
set of target genes is calculated with CoRegNet from a large gene expression training 360 
dataset. Influence scores are used to train a linear model capable of predicting the gene 361 
expression of metabolic genes using a new gene expression dataset. These predicted 362 
levels of expression are then translated into flux bounds for the phenotype simulations 363 
using FBA or Dynamic Flux Balance Analysis (dFBA) (112). 364 

All methods surveyed here are listed in the supplementary material 1. 365 

 366 

Integrating gene expression data 367 

The method proposed by Åkesson et al. 2004 (87), followed by MADE (95), were the 368 
earliest approaches for tailoring the flux cone of solutions using discrete variables 369 
obtained solely from gene expression data. In the case of the method developed by 370 
Åkesson et al. 2004 (87), a reaction is simply switched “off” with a zero flux bound if the 371 
associated genes are found to be under-expressed in the corresponding condition 372 
(single-condition method). MADE, on the other hand, tries to surpass the problem of 373 
arbitrary thresholding under-expression by considering multiple conditions (multi-374 
condition method). Statistical significance between changes in gene expression levels 375 
across sequential conditions is calculated to infer whether a gene is activated (95). 376 

E-Flux (113) and the method proposed by Lee et al. 2012 (94) have introduced several 377 
novelties when compared with the previous methodologies. These methods were the 378 
first attempts to constraint an FBA-based model using continuous variables. 379 
Nevertheless, these approaches are radically different. E-Flux directly maps gene 380 
expression levels into flux bound constraints, assuming the maximum flux of a given 381 
reaction to be a linear function of the expression of the associated genes in the same 382 
condition (single-condition method). Lee and coworkers (94) do not introduce or alter 383 
flux bound constraints directly into the GSMM. An alternative objective function that 384 
minimizes the distance between flux distributions and gene expression data is applied 385 
for each phenotype simulation (single-condition method). 386 

The Transcriptional-controlled Flux Balance Analysis (TFBA) method, proposed by van 387 
Berlo et al. 2011 (93), is aimed at overcoming the problem of setting an arbitrary 388 
threshold to determine whether a gene is activated or not. The TFBA assumption is that 389 
differential gene expression between two conditions should also be reflected in the flux 390 
of the reactions associated with this gene. For that, the authors formulated constraints 391 
defining upper and lower limits for fluxes according to the gene expression, though 392 
assuming their transgression to be possible. The optimization problem (MILP 393 



formulation) consists of finding the flux distribution that minimizes the number of 394 
transgressions. 395 

Likewise, the method developed by Fang et al. 2012 (92) is based on the differential 396 
gene expression between two conditions, namely reference and perturbed conditions. 397 
This method assumes that the flux distribution of a reference condition can be 398 
determined using the FBA or FVA frameworks, while the differential gene expression 399 
between the reference and perturbed conditions is used for tailoring the flux 400 
distribution of the perturbed one. Also, this method considers the variation of the 401 
biomass composition between reference and perturbed conditions. 402 

Similarly to TFBA and the method proposed by Fang et al. 2012 (92), the Gene 403 
Expression Flux Balance Analysis (GX-FBA) method (91) also determines the flux 404 
distribution for the reference condition using FBA. Then, GX-FBA employs a new 405 
objective function and new constraints derived from the difference between reference 406 
and perturbed states to perform the in-silico phenotype simulation of the latter state. A 407 
wide range of phenomena associated with temperature and known to induce virulence 408 
in the gram-negative bacterium Yersinia pestis was used as proof of concept. 409 

Temporal Expression-based Analysis of Metabolism (TEAM) (90) and Adaptation of 410 
Metabolism (AdaM) (89) are the only methods developed for integrating time-series 411 
gene expression data into constraint-based models. The former uses dFBA (112) to 412 
predict time-series flux distributions based on temporal gene expression profiles. Using 413 
a cost minimization scheme similar to the strategy proposed in the context-specific Gene 414 
Inactivity Moderated by Metabolism and Expression (GIMME) method (98), TEAM is 415 
capable of determining the flux distribution of a GSMM, constrained with gene 416 
expression levels of each time step in the dataset. TEAM was tested with time-series 417 
gene expression data from Shewanella oneidensis. 418 

AdaM consists of a flux-based bilevel optimization problem that extracts minimal 419 
operating networks from a given GSMM (89). This algorithm infers the minimal 420 
operating networks in agreement with the differential gene expression pattern between 421 
time-steps. Then, Elementary Flux Modes (EFM)s (114) are computed with these 422 
minimal operating networks rather than computing the flux distributions at each time 423 
step. Reactions are weighted according to the number of EFMs in which these are 424 
present. The optimization problem consists of finding the minimal network having the 425 
largest weight. 426 

Angione et al. 2015 & 2016 (86,88) formulated methods, for example, the Metabolic 427 
and Transcriptomics Adaptation Estimator (METRADE), aimed at measuring the 428 
adaptability to a changing environmental condition over time. These approaches have 429 
provided equally valid methodologies for integrating gene expression data in metabolic 430 
networks. In short, these methods have modeled both upper and lower bounds of each 431 
reaction as a continuous logarithmic function of the associated gene expression levels. 432 

Reaction Inclusion by Parsimony and Transcript Distribution (RIPTiDe) (85) is aimed 433 
at circumventing the assumption that reaction fluxes are directly related to the gene 434 



expression levels for a given condition. The authors have proposed an unsupervised 435 
method that assigns weights (continuous variable) to reactions according to the 436 
normalized expression levels of associated genes over the entire dataset. Then, a pFBA 437 
simulation considering these linear coefficients is performed. The novelty of this method 438 
consists of its validation with precise transcript abundance obtained with RNA-439 
sequencing (RNA-seq).  440 

The methods capable of integrating gene expression data into GSMMs addressed 441 
herein are available in the supplementary material 1. 442 

 443 

Synopsis 444 

The reconstruction of GSMMs is common practice in systems biology nowadays. The 445 
advent of the GSMM reconstruction for many organisms was facilitated by the adoption 446 
of standard protocols (3), as well as the existence of user-friendly computational tools 447 
(7,8), capable of assembling these models from different genomic, enzymatic and 448 
stoichiometric data. Nevertheless, the simulation of GSMMs still presents today false-449 
positive phenotypes for several environmental conditions. 450 

The reconstruction of TRNs is a well-known strategy in systems biology for 451 
understanding the regulatory machinery of a given organism (26,28,30). Although there 452 
are many methodologies for assembling a TRN, standard protocols and computational 453 
platforms are yet missing to support the reconstruction of TRNs for less described 454 
organisms using different data sources. The workflow suggested by Faria et al. 2014 (25) 455 
highlighted several methodologies that can be combined to extend the reconstruction 456 
of TRNs to more bacterial species. To the best of our knowledge little progress has been 457 
made to provide a user-friendly platform capable of achieving such a goal. More 458 
importantly, the reconstruction of genome-scale TRNs using such integrative workflow, 459 
would be pivotal for the reconstruction and simulation of integrated models.    460 

The integration of the control of gene expression into GSMMs has been surveyed in 461 
this work. A systematic classification that grasps the difference between the several 462 
methodologies, capable of integrating and simulating regulatory events into GSMMs 463 
was proposed herein. Although part of the reviewed methods have already been 464 
surveyed before (25,64,68–71,115), TIGER, FlexFlux, METRADE, IDREAM, TRFBA, 465 
CoRegFlux, RIPTiDe and the method proposed by Angione et al. (2016) have never been 466 
addressed elsewhere in reviews, to the best of our knowledge. Moreover, a detailed 467 
categorization that highlights the methodologies used to perform the integration of the 468 
regulatory layer into GSMMs has not been provided. This systematic categorization can 469 
guide the decision process of selecting the most adequate method of integration and 470 
simulation. 471 

As shown in Figure 3, there are several methods and toolboxes capable of integrating 472 
and simulating TRNs into GSMMs using a discrete approach (76,77,79,83,84). The TRNs 473 
used by these methods and toolboxes were mainly reconstructed from literature, which 474 



might be a time-consuming approach. The remaining methods allow to assemble TRNs 475 
from gene expression data using de novo reverse engineering methods. The resulting 476 
TRNs can be integrated and simulated with a given GSMM. FlexFlux is the prominent 477 
exception as it can perform the integration of the TRN in the GSMM using either discrete 478 
or continuous variables. 479 

To date, only two prokaryotic organisms, E. coli (76–78,81,83) and M. tuberculosis 480 
(78,109), and the yeast S. cerevisiae (79–82,84), have integrated genome-scale models 481 
as a result of the integration of complete TRNs into a metabolic network. Nevertheless, 482 
some of these reconstructions still require gene expression datasets, namely several 483 
methods in the continuous sub-group. 484 

Regarding the methods for integrating gene expression data, most of these have 485 
provided means for integrating transcriptomics data as continuous constraints from one 486 
or more conditions (Figure 3). Only the method proposed by Åkesson et al. 2004 (87), as 487 
well as MADE (95), use discrete variables to simulate integrated models of metabolism 488 
and gene expression. 489 

Besides E. coli, M. tuberculosis, and S. cerevisiae, methods for integrating gene 490 
expression data have also provided integrated models for S. oneidensis (90) and Y. pestis 491 
(91). 492 

 493 

 494 

Figure 3: Classification of methods aimed at the reconstruction of integrated 495 
genome-scale models of metabolism and gene expression. These methods have been 496 
divided according to the integration of TRNs (white boxes) or solely gene expression 497 
data into GSMMs. Discrete and continuous categories were used to classify these 498 
methods according to the usage of discrete, namely Boolean logic (“on/off”), or 499 
continuous constraints. Methods capable of integrating gene expression data into 500 
GSMMs have been further divided into single-condition (orange circles) and multi-501 
condition (blue ellipses) whether phenotype simulations were performed for one or 502 
more conditions/states in the gene expression dataset, respectively. Each inner circle 503 
stands for a prokaryotic organism, while the outer circle stands for the baker’s yeast 504 
Saccharomyces cerevisiae. 505 

A vast diversity of methods for the integration of gene expression data in GSMMs has 506 
been found. Yet, most methods require large gene expression datasets to be robust, 507 
which might not be the case for all organisms. Other methods resort to mapping levels 508 
of gene expression directly with the reactions bounds, which again might not be the best 509 
approach (70,115,116). 510 

Furthermore, the methods for integrating gene expression data with metabolic 511 
models previously evaluated by Machado and coworkers (70), namely E-Flux (113), 512 
MADE (95), GX-FBA (91) and the method developed by Lee et al. 2012 (94) have shown 513 
to perform poorly in the designed benchmark. None of the methods have outperformed 514 



each other in the phenotype simulations nor pFBA, which indicates that the promising 515 
results reported by these methods seem to be mere artifacts related to rigid constraints 516 
created around the nature of the gene expression dataset. 517 

The reconstruction of integrated models using TRNs is, in theory, more useful than 518 
merely integrating gene expression data into GSMMs. Integrated models that result 519 
from the integration of TRNs provide comprehensive knowledge regarding the 520 
metabolic and regulatory events happening inside the cell, thus leading to a broader 521 
range of applications when compared to a regular GSMM (117,118).  522 

Moreover, the diversity of methods for reconstructing TRNs using different data 523 
sources, such as gene expression, transcription factor binding site, or comparative 524 
genomics analysis, eases the reconstruction of TRNs for most prokaryotic organisms 525 
having a sequenced genome (25). However, the absence of a user-friendly 526 
computational tool based on the ensemble of these different approaches is missing. In 527 
contrast, the same strategy has yielded results in the reconstruction of GSMMs (7–528 
9,11,15,119). 529 

In short, the existence of standardized protocols and easy to use computational tools 530 
for the generation of GSMMs has eased its practice in systems biology to study the 531 
metabolism of many organisms. In contrast, the absence of the computational tools that 532 
ease the reconstruction of TRNs from different sources of regulatory data hindered a 533 
similar approach. 534 

The integration and analysis of regulatory events into GSMMs has been surveyed 535 
herein. A systematic classification has been created to grasp the difference between the 536 
several methodologies capable of integrating and simulating regulatory events into 537 
GSMMs. As a result, two primary approaches have been determined, namely the 538 
integration of TRNs and/or the integration of gene expression data. 539 

The major obstacle when using the methods described in this survey to simulate 540 
integrated genome-scale models of metabolism and gene expression is not reproducing 541 
their results, but rather extending their implementations to other organisms and case 542 
studies. This hurdle poses a stiff challenge for using these methods out of the scope they 543 
were aimed at during development.  544 

The requirement for large gene expression datasets with specific experimental 545 
conditions, the usage of TRNs reconstructed solely from literature, and the output of 546 
biased results strictly related to rigid constraints, are specific indicators of issues 547 
preventing the scaling-up of the reconstruction and analysis of integrated models. In 548 
short, there is a vast diversity of methods capable of integrating and simulating the 549 
effect of regulation into the metabolism, though few approaches that ease the 550 
reconstruction of these integrated models. 551 

Hence, the perspective of reconstructing integrated genome-scale models of 552 
metabolism and gene expression for diverse prokaryotes is still a complex endeavor. 553 



The implementation of a user-friendly computational framework that does not 554 
require coding skills, is capable of running a semi-automated pipeline for reconstructing 555 
TRNs or analyzing gene expression data, and performs its integration into standard 556 
GSMMs, would be a clear breakthrough towards the reconstruction and simulation of 557 
integrated genome-scale models of metabolism and gene expression. This hypothetical 558 
computational tool should be able to combine different sources of regulatory 559 
information which are seldom combined. 560 

 561 

Perspectives 562 

 The advent of high-throughput large-scale omics experiments has been supporting 563 
the study of the genomics, transcriptomics, and metabolomics layers of the 564 
cellular’s molecular machinery. Systems biology can take advantage of the sheer 565 
volume of studies in these different omics fields by proposing differentiated 566 
approaches, such as the reconstruction of in silico networks and models 567 

 The reconstruction and analysis of integrated models based on the integration of 568 
TRNs into GSMMs has not been conventional for non-model prokaryotic 569 
organisms. Usually, these lack large gene expression datasets, or have few sources 570 
of regulatory data. In addition to the absence of an established methodology and 571 
of easy to use tools and algorithms, the reconstruction and integration of TRNs 572 
into GSMMs is almost impracticable.  573 

 Hence, a user-friendly computational framework that facilitates the 574 
reconstruction of TRNs and allows to integrate these into GSMMs would be a step 575 
towards facilitating the extension of integrated models to other prokaryotic 576 
organisms. 577 
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