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Abstract—Usually, transport reactions are added to genome-scale metabolic models (GSMMs) based on experimental data and

literature. This approach does not allow associating specific genes with transport reactions, which impairs the ability of the model to

predict effects of gene deletions. Novel methods for systematic genome-wide transporter functional annotation and their integration into

GSMMs are therefore necessary. In this work, an automatic system to detect and classify all potential membrane transport proteins for

a given genome and integrate the related reactions into GSMMs is proposed, based on the identification and classification of genes that

encode transmembrane proteins. The Transport Reactions Annotation and Generation (TRIAGE) tool identifies the metabolites

transported by each transmembrane protein and its transporter family. The localization of the carriers is also predicted and,

consequently, their action is confined to a given membrane. The integration of the data provided by TRIAGE with highly curated models

allowed the identification of new transport reactions. TRIAGE is included in the new release ofmerlin, a software tool previously

developed by the authors, which expedites the GSMM reconstruction processes.
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1 INTRODUCTION

GENOME-SCALE metabolic models (GSMMs) can be used
to simulate in silico the phenotype of organisms of

interest in selected genetic/environmental conditions. These
models are becoming increasingly common since the number
of fully sequenced organisms, as well as the available data
generated by high-throughput techniques, have been grow-
ing exponentially [1]. GSMMs have been applied in strain
optimization tasks within the Metabolic Engineering field,
and also in guiding biological discovery, analyzing global
network properties, and studying evolution [2]. Several new
methods, tools and databases to aid in the development of
GSMMs and their application in strain optimizations tasks
have been described [3], [4].

GSMMs include diverse information, such as reaction and
metabolite sets, Enzyme Commission (EC) numbers [5] and
gene-protein-reaction (GPR) associations.WhilemostGSMMs
have few compartments, over the years several have been
released including broader compartmentalization informa-
tion. Models such as the iMH805/775 [6] (15 compartments)
and the iMM904 [7] (eight compartments) for Saccharomyces
cerevisiae, the iOD907 [8] (four compartments) for Kluyveromy-
ces lactis or the iRS1563 [9] for Zea mays (six compartments)
include reactions occurring in specific cellular organelles,

such as the mitochondria, chloroplasts (in photosynthetic
organisms), lysosomes, cell nucleus or the Golgi apparatus.
On the other hand, despite not having intracellular organelles,
models of prokaryotic cells often have up to three compart-
ments (cytoplasm, periplasm and the extracellular space),
although more could be added if microcompartments (e.g.,
carboxysomes) were accounted for. The presence of compart-
ments in GSMMs implies that often compounds have to cross
cell or organelle-specificmembranes so that reactions can take
place, depending also on the localization of the enzymes.

Transport reactions present in GSMMs are normally
obtained from experimental data and literature. A transport
reaction is added for every metabolite known to be taken in
from themedium, excreted from the cell or transported across
intracellular membranes [10]. This methodology does not
allow to automatically associate genes to transporter proteins
and their reactions, decreasing the quality of the model’s pre-
dictions (e.g., for gene knockouts). The identification of genes
encoding transport proteins and the metabolites being trans-
ported by those carriers is important so that more and accu-
rate GSMMs can be reconstructed [11] (both for eukaryotes
and prokaryotes), also allowing the elemental and charge bal-
ances to be assessed more easily [10], [12]. The reconstruction
of robust models involves determining the ionization state of
each compound, according to the pH of the compartments
[10]. Reactions must have a net charge of 0 whilst obeying to
elemental balances, thus it is of the utmost importance to
account for the water molecules and protons that participate
in those reactions. Though, usually, water molecules are
allowed to freely diffuse into all compartments, protons only
change compartments through active transport reactions.
Thus, the production and consumption of protons has to be
properly balancedwithin each compartment.
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Some efforts have been undertaken by Lee et al. [13] to
infer transport systems based in the genome annotation.
However, to the best of our knowledge, a systematic
approach to simultaneously identify, classify and annotate
membrane transporters, as well as the reactions promoted by
these proteins is lacking: Indeed, some authors have recently
raised concerns regarding this issue. For example, Feist et al.
[14]mention that newmethods for this task are required and,
even more recently, Hamilton and Reed [15] considered that
transporters are still often poorly annotated and the existing
tools cannot add transport reactions between compartments.
In our vision, such a framework should also envision the
(semi)-automated integration of these transporters into
GSMMs,within themodel reconstruction process.

In this work, TRIAGE (Transport Proteins Annotation
and Reactions Generation), a tool that detects and classifies
potential transport proteins based on the identification and
classification of genes that encode transmembrane proteins,
is proposed. Furthermore, TRIAGE automatically generates
transport reactions for selected metabolites, which can be
immediately integrated into GSMMs.

For this purpose, a pipeline which performs the genome-
scale annotation of membrane transport proteins, by identi-
fying genes encoding transporter proteins and the metabo-
lites transported by each carrier, was developed. Specialized
tools were used for predicting the localization of the carriers,
confining their action to a specificmembrane. TRIAGE is cur-
rently available in merlin (www.merlin-sysbio.org) [16], a
software tool developed in-house that expedites the GSMMs
reconstruction process.

After identifying the transporter systems within the tar-
get organism’s genome, as well as their localization in the
cell, an algorithm for generating transport reactions is
deployed. Although such reactions are balanced and can be
directly integrated into GSMMs, these should be regarded
as predictions and not as reactions confirmed with experi-
mental evidences. The transport reactions are built taking
into account the metabolites annotated in the TCDB records
identified as similar to the Transporter Candidate Gene
(TCG) under analysis in the target genome. Several organ-
isms were used to validate TRIAGE, namely Kluyveromyces
lactis, Ashbya gossypii, Saccharomyces cerevisiae, Helicobacter
pylori and Escherichia coli. Almost all S. cerevisiae GSMMs are
compartmentalized, having intracellular transport reac-
tions. E. coli is the most studied microbe and, despite being
a prokaryote, several GSMMs with transport reactions from
the outside to the periplasm and inside of the cell are avail-
able. The other cases represent less studied organisms of
interest for which the authors have expertise.

2 METHODS

TRIAGE was developed in Java and the information
retrieved from the different data sources is kept in a
MySQL relational database. As depicted in Fig. A.1 of
Appendix A, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TCBB.2016.2527647, there are two layers on the
relational database. The transporter candidates’ layer
(dynamic layer) is organism specific, with an instance of
these tables for each organism. This layer is connected to

the shared layer of the database, the transport reactions
layer (static layer), by three connections that allow TCGs to
be assigned with a TC family, a range of metabolites to be
transported and a direction for such transport.

Five online databases are used by TRIAGE. TCDB (www.
tcdb.org) is used as the main data source, since TCGs
are compared against its sequences. Also, information on
the metabolites used to construct transport reactions are
retrieved from TCDB records. Kyoto Encyclopedia of Genes
and Genomes (KEGG – www.kegg.jp) [17], Chemical Enti-
ties of Biological Interest database (ChEBI – www.ebi.ac.uk)
[18] and semantics SBML 2.0 (semanticsbml.org/) [19] are
used for collecting additional data for metabolite identifica-
tion and characterization. UniProtJAPI [20] (www.uniprot.
org) is used to retrieve the phylogenetic data of each of the
TCDB transport systems that are essential for the assign-
ment of transport reactions to the candidate genes, as it is
described later. Biojava [21] was used to implement the
Smith-Waterman (SW) [22] algorithm.

2.1 Development of an Internal Database
of Transport Reactions

A database of transport reactions, based on information
retrieved from TCDB, was compiled for TRIAGE. A concise
description of that process is provided next.

Manually annotated cellular transport systems are
described and stored in databases such as the Transporter
Classification Database (TCDB) [23] or the TransportDB
[24]. Since it is the most comprehensive, TCDB is used at
the core of TRIAGE. It proposes a classification system
for transport proteins, the transporter classification (TC)
numbers, analogous to the EC system, but including also
phylogenetic information. The system encompasses five
components separated by a dot: #: � :#:#:#, in which #
represent numbers and � a letter. The first number is the
class, while the letter corresponds to the subclass. TCDB
classifies transport proteins in seven classes: Channels/
Pores (1: � :#:#:#); Electrochemical Potential-driven
transporters (2: � :#:#:#); Primary Active Transporters
(3: � :#:#:#); Group Translocators (4: � :#:#:#); Transport
Electron Carriers (5: � :#:#:#); Accessory Factors Involved
in Transport (8: � :#:#:#); and Incompletely Characterized
Transport Systems (9: � :#:#:#). More information on
TCDB classes can be found in [25]. The numbers after the
letter indicate, respectively, the family (or superfamily), the
subfamily (or the family within a superfamily) and the spe-
cific transporter system associated to a particular range of
carried substrates and the polarity of transport (in or out)
[23], [25]. For example, the TC number 2:A:1:1:1 identifies a
galactose:proton symport carrier of the Sugar Porter Family
(2:A:1:1). This record is, currently, associated to a single E.
coli gene (b2943). Enzymes are associated with EC numbers
that classify the catalyzed reactions and a gene can be
annotated with several EC numbers. On the other hand, TC
numbers are associated to proteins that transport a specific
substrate or range of substrates on a specific direction (in,
out or both) using a given mechanism (uniport, symport,
etc.), and are normally associated to a single organism [25].
Thus, unlike enzymes, transporter proteins should not be
directly classified with TC numbers from homology, given
the various criteria that must be met to match a specific TC
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number. Moreover, the allocation of new TC numbers is
exclusively performed by TCDB’s expert curators as the
deployment of TC numbers must be prudently controlled.

TCDB records often provide direct access to specific infor-
mation, namely: UniProt Accession Number, organism, Pro-
tein Name, Length, Molecular Weight, organism’s species,
Number of transmembrane domains and Location/ Topol-
ogy/ Orientation. However, to date, they do not contain spe-
cific fields for transported metabolites and direction of
transport, which have to bemanually inferred from the trans-
port system description of each record, as well as from gener-
alized transport reactions provided by TCDB for several
families and superfamilies. Thus, a data integration work-
flow was developed, using other databases (KEGG, ChEBI
and SemanticsSBML), for extracting information from TCDB
on the metabolites involved in each TC record. This informa-
tion ismandatory to provide connections to GSMMs.

TRIAGE’s internal transport reactions database was
populated with the following information retrieved from
the TCDB, when available: UniProt accession number,
protein name, organism, taxonomy, TC number, TC fam-
ily, transported metabolite, direction, reversibility, react-
ing metabolites and equation. These data were retrieved
using different approaches.

In this work, 3,248 TCDB transport system records were
manually examined (TCDB records having similarities with
the case studies), after automatic retrieval from the HTML
interface using a Java routine. The remaining records will
be curated as required by the case studies. The UniProt
accession number, protein name, TC number, TC family
and TC number description fields were automatically
extracted from these records. The taxonomy of the record is
directly retrieved from the UniProt database using the
accession numbers available in the TCDB records and Uni-
ProtJAPI. The direction, reversibility, reacting metabolites
and generic equation were manually retrieved from the
TC families description or, when not available in this sub-
class, superfamily descriptions. This process was complex
because, in the latter case, distinct transport system families
share the same equations in a many-to-one relationship.
The following example illustrates this, where equation (1)
represents the generalized transport reaction for the 3.A.1
ATP-binding Cassette uptake system.

Soluteout þATP� > Solutein þADP þ Pi: (1)

However, for example, distinct families like 3.A.1.1: the
Carbohydrate Uptake Transporter-1 (CUT1) Family and 3.
A.1.3: the Polar Amino Acid Uptake Transporter Family
will have similar ATP dependent transport systems. There-
fore, although these families have the same reacting metab-
olites (ATP, ADP, Pi), the transported metabolites are
distinct (carbohydrates and polar amino acids, respec-
tively). The localization of the reacting metabolites is not
provided as it depends on the organism in which the reac-
tion is taking place. Thus, manual curation of the reactions
in the model is of paramount importance.

The difference between transported and reacting metabo-
lites is that the first ones are only involved in reactions
across membranes, while reacting metabolites are involved
in chemical transformations throughout the transport

process (e.g., ATP or NADH). As mentioned above, the
metabolites transported by each system have to be manually
retrieved from the transport system description. Still, only
metabolite names can be retrieved from the TCDB records
definition. Therefore, all of the manually identified metabo-
lites were submitted to an algorithm developed in the scope
of this work for classifying them with KEGG and ChEBI
identifiers. This process uses three database Application Pro-
gramming Interfaces (APIs) to identify cross references for
these metabolites: KEGG, ChEBI and semanticSBML. Cross-
references to KEGG are extremely important since those
transport reactions will be easily integratedwith the GSMMs
created within merlin, which uses KEGG’s metabolic infor-
mation to assemble the reaction set. Therefore, this annota-
tion algorithm tries to assign both identifiers (KEGG and
ChEBI) to eachmetabolite, as illustrated in Fig. 1.

Initially, the algorithm uses the KEGG REST API (http://
www.kegg.jp/kegg/rest/keggapi.html) to look for a KEGG
compound with a name or synonym that is a perfect match
to the name manually collected from TCDB. If any KEGG
entity meets the requirements, then the ChEBI cross-refer-
ence from that record is also retrieved. A valid ChEBI iden-
tifier allows the algorithm to stop and the metabolite to be
annotated. On the other hand, an invalid ChEBI identifier or
the lack of a match to a KEGG compound leads to the search
of a match to ChEBI, performed using its Java API (www.
ebi.ac.uk/chebi/webServices.do). As previously, a perfect
match to a ChEBI entity name or synonym allows the algo-
rithm to annotate the metabolite entity with a ChEBI identi-
fier. The algorithm stops if the metabolite was previously
annotated with a KEGG identifier or if ChEBI has a valid
cross-reference to KEGG.

If the metabolite is not annotated with both KEGG
and ChEBI identifiers after this direct search, seman-
ticSBML is used to try to retrieve such identifiers. The
semanticSBML REpresentational State Transfer (REST) API
“search” method is used to search for MIRIAM annotations
[26], using the metabolite name, and to get the list of match-
ing annotation groups. The method is configured to return

Fig. 1. Algorithm for assigning identifiers from KEGG and ChEBI to each
metabolite. The algorithm stops when both identifiers are retrieved.
When KEGG and ChEBI web services cannot annotate the metabolite
with both identifiers, sbmlSemantics REST API is used to retrieve at
least one of the identifiers. If the algorithm cannot return any identifier
the metabolite is left unannotated.
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only results with a precision of 1, i.e., only exact hits will be
returned. If successful, the results obtained from this
method allow the algorithm to annotate the metabolite with
both KEGG and ChEBI identifiers. In the case none of the
previous three methods assigns either a KEGG or ChEBI id,
the metabolite is left unannotated.

Often, a metabolite retrieved from a TCDB record
description is a generic entity (such as sugars, anions, lipids,
etc.); thus, all the second-generation elements, i.e., the ones
that are associated to the generic (or parent) metabolite in
ChEBI by a “is a” or “has role” ontology, are also associated
to the transport system of the parent metabolite. For exam-
ple, a-D-glucose (CHEBI:17925) and b-D-glucose (CHEBI:
15903) are both second-generation elements of D-glucose
(CHEBI:4167). For each second-generation element of a
generic compound classified as substrate of a carrier
encoded in the genome, a new transport reaction will be
included in the GSMM and annotated with the correspond-
ing gene. Still, not all second-generation elements retrieved
from ChEBI for a given parent metabolite keep KEGG cross-
references. Reactions for metabolites without KEGG identi-
fiers will be generated, although not included in the model.

The formulae of all metabolites involved in transport
reactions are inspected and the transport reaction is only
accepted if the equation is balanced, i.e., if there are the
same number of atoms of each element on the left and right
hand sides of the equation. All previous information is kept
in the transport reactions’ layer of the database, according
to Fig. A.1 of Appendix A, available in the online supple-
mentary material. This database associates TCDB entries
with transport reactions, including the transport type and
transported metabolites, as well as other metabolites
involved in the transport process.

2.2 Assignment of Transport Systems
to Transporter Candidate Genes

The most important feature of TRIAGE is probably the
assignment of transport systems (including the transport
reactions) to genes. These reactions are usually catalysed by
proteins located on membranes [23], [25], [27]. Thus, pro-
teins with transmembrane domains may be regarded as
suitable candidates to potential transport systems. There are
a few tools available for the prediction of transmembrane
protein topology from its sequence. The TransMembrane
prediction using Hidden Markov Models (TMHMM -
www.cbs.dtu.dk/services/TMHMM) tool [28] has been
considered the best for this task [29]. Hence, it was therefore
used to find, within the full genome, genes encoding pro-
teins with transmembrane helices in their sequences, classi-
fying these genes as TCGs if they have at least n
transmembrane domains (n=1 was used in the scope of this
work). In the future, other tools will be assessed for integra-
tion on TRIAGE, since recently Reddy et al. [30] claimed
that other tools are able to provide better predictions than
TMHMM for this task.

After identifying the transporter candidate genes, simi-
larity searches are performed, comparing the proteins
encoded in such genes with the ones available in TCDB.
The similarity between sequences is calculated using the
dynamic programming based algorithm SW for local align-
ments, guaranteeing optimality and high sensitivity when

looking for homologous sequences. These alignments are
performed to identify proteins with sequence similarities to
known transport systems. The similarity threshold for con-
sidering the homology was of 10 percent of the maximum
alignment score. However, as TCDB is a very small data-
base (11622 records as of June 2014) a heuristic method was
used to lower the similarity threshold, whenever a TCG has
at least 5 transmembrane helices. In these cases, the evi-
dence for a transporter role is stronger, justifying the special
case. For each extra transmembrane helix, the similarity
threshold was lowered by 0:5 percent until a minimum of
half the initial similarity threshold is reached (5 percent in
this case). Nonetheless, the initial similarity threshold can
be beforehand set by the user.

This TMHMM/TCDB/SW coupled strategy allows iden-
tifying and annotating different types of transport proteins
located in membranes. Table B.1 of Appendix B, available in
the online supplementary material, shows the result of the
alignment of a K. lactis gene (KLLA0B00264g) with TCDB.
This putative membrane transport system has 10 transmem-
brane helices (according to TMHMM), thus the similarity
threshold was set to 7:5 percent. If this heuristic was not
used, this gene would only have 17 similar genes in TCDB
(instead of 47). Glycerol is associated with that membrane
transport systems with a final classification score (see the
details below) of 0.38. However, if the initial similarity
threshold of 10 percent was used, glycerol would not be
included in the list of transported metabolites because the
TCDB homologous gene that transports glycerol with the
highest similarity to that gene has a similarity of only 8:28
percent. This gene’s function is yet unknown, thus the anno-
tation proposed by TRIAGE cannot be assessed. Neverthe-
less, these predictions can be used to decrease the number
of experiments required to determine the gene’s role.

After running the SW algorithm and retrieving the infor-
mation for the most similar genes in TCDB, a routine is then
used to select which metabolites will actually be assigned
to each gene g, weighting the number of times each metabo-
lite m is found within the homologous gene records (fre-
quency), and the taxonomy of the organisms appearing in
those records. This methodology builds on the assumption
that related organisms will thrive in similar environments
more often than dissimilar organisms, thus having closer
uptake and secretion requirements. The following equation
describes how this process is performed.

scoreðgÞm ¼ a:scorefrequency þ ð1� aÞ:scoretaxonomy: (2)

The balance between the frequency score and the taxon-
omy score is given by a parameter a. The frequency score,
which calculates the number of occurrences of a metabolite
mwithin all TCDB similar records for that gene, is given by:

scorefrequency ¼
PH

i¼1 si � VmiPH
i¼1 si

: (3)

This score is obtained by summing up the similarities of
each homologous TCDB gene that transports the metabolite
m and dividing by the sum of the similarities of all homolo-
gous genes, no matter what they transport. In this notation,
si is the similarity of the gene g with the ith record in TCDB
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calculated using SW, H is the total number of hits for the
gene, and Vmi is a binary variable described as:

Vmi ¼ 1; if metabolite m is in record i
0; otherwise:

�
(4)

The frequency score considers both lateral and vertical
gene transfer, whereas the taxonomy score is put forward to
favour homologies of TCGs with TCDB records of closely
related organisms. The latter is calculated as shown below.

scoretaxonomy ¼
PH

i¼1 ti � Vmi � ð1� pm � bÞ
MT �PH

i¼1 Vmi

: (5)

In the numerator, the taxonomy frequency (sum of the
number of common taxa between the organism being stud-
ied and the one in the TCDB record, over all hits) is multi-
plied by a penalty. This is used to penalize the score for
metabolites that are associated to a low number of similar
genes and may be the result of incorrect assignments (b is a
penalty parameter, default value of 0:05). The penalty factor
(pm) is calculated by subtracting the frequency of the genes
that transport a given metabolite from a user defined mini-
mal number of hits (set to 2 in the example given in Appen-
dix B, available in the online supplementary material). If this
subtraction is positive, it is multiplied by b and subtracted to
1, otherwise the penalty is zero. In the denominator, themax-
imum taxonomy (MT ) value (number of taxa of the target
organism) is multiplied by the frequency of the genes that
transport the metabolite. In this notation ti is the number of
common taxa between the organism to which record i
belongs and the target organism. The calculation of the
metabolite penalty is described in equation (6). The default
values of all parameters are shown in (Fig. A.2 of Appendix
A, available in the online supplementarymaterial).

pm ¼ 0; if
PH

i¼1 Vmi � MinHits

MinHits �
PH

i¼1 Vmi; otherwise:

�
(6)

Table B.2 of Appendix B, available in the online supple-
mentary material, describes the process of determining
which metabolites will be assigned to gene KLLA0B00264g
(K. lactis). The example shows the steps for assessing the
scores for glucose, lactose, myo-inositol and glycerol. Table
B.1 of Appendix B, available in the online supplementary
material, shows in bold all the taxa that each TCDB hit has in
common with the K. lactis case study gene (KLLA0B00264g).
As shown in Tables B.1 and B.2 of Appendix B, available in
the online supplementary material, S. cerevisiae has 8 taxa in
common with K. lactis. On the other hand, the Homo sapiens
homologue only has 1 taxon in common and Bacteria have
none. The taxonomy frequency sum for D-glucose is calcu-
lated by adding all the common taxa count for the TCDB
records (Table B.2 of Appendix B, available in the online sup-
plementarymaterial, highlighted in blue) and the final result
is 119. The maximum taxonomy frequency is 10 (result
obtained by counting all the K. lactis taxa) which will be mul-
tiplied by 26 records associated to the transport of D-glucose.
This metabolite’s frequency is greater than the minimum
required; therefore, there will be no penalty applied. On the

other hand, lactose (Table B.2 of Appendix B, available in the
online supplementary material, highlighted in green) is
available just one time and it will have a frequency penalty
of 5 percent. The taxonomy score for D-glucose is 0:46. The
final D-glucose score, for a ¼ 0:3, is 0:5. If a was set to 0:4 it
would be 0:51. Lactose has a score of 0:67 (a ¼ 0:3) and for
a ¼ 0:4 the score would be 0:58.

The same metabolite can be transported by several types
of carriers, such as uniport, symport or antiport. The algo-
rithm developed for metabolite classification was also used
to classify how a metabolite is transported. In the previous
example, glucose can be transported by symport (Table B.2
of Appendix B, available in the online supplementary mate-
rial, emphasized in light red) or uniport (light blue). The
final score for D-glucose transport by symport is 0:40 and
the score for uniport is 0:49; thus, uniport will be selected
by TRIAGE. If the scores were equal, both types of transport
would have been selected. The user can set a list of symport
currency metabolites to prevent creating excessive transport
reactions (Fig. A.2 of Appendix A, available in the online
supplementary material). In this work Hþ (C00080) and
Naþ (C01330) were set as currency metabolites.

It is possible that genes being classified by TRIAGE have
records in TCDB and, consequently, a similarity score of 1
in the SW alignments. Nevertheless, such genes may also
have similarity to other genes in the transporters classifica-
tion database. Thus, all the hits are used to classify the
metabolites to be transported by those genes. It is assumed
that TCDB associates the transport of specific metabolites to
genes according to published experiments. However, those
carriers may also be able to transport other metabolites, spe-
cifically metabolites carried by similar transport systems
untested in such experiments.

2.3 Prediction of the Subcellular Localization
of Proteins

WoLF PSORT [31] and PSORTb 3.0 [32] were used to assign
sub-cellular localizations to the identified transporters. The
first was chosen because it has been reported as the best
eukaryotic protein subcellular localization prediction tool in
the literature [33], [34], [35], while PSORTb 3.0 is the next
generation of the PSORTb tools, which continues to be the
most widely employed localization prediction software for
bacteria [36].

Although PSORTb 3.0 does not provide a web API for
accessing the compartmentalization data, there are two
approaches for retrieving these data. PSORTb 3.0 offers pre-
computed genome results, for genomes deposited in Gen-
Bank. These data can be retrieved from the PSORTdb data-
base at http://db.psort.org/browse. On the other hand, if
the genome in question is not available in the precomputed
results, the target genome sequence files, in the FASTA for-
mat, should be submitted to the PSORTb 3.0 HTML inter-
face. However, the maximum size allowed for submission is
100 Kb; therefore, some files may have to be split.

For WoLF PSORT (http://www.wolfpsort.org) it was
possible to use a simple remote Java API from a Java archive
(jar) provided by Paul Horton, in a personal communica-
tion, where it was also indicated that “intracellular organ-
elle membranes, say mitochondrial or E.R., are lumped
together with soluble proteins in their organelle”.
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Secondary locations are also considered for protein subcel-
lular localization. If any compartment(s) has(have) a score
that differs less than 10 percent from the main location
score, such compartment(s) is(are) also taken into account
when generating transport reactions.

2.4 Automatic Assembly of Transport Reactions

After metabolite identification and transport type selection,
as well as their localization in the cell, TRIAGE automati-
cally generates the transport reactions using a few heuristic
rules. If a metabolite is transported by antiport or symport
by a carrier encoded in a given gene, then co-transported
metabolites are used to assemble reactions. For example, if
symport was selected for the previous example, a reaction
including all the metabolites that are co-transported by
symport with D-glucose (in this case, just the proton) would
be generated and proposed to be integrated in the GSMM.
This reaction is described below.

D-glucoseextr þHþ
extr <¼> D-glucosecyto þHþ

cyto: (7)

For uniport the reaction is:

D-glucoseextr <¼> D-glucosecyto: (8)

Moreover, the descendants of the selected metabolites
are also used to generate similar reactions. Therefore, from
D-glucose alone, three transport reactions will be generated
and associated to this K. lactis gene (KLLA0B00264g). This
example does not involve any source of energy to drive the
transport of D-glucose. However, other types of carriers
implicate energy requirements, as is the case of the P-type
ATPase Superfamily transport proteins that use energy
from ATP hydrolysis to transport a metabolite across a
membrane. If a gene has similarities with genes of this fam-
ily, that gene will be associated with ATP, ADP and Pi. The
reacting metabolites are treated as currency metabolites, not
being scored. A system for the assignment of partial TC
numbers to these genes was also developed and is available
in Appendix C, available in the online supplementary mate-
rial. The generated transport reactions for several thresh-
olds, provided by TRIAGE for the gene in the example, are
displayed in Table B.3 of Appendix B, available in the online

supplementary material. As expected, there is an inverse
correlation between the score threshold and the number of
reactions annotated to a specific gene.

To conclude, the confirmation of a TCG as a membrane
transport system by TRIAGE involves meeting three criteria.
The first is to have transmembrane domains. The second is to
have similarities with TCDB records. The third is to have a
localization prediction within a membrane: inner membrane
or outer membrane for prokaryotes and plasma membrane
for eukaryotes. However, since intracellular membranes are
lumped with the intracellular organelle predictions, it was
decided that if a TCG met the first two requirements, thus
having strong evidences of being a transporter, and WoLF
PSORT assigned an intracellular organelle to such TCG, it
would be considered that the TCG was located in the organ-
elle membrane, encoding an intra-cellular transport system.

3 RESULTS AND DISCUSSION

3.1 Transporter Annotation

TRIAGE was used to identify genes encoding transport
systems and to generate transport reactions for the case
study organisms (K. lactis, A. gossypii, S. cerevisiae, H.
pylori, and E. coli).

3.1.1 Transporters Candidate Genes

The main results are provided in Fig. 2 and Tables 1 and 2.
The former table represents the number of genes that fulfil
criterion 1 (having transmembrane domains - TCGs from
TMHMM) and 2 (having similarities to TCDB records -
TCGs with TCDB Hits). The latter table contains the number
of genes that fulfil the third criterion (location on a mem-
brane) independently of the other 2 criteria. Fig. 2 shows the
intersection of the last column of both tables, i.e., the genes
that fulfill all three criteria.

Fig. 2. Cross linking the information from protein localization and the
identification of transporter candidate genes. The number of genes, clas-
sified as transporters is represented by the intersection of the genes that
have similarities to TCDB records (after checking for transmembrane
domains with TMHMM) and the genes with a localization prediction
within an external membrane. The Fungi are represented in blue and the
Bacteria are represented in green.

TABLE 1
Number of Potential Transport Systems Encoding

Genes in Each of the Studied Genomes

Organism Nr. of
Genes

TCGs from
TMHMM

TCGs with
TCDB Hits

K. lactis 5,085 967 355
S .cerevisiae 5,882 1,144 427
A. gossypii 4,726 860 296
E. coli 4,146 1,039 675
H. pylori 1,590 330 176

Genes having transmembrane domains and similarities to TCDB records.

TABLE 2
Number of Genes Predicted to Encode Proteins

Localized in Each of the Membranes

Organism External Internal Total

K. lactis 663 475 944
S. cerevisiae 805 576 1,124
A. gossypii 625 403 829
E. coli 25 869 893
H. pylori 9 237 245

The last column does not represent the sum of the preceding ones,
since a gene can be associated with multiple membranes.
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Table 1 and Fig. 2 clearly show that, as expected, increas-
ing the stringency of the conditions that a given gene has to
meet reduces the number of TCG’s annotated as carriers. In
all of the studied organisms, 18 to 20 percent of the genes
were identified as TCGs by TMHMM, except for E. coli (with
25 percent). These results are consistent with previous stud-
ies [37], [38] that suggest that approximately 20� 30 percent
of all proteins in the genome are predicted to encode mem-
brane proteins. In Fungi 34 to 37 percent of the TCG’s have
similarities with TCDB entries, whereas H. pylori and E. coli
have more than half of the TCG’s with homology to TCDB
records. These results suggest that TCDB has more entries
for prokaryotes than for lower eukaryotes.

The number of genes predicted to encode proteins local-
ized in the different membranes, according to PSORTb and
WoLF PSORT, is indicated in Table 2. Fungi have a nearly
constant ratio (13 percent) of genes predicted to encode pro-
teins localized in the plasma membrane. Bacterial predic-
tions are somewhat different. H. pylori is predicted to have
less than 1 percent of the genes encoding outer membrane
proteins and 15 percent encoding cytoplasmic membrane
proteins. Likewise, E. coli is expected to have less than 1 per-
cent of genes encoding outer membrane proteins and 21
percent encoding cytoplasmic membrane proteins.

Nevertheless, more than half of the genes predicted by
TMHMM to encode membrane proteins have similarities to
genes available in the TCDB, except for A. gossypii and H.
pylori. The high number of putative membrane protein
encoding genes without similarities to TCDB is probably
due to the reduced number of entries still available in
TCDB. As shown in Fig. 2, only a small number of genes not
predicted to be localized in membranes have transmem-
brane helices and similarities to the TCDB genes.

The fact that there are about 10 times more TCGs
between periplasm and the cytoplasm than between the
exterior and the periplasm can be, at least in part, justified
by limitations in the methodologies used. Although plasma
membrane proteins consist of mostly transmembrane
a-helices, outer membrane proteins are typically composed
of b- strands in which barrel sizes are associated with differ-
ent functions. The latter comprise active ion transporters for
nutrient uptake, membrane anchors, membrane-bound
enzymes and protection against pathogenic proteins [38].
However, TMHMM only predicts transmembrane helices,
impairing the predictions for the outer membrane.

As shown in Fig. 2, only a small number of genes not pre-
dicted to be localized in membranes have transmembrane

helices and similarities to the TCDB genes. On the other
hand the number of membrane protein encoding genes
without similarities in TCDB is well over a half for eukar-
yotes and about a third for prokaryotes.

The number of TCGs effectively associated to reactions
by TRIAGE is shown in Table 3. In this table it is shown
that, as expected, increasing the transport reactions score
threshold decreases the number of TCGs associated to
transport reactions. By comparing with the results of the
intersections shown in Fig. 2, it is clear that in none of the
case studies the full set of TCG’s is used to generate trans-
port reactions. This means that such genes have similarities
with records poorly annotated in TCDB and hence our inter-
nal database.

3.1.2 TRIAGE’s Internal Transport Reactions Database

The database of Transport Reactions, compiled throughout
this work, contains information for 5,495 TCDB records,
which were associated to 1,053 distinct primary metabolites.
These were submitted to the metabolite names annotation
pipeline to be assignedwith KEGG and ChEBI identifiers. For
the majority (603) both identifiers were retrieved, while 224
were not assignedwith any identifier, 220 were only assigned
with ChEBI identifiers and sixwere only assignedwith KEGG
identifiers. Moreover, 29,034 second-generation metabolites
(of which 6,964 also had KEGG identifiers) were retrieved
from the 823 primary metabolites with ChEBI identifiers. The
829 (603+6+220) metabolites that had at least one database
identifier were used to generate 2,491 main (1st generation)
reactions associatedwith the respective proteins in TCDB.

3.1.3 Transport Reactions Assembly

The connection between the membrane transport systems
and the metabolites to be carried was performed by using
the routine described above and empirically setting the
default threshold of the overall score to 0.2 (values ranging
from 0.0 to 0.4 are also shown in Table 4).

Table 4 presents the total number of reactions in which
all metabolites have KEGG identifiers, for each organism.
The consequences of retrieving all the second-generation
metabolites from the ChEBI ontology, so that all possible
substrates of a given transporter could be found, are well
demonstrated. Transporters are often able to transport vari-
ous substrates [13], [39], and multiple transporters may exist
for one specific substrate [39]. Thus, TRIAGE mimics this
behaviour, proposing that a transporter can transport

TABLE 3
Number of Transport Systems Encoding Genes Associated

to Transport Reactions for Different Score Thresholds

Organism
Threshold

0.0 0.1 0.2 0.3 0.4

K. lactis 324 324 317 303 262
S. cerevisiae 392 387 375 364 323
A. gossypii 268 266 254 243 208
E. coli 559 555 539 523 490
H. pylori 137 136 127 96 61

The default values used for the scorer parameters a and b were 0.3 and 0.05,
respectively.

TABLE 4
Number of Transport Reactions Provided by TRIAGE

Organism
Threshold

0.0 0.1 0.2 0.3 0.4

K. lactis 14,322 9,188 8,217 6,853 5,310
S. cerevisiae 18,038 12,187 9,604 8,863 6,974
A. gossypii 13,051 8,087 7,163 5,484 4,867
E. coli 18,740 15,868 11,339 10,152 8,470
H. pylori 14,667 12,700 7,622 2,789 488

This table shows the number of reactions created by TRIAGE in which all
metabolites have KEGG identifiers. The default values used for the scorer
parameters a and b were 0.3 and 0.05, respectively.
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similar compounds and that different transporters may
carry the same compound using dissimilar mechanisms.

The high number of transport reactions is thus explained
by several facts: i) for each second-generation metabolite of
a given ChEBI entity, a transport reaction similar to the reac-
tion of the parent metabolite is created; ii) moreover, each
metabolite (and its second-generation elements) may be
transported through several transport systems (uniport,
symport, etc.), depending on the classification of each gene
associated with that metabolite; and, iii) the same reaction
on different membranes is regarded as distinct reactions.
Yet, if the reactions in which metabolites without KEGG
identifiers (some metabolites were only assigned with
ChEBI identifiers) were shown in this table, the number of
reactions would increase even further.

Still, regardless of the number of reactions generated,
another filtering process is performed when integrating this
information with the GSMMs. Only transport reactions in
which all metabolites are already present in the genome-
scale models are selected for integration. Moreover, when
performing simulations, those reactions will only be active
in the compartments that hold the reactants (or products) of
the transport reaction. Worth mentioning is the fact that
increasing the threshold decreases the number of reactions
(Table 4) significantly more than the number of genes that
encode reactions is reduced (Table 3). Thus, a threshold of
0.2 is recommended for scoring, according to Table 4 and
Table B.4 of Appendix B, available in the online supplemen-
tary material, as we think it provides reasonable results. A
threshold of zero would include all available reactions for
each gene, while an increase from 0.2 to 0.4 can be too
restrictive for less characterized organisms, as shown in the
case of H. pylori.

3.2 Integration with Genome–Scale Models

TRIAGE was not compared to other tools as we could not
find any other tools that generated transport reactions for
annotating proteins in the mentioned case studies. Instead
the results obtained with TRIAGE were compared with met-
abolic models of E. coli and S. cerevisiae, iAF1260 (406 genes
for 718 transport reactions) and iMM904 (202 genes for 409
transport reactions), respectively.

3.2.1 Genes Integration

To gather the genes encoding transport systems in a
model, the rule was the following: if a given reaction in
the model has substrates and products in different com-
partments, the reaction is regarded as of transport and the
genes associated with that reaction are considered genes
encoding membrane transport systems. TRIAGE was exe-
cuted using the default parameters for the similarity
alignments and metabolite scoring.

It is not surprising that TRIAGE annotates a number of
genes with transport functions larger than published mod-
els. According to Fig. 2, E. coli and S. cerevisiae have 618 and
407 transporter genes, respectively. Nevertheless, as shown
in Table B.5 of Appendix B, available in the online supple-
mentary material, there are 65 genes for S. cerevisiae and,
surprisingly, 190 for E. coli assigned with transport reactions
in the models not identified by TRIAGE.

Analyzing the results further, about 22 percent (14) of the
unidentified yeast model’s genes are not identified as trans-
porters because WoLF PSORT predicted such genes to be
expressed in the cytoplasm, thus not complying with one of
the criteria of this approach. Moreover, 68 percent (44) of
such genes were not annotated as carriers because TMHMM
did not predict any transmembrane region and 7 percent (5)
of those genes did not have similarities with TCDB. The
remaining 3 percent (two) genes were associated to trans-
port reactions with scores below the threshold.

For E. coli, as shown in Table B.5 of Appendix B, available
in the online supplementary material, PSORTb 3.0 indicated
approximately 32 percent (61) of the unidentified carriers as
periplasmic, cytoplasmic or in one unknown location. Fur-
thermore, 51 percent (97) of the genes classified as carriers
in the model and assigned to the cytoplasmic membrane or
outer membrane by PSORTb 3.0, could not be identified as
membrane transporters, as TMHMM did not predict any
transmembrane region in these genes. Finally, 7 percent
(13) of the remaining genes did not have any similarity with
TCDB records. The remaining 10 percent of the genes (19)
could not be associated to transport reactions with scores
above the threshold.

On the other hand, as shown in Table B.5 of Appendix B,
available in the online supplementary material, TRIAGE
proposes 228 new carrier genes for E. coli and 148 for yeast.
These predictions should be confirmed with wet-lab experi-
ments and their impact verified through phenotype simula-
tions using GSMMs.

3.2.2 Transport Reactions Integration

The reactions generated by TRIAGE were also integrated
in the GSMMs. For that purpose, the pipeline used for
performing metabolites identification (Fig. 1) was also
used to assign KEGG identifiers to the metabolites in both
models. For the yeast model 674 out of 713 metabolites
(ignoring location) were assigned with identifiers. For E.
coli, 883 within 1039 metabolites (ignoring location) were
identified. The remaining metabolites are either absent
from the databases or, although present, their labels in
the models are not similar to the names available in the
selected databases. For instance, 4-methylzymosterol,
(identified in iMM904 as M_4mzym_c) does not exist in
KEGG, thus it cannot be assigned with a KEGG identifier.
Yet, KEGG has a variation of this metabolite (4alpha-
methylzymosterol), which was not identified by the algo-
rithm developed in this work.

TRIAGE’s reactions were then filtered to keep only
reactions that included metabolites present in the models.
In these models, metabolites in different compartments
are regarded as different entities, called species. The same
metabolite in different compartments are two distinct meta-
bolic species. For instance, glucose in the cytoplasm is a spe-
cies and extracellular glucose is another species. Hence, if
glucose is available in the cytoplasm (or periplasm for some
prokaryotes) but not in the external compartment of the
model, relaxing the integration criteria will allow adding
extracellular glucose to the model, thus adding a new trans-
port reaction to the model. These reactions can be useful for
extending the model, in order to enable predictions in dif-
ferent environmental conditions.

450 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 14, NO. 2, MARCH/APRIL 2017



We considered three different types of transport reac-
tions regarding their integration with the model. If all meta-
bolic species for a given reaction are available in a model, it
is considered a 1st level reaction. These reactions can be
directly added to the model not demanding any changes in
the metabolites. When the reaction contains at least one met-
abolic species unavailable in the model (i.e., all metabolites
are present in the model, but at least one is not present in

the same compartment), we call it a 2nd level reaction. If all
metabolic species are absent from the model (i.e., all metab-
olites are present in the model, but none is in the same com-

partment), the reaction is considered of the 3rd level. Thus,

2nd and 3rd level reactions can only be integrated in the
model, if the integration criterion is relaxed, allowing the
addition of new metabolic species to the model.

Score threshold values ranging from 0.0 to 0.4 and similar-
ity threshold values ranging from 0.05 to 0.3 were analyzed
for S. cerevisiae and E. coli, and results are shown in Table B.4
of Appendix B, available in the online supplementary mate-
rial. In this table, it is shown that lowering the overall score
threshold increases the number of perfect matches between
TRIAGE’s reactions and the models reactions. Likewise,
decreasing the similarity score threshold also rises the num-
ber of perfect matches between the tool and the model,
except for a few cases in which the taxonomy of the TCDB
hits lowers the overall score as shown in Table B.4.1 of
Appendix B, available in the online supplementary material.
The number of new integratable reactions also increases for
lower thresholds. Results for a score threshold of 0.2 and a
similarity threshold of 0.1 are further discussed.

As depicted in Fig. 3 (and Table B.4 of Appendix B,
available in the online supplementary material), 655 reac-
tions were selected from TRIAGE to be integrated in the
yeast GSMM. Most of these transport reactions (448) are
not available in the model, thus being new reactions. For
the iMM904 model, loosening the criteria allows adding
200 (2nd and 3rd level) new transport reactions to the
model. Moreover, 56 percent of the new reactions are asso-
ciated to the transport of metabolites between the external
compartment and the cytoplasm. This model has originally

409 transport reactions, 155 of which carry metabolites
from the exterior to the cytoplasm (data not shown). TRI-
AGE was able to obtain a recall of 51 percent (207) over all
model reactions. From those, 50 reactions fully matched
the ones in the model, including 29 that were not assigned
to any genes in the GSMM and, therefore, can now be
assigned with a gene-reaction rule. Also, 52 model reac-
tions were matched by TRIAGE (assigning new genes to
17), but in this case the reversibility was different. More-
over, 73 reactions corresponding to metabolites for which
TRIAGE predicted different transport mechanisms (43 of
which had no gene assigned in the model) were found. For
example, the model has a transport reaction for L-Aspara-
gine by proton symport, but TRIAGE chose uniport. Over-
all, TRIAGE was able to assign GPRs to a total of 111 non-
gene associated transport reactions in the iMM904 model.

Due to several reasons, 202 transport reactions in the
model were not matched in this work. Most of those reac-
tions (over 75 percent) are associated to internal transport
reactions. Although TRIAGE can predict intracellular reac-
tions, only four internal compartments were selected for
yeast, because transport reactions to other compartments
were associated to metabolites not existing in such compart-
ments; thus, these reactions were ignored. Also, 76 percent
(154) of the 202 reactions not matched by TRIAGE were not
associated to any gene and thus these reactions were proba-
bly added without genomic evidences. Only 11 external
transport reactions with gene associations, for metabolites
identified with KEGG identifiers in the model were not
matched, giving an accuracy of 86 percent for external
exchange reactions with gene associations and metabolites
with KEGG identifiers.

E. coli’s model contains 718 transport reactions, 299 of
which carry metabolites from the exterior to the periplasm.
As shown in Fig. 4 (and Table B.4 of Appendix B, available
in the online supplementary material), 662 reactions were
selected to be integrated in the model.

Half of these transport reactions (331) are not available in
the model, thus being new reactions. Loosening the integra-
tion criteria allows adding 78 2nd and 3rd reactions most of
which (75) internal as, again, there are very few genes

Fig. 3. Comparison of the results for transport reactions obtained with
TRIAGE and from the iMM904 GSMM for S. cerevisiae. The above
figure represents the intersection of the results of TRIAGE and the
iMM904 model. The pie chart classifies the intersection results within
three classes. The numbers between brackets in the pie chart represent
the number of reactions that had no gene assigned in the model but
were assigned to a gene by TRIAGE. The block list displays some prop-
erties of the reaction set, to which it is connected to, that help under-
standing the mispredictions.

Fig. 4. Comparison of the results for transport reactions obtained with
TRIAGE and from the iAF1260 GSMM model for E. coli. The above
figure represents the intersection of the results of TRIAGE and the
iAF1260 model. The pie chart classifies the intersection results within
three classes. The numbers between brackets in the pie chart represent
the number of reactions that had no gene assigned in the model but
were assigned to a gene by TRIAGE. The block list displays some prop-
erties of the reaction set, to which it is connected to, that help under-
standing the mispredictions.
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assigned to the outer membranes. Indeed, 96 percent of the

new reactions (1st, 2nd and 3rd) are associated to the trans-
port of metabolites between the periplasm and the cytosol
(319) and only four reactions between the external compart-
ment and the periplasm.

In this case, TRIAGE only obtained a recall of 46 percent
(331) of the reactions in the GSMM. TRIAGE perfectly
matched 126 reactions, matched the reaction except for the
reversibility on 30 occasions, and for 129 reactions themetabo-
lite to be transported wasmatched in a reaction different than
the available in the model. This model has a smaller number
of reactions without gene associations, but still a total of 17
transport reactions without GPRs in the iAF1260 model were
associated to genes by TRIAGE. There is a large number of
reactions in the model not matched by TRIAGE, due to sev-
eral reasons. For instance, 102 reactions were associated to
metabolites without KEGG identifiers, thus such reactions
could not be matched. Moreover, 166 of the 285 reactions in
which metabolites had KEGG identifiers, were associated to
reactions in the outer membrane. However, as shown in
Table2, PSORTb 3.0 predicted that only 85 genes in the entire
genome encode proteins in that location, while for the cyto-
plasmic membrane the number of genes is 12 fold higher.
Finally, only 103 reactions for transporting metabolites with
KEGG identifiers, in the cytoplasmic membrane with gene
associations (out of 315 –)were notmatched (data not shown),
including several chemically complex transport reactions that
could not be directly compared to the generated reactions.
Therefore, the accuracy was about 68 percent for transport
reactions through the cytoplasmicmembrane,with gene asso-
ciations andmetabolites withKEGG identifiers.

3.2.3 Integration Outcome

Although thousands of reactions were made available by
TRIAGE (as shown in Table 4), only a few hundred were
integrated in the model. As stated earlier, several transport
reactions may exist for the same metabolite, like several
antiport reactions with various counter-transported sub-
strates, etc. Moreover, specific variations of the same metab-
olite (for instance, a and b conformations) are also included
as different reactions in this set, though often only one of
the variations is available in the model. Therefore, it was
expected that the number of reactions that can be integrated
in the model is in the order of the hundreds.

Nevertheless, TRIAGE allows identifying and assigning
functions to genes previously unannotated or new functions
to annotated genes. For example E. coli’s b3876 gene has a
putative annotation in UniProt and is unavailable in TCDB.
TRIAGE associated this gene to the symport of melibiose as
shown in equations (9) and (10):

melibperip þ hperip ¼> melibcyto þ hcyto; (9)

melibperip þ na1perip ¼> melibcyto þ na1cyto: (10)

For S. cerevisiae, the YBR220C gene was annotated as a
peptide-Acetyl-Coenzyme A antiporter as in equation (11):

CoAcyto þAcCoAextr <¼> CoAextr þAcCoAcyto: (11)

using TRIAGE, and such gene was previously annotated as
a protein of unknown function. Furthermore, TRIAGE

allows assigning new genes to existing transport reactions
in both E. coli and S. cerevisiae models, thus proving to be
valuable when reconstructing metabolic models. Also, TRI-
AGE generated alternative reactions for transporting metab-
olites already available in the model. Finally, relaxing the
integration criteria allows adding several new transport
reactions, as shown in Table B.6 of Appendix B, available in
the online supplementary material. These reactions should
be carefully reviewed, as adding new species to the models
may impair predictions.

3.3 Carbon Sources Assessment

According to CBS-KNAW Fungal Biodiversity Centre
(http://www.cbs.knaw.nl/) and EcoCyc (http://ecocyc.
org), S. cerevisiae and E. coli are able to grow in a broad num-
ber of carbon sources. As shown in Table B.7 of Appendix B,
available in the online supplementary material, considering
that the presence of a transport reaction promotes growth
on a given carbon source, the following results were gener-
ated. Table 5 shows that TRIAGE provides reactions for car-
rying 53 percent (10 out of 19) of the carbon sources in
which this yeast is known to thrive.

The iMM904 model also provides these reactions for 53
percent (10 out of 19) of the carbon sources. Yet, only half of
these reactions are associated to genes in the model. TRI-
AGE proposes more reactions for the carbon sources in
which the in vivo growth was not verified: 44 percent (16 in
36) against 33 percent - 12 out of 36, of which gene associa-
tions are only provided for 2 reactions. As previously stated,
all reactions provided by TRIAGE are associated to genes.
The high number of false positives provided both by TRI-
AGE and the model may be associated with limitations in
the experimental conditions used. Although this yeast can-
not grow using some metabolites as sole carbon sources in
the conditions of the experiments, this does not mean that
the yeast cannot metabolize these compounds in other
experimental conditions. Moreover, the organisms can pos-
sess the transport reactions for a given metabolite and still
not be able to metabolize it due to the lack of specific
enzymes. This may be due to the non-specificity of the
transporters, as well as to the loss of metabolic functions
along evolution.

For E. coli, TRIAGE predictions are, once again, impaired
by the number of proteins predicted to be located in the
outer membrane. Only carriers for 6 (out of 23) carbon sour-
ces are identified by TRIAGE in this membrane. However,
searching for transporters of the same metabolites, but from
the periplasm to the cytoplasm, the numbers are quite

TABLE 5
Association between the Presence of Transport Reactions

and Growth in Different Carbon Sources

Phenotype S. cerevisiae E. coli

iMM904 TRIAGE iAF1260 TRIAGE

Growth 53% 53% 87% 26% (83%)
No Growth 33% 44% 26% 11% (52%)

This table represents the comparison of the percentage of existing transport
reactions for carbon sources in which the organism is known to exhibit or lack
growth. In brackets are the results obtained for the metabolites transported
between the periplasm and the cytoplasm.
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different and the percentage of carbon sources transported
by E. coli increases over three fold to 83 percent. The model
has transport reactions for 87 percent (20 in 23) of the carbon
sources in which growth is confirmed. The number of car-
riers for carbon sources, in which this organism cannot
attain in vivo growth, are 26 percent (seven in 27) for the
model and 11 percent (or 52 percent if transport from the
periplasm is accounted for) in TRIAGE. All reactions avail-
able in the model for the carbon sources listed in Table B.7
of Appendix B, available in the online supplementary mate-
rial, (20+7) are associated to genes. However, these reactions
are associated to four genes (b0929, b2215, b1377, b0241)
except for reactions that transport glucose and maltose,
which are associated to gene b4036. None of these genes has
transmembrane helices (all of them have b-strands), thus
these genes were discarded by TRIAGE.

4 CONCLUSIONS

TRIAGE, a new methodology for identifying membrane
transport systems and automatically generating transport
reactions for every metabolite transported by those carriers,
is proposed in this work. These reactions can be directly
integrated with GSMMs since all metabolites involved have
KEGG and/or ChEBI identifiers. TRIAGE combines several
tools to obtain more reliable results, minimizing the possi-
bility of adding incorrect transporters as the pipeline for
TCG identification is very stringent. This implies that a neg-
ative prediction in one of the modules will exclude the gene
of the membrane transport systems encoding genes set.

TRIAGE is the only tool able to generate transport reac-
tions associated to genes based in the organisms genome
sequence and to sort such reactions in a way that these can
be immediately integrated into metabolic models, both for
internal and external transporters. Toolboxes like RAVEN
[40] (which allows adding transport reactions manually) or
SuBliMinaL [41] (which includes a tool that allows adding a
default standard set of transporters) also try to approach
this problematic, yet without relying on genomic informa-
tion. ModelSEED [4], KBASE (http://kbase.us/) and Path-
way Tools [42] all perform the annotation of transporters,
the first two using the RAST annotations to develop models.
These tools are targeted at prokaryotic organisms adding
spontaneous reactions to fill in pathways when necessary,
whilst external transport reactions can also be added based
on information from the genome. However, to our knowl-
edge, TRIAGE is currently the only tool annotating trans-
port proteins, while simultaneously generating transport
reactions for eukaryotic organisms.

The first step performed by TRIAGE, transmembrane
domain identification is crucial, because if TMHMM does
not predict transmembrane helices, the gene is excluded. In
the future, the authors intend to consider more elaborate
methods and tools for this first step, taking more informa-
tion into account, such as the inclusion of methods that can
predict b-strands in protein sequences since the identifica-
tion of these structures might improve the annotation of
outer membrane transporters encoding genes from gram
negative bacteria, and considering the use of machine learn-
ing approaches, similar to those already used for protein
localization methods.

WoLF PSORT and PSORTb 3.0 also have a prominent
role in the transport systems assignment. A wrong compart-
ment prediction will also exclude the gene of the carriers
set. Being such an important step, though the best method-
ologies published to date are being used, the study of alter-
native databases and tools will be considered.

Overall, further tests will be performed to try to relax
some of the strict rules that TRIAGE uses, if it is proven that
false negative rates are high.

Furthermore, although all TCDB records are linked to lit-
erature references and thus experimental data are directly
used, these data could not be used to validate TRIAGE.
When studying a genome, the transport protein encoding
genes available in TCDB are annotated to that genome. As
such, a direct comparison between the experimentally vali-
dated TCGs and the ones predicted by TRIAGE would be
too biased.

The results for the integration of the data provided by TRI-
AGE with curated models (continuously curated for over 10
years) are quite acceptable, including the association of trans-
port reactions to genes that were previously not annotated,
providing gene-reaction associations required for several sim-
ulations, and the identification of new reactions that can be
added to the existing models. TRIAGE was able to provide
uptake transport reactions for metabolites that the yeast can
use as sole carbon sources, not previously identified in the
model. For E. coli the results concerning carbon sources were
impaired by the lack of a tool that could predict genes with
b-strands. Nonetheless, the results (considering transport
between the periplasm and cytosol) are fairly satisfactory.

Also, when comparing TRIAGE’s results with existing
models and data for growth on carbon sources the number
of false positives seems more relevant than the number of
false negatives, except for the particular case of E. coli due
to the limitations of TRIAGE in predicting transmembrane
proteins in the outer membrane. Nevertheless, when analy-
sing GSMMs, we cannot assume that the coverage of trans-
porters is high, as in most cases a systematic analysis has
not been performed to detect transporters as it is done for
enzymatic activities. Also, the amount of data available for
the carbon sources growth is scarce and, thus, the conclu-
sions should be considered preliminary. Unfortunately,
there are not sufficiently large experimental datasets on
transporters that can be used to validate TRIAGE and many
of the predictions made would need to be experimentally
validated to verify TRIAGE’s accuracy.

As a final remark, we believe that TRIAGE can be used as
a first step of a semi-automated methodology to identify
genome-associated transport reactions, which after manual
curation can be integrated with existing and under develop-
ment models, offering reliable results.
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APPENDIX A

Fig. 1.A File with Additional figure in PDF format. Rela-
tional database schema of the TRIAGE tool. Fig. 2.A TRI-
AGE’s GUI screenshot.

APPENDIX B

File with Additional tables in Excel format. Table B.1 –
Result of the SW similarity alignment between a single
Kluyveromyces lactis gene (KLLA0B00264g) and TCDB.
Table B.2 – Transport information retrieved for each of
the TCDB homologue genes. Table B.3 – Reactions gener-
ated for three different score thresholds (ranging from 0.0
to 0.4 ). Table B.4 – Assessment of the reactions created
by TRIAGE against the iAF1260 and iMM904 for different
score and similarity thresholds. Table B.5 – Genes associ-
ated with transport reactions in the model not identified
in TRIAGE (and vice-versa). Table B.6 – New reactions
available for integration in the model. Table B.7 – Com-
parison of the predictions of the GSMMs and TRIAGE
regarding transport reactions for known carbon sources
(extended version).

APPENDIX C

File in PDF format. Description of the methodology for the
assignment of partial TC numbers in TRIAGE.

ACKNOWLEDGMENTS

Funding: This work was partially supported by a PhD grant
(SFRH /BD/47307/2008) and by the ERDF—European
Regional Development Fund through the COMPETE
Programme (operational programme for competitiveness),
and National Funds through the FCT within the projects
FCOMP-01-0124-FEDER-009707 (HeliSysBio—molecular
Systems Biology in Helicobacter pylori) and PTDC/EIA-
EIA/115176/2009. The authors would also like to thank
the FCT Strategic Project PEst-OE/EQB/LA0023/2013
and the Projects “BioInd - Biotechnology and Bioengineer-
ing for improved Industrial and Agro-Food processes”,
REF. NORTE-07-0124-FEDER-000028 and “PEM –Metabolic
Engineering Platform”, project number 23060 , both co-
funded by the Programa Operacional Regional do Norte
(ON.2 – O Novo Norte), QREN, FEDER.

REFERENCES

[1] I. Rocha, J. F€orster, and J. Nielsen. (2008, Jan.). Design and applica-
tion of genome-scale reconstructed metabolic models, Methods in
Molecular Biology (Clifton, N.J.) [Online]. 416, pp. 409–31. Avail-
able: http://www.ncbi.nlm.nih.gov/pubmed/18392985

[2] A. M. Feist and B. Ø. Palsson, “The growing scope of applications
of genome-scale metabolic reconstructions using Escherichia coli,”
Nature Biotechnol., vol. 26, no. 6, pp. 659–667, Jun. 2008.

[3] I. Rocha, P. Maia, P. Evangelista, P. Vilaça, S. Soares, J. P. Pinto, J.
Nielsen, K. R. Patil, E. C. Ferreira, and M. Rocha. (2010, Jan.) Opt-
Flux: An open-source software platform for in silico metabolic
engineering, BMC Syst. Biol. [Online]. 4(1), p. 45. Available:
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=
2864236&tool=pmcentrez&rendertype=abstract.

[4] C. S. Henry, M. DeJongh, A. A. Best, P. M. Frybarger, B. Linsay,
and R. L. Stevens. (2010, Sep.). High-throughput generation, opti-
mization and analysis of genome-scale metabolic models,” Nature
Biotechnol., vol. 28, no. 9 [Online]. 28(9), pp. 977–982. Available:
http://www.ncbi.nlm.nih.gov/pubmed/20802497.

[5] A. J. Barrett, C. R. Canter, C. Liebecq, G. P. Moss, W. Saenger, N.
Sharon, K. F. Tipton, P. Vnetianer, and V. F. G. Vliegenthart,
Enzyme Nomenclature, NC-ICBMB and E. C. Webb, Eds. San Diego,
CA, USA: Academic, 1992.

[6] M. J. Herrga
�
rd, N. Swainston, P. Dobson, W. B. Dunn, K. Y. Arga,

M. Arvas, N. Bl€uthgen, S. Borger, R. Costenoble, M. Heinemann,
M. Hucka, N. Le Nov�ere, P. Li, W. Liebermeister, M. L. Mo, A. P.
Oliveira, D. Petranovic, S. Pettifer, E. Simeonidis, K. Smallbone, I.
Spasi�c, D. Weichart, R. Brent, D. S. Broomhead, H. V. Westerhoff,
B. Kirdar, M. Penttil€a, E. Klipp, B. Ø. Palsson, U. Sauer, S. G. Oli-
ver, P. Mendes, J. Nielsen, and D. B. Kell. (2008, Oct.). A consensus
yeast metabolic network reconstruction obtained from a commu-
nity approach to systems biology, Nature Biotechnology [Online].
26(10), pp. 1155–1160. Available: http://eprints.ma.man.ac.uk/
1152/, http://www.ncbi.nlm.nih.gov/pubmed/18846089.

[7] M. L. Mo, B. O. Palsson, and M. J. Herrga
�
rd. (2009, Jan.). Con-

necting extracellular metabolomic measurements to intracellular
flux states in yeast, BMC Syst. Biol. [Online]. 3(1), p. 37. Avail-
able: http://www.biomedcentral.com/1752-0509/3/37, http://
www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2679711&
tool=pm centrez&rendertype=abstract.

[8] O. Dias, R. Pereira, A. K. Gombert, E. C. Ferreira, and I. Rocha,
“iOD907, the first genome-scale metabolic model for the milk yeast
Kluyveromyces lactis,” Biotechnol. J., vol. 9, no. 6, pp. 776–790, Apr.
2014.

[9] R. Saha, P. F. Suthers, and C. D. Maranas. (2011, Jan.). Zea mays
iRS1563: A comprehensive genome-scale metabolic reconstruction
of maize metabolism, PloS One, [Online]. 6(7), p. e21784. Avail-
able: http://dx.plos.org/10.1371/journal.pone.0021784, http://
www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3131064&
tool=pm centrez&rendertype=abstract.

[10] I. Thiele and B. Ø. Palsson. (2010, Jan.). A protocol for generating a
high-quality genome-scalemetabolic reconstruction,Nature Protocols,
[Online]. 5(1), pp. 93–121. Available: http://www.ncbi.nlm.nih.gov/
pubmed/20057383, http://www.pubmedcentral.nih.gov/
articlerender.fcgi?artid=3125167&tool=pm centrez&rendertype=
abstract.

[11] A. M. Feist, C. S. Henry, J. L. Reed, M. Krummenacker, A. R. Joyce,
P. D. Karp, L. J. Broadbelt, V. Hatzimanikatis, and B. Ø. Palsson.
(2007.). A genome-scale metabolic reconstruction for Escherichia
coli K-12 MG1655 that accounts for 1260 ORFs and thermody-
namic information, Molecular Syst. Biol. [Online]. 3(121), p. 121.
Available: http://www.ncbi.nlm.nih.gov/pubmed/17593909.

[12] N. C. Duarte. (2004, Jun.). Reconstruction and validation of
saccharomyces cerevisiae ind750, a fully compartmentalized
Genome-scale metabolic model, Genome Res. [Online]. 14(7),
pp. 1298–1309. Available: http://www.pubmedcentral.nih.gov/
articlerender.fcgi?artid=442145&tool=pmcentrez&rendertype=
abstract, http://www.genome.org/cgi/doi/10.1101/gr.2250904.

[13] T. J. Lee, I. Paulsen, and P. Karp. (2008, Jul.). Annotation-based
inference of transporter function, Bioinformat. (Oxford, England)
[Online]. 24(13), pp. i259–267. Available: http://bioinformatics.
oxfordjournals.org/cgi/content/abstract/24/13/i25 9.

[14] A. M. Feist, M. J. Herrga
�
rd, I. Thiele, J. L. Reed, and B. Ø. Palsson.

(2009, Feb.). Reconstruction of biochemical networks in microor-
ganisms, Nature Rev. Microbiol. [Online]. 7(2), pp. 129–143. Avail-
able: http://www.pubmedcentral.nih.gov/articlerender.fcgi?
artid=3119670&tool=pmcentrez&rendertype=abstract.

[15] J. J. Hamilton and J. L. Reed. (2014, Jan.). Software platforms to
facilitate reconstructing genome-scale metabolic networks, Envi-
ronmental Microbiol. [Online]. 16(1), pp. 49–59. Available: http://
www.ncbi.nlm.nih.gov/pubmed/24148076.

[16] O. Dias, M. Rocha, E. C. Ferreira, and I. Rocha. (2015, Apr.).
Reconstructing genome-scale metabolic models with Merlin,
Nucleic Acids Res. [Online]. pp. 1–12. Available: http://www.ncbi.
nlm.nih.gov/pubmed/25845595, http://nar.oxfordjournals.org/
content/early/2015/04/06/nar.gkv294.abstract?keytype=
ref&ijkey= a42xhDf2nONcn2W.

454 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 14, NO. 2, MARCH/APRIL 2017



[17] H. Ogata, S. Goto, K. Sato, W. Fujibuchi, H. Bono, and M.
Kanehisa. (1999, Jan.). KEGG: Kyoto encyclopedia of genes
and genomes, Nucleic Acids Res. [Online]. 27(1), pp. 29–34.
Available: http://www.pubmedcentral.nih.gov/articlerender.
fcgi?artid=102409&too l=pmcentrez&rendertype=abstract.

[18] K. Degtyarenko, P. de Matos, M. Ennis, J. Hastings, M. Zbinden,
A. McNaught, R. Alc�antara, M. Darsow, M. Guedj, and M. Ash-
burner. (2008, Jan.). ChEBI: A database and ontology for chemical
entities of biological interest, Nucleic Acids Res. [Online]. 36,
pp. D344–D350. Available: http://nar.oxfordjournals.org/cgi/
content/abstract/36/suppl_1/D344.

[19] W. Liebermeister, F. Krause, J. Uhlendorf, T. Lubitz, and E. Klipp.
(2009, Apr.). SemanticSBML: A tool for annotating, checking, and
merging of biochemical models in SBML format, Nature Precedings
[Online]. Available: http://precedings.nature.com/documents/
3093/version/1, http://precedings.nature.com/doifinder/
10.1038/npre.2009.3093.1.

[20] S. Patient, D. Wieser, M. Kleen, E. Kretschmann, M. Jesus Martin,
and R. Apweiler. (2008, May). UniProtJAPI: A remote API
for accessing UniProt data, Bioinformatics (Oxford, England),
[Online]. 24(10), pp. 1321–1322. Available: http://bioinformatics.
oxfordjournals.org/cgi/content/abstract/24/10/1321, http://
www.ncbi.nlm.nih.gov/pubmed/18390879.

[21] A. Prli�c, A. Yates, S. E. Bliven, P. W. Rose, J. Jacobsen, P. V.
Troshin, M. Chapman, J. Gao, C. H. Koh, S. Foisy, R. Holland, G.
Rimsa, M. L. Heuer, H. Brandst€atter-M€uller, P. E. Bourne, and S.
Willis. (2012, Oct.). BioJava: An open-source framework for bioin-
formatics in 2012, Bioinformatics (Oxford, England), [Online]. 28
(20), pp. 2693–2695. Available: http://bioinformatics.oxfordjour-
nals.org/content/28/20/2693.abstract.

[22] T. F. Smith and M. S. Waterman. (1981, Mar.). Identification of
common molecular subsequences, J. Molecular Biol. [Online]. 147
(1), pp. 195–197. Available: http://linkinghub.elsevier.com/
retrieve/pii/0022283681900875, http://www.ncbi.nlm.nih.gov/
pubmed/7265238.

[23] M. H. Saier, V. S. Reddy, D. G. Tamang, and A. V€astermark.
(2014, Jan.). The transporter classification database, Nucleic
Acids Res., [Online]. 42, pp. D251–D258. Available: http://nar.
oxfordjournals.org/content/42/D1/D251.abstract.

[24] Q. Ren, K. Chen, and I. T. Paulsen. (2007, Jan.). TransportDB: A
comprehensive database resource for cytoplasmic membrane
transport systems and outer membrane channels, Nucleic Acids
Res. [Online]. 35, pp. D274–D279. Available: http://www.pub-
medcentral.nih.gov/articlerender.fcgi?artid=1747178&tool=pm-
centrez&rendertype=abstract, http://nar.oxfordjournals.org/
content/35/suppl_1/D274.full.

[25] M. H. Saier. (2000, Jun.). A functional-phylogenetic classification
system for transmembrane solute transporters, Microbiol. Molecu-
lar Biol. Rev. : MMBR [Online]. 64(2), pp. 354–411. Available:
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=
98997&tool =pmcentrez&rendertype=abstract.

[26] N. Le Nov�ere, A. Finney, M. Hucka, U. S. Bhalla, F. Campagne, J.
Collado-Vides, E. J. Crampin, M. Halstead, E. Klipp, P. Mendes,
P. Nielsen, H. Sauro, B. Shapiro, J. L. Snoep, H. D. Spence, and B.
L. Wanner. (2005, Dec.). Minimum information requested in the
annotation of biochemical models (MIRIAM) Nature Biotechnol.,
vol. 23, no. 12 [Online]. 23(12), pp. 1509–1515. Available: http://
www.ncbi.nlm.nih.gov/pubmed/16333295.

[27] M. H. Saier, M. R. Yen, K. Noto, D. G. Tamang, and C. Elkan.
(2009, Jan.). The transporter classification database: Recent advan-
ces Nucleic Acids Res. [Online]. 37, pp. D274–D278. Available:
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=
2686586&tool=pmcentrez&rendertype=abstract.

[28] A. Krogh, B. Larsson, G. von Heijne, and E. L. Sonnhammer.
(2001, Jan.). Predicting transmembrane protein topology with a
hidden Markov model: Application to complete genomes, J.
Molecular Biol. [Online]. 305(3), pp. 567–580. Available: http://
www.ncbi.nlm.nih.gov/pubmed/11152613.

[29] S. Moller, M. D. R. Croning, R. Apweiler, and S. M€oller. (2001,
Jul.). Evaluation of methods for the prediction of membrane
spanning regions, Bioinformatics [Online]. 17(7), pp. 646–653.
Available: http://www.ncbi.nlm.nih.gov/pubmed/11448883,
http://bioinformatics.oxfordjournals.org/content/17/7/646.
short, http://bioinformatics.oxfordjournals.org/cgi/doi/
10.1093/bioinformatics/17.7.646.

[30] A. Reddy, J. Cho, S. Ling, V. Reddy, M. Shlykov, and M. H. Saier.
(2014, Jan.). Reliability of nine programs of topological predictions
and their application to integral membrane channel and carrier pro-
teins, J. Molecular Microbiol. Biotechnol. [Online]. 24(3), pp. 161–190.
Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?
artid=4125430&tool=pmcentrez&rendertype=abstract.

[31] P. Horton, K.-J. Park, T. Obayashi, N. Fujita, H. Harada, C. J.
Adams-Collier, and K. Nakai. (2007, Jul.). WoLF PSORT: Protein
localization predictor Nucleic Acids Res. [Online]. 35, pp. W585–
W587. Available: http://www.pubmedcentral.nih.gov/
articlerender.fcgi?artid=1933216&tool=pmcentrez&rendertype=
abstract.

[32] N. Y. Yu, J. R. Wagner, M. R. Laird, G. Melli, S. Rey, R. Lo,
P. Dao, S. C. Sahinalp, M. Ester, L. J. Foster, and F. S. L. Brinkman.
(2010, Jul.). PSORTb 3.0: Improved protein subcellular localization
prediction with refined localization subcategories and predi-
ctive capabilities for all prokaryotes, Bioinformatics (Oxford,
England) [Online]. 26(13), pp. 1608–1615. Available: http://www.
pubmedcentral.nih.gov/articlerender.fcgi?artid=2887053&tool=
pmcentrez&rendertype=abstract.

[33] J. Liu, S. Kang, C. Tang, L. B. M. Ellis, and T. Li. (2007, Jan.). Meta-
prediction of protein subcellular localization with reduced voting,
Nucleic Acids Res. [Online]. 35(15), p. e96. Available: http://www.
pubmedcentral.nih.gov/articlerender.fcgi?artid=1976432&tool=
pmcentrez&rendertype=abstract.

[34] E. W. Klee and C. P. Sosa. (2007, Mar.). Computational classifica-
tion of classically secreted proteins,Drug Discovery Today [Online].
12(5–6), pp. 234–240. Available: http://www.ncbi.nlm.nih.gov/
pubmed/17331888.

[35] W. Qian and J. Zhang. (2009, Jan.). Protein subcellular relocaliza-
tion in the evolution of yeast singleton and duplicate genes
Genome Biol. Evolution [Online]. 1, pp. 198–204. Available: http://
www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2817416&
tool=pmcentrez&rendertype=abstract.

[36] J. L. Gardy and F. S. L. Brinkman, “Methods for predicting bacte-
rial protein subcellular localization,” Nature Rev. Microbiol., vol. 4,
no. 10, pp. 741–51, Oct. 2006.

[37] E. Wallin and G. von Heijne. (1998, Apr.). Genome-wide analysis
of integral membrane proteins from eubacterial, archaean, and
eukaryotic organisms, Protein Science : A Publication of the Protein
Society [Online]. 7(4), pp. 1029–1038. Available: http://www.pub-
medcentral.nih.gov/articlerender.fcgi?artid=2143985&tool=
pmcentrez&rendertype=abstract.

[38] N. K. Natt, H. Kaur, and G. P. S. Raghava. (2004, Jul.). Prediction
of transmembrane regions of beta-barrel proteins using ANN-
and SVM-based methods, Proteins [Online]. 56(1), pp. 11–18.
Available: http://www.ncbi.nlm.nih.gov/pubmed/15162482.

[39] N. S. Schaadt, J. Christoph, and V. Helms Classifying substrate
specificities of membrane transporters from Arabidopsis
thaliana,” J. Chemical Inform. Model., vol. 50, no. 10, pp. 1899–1905,
Oct. 2010.

[40] R. Agren, L. Liu, S. Shoaie, W. Vongsangnak, I. Nookaew, and J.
Nielsen. (2013, Jan.). The RAVEN toolbox and its use for generat-
ing a Genome-scale metabolic model for Penicillium chrysoge-
num, PLoS Comput. Biol. [Online]. 9(3), p. e1002980. Available:
http://dx.plos.org/10.1371/journal.pcbi.1002980, http://www.
pubmedcentral.nih.gov/articlerender.fcgi?artid=3605104&
tool=pm centrez&rendertype=abstract.

[41] N. Swainston. (2012, Mar.). Systems biology informatics for
the development and use of genome-scale metabolic models
Ph.D. dissertation [Online]. Available: https://www.escholar.
manchester.ac.uk/uk-ac-man-scw:157795.

[42] P. D. Karp. (2001, Sep.). Pathway databases: A case study in compu-
tational symbolic theories, Science (New York, N.Y.) [Online]. 293
(5537), pp. 2040–2044. Available: http://www.ncbi.nlm.nih.gov/
pubmed/11557880.

DIAS ET AL.: GENOME-WIDE SEMI-AUTOMATED ANNOTATION OF TRANSPORTER SYSTEMS 455



Oscar Dias studied at the University of Minho
where he received the BSc degree in biological
engineering, in 2005, and the MSc dgree in infor-
matics, in 2008, and the PhD dgree in chemical
and biological engineering, in 2013. He published
eight articles in specialized journals, 17 papers in
conference proceedings, and four chapters of
published books. Between 2010 and 2015, he
participated in four research projects and is
currently participating in two research projects.
He currently holds a post-doc position at the Uni-

versity of Minho and his current research interests are industrial biotech-
nology and metabolic engineering with emphasis in systems biology
and bioinformatics, namely, reconstruction of genome-scale metabolic
models.

Daniel Gomes received the MSc degree in bio-
logical engineering from the University of Minho,
in 2009. In 2010, he initiated his research activities
at the Centre of Biological Engineering, University
of Minho, in the field of bio-ethanol production and
afterwards the reconstruction of a genome scale
metabolic model for Ashbya gossypii. His current
research interests include systems biology, indus-
trial biotechnology, microbiology, and bio-ethanol
production. In 2013, he initiated the PhD degree in
the field of second generation bio-ethanol produc-

tion with recycling of cellulases.

Paulo Vilaça graduated in informatics engineer-
ing and received the master’s degree in bioinfor-
matics from the University of Minho. He is also a
member of the bioinformatics and systems biol-
ogy group at the same university. He is currently
working toward the industrial PhD degree at
SilicoLife, a company creating computational sol-
utions for the fast growing industrial biotechnol-
ogy applications.

Jo~ao Cardoso received the BSc degree in bio-
sciences from the Catholic University of Portugal,
in 2009. He received the MSc degree in bioinfor-
matics from the University of Minho, in 2013. He
was a guest researcher at the Helmholtz-Zentrum
f€ur Infektionsforschung from 2009 to 2010, in the
Systems and Synthetic Biology research group.
He also worked as a grant researcher at the
same institution. From 2011 until 2014, he
worked at the SilicoLife, Lda, doing R&D in bioin-
formatics. Since October 2014, he has been

working toward the PhD degree at the Novo Nordisk Foundation Center
for Biosustainability in the sequencing, informatics, and modeling group.

Miguel Rocha studied informatics engineering at
the University of Minho, where he received the
BSc degree, in 1995, the MSc degree, in 1998
and, finally the PhD degree, in 2004. He is cur-
rently an associated professor in the School of
Engineering, University of Minho, and also the
director of the master course Bioinformatics and
coleads the Bioinformatics and Systems Biology
team of the Centre of Biological Engineering. He
has published over 100 papers in international
peer-reviewed journals and conferences, has

been the PI of several funded projects, and supervised seven PhD stu-
dents. The main research interests are related to bioinformatics, mainly
in the topics of machine learning, evolutionary computation, computa-
tional systems biology, reconstruction and optimization of metabolic
models, strain optimization, biomedical text mining, and omics data anal-
ysis and mining.

Eug�enio C. Ferreira graduated in chemical engi-
neering in 1986 and received the PhD degree in
1995, both from the University of Porto. During
the PhD preparation, he was a visiting research
scholar at the Université Catholique de Louvain,
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