16,078 research outputs found

    Estimating quantum chromatic numbers

    Get PDF
    We develop further the new versions of quantum chromatic numbers of graphs introduced by the first and fourth authors. We prove that the problem of computation of the commuting quantum chromatic number of a graph is solvable by an SDP algorithm and describe an hierarchy of variants of the commuting quantum chromatic number which converge to it. We introduce the tracial rank of a graph, a parameter that gives a lower bound for the commuting quantum chromatic number and parallels the projective rank, and prove that it is multiplicative. We describe the tracial rank, the projective rank and the fractional chromatic numbers in a unified manner that clarifies their connection with the commuting quantum chromatic number, the quantum chromatic number and the classical chromatic number, respectively. Finally, we present a new SDP algorithm that yields a parameter larger than the Lov\'asz number and is yet a lower bound for the tracial rank of the graph. We determine the precise value of the tracial rank of an odd cycle.Comment: 34 pages; v2 has improved presentation based after referees' comments, published versio

    Oriented coloring on recursively defined digraphs

    Full text link
    Coloring is one of the most famous problems in graph theory. The coloring problem on undirected graphs has been well studied, whereas there are very few results for coloring problems on directed graphs. An oriented k-coloring of an oriented graph G=(V,A) is a partition of the vertex set V into k independent sets such that all the arcs linking two of these subsets have the same direction. The oriented chromatic number of an oriented graph G is the smallest k such that G allows an oriented k-coloring. Deciding whether an acyclic digraph allows an oriented 4-coloring is NP-hard. It follows, that finding the chromatic number of an oriented graph is an NP-hard problem. This motivates to consider the problem on oriented co-graphs. After giving several characterizations for this graph class, we show a linear time algorithm which computes an optimal oriented coloring for an oriented co-graph. We further prove how the oriented chromatic number can be computed for the disjoint union and order composition from the oriented chromatic number of the involved oriented co-graphs. It turns out that within oriented co-graphs the oriented chromatic number is equal to the length of a longest oriented path plus one. We also show that the graph isomorphism problem on oriented co-graphs can be solved in linear time.Comment: 14 page

    On the structure of (pan, even hole)-free graphs

    Full text link
    A hole is a chordless cycle with at least four vertices. A pan is a graph which consists of a hole and a single vertex with precisely one neighbor on the hole. An even hole is a hole with an even number of vertices. We prove that a (pan, even hole)-free graph can be decomposed by clique cutsets into essentially unit circular-arc graphs. This structure theorem is the basis of our O(nm)O(nm)-time certifying algorithm for recognizing (pan, even hole)-free graphs and for our O(n2.5+nm)O(n^{2.5}+nm)-time algorithm to optimally color them. Using this structure theorem, we show that the tree-width of a (pan, even hole)-free graph is at most 1.5 times the clique number minus 1, and thus the chromatic number is at most 1.5 times the clique number.Comment: Accepted to appear in the Journal of Graph Theor

    Counting Complex Disordered States by Efficient Pattern Matching: Chromatic Polynomials and Potts Partition Functions

    Full text link
    Counting problems, determining the number of possible states of a large system under certain constraints, play an important role in many areas of science. They naturally arise for complex disordered systems in physics and chemistry, in mathematical graph theory, and in computer science. Counting problems, however, are among the hardest problems to access computationally. Here, we suggest a novel method to access a benchmark counting problem, finding chromatic polynomials of graphs. We develop a vertex-oriented symbolic pattern matching algorithm that exploits the equivalence between the chromatic polynomial and the zero-temperature partition function of the Potts antiferromagnet on the same graph. Implementing this bottom-up algorithm using appropriate computer algebra, the new method outperforms standard top-down methods by several orders of magnitude, already for moderately sized graphs. As a first application, we compute chromatic polynomials of samples of the simple cubic lattice, for the first time computationally accessing three-dimensional lattices of physical relevance. The method offers straightforward generalizations to several other counting problems.Comment: 7 pages, 4 figure
    • …
    corecore