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ESTIMATING QUANTUM CHROMATIC NUMBERS

VERN I. PAULSEN, SIMONE SEVERINI, DANIEL STAHLKE, IVAN G. TODOROV,
AND ANDREAS WINTER

Abstract. We develop further the new versions of quantum chromatic
numbers of graphs introduced by the first and fourth authors. We prove
that the problem of computation of the commuting quantum chromatic
number of a graph is solvable by an SDP algorithm and describe an hi-
erarchy of variants of the commuting quantum chromatic number which
converge to it. We introduce the tracial rank of a graph, a parameter
that gives a lower bound for the commuting quantum chromatic number
and parallels the projective rank, and prove that it is multiplicative. We
describe the tracial rank, the projective rank and the fractional chro-
matic numbers in a unified manner that clarifies their connection with
the commuting quantum chromatic number, the quantum chromatic
number and the classical chromatic number, respectively. Finally, we
present a new SDP algorithm that yields a parameter larger than the
Lovász number and is yet a lower bound for the tracial rank of the graph.
We determine the precise value of the tracial rank of an odd cycle.

1. Introduction

We assume that the reader is familiar with some concepts from graph
theory and refer the reader to the text [13] for any terminology that we do
not explain.

In [12, 1, 3, 27] the concept of the quantum chromatic number χq(G) of
a graph G was developed and inequalities for estimating this parameter, as
well as methods for its computation, were presented. In [24] several new
variants of the quantum chromatic number, denoted χqc(G), χqa(G) and
χqs(G), were introduced, as well as χvect(G). The motivation behind them
came from conjectures of Tsirelson and Connes and the fact that the set of
correlations of quantum experiments may possibly depend on which set of
quantum mechanical axioms one chooses to employ. Given a graph G, the
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aforementioned chromatic numbers satisfy the inequalities

χvect(G) ≤ χqc(G) ≤ χqa(G) ≤ χqs(G) ≤ χq(G) ≤ χ(G),

where χ(G) denotes the classical chromatic number of the graph G.
The motivation of [24] for defining and studying these new chromatic

numbers comes from the fact that if Tsirelson’s conjecture is true, then
χqc(G) = χq(G) for every graph G, while if Connes’ Embedding Problem
has an affirmative answer, then χqc(G) = χqa(G) for every graph G. Thus,
computing these invariants gives a means to test the corresponding conjec-
tures.

In [5] it was shown that

⌈ϑ+(G)⌉ = χvect(G),

where ⌈r⌉ denotes the least integer greater than or equal to r and ϑ+ is
Szegedy’s [30] variant of Lovász’s [20] ϑ-function. Furthermore, this identity
was used to give the first example of a graph for which χvect(G) 6= χq(G).
Also, since ϑ+ is defined by an SDP, the aforementioned result shows that
χvect(G) is computable by an SDP.

In this paper we show that for each size of graph, χqc(G) is also com-
putable by an SDP. Our proof builds on ideas borrowed from the “NPA
hierarchy” exhibited in [21]. It uses a compactness argument to show that
for the purposes of computing this integer the hierarchy terminates, but
does not yield the stage at which it does so. Thus, while we can say that
it is computable by one of the SDP’s in the hierarchy, we cannot explicitly
determine the size of this SDP. It is known that χ(G) is computable by an
SDP, but it is still not known if the same is true for χqa(G), χqs(G) and
χq(G). If the Tsirelson and Connes conjectures hold true then these three
quantities must also be computable by SDP’s as they then are all equal to
χqc(G).

D. Roberson and L. Mančinska [26] introduced a Hilbert space variant of
the fractional chromatic number χf(G) of a graph G, called the projective
rank, and denoted ξf(G). They proved that ξf(G) is a lower bound for χq(G);
this estimate was critical for identifying a graph G with χvect(G) 6= χq(G).
However, it is still not known if ξf(G) is a lower bound for the variants of
the quantum chromatic number studied in [24].

In the present paper, we introduce a new variant of the projective rank,
which we call tracial rank and show that it is a lower bound for χqc(G). We
also give a new interpretation of the projective rank in terms of traces on
finite dimensional C*-algebras. These parameters and their properties allow
us to give the first example of a graph for which χvect(G) 6= χqc(G).

Finally, we present a new SDP that yields a parameter larger than Szegedy’s
bound (i.e., it is an SDP relaxation of the latter), and which is still a lower
bound on χqc(G). En route, we show that our tracial rank is multiplicative.

To put our work into a broader context, recently a number of graph
parameters, including clique, chromatic, and independence numbers, have
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been generalized to “quantum” versions by relating the respective number
to attaining maximum probability 1 in a so-called non-local game. The
present work shows that some of the techniques to bound and separate these
numbers, originally developed for the exact, finite-dimensional and tensor
product case, can be extended to the approximate and relativistic setting,
and that they can be bounded by SDP’s without going directly to the NPA
hierarchy.

2. Quantum correlations and variants of the quantum
chromatic number

In this section we summarize the properties of some of the variants of the
quantum chromatic number introduced in [24] from the viewpoint of corre-
lations and derive a few additional properties of the corresponding models
that will be essential later. We introduce a new notation that we hope serves
to clarify and unify many of the ideas from [24].

Let G = (V,E) be a graph; here, V = V (G) is the set of vertices, while
E = E(G) is the set of edges, of G. If (v,w) ∈ E, we write v ∼ w. In [1] and
[3], the authors considered a “graph colouring game”, where two players,
Alice and Bob, try to convince a referee that they have a colouring of G; the
referee inputs a pair (v,w) of vertices of G, and each of the players produces
an output, according to a previously agreed “quantum strategy”, that is, a
probability distribution derived from an entangled state and collections of
positive operator-valued measures, POVM’s. To formalise this, recall that
a POVM is a collection (Ei)

k
i=1 of positive operators acting on a Hilbert

space H with
∑k

i=1Ei = I (as usual, here we denote by I the identity
operator). If, in addition, each Ei is a projection, then the collection is called
a projection-valued measure, or PVM. When H = C

p is finite dimensional,
we identify the operators on H with elements of the algebra Mp of all p× p
complex matrices. Given POVM’s (Ev,i)

c
i=1 ⊆ Mp and (Fw,j)

c
j=1 ⊆ Mq,

where v,w ∈ V , and a unit vector ξ ∈ C
p ⊗ C

q, one associates with each
pair (v,w) of vertices of G the probability distribution

(1) p(i, j|v,w) = 〈(Ev,i ⊗ Fw,j)ξ, ξ〉, 1 ≤ i, j ≤ c,

where, for an input (v,w) from the referee, 〈(Ev,i ⊗ Fw,j)ξ, ξ〉 is the proba-
bility for Alice producing an output i and Bob – an output j.

The set of all nc×ncmatrices that are obtained by allowing p and q to vary
through all the natural numbers, is called the set of quantum correlations
and is generally denoted Q(n, c); when n and c are clear from the context,
we simply write Q. For reasons that will be clear shortly, we shall adopt the
notation: Cq(n, c) = Q(n, c).
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Alice and Bob can thus convince the referee that they have a c-colouring
if the following conditions are satisfied:

(2) ∀v,∀i 6= j, 〈(Ev,i ⊗ Fv,j)ξ, ξ〉 = 0,

∀(v,w) ∈ E,∀i, 〈(Ev,i ⊗ Fw,i)ξ, ξ〉 = 0.

If this happens, we say that the graph G admits a quantum c-colouring ; the
smallest positive integer c for which G admits a quantum c-colouring was
called in [3] the quantum chromatic number of G and denoted by χq(G).

One can interpret the quantum chromatic number in terms of a linear
functional on the set of quantum correlations.

Definition 2.1. Let G = (V,E) be a graph, let |V | = n and fix c ∈ N. The
graph functional, LG,c : Mnc → C is defined by

LG,c

(

(av,i,w,j)
)

=
∑

i 6=j,v

av,i,v,j +
∑

i,v∼w

av,i,w,i.

Proposition 2.2. Let G be a graph on n vertices. Then χq(G) ≤ c if and
only if there exists A ∈ Cq(n, c) such that LG,c(A) = 0.

Proof. Since the entries of every correlation in Cq(n, c) are non-negative, it
follows that LG,c(A) = 0 if and only if av,i,w,j = 0 whenever v = w and i 6= j
and whenever (v,w) is an edge and i = j. Thus, there exists A ∈ Cq(n, c)
precisely when conditions (2) are satisfied. �

Several variants of the quantum chromatic number were introduced in
[24]. We focus on two denoted by χqc(G) and χqa(G), and called the com-
muting quantum chromatic number, and the approximate quantum chromatic
number, respectively. Both of them can be obtained as in Proposition 2.2 by
varying the sets of correlations that can be considered in place of Cq(n, c).

Let Cqa(n, c) := Cq(n, c)
− be the closure of Cq(n, c); we note that it is

not known if Cq(n, c) is closed. In [24] it was shown that Cqa(n, c) can be
identified with the state space of a certain minimal tensor product and that
consequently, χqa(G) = χqmin(G), where this latter quantity was originally
given a different definition.

We let Cqc(n, c) denote the set of correlations obtained using relativistic
quantum field theory. To be precise, instead of assuming that the POVM’s
(Ev,i) and (Fw,j) act on two finite dimensional Hilbert spaces and forming
the tensor product of those spaces, we assume instead that they act on a
common, possibly infinite dimensional, Hilbert space and that the E’s and
F ’s mutually commute. Thus, Cqc(n, c) is the set of all nc× nc matrices of
the form

p(i, j|v,w) =
(

〈Ev,iFw,jξ, ξ〉
)

v,i,w,j
,

where Ev,i, Fw,j are positive operators on a Hilbert space H satisfying
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(3)
c
∑

i=1

Ev,i =
c
∑

j=1

Fw,j = I, ∀ v,w,

Ev,iFw,j = Fw,jEv,i, ∀ v,w, i, j,
and ξ ∈ H is a unit vector.

As in the finite dimensional case, by enlarging the Hilbert space, one may
assume without loss of generality, that all of these operators are orthogonal
projections (see [24, Theorem 2.9] and Theorem 5.3 below).

Finally, Loc(n, c) denotes the set of all classical correlations, also called lo-
cal correlations, that is, the set of matrices (p(i, j|v,w))v,i,w,j which are in the
closed convex hull of the product distributions p(i, j|v,w) = p1(i|v)p2(j|w)
where p1(i|v) ≥ 0 and

∑c
i=1 p(i|v) = 1 is a set of c-outcome probabil-

ity distributions indexed by v ∈ V with |V | = n and, similarly, p2(j|w)
is a set of c-outcome probability distributions indexed by w ∈ V . Since
both of these sets of probability distributions define compact sets in R

nc by
Caratheodory’s theorem, given any element of Loc(n, c), there exist at most
n2c2 + 1 probability distributions (p1k(i|v))ci=1, v ∈ V (resp. (p2k(j|w))ci=1,
w ∈ V ), and non-negative scalars λk such that

(4) p(i, j|v,w) =
∑

k

λkp
1
k(i|v)p2k(j|w), i, j = 1, . . . , c, v, w ∈ V.

For consistency of notation, we set Cloc(n, c) := Loc(n, c).
There is another useful characterisation of the set Cloc(n, c), discussed in

[24, p. 5]. Let D denote the tensor product of n copies of the abelian C*-
algebra ℓ∞c , which is *-isomorphic to the space of all (continuous) functions
on nc points and set ev,i = 1⊗ · · · 1⊗ ei ⊗ 1 · · · 1, where ei denotes the i-th
canonical basis vector for ℓ∞c and it occurs in the v-th term of the tensor
product, 1 ≤ v ≤ n. Then (p(i, j|v,w)) ∈ Cloc(n, c) if and only if there
is a state s : D ⊗ D → C such that p(i, j|v,w) = s(ev,i ⊗ ew,j). To see
this fact, note that in the above formula each p1k(i|v) = s1k(ev,i) for a state
s1k : D → C, while p2k(j|w) = s2k(ew,j). Thus, (4), for a typical element
of Cloc(n, c), becomes p(i, j|v,w) =

∑

k λks
1
k ⊗ s2k(ev,i ⊗ ew,j), which is a

convex combination of product states. The fact that convex combinations
of product states yields all states on D⊗D follows from another application
of Caratheodory’s theorem.

It is easy to see that

Cloc(n, c) ⊆ Cq(n, c) ⊆ Cqa(n, c) ⊆ Cqc(n, c).

Note that the correlations belonging to Cloc(n, c) can be realised as in
(1), but with the POVM’s (Ev,i)

c
i=1 and (Fw,j)

c
j=1 consisting of mutually

commuting operators.
These various sets of correlations allowed [24] to generalise and unify the

definitions of the quantum chromatic number of a graph G (on n vertices) by
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setting χx(G) equal to the least integer c such that there exists p(i, j|v,w) ∈
Cx(n, c) satisfying:

(5) ∀v,∀i 6= j, p(i, j|v, v) = 0,

∀(v,w) ∈ E,∀i, p(i, i|v,w) = 0,

where x ∈ {loc, q, qa, qc}. In [3] it is shown that χloc(G) is equal to the usual
chromatic number of a graph, χ(G).

Since p(i, j|v,w) ≥ 0 for elements of each of these correlation sets, the
proof of the following is identical to the proof of the last proposition:

Proposition 2.3. Let G be a graph on n vertices and let x ∈ {loc, q, qa, qc}.
Then χx(G) ≤ c if and only if there exists A ∈ Cx(n, c) such that LG,c(A) =
0.

From the above containments and proposition, we immediately see [24]
that

χqc(G) ≤ χqa(G) ≤ χq(G) ≤ χ(G).

Remark 2.4. By Proposition 2.3, and the fact that Loc(n, c) is compact
and convex, each graph G with χq(G) = c < χ(G) yields a graph functional
LG,c that is strictly positive on the set Cloc(n, c) = Loc(n, c) of classical
correlations and vanishes on the set Cq(n, c) = Q(n, c). Thus, each such
graph gives a functional LG,c that gives a Bell-type inequality separating
local from quantum.

Remark 2.5. By Proposition 2.3(1), determining if the minimum of LG,c

over the polytope Loc(n, c) is 0, gives a LP to determine if χ(G) ≤ c.

Remark 2.6. The statement Cq(n, c) = Cqc(n, c) for all n and c is of-
ten referred to as the (strong bivariate) Tsirelson conjecture. Thus, if the
Tsirelson conjecture holds true, then necessarily, χc(G) = χ(G) for every
graph G. In addition, work of N. Ozawa [22] shows that the Connes Em-
bedding Conjecture is equivalent to the statement that Cqa(n, c) = Cqc(n, c)
for all n and c. Thus, if the Connes Embedding Conjecture holds true, then
necessarily χqc(G) = χqa(G) for every graph G. We shall refer to the equal-
ity Cqa(n, c) = Cq(n, c), ∀n, c ∈ N, as the closure conjecture. Thus, if the
closure conjecture is true, then χq(G) = χqa(G) for every graph G.

Hence, determining if these chromatic numbers are always equal or can
be separated would shed some light on these two conjectures. This was the
original motivation for introducing these new parameters in [24].

3. A hierarchy of chromatic numbers

In this section we revisit the ideas of the NPA hierarchy [21] and use them
to construct a descending sequence of state spaces CN (n, c) that converges
in an appropriate sense to Cqc(n, c). These will allow us to construct a
sequence of “chromatic” numbers χN

qc(G) each of which is computable by an
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SDP and which converges to χqc(G). To accomplish this, we need to review
a certain C*-algebra intrinsic in the definition of χqc(G).

Let n, c ∈ N, F (n, c) = Zc ∗ · · · ∗ Zc (n copies), where Zc = {0, 1, . . . , c −
1} is the cyclic group with c elements, and C∗(F (n, c)) is the (full) C*-
algebra of F (n, c). The C*-algebra of Zc is canonically *-isomorphic, via
Fourier transform, to the (abelian) C*-algebra ℓ∞c = {(λi)

c
i=1 : λi ∈ C, i =

1, . . . , c}. Thus, C∗(F (n, c)) is canonically *-isomorphic to the free product
C*-algebra, amalgamated over the unit, ℓ∞c ∗1 · · · ∗1 ℓ∞c (n copies).

We denote by V the set {1, 2, . . . , n}. Let ev,i denote the element of
C∗(F (n, c)) that is in the v-th copy of ℓ∞c and is the vector that is 1 in
the i-th component and 0 elsewhere. Alternatively, if we regard F (n, c) as
generated by unitaries, uv with ucv = 1, then ev,j corresponds to the spectral

projection of uv onto the eigenspace of ωj where ω = e2πi/c. In particular,
ev,j belongs to the group algebra of F (n, c) and because uv =

∑c
i=1 ω

iev,i
the collection {ev,i : 1 ≤ i ≤ c, v ∈ V } is another set of generators of the
group algebra.

We let S(n, c) = ℓ∞c ⊕1 · · ·⊕1 ℓ
∞
c (n copies) be the corresponding operator

system coproduct (see, e.g., [17]). By [8] or since each generator uv is in
the span of ev,i, 1 ≤ i ≤ c, S(n, c) can be identified with the span of the
generators of the group F (n, c) inside the C*-algebra C∗(F (n, c)). Then

S(n, c) = span{ev,i : v ∈ V, 1 ≤ i ≤ c}.
We note the relations

(6) e2v,j = ev,j = e∗v,j , ev,iev,j = 0, i 6= j,
c
∑

i=1

ev,i = 1, v ∈ V, 1 ≤ j ≤ c.

Because the left regular representation of F (n, c) is faithful on the group
algebra, the C*-algebra C∗(F (n, c)) can thus be viewed as the universal
C*-algebra generated by the set E = {ev,i : v ∈ V, 1 ≤ i ≤ c} satisfying (6).

A word in E is an element of the form

(7) α = ev1,i1ev2,i2 · · · evk ,ik
where vj ∈ V and 1 ≤ ij ≤ c, j = 1, . . . , k. The length |α| of a word α is
the smallest k for which w can be written in the form (7). A polynomial of
degree k is an element p of C∗(F (n, c)) of the form p =

∑m
j=1 λjαj , where

αj are words, λj ∈ C, and deg(p)
def
= maxj=1,...,m |αj | = k.

For a given N ∈ N, let

PN = span{p : a polynomial with deg(p) ≤ N},
and

P = span{PN : N ∈ N}.
We note that PN is an operator subsystem of C∗(F (n, c)) and that PN ⊆
PN+1, N ∈ N. We also note that P is a (dense) *-subalgebra of C∗(F (n, c))
and hence possesses a canonical induced operator system structure.
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Note that

C∗(F (n, c)) ⊗max C
∗(F (n, c)) = C∗(F (n, c) × F (n, c)),

up to a (canonical) *-isomorphism. Let

A = P ⊗ P ⊆ C∗(F (n, c)× F (n, c)).

We have that C∗(F (n, c) × F (n, c)) is the universal C*-algebra generated
by two families of elements, E = {ev,i : v ∈ V, 1 ≤ i ≤ c} and F = {fw,j :
w ∈ V, 1 ≤ j ≤ c}, each of which satisfies relations (6), as well as the
commutativity relations

(8) ev,ifw,j = fw,jev,i, v, w ∈ V, 1 ≤ i, j ≤ c.

We define polynomials on E ∪F in a similar fashion – note that, due to (8),
each such polynomial is a sum of products of the form αβ, where α (resp.
β) is a word on E (resp. F).

Let
ΓN = {γ : a word in E ∪ F , |γ| ≤ N},

AN = spanΓN and

SN = SN,n,c = {s : A → C : s(1) = 1, s(p∗p) ≥ 0 for all p ∈ AN}.
The functionals s above, as well as all functionals appearing hereafter, are
assumed to be linear. Set Γ = ∪∞

N=1ΓN . Note that

A = spanΓ = span{AN : N ∈ N}.
Lemma 3.1. Let s : A → C be a linear functional. Then s ∈ SN if and
only if (s(β∗α))α,β∈ΓN

is a positive matrix.

Proof. By definition, s ∈ SN if and only if s(p∗p) ≥ 0 for all p ∈ AN , if and
only if

s

((

m
∑

k=1

λkα
∗
k

)(

m
∑

k=1

λkαk

))

≥ 0,

for all αk ∈ ΓN , λk ∈ C, k = 1, . . . ,m, if and only if
m
∑

k=1

λkλlα
∗
kαl ≥ 0,

for all αk ∈ ΓN , λk ∈ C, k = 1, . . . ,m, if and only if the matrix (s(β∗α))α,β∈ΓN

is positive. �

Every functional on A can, after restriction, be considered as a functional
on AN . Letting

S = Sn,c = {s : A → C : s(1) = 1, s(p∗p) ≥ 0 for all p ∈ A},
we clearly have

S = {s : A → C : s|AN
∈ SN , for all N ∈ N}.

Lemma 3.2. s ∈ S if and only if there exists a state s̃ of the C*-algebra
C = C∗(F (n, c) × F (n, c)) with s̃|A = s.
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Proof. The statement follows from a standard construction of GNS type;
the detailed arguments are omitted. �

Let R be the ideal of all polynomials on the set of non-commuting vari-
ables E ∪ F generated by the elements

e2v,j − ev,j , e∗v,j − ev,j ,

c
∑

k=1

ev,k − 1, ev,ifw,j − fw,jev,i,

where v,w ∈ V, 1 ≤ i, j ≤ c. Set RN = R ∩ AN . For example, R contains
the elements β∗

1α1 − β∗
2α2 if β∗

1α1 = β∗
2α2 in Γ. We let

M =

{

(cα,β)α,β∈Γ :

m
∑

k=1

λkβ
∗
kαk ∈ R =⇒

m
∑

k=1

λkcαk ,βk
= 0

}

.

We also let MN be the set of all compressions of matrices in M to ΓN ×ΓN .
In particular, if (cα,β)α,β∈ΓN

then cα1,β1
= cα2,β2

whenever β∗
1α1 = β∗

2α2.

Lemma 3.3. There is a bijective correspondence between M and the set
of all linear functionals on A, sending an element (cα,β)α,β∈Γ of M to the
functional f : A → C given by f(β∗α) = cα,β , α, β ∈ Γ.

Proof. The only thing that needs to be checked is that, given (cα,β)α,β∈Γ ∈
M, the mapping defined on the generators of A by f(β∗α) = cα,β , α, β ∈ Γ,
and extended by linearity, is well-defined. This follows from the definition
of M. �

For N ∈ N we now let

CN (n, c) = {(s(ev,ifw,j))v,i,w,j : s ∈ SN}.
Note that

Cqc(n, c) = {(s(ev,i ⊗ fw,j))v,i,w,j : s ∈ S(S(n, c)⊗c S(n, c))},
the set of all relativistic quantum correlations.

Theorem 3.4. (i) A matrix A = (av,i,w,j)v,i,w,j belongs to Cqc(n, c) if
and only if it can be completed to a positive matrix B = (bα,β)α,β∈Γ ∈ M
(meaning that every finite submatrix of B is positive) with b1,1 = 1.

(ii) A matrix A = (av,i,w,j)v,i,w,j belongs to CN(n, c) if and only if it can
be completed to a positive matrix B = (bα,β)α,β∈ΓN

∈ MN with b1,1 = 1.

Proof. (i) Let s ∈ S(S(n, c) ⊗c S(n, c)) be a state such that A = (s(ev,i ⊗
fw,j))v,i,w,j. Let H be a Hilbert space, π : C∗(F (n, c)) ⊗max C

∗(F (n, c)) →
B(H) be a *-representation and ξ ∈ H be a unit vector such that s(T ) =
〈π(T )ξ, ξ〉, T ∈ C∗(F (n, c)) ⊗max C

∗(F (n, c)). Thus,

s(β∗α) = 〈π(α)ξ, π(β)ξ〉,
and every finite submatrix of the matrix (s(β∗α))α,β∈Γ is positive.

Conversely, suppose that B = (bα,β)α,β∈Γ ∈ M is a completion of A that
has the property that all of its finite submatrices are positive. It follows from
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Lemma 3.1 that the linear functional s : A → C given by s(α) = bα,1 (and
well-defined by Lemma 3.3) is positive. Note that s(1) = 1. By Lemma
3.2, s is the restriction to A of a state of C∗(F (n, c) × F (n, c)). Thus,
A ∈ Cqc(n, c).

(ii) Suppose that A = (av,i,w,j)v,i,w,j belongs to CN(n, c). Then there
exists s ∈ SN such that av,i,w,j = s(ev,ifw,j), v,w ∈ V , i, j = 1, . . . , c. By
Lemma 3.1, (s(β∗α))α,β∈ΓN

is a positive completion of A that lies in MN .
Conversely, suppose that B is a positive completion of A that lies in MN .

By Lemma 3.3, B is the compression to ΓN × ΓN of a matrix of the form
(s(β∗α))α,β∈Γ and, by Lemma 3.1, s ∈ SN . It follows that A ∈ AN . �

The following corollary follows directly from Lemma 3.3; we omit the
detailed proof.

Corollary 3.5. Let G = (V,E) be a graph. We have that χqc(G) ≤ c if and
only if there exists s ∈ S such that

∀v,∀i 6= j, s(ev,ifv,j) = 0,

∀(v,w) ∈ E,∀i, s(ev,ifw,i) = 0.(9)

Lemma 3.6. Let s ∈ SN . Then |s(γ)| ≤ 1 for all γ ∈ Γ with |γ| ≤ 2N .

Proof. We first show that 0 ≤ s(γ∗γ) ≤ 1 for all words γ with |γ| ≤ N . To
this end, we use induction on |γ|. We have that s(ev,i) = s(e∗v,iev,i) ≥ 0 while
∑n

i=1 s(ev,i) = 1; it follows that 0 ≤ s(ev,i) ≤ 1 for all v, i. By symmetry,
0 ≤ s(fw,j) ≤ 1 for all w, j, that is, the claim holds for all γ with |γ| = 1.

Suppose |γ| ≤ k, for some k ≤ N − 1. If v ∈ V then

0 ≤ s((ev,iγ)
∗(ev,iγ)) = s(γ∗ev,iγ) and

c
∑

k=1

s(γ∗ev,kγ) = s(γ∗γ) ≤ 1.

It follows by induction that 0 ≤ s(γ∗γ) ≤ 1 whenever |γ| ≤ N .
Now suppose |γ| ≤ 2N and write γ = β∗α for some words α and β of

length at most N . By Lemma 3.1, the matrix
(

s(α∗α) s(β∗α)
s(α∗β) s(β∗β)

)

is positive.

Thus,

|s(γ)| = |s(β∗α)| ≤ max{s(α∗α), s(β∗β)} ≤ 1.

�

Lemma 3.7. Let sN ∈ SN , N ∈ N. There exists a subsequence (sN ′)N ′ of
(sN )N which converges pointwise to an element of S.

Proof. Since sN ∈ S1 for all N , Lemma 3.6 implies that |sN (γ)| ≤ 1 when-
ever γ ∈ Γ2. Thus, there exists a subsequence

s
(1)
N1

, s
(1)
N2

, s
(1)
N3

, . . .

such that (s
(1)
Nk

(γ))k∈N converges whenever γ ∈ Γ2. Deleting the first terms

of this subsequence, if necessary, we may assume that s
(1)
Nk

∈ S2 for all k.
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Using Lemma 3.6, it now follows that there exists a subsequence (s
(2)
Nk

)k∈N

of (s
(1)
Nk

)k∈N such that (s
(2)
Nk

(γ))k∈N converges whenever γ ∈ Γ4. Deleting the

first terms of this subsequence, if necessary, we may assume that s
(2)
Nk

∈ S3

for all k.
Continuing inductively, for each m we obtain a sequence (s

(m)
Nk

)k∈N, which

is a subsequence of (s
(m−1)
Nk

)k∈N, and which has the property that (s
(m)
Nk

(γ))k∈N
converges whenever γ ∈ Γ2m.

We claim that (s
(k)
Nk

(γ))k∈N converges whenever γ ∈ Γ. To see this, let

γ ∈ Γ and assume that |γ| ≤ 2m for some m. Then (s
(k)
Nk

(γ))k≥m is a

subsequence of (s
(m)
Nk

(γ))k∈N and hence converges.

Set s(p) = limk→∞ s
(k)
Nk

(γ), p ∈ A. Since s is a pointwise limits of linear

maps, it is a linear map itself. Clearly, s(1) = 1. We claim that s ∈ S. If

p ∈ A is a polynomial, then p ∈ AN for some N and hence s
(k)
Nk

(p∗p) ≥ 0

whenever Nk ≥ N . It follows that s(p∗p) ≥ 0. �

Theorem 3.8. We have that ∩∞
N=2C

N (n, c) = Cqc(n, c).

Proof. Suppose that s ∈ S(S(n, c)⊗c S(n, c)). By [24, Lemma 2.8],

(10) S(n, c)⊗c S(n, c)) ⊆coi C
∗(F (n, c)) ⊗max C

∗(F (n, c)),

and hence s extends to a state s̃ on C∗(F (n, c)) ⊗max C
∗(F (n, c)). Letting

sN = s̃|AN
, we have that sN ∈ SN ; clearly, s(ev,i ⊗ fw,j) = sN (ev,ifw,j),

N ≥ 2, so Cqc(n, c) ⊆ ∩∞
N=2C

N (n, c).

Conversely, suppose that A ∈ ∩∞
N=2C

N (n, c). For each N ≥ 2, let sN ∈
SN be such that A = (sN (ev,ifw,j))v,i,w,j. By Lemma 3.7, there exists a
subsequence of (sN ) which converges pointwise to an element s ∈ S. Since
sN(ev,ifw,j) = sM(ev,ifw,j) for all N,M ∈ N, we have that s(ev,ifw,j) =
sN(ev,ifw,j), N ∈ N. By Lemma 3.2, s is the restriction of a state s̃ on
C∗(F (n, c) × F (n, c)) = C∗(F (n, c)) ⊗max C∗(F (n, c)). By (10), we have
that A ∈ Cqc(n, c). �

Definition 3.9. Let G be a graph on a set V of n vertices with set E of
edges. A quantum N, c-colouring of G is a state s ∈ SN,n,c such that

∀v,∀i 6= j, s(ev,ifv,j) = 0,

∀(v,w) ∈ E,∀i, s(ev,ifw,i) = 0.(11)

The Nth quantum chromatic number χN
qc(G) of G is the smallest positive

integer c for which there exists a quantum N, c-colouring of G.

According to Theorem 3.4, quantum N, c-colourings of G correspond bi-
jectively to matrices A = (av,i,w,j)v,i,w,j ∈ CN (n, c) such that

av,i,v,j = 0, ∀v,∀i 6= j and av,i,w,i = 0,∀(v,w) ∈ E,∀i.
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Theorem 3.10. Let G be a graph. We have χN
qc(G) ≤ χN+1

qc (G) ≤ χqc(G),

for every N ∈ N. Moreover, limN→∞ χN
qc(G) = χqc(G).

Thus, given n ∈ N, there exists N ∈ N such that χqc(G) = χN
qc(G) for all

graphs on at most n vertices.

Proof. Let c = χN+1
qc (G) and s ∈ SN+1,n,c be a quantum N, c-colouring of

G. Then s ∈ SN,n,c. Since χN
qc(G) is the minimum of all c for which there

exists a quantum N, c-colouring for G, we have that χN
qc(G) ≤ χN+1

qc (G).
A similar argument, using the fact that S ⊆ SN,n,c, shows the second

inequality. It follows that the sequence (χN
qc(G))∞N=1 stabilises, that is, there

exist c,N0 ∈ N such that χN
qc(G) = c for all N ≥ N0. For each N ≥ N0, let

sN ∈ SN be a quantum N, c-colouring of G. By Lemma 3.7 and Corollary
3.5, χqc(G) ≤ c.

Finally, since the sequence stabilises for each graph and there are only
finitely many graphs on at most n vertices, there exists N ∈ N such that
χN
qc(G) = χqc(G), for all graphs on at most n vertices. �

Remark 3.11. Let Nn be the least integer such that χNn

qc (G) = χqc(G)
for all graphs on at most n vertices. Because we obtain the integer Nn

by a compactness argument, we do not have effective bounds on Nn. In
particular, we do not know if supn Nn is bounded or have any information
on its growth rate.

4. An SDP for the commuting quantum chromatic number

In this section we prove that for each graph G = (V,E) determining if
χqc(G) ≤ c is decidable by a semidefinite programming problem.

We fix a graph G = (V,E), let n = |V | and let N := Nn be the natural
number given by Remark 3.11. Let c ∈ N. We set CN = CN(n, c) =
{(s(ev,ifw,j) : s ∈ SN} ⊆ Mnc.

Recall that a set is called a spectrahedron if it can be realised as the
intersection of the set of positive semidefinite matrices of some size with an
affine subset.

Recall that the graph functional LG,c : Mnc → C is defined by

LG,c

(

(av,i,w,j)
)

=
∑

i 6=j,v

av,i,v,j +
∑

i,v∼w

av,i,w,i.

When the value of c is understood, we will often write LG for LG,c.

Proposition 4.1. For any N ∈ N, the problem of minimising LG,c over the

set CN is an SDP.

Proof. Recall that MN is a space of |ΓN | × |ΓN | matrices defined by some
linear constraints. Thus, the set BN of positive semidefinite matrices B ∈
MN with b1,1 = 1 is a spectrahedron. By Theorem 3.4 (ii), every element of

CN is the restriction of such a matrix B in MN to some of its components.
Thus, if we extend LG,c to a linear functional F on BN by setting it equal
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to 0 on all the components not included in CN then we see that minimizing
F over BN is the same as minimizing LG,c over C

N . �

Theorem 4.2. Let G = (V,E) be a graph on n vertices and let N =
max{Nn, 2}, where Nn is defined in Remark 3.11. Then χqc(G) ≤ c if and
only if inf{LG,c(A) : A ∈ CN(n, c)} = 0. Hence, the problem of determining
if χqc(G) ≤ c is solvable by this SDP.

Proof. For any s ∈ SN , any v,w ∈ V , any 1 ≤ i, j ≤ c, since N ≥ 2, we have
that

0 ≤ s((ev,ifw,j)
∗(ev,ifw,j)) = s(ev,ifw,j).

Thus, all the elements of CN are non-negative and, consequently, LG,c(A) ≥
0 on CN .

Since CN is a compact set the infimum is 0 if and only if it is attained at
some matrix A ∈ CN , but in that case we have that A is the image of a state
that defines a quantum N, c-colouring and so χqc(G) = χN

qc(G) ≤ c. �

Note that since CN is a compact set, the above infimum is actually a
minimum.

Remark 4.3. It is known that computing χq(G) is an NP-hard problem
[14], but it is not known if computing χqc(G) or χqa(G) is NP-hard. A proof
that did not rely on Tsirelson’s or Connes’ conjecture that these are also
NP-hard would be interesting. A proof that either of these is of complexity
P would be a dramatic result. It would show that either the corresponding
conjecture is false or that P=NP.

We can strengthen the above result a bit as follows.

Theorem 4.4. For each n ∈ N, there is a constant ǫn > 0 such that if
G = (V,E) is a graph on n vertices and N = max{2, Nn}, then χqc(G) ≤ c

if and only if inf{LG,c(A) : A ∈ CN} < ǫn.

Proof. The graphs on n vertices split into two subsets: those for which
χqc(G) ≤ c, and those for which χqc(G) > c. For each graph in the latter
set, we have that inf{LG,c(A) : A ∈ CN} = bG > 0. Since there are
only finitely many such graphs, we may set ǫn = min{bG} over this set of
graphs. �

The above result is not of much computational use without estimates for
ǫn, but it might be of theoretical use. Since we know that we only need to
get the SDP within ǫn this may give us a crude operation/complexity count.

5. Synchronous states and the tracial rank

D. Roberson and L. Mančinska [26] introduced the projective rank ξf(G)
of a graph G and showed that ξf(G) ≤ χq(G). This lower bound has been
crucial for computing the quantum chromatic numbers of some graphs. Un-
fortunately, the proof of this estimate uses in a critical way the fact that the
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involved representations are finite dimensional and, consequently, we do not
know if it is also a lower bound for χqc(G). To ameliorate this situation, we
will develop an analogous quantity that is better suited to work with infinite
dimensional representations.

Our first result applies to a larger family of games than the graph colour-
ing game, namely games where Alice and Bob have the same set of inputs
V and require that when Alice and Bob receive the same input, then they
must produce the same output. Given a correlation (p(i, j|v,w))v,i,w,j , set

p(i = j|v,w) :=
c
∑

i=1

p(i, i|v,w).

Then a perfect strategy for this game means p(i = j|v = w) = 1, that is,
p(i = j|v, v) = 1 for all v ∈ V . Our result can be summarised as saying that
such correlations always arise from tracial states. Recall that a state s on a
C*-algebra A is called tracial provided that s(xy) = s(yx) for all x, y ∈ A.
We show that, in fact, the projective rank of a graph can be described by
using tracial states on finite dimensional C*-algebras.

Definition 5.1. For x ∈ {loc, q, qa, qc}, we call a correlation (p(i, j|v,w))
from Cx(n, c) synchronous if it satisfies the condition p(i = j|v = w) = 1,
and let Cs

x(n, c) ⊆ Cx(n, c) denote the subset of all synchronous correlations.

Note that Cs
q(n, c) = Cs

qc(n, c) ∩ Cq(n, c).

Definition 5.2. A realisation of an element (p(i, j|v,w))v,i,w,j of Cqc(n, c)

is a tuple
(

(

(Ev,i)
c
i=1

)

v∈V ,
(

(Fw,j)
c
j=1

)

w∈V ,H, η
)

, where V is an index set of

cardinality n, H is a Hilbert space, η ∈ H is a unit vector, and Ev,i, Fw,j ∈
B(H) are projections satisfying

(i) p(i, j|v,w) = 〈Ev,iFw,jη, η〉, v, w ∈ V, i, j = 1, . . . , c;
(ii)

∑c
i=1 Ev,i =

∑c
j=1 Fw,j = I, v, w ∈ V ;

(iii) Ev,iFw,j = Fw,jEv,i, v, w ∈ V, i, j = 1, . . . , c.

When n and c are understood, to avoid excessive notation, we will often
denote a realisation by simply

(

(Ev,i), (Fw,j),H, η
)

.

Theorem 5.3. A correlation ((p(i, j|v,w))v,i,w,j belongs to Cq(n, c) if and
only if it has a realisation

(

(Ev,i), (Fw,j),H, η
)

for which H is finite dimen-
sional.

Proof. Suppose that ((p(i, j|v,w))v,i,w,j is a correlation which possesses a
realisation

(

(Ev,i), (Fw,j),H, η
)

for which H is finite dimensional. We now
essentially recall the argument from the unpublished preprint [28, Theo-
rem 1] which allows us to pass to spacial tensoring. Let C (resp. D) be
the C*-algebra generated by {Ev,i : v ∈ V, i = 1, . . . , c} (resp. {Fw,j :
w ∈ V, j = 1, . . . , c}). Since C is finite dimensional, we may assume, with-
out loss of generality, that H = ⊕t

s=1C
ks ⊗ C

ls and C = ⊕t
s=1Mks ⊗ 1ls .

Since D and C commute, we have that D is contained in the C*-algebra
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⊕t
s=11ks ⊗Mls . Thus, Ev,i = ⊕t

s=1E
s
v,i ⊗ Ils and Fw,j = ⊕t

s=1Iks ⊗ F s
w,j for

some projections Es
v,i ∈ Mks , F

s
w,j ∈ Mls . Now let k = max{k1, . . . , kt} and

l = max{l1, . . . , lt}. Consider the Hilbert space H as a subspace, in the
natural way, of ⊕t

s=1C
k ⊗ C

l, and identify the latter space with C
k ⊗ C

lt.
Under these identifications, the projections Ev,i (resp. Fw,j) have the form
Ev,i = E′

v,i ⊗ Ilt (resp. Fw,j = Ik ⊗ F ′
w,j), for some projections E′

v,i (resp.

F ′
w,j) on C

k (resp. Clt). It follows that ((p(i, j|v,w))v,i,w,j ∈ Cq(n, c).

Conversely, assume that (p(i, j|v,w)) ∈ Cq(n, c). Then there exist finite
dimensional Hilbert spaces HA and HB, POVM’s

(

(Pv,i)
c
i=1

)

v∈V on HA,

POVM’s
(

(Rw,j)
c
j=1

)

w∈V on HB and a unit vector η ∈ HA ⊗HB such that

p(i, j|v,w) = 〈Pv,i ⊗Rw,jη, η〉.
For convenience, set V = {1, . . . , n}. Let H̃A = HA ⊗C

c, regarded as the

direct sum of c copies of HA. Note that H̃A is still finite dimensional and

define an inclusion W : HA → H̃A via h →
(

P
1/2
1,1 h, . . . , P

1/2
1,c h

)

. The fact

that (P1,i)
c
i=1 is a POVM implies that this inclusion is an isometry.

Define operators on H̃A by setting: P̃1,i = IHA
⊗ Ei,i (where Ei,i here

denotes the corresponding diagonal matrix unit on C
c) and for v 6= 1, let

P̃v,i be the operator matrix, with (k, l)-entry,

P̃v,i =
(

P
1/2
1,k Pv,iP

1/2
1,l

)

, i 6= 1,

and

P̃v,1 =
(

P
1/2
1,k Pv,1P

1/2
1,l

)

+ (IH̃ −WW ∗).

Note that this standard dilation trick turns the POVM (P1,i)
c
i=1 into a PVM

(P̃1,i)
c
i=1, and turns each POVM (Pv,i)

c
i=1, v 6= 1, into a new POVM (P̃v,i)

c
i=1

on the larger space. Moreover, W ∗P̃v,iW = Pv,i.
Also, note that for i 6= 1,

P̃ 2
v,i =

c
∑

t=1

(

P
1/2
1,k Pv,iP

1/2
1,t P

1/2
1,t Pv,iP

1/2
1,l

)

=
(

P
1/2
1.k P 2

v,iP
1/2
1,l

)

.

Similarly,

P̃ 2
v,1 =

(

P
1/2
1,k P 2

v,1P
1/2
1,l

)

+ (IH̃ −WW ∗).

Thus, if Pv,i is a projection, then it’s dilation P̃v,i is also a projection.

Hence, if any
(

Pv,i

)c

i=1
is already a PVM, that property is preserved by

the dilation. It follows that if we repeat this standard dilation trick n times,
once for each v, then we will obtain a family of PVM’s

(

P̂v,i

)c

i=1
, 1 ≤ v ≤ n,

on the finite dimensional Hilbert space ĤA = HA ⊗ C2nc and an isometric
embedding WA : HA → ĤA such that W ∗

AP̂v,iWA = Pv,i.
Repeating the same process for the POVM’s

(

Rw,j

)

on HB, we obtain a

family of PVM’s
(

R̂w,j

)

on a finite dimensional space ĤB and an isometry

WB : HB → ĤB such that Rw,j = W ∗
BR̂w,jWB .
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Finally, 〈(P̂v,i ⊗ I)(I ⊗ R̂w,j)(WA ⊗WB)η, (WA ⊗WB)η〉 = p(i, j|v,w) so
that

(

(

P̂v,i ⊗ I
)

,
(

I ⊗ R̂w,j

)

, ĤA ⊗ ĤB, (WA ⊗WB)η
)

is a realisation of (p(i, j|v,w)) by commuting PVM’s on a finite dimensional
Hilbert space. It now follows that ((p(i, j|v,w))v,i,w,j is in Cq(n, c). �

Remark 5.4. Similarly it can be shown that, ((p(i, j|v,w)) ∈ Cloc(n, c) if
and only if the realisation can be chosen such that all the operators commute.
We do not know of an analogous characterisation of correlations in Cqa(n, c).

Theorem 5.5. Let (p(i, j|v,w)) ∈ Cs
qc(n, c) be a synchronous correlation

with realisation {(Ev,i)
c
i=1, (Fw,j)

c
j=1,H, η}. Then

(i) Ev,iη = Fv,iη, v ∈ V, i = 1, . . . , c;
(ii) p(i, j|v,w) = 〈Ev,iEw,jη, η〉 = 〈Fw,jFv,iη, η〉 = p(j, i|w, v)
(iii) The functional s : X → 〈Xη, η〉 is a tracial state on the C*-algebra

generated by the set {Ev,i : v ∈ V, i = 1, . . . , c} (resp. {Fw,j : w ∈
V, j = 1, . . . , c}).

Conversely, given a family of projections {ev,i : v ∈ V, 1 ≤ i ≤ c} in a unital
C*-algebra A such that

∑c
i=1 ev,i = I, v ∈ V , and a tracial state s on A,

then (p(i, j|v,w)) = (s(ev,iew,j))v,i,w,j is in Cs
qc(n, c). That is, there exists

a Hilbert space H, a unit vector η ∈ H and mutually commuting POVM’s
(Ev,i)

c
i=1 and (Fw,j)

c
j=1 on H which are a realisation of (s(ev,iew,j))v,i,w,j

additionally satisfying

(12) s(ev,iew,j) = 〈Ev,iEw,jη, η〉 = 〈Fw,jFv,iη, η〉 = 〈Ev,iFw,jη, η〉.
Proof. Applying the Cauchy-Schwarz inequality, for every v ∈ V , we have
the following chain of identities and inequalities.

1 =

c
∑

i,j=1

p(i, j|v, v) =
c
∑

i=1

p(i, i|v, v) =
c
∑

i=1

〈Ev,iFv,iη, η〉

=

c
∑

i=1

〈Fv,iη,Ev,iη〉 ≤
c
∑

i=1

‖Fv,iη‖‖Ev,iη‖

≤
(

c
∑

i=1

‖Fv,iη‖2
)1/2( c

∑

i=1

‖Ev,iη‖2
)1/2

=

(

c
∑

i=1

〈Fv,iη, η〉
)1/2( c

∑

i=1

〈Ev,iη, η〉
)1/2

= 1.

Thus, we must have equality throughout. In particular, the equality between
the 2nd and 3rd lines implies that the vectors

(

‖Fv,1η‖, . . . , ‖Fv,cη‖) and

(‖Ev,1η‖, . . . , ‖Ev,cη‖
)

are equal. Thus, ‖Fv,iη‖ = ‖Ev,iη‖, v ∈ V , 1 ≤ i ≤ c.
On the other hand, the equality on the second line implies that Fv,iη =
αiEv,iη, for some |αi| = 1, i = 1, . . . , c. If Ev,iη 6= 0 then

αiEv,iη = F 2
v,iη = Fv,i(αiEv,iη) = αiEv,iFv,iη = αiEv,i(αiEv,iη) = α2

iEv,iη,
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which forces αi = 1. Thus,

(13) Ev,iη = Fv,iη, v ∈ V, i = 1, . . . , c.

and so (i) holds.
To prove (ii), note that, by condition (i) of Definition 5.2, we have

p(i, j|v,w) = 〈Ev,iFw,jη, η〉 = 〈Ev,iEw,jη, η〉.
Using condition (iii) of Definition 5.2, we have

〈Ev,iFw,jη, η〉 = 〈Fw,jEv,iη, η〉 = 〈Fw,jFv,iη, η〉.
Finally,

p(j, i|w, v) = 〈Ew,jEv,iη, η〉 = 〈η,Ew,jEv,iη〉 = 〈Ev,iEw,jη, η〉 = p(i, j|v,w).
Combining (i) with commutativity we have that

Ev1,i1Ev2,i2η = Ev1,i1Fv2,i2η = Fv2,i2Ev1.i1η = Fv2,i2Fv1,i1η.

Proceeding inductively, we have the following word reversal:

(14) Ev1,i1Ev2,i2 · · ·Evk,ikη = Fvk ,ik · · ·Fv2,i2Fv1,i1η.

To prove (iii), let W be an operator that is a product of elements of the
set {Ev,i : v ∈ V, i = 1, . . . , c}; then

s(Ev,iW ) = 〈Ev,iWη, η〉 = 〈Wη,Ev,iη〉 = 〈Wη,Fv,iη〉
= 〈Fv,iWη, η〉 = 〈WFv,iη, η〉 = 〈WEv,iη, η〉 = s(WEv,i).

Thus, we have

s
(

(Ev1,i1Ev2,i2)W
)

= s
(

Ev1,i1(Ev2,i2W )
)

= s
(

Ev2,i2(WEv1,i1)
)

= s
(

WEv1,i1Ev2,i2

)

.

The general case follows by induction and the fact that the linear combina-
tions of the words on the set {Ev,i : v ∈ V, i = 1, . . . , c} are dense in the
C*-algebra generated by this set.

The proof that s is a tracial state on the C*-algebra generated by the set
{Fw,j : w ∈ V, j = 1, . . . , c} is identical.

Finally, assume that we have a unital C*-algebra A, a tracial state s, and
projections ev,i as above. It is clear that s(ev,iev,j) = 0 whenever v ∈ V and
i 6= j; thus, (p(i, j|v,w))v,i,w,j is synchronous. Without loss of generality,
we can assume that A is generated by the set {ev,i : v ∈ V, i = 1, . . . , c}.
The GNS construction associated with (A, s), produces a Hilbert space H,
a unital *-homomorphism π : A → B(H) and a unit vector η ∈ H such that
s(X) = 〈π(X)η, η〉, X ∈ A. Set Ev,i = π(ev,i), v ∈ V , i = 1, . . . , c. Since
these operators are the images of projections that sum to 1, they form a
PVM. By construction, H is the cyclic subspace corresponding to η. Thus,
every vector in H can be approximated by a sum of the form

k
∑

r=1

Wrη,
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where W1, . . . ,Wr are words on {Ev,i : v ∈ V, i = 1, . . . , c}.
Fix v ∈ V and j ∈ {1, . . . , c}. Using the facts that s is a tracial state and

that E∗
v,j = Ev,j , we have that

∥

∥

∥

∥

∥

k
∑

r=1

WrEv,jη

∥

∥

∥

∥

∥

2

≤
∥

∥

∥

∥

∥

k
∑

r=1

WrEv,jη

∥

∥

∥

∥

∥

2

+

∥

∥

∥

∥

∥

k
∑

r=1

Wr(I − Ev,j)η

∥

∥

∥

∥

∥

2

=

k
∑

r,l=1

〈E∗
v,jW

∗
l WrEv,jη, η〉 +

k
∑

r,l=1

〈(I − Ev,j)
∗W ∗

l Wr(I − Ev,j)η, η〉

=
k
∑

r,l=1

〈Ev,jW
∗
l Wrη, η〉 +

k
∑

r,l=1

〈(I − Ev,j)W
∗
l Wrη, η〉

=
k
∑

r,l=1

〈W ∗
l Wrη, η〉 =

∥

∥

∥

∥

∥

k
∑

r=1

Wrη

∥

∥

∥

∥

∥

2

.

Thus, the operator Fv,j on H given by

Fv,j

(

k
∑

r=1

Wrη

)

=
k
∑

r=1

WrEv,jη

is a well-defined contraction.
Using that the Ev,j ’s form a PVM, it follows that F 2

v,j = Fv,j = F ∗
v,j and

∑c
j=1 Fv,j = I, i.e., the Fv,j ’s also form a PVM. Clearly, Fv,jη = Ev,jη.

Also,
Fv,jEw,i(Wη) = Ew,i(WEv,jη) = Ew,i(Fv,jWη)

whenever W is a word on {Ev,i : v ∈ V, i = 1, . . . , c}, which shows that
Fv,jEw,i = Ew,iFv,j .

The fact that Ev,iFw,j = Fw,jEv,i easily implies the relations (12). �

Corollary 5.6. A correlation (p(i, j|v,w))v,i,w,j belongs to Cs
qc(n, c) (resp.

Cs
q(n, c), resp. Cs

loc(n, c)) if and only if there exists a C*-algebra(resp. finite
dimensional C*-algebra A, resp. abelian C*-algebra) A, a tracial state s :
A → C and a generating family {ev,i : v ∈ V, i = 1, . . . , c} of projections
satisfying

∑c
i=1 ev,i = 1, v ∈ V , such that

p(i, j|v,w) = s(ev,iew,j), v, w ∈ V, i, j = 1, . . . , c.

Proof. The statement concerning Cs
qc(n, c) is immediate from Theorem 5.5.

For the second equivalence, notice that if a synchronous correlation belongs
to Cs

q(n, c) then it admits a realisation {(Ev,i)
c
i=1, (Fw,j)

c
j=1,H, η} for which

H is finite dimensional. Thus, the C*-algebra generated by {Ev,i : v ∈
V, i = 1, . . . , c} is finite dimensional. Conversely, if A is a finite dimensional
C*-algebra and s : A → C is any state, then the GNS construction yields
a finite dimensional Hilbert space. Thus, the operators Ev,i and Fw,j from
Theorem 5.5 act on a finite dimensional Hilbert space, and the claim now
follows from Theorem 5.3.
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Finally, if a synchronous correlation belongs to Cloc(n, c), then it has a
realisation such that the C*-algebra generated by {Ev,i : v ∈ V, i = 1 . . . c}
is abelian. Conversely, if A is abelian and s is any state, then the GNS
construction yields an abelian family of projections {Ev,i} and one can set
Fv,i = Ev,i. �

Let {(Ev,i)
c
i=1, (Fw,j)

c
j=1,H, η} be a realisation of a synchronous correla-

tion (p(i, j|v,w))v,i,w,j . Let H0 be the smallest closed subspace of H con-
taining η and invariant under the operators Fw,j, w ∈ V , j = 1, . . . , c.
Since Fw,j is selfadjoint, it is reduced by H0. Thus, Fw,j has a diagonal

matrix form with respect to the decomposition H = H0 ⊕ H⊥
0 . Moreover,

since Fw,j is a projection, the operator F 0
w,j = Fw,j|H0

is a projection and
∑c

j=1 F
0
w,j = IH0

, i.e., (F 0
w,j)

c
j=1 is a PVM on H0 for each w ∈ V .

By equation (14), H0 reduces the operators Ev,i. Hence, setting E0
v,i =

Ev,i|H0
, we have that (E0

v,i)
c
i=1 is a PVM on H0; moreover,

E0
v,iF

0
w,j = F 0

w,jE
0
v,i, v, w ∈ V, i, j = 1, . . . , c.

Thus, all the properties of (3) are satisfied for the new family of operators,
but in addition η is cyclic for the C*-algebra generated by {Fw,j : w ∈ V, j =
1, . . . , c}.
Definition 5.7. Given a synchronous correlation (p(i, j|v,w)) ∈ Cs

qc(n, c),
we call a realisation {(Ev,i)

c
i=1, (Fw,j)

c
j=1,H, η} minimal if η is a cyclic vector

for the C*-algebra generated by the family {Fw,j : w ∈ V, j = 1, . . . , c}.
Given a graph G = (V,E), a collection {(Ev,i)

c
i=1, (Fw,j)

c
j=1,H, η} will

be called a c-realisation of G provided that it is a realisation of a synchro-
nous correlation (p(i, j|v,w))v,i,w,j that belongs to the kernel of the functional
LG,c. We will refer to the collection as a minimal c-realisation of G provided
it is also a minimal realisation.

The discussion preceding Definition 5.7 shows how to obtain a minimal
c-realisation from any c-realisation.

Proposition 5.8. Let (p(i, j|v,w))v,i,w,j ∈ Cs
qc(n, c) be a synchronous cor-

relation with a minimal realisation ((Ev,i)
c
i=1, (Fw,j)

c
j=1,H, η). Then the fol-

lowing are equivalent:

(i) 〈Ev,iFw,jη, η〉 = 0,
(ii) Ev,iEw,j = 0,
(iii) Fv,iFw,j = 0.

If this family is a minimal c-realisation of a graph G on n vertices, then for
every edge (v,w) of G we have that

Ev,iEw,i = Fv,iFw,i = 0, i = 1, . . . , c.

Proof. We prove the equivalence of (i) and (ii). The equivalence of (i) and
(iii) is identical. If (ii) holds then, by (13), 〈Ev,iFw,jη, η〉 = 〈Ev,iEw,jη, η〉 =
0.
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Conversely, if (i) holds, then

‖Ev,iEw,jη‖2 = 〈Ev,iEw,jη,Ev,iEw,jη〉 = 〈Ev,iFw,jη,Ev,iFw,jη〉
= 〈Ev,iFw,jη, η〉 = 0,

since the operators Ev,i and Fw,j are commuting projections.
Next, for any vector ξ of the form ξ = Fw1,j1 · · ·Fwk,jkη, we have that

Ev,iEw,jξ = Fw1,j1 · · ·Fwk,jkEv,iEw,jη = 0.

Part (ii) now follows by minimality.
Finally, the statement involving graphs follows from the equivalence of (i)

and (ii) and the fact that if (v,w) is an edge, then 〈Ev,iFw,iη, η〉 = 0. �

Note that when p(i, j|v,w) = 〈Ev,iFw,jη, η〉, then
∑

j

p(i, j|v,w) = 〈Ev,iη, η〉 := pA(i|v)

is independent of w and represents the marginal probability that Alice pro-
duces outcome i given input v. Similarly,

∑

i p(i, j|v,w) = 〈Fw,jη, η〉 :=
pB(j|w) represents the marginal probability of Bob producing outcome j
given input w.

Proposition 5.9. Let G = (V,E) be a graph on n vertices that admits a c-
realisation. Then there exists a minimal c-realisation ((Ev,i)

c
i=1, (Fw,j)

c
j=1,H,

η) of G such that the marginal probabilities satisfy

(15) 〈Ev,iη, η〉 = 〈Fw,jη, η〉 =
1

c

for every v,w ∈ V and every i, j = 1, . . . , c.
Moreover, if G admits a c-realisation for which the corresponding syn-

chronous correlation is in Cx(n, c), for x ∈ {loc, q, qa}, then a minimal
c-realisation ((Ev,i)

c
i=1, (Fw,j)

c
j=1,H, η) with marginal probabilities equal to

1
c can be chosen so that the corresponding synchronous correlation is in
Cx(n, c).

Proof. Let {(Ev,i)
c
i=1, (Fw,j)

c
j=1,H, η} be a c-realisation of G. Let H̃ be the

direct sum of c copies of H and set

Ẽv,i = Ev,1+i ⊕ · · · ⊕ Ev,c+i and F̃w,j = Fw,1+j ⊕ · · · ⊕ Fw,c+j,

where the addition in the set of indices is performed modulo c. Set η̃ =
1√
c
(η ⊕ · · · ⊕ η).

It is easy to check that {(Ẽv,i)
c
i=1, (F̃w,j)

c
j=1, H̃, η̃} is a c-realisation of G.

Moreover, for all v ∈ V and all i = 1, . . . , c, we have

〈Ẽv,iη̃, η̃〉 =
1

c

c
∑

k=1

〈Ev,kη, η〉 =
1

c
;
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similarly,

〈F̃w,j η̃, η̃〉 =
1

c
for all w ∈ V , j = 1, . . . , c. The proof is complete after passing to a minimal
c-realisation, as described before Definition 5.7.

Suppose that the original synchronous correlation belongs to Cq(n, c),
then it has a c-realisation of G whose Hilbert space is finite dimensional.
Then the procedure described in the previous two paragraphs yields a fi-
nite dimensional Hilbert space, which shows that the graph G admits a
c-realisation that satisfies (15) and whose synchronous correlation belongs
to Cq(n, c).

If the original correlation belongs to Cloc(n, c), then all PVM’s realising
the given correlations can be chosen to commute with each other and the
described procedure yields a commuting family of operators, and hence the
claim follows.

Finally, suppose that the original synchronous correlation of a c-realisation
of G belongs to Cqa(n, c). Let (pk)k∈N be a sequence of correlations that be-
long to Cq(n, c) such that limk pk(i, j|v,w) = p(i, j|v,w) for all i, j, v, w. By
the above construction, the correlations, defined by

p̃k(i, j|v,w) =
1

c

c
∑

l=1

pk(i+ l, j + l|v,w),

belong to Cq(n, c) and have constant marginals. Moreover, limk p̃k(i, j|v,w) =
1
c

∑c
l=1 p(i, j|v,w) := p̃(i, j|v,w). Thus, p̃ ∈ Cqa(n, c) has constant marginals.

Finally, the fact that LG,c(p) = 0 implies that LG,c(p̃) = 0. �

D. Roberson and L. Mančinska [26] define the projective rank ξf(G) of
a graph G to be the infimum of the numbers d

r such that there exists a
Hilbert space of (finite) dimension d and projections Ev, v ∈ V , all of rank
r, such that EvEw = 0 whenever (v,w) is an edge of G; such a collection
is called a d/r-projective representation of G. Recall that the functional
tr(X) = 1

dTr(X), where Tr is the usual trace on Md, is the unique tracial
state on Md, and that if Ev is a projection of rank r then tr(Ev) = r

d .

Thus, ξf(G)−1 is the supremum of quantities of the form s(Ev), over a set of
tracial states s of matrix algebras. This viewpoint motivates the following
definition.

Definition 5.10. Let G = (V,E) be a graph. We define the tracial rank
ξtr(G) of G to be the reciprocal of the supremum of the set of real numbers
u for which there exists a unital C*-algebra A, a tracial state s on A and
projections ev ∈ A, v ∈ V , such that evew = 0 whenever (v,w) ∈ E and
s(ev) = u for every v ∈ V .

Proposition 5.11. Let G be a graph. Then ξf(G) is equal to the reciprocal
of the supremum of the set of real numbers u for which there exists a finite
dimensional C*-algebra A, a tracial state s on A and projections ev ∈ A,
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v ∈ V , such that evew = 0 whenever (v,w) ∈ E and s(ev) = u for every
v ∈ V .

Proof. Let U be the set of all positive real numbers u for which there exists
a finite dimensional C*-algebra A, a tracial state s on A and projections
ev ∈ A, v ∈ V , such that evew = 0 whenever (v,w) ∈ E and s(ev) = u for
every v ∈ V . Set U = supU . By the paragraph preceding Definition 5.10,
we see that each r/d appearing in the definition of ξf(G) is in U , and hence
ξf(G)−1 ≤ U .

Let u ∈ U and A be a finite dimensional C*-algebra as in the previous
paragraph. Then A is *-isomorphic to a direct sum of matrix algebras, say,
A ∼=

∑L
l=1 ⊕Mdl , and every tracial state on A has the form

s
(

⊕L
l=1Xl

)

=

L
∑

l=1

pl tr(Xl),

for some pl ≥ 0 with
∑L

l=1 pl = 1. Set ql =
pl
dl
, l = 1, . . . , L.

Each projection ev is of the form ev = ⊕L
l=1e

l
v, where e

l
v is a projection in

Mdl , and

u =

L
∑

l=1

pl
rank(elv)

dl
=

L
∑

l=1

ql rank(e
l
v).

Moreover,
∑L

l=1 qldl = 1.
Let

u′ = max{t : there exist ql ≥ 0, l = 1, . . . , L, such that
L
∑

l=1

qldl = 1

and
L
∑

l=1

qlrank(e
l
v) = t for all v ∈ V }.

By the previous paragraph, u ≤ u′.
Since the coefficients of the constraint equations are all integers, the maxi-

mum u′ will be attained at an L-tuple (q1, . . . , qL) whose entries are rational.
Writing ql = ml/d for some integers d and ml, l = 1, . . . , L, and setting

e′v = ⊕L
l=1e

l
v ⊗ Iml

we obtain a set of projection matrices of size

L
∑

l=1

mldl = d

satisfying the required relations and such that

rank(e′v) = Tr(e′v) = d
L
∑

l=1

ml

d
rank(elv) = du′.



QUANTUM CHROMATIC NUMBERS 23

Hence, u′ ≤ ξf(G)−1 and it follows that U ≤ ξf(G)−1 so that the proof is
complete. �

The following is the analogue of the inequality ξf(G) ≤ χq(G) established
in [26].

Theorem 5.12. Let G be a graph. Then ξtr(G) ≤ χqc(G).

Proof. Given any c-realisation of G, Proposition 5.9 shows that there exists
a c-realisation ((Ev,i)

c
i=1, (Fw,j)

c
j=1,H, η) of G such that 〈Ev,iη, η〉 = c−1 for

all v ∈ V and all i = 1, . . . , c. By Proposition 5.8, Ev,1Ew,1 = 0 when (v,w)
is an edge of G. Thus, c−1 ≤ ξtr(G)−1 and the proof is complete. �

6. Graph homomorphisms and projective ranks

Recall that we set Cloc(n, c) = Loc(n, c), Cq(n, c) = Q(n, c) and Cqa(n, c) =
Q(n, c)−. Then for x ∈ {loc, q, qa, qc} and a graph G on n vertices, we have
that χx(G) ≤ c if and only if there exists A ∈ Cx(n, c) such that LG,c(A) = 0.

The condition LG,c((p(i, j|v,w))v,i,w,j) = 0 can more compactly be written
as

p(i = j|v = w) = 1 and p(i = j|v ∼ w) = 0,

where p(i = j|v ∼ w) = 0 means that p(i = j|v,w) = 0 whenever (v,w) ∈
E(G). If we write p(i, j|v,w) = 〈Ev,iFw,jη, η〉, where (Ev,i)

c
i=1 and (Fw,j)

c
j=1

are mutually commuting PVM’s on a Hilbert space H, v,w ∈ V , and η ∈ H
is a unit vector, then we have that

pA(i|v) :=
c
∑

j=1

p(i, j|v,w) = 〈Ev,iη, η〉

does not depend on w and j; a similar statement holds for pB(j|w).
Remark 6.1. In the notation introduced above, Proposition 5.9 shows that,
for any x ∈ {loc, q, qa, c}, if G is a graph on n vertices and the correlation
(p(i, j|v,w))v,i,w,j ∈ Cx(n, c) satisfies p(i = j|v = w) = 1 and p(i = j|v ∼
w) = 0, then there is a correlation (p′(i, j|v,w))v,i,w,j ∈ Cx(n, c) additionally
satisfying p′A(i|v) = p′B(j|w) = c−1 for every v,w, i, j.

We recall the following characterization of points in Cloc(n, c) :

Cloc(n, c) = Loc(n, c)

(16)

=
{

(p(i, j|v,w))v,i,w,j : p(i, j|v,w) =
∑

k

λkδ(i = fk(v))δ(j = gk(w)),(17)

for some λk > 0 with
∑

k

λk = 1 and some fk, gk : V → {1, . . . , c}
}

.(18)

(Here, the δ function evaluates to 1 when its condition argument is true and
0 otherwise, like the Iverson bracket.)
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Definition 6.2. Let G = (V (G), E(G)) and H = (V (H), E(H)) be graphs

on n and m vertices, respectively. For x ∈ {loc, q, qa, qc} write G
x→ H if

there is a correlation (p(i, j|v,w))v,i,w,j ∈ Cx(n,m) with v,w ∈ V (G) and
i, j ∈ V (H) such that

p(i = j|v = w) = 1

p(i ∼H j|v ∼G w) = 1,

where p(i ∼H j|v,w) :=
∑

(i,j)∈E(H) p(i, j|v,w) and p(i ∼H j|v ∼G w) = 1

means that p(i ∼H j|v,w) = 1 whenever (v,w) ∈ E(G).
We will say that such a (p(i, j|v,w))v,i,w,j is an x-homomorphism from G

to H.

Stated briefly, the above conditions are the requirement that p be syn-
chronous and that whenever the inputs v and w are adjacent in G, then,
with probability 1, the output pair (i, j) is adjacent in H.

We will sometimes write G → H for G
loc→ H, since it can be shown that

this corresponds to the classical definition of a graph homomorphism. The

homomorphism variant G
q→ H has been extensively studied in [25] and

[26]. The following is immediate from the definitions of [24] and [3]:
We let Kc denotes the complete graph on c vertices, i.e., (i, j) ∈ E(Kc)

for all i 6= j.

Proposition 6.3. Let G be a graph. For x ∈ {loc, q, qa, qc}, we have that

χx(G) = min{c : G x→ Kc}.
Let us denote by G the complementary graph of G, that is, the graph

whose vertex set coincides with that of G and for which (v,w) is an edge
precisely when (v,w) is not an edge of G (here it is assumed that v 6= w).
Proposition 6.3 motivates us to define, for x ∈ {loc, q, qa, qc},

αx(G) = ωx(G) = max{c : Kc
x→ G}.

The parameters ωx(G) are quantum clique numbers of G and are comple-
mentary to the corresponding chromatic numbers χx(G). They will not be
used later on in this paper. Note, however, that ωloc(G) (resp. αloc(G)) co-
incides with the classical clique number ω(G) (resp. independence number
α(G)) of G.

Definition 6.4. Let G be a graph on n vertices. For x ∈ {loc, q, qa, qc},
let ξx(G) be the infimum of the positive real numbers t such that there exists
(p(a, b|v,w))v,a,w,b ∈ Cx(n, 2) satisfying

p(a = b|v = w) = 1

p(a = 1, b = 1|v ∼ w) = 0

p(a = 1|v) = t−1.

Note that it makes sense, in the above definition, to use only v in the
third condition since Cx(n, 2) is non-signaling.
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Suppose that

p′ = (p′(i, j|v,w))v,i,w,j ∈ Cqc(n, c) and p′′ = (p′′(a, b|i, j))i,a,j,b ∈ Cqc(c, l).

We let p′′p′ = ((p′′p′)(a, b|v,w))v,a,w,b be the matrix whose entries are given
by

(p′′p′)(a, b|v,w) =
c
∑

i,j=1

p′′(a, b|i, j)p′(i, j|v,w).

Thus, if p′ (resp. p′′) is considered as an element of Mc2,n2 (resp. Ml2,c2),
whose rows are indexed by the pairs (a, b) (resp. (i, j)) and whose columns
– by the pairs (i, j) (resp. (v,w)), then p′′p′ is the matrix product of p′′ and
p′.

Lemma 6.5. Let x ∈ {loc, q, qa, qc}.
(i) If p′ ∈ Cx(n, c) and p′′ ∈ Cx(c, l) then p′′p′ ∈ Cx(n, l);
(ii) If p′ ∈ Cx(n, c) and p′′ ∈ Cloc(c, l) then p′′p′ ∈ Cx(n, l).

Proof. (i) Assume first that x = qc. Suppose that H′ (resp. H′′) is a Hilbert
space, η ∈ H′ (resp. η ∈ H′′) is a unit vector and (E′

v,i)
c
i=1 and (F ′

w,j)
c
j=1

(resp. (E′′
i,a)

l
a=1 and (F ′′

j,b)
l
b=1) are mutually commuting PVM’s such that

p′(i, j|v,w) = 〈E′
v,iF

′
w,jη

′, η′〉 (resp. p′′(a, b|i, j) = 〈E′′
i,aF

′′
j,bη

′′, η′′〉),
for all v,w, i, j, a, b. Let H = H′′ ⊗H′, η = η′′ ⊗ η′,

Ev,a =

c
∑

i=1

E′′
i,a ⊗ E′

v,i and Fw,b =

c
∑

j=1

F ′′
j,b ⊗ F ′

w,j.

It is clear that (Ev,a)
l
a=1 and (Fw,b)

l
b=1 are mutually commuting POVM’s

for all v and w. Moreover,

〈Ev,aFw,bη, η〉 =
c
∑

i,j=1

〈(E′′
i,a ⊗ E′

v,i)(F
′′
j,b ⊗ F ′

w,j)(η
′′ ⊗ η′), (η′′ ⊗ η′)〉

=
c
∑

i,j=1

〈E′′
i,aF

′′
j,bη

′′, η′′〉〈E′
v,iF

′
w,jη

′, η′〉

=

c
∑

i,j=1

p′′(a, b|i, j)p′(i, j|v,w) = (p′′p′)(a, b|v,w).

It follows that p′′p′ ∈ Cqc(n, l).
The arguments given above also apply in the case x = q. The claim

concerning x = qa follows from the fact that Cqa(n, c) = Cq(n, c) for all n
and c. The case x = loc follows from the observation preceding Proposition
2.3.

(ii) follows from (i) and the fact that Cloc(c, l) ⊆ Cx(c, l). �

Theorem 6.6. For x ∈ {loc, q, qa, qc}, we have that ξx(G) ≤ χx(G). More-

over, if G
x→ H then ξx(G) ≤ ξx(H).
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Proof. Let (p(i, j|v,w))v,i,w,j be an x-homomorphism from G to Kc with

c = χx(G). By Proposition 5.9, we may assume that p(i|v) = 1
c for all

i and all v. Let p′A(a|i) (resp. p′B(b|j)) be the probability distribution
given by p′A(1|1) = 1, p′A(0|1) = 0 (resp. p′B(1|1) = 1, p′B(0|1) = 0) and
p′A(1|i) = 0, p′A(0|i) = 1 (resp. p′B(1|j) = 0, p′B(0|j) = 1) if i 6= 1 (resp.
j 6= 1). Set

p′(a, b|i, j) = p′A(a|i)p′B(b|j), a, b = 0, 1, i, j = 1, . . . , c.

It is clear that p′ ∈ Cx(c, 2). By Lemma 6.5, p′p ∈ Cx(n, 2). It remains to
check that p′p satisfies the conditions of Definition 6.4.

Suppose that a 6= b. If i = j then p′(a, b|i, j) = 0, while if i 6= j then
p(i, j|v, v) = 0. It follows that (p′p)(a, b|v, v) = 0 for all v. Suppose that
v ∼ w. Then p(i, i|v,w) = 0 for all i, while p′(1, 1|i, j) = 0 if i 6= j. It follows
that (p′p)(1, 1|v,w) = 0. Finally, for fixed v, we have

(p′p)(1|v) =
c
∑

i,j=1

p′(1, 0|i, j)p(i, j|v, v) + p′(1, 1|i, j)p(i, j|v, v)

=

c
∑

i,j=1

p′A(1|i)p′B(0|j)p(i, j|v, v) + p′A(1|i)p′B(1|j)p(i, j|v, v)

=
c
∑

j=1

p′B(0|j)p(1, j|v, v) + p′B(1|j)p(1, j|v, v)

=

c
∑

j=1

p(1, j|v, v) = 1

c
.

We now show the monotonicity of ξx. Suppose that G
x→ H and let

(p(i, j|v,w))v,i,w,j ∈ Cx(|V (G)|, |V (H)|)
be as in Definition 6.2. Let also (p′(a, b|i, j))i,a,j,b ∈ Cx(|V (H)|, 2) satisfy the
three equations of Definition 6.4 for the graph H. Suppose that v ∈ V (G)
and a 6= b. Then, if i 6= j we have that p(i, j|v, v) = 0, while p′(a, b|i, i) = 0.
Thus, (p′p)(a, b|v, v) = 0. Suppose that (v,w) ∈ E(G). If (i, j) 6∈ E(H)
then p(i, j|v,w) = 0, while if (i, j) ∈ E(H) then p′(1, 1|i, j) = 0; thus,
(p′p)(1, 1|v,w) = 0. Finally,

(p′p)(1|v) =
c
∑

i,j=1

p′(1, 0|i, j)p(i, j|v, v) + p′(1, 1|i, j)p(i, j|v, v)

=

c
∑

i=1

p′(1, 0|i, i)p(i, i|v, v) + p′(1, 1|i, i)p(i, i|v, v)

=
c
∑

i=1

p′(1, 1|i, i)p(i, i|v, v) = 1

t

c
∑

i=1

p(i, i|v, v) = 1

t
,
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for all v ∈ V (G). By Lemma 6.5, p′p ∈ Cx(|V (G)|, 2). Thus, ξx(G) ≤
ξx(H). �

Lemma 6.7. Suppose that p(i, j|x, y) ∈ Cq(n, 2)(respectively, Cqc(n, 2)) sat-
isfies p(i = j|x = y) = 1. Then there exist a finite dimensional C*-algebra A
(resp. a C*-algebra A), a tracial state s : A → C and projections Ev,i ∈ A,
v ∈ V , i = 1, 2, such that

(1)
∑

i Ev,i = I, v ∈ V ;
(2) p(i, j|v,w) = s(Ev,iEw,j) for all v,w ∈ V and all i, j = 1, 2;
(3) Ev,iEw,j = 0 if and only if p(i, j|v,w) = 0.

Proof. The existence of the C*-algebra, tracial state and corresponding op-
erators follow from the fact that the state is synchronous, Corollary 5.6 and
Proposition 5.8. �

A graph G is said to have an a/b-coloring provided that to each vertex we
can assign a b element subset of {1, ..., a} such that whenever two vertices are
adjacent, their corresponding subsets are disjoint. The fractional chromatic
number of G is then defined by χf (G) = inf{a/b| G has an a/b-coloring }.
Alternatively, there is a family of graphs known as the Kneser graphs K(a,b),
where each vertex corresponds to a b element subset of an a element set with
vertices adjacent when the sets are disjoint, and χf (G) = inf{a/b : G →
K(a, b)}. For more discussion of these ideas and proofs see [13].

Theorem 6.8. We have that

(1) ξloc(G) is equal to the fractional chromatic number χf(G);
(2) ξq(G) is equal to the projective rank, ξf(G);
(3) ξqc(G) is equal to the tracial rank, ξtr(G).

Proof. To prove ξloc(G) = χf(G), colour the graph G with subsets Sv ⊆
{1, . . . , p} of size |Sv| = q where p/q = χf(G) (this is possible since χf(G)
can be interpreted in terms of homomorphisms to Kneser graphs). Consider
the following protocol in Cloc(n, 2): Alice and Bob receive vertices v and
w. They use shared randomness to choose k ∈ {1, . . . , p}. Alice outputs
1 if k ∈ Sv while Bob outputs 1 if k ∈ Sw. The corresponding correlation
satisfies the conditions of Definition 6.4 with t = p/q, so ξloc(G) ≤ χf(G).

Conversely, suppose that p(a, b|x, y) ∈ Cloc(n, 2) satisfies the conditions
of Definition 6.4 for some t. By (16), we have p(a, b|v,w) =

∑

k λkδ(a =
fk(v))δ(b = gk(w)) with λk > 0 and

∑

k λk = 1. The condition p(a = b|v =
w) = 1 requires fk = gk for all k. The condition p(a = 1, b = 1|v ∼ w) = 0
guarantees that fk(v)fk(w) = 0 for all k when v ∼ w; consequently Vk :=
{v ∈ V (G) : fk(v) = 1} is an independent set. Assigning weight tλk to set
Vk gives a fractional colouring of weight t (see Section 7.1 of [13]). Indeed,
∑

k tλk = t and for each v ∈ V (G) we have
∑

Vk∋v tλk = t
∑

k fk(v)λk =

tp(a = 1|v) = 1. So χf(G) ≤ ξloc(G).
To prove ξq(G) = ξf(G), suppose p(a, b|v,w) ∈ Cq(n, 2) satisfies the con-

ditions of Definition 6.4. In particular it is synchronous. Let {Ev,i : i =
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1, 2, v ∈ V } ∈ Md be the representation guaranteed by 6.7. The opera-
tors Ev,1 then satisfy the conditions in Proposition 5.11 and hence, refer-
ring to the proof, t−1 ∈ U . Taking the infimum over all possible t gives
ξf(G) ≤ ξq(G).

Conversely, suppose that (Ev)v∈V is a d/r-projective representation of G.
Let η = d−1/2

∑

i ei⊗ei, where the {ei}di=1 is the standard orthonormal basis

and set Ev,1 = Ev, Ev,0 = (I − Ev), Fw,1 = Ew, and Fw,0 = (I − Ew). The
probability distribution p(a, b|v,w) = 〈Ev,a⊗Fw,bη, η〉 is feasible for 6.4 with
value t−1 = p(a = 1|v) = 〈Ev,1η, η〉 = d−1Tr(Ev) = r/d. So ξq(G) ≤ d/r.
Taking the infimum over possible values of d/r gives ξq(G) ≤ ξf(G).

Finally, we prove ξqc(G) = ξtr(G). It follows from Lemma 6.7 that if t is
feasible for ξqc(G) then there exists a C*-algebra and tracial state satisfying
the conditions of Definition 5.10. Thus, ξtr(G) ≤ ξqc(G).

Conversely, assume that we have a C*-algebra A a tracial state s and
projections Ev and a real number u = t−1 satisfying the hypotheses of
Definition 5.10. We set Ev,1 = Ev and Ev,0 = I − Ev.

If we set p(i, j|v,w) = s(Ev,iEw,j) then by Corollary 5.6, we have that
(p(i, j|v,w)) ∈ Cs

qc(n, 2) ⊆ Cqc(n, 2). Thus t is feasible for ξqc(G). This
shows ξqc(G) ≤ ξtr(G) and the proof is complete.

�

Theorem 6.9. If there exists a graph G for which ξf(G) is irrational, then
the closure conjecture is false, and consequently, Tsirelson’s conjecture is
false. In fact, if G is a graph on n vertices with ξf(G) irrational, then
Cq(n, 2) 6= Cq(n, 2)−.

Proof. Let n be the number of vertices of G. By Theorem 6.8, ξf(G)−1 =
ξq(G)−1 and this value is characterized as the infimum of the positive real
numbers t over the elements (p(a, b|v,w))v,a,w,b ∈ Cq(n, 2) such that p(a =
1|v) = t−1. If this infimum was attained, then there would exist a represen-
tation of (p(a, b|v,w))v,a,w,b via a finite dimensional C*-algebra. It follows
by the proof of Proposition 5.11 that the infimum is a rational number.

Hence, if the infimum is attained by a point in Cq(n, 2) then it must be
rational. Thus, if ξq(G) is irrational, then we must have a point in Cq(n, 2)−

that is not in Cq(n, 2). �

Corollary 6.10. If there exists a graph G with ξtr(G) irrational, then
Tsirelson’s conjecture is false. In fact, if G has n vertices, then Cqc(n, 2) 6=
Cq(n, 2).

Proof. If Tsirelson’s conjecture is true, then the closure conjecture is true
and ξtr(G) = ξqc(G) = ξq(G) = ξf(G), contradicting the previous result. �

Given that ξloc(G) = χf(G), ξq(G) = ξf(G), and ξqc(G) = ξtr(G), we will
henceforth use the more established notation χf(G), ξf(G), ξtr(G) and will
drop the notation ξloc(G), ξq(G), ξqc(G).

We turn now to a deeper investigation of ξtr(G). We first show that the
equality for a feasible value can be relaxed to an inequality.
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Theorem 6.11. The number ξtr(G) is equal to the minimum of the positive
real numbers t such that there exist a Hilbert space H, a unit vector η ∈ H,
a (unital) C*-algebra A ⊆ B(H) and projections Ev ∈ A, v ∈ V , satisfying

the map X → s(X) = 〈Xη, η〉 is a tracial state on A;(19)

EvEw = 0 if v ∼ w;(20)

〈Evη, η〉 ≥ t−1 for all v ∈ V (G).(21)

Proof. Any solution feasible for Definition 5.10 induces a solution feasible
for the above conditions, with the same value. Note that, using the GNS
construction, we can assume, without loss of generality, that s(X) = 〈Xη, η〉,
X ∈ A, for some unit vector η.

Conversely, suppose we have a feasible solution to the above conditions.
Let cv = s(Ev), where cv ≥ t−1. Set c = min{cv : v ∈ V (G)}.

Let Ĥ = H ⊗ L2(0, 1), η̂ = η ⊗ χ[0,1] ∈ Ĥ and, for 0 ≤ r ≤ 1, let Pr :

L2(0, 1) → L2(0, 1) denote the projection onto the subspace L2(0, r). Let D
be the multiplication algebra of L∞(0, 1) acting on L2(0, 1), Êv = Ev⊗Pc/cv

and ŝ(X) = 〈Xη̂, η̂〉, X ∈ A⊗D.
The state ŝ is tracial because it is the tensor product of two tracial states.

It is easily verified that this new family of projections Êv and state ŝ satisfy
the conditions of Definition 5.10 with ŝ(Ev) = r−1 where r−1 = c ≥ t−1, so
that r ≤ t.

Thus, we attain the same infimum if we require equality in (21) for all
v. �

We shall refer to a vector and set of operators satisfying (19)–(21) for
some t a feasible set for ξtr(G) with value t. The following is an adaptation
of a proof from [5].

Theorem 6.12. ξtr(G ∗ H) = ξtr(G[H]) = ξtr(G)ξtr(H), where G ∗ H is
the disjunctive product (co-normal product, OR product) and G[H] is the
lexicographical product.

Proof. The inequality ξtr(G[H]) ≤ ξtr(G ∗ H) follows from the inclusion
G[H] ⊆ G ∗H.

To prove the inequality, ξtr(G ∗ H) ≤ ξtr(G)ξtr(H), let η and Ev form
a set feasible for ξtr(G) with value t and let η′ and E′

v′ form a set feasible
for ξtr(H) with value t′. Then η ⊗ η′ and Ev ⊗ E′

v′ form a set feasible for
ξtr(G ∗H) with value tt′.

ξtr(G)ξtr(H) ≤ ξtr(G[H]): Let η and Eg,h be a feasible set for ξtr(G[H])

with value t, where g ∈ V (G) and h ∈ V (H). For g ∈ V (G) define Ẽg to be
the projection onto the span of the ranges of {Eg,h}h∈H .

If g ∼ g′ in G then (g, h) ∼ (g′, h′) for every h, h′ ∈ V (H) and hence

Eg,hEg′,h′ = 0. From this it follows that g ∼ g′ implies that ẼgẼg′ = 0.

Recall that Ẽg is the strong limit of
(
∑

hEg,h

)1/n
and hence X → s(X) =

〈Xη, η〉 is a tracial state on the C*-algebra generated by the Ẽg (indeed, the
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latter C*-algebra is a subalgebra of the von Neumann algebra generated by
the set {Eg,h : g ∈ G,h ∈ H}). Thus, η and Ẽg satisfy all the conditions to

be a feasible set for G. Set cg = s(Ẽg) and let r−1 = min{cg : g ∈ V (G)} =
cf for some f ∈ V (G) so that we have a feasible set for G with value r.

Let η̃ =
√
rẼfη and s̃(X) = 〈η̃,Xη̃〉 = rs(ẼfXẼf ). Then s̃ is a state,

tracial on the algebra generated by {Ef,h : h ∈ V (H)}. Since s̃(Ef,h) =

rs(Ef,h) ≥ rt−1 = (r−1t)−1, we see that η̃ and {Ẽf,h}h∈V (H) is a feasible set

for ξtr(H) with value r−1t.
Thus,

ξtr(G)ξtr(H) ≤ r · (r−1t) = t,

and since t was an arbitrary feasible value for G[H], we have

ξtr(G)ξtr(H) ≤ ξtr(G[H]).

�

7. A SDP lower bound for the commuting quantum chromatic
number

We now explore a quantity which can be seen either as a semidefinite

relaxation of the quantity ξtr(G) or as a strengthening of the quantity ϑ
+
(G).

As before, we assume that |V (G)| = n. For a matrix Y ∈ Mn+1(R), we index
the first row and column by 0, and the rest – by the elements of the set V (G).
Since we are discussing a semidefinite programming problem in this section,
we shall use the more familiar Y � 0 to indicate that the matrix Y is positive
semidefinite.

Definition 7.1. Define

ξSDP(G) = min
{

Y00 | ∃Y ∈ Mn+1(R), Y � 0, Yvw ≥ 0,

Y0v = Yvv = 1 for v ∈ V (G),

Yvw = 0 for v ∼ w,
∑

v∈S
Yvw ≤ 1 for S a clique of G and w ∈ V (G),

Y00 +
∑

v∈S

∑

w∈T
Yvw ≥ |S|+ |T | for S, T cliques of G

}

.(22)

Remark 7.2. If in the above definition we assumed instead that Y is a
complex matrix that satisfied the remaining conditions, then since Y = Y ∗

we see that Y+Y t

2 is a real matrix that also satisfies these equations and
has the same value for the (0, 0)-entry. Thus, we obtain the same value for
ξSDP(G) if we require Y ∈ Mn+1(R) or Y ∈ Mn+1(C).

Theorem 7.3. We have that ϑ
+
(G) ≤ ξSDP(G) ≤ ξtr(G).
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Proof. We first show that ϑ
+
(G) ≤ ξSDP(G). Let e ∈ R

|V (G)| be the vector
all of whose entries are equal to 1, and J be the matrix all of whose entries
are equal to 1. Let Y satisfy conditions (22). Then Y has the block form

Y =

(

Y00 eT

e M

)

.

By Cholesky’s Lemma, Y � 0 if and only if M � Y −1
00 J . Define Z =

Y00M − J ; then Z � 0, Zvw ≥ −1 for all v,w ∈ V (G), Zvw = −1 whenever

v ∼ w, and Zvv = Y00 − 1 for all v ∈ V (G). So Z is feasible for ϑ
+
(G) with

value Y00 (see [5] for the definition of ϑ
+
(G)).

We next show that ξSDP(G) ≤ ξtr(G). Let η and Ev, v ∈ V (G) be as in
Theorem 6.11, with t = ξtr(G). Note that by the proof of Theorem 6.11 we
can assume equality in (21). Set ηv = Evη, v ∈ V (G), and Y ∈ Mn+1(R)
as Yvw = t〈ηv, ηw〉, where we take η0 = η. We have that Yvw = ts(EvEw),
Y0v = ts(Ev) = 1, and Y00 = ts(I) = t.

Conditions (19)–(21), along with the fact that E2
v = Ev, give

Yvv = ts(EvEv) = Y0v = 1

Yvw = ts(EvEw) = 0 for v ∼ w.

Consider a clique S of G. We have that Ev ⊥ Ew when v ∼ w, so
I −∑v∈S Ev is a projection. For S a clique of G and w ∈ V (G),

1−
∑

v∈S
Yvw = ts(Ew)−

∑

v∈S
ts(EvEw)

= ts((I −
∑

v∈S
Ev)Ew)

= ts(Ew(I −
∑

v∈S
Ev)Ew) ≥ 0,

where in the last step we used that s is a tracial state. Similarly, for S, T
cliques of G,

Y00 +
∑

v∈S

∑

w∈T
Yvw − |S| − |T |

= ts((I −
∑

v∈S
Ev)(I −

∑

w∈S
Ew))

= ts((I −
∑

v∈S
Ev)(I −

∑

w∈S
Ew)(I −

∑

v∈S
Ev)) ≥ 0.

So Y is a feasible solution to (22) with value t. �

We can now compute the tracial rank of an odd cycle.

Theorem 7.4. ξtr(C2k+1) =
2k+1
k .
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Proof. The following is inspired by a proof from [25]. Let Y be feasible
for (22). Considering cliques S = {1, 2} and T = {2, 3}, we have

Y00 +
∑

v∈{1,2}

∑

w∈{2,3}
Yvw ≥ 4 =⇒ Y13 ≥ 3− Y00.(23)

Let n = 2k + 1. We equip the set {1, . . . , n} with addition modulo n. For
any a, b ∈ {1, . . . , n}, we have

−
∑

v∈{a,a+1}
Yvb ≥ −1 =⇒ −Ya,b − Y(a+1),b ≥ −1

Y00 +
∑

v∈{(a+1),(a+2)}

∑

w∈{b}
Yvw ≥ 3 =⇒ Y(a+1),b + Y(a+2),b ≥ 3− Y00.

Adding these inequalities gives

Y(a+2),b − Ya,b ≥ 2− Y00.

Adding together c instances of this inequality gives Y(a+2c),b − Ya,b ≥ c(2 −
Y00). Taking a = 3, b = 1, c = k − 1 gives Yn1 − Y31 ≥ (k − 1)(2− Y00). But
Yn1 = 0 since 1 ∼ n. Adding (23) gives 0 ≥ (k − 1)(2 − Y00) + (3 − Y00) =
(2k + 1)− kY00. So Y00 ≥ (2k + 1)/k.

Hence,

(2k + 1)/k ≤ ξSDP(Ck) ≤ ξtr(Ck) ≤ ξloc(Ck) = χf(Ck).

And χf(Ck) = (2k + 1)/k [25] so the result follows. �

Note that the preceding proof did not make use of Y � 0. So in fact it
would even follow from an LP relaxation of the SDP.

Corollary 7.5. There is a graph G for which ⌈ϑ+
(G)⌉ < χqc(G).

Proof. By [5, Theorem 17],

⌈ϑ+
(C5 ∗K3)⌉ = ⌈ϑ+

(C5)ϑ
+
(K3)⌉ = ⌈3

√
5⌉ = 7,

while

7 <
15

2
= ξtr(K3)ξtr(C5) = ξtr(C5 ∗K3) ≤ χqc(C5 ∗K3) ≤ χ(C5 ∗K3) = 8.

�

For all graphs G we have

ξSDP(G) ≤ ξtr(G) ≤ ξf(G) ≤ χf(G).

In the proof of Theorem 7.4 we see that for odd cycles ξSDP(G) = χf(G),
so this chain of inequalities collapses. Numerical results show that, in fact,
ξSDP(G) = χf(G) for all graphs on 9 vertices or less. So now we know the
value of ξf on all of these graphs (it is equal to χf) whereas before the only
nontrivial graphs for which this quantity was known were the Kneser graphs
and odd cycles.
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