49 research outputs found

    Probabilistic Bisimulations for PCTL Model Checking of Interval MDPs

    Full text link
    Verification of PCTL properties of MDPs with convex uncertainties has been investigated recently by Puggelli et al. However, model checking algorithms typically suffer from state space explosion. In this paper, we address probabilistic bisimulation to reduce the size of such an MDPs while preserving PCTL properties it satisfies. We discuss different interpretations of uncertainty in the models which are studied in the literature and that result in two different definitions of bisimulations. We give algorithms to compute the quotients of these bisimulations in time polynomial in the size of the model and exponential in the uncertain branching. Finally, we show by a case study that large models in practice can have small branching and that a substantial state space reduction can be achieved by our approach.Comment: In Proceedings SynCoP 2014, arXiv:1403.784

    Bounds on the Complexity of Halfspace Intersections when the Bounded Faces have Small Dimension

    Full text link
    We study the combinatorial complexity of D-dimensional polyhedra defined as the intersection of n halfspaces, with the property that the highest dimension of any bounded face is much smaller than D. We show that, if d is the maximum dimension of a bounded face, then the number of vertices of the polyhedron is O(n^d) and the total number of bounded faces of the polyhedron is O(n^d^2). For inputs in general position the number of bounded faces is O(n^d). For any fixed d, we show how to compute the set of all vertices, how to determine the maximum dimension of a bounded face of the polyhedron, and how to compute the set of bounded faces in polynomial time, by solving a polynomial number of linear programs

    Faster Geometric Algorithms via Dynamic Determinant Computation

    Full text link
    The computation of determinants or their signs is the core procedure in many important geometric algorithms, such as convex hull, volume and point location. As the dimension of the computation space grows, a higher percentage of the total computation time is consumed by these computations. In this paper we study the sequences of determinants that appear in geometric algorithms. The computation of a single determinant is accelerated by using the information from the previous computations in that sequence. We propose two dynamic determinant algorithms with quadratic arithmetic complexity when employed in convex hull and volume computations, and with linear arithmetic complexity when used in point location problems. We implement the proposed algorithms and perform an extensive experimental analysis. On one hand, our analysis serves as a performance study of state-of-the-art determinant algorithms and implementations. On the other hand, we demonstrate the supremacy of our methods over state-of-the-art implementations of determinant and geometric algorithms. Our experimental results include a 20 and 78 times speed-up in volume and point location computations in dimension 6 and 11 respectively.Comment: 29 pages, 8 figures, 3 table

    Using OLSR Multipoint Relays (MPRs) to estimate node positions in a Wireless Mesh Network

    Get PDF
    In this paper we address in this paper the problem of nodes localization in wireless heterogeneous networks, focussing particularly on selection methods to estimate position. The OLSR routing protocol uses special nodes called Multipoint Relay (MPR) nodes to broadcast control messages within the network. We propose a novel approach based on using these Multipoint Relay (MPR) nodes as anchor nodes to estimate nodes positions. We evaluate its performance by simulation and compare it to other selection techniques such as convex hull selection and greedy selection

    Convex hulls of spheres and convex hulls of convex polytopes lying on parallel hyperplanes

    Full text link
    Given a set Σ\Sigma of spheres in Ed\mathbb{E}^d, with d3d\ge{}3 and dd odd, having a fixed number of mm distinct radii ρ1,ρ2,...,ρm\rho_1,\rho_2,...,\rho_m, we show that the worst-case combinatorial complexity of the convex hull CHd(Σ)CH_d(\Sigma) of Σ\Sigma is Θ(1ijmninjd2)\Theta(\sum_{1\le{}i\ne{}j\le{}m}n_in_j^{\lfloor\frac{d}{2}\rfloor}), where nin_i is the number of spheres in Σ\Sigma with radius ρi\rho_i. To prove the lower bound, we construct a set of Θ(n1+n2)\Theta(n_1+n_2) spheres in Ed\mathbb{E}^d, with d3d\ge{}3 odd, where nin_i spheres have radius ρi\rho_i, i=1,2i=1,2, and ρ2ρ1\rho_2\ne\rho_1, such that their convex hull has combinatorial complexity Ω(n1n2d2+n2n1d2)\Omega(n_1n_2^{\lfloor\frac{d}{2}\rfloor}+n_2n_1^{\lfloor\frac{d}{2}\rfloor}). Our construction is then generalized to the case where the spheres have m3m\ge{}3 distinct radii. For the upper bound, we reduce the sphere convex hull problem to the problem of computing the worst-case combinatorial complexity of the convex hull of a set of mm dd-dimensional convex polytopes lying on mm parallel hyperplanes in Ed+1\mathbb{E}^{d+1}, where d3d\ge{}3 odd, a problem which is of independent interest. More precisely, we show that the worst-case combinatorial complexity of the convex hull of a set {P1,P2,...,Pm}\{\mathcal{P}_1,\mathcal{P}_2,...,\mathcal{P}_m\} of mm dd-dimensional convex polytopes lying on mm parallel hyperplanes of Ed+1\mathbb{E}^{d+1} is O(1ijmninjd2)O(\sum_{1\le{}i\ne{}j\le{}m}n_in_j^{\lfloor\frac{d}{2}\rfloor}), where nin_i is the number of vertices of Pi\mathcal{P}_i. We end with algorithmic considerations, and we show how our tight bounds for the parallel polytope convex hull problem, yield tight bounds on the combinatorial complexity of the Minkowski sum of two convex polytopes in Ed\mathbb{E}^d.Comment: 22 pages, 5 figures, new proof of upper bound for the complexity of the convex hull of parallel polytopes (the new proof gives upper bounds for all face numbers of the convex hull of the parallel polytopes
    corecore