11,523 research outputs found

    The Progress, Challenges, and Perspectives of Directed Greybox Fuzzing

    Full text link
    Most greybox fuzzing tools are coverage-guided as code coverage is strongly correlated with bug coverage. However, since most covered codes may not contain bugs, blindly extending code coverage is less efficient, especially for corner cases. Unlike coverage-guided greybox fuzzers who extend code coverage in an undirected manner, a directed greybox fuzzer spends most of its time allocation on reaching specific targets (e.g., the bug-prone zone) without wasting resources stressing unrelated parts. Thus, directed greybox fuzzing (DGF) is particularly suitable for scenarios such as patch testing, bug reproduction, and specialist bug hunting. This paper studies DGF from a broader view, which takes into account not only the location-directed type that targets specific code parts, but also the behaviour-directed type that aims to expose abnormal program behaviours. Herein, the first in-depth study of DGF is made based on the investigation of 32 state-of-the-art fuzzers (78% were published after 2019) that are closely related to DGF. A thorough assessment of the collected tools is conducted so as to systemise recent progress in this field. Finally, it summarises the challenges and provides perspectives for future research.Comment: 16 pages, 4 figure

    Using genetic algorithms to generate test sequences for complex timed systems

    Get PDF
    The generation of test data for state based specifications is a computationally expensive process. This problem is magnified if we consider that time con- straints have to be taken into account to govern the transitions of the studied system. The main goal of this paper is to introduce a complete methodology, sup- ported by tools, that addresses this issue by represent- ing the test data generation problem as an optimisa- tion problem. We use heuristics to generate test cases. In order to assess the suitability of our approach we consider two different case studies: a communication protocol and the scientific application BIPS3D. We give details concerning how the test case generation problem can be presented as a search problem and automated. Genetic algorithms (GAs) and random search are used to generate test data and evaluate the approach. GAs outperform random search and seem to scale well as the problem size increases. It is worth to mention that we use a very simple fitness function that can be eas- ily adapted to be used with other evolutionary search techniques

    New Techniques for On-line Testing and Fault Mitigation in GPUs

    Get PDF
    L'abstract Ăš presente nell'allegato / the abstract is in the attachmen

    Efficient branch and node testing

    Get PDF
    Software testing evaluates the correctness of a program’s implementation through a test suite. The quality of a test case or suite is assessed with a coverage metric indicating what percentage of a program’s structure was exercised (covered) during execution. Coverage of every execution path is impossible due to infeasible paths and loops that result in an exponential or infinite number of paths. Instead, metrics such as the number of statements (nodes) or control-flow branches covered are used. Node and branch coverage require instrumentation probes to be present during program runtime. Traditionally, probes were statically inserted during compilation. These static probes remain even after coverage is recorded, incurring unnecessary overhead, reducing the number of tests that can be run, or requiring large amounts of memory In this dissertation, I present three novel techniques for improving branch and node coverage performance for the Java runtime. First, Demand-driven Structural Testing (DDST) uses dynamic insertion and removal of probes so they can be removed after recording coverage, avoiding the unnecessary overhead of static instrumentation. DDST is built on a new framework for developing and researching coverage techniques, Jazz. DDST for node coverage averages 19.7% faster than statically-inserted instrumentation on an industry-standard benchmark suite, SPECjvm98. Due to DDST’s higher-cost probes, no single branch coverage technique performs best on all programs or methods. To address this, I developed Hybrid Structural Testing (HST). HST combines different test techniques, including static and DDST, into one run. HST uses a cost model for analysis, reducing the cost of branch coverage testing an average of 48% versus Static and 56% versus DDST on SPECjvm98. HST never chooses certain techniques due to expensive analysis. I developed a third technique, Test Plan Caching (TPC), that exploits the inherent repetition in testing over a suite. TPC saves analysis results to avoid recomputation. Combined with HST, TPC produces a mix of techniques that record coverage quickly and efficiently. My three techniques reduce the average cost of branch coverage by 51.6–90.8% over previous approaches on SPECjvm98, allowing twice as many test cases in a given time budget

    On the testing of special memories in GPGPUs

    Get PDF
    Nowadays, data-intensive processing applications, such as multimedia, high-performance computing and safety-critical ones (e.g., in automotive) employ General Purpose Graphics Processing Units (GPGPUs) due to their parallel processing capabilities and high performance. In these devices, multiple levels of memories are employed in GPGPUs to hide latency and increase the performance during the operation of a kernel. Moreover, modern GPGPU architectures implement cutting-edge semiconductor technologies, reducing their size and power consumption. However, some studies proved that these technologies are prone to faults during the operative life of a device, so compromising reliability. In this work, we developed functional test techniques based on parallel Software-Based Self-Test routines to test memory structures in the memory hierarchy of a GPGPU (FlexGripPlus) implementing the G80 architecture of Nvidia

    Producing Scheduling that Causes Concurrent Programs to Fail

    Get PDF
    A noise maker is a tool that seeds a concurrent program with conditional synchronization primitives (such as yield()) for the purpose of increasing the likelihood that a bug manifest itself. This work explores the theory and practice of choosing where in the program to induce such thread switches at runtime. We introduce a novel fault model that classifies locations as .good., .neutral., or .bad,. based on the effect of a thread switch at the location. Using the model we explore the terms in which efficient search for real-life concurrent bugs can be carried out. We accordingly justify the use of probabilistic algorithms for this search and gain a deeper insight of the work done so far on noise-making. We validate our approach by experimenting with a set of programs taken from publicly available multi-threaded benchmark. Our empirical evidence demonstrates that real-life behavior is similar to what our model predicts
    • 

    corecore