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Abstract. A noise maker is a tool that seeds a concurrent program with condi-
tional synchronization primitives (such as yield()) for the purpose of increasing 
the likelihood that a bug manifest itself. This work explores the theory and 
practice of choosing where in the program to induce such thread switches at 
runtime.  We introduce a novel fault model that classifies locations as “good”, 
“neutral”, or “bad,” based on the effect of a thread switch at the location. Us-
ing the model we explore the terms in which efficient search for real-life con-
current bugs can be carried out. We accordingly justify the use of probabilistic 
algorithms for this search and gain a deeper insight of the work done so far on 
noise-making. We validate our approach by experimenting with a set of pro-
grams taken from publicly available multi-threaded benchmark. Our empirical 
evidence demonstrates that real-life behavior is similar to what our model pre-
dicts. 

1   Introduction 

The increasing popularity of concurrent programming, for the Internet and on the 
server side, has brought the issue of concurrent defect analysis to the forefront.  Con-
current defects such as unintentional race conditions or deadlocks are difficult and 
expensive to uncover, and such faults often escape to the field. Starting in 2006, all 
processors will have dual cores and personal computers will have hyper-threaded 
processors. Programs that used to work well on single-threaded and single CPU core 
processors are now exhibiting problems. This means the testing of multi-threaded 
programs and the development of technology and tools to identify concurrent defects 
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are more crucial than ever.  As a result, major companies such as Intel and Microsoft 
have addressed this issue by providing appropriate testing tools. 

There are a number of features that distinguish concurrent defect analysis from 
sequential testing. These differences are especially challenging because the set of 
possible interleavings is huge and it is not practical to try all of them. First, only a 
few of the interleavings actually produce concurrent faults; thus, the probability of 
producing a concurrent fault can be very low. Second, under the simple conditions of 
unit testing, the scheduler is deterministic; therefore, executing the same tests re-
peatedly produces the same set of interleavings. As a result, concurrent bugs often 
escape unnoticed and are found only in stress tests or by the customers. Furthermore, 
the tests that reveal faults are usually long and run under different environmental 
conditions.  Consequently, they are not necessarily repeatable and when a fault is 
detected, extensive efforts must be invested in recreating the conditions under which 
it occurred. When these are finally recreated, the debugging itself may mask the bug 
(the observer effect) for example, adding debugging printing may change timing 
conditions and mask a concurrent bug. 

A large amount of research is being carried out, both in academia and industry, to 
improve the quality of multi-threaded software. Progress has been made on many 
fronts and it now seems evident that a high quality solution must contain compo-
nents from many domains [9]. Work on race detection and atomicity is a primary 
effort that has been going on for a long time [19][21][1] [12]. A different approach is 
taken by a set of tools called noise makers, which increase the likelihood of bugs 
discovery by inducing different timing scenarios through the addition of scheduling 
perturbations [23][2] [7]. The noise makers themselves do not report results, rather, 
they strive to make the tests fail. Other tools, used for replay and partial replay 
[4][7][22] are necessary for debugging and contain technology that is useful for test-
ing. Static analysis tools of various types [16] as well as formal analysis tools 
[24][17] [5], are also being developed to detect faults in this domain . Other tools 
present specific and interesting views of the interleaving space to help analyze both 
coverage and performance [3] [15].  

This paper explores the theory and practice of deciding where in the program to 
induce thread switches.  Previous research in the area used a white box approach.  In 
[23], static analysis was suggested for use in detecting the locations in which to 
thread switches that will help reveal bug patterns. In [7], noise-making decisions 
were made based on coverage information.  Experiments carried out in [2] showed 
that focusing one-at-a-time on the locations related to variables will improve the 
probability of finding bugs. The work in [23] [7] showed that performing context 
switches at random locations using a uniform probability (referred to as white noise), 
improves the likelihood that a bug will manifest.  

Conversely, this work uses a black box approach and develops a theory for good, 
neutral, or bad program locations for thread switches. This allows us to reason about 
concurrent bugs and provides a deeper insight of the work done so far.  In addition, 
we demonstrate that there are testing scenarios where using a uniform probability for 
choosing the location to be seeded, results in a very low probability of revealing 
bugs. Such scenarios are typical of bugs that only manifest in specific timing win-



dows, where using a uniform probability will either not chose all good events or will 
be likely to choose some bad program locations. Thus, we motivate the use of a two-
level scheme (presented in a limited form in [2]) that involves first selecting a subset 
of the program locations and then performing context switches with a high probabil-
ity. We present experiments that validate our theory and show how it can be used to 
improve our testing tool. 

1.1 Motivation and complexity of the problem  

We begin with several examples that demonstrate the complexity of the problem 
and explain the motivation of using a heuristic approach. In the first example, we 
demonstrate that adding or removing context switches can significantly change the 
probability of bug manifestation. Consider the program in Figure 1 with three 
threads (T1, T2, and T3) and nine program locations. For the sake of simplicity, 
assume the scheduler always starts with T1 and upon hitting a context-switch or end-
of-thread the scheduler continues on any of the remaining threads with equal prob-
ability. If there are no available threads, the scheduler continues executing the cur-
rent thread. The decision trees for the example depict the choice made by the sched-
uler regarding which thread to advance to upon hitting a context switch or an end of 
thread. 

When a thread switch is inserted after location T1.2 there are four possible inter-
leavings, of which two reveal the bug (i.e., executing y=1/x while x=0) as shown in 
Figure 1a. As all interleavings in this case have the same probability, the probability 
that the bug manifests is ½. If we insert an additional context switch after T2.1, we 
find there are six interleavings, of which only one reveals the bug (Figure 1b). How-
ever, the probability of selecting a given interleaving is not uniform, since interleav-
ings that contain more decision points have a lower probability of manifesting. 
Therefore, the probability of bug manifestation will actually be smaller here (i.e., 
1/8).  Figure 1b depicts the change in the interleaving space (scheduling decision 
tree) as a result of inserting an additional context switch at T2.1. Clearly, adding or 
removing the second context switch at T2.1 changes the probability of the bug mani-
festation. 

 

 
 Figure 1a                                                Figure 1b 

 



     T1
1) i=1;
2) while (i<10){ 
3) A[i]=1/i;
4) i++;}

     T2
1)  z = 1;
2)  i = -5;
3)  z++;

     T1
1)  x = 1;
2)  z = 2;
3)  z ++;
4)  x = 0;
5)  x = 1;
6)  z ++;

     T2
1)  if(x != 0) 
2)  y = 1/x;?

     T1
1)  x = 1;
2)  if(x != 0) 
3)  y = 1/x;

     T2
1   )  z = 1;
………….
n-1)  z = n;
N  )   x = 0;
n+1)  z++;
……………
2*n)   z++;

We further argue that choosing a program location with uniform probability may 
in practice be insufficient for detecting a concurrent bug. Consider the scenario illus-
trated by Figure 2a. For the sake of clarity, we introduce only two threads (T1 and 
T2) although the end results are similar to having three threads. This example is 
similar to the one presented in Figure 1, except for having many locations in thread 
T2 that are considered irrelevant to the bug. For the bug to manifest itself, a thread 
switch must occur after location T1.2.  In addition, a context switch must not occur 
at any of the points in thread T2 that are before T2.N; otherwise, the assignment of 
the value of zero to variable 'x' to will not precede the division of 'x'  and will hence 
mask the bug. Consequently, if we select the seeding points using a uniform prob-
ability p, the probability that the bug will manifest is as follows: the probability p of 
choosing to perform a thread switch in location T1.2, multiplied by the probability 
(1-p)N that it will not choose to perform a thread switch in locations T2.1 … T2.N.  
Hence, the probability of manifesting the bug is small for any uniform p. 

The decision whether a program location should be considered ’good’ or ’bad’ 
may well depend on previous or future decisions regarding the seeding of other pro-
gram locations. Consider the example in Figure 2b. In order for the bug to manifest 
itself in this example, a single thread switch (and no more than one) must occur 
before the assignment of variable 'x' to be zero occurs at T1. Clearly, the benefit of 
seeding T1.2 strongly depends on whether or not a context switch has been inserted 
after T1.1 Thus, we cannot absolutely classify location T2.2 as either good or bad 
without knowing the location of the other context switches (referred to as the ’con-
text’).  

Furthermore, there exist worse scenarios where attributing a deterministic deci-
sion, such as always or always not performing a thread switch to a specific location, 
will mask the bug entirely. For example, consider the program in Figure 2c. For the 
bug to manifest (i.e., for the program take a divide by zero exception) a thread switch 
must occur after the instruction if (i!=0). However, the thread switch must occur only 
in the iteration when i=5, otherwise the bug will not manifest.  In short, a determi-
nistic classification of the program's locations (such as T1.3) as either good or bad 
will not identify the bug in this program. 
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Thus, we consider it is too difficult to decide on-the-fly whether or not to make a 
context switch when a given program location is reached.  In this work we address 
this problem by providing a model and a static classification of the program’s loca-
tions. The main contributions of this work are: 

 



• Provide a formal definition and a new novel taxonomy that distinguish between 
three types of events: “good”, “bad” and “neutral”, with respect to whether forc-
ing a context switch will help to reveal a bug.  

• Observe that choosing locations to insert random context switches at a uniform 
probability is likely to include bad program locations. We introduce a two-phase 
scheme that involves first selecting a subset of the program locations and then 
performing context switches with a high probability. This is demonstrated as es-
sential for masking out bad program locations.  

• Develop a mathematical model for noise-making; including experimental valida-
tion that scheduling noise behaves in a convex-like manner. This implies there 
are some locations with significantly higher probabilities of being good and bad 
than the rest of the locations.  

• Explore the terms in which efficient search for real-life concurrent bugs could be 
carried out and justify the use of probabilistic algorithms for this search. Studying 
known concurrent bug taxonomies, we spouse these are usually composed of a 
small number of good and bad locations.  
 
The rest of the paper is organized as follows. Section 2 provides a practical defini-

tion and a metric for classifying locations as good, bad, and neutral, along with the 
understanding of why this approximation is useful.  Section 3 presents the mathe-
matical model associated with this classification, its expected behavior. Section 4 
explores the terms under which we can perform efficient search in the model, moti-
vates the creation of new black box heuristics and the possible extension of our 
model to be used with other tools.  In Section 5, we discuss the experiments con-
ducted to support our intuition and the mathematical model. The final section lists 
our conclusions and provides details about future work.  

2   A model for adding scheduling perturbations 

Our methodology facilitates the use of a noise maker as a testing tool.  In this way, 
we control the probability that a thread switch will occur when each event is exe-
cuted [23]. Our goal is to choose the optimal subset of the program's locations in 
which a context should be performed.  By studying the taxonomy of concurrent bugs 
[10] [18] [13], we determine that a concurrent bug manifests when a few concurrent 
events (referred to as events [4]) occur in a specific order. We can thus identify a 
concurrent bug with that sequence of concurrent events. A context switch is highly 
desirable after or before some of these events for the bug to manifest. Ideally, no 
context switches should occur in other events. Since, whether a context switch is 
desirable or not may well depend on other decisions made. 

Because it is too difficult to decide on-the-fly whether or not to make a context 
switch when a given program location is reached, we suggest approximating the 
decision by providing a static classification for program locations.  For this aim we 
divide the program’s events into three categories: 



 
• Good events – in which a context switch greatly increases the probability that a 

concurrent bug manifests. As demonstrated previously, it may be preferable to in-
crease the probability of a context switch when such an event is reached and not 
to always make a context switch. 

• Bad events – in which a context switch generally decreases the probability that a 
concurrent bug manifests or completely masks the bug.  

• Neutral events – in which a context switch does not greatly change the probabil-
ity that a concurrent bug manifests. 

 
As the classification of the program’s events is not known a-priori we need a 

method to for determining for each event e whether it is good, bad, or neutral. A 
possible mechanism could be defined as follows: run the program many times and in 
every execution, set every event but e to be good or bad with equal probability. In 
first half of the executions we set e as good (e.g., perform a context switch in e with 
high probability) and in the second half of the executions we set e as bad (e.g., per-
form no context switch in e).  If the probability of revealing a bug in the first half of 
the execution equals that in the second half of the execution, p is neutral; otherwise, 
p is either bad or good, based on which half manifests more bugs.   

In addition to being impractical, due to the possibly high number of executions 
required, this method has a number of theoretical problems.  The definition of e as 
good or bad is related to decisions made at other events. However, the former defini-
tion does not take into account what decisions were actually made. (i.e, the execu-
tion’s context) and it might be not reasonable to choose all other events to be good or 
bad with equal probability). Thus, a more rigorous definition is required. In the next 
sub-section we detail our proposed metric for approximating the static classification 
of the program’s events, regardless of the execution’s context. 

2.1 A metric for static classification of the program’s events  

As explained earlier, the effect that a context switch at an event may have for 
manifesting a bug is relative to a specific execution.. In this section, we propose a 
metric to statically approximate this effect at each event. The intended meaning is 
that performing (or not performing) a context switch at such an event will increase 
the likelihood of the bug manifesting regardless of the specific execution’s context.  
This is done by considering the effect a context switch may have over all possible 
contexts. The classification is introduced here to motivate the creation of the model. 
Learning the classification at run-time could prove helpful for debugging purposes; 
however, it is beyond the scope of this work.  

We evaluate the classification of each of the program’s events as follows:. At each 
event, we calculate the average probability that the bug will manifest itself over the 
introduction of context switches at all possible k other events, where bug taxonomies 
(and also [20]) shows we can choose a small k. An event is classified as good if the 
average probability of manifesting the bug is sufficiently high. Similarly, if the aver-
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age probability is very small, the location will be classified as bad. If it is neither bad 
nor good, it is classified as neutral.  

As an example, consider the program in Figure 1 and assume we intend to insert 
two context switches (possibly after each program location). Thus, there are six rele-
vant events (e.g., program locations) that need to be classified T1.1, T1.2, T2.1, T2.2, 
T3.1, and T3.2. In order to classify a program’s locations we need to check every 
possible interleaving over all the possibilities of selecting the other location. For 
example, in order to classify T2.2 we need to cover all the interleavings when the 
second context switch is inserted at T1.1, T1.2, T2.1, T3.1, T3.2 and average the 
probabilities for bug manifestation. Figure 3 summarizes these probabilities and the 
resulting classifications . 

The approximated classification in Figure 3 fit nicely with the intuitive one de-
scribed in the introduction. Analyzing the average probability for each location we 
observe that a context switch should occur after checking that ‘x’ is not equal to zero 
and must not occur before the assignment of zero as the value of ‘ x’. It is best that 
no context switch is performed, (but not absolutely necessary) at all other locations. 

 
  
 

 
 

 
Figure 3 

 
Events can be naturally grouped using different levels of granularity. Such groups 

may be composed of a set of events that access a shared variable, events related to a 
given program location, or locations that share the same context. Thus, for each 
group of events (e.g., shared variable or program location) we loosely assign a prob-
ability of whether it is good, bad, or neutral, based on the probability that good, bad, 
or neutral events associated with it are executed.  

3   Analyzing and using the model 

In this section, we analyze the model introduced above. Our goal is to present a 
mathematical model to allow us to analyze the possible scheduling noise behaviors to 
latter on use this information to improve our testing tool. As explained above, a 
program under test is viewed as a set of subsets of events {e1…en}. In what follows, 
ei could be the set of all events that access a given shared variable or a set of events 
associated with the same program location. PBi, PGi and PNi are the probabilities of 
ei being bad, good or neutral respectively (PBi+PGi+PNi = 1). The intended meaning 
is that, for a given execution, ei will behave either as good, bad or neutral in the 
above probability distribution. Thus, we choose a type for each element, and inde-
pendently obtain a subset Q of P’s elements by choosing every element using a prob-
ability p. Probability p models whether or not a context switch is forced when the 



program element is accessed.  Q is “successful” if it contains no elements of type bad 
and all the elements of type good. Otherwise, Q is "unsuccessful".  The model 
equates the probability of Q being successful with the probability of manifesting the 
bug. We consider two general variants of the model: 

 
• All elements have the same probability of being good, bad, or neutral. Note that 

the same element can be bad in one execution of the program, good in another 
execution, and so forth.  

• Each element is either good, bad, or neutral, implying a fixed but unknown num-
ber of good/bad/neutral elements. 

 
For both cases, we need to solve a search problem where we have to uncover all 

good elements and no bad elements. This search uses one query to select a subset of 
the elements (Q), seeds them, and runs the seeded program. If a bug occurs, we have 
chosen all the good elements and none of the bad elements. If the query fails (i.e., no 
bug is detected), it is not possible to gain any information regarding the chosen ele-
ments in Q and another subset must be selected for the next query.     

We first consider an average case analysis for the first variant of the model. As-
sume that an average, p*n, number of elements are selected.   For the selected p*n 
elements to be "successful" (i.e., contain all good elements and no bad elements) the 
following must be true:  all the p*n elements should contain either good or neutral 
elements while the remaining (n-p*n) elements should be either bad or neutral ele-
ments. Thus, the probability p(Qsuccessful) is given by:  

 

 p(Qsuccessful) =
( p*n ) ( n-p*n )(PG + PN) *(PB + PN)  , we thus obtain Claim 1: 

1. If PG > PB, then it always pays to select all elements with p=1. 
2. If PG < PB, then it always pays to select none of the elements using p=0. 

• Note, if we choose no element, we can still "win", as there is a 
significant probability that all the n elements are neutral.  

3. If PG = PB, assuming n is large, there exists an x such that x/n = PG=PB. 
Thus,  (PG + PN) p*n *(PB + PN)(n-p*n) = (1-(x/n))^n --> 1/(e^x) 

• If PG=PB < 1/n then it goes to infinite 
• If PG=PB=1/n  then the probability of success is 1/e ~ ½ 
• If PG=PB>1/n  then goes quickly to zero 

 

For the second model type, where we assume that each element is either good, 
bad, or neutral, Claim 2 holds as follows: Assuming we have k good and r bad 
elements, the probability that Q is successful is given by: p(Qsuccessful)= k rp  * (1-p)  

Note, this function obtains its maximum at: 
k

k r+  

In the general case where each element has a probability (PBi, PGi, and PNi), the 
following two distinct alternatives exist: either probabilities for each element are 
about the same, making it possible to analyze the case using the average probabilities 



PB, PG, and PN. Otherwise, there are some elements with probabilities of PGi/PBi 
that are significantly higher than the rest of the elements. This case is analyzed in a 
similar manner to the second variant of the model.  For the first alternative, Claim 1 
holds, while for the second alternative Claim 2 is applicable.  

Thus, we reduce the general case to one of the two above claims. If the first alter-
native holds, the bug could manifest in many cases without applying scheduling 
noise to the program’s execution, eliminating the need to insert such noise. If the 
second alternative holds, the model predicts that for a given concurrent program 
containing a concurrent bug, there exists a globally optimal probability for seeding 
noise in which the bugs are most likely to manifest and that the rate of finding these 
bugs goes down with an increase or decrease of that probability. Experiments de-
scribed in a later section show that the probability applying noise on the tested pro-
grams tends to behave in a manner similar to that predicted by Claim 2.  

4   Methods for efficient search  

In this section, we reason about the terms under which concurrent bugs can effi-
ciently be detected. Considering the huge interleavings space and the fact that noise 
makers have been shown to detect concurrent bugs, one could naturally argue this 
implies that an overwhelming portion of this space must manifest the bug. This, in 
turn, would imply that every method that exhaustively scans all possible interleav-
ings is likely to quickly find bugs. However, this is known not to be the case. Using 
the model, we show that another possibility exists; if there are only a small number 
of elements that are classified as either good or bad, the proportion of bug manifest-
ing interleavings is still polynomial. However, we can provide an efficient search 
procedure to find a subset of program events that constitutes a successful query (con-
tains no bad events and all good events) by running the program a small number of 
times. As explained above, we equate such a successful query with the bug manifest-
ing itself.  

We use a search technique that for a given program with n program locations and 
a deterministic classification (second variant of the model) produces a small group of 
subsets of program locations (S1,…,Sl where l<n), such that one of them will reveal 
the bug. Afterwards, we show how this technique can be extended to deal with a 
probabilistic classification (first and second variant of the model) to produce a small 
fixed number of subsets of program’s locations (S1,…,Sl where l<n) such that one of 
them will reveal the bug with a high probability. Performing an exhaustive search 
over all possible queries is not practical as it is exponential to the program size. 

We formalize this problem as follows: Assume there are n events l1,…,ln where 
each event is either good, bad or neutral. You are allowed to select a subset (Si) of 
event (without knowing their classification) and execute the program. If none of the 
locations in Si are bad and all good locations are in Si, you are done (the bug has 
manifested). For a small number of good and bad events (k) , (k<<n), there are 
O(logk(n)) subsets such that one of them separates the good events from the bad 
events (e.g., for k=1 there are 2*log(n) such of subsets). This can be generalized to 



any value of n and small k (see [10]). Thus, we have a deterministic procedure with a 
logarithmic number of tests that detects any bug composed from a small number of 
events good and bad events. 

For example, consider the case where n=16 and k=1. We select four subsets S1, 
S2, S3, S4 and their complements S1', S2', S3', S4', such that at least one of them (for 
any choice of one bad location and one good location) will contain the good location 
and will not contain the bad location. This scenario is depicted in Figure 4 where S4' 
will pass the test as it does not contain the bad location l3, but does contain the good 
location l11. This follows from the fact that the sets S1, S2, S3, S3 and their comple-
ments denote all the binary numbers 0...15. Thus, if there exists a choice that does 
not separate between a bad event and a good event, there is one number whose binary 
representation appears twice.  

In the experimental part of this work, we use a random method to select these sub-
sets instead of a deterministic method. This is done since for a small number of sub-
sets, selecting elements at random (e.g., choosing an element to belong to Si with 
probability 0.5) is as effective as the deterministic selection for the purpose of sepa-
rating the good and bad elements (see [13]). Random construction is preferable due 
to:  

 
• The number of good and bad locations is not known a priori. A successful query 

may be composed of more than one good or bad element. Thus, different number 
of good and bad elements will require a different deterministic construction.  

• Random selection is an effective solution to the variant of the model where ele-
ments are classified with a probability. This is since the classification of an event 
to be good or bad element could change between executions (for example, a neu-
tral event in one execution may become bad in another and vise versa).  

• Random seeding of program locations is more easily implemented than determi-
nistic selection. 

 
Figure 4 

4.1   Using the model to improve existing testing tools 

In this section we use the introduced model and search method to improve race-
Finder [2], our previously develop noise maker. In addition, we discuss the possibil-
ity of using these methods in tools from other testing and verification domains. The 
model suggests that for a given scheduling heuristic [2] and a given program there is 
an optimal probability for choosing where to make noise. In addition, we consider 
the fact that studies of concurrent bug patterns [10] [13] [18], research on data races 



[21], and atomicity [12] suggest that concurrent bugs are usually composed of a 
small number of good and bad events. Thus, we use the model to motivate the crea-
tion of new black box heuristics based on a two-level seeding technique. In the first 
level, each heuristic chooses a subset of program events. This is done by randomly 
choosing every variable or program location with a given probability. In the second 
level, scheduling noise is applied only to chosen subset of events.  

The first heuristic, referred to as ‘random noise’, takes advantage of the observa-
tion that an optimal probability exists. If we choose the probability randomly, we will 
eventually hit upon the optimal probability or come close to the optimal probability. 
As our model is continuous, we can assume that when we hit a near-to-optimal prob-
ability, the probability of revealing the bug will be nearly optimal. In addition, if we 
fix a required distance, d, from the optimal probability, then (1/(2*d))log(1/(2*d)) 
runs will be required on average case to hit a probability that is close enough to the 
optimal probability.   

In the second heuristic, referred to as ‘best noise’, we work with a formula based 
the second variant of the model. We assume the bug occurs when a sequence of con-
current events accesses a specific shared variable in a specific order. We thus assume 
that there is one good event, while the number of bad events is proportional to the 
program size (n), and this proportion is determined by a parameter c. Thus, at each 

execution we choose each event with probability: 
1

1
p

c n
=

+   ,the optimal probability 
given by the model. 

Our search method can be extended to work with tools from different testing do-
mains.  We motivate this idea by considering a possible use with context-bounded 
model checkers [20][17]. Such tools search for concurrent bugs by placing a limited 
number of context switches (k) over all possible locations of the program (n). When 
considering this method in light of our introduced model two obvious limitations 
come to mind: 1) assuming the existence of only good events may lead to a false 
sense of security by looking at smaller sequences than required, 2) high computa-
tional complexity of calculating all possibilities to place the k context switches 
(O(nk)). As shown, there exists a deterministic construction that requires a substan-
tially lower number of interleavings to be scanned. This is done by placing a larger 
number of context switches (than the minimal number required for the bug to mani-
fest) at locations that are pre-determined by this construction.  

Using the probabilistic construction we can motive random selection of where to 
place context switches for context-bounded model checking. However, we do not 
claim that our search methods should necessarily be applied as-is with other tools. 
For example, when working with a model checker it may not be desirable to place 
many context switches. Thus, a construction that favors smaller subsets having fewer 
contexts switches may be desirable. This in turn will result in a larger number of 
tests required. Moreover, applying our search method for verification purposes will 
require extending the classification to be deterministic (the second variant of the 
model). It is not clear to us yet, whether and how this could be done.  



5   Experimental results  

In this section, we aim to validate that the observed behavior of the noise probabil-
ity acts in a manner similar to that predicted by our model. In addition, we compared 
the new heuristics with ones used in previous work [2], [7],[23]. In our experiments 
we used programs taken from the publicly available multi-thread benchmark [9]. 
Figure 5 presents the names of the test programs, their size measured by lines of 
code,  and their bug type. The programs were tested using on a cluster of Pentium IV 
1800 computers using the Java SDK standard edition, version 1.4.1_01 (results are 
similar to using older versions) using windows operating systems (2000 & XP). In 
all experiment scheduling noise was applied using the yield() scheduling heuristic 
[2]. Using small programs in the experiments provided the advantage of making 
their behavior relatively easy to analyze. The larger programs used demonstrate the 
scalability of our approach. The Crawler algorithm is a real life race condition bug 
embedded in an IBM product [7]. The execution time of the different program ranges 
from a few seconds to a few minutes. Appling scheduling noise does not significantly 
prolong the execution time of the programs, except for the Shop program. 

 
 
Program name # LOC Bug type Program # LOC Bug type
Account 160 Weak reality Crawler 1200 Guarded if 

statementMax 220 Weak reality Raytracer 1600 Weak reality
Shop 320 Sleep + weak 

reality
XtangoAnimator 2088 Deadlock

Piper 280 Wait not in loop Dictionary 706 Weak reality
Manager 520 Weak reality

Figure 5 

5.1 Noise probability behavior 

In two following experiments, we examined how the bug manifestation rate corre-
lates with the different probabilities for choosing a subset of events to seed with 
scheduling noise. For each test program, we measured the number of times a concur-
rent bug manifested itself throughout 1000 runs for each chosen probability. We 
conducted two experiments by choosing two types for grouping events: 1) the set of 
events that access a single shared variable (variables), 2) the set of events that are 
related to a memory access at a given program location (program locations). To 
obtain a subset we chose each element with probability p going over all elements 
(either variables or program locations). In both graphs, the X-axis represents the 
probability p of choosing either a program locations (Figure 6a) a shared variables 
(Figure 6b) and the Y-axis represents the number of times the bug manifested. Re-
sults are shown for a subset of the programs. 
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Figure 6a  - program locations   Figure 6b – shared variables 

5.2 Comparing different heuristics  

In this experiment, we compared the following heuristics: 1) white noise, 2) the 
new black box heuristics and 3) focusing on a variable related to the concurrent bug 
(referred to as contention noise [2]). These heuristics were tested on a subset of the 
test programs described in Figure 5. Scheduling noise was applied using the yield() 
scheduling heuristic. In order to evaluate the strength of the different heuristics, each 
program was run 500 times and we counted the number of times a bug has mani-
fested. In the comparative graph (Figure 7a), the Y-axis represents the total number 
of bugs found when each program was run and the X-axis summarizes the perform-
ance of each heuristic. The heuristics “Random” and “Best” were implemented are 
as described in Section 3.2 (where “best” is executed with the c parameter chosen to 
be as high as possible). Figure 7b illustrates the effect that parameter c has on mani-
festing the bug, using the ‘best noise’ heuristic. The Y-axis represents the total num-
ber of bugs found when each program was run and the X-axis represents different 
values chose for the parameter c.  
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Figure 7a – different heuristics  Figure 7b – parameter C 
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5.3 Analyzing the results 

We hypothesized that since bad locations exist, bug finding performance should 
not monotonically increase with the more locations selected, as it would with only 
good and neutrals. Thus, an optimal probability should exist and the number of bugs 
found will go down with an increase or decrease of probability. The results obtained 
by the both experiments as well as other experience gathered over the last three years 
[2][9] validate our predictions. The results demonstrate that a global optimal noise 
probability exists, and choosing other probabilities causes the bug to manifest less 
frequently. The frequency with which the bug manifests depends on the proximity of 
the chosen probability to the optimal probability. This behavior is similar to the one 
predicted by the second variant of the model (an event is either good, bad or neutral). 
Thus, this implies that some elements have significantly higher probabilities of being 
either more good or bad than the rest of the elements.   

Furthermore, we hypothesized that the number of good locations is small and in-
dependent of the program size, and that the number of bad locations may increase 
with program size (as illustrated by the examples in the introduction). Thus, we 
predicted that the optimal probability, in accordance with our model’s formula, will 
decrease with the size of the program. The general trend in our experiments pointed 
to this behavior when we observed the optimal probability and the program’s size. 
We saw that choosing events at the granularity of program locations rather than at 
the variable level yields better results as more bugs were found using the optimal 
probability. 

When comparing the results from the different heuristics, we observed that the 
“random” heuristic greatly increases the number of bugs found in comparison to 
white noise. When the ’best noise’ heuristic was used with the correct value for the c 
parameter, it outperformed the random heuristic and outperformed white noise by 
almost an order of magnitude. As expected, focusing the noise on the variable related 
to the concurrent bug provides better results than the rest of the heuristics, as it is 
based on having a priori knowledge about the program. Thus, the new black box 
heuristics can be applied when contention information or other information about the 
program is not available or incorrect. In addition, we experimented with different 
values of c when using the ‘best noise’ heuristic and observed that the best value of c 
is close to ⅓. However, we believe that in order to achieve conclusive findings re-
garding this parameter we a larger experiment should be conducted.  

6   Conclusions and future work 

This paper explores the theory and practice of deciding where in the program to 
induce thread switches. Contrary to previous research in the area, we use a black box 
approach and develop a theory for good, neutral, or bad program locations for thread 
switches. We also demonstrate that there are testing scenarios where using a uniform 
probability for choosing the location to be seeded results in a very low probability of 
revealing bugs. This, we motivate the use of a two-level scheme of first selecting a 



subset of the program locations and then performing context switches. We present 
experiments that validate our theory and show how it can be used to improve our 
testing tool.   

This work presents the following novel contributions. We explore the terms in 
which efficient search for real-life concurrent bugs could be carried out. The pre-
sented methods, or similar alternatives, are likely to work only for bug patterns con-
taining few good and bad locations. Our extensive experience with analyzing bugs, 
both in hardware and in software, shows us that most bugs fall into this category.  
We reason about the behavior of concurrent bugs to for a deeper insight of the work 
done so far.  Furthermore, understanding the interactions between program elements 
that lead to concurrent bugs allows motivating the development of new techniques. 
For example, the insights presented in this work have already motivated formulating 
noise-making as a search problem [8] to allow the use of AI-based search methods to 
enhance noise-making process. 

In future work we would like to use information about the program gathered at 
run-time to learn the classification of program locations. We believe that this will 
prove most helpful for debugging purposes as initial results have already indicated.  
Our developed model is the first step towards defining a new model composed of 
long scheduling elements (as opposed to context switch which are “short” scheduling 
elements). We believe this will further allow reducing the complexity of the search 
process and could also be applicable to the formal methods domain. Finally, we in-
tend to extend this work to model realm of sequential programs.  
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