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EFFICIENT BRANCH AND NODE TESTING
Jonathan Misurda, PhD

University of Pittsburgh, 2011

Software testing evaluates the correctness of a program’s implementation through a test
suite. The quality of a test case or suite is assessed with a coverage metric indicating what
percentage of a program’s structure was exercised (covered) during execution. Coverage
of every execution path is impossible due to infeasible paths and loops that result in an
exponential or infinite number of paths. Instead, metrics such as the number of statements

(nodes) or control-flow branches covered are used.

Node and branch coverage require instrumentation probes to be present during
program runtime. Traditionally, probes were statically inserted during compilation. These
static probes remain even after coverage is recorded, incurring unnecessary overhead,

reducing the number of tests that can be run, or requiring large amounts of memory.

In this dissertation, I present three novel techniques for improving branch and node
coverage performance for the Java runtime. First, Demand-driven Structural Testing
(DDST) uses dynamic insertion and removal of probes so they can be removed after
recording coverage, avoiding the unnecessary overhead of static instrumentation. DDST
is built on a new framework for developing and researching coverage techniques, Jazz.
DDST for node coverage averages 19.7% faster than statically-inserted instrumentation on
an industry-standard benchmark suite, SPECjvm98.

Due to DDST’s higher-cost probes, no single branch coverage technique performs best
on all programs or methods. To address this, I developed Hybrid Structural Testing (HST).
HST combines different test techniques, including static and DDST, into one run. HST

uses a cost model for analysis, reducing the cost of branch coverage testing an average of

iv



48% versus Static and 56% versus DDST on SPECjvm98.

HST never chooses certain techniques due to expensive analysis. I developed a third
technique, Test Plan Caching (TPC), that exploits the inherent repetition in testing over
a suite. TPC saves analysis results to avoid recomputation. Combined with HST, TPC
produces a mix of techniques that record coverage quickly and efficiently.

My three techniques reduce the average cost of branch coverage by 51.6-90.8% over
previous approaches on SPECjvm98, allowing twice as many test cases in a given time

budget.



TABLE OF CONTENTS

PREFACE . . . . . . . e XV
1.0 INTRODUCTION . . . . . . . .. e 1
1.1 SOFTWARE TESTING . . . .. ... ... ... .. .. . .. 2

1.2 STRUCTURAL TESTING . . . .. ... ... . .. . .. 3
1.2.1 The Coverage Metrics . . . . . . ... ... .. ... ... . ... ... 3

1.3 THE CHALLENGES OF EFFICIENT STRUCTURAL TESTING . . . .. .. 4

14 RESEARCHOVERVIEW . . . . .. ... .. .. .. . . .. 7

1.5 CONTRIBUTIONS . . . .. ... .. . e 8

1.6 ASSUMPTIONS & SCOPE . . . . . ... .. . . o 9

1.7 ORGANIZATION . . . . .. . e 10

2.0 BACKGROUND AND RELATED WORK . . ... ... ............. 11
21 SOFTWARE TESTING . . . .. .. ... ... . i 11
211 Structural Testing . . . . .. ... ... . . o o 12

2.1.2 Uses of Structural Coverage Criteria . . . ... ... ... ....... 14

22 RELATEDWORK . . . . . .. o 14
221 CoverageTools . . . . .. ... .. .. 15

2.2.2 Improving Coverage Testing Performance . . ... ... ... .. ... 15

2.2.3 Instrumentation Techniques . . . ... ... ... ... ... ...... 18

224 TestSpecification . . . . ... ... ... ... L L L o 18

3.0 A FRAMEWORK FOR NODE AND BRANCH COVERAGE . . ... ... .. 19
3.1 FORMAL NOTATION FOR BRANCH AND NODE TESTING . . . . . . .. 20
3.1.1 StaticNode Coverage . . .. .. ... ... ... .. ... ...... 21

vi



3.1.2 Static Branch Coverage . .. .. ... ... ................ 21

313 Agrawal . . . . ... L 22

32 JAZZOVERVIEW . . . . . .. 23
321 SupportServices . . . . ... ... e 24
3.2.2 Extensible Test Library . . . ... ... ... ... ... ... ...... 24
3.2.3 Test Specification . . . . . ... . ... ... o o 25

3.3 JAZZ IMPLEMENTATION . .. ... ... ... .. ... .. .. .. ..... 26
3.3.1 Implementing the Test Driver . . ... ... ... ............ 27
3.3.2 Instrumentation & Code Generation . . ... ... ... ........ 28
3.3.3 Memory allocation . . . . .. ... ... . ... . .. o .. 29
3.3.4 Implementing Test Specification . . . . ... ... ... ... .. .... 31
3.3.5 JVM Support for Software Testing . . . . .. .. ... ... .. ..., 32

3.4 STATIC BRANCH AND NODE TESTING WITH JAZZ . . . . . .. ... .. 32
3.4.1 StaticNode Testing . . . .. .. ... ... ... ........... 33
3.4.2 Static Branch Testing . . . . ... ... .. ... ............. 36

3.5 SUMMARY & CONCLUSIONS . . . . ... ... ... .. ... .. .. .. .. 38
4.0 DEMAND-DRIVEN STRUCTURAL TESTING . . . . ... ........... 39
41 PLANNING FORDDST . . . ... ... ... . oo 40
411 Planner Actions . . . . . .. . ... ... .. 41
412 Node Coverage Planner . . . . . .. ... ... ... ......... 42
4.1.3 Branch Coverage Planner . . . . . ... .................. 42
4131 Stranded Blocks . . . . ... ... oo oo oo 44

4.1.3.2 Improving Stranded Block Performance . . . .. ... ... .. 49

414 Pre-seeding . . . .. .. ... ... 50

42 IMPLEMENTING DDST INJAZZ . . . . ... ... .. .. .. .. .. .... 51
4.2.1 Dynamic Instrumentation forthex86 . . . . ... ... ... ... ... 53
4211 ShortBlocks . . ... ... ... ... . oo 54

4212 Reflexive Blocks . . . ... ... ... . .. o L 55

422 Trampolines. . . .. ... ... ... ... 56
423 Payloads. . . . .. ... .. 57

Vil



4231 Node Coverage Payload . . .. .................. 57

4.2.3.2 Branch Coverage Regular Payload . .. ... .......... 58

4233 Singleton Payload . . . ... ........ ... ... .. 58

4234 Stranded Payload . . . ... ... ... ... ... ... 58

424 Probe LocationTable . . . ... ... ... ... ... ... . ..., 59

43 EVALUATION . . . . e e e e 60
4.3.1 Performance Overhead . ... ... ... ... .............. 61
432 Memoryoverhead . . . ... ... ... ... .. .. . 65
4.3.3 Impact on Garbage Collection . . . ... ... .............. 67

44 SUMMARY & CONCLUSIONS . . . . . . ... o e 69
PROFILE-DRIVEN HYBRID STRUCTURAL TESTING . . . . ... ... ... 71
5.1 SOURCES OF DDST COST . . . . . . . . it 73
5.1.1 Instrumentation Probes . . . .. . ... ... ... .. .......... 73
5.1.2 Architectural Impact. . . .. .. ... ... ... o oL 76
5.1.3 Stranded Blocks . . . . ... ... 80

52 SELECTING A TEST TECHNIQUE . ... ... ... ... ... ....... 81
521 Average-driven Search . . . ... ... .. ... . ... . ... .. 81
5.2.2 Profile-driven Test Selection . . . . ... ... ... ... ........ 83

5.3 DESIGN OF A PROFILE-BASED TEST SELECTOR . . . ... ........ 85
5.3.1 Modeling Branch Coverage Testing . . . . ... ... ... ....... 86
532 The HST Planner . . . . . . . . . . . . i 88
5.3.3 Test Specification . . . . . .. ... . ... . o oo 89

5.4 INSTANTIATING THE MODEL FORJAZZ . ... ... ... ... ..... 89
5.4.1 Instrumentation Probe Cost . . .. ... ... ... ........... 91
5.4.2 Agrawal Probe Reduction & Planning Cost . . . . .. ... ... ... 91

55 EVALUATION . . . . . . e e e e 93
551 Overhead . . . . ... . . . . . e 93
552 HSTPlan . ... ... . . .. 95
5.5.3 Agrawal Probe Reduction (x) . . . . ... ... ... ... ... ... .. 96
554 Probe Cost . . . . . . . e 98



555 HST Planner Cost . . . . . . . . . o o o 99

56 SUMMARY & CONCLUSIONS . . . . . . ... e 102

6.0 TEST SUITE-CENTRIC STRUCTURAL TESTING . . . ... ... ....... 104
6.1 TEST PLAN CACHING FOR STRUCTURAL TESTING . .......... 106

6.2 IMPLEMENTING TEST PLAN CACHING INJAZZ . .. ... ... .... 107
6.2.1 Saving Test Plans with planspec . . . . . ... ... ... .. ... ... 107

6.2.2 Evaluation . ... ... ... ... 109

6.3 INCORPORATING TEST PLAN CACHING INTOHST . .......... 112
6.3.1 Modeling planspec Loading . . . ... .. ................ 114

6.3.2 Evaluation . ... ... ... .. ... 115

6321 Profileda . . . . . . . . ... 116

6.4 SUMMARY & CONCLUSIONS . . . . . ... i 118

7.0 CONCLUSION AND FUTUREWORK . . . . ... ... ... ... .... 120
7.1 THREATS TO VALIDITY . . . . . . . . it 121

7.2 SUMMARY OF CONTRIBUTIONS . . . . . ... ... . . ... ... .. 123

73 FUTURE WORK . . . . . .. e 124
APPENDIX. BRANCH COVERAGE EXAMPLE . .. ... ... ........... 126
BIBLIOGRAPHY . . . . . e 131

iX



LIST OF TABLES

3.1 Interface for adding instrumentation in a method-oriented JIT environment. 28

4.1 Properties of the SPECjvm98 benchmark suite. . . . .. ... ... ... ... 61
4.2 Total memory usage for each of the SPECjvm98 benchmarks. . . . . . .. .. 66
4.3 Change in the number of garbage collections due to testing with Jazz. . .. 68
5.1 No single test technique is consistently thebest. . . . . ... ... ... ... 71
5.2 Size and code for a Static Branch probe. . . . ... ... ... ... ... ... 74
5.3 Size and code for a regular DDST Branch probe. . . . . ... ... ... ... 75
54 Cost of an instrumentation probe for Staticand DDST. . . .. ... ... .. 76
5.5 Stranded blocks in SPECjvm98. . . . . ... ... ... ... L. 80
5.6 Time required to perform average-driven search. . . . . ... ... ... ... 83
5.7 Models for Jazz’s three branch coverage techniques. . . . .. ... ... ... 87
5.8 Parameters for the HSTmodels. . . . ... ... ... ... .. .. ....... 90
5.9 Costs incorporated into the HST model. . . . . . . ... ... ... ... .. 91
5.10 Frequency of the test techniques chosen by HST. . . . . ... ... ... ... 95
5.11 Adding an individualized Agrawal reduction ratio. . . ... .. ... . ... 96
5.12 Results of using « = 100 on compress. . . . . . . . ... ... oL 97
5.13 HST Planner costinseconds. . . . . ... ... ................. 99
5.14 Number of runs necessary to amortize HST planning cost. . . . .. ... .. 100
5.15 HST Planner with profiled a (costinseconds). . . ... .. ... ....... 101
6.1 Commands in planspec. . . . . ... ... ... ... 109
6.2 Space necessary for planspecplans. . . . . ... ... ... L L 111
6.3 Plan for compress under HST+TPC modeled planspec with « =12.6. . . .. 115



6.4 Number of runs necessary to amortize HST+TPC+model+alpha planning. . 117

X1



LIST OF FIGURES

1.1 Static instrumentation is not removed after recording coverage. . . ... .. 6
1.2 Agrawal’s algorithm statically places fewer instrumentation probes. . . . . . 6
2.1 Partial subsumption hierarchy for adequacy criteria. . . . . . ... ... ... 13
3.1 The general framework of Jazz. . . .. ... .. ... ... .. ... .. ..., 23
3.2 Example test specification for the SPECjvm98 db benchmark. . . . . . . . .. 26
3.3 Static instrumentationinJazz. . . .. ... ... L oL 33
3.4 The static node coverage test planner. . . . .. .. ... ... ... ...... 34
3.5 Extending the Static Node planner to incorporate H. Agrawal’s algorithm. . 35
3.6 Static payload for branch coverage testing. . . . . .. ... ... ... .. ... 37
3.7 A row of the test plan for Static Branch as laid out in memory. . . . . . . .. 37
41 The shaded basic block is a stranded block. . . . ... ... ... ... ... .. 44
4.2 The shaded basic block is also a stranded block. . . . ... ... ... .... 46
4.3 The shaded basic blocks are singleton blocks. . . ... ... ... ....... 46
4.4 Demand-driven instrumentationinJazz. . . . . . . ... ... ... ...... 51
4.5 The base class for all demand-driven structural tests. . . . . ... ... ... 52
4.6 Breakpoint implementationonx86. . . . . . ... ... .. o o Lo 53
47 Areflexive basicblock. . . . ... ... L oo o 55
48 Rowinthe PLT for DDST. . . ... ... ... ... ... . ... . ... .... 59
4.9 Node planning overhead (light blue) and instrumentation (dark blue). . . . 63
4.10 Branch planning overhead (light blue) and instrumentation (dark blue). . . 64
5.1 Three methods from compress. . . . . . ... ... ... .. ... .. ... ... 72
5.2 Change in instruction cache miss rate for DDST and Static. . . . . ... ... 77

xii



5.3 Change in branch misprediction rate for DDST and Static. . ... ... ... 78
5.4 Change in DTLB miss rate for DDST and Static. . . .............. 79
5.5 Average-drivensearch. . . .. ... ... ... ... . .. ... .. ..., 82
5.6 Hybrid structural testing via profiling. . . . .. ... ... .. ......... 84
5.7 The overall framework for doing Hybrid Structural Testing. . ... ... .. 86
5.8 Test specification for compress from a size 1 profilerun. . . . . ... ... .. 90
5.9 « does not correlate well with edges ornodes. . . . . ... ... ... .... 92
5.10 Regression curve for the cost of Agrawal planning. . . . . .. ... ... ... 93
5.11 Results for a size 1 and size 10 profilerun.. . . . . ... ... ... .. .... 94
512 Sensitivity of p. . . . . ... 98
6.1 Overhead of Agrawal without the cost of planning. . . . ... ... ... .. 105
6.2 Cached test plans can be reused across the test cases in a suite. . . ... .. 106
6.3 Loading a saved plan for Agrawal using Java’s serialization. . . ... .. .. 108
6.4 Saved planspec for Compressor.compress in compress. . . .. ... .. .. 110
6.5 Loading a saved plan for Agrawal. . . .. ... ... ... .. ... .. ..., 111
6.6 HST with Agrawal-TPC instead of Static for profiled methods. . . . . . . .. 113
6.7 Regression line for the cost of loading an Agrawal plan in planspec. . . .. 114
6.8 Overhead using HST+TPC with planspec loading modeled. . . .. ... .. 116
Al CFG of COompressor.ComPresSS. .« v v v v v v v v e e e e e et e e e e e e 127
A2 Coverage output from Jazz for DDST Branch. . . . . . ... ... .. ... .. 128
A3 Results of DDST Branch Coverage on Compressor.compress. . . . . . . . 130

xiii



4.1
4.2
4.3
44
4.5
51
6.1
6.2

LIST OF ALGORITHMS

The node coverage planner. . . . .. .. .. ... ................ 43
First phase of the branch coverage planner. . . . .. ... ... ........ 47
Second phase of the branch DDST planner. . . . .. ... ........... 48
Handling a If-Then Stranded Block in Phase 1. . . . .. ... ... ... ... 49
Handling a If-Then Stranded Block in Phase 2. . . ... ... ... ... ... 50
HST Planner . . . .. ... ... .. .. .. i 88
HST Planner with TPC Agrawal . . . . . .. ... ... .. ... ... .... 112
HST+TPC Planner with modeled planspec loading. . . . ... ... ..... 115

Xiv



PREFACE

This dissertation is dedicated to Sandra “Sandy” Scharding (July 1, 1981 — May 13, 2011).
Without Sandy’s love and support, none of this would be possible. The incredible strength
she showed living with Cystic Fibrosis inspires me daily.

I also wish to thank my parents for all of their help through these years. Their love

and support also made this possible.

Finally, I am thankful for the patience of my committee, the department, and my

students.

XV



1.0 INTRODUCTION

Beware of bugs in the above code; | have only proved it correct, not tried it.

—Donald Knuth, March 29, 1977

As PROGRAMS grow ever larger and more complex, demonstrating them to be bug-
free becomes an increasing challenge. In a 2002 study, the National Institute of Standards
and Technology estimated that errors in software cost the United States $59.5 billion each
year [50]. With so much money at stake, not to mention issues of health and safety;, it is
clear that reducing the number of bugs found in software is a paramount concern of the
software development process.

For example, in October 2011, British car manufacturer Jaguar Cars Ltd. issued a recall
of nearly 18,000 cars due to a software bug that prevented the cruise control from being
disabled. It could only be disengaged by shutting off the ignition, something not safely
done at speed. Jaguar stated that “in some circumstances the cruise control may not
respond to the normal inputs” [30], a bug that adequate testing should be able to expose.

However, the size of modern programs can make the task of testing nearly impossible.
Larger programs have more source code statements, more branches, and more data values
where a mistake may occur. In a 1999 empirical study, Rothermel et al. report that the
software product of an industry partner containing about 20,000 lines of code requires
seven weeks to run the entire test suite [59].

Traditionally there have been two schools of Software Engineers: those who want to

formally verify a program through proofs, and those who want to test the actual behavior



of the code’s execution versus its expected behavior. Formal verification is a lofty goal,
and while automatic theorem provers have been somewhat successful—usually with
specially designed programming languages or annotations—the techniques are far from
general. Worse, they are often impractical for the very large programs that need it the
most [65, 28]. Instead, through the intelligent use of test techniques, software testing can

be made practical and accurate.

1.1 SOFTWARE TESTING

Just as most people will test drive a car before they purchase it, even novice programmers
instinctively check program output to determine the behavior of a program. However,
this is usually done in an ad hoc fashion. The bigger question that may be asked is:
“Can this be done in a systematic way?” The answer, of course, is a resounding “Yes!”.
Software Testing is the discipline of Software Engineering devoted to empirically testing

a program’s execution to determine software correctness [38].

Software testing begins with the realization that to effectively check a program’s
behavior, one needs to test as much of the code as possible. Too many programs have
been written where “rare” code, such as error handlers, have been left untested. The first
step then is to construct a set of fest cases that are designed to exercise the program via
carefully constructed inputs. The second step is to run the suite of test cases and to check

the output. Any discrepancy between the actual and expected results constitutes a bug.

This strategy can be extremely effective, but it hinges on the tests being created in a
deliberate fashion rather than just ad hoc collections of input. There needs to be a way to
assess the quality of a test suite—i.e., how well it tests the program. One possible way
of evaluating the test suite is to look at the structure of a program—its control and data

flow paths—and to count how many of those paths are taken versus how many exist.



1.2 STRUCTURAL TESTING

While the ideal in Structural Testing is to completely test every path a program can take,
this is an untenable goal in practice. Some portions of program code may be infeasible,
and no test case will ever execute the code. Even if the tests are restricted to feasible
paths, the number of possible paths in a program that has loops may be vast or even
infinite [37].

If path-based structural testing could be done simply, the evaluation of a test suite
would be the ratio of executed paths to the total number of possible paths. The lower the
percentage of covered paths, the less thorough the test suite. This ratio is a coverage metric,
where a test case is said to cover some path or paths.

Since path-based structural testing is hard or impossible in many cases—specifically
those large programs that need thorough testing—some other, more practical manner
by which to determine the quality of a test suite is needed. One possible approach is to
relax the granularity of the structure from a path to something simpler to test such as

individual code statements or branches.

1.2.1 The Coverage Metrics

There are two classes of coverage metrics: the control flow metrics and the data flow
metrics. Zhu et al. describe these tests formally [69] and I will describe them briefly here

for convenience. The most commonly-used control flow metrics are:

Path Coverage Path coverage is the ideal coverage metric. If a test suite covers 100% of
the paths of a program, including implied paths such as integer overflow or other
exceptions, the program should be bug-free. There are many implicit assumptions,
however, including the questions of what to do with infeasible code, what to do when
inputs cause a program to never halt, or how possible it is to actually generate all
possible inputs to get all paths.

Branch Coverage While there may be an infinite number of paths due to back-edges,

there are a finite number of branch instructions. Branch coverage seeks to evaluate



a test suite for how many branches it covers out of the total number of branches in
the code. This coverage metric is, however, weaker than path coverage, since it is
possible to construct a path that is comprised of covered branches but has other paths
uncovered.

Node Coverage Node coverage (also called statement coverage), he weakest of all the
control flow coverage metrics, simply seeks to discover if every statement in the
program has been executed by a test suite. Since the path to the node is not even
recorded at the branch level, statement coverage can miss bugs that result from two

nodes being executed in some order, even though both nodes could have been covered.
The data flow coverage metrics include:

Def-Use Coverage A data flow metric that seeks to determine how many Definition-Use
(DU) pairs of a variable have been covered out of all possible ones. A DU-pair is an
edge between where a variable is defined and where that assigned value is used.

All Uses Coverage The all-uses coverage metric records if for every variable definition, a
path has been covered that reaches every use. This is weaker than the All DU-pairs
criterion since only a single path must be exercised instead of every path.

All Defs Coverage This metric records coverage of every definition of a variable that

reaches a use. It is the weakest of the data-flow coverage metrics.

The subsumption hierarchy for the control flow metrics is that path coverage subsumes
branch coverage which subsumes node coverage. For data flow metrics, Def-Use coverage
subsumes All Uses which subsumes All Defs. Many other works focus on the creation of

test cases and specific coverage metrics [43, 26, 38, 29].

1.3 THE CHALLENGES OF EFFICIENT STRUCTURAL TESTING

With such a well-defined testing strategy, why has coverage testing not become standard
practice among all large software projects? For some reason, the discipline that software

testing requires often falls to the wayside during software projects. Often programmers



are unmotivated to write test suites, thinking that the extra work it involves is wasted
rather than saving debugging time down the road. Also, testing is just one more obstacle
in the increasingly tight time and monetary budgets of many companies. But the simplest
of the many reasons is that currently it is not feasible to do quick structural testing on

large programs. This is due to the deficiencies in the current tools and techniques.

Coverage testing needs to be emphasized as a major part of the development process.
The easiest way to do this is to integrate testing into the development environment.
However, existing test techniques are not automated, and limited to what a tool provides
by default, which is often only low-content coverages like statement coverage. Even
worse, existing instrumentation techniques used in commercial tools are slow and often
require access to the source code. Java testing tools that use the Java Debugging Interface
disable Just-In-Time compilation and default back to painfully slow interpretation [7, 44].

As if the slow methods of data gathering were not enough, existing coverage al-
gorithms place instrumentation probes without regard to the actual execution of the
program. This means instrumentation is unnecessarily placed in regions of code that are
infeasible, wasting time. Frequently these probes are inserted at compile-time, possibly
masking bugs such as buffer overruns with the storage for counter variables.

Take for example, the control flow graph (CFG) in Figure 1.1. The program in this
tigure is a simple one that adds the even and odd integers from one to one million. With
traditional tools, static instrumentation would be placed into each basic block (indicated
by the colored boxes) and even though every node or branch but the return would be
covered on the second iteration, the program would still be incurring high overheads. In
the example program of Figure 1.1, there will be 4,000,003 total probe executions when
node coverage only needs one execution of the instrumentation probe in each of the seven

basic blocks.

Figure 1.2 shows an approach to improving the cost of structural testing that attempts
to place less probes and infer coverage. The algorithm was developed by H. Agrawal
and uses dominator information to allow one probe to record the coverage of multiple
structures [12]. The resulting probe locations shown in the figure yield over a 50%

reduction in the static number of probes. However, when the code is executed, there still



long evenSum=0;
long oddSum=0;
int i=0;

*

i £(i<1000000)

return; if(i%2 == 0)

evenSum+=i; oddSum+=i;

Figure 1.1: Static instrumentation is not removed after recording coverage.

long evenSum=0;
long oddSum=0;
int i=0;
L

v

1T (1<1000000)

—_— >\

return; if(i%2 == 0)

evenSum+=i; oddSum+=i;

Figure 1.2: Agrawal’s algorithm statically places fewer instrumentation probes.



remain 1,000,001 dynamic probe executions when only three were necessary to record
tull coverage. Additionally, the cost of computing the probe locations is high, reducing

the advantage of the fewer probe executions.

1.4 RESEARCH OVERVIEW

With these shortcomings, it is clearly time for a better system for doing structural testing.
This dissertation presents an end-to-end solution efficiently collecting coverage informa-
tion for node (statement) and branch coverage in a Java JVM that uses just-in-time (JIT)
compilation.

First, I present a new framework, called Jazz, which allows for the easy implementation
and research of different structural test techniques. Jazz supports inserting multiple
types of instrumentation at different phases in the JIT compilation process. It does the
insertion by interfacing into the Java JIT compilation process and exposing an interface
for building test planners that drive the placement and operation of instrumentation
probes. Additionally, Jazz provides facilities to handle memory management and control-
flow analysis. It also provides a test specification language that allows for convenient
specification of which test techniques to apply to which packages, classes, and methods
in a particular testing run. On top of these services, I developed an extensible test library
that formed the foundations for the novel test techniques this dissertation will present.

One member of the test library is a novel technique for structural testing called demand-
driven structural testing (DDST). DDST uses instrumentation probes constructed out of
fast breakpoints [40] that can be easily inserted and removed during the execution of the
tested program. Dynamic insertion and removal of probes allows instrumentation to
have as short of a lifetime as possible, taking advantage of the fact that coverage is a
boolean property that, in practice, converges quickly. By removing instrumentation as
soon as it is no longer necessary, the majority of the tested program’s execution will be
instrumentation-free. Experiments using DDST show it to be the best choice for node

coverage and is a good choice for loop-intensive code when testing with branch coverage.



However, uniform application of DDST-based branch coverage testing to all programs
or even all methods in a program is not always the best choice when compared to
mixing in more traditional static, always-present instrumentation. DDST requires a more
expensive instrumentation probe and some methods have a control-flow structure called
a stranded block, which prevents instrumentation from being removed when coverage has
not reached 100%. Instead of using just one test technique, this dissertation presents a
hybrid approach called Profile-driven Hybrid Structural Testing (HST) that combines
three different branch coverage test techniques: DDST, Static, and Static with Agrawal’s
optimization technique. Information from a profiling run on a small input is combined
with a model of instrumentation probe behavior to provide a customized plan of testing
techniques to be applied to the methods of a program. Results show that the hybrid
approach improves upon the naive application of a single test technique by an average of
48% versus Static and 56% versus DDST.

Structural testing can be further improved by examining the software testing process
as a whole. In general, there is a suite of more than one test case over which the program
is run. Since there is repeated execution of methods that have not changed between runs,
some of the cost of planning where and how to instrument the program can be cached and
reloaded on subsequent test cases from the suite. This dissertation introduces Test Plan
Caching (TPC) that uses saved test plans. By eliminating the unnecessary recomputation

of test plans, more test cases out of the suite can be executed in a limited time budget.

1.5 CONTRIBUTIONS

This dissertation makes a number of contributions to the challenges of structural testing.

They are:

1. A formalized notation and model of structural testing that captures the properties
inherent in the various test techniques, allowing for analysis and development of new

techniques,



2. A framework, Jazz, for the convenient implementation and evaluation of structural
testing algorithms,

3. Testspec, a language for the specification of regions on which to apply the structural
tests developed in Jazz,

4. A novel approach for structural testing using demand-driven instrumentation (DDST),

5. Hybrid Structural Testing (HST), a profile-based approach for selecting the appropriate
branch test technique for use on a given method, and

6. Test Plan Caching (TPC), a method for using repeated test runs over the test cases of

a suite to further improve testing performance by caching over the entire suite.

1.6 ASSUMPTIONS & SCOPE

This work addresses the problem of efficient structural testing under a set of assumptions.
First, the Jazz framework targets a Java Virtual Machine (JVM) that uses just-in-time
compilation. The JVM must be freely modifiable to allow for the addition of the Jazz
framework components. Secondly, I focus on baseline compilation where aggressive
optimizations that would result in code movement or elimination are not applied. The
techniques of this dissertation apply to arbitrary sequences of binary code, but with
optimization enabled, mapping the coverage information back to the source code becomes
more difficult. The same problem has been solved with debuggers in the work of
Jaramillo [35] and those techniques could be applied to DDST.

The Java programming language also makes it possible to compute a control flow
graph before the code is run, as there are no computed branches with targets unknown at
JIT compilation time.

The instrumentation is written as self-modifying x86 machine code. It is assumed that
self-modifying code is supported by the hardware and the operating system.

This work targets single-threaded applications written solely in Java with no native
code. The modifications to the techniques to support multithreading are addressed in

this dissertation, but implementation is future work.



1.7 ORGANIZATION

The rest of this thesis is organized as follows. Chapter 2 examines the background and
related work. Chapter 3 presents a new framework, Jazz, designed to facilitate the research
and development of structural tests in a JVM. Chapter 4 describes a novel technique for
doing structural testing using instrumentation that is dynamically inserted and removed
during program execution. Experimental results from testing DDST techniques show
that none of the evaluated techniques for branch coverage is consistently the best choice
across all programs, nor even across all methods in a single program. Chapter 5 thus
presents a way of using a small profiling input to determine which technique to apply
to a method on subsequent full testing runs. In Chapter 6, I seek to exploit the testing
process to identify ways where a test suite can be optimized beyond a single test case
run by using caching and information gathered in prior runs of the test suite. Finally,

Chapter 7 concludes and discusses future work.
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2.0 BACKGROUND AND RELATED WORK

IN THIS CHAPTER, I present the background of software testing and discuss previous
work to frame the new solutions presented in the remainder of this dissertation. Related
work is presented in four parts. First, existing coverage tools are discussed. Next,
previously suggested techniques for improving the cost of coverage collection are given.
Third are several instrumentation techniques useful for software testing. Finally, languages

related to specifying how to test or where to instrument are explored.

2.1 SOFTWARE TESTING

Software testing is the process of assessing the functionality and correctness of a program
through execution or analysis [38]. Its purpose is to reveal software faults before they
manifest themselves as failures during regular program usage. A failure is defined to be
“the inability of a system or component to perform its required functions within specified
performance requirements” [33]. A fault is a portion of a program’s source code that is
incorrect [33].

The discovery of faults through testing is, at its heart, an intractable problem. For
instance, the number of inputs to a program may be exponential in size, an input may
cause a program to never terminate, or the fault may lie in the specification of the problem
rather than the implementation of the program [18, 38]. However, this does not mean that
testing should be ignored.

Testing can be done by inspection or by execution [38]. This dissertation focuses on

execution-based testing approaches. This means that the program to be tested is run with
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an input designed to exercise the program in a certain way, known as a test case. Since
a single run may not exercise the program adequately, there may be multiple test cases
assembled into a suite [37, 38, 33, 18, 69].

However, feedback is necessary to know how well a test suite has exercised the
program, and thus exposed faults. For this, an adequacy criterion is used [69]. A question
then is: “What constitutes a reasonable measure of adequacy?” Two possible categories
are criteria that are specification-based, where testing determines if the software meets
a set of predefined requirements, and program-based where the adequacy of testing is

determined in relation to the properties of the program under test [69].

2.1.1 Structural Testing

This dissertation focuses on a program-based adequacy criterion, specifically structural
testing, where the requirements for a test suite are based upon a particular aspect of the
structure of the program. Structures that can be explored include control-flow ones, such
as the nodes, edges, or paths of a program’s control flow graph, or data-flow ones, which
track variable definitions and uses [69].

Not all adequacy criteria are equal. For instance, if a test case exercises a control-flow
structure such as a path through a program, that path is said to be covered. Coverage of a
path implies that each branch taken as part of that path is also covered. In this way, a
criterion such as path coverage is said to subsume the branch coverage criterion [69, 38].

Clarke et al. created and proved a subsumption hierarchy that relates data- and
control-flow adequacy criteria to each other. The relevant part of this hierarchy for this
dissertation is shown in Figure 2.1 [23]. Path coverage is the most complete of the criteria
as covering all paths would be to test all possible executions of the program. However,
the number of paths can be infinite or exponential in programs with loops [69, 38].
Additionally, some paths are infeasible, where no input will ever exercise it [49].

For the data-flow criteria, there are both definitions of variables and uses of the
variables to cover (du coverage). A use of a variable in a computation is called a c-use and

a use of a variable as a predicate in a conditional statement is known as a p-use [69, 38].
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Figure 2.1: Partial subsumption hierarchy for adequacy criteria.
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Control-flow criteria are based on paths, branches, and nodes—the basic blocks of the
control flow graph, which correspond to the statements in the program’s source code.
The control-flow criteria are colored in Figure 2.1. This dissertation focuses on branch

and node coverage.

2.1.2 Uses of Structural Coverage Criteria

The original motivation for collecting coverage with structural testing was to determine
test suite adequacy. However, coverage results can also be used to drive the composition
and application of the test suite to a program under test. Additionally, it can be used
as part of regression testing to select the appropriate test cases to target where new
modifications of the source code might have introduced a new fault into the program [38].

Test selection uses the results of coverage information to run a subset of test cases out
from a suite that target the locations where code has been modified. This is done to
reduce the cost of regression testing [16, 56, 38].

Some test cases in the test suite are more useful than others. These cases can be chosen
to run first to make sure the maximal amount of coverage can be achieved in a given
time budget. Test suite prioritization also allows faults to be exposed sooner in the testing
process. Structural coverage can be used to assess the priority of a test case [57, 59, 29, 38].

In addition to prioritization, test suite reduction uses coverage results to prune test

cases that do not supply additional information from the other cases in the suite [36, 58].

2.2 RELATED WORK

Due to the well-established utility of coverage testing, there is a body of traditional tools
and techniques to collect coverage. This section describes those tools and techniques
developed to more quickly collect coverage and other similar runtime properties. The
techniques below and in this thesis also depend upon program instrumentation. Finally, I

examine previous work regarding the problem of specifying where in a program to test.
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2.21 Coverage Tools

Commercial tools such as JCover [7], Clover [3], and IBM’s Rational Suite [32] provide
various methods to do node and occasionally branch coverage, as part of an integrated
tool. When applied to Java programs they avoid instrumenting the code by using the Java
Virtual Machine (JVM) interface meant for external debuggers. When this interface is
used, Just-In-Time compilation is disabled to use the much slower interpretation mode.
Open source tools such as Emma [6] and Cobertura [4] take a different approach.
They often offer two separate ways to collect coverage information. The first approach is
to use a tool such as the Bytecode Engineering Library (BCEL) [2] to rewrite a Java class
file to insert instrumentation. A second approach involves using a custom classloader

that inserts the instrumentation when a JVM requests a class the first time.

2.2.2 Improving Coverage Testing Performance

Ball and Laurus seek to improve the performance of path profiling, which counts the
number of times a particular path has been executed [17]. From this information, obvi-
ously coverage can be inferred. Path profiling is useful to determine the “hot” paths of a
program in an effort to focus attention from an optimizing compiler or runtime system.
Their technique generates for each path a unique sum that is computed by additions that
occur along each branch. This reduces the instrumentation to little more than an add
instruction, which is likely as lightweight instrumentation as is possible for this process.

Arnold and Ryder improve upon the performance of path profiling where precise
execution profiles are not required [14]. Their approach uses sampling, where instru-
mentation only records execution with some predetermined frequency. Their technique
duplicates the region to be instrumented, leaving a clean copy and an instrumented
copy. At the start of each region a check of the sampling condition is inserted, and the
instrumented or non-instrumented portion is chosen at runtime.

The use of path profiling for recording coverage information does not make sense. In
the Ball and Laurus work, the instrumentation, though individual points are efficient,

remains much longer than a coverage tool needs to collect its information. Arnold-Ryder
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instrumentation acknowledges the idea that most of the time, users want to be running
uninstrumented code. However, the very notion of sampling makes it inappropriate for

coverage.

Agrawal seeks to improve the performance of node and edge coverage by reducing the
total number of locations that need to be instrumented in a program [12]. By computing
the pre- and post-dominators in a control flow graph, coverage of certain nodes in the
graph imply the coverage of the “dominated” blocks [49]. Experimental results show a
significant reduction in the number of locations instrumentation needs to be placed, with
only 29% of blocks and 32% of edges being necessary to infer complete coverage in the

test programs.

Pavlopoulou and Young attempt to solve the problem of reaching full coverage [53].
They acknowledge that test cases may not expose all feasible paths in a program and
wish to use actual deployments of the program in the field to do further testing. However,
there is no need to collect coverage information that has already been gathered in the
testing phase, so before deployment, the application is statically reinstrumented only
in the locations that were not covered during the testing phase of development. The
motivation for reducing instrumentation is not to burden the users of production software
with the overhead of instrumentation, except where necessary to provide further feedback
on software quality.

Tikir and Hollingsworth use a dynamic technique to insert instrumentation probes
for node coverage [67]. These probes are placed at method invocation and remain until a
time-periodic “garbage collector” removes them. Since the collector does not immediately
remove the unneeded instrumentation, they remain in the program, incurring overhead.
To reduce the total number of probes, they use an algorithm also based upon the idea of
dominators, inferring coverage where possible. They report overhead of .001% to 237%,
with an average slowdown of 136% for C programs. Tikir and Hollingsworth do not
compare their approach to the immediate removal of an instrumentation probe when it is

no longer necessary.

Chilakamarri and Elbaum seek to improve the performance of coverage testing for

Java programs by “disposing” of instrumentation when it is no longer needed [20, 21].
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Their technique involves replacing a function call to their collection method with nop
instructions when the coverage information is recorded. They do this by modifying the
Kaffe JVM. Compared to static instrumentation with dominator information, they report
a 57% improvement on average. However, they only attempt method and node coverage
testing. Additionally, their benchmarks exclude the two SPECjvm98 benchmarks that are

most loop intensive.

After my preliminary work [48], Santelices and Harrold sought to improve upon
def-use testing by attempting to infer coverage via data flow analysis [60]. While many
du-chains in straight-line code can be inferred in their approach, any reasonably sized
program yields a high level of uncertainty in their coverage results. It seems counter to
the testing philosophy to sacrifice such accuracy for speed, when other techniques can

likely make no sacrifices at all.

Another avenue for improving coverage performance is using hardware performance
monitoring counters to collect coverage. Shye et al. use the Branch Trace Buffer of the Intel
Itanium2 processor to gain information about the last four branches taken in the program.
Using dominator information and frequent sampling of the performance counters yields
50-80% of the true node coverage value [61]. However, sampling-based approaches with

less than 100% accuracy may miss rare code that a good test suite will aim to cover.

For certain processors, increased branch history sizes and the ability to raise an
exception when the buffer is full allow for 100% accuracy. Tran, Smith, and Miller use
an embedded Blacking DSP with a 16-entry buffer to record node coverage with 100%
accuracy by trapping when the buffer is full. They report an overhead of 8-12% but are
unable to run a full desktop benchmark suite for comparison due to the nature of their

embedded system [68].

Soffa, Walcott, and Mars examine the current state of software testing via hardware
performance counters and find that the Intel Core i7 has a 16-entry branch trace store,
however access to it enables a special debug mode on the CPU, resulting in a 25-30x
slowdown. Otherwise, a sample-based approach with the aforementioned drawbacks can

be used [62].
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2.2.3 Instrumentation Techniques

Instrumentation packages like Dyninst [31] and Pin [10] provide generic frameworks for
building probes, but have no specific support for software testing. Much of the focus on
instrumentation has been motivated by debugging. Kessler [40] proposed a way to create
software breakpoints that avoid trapping into the operating system. The code location
to break at is overwritten with a jump to a different portion of the address space where
the appropriate payload code is executed. However, these breakpoints were proposed for
traditional debugging rather than as dynamic instrumentation for structural testing.

In Kapfhammer’s dissertation on testing database-centric applications, the tool he
developed may use either a static or dynamic approach to instrumentation [39]. An Aspect-
Oriented Programming tool called an aspect weaver takes a set of conditions to insert
instrumentation creating statically instrumented Java classfiles. He also has a modified
classloader that can instrument when Java’s dynamic loading mechanism encounters a
reference to a class for the first time. In both of these cases, the instrumentation remains

throughout the execution of the code.

2.2.4 Test Specification

The challenges of generating test cases, running programs multiple times, and collecting
and aggregating the results is tedious enough that work has been done to automate it
via a Domain-Specific Language (DSL). Balcer, Hasling, and Ostrand propose a domain
specific language to ease the overall testing process [15]. Their language does not solve
the problem of specifying where or how to do coverage testing.

Bytecode-level instrumentation is an example of a cross-cutting concern that Aspect-
Oriented Programming (AOP) [24] seeks to easily support. In particular, the Join Point
Model of Aspect] [1] is a rich language that could be used to specify where instrumentation
(aspects) should be woven into existing class files. Rajan and Sullivan extend the Join
Point Model to support the targeted specification of Java code regions for testing [54].
Kapfhammer’s work also suggests an alternative model for a coverage testing DSL based

on AQOP.
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3.0 A FRAMEWORK FOR NODE AND BRANCH COVERAGE

THERE EXIST MANY TOOLS for collecting coverage metrics on programs but none
of them are designed to support the research and development of new structural test
techniques [7, 3, 32, 6, 4]. To address this shortcoming, I have created a framework for
branch and node coverage testing.

The framework consists of two parts. The first is a formalization of the common
elements of structural tests such as branch and node coverage. This formalization
describes the location of instrumentation probes, the actions those probes must take, the
conditions under which those actions should occur, and the memory (state) necessary for
collecting coverage.

In addition to the formalization, I have created an extensible and flexible framework
called Jazz that serves as a platform on which to research, develop, evaluate, and use
techniques for structural testing. Jazz provides the components and support to realize
the structural tests described in my formal notation.

Jazz targets Java programs that are compiled with a just-in-time (JIT) compiler. Java
presents a rich environment for efficient structural testing as it has increasingly become
an important language for many applications where software correctness is vital for
daily operation. As applications have grown in complexity, the time spent in testing has
increased dramatically and become more costly. As a language and runtime environment,
JIT compilation offers a unique facility for testing to achieve good runtime performance
by carefully and flexibly choosing how and where to instrument a program to gather
coverage information.

Jazz’s extensibility comes from the capability to quickly and simply add new test

techniques either by modifying existing ones or building new ones on top of the support
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services Jazz provides. The framework is flexible and supports a simple test specification
language that allows a user to specify when and where to test, including the possibility
of applying multiple tests simultaneously in a single program test run. The framework is
also flexible because it is can be easily updated to accommodate implementation changes

to the underlying Java JIT and VM.

3.1 FORMAL NOTATION FOR BRANCH AND NODE TESTING

Structural tests such as branch and node coverage share several common features. To
build a practical framework that will support various techniques for collecting coverage, I
developed a formal notation framework that distills the common aspects test planning
and collecting coverage information. This framework assumes that the instrumentation
necessary for collecting coverage will be placed in basic blocks rather than an alternative
approach such as rewriting branch instructions.

For the region R of a program to test, a control flow graph, (N, E) = CFG(R), that
captures the structure of R is necessary. The set I C N represents the nodes in R that will
contain instrumentation probes. The data and actions necessary to record the coverage

information of R constitute a test plan. The test plan for a region contains:

o A set S C I seed locations where instrumentation probes are placed prior to the

execution of region R.

e A set of probe plans P, one for each element of I, where the probe plan for instrumenta-

tion probe P; contains:
— A set A of actions to perform on probe execution.

— A set C of conditions used to determine if an action should be performed.

e A state M 2 Uj<j<y P;.C to update upon P; being executed. This state is shared
among all probes in a region but each region has a separate state. It will also contain

the record of coverage, Cov, that is collected as the probes execute.
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There are two versions of the framework. In this section, I use the notation to express
the data and actions necessary for Static Node and Branch Coverage. In Chapter 4, a

second version for testing with dynamic instrumentation is used.

3.1.1 Static Node Coverage

Using this formalized notation, each of the traditional techniques for collecting coverage
can be expressed. Static Node Coverage places inline instrumentation at compile time
that records the coverage of a node when executed. These instrumentation probes record
the coverage of the node they are placed in and remain throughout the lifetime of the
program.

For a region R on which to perform Static Node Coverage, the set of nodes N are the

locations to instrument (I = N). The test plan for R contains:

e The set of seed locations S = I, where every node in R will get an instrumentation
probe before the region is executed.
e The set of probe plans, P, where each probe plan P; contains:
— A set of actions A that contains only the action to record coverage of node i in
Cov[i] = true.
— A set of conditions, C, on which to perform the actions, where C; is true for all
actions.

e The state M contains the |N| boolean values that comprise the Cov array.

3.1.2 Static Branch Coverage

Similarly to Static Node Coverage, Static Branch Coverage inserts instrumentation probes
at compile-time in the source and sink basic blocks of a control flow edge to collect
coverage. These probes also remain throughout the entire lifetime of the program.

To record the edge between the source and the sink probes, a thread-local, region-
specific variable is introduced called the previously hit block. Thus, when the sink in-
strumentation probe is executed, it can record the edge from the recorded source to

itself.
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For a region R, the set of nodes N are again the locations to instrument (I = N). The

test plan for R contains:

e The set of seed locations S = I, where every node in R will get an instrumentation

probe before the region is executed.
e The set of probe plans, P, where each probe plan P; contains:

— A set of actions A that contains:

1. An action to identify the previously hit block, b.
2. An action to record coverage of the edge b — i in Cov [b—1] = true.

3. An action to set the previously hit block indicator to the current one, b < i.

— A set of conditions, C, on which to perform the actions, where C; is true for all

actions.

e The state M contains the |E| boolean values that comprise the Cov array as well as

the space necessary for recording the previously hit block.

3.1.3 Agrawal

Agrawal’s techniques for reducing the number of static probe locations by using the
dominance relationship to infer nodes or edges can be applied to either of the Static
techniques. In each case, applying Agrawal’s algorithm only affects the set I of basic
blocks which have instrumentation probes. This in turn affects the set of seed locations,

S, since it is equal to I.

For Static Agrawal Node, Agrawal’s algorithm yields the set of nodes that must be
instrumented, and thus seeded, S = [ = Agrawal(CFG(R)). Static Agrawal Branch,
however, returns a set of edges for which coverage must be recorded. Each edge in the
set is split it into its (source, sink) pair, and I is the union of all sources and sinks.

The probe plans remain the same for each technique. The state M remains the same

but the size of Cov is reduced accordingly.
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Figure 3.1: The general framework of Jazz.

3.2 JAZZ OVERVIEW

With the formalism of the previous chapter, a software framework to realize various
structural test techniques can be built. To this end, I developed Jazz, a framework for
creating structural tests for Java programs run under a Java Virtual Machine (JVM) that

uses just-in-time (JIT) compilation to convert Java bytecode into native machine code.

An overview of Jazz is shown in Figure 3.1. Jazz integrates with a JVM to provide
support for structural testing and is designed to let testing engineers realize a specific
structural test for Java through its extensible test library. The implementation of a test
technique is called a test planner and the data structure that drives runtime probes and

records the coverage is a materialized test plan from the formalism of the previous section.

Jazz takes as input Java bytecode and a specification of where and how to test Java
methods. The test driver processes the specification and the bytecode and directs how the
instrumented machine code should be produced. The instrumentation monitors program
execution to gather coverage results, which are stored for later reporting. When the

program terminates, Jazz issues a “coverage report” that is presented to the user.

The core of the Jazz framework is its support services and user-extensible test library

of structural test techniques. The support services provide the basic functionality that the
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tests need to do instrumentation, control flow analysis, memory allocation, and result
collection. Jazz comes with a library of tests that were built using the framework. It also

supports additional user-defined tests that extend existing tests or are completely new.

3.2.1 Support Services

Jazz provides support services to simplify building structural tests in the framework.
These services are used by the test techniques that are pre-defined in the framework. The

services can also be used to construct new tests. The services include:

Instrumentation Jazz provides support for various types of instrumentation including
permanent inline instrumentation and transient instrumentation.

Callbacks A specific structural test needs to be informed of events from the JVM, such as
when a method is about to be compiled, when a particular bytecode is translated to
machine code, when a method has finished compilation, and when the JVM is about
to exit. These callbacks serve as the interception points between the JVM and the
structural test implementation.

Memory Management Each instantiation of a structural test (i.e., when a method is
compiled) needs to allocate memory to do its work and to record information. Jazz
supports memory allocation in both the JVM’s managed heap and operating system
memory buffers (i.e., heap and/or mmap space). These memory regions can be used
for data or code (marked as executable to support code generation).

Control Flow Analysis Structural tests often need to analyze control flow properties of
a method to determine how best to instrument it. Jazz provides analysis support,
including basic Control Flow Graph (CFG) generation and more advanced CFG oper-
ations such as determining pre- and post-dominator trees, finding strongly connected

components, and graph traversal.

3.2.2 Extensible Test Library

The power of Jazz is the ability to add new test techniques with minimal effort. It is

designed to be highly extensible with simple facilities. There are two ways to add new
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tests: extend an existing test from the test library, or develop a test from scratch (using
the support services and a similar technique from the library as a guide or template) and
add it to the library.

The initial structural tests that I implemented and added to Jazz’s test library allows
testing at node (statement) and branch granularity. The test library contains implementa-
tions of Static Node and Static Branch coverage testing. It also includes a variation of each
that uses a static minimization algorithm developed by H. Agrawal to reduce the amount
of static instrumentation needed for coverage testing [12]. These tests are Static Node
Agrawal and Static Branch Agrawal. Their implementation is discussed in Section 3.4.

Creating a new test is straightforward as well. If it is a static test, an appropriate
existing test in the library can be extended. Alternatively, a new test can be added by
extending the superclass for structural testing. The implementation of a new test is

simplified by using the support services provided by Jazz.

3.2.3 Test Specification

Jazz is flexible because it offers the capability to specify where and how to test at the
method level. It is built with the goal of permitting the combination of different test
techniques in a single run of a program, such as choosing to test some methods with
branch coverage and others with node coverage, or to instrument methods that are not
frequently executed with static instrumentation and the hot path of code with static
Agrawal instrumentation. This approach permits fine-grain testing with a single test run,
which avoids the expense of multiple independent runs.

To achieve this flexibility, Jazz provides a test specification language, called testspec.
This language lets a user of the framework specify rules about how testing should be
performed. Testspec allows for specifying a class and method name to test, as well as the
test types to apply to that method. However, it is too tedious to specify every method and
its tests. Instead, testspec provides syntax to avoid this burden. Three wildcard operators
are included in the specification language.

A special =all flag is used to specify all methods in a class. The asterisk globs class
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spec.benchmarks._209_db.Database:printRec:AGRAWAL_NODE
spec.benchmarks._209_db.Entry:equals:AGRAWAL_NODE
spec.benchmarks._209_db.Database:set_index:AGRAWAL_NODE
spec.benchmarks._209_db.Database:shell_sort:AGRAWAL_NODE
spec.benchmarks._209_db.Database:remove: AGRAWAL_NODE
spec.benchmarks._209_db.Database:getEntry:AGRAWAL_NODE
spec.benchmarks.**:=all:STATIC_BRANCH

Figure 3.2: Example test specification for the SPECjvm98 db benchmark.

names. The » matches any class in a specific package. For instance, java.util. will
match Vector and ArrayList just as it would in a Java import statement. However,
when one wishes to test large projects or components, there may be a hierarchy of
subpackages to test. Since the asterisk in Java does not import subpackages, it is kept
similarly limited in testspec. Instead, the pattern »x matches any class in the specified
package or any subpackage. Thus, the expression spec.benchmarks. % is sufficient to
select all of the classes in any program in SPECjvm98.

An example of the testspec is shown in Figure 3.2. In the example, the first six lines
explicitly state a (class name, method name) pair to be instrumented with the Static
Agrawal Node test from the Jazz’s test library. The remaining methods that execute at
runtime will match the wildcard rule on the last line and be instrumented with the Static
Branch test. Any rule that explicitly states a class and method name takes precedence

over a wildcard rule. Other rule conflicts are resolved by using the earliest rule specified.

3.3 JAZZ IMPLEMENTATION

Jazz is integrated into the Jikes RVM [13], a just-in-time compiler (JIT) for Java that is itself
written in Java. One of the major challenges of having a framework that is coupled to a

separate code base, such as the RVM, is developing in an environment that is constantly
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changing. The obvious temptation is to take the most recent release version and ignore
any updates while developing one’s own component. This is not without significant
disadvantages, however, as one misses out on any improvements or bug fixes made to
the code base since the version you decided to target was released. However, the effort of
porting code to new versions may not justify supporting every point release. Nevertheless,
new major versions are often worth the effort. In this case, to make the effort as minimal
as possible, Jazz was developed to tie into the RVM in as few places as possible.

Jazz’s test driver (see Figure 3.1) is implemented by the class FrameworkHarness.
This class facilitates interaction with the RVM and isolates Jazz from it. I identified four
minimal areas where Jazz needs to interact with the existing code base or its output [46].
First, inserting code as instrumentation means that Jazz must interact at a low level
with the JIT compiler during code generation. Second, the generated instrumentation
code needs data to direct how it operates and space to store its results. Thus, memory
allocation must be considered. Third, each test planner requires some facilities that may
already exist in a compiler, such as control or data flow analysis. Finally, Jazz must
efficiently parse and interpret the test specification language to specify what and where

to test.

3.3.1 Implementing the Test Driver

The implementation of the FrameworkHarness class contains several static member
functions that are called from the base RVM code. These methods are hooks that were
inserted into parts of the existing RVM code base (such as changes to the commandline
argument parser and callbacks in the JIT compiler) to interact with the RVM in the four
places identified above. FrameworkHarness does test selection and invokes the appro-
priate test implementations to instrument the code. Additionally, FrameworkHarness
registers callbacks for the RVM’s exit notification to report final coverage results (as the
RVM is shutting down). Furthermore, the class is also a place to store global settings,

such as a verbose output flag to dump detailed messages for tracing and debugging.

The RVM is written in Java and runs itself through its own compiler. To make this
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Table 3.1: Interface for adding instrumentation in a method-oriented JIT environment.

Callback function Description
onCompilation (Method m) A method is about to undergo compilation.
onBytecode (Bytecode b, int 1) The it" bytecode is about to have machine

code generated for it.

afterBytecode (Bytecode b, int i) The it" bytecode has just had machine code
generated for it.

afterCompilation (Method m) A method has been completely compiled but
is not yet being executed.

possible, it uses a bootloader with a minimally compiled bootimage that enables the RVM
to begin. Since calls to FrameworkHarness are compiled into methods that are part of
the bootimage, FrameworkHarness must be added to the bootimage as well. It is the
only class in Jazz that appears in the bootimage. Jazz takes special precaution to avoid
instrumenting internal RVM code since the bootstrapping process is delicate and much of

the Java class library is unavailable.

3.3.2 Instrumentation & Code Generation

Access to the compiled method code is required to instrument it. To support this, there
needs to be a low-level interface between the JIT compiler and Jazz. There are four points
during compilation where control might need to intercepted and to have Jazz or one
of its test implementations do work. These four events and the interface for capturing
this interaction are shown in Table 3.1. The RVM’s JIT compiler is modified to call these
methods for a test implementation that registers a handler for the events.

The earliest event handler necessary is for when a new method is about to undergo
compilation. For node and branch coverage, the onCompilation event is used for
initialization. This is the time to construct object instances, register exit callback handlers,
and do the work of determining where to insert instrumentation during the upcoming

compilation phase.
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The two bytecode-oriented methods are used to insert static instrumentation directly
into the generated machine code stream. The static test techniques in Jazz’s current test
library implement the onBytecode event to insert probes at the beginning of a basic
block. However, none of the tests in Jazz’s library make use of the afterBytecode event.
It is provided for completeness should a new test require it. The afterCompilation

event is a natural place to put clean-up for static instrumentation.

3.3.3 Memory allocation

In general, four types of memory are used in Jazz:

1. Object instance memory for the Java code that interfaces with the RVM;

2. Executable memory for instrumentation;

3. Storage for recording coverage and directing runtime instrumentation (e.g., conditions
for removal of instrumentation for demand-driven testing); and,

4. Method local storage to maintain test state.

A significant consequence of the RVM’s design is that the Java code and data that
comprise the RVM can and do share the same memory regions as the applications that
run on top of it. This structure means that as the RVM is extended to support Jazz, any
of the Java code that implements a test in the test library can increase pressure on the
garbage collector (GC), possibly degrading performance with more collection rounds.
Despite this potential drawback, the use of heap memory is vital to conveniently express
a test implementation in Java itself. For Jazz, the heap is used for any operation done
during JIT compilation, except storing instrumentation code and data used and generated
by the instrumentation code as it executes.

Jazz avoids Java’s memory for instrumentation as it can adversely interact with the
garbage collector; if the JVM uses a copying GC, the instrumentation might move during
execution. Rather than implement an additional level of indirection (as a JVM might),
Jazz avoids the extra lookup costs and allocates space that is outside of the Java heap.

Most of the test techniques implemented in Jazz share some common code between

instrumentation probes to reduce code footprint. The shared code is the test payload code.
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It performs test actions and records coverage results. The RVM has special facilities for
calling low-level system calls (e.g., mmap) to allocate its own heaps. This functionality is
reused to allocate an executable page of memory to store the test payload code.

The test payload is parameterized with a test plan that drives and/or records the
results of testing. The test plan is a data argument passed to the payload. For instance,
the test plan lists the predecessors in Static Branch so the appropriate counter can be set
as covered at runtime. The memory for a test plan should not move during execution,
and Jazz allocates it via mmap. (Instead, malloc could be used as the region does not

need to be executable—it is data.)

The final piece of memory needed for Jazz involves coverage tests that require persis-
tent state, such as branch coverage. This test needs state to be propagated between the
execution of two probes. With Jazz’s approach of placing instrumentation in basic blocks,
to record an edge the probe at an edge sink needs to know which basic block proceeded it
during execution (i.e., the source), and thus, which edge to mark as covered. This state is
local storage, as each separate activation of a method needs its own copy of the state. For
branch coverage, each probe stores a block-unique identifier. The static implementation
of branch coverage uses the address of the previous block. The demand implementation
uses the address of the previous probe’s test plan. Each address requires one word of
storage and so my implementation places these into the activation record of the JIT-ed
method.

To support memory storage in Jazz requires modifications to the RVM which have
grown increasingly more difficult in each new release. A perhaps simpler alternative
would be to have a separate manually-managed stack for storing test-specific state. This
is the model Jazz will move to in the future as it provides more of the isolation from RVM
changes and eases continued development.

An interesting implication of memory allocation outside the JVM is that pointers and
low-level operations for initialization and reading memory must be used. The RVM has a
special facility for providing this capability for its own use called Magic [25]. Magic are
special snippets of what appear to be Java methods and code that are intercepted by the

JIT and replaced with operations that would be normally prohibited in Java code.
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3.3.4 Implementing Test Specification

A test specification, written in testspec, can be passed to Jazz through a file specified
on the command line. Alternatively, a test specification, if simple enough, can be given
directly as a command line argument (option —I). The FrameworkHarness consumes
the specification to drive testing. Internally, it creates an intermediate representation (IR)

of the test specification.

Each rule in a testspec specification is parsed to construct a “matching” object. A
matching object is a representation of a rule. This object includes a mat ches method
that can be used to determine whether the rule should be applied to a particular method.
My first implementation of testspec’s IR arranged the matching objects in a list. On
each method load, the list was linearly searched to check for a matching rule. However,
for complex test specifications, this approach proved to be computationally expensive,
slowing down runtime performance of the Java program under test. For example, the
javac program in SPECjvm98 has 742 methods. A linear search for a matching test is

responsible for 4% of total overhead.

The intermediate representation was reworked to use a hashtable to arrange the
matching objects. The hashtable is checked when a method is loaded for a corresponding
matching object. There were two complications. The first was that wildcards do not
make sense to hash. Instead, literal (class name, method name) pairs are placed in a
hashtable and patterns are left in an array to be searched. The second issue was that
neither HashMap nor Hashtable were in the RVM’s bootimage. Thankfully, the RVM
developers provide an internal hashtable class that Jazz reuses rather than writing new

one.

In general, it may be useful to have full regular expression support. However, this has
proven unnecessary in practice. The simple pattern matching scheme used in testspec is
sufficient. Java has native support for regular expressions in class libraries that may be

able to be reused, but those classes are not part of the bootimage.
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3.3.5 JVM Support for Software Testing

In developing the support services and test library for Jazz, there are several places where
a JVM developer can ease implementation of a tool like Jazz.

A foundation of structural testing is to discover control flow properties of a region
of code. To this end, at bare minimum, a control flow graph (CFG) is necessary. The
RVM provides a CFG generator that scans the Java bytecode and determines the basic
blocks and their predecessors. Jazz needs both predecessor and successor information.
The CFG is augmented with this information and other information that is useful about
the structure of the code.

Jazz needed several analyses such as pre- and post-dominator information to support
the structural testing optimizations suggested by Agrawal. The RVM already has facilities
for these algorithms in its optimizing compiler. However, the code is tied closely to the
optimizer. It was too cumbersome to reuse this code and so the necessary analyses were
written from scratch. The implementation of Jazz would have been simpler with support
for control and data flow analyses that is separated from the optimizer (e.g., such as
Phoenix provides [9]).

Finally, a JVM could provide a rich and varied set of events to register callbacks. The
RVM provides several callbacks, many of which Jazz does not need, but the exit handler
callbacks were useful for reporting the collected coverage results. For instance, the code
generation interface of Section 3.3.2 would be convenient to achieve as much isolation

from the JVM codebase as is possible.

3.4 STATIC BRANCH AND NODE TESTING WITH JAZZ

Figure 3.3 shows how static testing operates. A testspec specification is first loaded and
parsed. When a method is about to be compiled, an onCompilation event is sent to the
FrameworkHarness. If the current method matches a rule for a static test, Jazz instanti-

ates a static test planner. The planner is responsible for instrumentation code generation,
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Figure 3.3: Static instrumentation in Jazz.

test plan generation, and result recording. After the planner is initialized, the JIT compiler
continues and emits the method prologue and enters its main translation loop. In a
non-optimizing compiler, one bytecode expands into one or more machine instructions.
For static testing, FrameworkHarness intercepts control via the onBytecode event and
transfers control to the test planner to insert instrumentation prior to the bytecode being

compiled.

3.4.1 Static Node Testing

Figure 3.4 shows an example of how the onBytecode event is used in the Static Node

test planner. For all static tests, there are three common elements:

1. a seed set of code locations where the planner will sew permanent instrumentation

probes (to possibly invoke the test payload);

2. a test payload that implements the work of recording the desired coverage information;

and,

3. a test plan that provides storage for recording coverage.
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1 public
2 cfqg
3 see
4}

5

6 public

10 int

13 if(
14

15 }

16

17 asm.
18 asm.
19 asm.
20 asm.

void onCompilation (NormalMethod m) {
= CFGBuilder.build (m);
dSet = cfg;

void onBytecode (
int bytecodeAddress,

Assembler asm) {

index = seedSet.indexOf (
new Integer (bytecodeAddress));

index < 0) {

return;

emitPUSH_Reg (GPR.EAX) ;

emitMOV_Reg_Imm (GPR.EAX, plan[index]);
emitMOV_RegInd_Imm (GPR.EAX, 1);
emitPOP_Reg (GPR.EAX) ;

Figure 3.4: The static node coverage test planner.
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1 public void onCompilation (NormalMethod m) {
2 cfg = CFGBuilder.build(m);

3 seedSet = Agrawal.getProbeSet (cfqg);

4}

Figure 3.5: Extending the Static Node planner to incorporate H. Agrawal’s algorithm.

The seed set and test plan are the implementations of the same items from the formaliza-

tion of Section 3.1.

The seed set is generated as part of the onCompilation event handler method (lines
1-6). Static instrumentation is inserted at the start of a basic block to avoid rewriting
control flow transfers. A control flow graph that is annotated with each basic block’s
starting bytecode address is built. These addresses become the locations where permanent

instrumentation is inserted, i.e., the seed set.

In the onBytecode event handler method of the static test planner, a check is done to
determine whether the current bytecode is a seed. If so, the RVM’s assembler is used to
emit instrumentation code. For node coverage, the instrumentation is simple enough that
it can be inserted entirely inline. For more complex tests, Jazz supports instrumentation
probes that call an out-of-line function for a shared test payload. This probe type pushes

location-specific information onto the stack to pass information to the payload.

Agrawal’s algorithm reduces the number of instrumentation probes needed to record
complete coverage using control flow analysis on a method under test. The algorithm is
incorporated as a support service since it can be used by more than one test technique.
With this service and the basic Static Node, I created a new test, Static Node Agrawal,
that does node coverage with reduced instrumentation. I extended the basic Static Node
planner to use the algorithm as is shown in Figure 3.5. The onCompilation event
handler is slightly adjusted to call the Agrawal support service. Based on the minimized
instrumentation points, a new seed set is generated. No other changes to the basic Static

Node test were required.
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3.4.2 Static Branch Testing

Static Branch coverage testing is implemented in a similar fashion to Static Node. The
onCompilation event is handled identically, as a control flow graph still needs to be
built. The seed set is once again all basic blocks in the method. The main difference
between Static Node and Static Branch involves the onBytecode event. Static Node
recorded coverage directly as shown on line 21 of Figure 3.4. Static Branch replaces
this line with a call to the payload shown in Figure 3.6. Lines 1-2 load the identifier of
the block that immediately preceded the current so the edge can be marked as hit in

lines 9-13. This block sets that same state for the next probe encountered in line 3.

Another difference from Static Node involves the test payload. Static Branch uses an
out-of-line function to invoke the test payload. The payload is relatively large—it takes
14 instructions to determine which control flow edge was taken at runtime. If this code
was fully inlined, the generated machine code becomes very large, which puts unwanted
pressure on the instruction cache. Instead, the code contains a call to the shared payload

functionality.

The test plan for Static Branch Coverage is implemented as a table in memory. The
layout is shown in Figure 3.7. The table contains a row for each instrumentation probe that
is in the test region. The first entry in a row is the number of control flow predecessors
(and therefore is the number of incoming edges). For each predecessor, there are two
additional entries in the table. The first is the address of that predecessor. The address is
matched at runtime in the test payload to the value in the previously hit block variable
to determine the control flow edge that was taken to the current probe. When the
appropriate value is found, the associated coverage counter is set to one to indicate the

edge was covered.

Similar to Static Node, H. Agrawal’s algorithm can be used to reduce the amount of
instrumentation for branch coverage testing. The basic Static Branch test planner was

extended to apply H. Agrawal’s algorithm in the same way as was done for Static Node.
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1 mov ebp, dword ptr [esi + fpOffset]
2 mov ebx, dword ptr [ebp - 8]
3 mov dword ptr [ebp - 8], edx
4 mov ecx, dword ptr[edx]

5 test ecx, ecx

6 jz EXIT

7

8 add edx, 4

9 L1l: cmp ebx, dword ptr [edx]

10 jne NEXT

11

12 mov dword ptr [edx + 4], 1

13 jmp EXIT

14

15 NEXT: add edx, 8

16 loop L1

18 EXIT: ret

Figure 3.6: Static payload for branch coverage testing.

Number of
Predecessors

Address, Counter,

Figure 3.7: A row of the test plan for Static Branch as laid out in memory.
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3.5 SUMMARY & CONCLUSIONS

In this chapter, I describe a two-part framework for performing branch and node testing.
The first part was a formal framework for describing a structural test technique that
encompasses instrumentation probe location, runtime actions, conditions for those actions
to occur, and state.

Additionally, I developed Jazz, a flexible and extensible practical framework for
realizing the implementation of structural tests. Jazz provides a set of support services
to perform code generation, memory management, control flow analysis, and handle
interaction with a JVM. In addition to these services I built a library of test planners to
do branch and node coverage testing.

New test planners can be created by extending existing tests from the library or
by using the support services directly. Jazz also provides a test specification language,
testspec, that allows multiple test planners to be combined and applied in a single run of
the application being tested.

Jazz is implemented on top of the Jikes RVM for Java. For Jazz’s test library, I have
described and implemented Static Node, Static Agrawal Node, Static Branch, and Static
Agrawal Branch. Both parts of the framework greatly eased the development of these

structural tests.
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4.0 DEMAND-DRIVEN STRUCTURAL TESTING

TRADITIONAL TECHNIQUES for recording structural test coverage rely on statically-
inserted instrumentation probes that remain throughout the lifetime of the program.
Coverage, however, is a boolean property that only needs to be recorded on the first
execution of a node or branch in a program. When there is a loop in the test region,
many of the dynamic executions of those instrumentation probes occur after any coverage
information has been recorded. These extraneous executions incur runtime overhead in
terms of both CPU time and memory without contributing new coverage data.

It seems that a better course of action would be to remove instrumentation when it is
no longer necessary. However, removal will also incur runtime cost and so the question
becomes: “When is it appropriate to remove instrumentation probes that are no longer
necessary?”

There is a large spectrum of choices for the appropriate removal time ranging from
“never” with traditional static instrumentation to the immediate removal of a probe after
its execution. Other choices include using a time- or event-driven collection scheme
to periodically remove instrumentation. Tikir and Hollingsworth use a time-periodic
removal scheme to collect away instrumentation probes for node coverage on C programs.
However, the runtime overhead they report is high, up to 3.26 times slower than the
uninstrumented execution [67].

In light of the poor performance of never removing probes and time-periodic removal,
this chapter explores the other extreme: instantaneous removal of instrumentation.

Instantaneous removal of instrumentation from an instruction stream requires self-
modifying code. Memory hierarchies make many assumptions about the read-only nature

of code in order to maintain consistency and to cache it. This means that removing a

39



single instrumentation probe is likely to incur a significant overhead and reduce the
gain provided by not using the cheaper and cache-friendly static instrumentation probes.
For a technique that relies on self-modifying code to improve upon static’s permanent
instrumentation probes, sufficient dynamic executions of instrumentation probes must be
eliminated to amortize this removal cost.

Demand-driven Structural Testing (DDST) uses the program’s own execution to drive
where instrumentation is inserted and removed. Demand-driven removal attempts to
alleviate the problem of permanent instrumentation by removing probes when they are
not longer necessary. Demand-driven insertion allows for the execution of the program
to place probes only along the frontier of execution, preventing probes from being placed
into infeasible paths or into code that is not being tested in this run.

Both branch and node coverage can benefit from the demand-driven approach. How-
ever, with the runtime management of probes that DDST implies, care must be taken in
planning the actions of the instrumentation code itself. DDST is implemented on top of
Jazz and uses the same model of planning as was used for Static and Static Agrawal testing.
This chapter describes the challenges and approaches for designing and implementing

DDST in Jazz.

4.1 PLANNING FOR DDST

The main function of the test planner is to determine where and how to test a code
region. Using the specification and the intermediate code for a test region, the test
planner determines the actions necessary to carry out tests. These actions are the run-time
activities that collect coverage information and instrument the test region. The actions
form the basis for the test plan. In the next sections, I will discuss some of the test planner
challenges and implementation strategies for DDST.

To generate a test plan, a planner needs to determine when to insert probes, where
to instrument a test code region, and what to do at a probe. There are three cases the

planner has to consider when deciding when to insert and delete instrumentation. First, it
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must identify which probes are seeds. Seeds are those probes that are initially inserted in
a test region. Second, it needs to determine which probes are used for coverage and can
be inserted and removed on-demand along a path. Finally, the planner has to determine
the lifetime of a probe and whether it must be re-inserted after being hit by its “control

flow successor” basic blocks (anchors).

The test planner also must identify the locations of probes in a test region. These
locations correspond to seed, coverage, and anchor probes. Seed locations must be marked
in a table, called the probe location table (PLT), that drives the dynamic instrumenter,
which inserts the seed probes. Coverage and anchor locations also have entries in the PLT
to hold information needed by the probes. Coverage locations have an entry in the PLT

to record coverage information.

The last task of the planner is to determine what actions should take place at a probe.
In some cases, different payloads or combinations of payloads may be used at different

probes and the planner needs to select the appropriate payload.

4.1.1 Planner Actions

Actions in a test plan are implemented with a test probe and payload. Probes can be
inserted in a code region at any basic block where test actions need to take place. A
test plan may have multiple payloads, which can be invoked by different probes, and
multiple probes may be inserted at the same location to call different payloads. The test
plan uses the PLT to encode probes and their locations. A PLT entry has a probe type, a
payload, and a list of probes to insert (and in some cases, to remove). Additional fields
can be added to the PLT by the planner. The test plan also has data storage, including
global memory that is persistent with program scope (i.e., there is a single global storage
area) and local storage with method scope. Global storage is used to hold test results
for multiple test runs (i.e., what has been covered) and the local storage is used to hold
temporary values needed by a payload. Other storage scopes can also be incorporated

into a plan (e.g., thread or class scope).
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4.1.2 Node Coverage Planner

With the formal notation framework defined in Section 3.1, the test plans for node coverage
with DDST can be expressed. An addition for DDST is necessary: There needs to be a set

of locations, L, in which to place probes at runtime.

e The seed set S contains the entry point(s) of the test region.
e A set of |N]| test plans, P, where P, is a test plan corresponding to a probe in basic
block i and contains:
— A set L C N of locations to place instrumentation, and are those nodes that are
CFG successors of node i.
— A set C of boolean flags (Cov), all initially set to false, where Cov [ j] records if
node j has been covered.
— A set A of actions, where the actions for P; are:
1. Record the coverage of node i in Cov [1] = true.

2. For each location L;, if Cov[]] = false, place a probe at L;.

e The global state M is the union of all sets C, |[M| = |N|.

The test planner for node coverage must populate S, allocate the space for M, and
then create a set of test plans, P, for each node in the region to test, filling in L with the
appropriate code locations. The space for M and L is allocated in the PLT, which is the
implementation of the set of test plans, P.

The planner that constructs these test plans for node coverage is shown in Algo-
rithm 4.1. Each node in the region to be tested, testRegion, is added to the PLT with
the node coverage payload. If there are no predecessors of the node in the region to
be tested, lines 6-8 mark the block as a seed. Seed probes then place their control flow

successors in a demand-driven fashion.

4.1.3 Branch Coverage Planner

The branch coverage test planner determines where to place instrumentation probes in

a region to ensure that all edges can be marked as covered when they are traversed.
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CFG G < buildCFG(testRegion)
for all Block b € G.nodes do
PLT[b] .payload <4 nodePayload
PLT [b] .insert <4 Db.successors
// Check if block b is an entry block (a seed)
if b.predecessors ¢ G.nodes then
PLT[b] .seed < true
end if
: end for

O 0O J oo U b W N =

Algorithm 4.1: The node coverage planner.

For branch coverage, the seed blocks are the entry points into a test region. These seed
blocks insert instrumentation when control passes through an entry. Seeds are once again
identified as basic blocks that have one or more predecessors outside of the test region.

A more difficult issue is how to record which edges are executed, and when probes
need to be inserted and removed. To cover an edge, two probes are executed: one in the
edge’s source basic block and one in the sink block. The probe in the source records the
beginning of an edge and the probe in the sink marks the edge as covered. This informa-
tion is recorded as part of thread-local state in a variable that records the previously hit
block. The branch coverage planner needs to determine which instrumentation probes to
insert and delete when a block is hit to ensure that the correct edge is recorded.

This yields a similar description of branch coverage test planning in the notation of

Section 3.1 as for node coverage:

e The seed set S contains the entry point(s) of the test region.

e A set of |N]| test plans, P, where P, is a test plan corresponding to a probe in basic

block i and contains:

— A set L C N of locations to place instrumentation, and are those nodes that are

CFG successors of i.

— A set C of boolean flags (Cov), initially set to false, where Cov [i— j] records if

the edge between i and the probe at L; has been covered.
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Figure 4.1: The shaded basic block is a stranded block.

— A set A of actions, where the actions for P; are:
1. Look up the previously hit block, b.
2. Record the coverage of edge b — i in Cov [b—1] = true.
3. For each location L]-, if Cov[i—7] = false, place a probe at L]-.
4. Set the previously hit block, b < i.
e The global state M is the union of all sets C, |[M| = |E| plus an additional element of
storage for the previously hit block.

However, this ends up being insufficient for DDST branch coverage to yield correct results.

4.1.3.1 Stranded Blocks DDST records coverage using a pair of probes at the source
and sink basic blocks of a control flow edge. This is convenient for the ease of inserting
and removing probes dynamically as branches and fall-throughs do not need to be
rewritten in the machine code. However, it can lead to a situation in which one or both of
the probes has been removed via a previous execution of the region being tested, resulting
in an edge which cannot be recorded as covered.

Figure 4.1 shows a CFG with this problem. If the path 1 — 2 — 4 — 6 is taken and

then 1 — 3 — 5 — 6 is taken, there is no instrumentation in the region to record when
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the edge 2 — 5 is covered. This problem is the stranded block problem and block 5 is
designated as the stranded block. The problem exists because there are multiple paths
into block 5 and at least one path that excludes block 5 but includes a control flow
predecessor (block 2), allowing for that probe to be removed before all of the outgoing
edges are recorded.

A stranded block b can be identified by defining three predicates:

Fork(x) that returns true if x has multiple control flow successors.
Merge(x) that true if x has multiple control flow predecessors.

Predecessor(x,y) that returns true if x is a control flow predecessor of y.

Thus, Stranded(b) can be defined as:

Stranded(b) = Merge(b) N 3x(Predecessor(x,b) A Fork(x))

The planner for demand-driven branch testing must identify any stranded blocks
in a test region and must keep some instrumentation probes in the program until the
stranded block problem is resolved. An approach to handling a stranded block is to
leave instrumentation in its predecessors until the stranded block’s incoming edges are
all covered. In the example CFG of Figure 4.1, instrumentation must remain in blocks 2
and 3 until the edges 2 — 5 and 3 — 5 are covered. Care must be taken to ensure that
an instrumentation probe remains in block 2 even if the edge 2 — 4 is taken. Thus, the
solution requires more than just adjusting the actions taken by the probe in the stranded
block itself, it also affects any “siblings” of the stranded block.

By the definition of a stranded block, the common If-Then structure as shown in
Figure 4.2 also has a block that is considered to be stranded. Block 3 has multiple
predecessors and one of them, block 1, has multiple successors. If the path 1 — 2 — 3 is
taken, there will be no probes left to record the path 1 — 3. The solution presented above
applies to If-Then stranded blocks as well.

However, another issue arises in the opposite situation. If the path 1 — 3 is taken
first, there remains a probe in block 2 that has no prior probe to record the source of the

edge. Since there is only one possible edge into block 2, a simple solution is to use a
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Figure 4.2: The shaded basic block is also a stranded block.

Figure 4.3: The shaded basic blocks are singleton blocks.
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1: CFG G < buildCFG(testRegion)

2: for all Block b € G.nodes do

3: PLT [b] .type <4 regular

4. // Check if block b is an entry block (a seed)
5: if b.predecessors ¢ G.nodes then

6: PLT [b] .seed < true

7: // Check if block b is a singleton

8: else if |b.predecessors| =1 then

9: PLT [b] .type < singleton

10: end if

11: // Check if block b is stranded

12: for all Block p € b.predecessors do

13: if |p.successors|>1A|b.predecessors|>1 then
14: PLT [b] .type < stranded

15: end if

16: end for

17: end for

Algorithm 4.2: First phase of the branch coverage planner.

probe that does not need to look up the previously hit block but instead automatically
records the appropriate incoming edge’s coverage. This type of block is called a singleton.
Singleton blocks are orthogonal to stranded blocks, as is shown in Figure 4.3. While this
If-Then-Else CFG does not have a stranded block according to the definition, if either
path is taken, the opposite path will be left without a probe to record the source. Thus,
blocks 2 and 3 are both designated singletons and will automatically record the incoming

edge without looking in the previously hit block variable.

To handle coverage of normal blocks, stranded blocks, and singleton blocks, the
planner for demand-driven branch coverage is implemented in two phases. The algorithm
for the first phase of the planner is shown in Algorithm 4.2. The planner creates a CFG
for the test region on line 1. Next, it iterates over basic blocks to determine whether they
are a seed, singleton, stranded, or regular block. Initially, on line 3, a block is treated as a
regular block that inserts probes in its successors blocks. Lines 5 and 6 check whether

the block has any predecessors that are not in the test region and sets the PLT field seed
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1: for all Block b € G.nodes do

2 for all Block s € b.successors do

3 s.addAction (COVERAGE_SUCCESSOR, GLOBAL[b—s])
4 end for

5: if b.type = stranded then

6 for all Block p € b.predecessors do

7 p.addAction (ANCHOR, GLOBALI[b])

8 for all Block s € p.successors do

9: s.addAction (ANCHOR, GLOBALI[b])

10: if s # b then

11: p.addAction (ANCHOR, GLOBALI[Db])
12: end if

13: end for

14: end for

15: end if

16: end for

Algorithm 4.3: Second phase of the branch DDST planner.

to true, if so. When a block has a single predecessor and it is not a seed, then it is a
singleton, as shown on lines 8-10. In this case, the singleton’s predecessor is recorded in
a table in global memory. At run-time, when the singleton payload is invoked, it accesses

the table to get its predecessor. Finally, lines 12 to 16 check for stranded basic blocks.

Once the various types of blocks have been determined, the second phase of the
planner begins. The steps are shown in Algorithm 4.3. This phase walks over the basic
blocks in the test region again, examining the type of block as determined in the previous
phase. For regular basic blocks, line 3 adds an action to the block to dynamically place
each control flow successor predicated on the coverage of the edge from the block to its
successor. Lines 5-16 handle a stranded block. A boolean variable is allocated in the
global state representing the stranded block. For each basic block that is a predecessor
of the stranded block, the instrumentation probe in that predecessor block needs to be
replaced when the stranded block is hit (lines 6 and 7). Those same probes must also
be replaced if a path is taken through a sibling of the stranded block. This situation

is handled on lines 8-13. These actions are deemed to be anchors as opposed to probe
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16: // Is this the special case of the If-Then stranded block?
17: if PLT[b] .type = stranded then

18: if |b.predecessors | = 2 then

19: if one predecessor has the other as a successor then
20: PLT [b] .type < ifthenstranded

21: root < predecessor of b that has 2 successors

22 end if

23: end if

24: end if

Algorithm 4.4: Handling a If-Then Stranded Block in Phase 1.

placements that are meant to record coverage.

4.1.3.2 Improving Stranded Block Performance The general solution to the stranded
block problem requires many probes to remain as anchors even after they have recorded
the coverage of all incoming edges. If-Then stranded blocks can be dealt with in a simpler
way than the general solution, which provides an opportunity to improve the performance
of the general case.

The realization that enables a different solution for an If-Then stranded block than
the general case is that the singleton block allows for only replacing the stranded block’s
predecessors until the edge 1 — 3 is taken. The general solution would leave probes
in until both 1 — 3 and 2 — 3 are covered, but in essence, a singleton block enables
the reseeding of a region that has had instrumentation probes removed by previous
executions.

To implement this improved case, Algorithm 4.2 is augmented to identify If-Then
stranded blocks. Algorithm 4.4 shows the logic that is inserted at line 16 of Algorithm 4.2.
It identifies an If-Then stranded block by its control flow structure and sets a new type.

Algorithm 4.5 is the necessary addition to the second phase of the branch coverage
planner, as was shown in Algorithm 4.3. The code is inserted before the original line 5, and

the stranded condition becomes an else-if. The new line 7 contains the key to the If-Then
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5: if b.type = ifthenstranded then

6 for all Block p € b.predecessors do
7: p.addAction (ANCHOR, GLOBAL[root—Db])
8 end for

9: end if

Algorithm 4.5: Handling a If-Then Stranded Block in Phase 2.

stranded block improvement: The predicate on which the stranded block’s predecessors
are replaced is reduced from the special stranded block global state in the general case to
being predicated on the edge from the if-condition block (the root) to the stranded block.
The singleton that is the body of the if statement reseeds the region, allowing for the edge
from it to the stranded block to be covered even if the instrumentation probe has been

removed from the root.

4.1.4 Pre-seeding

Another improvement to the runtime performance of both branch and node testing is to
redefine the seed set of a region to be tested. Seeding only the entry points in the region
allows for demand-driven insertion, where instrumentation probes are placed along the
frontier of execution, that is, in basic blocks that control flow could immediately reach.

This leaves infeasible or rarely-executed code paths mostly instrumentation free.

However, due to instruction cache behavior and the costs of self-modifying code,
demand-driven insertions could be a source of runtime cost that a planner for DDST can
mitigate. If every block in a tested region is considered a seed, the probes can be placed
after the JIT-compiler has generated the code for the method but before that code actually

executes.
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Figure 4.4: Demand-driven instrumentation in Jazz.

4.2 IMPLEMENTING DDST IN JAZZ

Demand-driven testing adds instrumentation after compilation of a method. Figure 4.4
shows an overview of DDST under Jazz. Jazz’s afterCompilation event is handled as
part of FrameworkHarness. This handler checks whether the current method (just com-
piled) matches a rule that applies a demand-driven test. If so, it invokes the inst rument
method of the appropriate demand-driven test planner.

Figure 4.5 shows the base class for demand-driven test planners in Jazz. Subclasses
perform work via the instrument method which is invoked from FrameworkHarness.
The arguments to instrument capture the JIT-ed machine code as well as how that
code maps to the original bytecode. The insertFastBreakpoint method exposes the
foundation all demand-driven structural tests share: the dynamic insertion and removal
of instrumentation via fast breakpoints.

Demand testing extends the three common elements from static testing and adds a

fourth. All demand tests have in common:

1. a seed set of instrumentation probes that are inserted before the method executes;
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1 public abstract class StructuralTest {

public abstract void printResults (
PrintWriter out);

public abstract MachineCode instrument (
Assembler asm,
NormalMethod method,
int[] bytecodeMap);

protected void insertFastBreakpoint (
ArchitectureSpecific.CodeArray instrs,
int nInsertAddr,
int nDestAddr) {

int nImm = nDestAddr - (nInsertAddr + 5);

//JMP rel32 (relative to next instruction)
instrs.set ( nInsertAddr+0, (byte) 0xE9);

instrs.set ( nInsertAddr+l, (byte) ((nImm >> 0) & OxFF));
instrs.set ( nInsertAddr+2, (byte) ((nImm >> 8) & OxFF));
instrs.set ( nInsertAddr+3, (byte) ((nImm >> 16) & OxFF));
instrs.set ( nInsertAddr+4, (byte) ((nImm >> 24) & OxFF));

Figure 4.5: The base class for all demand-driven structural tests.

52



Trampoline

Context Switch
Breakpo &
Function Call
Basic oad
Block
Return to
Basic Block

Figure 4.6: Breakpoint implementation on x86.

2. a test payload to record coverage information;

3. a trampoline targeted by a fast breakpoint that sets up location-specific parameters for
the instrumentation probe’s call to the payload; and,

4. a test plan that contains directions for each instrumentation probe in terms of what
other probes to place and to remove, and provides storage for recording coverage

information.

The Demand Node test planner is similar to the Static Node planner. It constructs
a CFG for a method and determines a seed set of locations to place fast breakpoints.
However, instead of inserting the instrumentation inline, the test planner overwrites
instructions in a basic block with a control transfer (i.e., fast breakpoint) to an associated
trampoline. The trampolines set up the function call to the shared payload. The trampo-
lines are emitted at the end of the machine code array. These components are shown on

the right side of Figure 4.4.

4.2.1 Dynamic Instrumentation for the x86

DDST under Jazz uses fast breakpoints [40] to implement instrumentation probes as
shown in Figure 4.6. A fast breakpoint replaces an instruction in the target machine

code with a jump to a trampoline. The breakpoint handler calls the test payload and it
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executes the original instruction that was replaced by the jump. Fast breakpoints have low
overhead and can be easily inserted and removed on binary code. When implementing
fast breakpoints there are essentially two choices. The first choice is to execute the original
instruction as part of the breakpoint handler. The second choice copies the instruction
back to its original location where it is executed when the breakpoint handler completes.
Hence, these breakpoints are “transient” and similar to the invisible breakpoints used by
debuggers to transparently track program values and paths.

A consequence of transient breakpoints is probes do not remain in a test region
once executed. If a permanent probe is needed, then the test planner has to re-insert
the probe. Re-insertion can be done by placing probes in the successors (anchors) to a
block that needs a permanent probe. The successor probes re-insert the original probe
when executed and remove themselves and their siblings. While fast breakpoints can
be implemented to make them permanent, variable length instruction sets, like x86,
complicate the implementation. Instead, transient breakpoints simplify and increase the
portability of the instrume