4,149 research outputs found

    ADAM: Analysis of Discrete Models of Biological Systems Using Computer Algebra

    Get PDF
    Background: Many biological systems are modeled qualitatively with discrete models, such as probabilistic Boolean networks, logical models, Petri nets, and agent-based models, with the goal to gain a better understanding of the system. The computational complexity to analyze the complete dynamics of these models grows exponentially in the number of variables, which impedes working with complex models. Although there exist sophisticated algorithms to determine the dynamics of discrete models, their implementations usually require labor-intensive formatting of the model formulation, and they are oftentimes not accessible to users without programming skills. Efficient analysis methods are needed that are accessible to modelers and easy to use. Method: By converting discrete models into algebraic models, tools from computational algebra can be used to analyze their dynamics. Specifically, we propose a method to identify attractors of a discrete model that is equivalent to solving a system of polynomial equations, a long-studied problem in computer algebra. Results: A method for efficiently identifying attractors, and the web-based tool Analysis of Dynamic Algebraic Models (ADAM), which provides this and other analysis methods for discrete models. ADAM converts several discrete model types automatically into polynomial dynamical systems and analyzes their dynamics using tools from computer algebra. Based on extensive experimentation with both discrete models arising in systems biology and randomly generated networks, we found that the algebraic algorithms presented in this manuscript are fast for systems with the structure maintained by most biological systems, namely sparseness, i.e., while the number of nodes in a biological network may be quite large, each node is affected only by a small number of other nodes, and robustness, i.e., small number of attractors

    The reliability of single-error protected computer memories

    Get PDF
    The lifetimes of computer memories which are protected with single-error-correcting-double-error-detecting (SEC-DED) codes are studies. The authors assume that there are five possible types of memory chip failure (single-cell, row, column, row-column and whole chip), and, after making a simplifying assumption (the Poisson assumption), have substantiated that experimentally. A simple closed-form expression is derived for the system reliability function. Using this formula and chip reliability data taken from published tables, it is possible to compute the mean time to failure for realistic memory systems

    Receptive process theory

    Get PDF

    A bibliography on formal methods for system specification, design and validation

    Get PDF
    Literature on the specification, design, verification, testing, and evaluation of avionics systems was surveyed, providing 655 citations. Journal papers, conference papers, and technical reports are included. Manual and computer-based methods were employed. Keywords used in the online search are listed

    A Procedure for Splitting Processes and its Application to Coordination

    Full text link
    We present a procedure for splitting processes in a process algebra with multi-actions (a subset of the specification language mCRL2). This splitting procedure cuts a process into two processes along a set of actions A: roughly, one of these processes contains no actions from A, while the other process contains only actions from A. We state and prove a theorem asserting that the parallel composition of these two processes equals the original process under appropriate synchronization. We apply our splitting procedure to the process algebraic semantics of the coordination language Reo: using this procedure and its related theorem, we formally establish the soundness of splitting Reo connectors along the boundaries of their (a)synchronous regions in implementations of Reo. Such splitting can significantly improve the performance of connectors.Comment: In Proceedings FOCLASA 2012, arXiv:1208.432
    • …
    corecore