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Receptive Process Theory 

Mark B. J osephs* 

Department of Mathematics and Computing Science 
Eindhoven University of Technology 

August 22, 1990 

Summary. An algebraic theory of receptive processes is presented. A receptive process models 
the interaction by input and output between a system and its environment. Input from the 
environment and output to the environment are never blocked; but if a system is not ready to 
receive a particular input, its subsequent behaviour is undefined. 

In essence, this paper reworks Hoare's theory of Communicating Sequential Processes under 
the above assumption about communication. The resulting model is more attractive than the 
failures· divergences model of CSP because the refusal sets of the latter are simplified out of 
existence. Like CSP, receptive process theory is equipped with a sound and complete set of 
algebraic laws. 

Applications of the theory include the design of asynchronous circuits and the study of data 
flow networks. As an example, this paper verifies algebraically the design of a Muller C-element 
from a majority-element. 

1 Introduction 

A receptive process models the interaction by input and output between a system and its 
environment. Input from its environment is never blocked by a system. Symmetrically, 
output from a system is never blocked by its environment. If a system is not ready to 
receive a particular input, the subsequent behaviour of the system is undefined. It is 
to be understood that the environment is obliged not to send such an input in these 
circumstances. 

A theory of receptive processes is concerned therefore with a very general communica­
tion paradigm, one which is applicable to asynchronous circuits and data flow networks, 
for example. Even synchronized communication, as modelled in CSP [6, 7], can be imple­
mented by a handshake of inputs and outputs between receptive processes. 

* Author's current address: Oxford University Computing Laboratory, Programming Research Group, 
11 Keble Road, Oxford OXl 3QD, U.K. 
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In this paper, we develop an algebraic theory based on a mathematical model similar 
to Dill's model of speed-independent circuits [3]. Indeed, we have borrowed the term 
"receptive" from him. Dill has been more concerned, however, with automatic verification 
than with process algebra. Other algebraic theories of concurrency such as CCS [13, 14] 
and CSP [2, 7] do not make more than syntactic distinctions between inputs and outputs. 
Instead they are concerned with undirected synchronization events or actions. Inputs and 
outputs are sometimes distinguished in trace theory [15, 17], but there the emphasis is on 
deterministic behaviour. 

In essence, we rework Hoare's CSP under the assumption that processes are receptive. 
The resulting model is more attractive than the failures-divergences model of CSP because 
the refusal sets of the latter are simplified out of existence, and yet nondeterministic be­
haviour can still be fully expressed. The divergences of CSP remain as an extremely useful 
way of capturing obligations to be met by the environment, i.e., that certain inputs will 
not be sent in certain circumstances. Like CSP, receptive process theory is equipped with 
a sound and complete set of algebraic laws. 

Receptive process theory and CSP are alike in another respect: they do not deal with 
fairness. This is in many ways an advantage because it facilitates the algebraic transfor­
mation of networks of processes. They may be implemented under a variety of scheduling 
strategies, including sequential execution on a single processor and fine-grained concurrent 
execution in VLSI. Both theories treat the possibility of infinite chatter (which in receptive 
process theory includes outputting forever without requiring input) as wholly undesirable. 
This restricts us somewhat when it comes to modelling asynchronous circuits, e.g., a ring 
oscillator [3] would be outside the scope of our theory. 

In the remainder of this paper, we introduce a mathematical model for receptive pro­
cesses and develop a process algebra by defining a number of CSP-like operators. We show 
by means of a small example that the algebra can be used in the verification of asyn­
chronous circuits. Finally, we briefly examine the special cases of data flow networks and 
delay-insensitive circuits. 

2 The Model 

In this section, we define a receptive process to be a triple (1,0, F) which must satisfy 
certain conditions. 

Consider a system that interacts by input and output with its environment. The 
set of all possible inputs from the environment to the system is represented by the input 
alphabet of the process. The set of all possible outputs from the system to the environment 
is represented by the output alphabet of the process. In the remainder of this section, we 
shall consider a particular input alphabet I and a particular output alphabet o. We insist 
that I and 0 are disjoint and that 0 is non-empty. 

Suppose that the system has engaged in a finite sequence s of inputs and outputs. If 
the environment were to provide no further input to the system, then the system would 
continue to output either forever or until it became quiescent, i.e., it required further input. 
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In the latter case, the system would refuse to output after engaging in some finite sequence 
t of outputs; we call the sequence st a failure of the process. 

Systems that can output forever or become quiescent in infinitely many different ways 
are modelled as divergent. Let F <;;; (I U 0)* be the set of failures of a particular process. 
Then the set Fi of divergences of the process is defined by 

Fj = {sl{t E O'lst E F} is infinite}. 

Immediate consequences of this definition are that Fi is closed under curtailment of out­
puts, and i distributes through finite unions (and so is monotonic with respect to set 
containment) . 

Lemma 1 st E Fi 1\ tEO' =} s E Pi. 0 

Lemma 2 (Fo U FIli = (Foi) U (Fij). 0 

As in esp, divergence is considered wholly undesirable and so it is convenient to assume 
that a divergent process can do or fail to do anything whatsoever. This is reflected in the 
following two closure condition that we impose upon F. 

s E Fi '* st E Fi 

Fi<;;;F 

(1 ) 

(2) 

That s is a divergence can be interpreted as meaning that the environment guarantees not 
to engage in s. The divergences of a process now have a simpler characterization. 

Lemma 3 s E Fl * 'It. st E F. 
Proof. (=}) follows from conditions 1 and 2. (~) follows because if st E F holds for every 
t, then it certainly holds for all tEO'; since 0 is non-empty, the set of such t is infinite 
and so, by definition, s E Fj. 0 

A further property of i is that it distributes through arbitrary intersections of failure sets 
(and so is n-continuous). 

Lemma 4 (nX)j = nFEX(Fi). 
Proof. (<;;;) nX <;;; F, for all F E X, and so, by monotonicity of j, (nX)j <;;; nFEX(Fj). 
(2) Suppose s E nFEX(Fj). Then, by Lemma 3, st E F, for all F E X and all t. Since 0 
is non-empty, it follows that {t E O'ist E nX} is infinite, i.e., s E (nX)T. 0 

Note that if one were to allow empty output alphabets, the set of divergences would have 
to be modelled explicitly, as in [8]. 

The set F of traces of the process can also be derived from F. 

F = {sI3tEO·.stEF}. 

Immediate consequences are that every failure is a trace and that ~ distributes through 
arbitrary unions. 
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Lemma 5 F <;;; F. 0 

Lemma 6 UX = UFEXF. 0 

The remaining closure conditions on F can be most easily stated as conditions on F, 
namely, F is non-empty, prefix-closed and closed under extension by inputs. 

c:E F (3) 

st E F => s E F (4) 

s E F 1\ t E 1* => st E F (5) 

The last condition, called receptiveness by Dill, arises because the environment might send 
input to the system at any time. The traces of a process now have a simpler characteriza­
tion. 

Lemma 7 s E F {;o :It. st E F. 
Proof. (=» follows from the definition of F. C¢=) follows because if st E F, then st E F 
and so, by condition 4, s E F. 0 

Although ~ does not in general distribute through intersections of failure sets, it is nev­
ertheless n-continuous, which follows from our treatment of infinite nondeterminism as 
divergent behaviour. 

Lemma 8 For any chain of failure sets such that Fi 2 Fi+l> i ~ 0, n i Fi = ni Fi. 
Proof. Since ~ is monotonic, we need only show that ni Fi <;;; ni Fi. Suppose sEn)::. By 
the definition of F, Vi.:lt EO'. st E Fi. Since Fi 2 Fi+1, i ~ 0, either:lt EO'. st E niF; 
or Vi. {t E O'ist E F;} is infinite. In the latter case, Vi. s E F;j and so by condition 2, 
sEn; F;. Thus, either way, s E n-:F;, by the definition of F. 0 

We conclude this section with a theorem concerning the space of receptive processes. 

Theorem 1 The failure sets form a c.p.o. under containment. 
Proof. Failure sets are clearly partially ordered and have least element (I U 0)' which 
satisfies conditions 1-5. To prove completeness, consider a chain of failure sets such that 
Fi "2 F;+l, i ~ o. That n; F; satisfies conditions 1-5 follows easily from the continuity of j 
and~. 0 
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3 Process Algebra 

In this section, we develop a CSP-like language for expressing the behaviour of receptive 
processes. The process-expressions are constructed from .L, nondeterministic choice, input­
guarded choice, output-guarded choice, skip-guarded choice, concealment of output and 
parallel composition. Algebraic laws are provided that enable us to eliminate the last 
three operators from process-expressions. Additional laws are provided that enable every 
process-expression to be transformed into a normal form. 

Here, normal form means .L or a nondeterministic choice between a finite, non-empty 
set X of guarded choices. X should contain at most one input-guarded choice, each output 
guard should be distinct and all guarded processes should themselves be in normal form, 
as well as being as nondeterministic as possible. (In terms of the model, if X contains an 
input-guarded choice, then c is a failure of the process; the set of output guards are those 
outputs that the process can engage in initially.) 

The language can be extended to allow (mutual) recursion. In the standard way [1, 
5, 16J, recursively-defined processes are semantically the limit of their finite syntactic ap­
proximations. 

We now consider each operator in turn, employing the valuations i, 0, t, f and d to 
define, respectively, the input alphabet, output alphabet, traces, failures and divergences 
of a process-expression. 

3.1 Chaos 

The process .LI,o can do or fail to do anything whatsoever. It is defined by i.LI,Q = I, 
o.LI,o = 0 and f .LI,o = (IUO)". Often we write.L and leave the alphabets to be deduced 
from the context. 

3.2 Nondeterministic Choice 

The process P n Q behaves nondeterministically like P or Q. We insist that iP = iQ, 
oP = oQ and define i(P n Q) = iP, o(P n Q) = oP and f(P n Q) = f P U fQ. That 
f(pnQ) satisfies conditions 1-5 follows from Lemmas 2 and 6. Continuity (in each operand) 
follows from the fact that union distributes through intersection. Nondeterministic choice 
is clearly commutative, associative, idempotent and has .L as its null element. 

3.3 Guarded Choice 

Let P and Qx, for all x E I, be processes with the same input alphabet I and the same 
output alphabet O. We next define the three kinds of guarded choice, each of which has 
input alphabet I and output alphabet O. In each case, it is easy to see that conditions 
1-5 are met and choice is n-continuous in each guarded process (because union distributes 
through intersection). 
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3.3.1 Input-Guarded Choice 

The process (?x -> Qx) waits for any input x from its environment and then behaves like 
Qx' Formally, 

I(?x -> Qx) = {c} U {xslx E I II s E IQx}. 

Lemma 9 d(?x -> Qx) = {xslx E I II s E dQx}. 0 

Lemma 10 t(?x -> Qx) = {c} U {xslx E I II s E tQx}. 0 

The following distributivity law helps us transform a process into normal form. 

(?x -> Px) n (?y -> Qy) = (?z -> (Pz n Qz)). 

3.3.2 Output-Guarded Choice 

The process (!c -> P I?x -> Qx) eventually outputs cEO to its environment (and 
behaves like P), unless its environment supplies it earlier with some input x, in which case 
it subsequently behaves like Qx' 

{

(I U 0)' 
I(!c -> PI?x -> Qx) = {csls E IP} 

u{xslx E I II s E IQx} 

if I P = (I U 0)' 

otherwise. 

Lemma 11 d(!c -> P I?x -> Qx) = {csls E dP} U {xslx E I II s E dQx} if 
IP"I (Iu 0)'. 0 

Lemma 12 t(!c -> P I?x -> Qx) = {c} U {csls E tP} U {xslx E I II s E tQx} if 
IP"I(IUO)*.D 

The first case of the definition is needed to back-propagate divergence through output 
(Lemma 1). It gives rise to the law 

(!c -> J.. I ?x -> Px) = J... 

This and the following laws are necessary for normalization. 

Case P = (!c -> pi I?x -> Px) and Q = (?y -> Qy). 

P n Q = (!c -> pi I?z -> (Pz n Qz)) n (?z -> (Pz n Qz)). 

Case P as above and Q = (!c -> Q' I ?y -> Qy). 

P n Q = (!c -> (Pi n Q') I ?z -> (Pz n Qz)). 

Case P as above and Q = (!d -> Q' I ?y -> Qy). 

P n Q = (!c -> pi I?z -> (Pz n Qz)) n (!d -> Q' I?z -> (Pz n Qz)). 
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3.3.3 Skip-Guarded Choice 

The process (skip ---t P I?x ---t Qx) eventually chooses to behave like P, unless its 
environment supplies it earlier with some input x, in which case it subsequently behaves 
like Qx' 

f(skip ---t PI?x ---t Qx) = fP U {xslx E I A s E fQx}. 

Lemma 13 d(skip ---t P I ?x ---t Qx) - dP U {xslx E I A s E dQx}. 0 

Lemma 14 t( skip ---t P I?x ---t Qx) tpu{xslx E I As E tQx}. 0 

The following laws, in which we consider the various possibilities for P, enable us to 
eliminate skip-guards. 

Case P = 1.. 

(skip ---t P I?x ---t Qx) = 1.. 

Case P = pI n P". 

(skip ---t P I?x ---t Qx) - (skip ---t pI I?x ---t Qx) 
n(skip ---t P" I?x ---t Qx). 

Case P = (?y ---t Py ). 

(skip ---t P I?x ---t Qx) = (?z ---t (Pz n Qz)). 

Case P = (!c ---t pI I?y ---t Py ). 

(skip ---t P I?x ---t Qx) = (!c ---t pI I?z ---t (Pz n Qz)). 

3.4 Concealment of Output 

The process P\C behaves like P, except that outputs in C C oP are concealed from its 
environment. Thus i(P\C) = iP, o(P\C) = (oP)\C and 

f(P\C) = {s\Cls E fP}. 

Lemma 15 d(P\C) - {s\Cls E dP}. 0 

Lemma 16 t(P\C) {s\Cls E tP}. 0 

The last lemma is easily proved; and it follows directly that conditions 1-5 are met. (Proofs 
of the previous lemma and that P\C is continuous in P can be found in the appendix.) 
The following laws enable us to eliminate concealment. 

Case P = 1.. 

P\C = 1.. 
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Case P = P' n P". 

P\C = (P'\C) n (P"\C). 

Case P = (?x -+ Px ). 

P\C = (?x -+ (Px\C)). 

Case P = (!c -+ P' I?x -+ Px)' 

P\C = (a -+ (P'\C) I?x -+ (Px\C)) 

where a is skip if c E C, and !c otherwise. 

3.5 Parallel Composition 

The process P II Q is the parallel composition of P and Q, which must have disjoint 
output alphabets. Inputs from the environment that are common to the input alphabets 
of both components are copied to each. Outputs from one component that are in the input 
alphabet of the other component are copied to that component and to the environment. 
Thus the output alphabet 0 of the parallel composition is the union of oP and oQ, and 
the input alphabet 1 is (iP U iQ)\O. The definition of f(P II Q) is complicated by the 
possibility of divergence caused by infinite chatter between the two components. 

First we define the weave SwT of sets S <; (iP U oP)* and T <; (iQ U oQ)*, as 
in [7, 15, 17], for example. (We write s r A to mean the restriction of s to events in A.) 

SwT = {s E (I U O)*lsr(iP U oP) E S 1\ sr(iQ U oQ) E T}. 

Lemma 17 (nX)wT = nsEx(SwT). 0 

Infinite chatter between P and Q (which includes either process diverging) is possible after 
any trace in ((tP)w(tQ))i. The divergences of P II Q are (the extensions of) such traces. 
P II Q can refuse to output either because both P and Q can so refuse or because of 
divergence. 

f(P II Q) = (JP)w(JQ) U {stls E ((tP)w(tQ))i litE (IU O)*). 

Lemma 18 d(P II Q) {stls E ((tP)w(tQ))i litE (1 U O)*). 0 

Lemma 19 t(P II Q) = (tP)w(tQ) U d(P II Q). 0 

The above lemmas are easily proved and that conditions 1-5 are met follows directly. (Proof 
of the continuity of parallel composition can be found in the appendix.) Parallel composi­
tion can be eliminated by using the following laws and the fact that it is commutative. 

Case P =-1. 

P II Q = -1. 
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Case P = pi n P". 

P II Q = (Pi II Q) n (P" II Q). 

Case P = (?x --> Px ) and Q = (?y ...... Qy). 

{ 

Pz II Qz 
P II Q = (?z ...... Rz) where Rz = Pz II Q 

P II Qz 

if z E iP n iQ 
if z E iP\(iQ U oQ) 
if z E iQ\(iP U oP). 

Case P = (!e --> pi I ?x --> Px ) and Q input-guarded as above. 

P II Q = (!e --> R! I ?z ...... Rz ) 

where Rz is as above, and R' is pi II Q c if e E iQ, and is pi II Q otherwise. 

Case P = (!e --> pi I?x --> Px) and Q = (d! --> Q' I ?y --> Qy). 

P II Q = (!e ...... R! I?z --> Rz)n(!d--> S' I?z --> R z) 

where R' and Rz are as above, and S' is Pd II Q' if d E iP, and is P II Q' otherwise. 

4 Verification of an Asynchronous Circuit 

Asynchronous circuits can be designed to function correctly independent of the speed of the 
components in the circuit, but assuming instantaneous transmission of signals between the 
components. In this section, we verify a small speed-independent design using our process 
algebra. We begin by specifying a wire, majority-element and Muller C-element in our 
algebra, where input and output events denote voltage-level transitions either up or down. 
We then verify that the C-element can be constructed from the other two components [12J. 

A wire W with input alphabet {m} and output alphabet {e} is specified by the following 
mutually recursive equations, in which the variable x ranges over {m}. 

W = (?x --> W') where W' = (!c -->W I ?x --> 1.). 

That is, a signal m is propagated as c, unless a second signal arrives too early causing 
interference. The divergence indicates that the environment should not send that second 
signal until it has received the signal c. 

A majority-element M with inputs a, band c and output m is specified by the following 
mutually recursive equations, in which the variable y ranges over {a, b, e}. 

M - (?y ...... M{y}) 

M{a} - (?y --> (M if y = a else M{a,y})) 

M{a,b} = (!m --> M{c} I?y --> (M{a,b,c} if Y = c else 1.)) 
M{a,b,c} (!m --> M I?y --> M{a,b,c}\{y} ). 
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The behaviour of M is symmetric in its inputs. In state Ms all inputs in S are at one 
voltage level, and the other inputs and m are at the other voltage level. Note that once 
inputs on a and b have been received, it is safe for a second input on a to arrive after 
an input on e, but not before. This is because of the danger of an output spike should a 
change back early. 

A C-element with inputs a and b and output e is specified by 

C = (?z -+ C{z}) where C{a} = (?z -+ (C if z = a else C{a,b})) 
C{a,b} = (le -+ C I ?z -+ .L). 

The behaviour of C is symmetric in its two inputs, and the variable z ranges over {a, b}. 
We now prove by straightforward algebraic manipulation that 

C = (W II M)\{m}. 

Our first step is to consider W II M, which has input alphabet {a, b} and output alpha­
bet {e, m}. Note that if both the wire and the majority-element are waiting for input, then 
all that can happen is an input a or b by the latter, which does not affect the state of the 
wIre. 

W II M 
- (?x -+ W') II (?y -+ M{y}) 
- (?z -+ (W II M{z})) 

W II M{a} 
(?x -+ W') II (?y -+ (M if y = a else M{a,y})) 
(?z -+ ((W II M) if z = a else (W II M{a,b}))) 

W II M{a,b} 
(?x -+ W') II (1m -+ M{c} I?y --> (M{a,b,c} if Y = e else .1.)) 
(1m -+ (W'll M{c}) I?z -+ .1.) 

W'll M{c} 
- (le --> W I?x -+ .1.) II (?y -+ (M if y = e else M{c,y})) 

(!c -+ (W II M) I ?z -+ (W'll M{c,z})) 

(W'll M{a,c} simplifies to .1., but it turns out that we do not need to know this.) 
Our second step is to conceal output m. 
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(W II M)\{m} 
(?z --t (W II M{z}))\{m} 
(?z --t ((W II M{z})\{m})) 

(W II M{a})\{m} 
- (?z --t ((W II M) if z = a else (W II M{a,b})))\{m} 
- (?z --t ((W II M)\{m} if z = a else (W II M{a,b})\{m})) 

(W II M{a,b})\{m} 
(!m --t (Will M{c}) I ?z --t ~)\{m} 

- (skip --t ((Will M{c})\{m}) I?z --t ~) 

(Will M{c})\{m} 
- (!c --t (W II M) I?z --t (W' II M{c,z}))\{m} 
- (!c --t ((W II M)\{m}) I .,. ). 

Finally, we eliminate the skip-guard to obtain 

(W II M{a,b})\{m} 
= (!c --t ((W II M)\{m}) I?z --t ~). 

Thus C and (W II M) \ {m} satisfy the same set of equations and so, because all recursions 
are guarded (by inputs or outputs), exhibit the same behaviour. We conclude that a C­
element can be implemented by feeding back the output of a majority-element to one of 
its inputs; signals arriving at that input remain exposed to the environment as outputs. 

5 Submodels 

In this section, we show that receptive process theory can be specialized so as to model 
buffered communication between a system and its environment. We first consider com­
munication through buffers of infinite capacity. Thus we are able to reason about data 
flow networks, which have been widely studied in the literature. (Though much of the 
literature is concerned with fairness issues which are outside the scope of our model.) We 
then consider communication through wires, which can carry at most one signal (voltage­
level transition) at a time. This has practical application in the design of delay-insensitive 
circuits. 

We do not go into much detail here. The reader is referred to [8, 4] on data flow 
networks and [9, 10, 11] on delay-insensitive circuits. 

5.1 Data Flow Networks 

In this case, a system and its environment do not interact directly, but rather through a 
number of buffers of infinite capacity. A fully abstract model is obtained by considering the 
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overall behaviour of a system equipped with its buffers, i.e., its observable behaviour. This 
gives rise to a submodel of receptive process theory in which processes meet two conditions 
concerned with the reordering of inputs and outputs, in addition to conditions 1-5. The 
failures and divergences of a process are closed under a reordering relation 1;;;, i.e., 

sl;;;t /\ tEF =? sEF 

s I;;; t /\ t E Fj =? s E Fj 

(6) 

(7) 

Informally, reordering a trace involves interchanging inputs to distinct buffers, interchang­
ing outputs from distinct buffers and shifting inputs in front of outputs. If s reorders t 
(s I;;; t), then the behaviour of the process after engaging in t is more deterministic than 
its behaviour after engaging in s. 

It is possible to re-interpret all process-expressions in this submodel, after some small 
changes in the definitions of the operators. Additional algebraic laws capture the reordering 
conditions. 

5.2 Delay-Insensitive Circuits 

In this case, a process models a system together with the wires that connect it to its 
environment. The two reordering conditions above are also satisfied by the processes in 
this submodel. Furthermore, if a second signal is sent along a wire before a previous signal 
has been received, then the two signals can interfere with undesirable consequences. We 
model this interference as divergence and so have the condition 

saa E F =? saa E Fj (8) 

Again it is possible to re-interpret process-expressions in this su bmodel. However, par­
allel composition and concealment have to be combined into a single operator. Fan-in and 
fan-out of wires can be achieved by composing with appropriate merge and fork processes, 
so no generality is lost. Additional algebraic laws capture transmission interference. 

6 Conclusion 

Receptive process theory, like esp, is an algebraic theory of processes based on a failures­
divergences semantic model. It is equipped with a sound and complete set of algebraic 
laws. The laws are sound because each equates two expressions that denote the same 
process. The laws are complete because every (non-recursive) process-expression can be 
transformed into a normal form. 

The theory enables us to specify not only the behaviour of a system, but also limitations 
that are placed on its environment. (The significance of this can be seen in conventional se­
quential programming, where we specify not only a postcondition, but also a precondition.) 
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The parallel composition and concealment operators support a hierarchical approach to de­
sign, in which components taken as primitive at one level of design can be implemented 
independently at another. 

In summary, receptive process theory provides an abstract model of asynchronous com­
munication which could form the basis of design methods for both software and hardware 
systems. In particular, it can be applied directly to the design of asynchronous circuits. 
Data flow networks can also be studied within the theory. 
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A Proofs of some stated results 

In this appendix, we substantiate some of our claims about the concealment and parallel 
composition operators. We begin with two useful lemmas expressing the finitary nature of 
our processes. 

Lemma 20 {t E O*lst E F\Fj} is finite. 
Proof. We may assume that the set is non-empty. Then s if. Fi by condition 1, and 
finiteness follows from the definition of j. 0 

Lemma 21 {t E O*lst E F\Fj} is finite. 
Proof. 

{t E O*lst E F\Fj} 
- {t E O*I:Ju E 0*. stu E F 1\ st if. Fj} 
c {t E O*I:Ju E 0*. stu E F\Fj} 

which is finite by Lemma 20. 0 

(definition of~) 
(Lemma 1) 

The next four lemmas pertain to concealment of outputs. 

Lemma 22 {s E F\Fils' = s\C} is finite. 
Proof. Induction on s'. 
Case e. {s E F\File = s\C} <;;; {s E O*ls E F\Fj}, which is finite by Lemma 2l. 
Case s'a. {s E F\FTls'a = s\C} = {tau E F\Fils' = t\C 1\ e = u\C}, which is 
finite because there are only a finite choice for t (the indo hypo applies since t E F\Fi by 
conditions 1 and 4) and a finite choice for u (by Lemma 21). 0 

We are now ready to prove our previously-stated lemma concerning the divergences that 
result from concealment. 

13 



Lemma 23 d(P\C) = {s\Cls E dP}. 
Proof. 

s' E d(P\C) 
{o} {t' E (O\Cl*ls't' E I(P\C)} is infinite 
{o} {t' E (O\Cl*I:lu E IP. s't' = u\C} is infinite 
{o} {t\C E (O\C)*I:ls. st E IP II s' = s\C} is infinite 

(definition of j) 
(def. of I(P\C)) 

(.;=) Suppose s' = s\C for some s E dP. Then st E dP for all t E 0*, and so {t\C E 
(0\ C)*lst E I P} is infinite as required, since 0 =I C and dP ~ I P. (=» Suppose s' = s \ C 
for no s E dP. This contradicts the above set being infinite because there are only a finite 
choice for s (by Lemma 22) and a finite choice for t (by definition of j). 0 

We precede our proof of the continuity of the concealment operator with the following 
lemma. 

Lemma 24 For any chain of failure sets such that Fi 2 Fi+l, i :::: 0, 

(Vi. :It. st E Fir II t' = t\C) => (:It. st E (n Fill II t' = t\C). 
i 

Proof. Induction on t'. First observe that if s E Fir for all i, then we can simply take 
t = t' because of condition 1 and the continuity of l-
Case c. If :It. st E Fir II c = t\C, then s E F;i by Lemma 1, and the result follows from 
our observation. 
Case at'. If :It. st E Fir II at' = t\C, then :lu E C*, v. suav E Fir II t' = v\C. Because of 
our observation, we may suppose s rJ Fjr for some j. By Lemma 21, there is only a finite 
choice for u for that j. Since Fi 2 Fi+I, i :::: 0, it follows that :lu E Co. Vi. :Iv. suav E 
F;i II t' = v\C. One application of the indo hypo completes the proof. 0 

Lemma 25 For any chain of processes Pi such that I Pi 2 I Pi+1 , i :::: 0, with l.u.b. P, i.e., 
IP = ndPi , 

I(P\C) = n/(Pi\C). 
i 

Proof. Since concealment is monotonic, we need only prove containment. Suppose s' E 
nd(Pi\C). Then Vi.:ls E IPi. s' = s\C. If Vi. :Is E dPi. s' = s\C, then we are done 
by Lemma 24. Otherwise, for i sufficiently large, there is only a finite choice for s by 
Lemma 22 and so, since I Pi ;2 I Pi+I, i :::: 0, we are also done. 0 

We now turn to parallel composition. The key step in proving continuity of P II Q is the 
following lemma. 

14 



Lemma 26 For any chrun of processes Pi such that f Pi :2 f Pi+l, i 2: 0, 

Vi. 7;(s) is infinite => (n7;(s)) is infinite, 
i 

where 7;(s) = {t E O*lst E (tPi)w(tQ)}. 
Proof. Observe that 7;(s) is prefix-closed and enjoys the property 

t E O*flu E 7;(st) => tu E 7;(s). 

It therefore suffices to prove that 

Vi. 7;( s) is infinite => (ni 7;( s)) is infinite 
V(:3e E O. Vi. 7;(se) is infinite). 

There are two cases to consider. 
Case Vi. {e E Ole E 7;(s)} is infinite. Then, by the definitions of 7;(s) and wand by 
Lemma 21, Vi. sr(iPUop) E dPi V sr(iQUoQ) E dQ. Hence, either (oP)* ~ ni7;(s) or 
(oQ)* ~ ni7;(s). Either way, ni7;(s) is infinite. 
Case {e E 0 leE 1j (s)} is finite for some j. Then, since the 7; (s) (i 2: 0) are infinite, prefix­
closed and ordered by containment, {e E 011k(se) is infinite} is finite and non-empty, for 
all k 2: j. These sets are themselves ordered by containment and so there must exist cEO 
such that Vi. 7;(sc) is infinite. 0 

It follows that ((tP)w(tQ))j is continuous in P and, since closing up under extension 
is continuous, d(P II Q) is also continuous in P. Now we only have to observe that 
(ni Si) U (ni Ti) = ni Si UTi for sets Si and Ti such that Si :2 SiH, Ti :2 Ti+1 , i 2: 0, to see 
that f(P II Q) is continuous in P. 
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