

Receptive process theory

Citation for published version (APA):
Josephs, M. B. (1990). Receptive process theory. (Computing science notes; Vol. 9008). Technische Universiteit
Eindhoven.

Document status and date:
Published: 01/01/1990

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 05. Oct. 2023

https://research.tue.nl/en/publications/f5843c51-dbf6-49ba-963c-518e9f8ef850

Receptive Process Theory

by

Mark B. Josephs

90/8

October, 1990

COMPUTING SCIENCE NOTES

This is a series of notes of the Computing
Science Section of the Department of
Mathematics and Computing Science
Eindhoven University of Technology.
Since many of these notes are preliminary
versions or may be published elsewhere, they
have a limited distribution only and are not
for review.
Copies of these notes are available from the
author or the editor.

Eindhoven University of Technology
Department of Mathematics and Computing Science
P.O. Box 513
5600 MB EINDHOVEN
The Netherlands
All rights reserved
editors: prof.dr.M.Rem

prof.dr.K.M.van Hee.

Receptive Process Theory

Mark B. J osephs*

Department of Mathematics and Computing Science
Eindhoven University of Technology

August 22, 1990

Summary. An algebraic theory of receptive processes is presented. A receptive process models
the interaction by input and output between a system and its environment. Input from the
environment and output to the environment are never blocked; but if a system is not ready to
receive a particular input, its subsequent behaviour is undefined.

In essence, this paper reworks Hoare's theory of Communicating Sequential Processes under
the above assumption about communication. The resulting model is more attractive than the
failures· divergences model of CSP because the refusal sets of the latter are simplified out of
existence. Like CSP, receptive process theory is equipped with a sound and complete set of
algebraic laws.

Applications of the theory include the design of asynchronous circuits and the study of data
flow networks. As an example, this paper verifies algebraically the design of a Muller C-element
from a majority-element.

1 Introduction

A receptive process models the interaction by input and output between a system and its
environment. Input from its environment is never blocked by a system. Symmetrically,
output from a system is never blocked by its environment. If a system is not ready to
receive a particular input, the subsequent behaviour of the system is undefined. It is
to be understood that the environment is obliged not to send such an input in these
circumstances.

A theory of receptive processes is concerned therefore with a very general communica­
tion paradigm, one which is applicable to asynchronous circuits and data flow networks,
for example. Even synchronized communication, as modelled in CSP [6, 7], can be imple­
mented by a handshake of inputs and outputs between receptive processes.

* Author's current address: Oxford University Computing Laboratory, Programming Research Group,
11 Keble Road, Oxford OXl 3QD, U.K.

1

In this paper, we develop an algebraic theory based on a mathematical model similar
to Dill's model of speed-independent circuits [3]. Indeed, we have borrowed the term
"receptive" from him. Dill has been more concerned, however, with automatic verification
than with process algebra. Other algebraic theories of concurrency such as CCS [13, 14]
and CSP [2, 7] do not make more than syntactic distinctions between inputs and outputs.
Instead they are concerned with undirected synchronization events or actions. Inputs and
outputs are sometimes distinguished in trace theory [15, 17], but there the emphasis is on
deterministic behaviour.

In essence, we rework Hoare's CSP under the assumption that processes are receptive.
The resulting model is more attractive than the failures-divergences model of CSP because
the refusal sets of the latter are simplified out of existence, and yet nondeterministic be­
haviour can still be fully expressed. The divergences of CSP remain as an extremely useful
way of capturing obligations to be met by the environment, i.e., that certain inputs will
not be sent in certain circumstances. Like CSP, receptive process theory is equipped with
a sound and complete set of algebraic laws.

Receptive process theory and CSP are alike in another respect: they do not deal with
fairness. This is in many ways an advantage because it facilitates the algebraic transfor­
mation of networks of processes. They may be implemented under a variety of scheduling
strategies, including sequential execution on a single processor and fine-grained concurrent
execution in VLSI. Both theories treat the possibility of infinite chatter (which in receptive
process theory includes outputting forever without requiring input) as wholly undesirable.
This restricts us somewhat when it comes to modelling asynchronous circuits, e.g., a ring
oscillator [3] would be outside the scope of our theory.

In the remainder of this paper, we introduce a mathematical model for receptive pro­
cesses and develop a process algebra by defining a number of CSP-like operators. We show
by means of a small example that the algebra can be used in the verification of asyn­
chronous circuits. Finally, we briefly examine the special cases of data flow networks and
delay-insensitive circuits.

2 The Model

In this section, we define a receptive process to be a triple (1,0, F) which must satisfy
certain conditions.

Consider a system that interacts by input and output with its environment. The
set of all possible inputs from the environment to the system is represented by the input
alphabet of the process. The set of all possible outputs from the system to the environment
is represented by the output alphabet of the process. In the remainder of this section, we
shall consider a particular input alphabet I and a particular output alphabet o. We insist
that I and 0 are disjoint and that 0 is non-empty.

Suppose that the system has engaged in a finite sequence s of inputs and outputs. If
the environment were to provide no further input to the system, then the system would
continue to output either forever or until it became quiescent, i.e., it required further input.

2

In the latter case, the system would refuse to output after engaging in some finite sequence
t of outputs; we call the sequence st a failure of the process.

Systems that can output forever or become quiescent in infinitely many different ways
are modelled as divergent. Let F <;;; (I U 0)* be the set of failures of a particular process.
Then the set Fi of divergences of the process is defined by

Fj = {sl{t E O'lst E F} is infinite}.

Immediate consequences of this definition are that Fi is closed under curtailment of out­
puts, and i distributes through finite unions (and so is monotonic with respect to set
containment) .

Lemma 1 st E Fi 1\ tEO' =} s E Pi. 0

Lemma 2 (Fo U FIli = (Foi) U (Fij). 0

As in esp, divergence is considered wholly undesirable and so it is convenient to assume
that a divergent process can do or fail to do anything whatsoever. This is reflected in the
following two closure condition that we impose upon F.

s E Fi '* st E Fi

Fi<;;;F

(1)

(2)

That s is a divergence can be interpreted as meaning that the environment guarantees not
to engage in s. The divergences of a process now have a simpler characterization.

Lemma 3 s E Fl * 'It. st E F.
Proof. (=}) follows from conditions 1 and 2. (~) follows because if st E F holds for every
t, then it certainly holds for all tEO'; since 0 is non-empty, the set of such t is infinite
and so, by definition, s E Fj. 0

A further property of i is that it distributes through arbitrary intersections of failure sets
(and so is n-continuous).

Lemma 4 (nX)j = nFEX(Fi).
Proof. (<;;;) nX <;;; F, for all F E X, and so, by monotonicity of j, (nX)j <;;; nFEX(Fj).
(2) Suppose s E nFEX(Fj). Then, by Lemma 3, st E F, for all F E X and all t. Since 0
is non-empty, it follows that {t E O'ist E nX} is infinite, i.e., s E (nX)T. 0

Note that if one were to allow empty output alphabets, the set of divergences would have
to be modelled explicitly, as in [8].

The set F of traces of the process can also be derived from F.

F = {sI3tEO·.stEF}.

Immediate consequences are that every failure is a trace and that ~ distributes through
arbitrary unions.

3

Lemma 5 F <;;; F. 0

Lemma 6 UX = UFEXF. 0

The remaining closure conditions on F can be most easily stated as conditions on F,
namely, F is non-empty, prefix-closed and closed under extension by inputs.

c:E F (3)

st E F => s E F (4)

s E F 1\ t E 1* => st E F (5)

The last condition, called receptiveness by Dill, arises because the environment might send
input to the system at any time. The traces of a process now have a simpler characteriza­
tion.

Lemma 7 s E F {;o :It. st E F.
Proof. (=» follows from the definition of F. C¢=) follows because if st E F, then st E F
and so, by condition 4, s E F. 0

Although ~ does not in general distribute through intersections of failure sets, it is nev­
ertheless n-continuous, which follows from our treatment of infinite nondeterminism as
divergent behaviour.

Lemma 8 For any chain of failure sets such that Fi 2 Fi+l> i ~ 0, n i Fi = ni Fi.
Proof. Since ~ is monotonic, we need only show that ni Fi <;;; ni Fi. Suppose sEn)::. By
the definition of F, Vi.:lt EO'. st E Fi. Since Fi 2 Fi+1, i ~ 0, either:lt EO'. st E niF;
or Vi. {t E O'ist E F;} is infinite. In the latter case, Vi. s E F;j and so by condition 2,
sEn; F;. Thus, either way, s E n-:F;, by the definition of F. 0

We conclude this section with a theorem concerning the space of receptive processes.

Theorem 1 The failure sets form a c.p.o. under containment.
Proof. Failure sets are clearly partially ordered and have least element (I U 0)' which
satisfies conditions 1-5. To prove completeness, consider a chain of failure sets such that
Fi "2 F;+l, i ~ o. That n; F; satisfies conditions 1-5 follows easily from the continuity of j
and~. 0

4

3 Process Algebra

In this section, we develop a CSP-like language for expressing the behaviour of receptive
processes. The process-expressions are constructed from .L, nondeterministic choice, input­
guarded choice, output-guarded choice, skip-guarded choice, concealment of output and
parallel composition. Algebraic laws are provided that enable us to eliminate the last
three operators from process-expressions. Additional laws are provided that enable every
process-expression to be transformed into a normal form.

Here, normal form means .L or a nondeterministic choice between a finite, non-empty
set X of guarded choices. X should contain at most one input-guarded choice, each output
guard should be distinct and all guarded processes should themselves be in normal form,
as well as being as nondeterministic as possible. (In terms of the model, if X contains an
input-guarded choice, then c is a failure of the process; the set of output guards are those
outputs that the process can engage in initially.)

The language can be extended to allow (mutual) recursion. In the standard way [1,
5, 16J, recursively-defined processes are semantically the limit of their finite syntactic ap­
proximations.

We now consider each operator in turn, employing the valuations i, 0, t, f and d to
define, respectively, the input alphabet, output alphabet, traces, failures and divergences
of a process-expression.

3.1 Chaos

The process .LI,o can do or fail to do anything whatsoever. It is defined by i.LI,Q = I,
o.LI,o = 0 and f .LI,o = (IUO)". Often we write.L and leave the alphabets to be deduced
from the context.

3.2 Nondeterministic Choice

The process P n Q behaves nondeterministically like P or Q. We insist that iP = iQ,
oP = oQ and define i(P n Q) = iP, o(P n Q) = oP and f(P n Q) = f P U fQ. That
f(pnQ) satisfies conditions 1-5 follows from Lemmas 2 and 6. Continuity (in each operand)
follows from the fact that union distributes through intersection. Nondeterministic choice
is clearly commutative, associative, idempotent and has .L as its null element.

3.3 Guarded Choice

Let P and Qx, for all x E I, be processes with the same input alphabet I and the same
output alphabet O. We next define the three kinds of guarded choice, each of which has
input alphabet I and output alphabet O. In each case, it is easy to see that conditions
1-5 are met and choice is n-continuous in each guarded process (because union distributes
through intersection).

5

3.3.1 Input-Guarded Choice

The process (?x -> Qx) waits for any input x from its environment and then behaves like
Qx' Formally,

I(?x -> Qx) = {c} U {xslx E I II s E IQx}.

Lemma 9 d(?x -> Qx) = {xslx E I II s E dQx}. 0

Lemma 10 t(?x -> Qx) = {c} U {xslx E I II s E tQx}. 0

The following distributivity law helps us transform a process into normal form.

(?x -> Px) n (?y -> Qy) = (?z -> (Pz n Qz)).

3.3.2 Output-Guarded Choice

The process (!c -> P I?x -> Qx) eventually outputs cEO to its environment (and
behaves like P), unless its environment supplies it earlier with some input x, in which case
it subsequently behaves like Qx'

{

(I U 0)'
I(!c -> PI?x -> Qx) = {csls E IP}

u{xslx E I II s E IQx}

if I P = (I U 0)'

otherwise.

Lemma 11 d(!c -> P I?x -> Qx) = {csls E dP} U {xslx E I II s E dQx} if
IP"I (Iu 0)'. 0

Lemma 12 t(!c -> P I?x -> Qx) = {c} U {csls E tP} U {xslx E I II s E tQx} if
IP"I(IUO)*.D

The first case of the definition is needed to back-propagate divergence through output
(Lemma 1). It gives rise to the law

(!c -> J.. I ?x -> Px) = J...

This and the following laws are necessary for normalization.

Case P = (!c -> pi I?x -> Px) and Q = (?y -> Qy).

P n Q = (!c -> pi I?z -> (Pz n Qz)) n (?z -> (Pz n Qz)).

Case P as above and Q = (!c -> Q' I ?y -> Qy).

P n Q = (!c -> (Pi n Q') I ?z -> (Pz n Qz)).

Case P as above and Q = (!d -> Q' I ?y -> Qy).

P n Q = (!c -> pi I?z -> (Pz n Qz)) n (!d -> Q' I?z -> (Pz n Qz)).

6

3.3.3 Skip-Guarded Choice

The process (skip ---t P I?x ---t Qx) eventually chooses to behave like P, unless its
environment supplies it earlier with some input x, in which case it subsequently behaves
like Qx'

f(skip ---t PI?x ---t Qx) = fP U {xslx E I A s E fQx}.

Lemma 13 d(skip ---t P I ?x ---t Qx) - dP U {xslx E I A s E dQx}. 0

Lemma 14 t(skip ---t P I?x ---t Qx) tpu{xslx E I As E tQx}. 0

The following laws, in which we consider the various possibilities for P, enable us to
eliminate skip-guards.

Case P = 1..

(skip ---t P I?x ---t Qx) = 1..

Case P = pI n P".

(skip ---t P I?x ---t Qx) - (skip ---t pI I?x ---t Qx)
n(skip ---t P" I?x ---t Qx).

Case P = (?y ---t Py).

(skip ---t P I?x ---t Qx) = (?z ---t (Pz n Qz)).

Case P = (!c ---t pI I?y ---t Py).

(skip ---t P I?x ---t Qx) = (!c ---t pI I?z ---t (Pz n Qz)).

3.4 Concealment of Output

The process P\C behaves like P, except that outputs in C C oP are concealed from its
environment. Thus i(P\C) = iP, o(P\C) = (oP)\C and

f(P\C) = {s\Cls E fP}.

Lemma 15 d(P\C) - {s\Cls E dP}. 0

Lemma 16 t(P\C) {s\Cls E tP}. 0

The last lemma is easily proved; and it follows directly that conditions 1-5 are met. (Proofs
of the previous lemma and that P\C is continuous in P can be found in the appendix.)
The following laws enable us to eliminate concealment.

Case P = 1..

P\C = 1..

7

Case P = P' n P".

P\C = (P'\C) n (P"\C).

Case P = (?x -+ Px).

P\C = (?x -+ (Px\C)).

Case P = (!c -+ P' I?x -+ Px)'

P\C = (a -+ (P'\C) I?x -+ (Px\C))

where a is skip if c E C, and !c otherwise.

3.5 Parallel Composition

The process P II Q is the parallel composition of P and Q, which must have disjoint
output alphabets. Inputs from the environment that are common to the input alphabets
of both components are copied to each. Outputs from one component that are in the input
alphabet of the other component are copied to that component and to the environment.
Thus the output alphabet 0 of the parallel composition is the union of oP and oQ, and
the input alphabet 1 is (iP U iQ)\O. The definition of f(P II Q) is complicated by the
possibility of divergence caused by infinite chatter between the two components.

First we define the weave SwT of sets S <; (iP U oP)* and T <; (iQ U oQ)*, as
in [7, 15, 17], for example. (We write s r A to mean the restriction of s to events in A.)

SwT = {s E (I U O)*lsr(iP U oP) E S 1\ sr(iQ U oQ) E T}.

Lemma 17 (nX)wT = nsEx(SwT). 0

Infinite chatter between P and Q (which includes either process diverging) is possible after
any trace in ((tP)w(tQ))i. The divergences of P II Q are (the extensions of) such traces.
P II Q can refuse to output either because both P and Q can so refuse or because of
divergence.

f(P II Q) = (JP)w(JQ) U {stls E ((tP)w(tQ))i litE (IU O)*).

Lemma 18 d(P II Q) {stls E ((tP)w(tQ))i litE (1 U O)*). 0

Lemma 19 t(P II Q) = (tP)w(tQ) U d(P II Q). 0

The above lemmas are easily proved and that conditions 1-5 are met follows directly. (Proof
of the continuity of parallel composition can be found in the appendix.) Parallel composi­
tion can be eliminated by using the following laws and the fact that it is commutative.

Case P =-1.

P II Q = -1.

8

Case P = pi n P".

P II Q = (Pi II Q) n (P" II Q).

Case P = (?x --> Px) and Q = (?y Qy).

{

Pz II Qz
P II Q = (?z Rz) where Rz = Pz II Q

P II Qz

if z E iP n iQ
if z E iP\(iQ U oQ)
if z E iQ\(iP U oP).

Case P = (!e --> pi I ?x --> Px) and Q input-guarded as above.

P II Q = (!e --> R! I ?z Rz)

where Rz is as above, and R' is pi II Q c if e E iQ, and is pi II Q otherwise.

Case P = (!e --> pi I?x --> Px) and Q = (d! --> Q' I ?y --> Qy).

P II Q = (!e R! I?z --> Rz)n(!d--> S' I?z --> R z)

where R' and Rz are as above, and S' is Pd II Q' if d E iP, and is P II Q' otherwise.

4 Verification of an Asynchronous Circuit

Asynchronous circuits can be designed to function correctly independent of the speed of the
components in the circuit, but assuming instantaneous transmission of signals between the
components. In this section, we verify a small speed-independent design using our process
algebra. We begin by specifying a wire, majority-element and Muller C-element in our
algebra, where input and output events denote voltage-level transitions either up or down.
We then verify that the C-element can be constructed from the other two components [12J.

A wire W with input alphabet {m} and output alphabet {e} is specified by the following
mutually recursive equations, in which the variable x ranges over {m}.

W = (?x --> W') where W' = (!c -->W I ?x --> 1.).

That is, a signal m is propagated as c, unless a second signal arrives too early causing
interference. The divergence indicates that the environment should not send that second
signal until it has received the signal c.

A majority-element M with inputs a, band c and output m is specified by the following
mutually recursive equations, in which the variable y ranges over {a, b, e}.

M - (?y M{y})

M{a} - (?y --> (M if y = a else M{a,y}))

M{a,b} = (!m --> M{c} I?y --> (M{a,b,c} if Y = c else 1.))
M{a,b,c} (!m --> M I?y --> M{a,b,c}\{y}).

9

The behaviour of M is symmetric in its inputs. In state Ms all inputs in S are at one
voltage level, and the other inputs and m are at the other voltage level. Note that once
inputs on a and b have been received, it is safe for a second input on a to arrive after
an input on e, but not before. This is because of the danger of an output spike should a
change back early.

A C-element with inputs a and b and output e is specified by

C = (?z -+ C{z}) where C{a} = (?z -+ (C if z = a else C{a,b}))
C{a,b} = (le -+ C I ?z -+ .L).

The behaviour of C is symmetric in its two inputs, and the variable z ranges over {a, b}.
We now prove by straightforward algebraic manipulation that

C = (W II M)\{m}.

Our first step is to consider W II M, which has input alphabet {a, b} and output alpha­
bet {e, m}. Note that if both the wire and the majority-element are waiting for input, then
all that can happen is an input a or b by the latter, which does not affect the state of the
wIre.

W II M
- (?x -+ W') II (?y -+ M{y})
- (?z -+ (W II M{z}))

W II M{a}
(?x -+ W') II (?y -+ (M if y = a else M{a,y}))
(?z -+ ((W II M) if z = a else (W II M{a,b})))

W II M{a,b}
(?x -+ W') II (1m -+ M{c} I?y --> (M{a,b,c} if Y = e else .1.))
(1m -+ (W'll M{c}) I?z -+ .1.)

W'll M{c}
- (le --> W I?x -+ .1.) II (?y -+ (M if y = e else M{c,y}))

(!c -+ (W II M) I ?z -+ (W'll M{c,z}))

(W'll M{a,c} simplifies to .1., but it turns out that we do not need to know this.)
Our second step is to conceal output m.

10

(W II M)\{m}
(?z --t (W II M{z}))\{m}
(?z --t ((W II M{z})\{m}))

(W II M{a})\{m}
- (?z --t ((W II M) if z = a else (W II M{a,b})))\{m}
- (?z --t ((W II M)\{m} if z = a else (W II M{a,b})\{m}))

(W II M{a,b})\{m}
(!m --t (Will M{c}) I ?z --t ~)\{m}

- (skip --t ((Will M{c})\{m}) I?z --t ~)

(Will M{c})\{m}
- (!c --t (W II M) I?z --t (W' II M{c,z}))\{m}
- (!c --t ((W II M)\{m}) I .,.).

Finally, we eliminate the skip-guard to obtain

(W II M{a,b})\{m}
= (!c --t ((W II M)\{m}) I?z --t ~).

Thus C and (W II M) \ {m} satisfy the same set of equations and so, because all recursions
are guarded (by inputs or outputs), exhibit the same behaviour. We conclude that a C­
element can be implemented by feeding back the output of a majority-element to one of
its inputs; signals arriving at that input remain exposed to the environment as outputs.

5 Submodels

In this section, we show that receptive process theory can be specialized so as to model
buffered communication between a system and its environment. We first consider com­
munication through buffers of infinite capacity. Thus we are able to reason about data
flow networks, which have been widely studied in the literature. (Though much of the
literature is concerned with fairness issues which are outside the scope of our model.) We
then consider communication through wires, which can carry at most one signal (voltage­
level transition) at a time. This has practical application in the design of delay-insensitive
circuits.

We do not go into much detail here. The reader is referred to [8, 4] on data flow
networks and [9, 10, 11] on delay-insensitive circuits.

5.1 Data Flow Networks

In this case, a system and its environment do not interact directly, but rather through a
number of buffers of infinite capacity. A fully abstract model is obtained by considering the

11

overall behaviour of a system equipped with its buffers, i.e., its observable behaviour. This
gives rise to a submodel of receptive process theory in which processes meet two conditions
concerned with the reordering of inputs and outputs, in addition to conditions 1-5. The
failures and divergences of a process are closed under a reordering relation 1;;;, i.e.,

sl;;;t /\ tEF =? sEF

s I;;; t /\ t E Fj =? s E Fj

(6)

(7)

Informally, reordering a trace involves interchanging inputs to distinct buffers, interchang­
ing outputs from distinct buffers and shifting inputs in front of outputs. If s reorders t
(s I;;; t), then the behaviour of the process after engaging in t is more deterministic than
its behaviour after engaging in s.

It is possible to re-interpret all process-expressions in this submodel, after some small
changes in the definitions of the operators. Additional algebraic laws capture the reordering
conditions.

5.2 Delay-Insensitive Circuits

In this case, a process models a system together with the wires that connect it to its
environment. The two reordering conditions above are also satisfied by the processes in
this submodel. Furthermore, if a second signal is sent along a wire before a previous signal
has been received, then the two signals can interfere with undesirable consequences. We
model this interference as divergence and so have the condition

saa E F =? saa E Fj (8)

Again it is possible to re-interpret process-expressions in this su bmodel. However, par­
allel composition and concealment have to be combined into a single operator. Fan-in and
fan-out of wires can be achieved by composing with appropriate merge and fork processes,
so no generality is lost. Additional algebraic laws capture transmission interference.

6 Conclusion

Receptive process theory, like esp, is an algebraic theory of processes based on a failures­
divergences semantic model. It is equipped with a sound and complete set of algebraic
laws. The laws are sound because each equates two expressions that denote the same
process. The laws are complete because every (non-recursive) process-expression can be
transformed into a normal form.

The theory enables us to specify not only the behaviour of a system, but also limitations
that are placed on its environment. (The significance of this can be seen in conventional se­
quential programming, where we specify not only a postcondition, but also a precondition.)

12

The parallel composition and concealment operators support a hierarchical approach to de­
sign, in which components taken as primitive at one level of design can be implemented
independently at another.

In summary, receptive process theory provides an abstract model of asynchronous com­
munication which could form the basis of design methods for both software and hardware
systems. In particular, it can be applied directly to the design of asynchronous circuits.
Data flow networks can also be studied within the theory.

Acknowledgements. The elegance of this theory owes much to Tony Hoare who has directed
and encouraged me in this research. I am also grateful to many other colleagues with
whom I have been collaborating in this area, in particular, He Jifeng, Jan Tijmen Udding,
Tom Verhoeff and Rudolf Mak. This work was completed while on a Visiting Research
Fellowship at Eindhoven University of Technology. The financial support of the ESPRIT
Basic Research Action CONCUR is acknowledged.

A Proofs of some stated results

In this appendix, we substantiate some of our claims about the concealment and parallel
composition operators. We begin with two useful lemmas expressing the finitary nature of
our processes.

Lemma 20 {t E O*lst E F\Fj} is finite.
Proof. We may assume that the set is non-empty. Then s if. Fi by condition 1, and
finiteness follows from the definition of j. 0

Lemma 21 {t E O*lst E F\Fj} is finite.
Proof.

{t E O*lst E F\Fj}
- {t E O*I:Ju E 0*. stu E F 1\ st if. Fj}
c {t E O*I:Ju E 0*. stu E F\Fj}

which is finite by Lemma 20. 0

(definition of~)
(Lemma 1)

The next four lemmas pertain to concealment of outputs.

Lemma 22 {s E F\Fils' = s\C} is finite.
Proof. Induction on s'.
Case e. {s E F\File = s\C} <;;; {s E O*ls E F\Fj}, which is finite by Lemma 2l.
Case s'a. {s E F\FTls'a = s\C} = {tau E F\Fils' = t\C 1\ e = u\C}, which is
finite because there are only a finite choice for t (the indo hypo applies since t E F\Fi by
conditions 1 and 4) and a finite choice for u (by Lemma 21). 0

We are now ready to prove our previously-stated lemma concerning the divergences that
result from concealment.

13

Lemma 23 d(P\C) = {s\Cls E dP}.
Proof.

s' E d(P\C)
{o} {t' E (O\Cl*ls't' E I(P\C)} is infinite
{o} {t' E (O\Cl*I:lu E IP. s't' = u\C} is infinite
{o} {t\C E (O\C)*I:ls. st E IP II s' = s\C} is infinite

(definition of j)
(def. of I(P\C))

(.;=) Suppose s' = s\C for some s E dP. Then st E dP for all t E 0*, and so {t\C E
(0\ C)*lst E I P} is infinite as required, since 0 =I C and dP ~ I P. (=» Suppose s' = s \ C
for no s E dP. This contradicts the above set being infinite because there are only a finite
choice for s (by Lemma 22) and a finite choice for t (by definition of j). 0

We precede our proof of the continuity of the concealment operator with the following
lemma.

Lemma 24 For any chain of failure sets such that Fi 2 Fi+l, i :::: 0,

(Vi. :It. st E Fir II t' = t\C) => (:It. st E (n Fill II t' = t\C).
i

Proof. Induction on t'. First observe that if s E Fir for all i, then we can simply take
t = t' because of condition 1 and the continuity of l-
Case c. If :It. st E Fir II c = t\C, then s E F;i by Lemma 1, and the result follows from
our observation.
Case at'. If :It. st E Fir II at' = t\C, then :lu E C*, v. suav E Fir II t' = v\C. Because of
our observation, we may suppose s rJ Fjr for some j. By Lemma 21, there is only a finite
choice for u for that j. Since Fi 2 Fi+I, i :::: 0, it follows that :lu E Co. Vi. :Iv. suav E
F;i II t' = v\C. One application of the indo hypo completes the proof. 0

Lemma 25 For any chain of processes Pi such that I Pi 2 I Pi+1 , i :::: 0, with l.u.b. P, i.e.,
IP = ndPi ,

I(P\C) = n/(Pi\C).
i

Proof. Since concealment is monotonic, we need only prove containment. Suppose s' E
nd(Pi\C). Then Vi.:ls E IPi. s' = s\C. If Vi. :Is E dPi. s' = s\C, then we are done
by Lemma 24. Otherwise, for i sufficiently large, there is only a finite choice for s by
Lemma 22 and so, since I Pi ;2 I Pi+I, i :::: 0, we are also done. 0

We now turn to parallel composition. The key step in proving continuity of P II Q is the
following lemma.

14

Lemma 26 For any chrun of processes Pi such that f Pi :2 f Pi+l, i 2: 0,

Vi. 7;(s) is infinite => (n7;(s)) is infinite,
i

where 7;(s) = {t E O*lst E (tPi)w(tQ)}.
Proof. Observe that 7;(s) is prefix-closed and enjoys the property

t E O*flu E 7;(st) => tu E 7;(s).

It therefore suffices to prove that

Vi. 7;(s) is infinite => (ni 7;(s)) is infinite
V(:3e E O. Vi. 7;(se) is infinite).

There are two cases to consider.
Case Vi. {e E Ole E 7;(s)} is infinite. Then, by the definitions of 7;(s) and wand by
Lemma 21, Vi. sr(iPUop) E dPi V sr(iQUoQ) E dQ. Hence, either (oP)* ~ ni7;(s) or
(oQ)* ~ ni7;(s). Either way, ni7;(s) is infinite.
Case {e E 0 leE 1j (s)} is finite for some j. Then, since the 7; (s) (i 2: 0) are infinite, prefix­
closed and ordered by containment, {e E 011k(se) is infinite} is finite and non-empty, for
all k 2: j. These sets are themselves ordered by containment and so there must exist cEO
such that Vi. 7;(sc) is infinite. 0

It follows that ((tP)w(tQ))j is continuous in P and, since closing up under extension
is continuous, d(P II Q) is also continuous in P. Now we only have to observe that
(ni Si) U (ni Ti) = ni Si UTi for sets Si and Ti such that Si :2 SiH, Ti :2 Ti+1 , i 2: 0, to see
that f(P II Q) is continuous in P.

References

[1] Brookes, S.D.: A Model for Communicating Systems. PhD Thesis, Oxford Univer­
sity (1983).

[2] Brookes, S.D., Roscoe, A.W.: An Improved Failures Model for Communicating
Sequential Processes. Lecture Notes in Computer Science, Vol. 197, pp. 281-305,
Springer-Verlag (1984).

[3] Dill, D.L.: Trace Theory for Automatic Hierarchical Verification of Speed-Independent
Circuits. PhD Thesis, Carnegie Mellon University (1988).

[4] He, J., Josephs, M.B., Hoare, C.A.R.: A Theory of Synchrony and Asynchrony. In
Proceedings IFIP Working Conference on Programming Concepts and Methods, Sea
of Galilee, to appear (1990).

[5] Hennessy, M.: Algebraic Theory of Processes. Series in Foundations of Computing,
MIT Press (1988).

15

[6] Hoare, C.A.R.: Communicating Sequential Processes. Communications of the ACM,
Vol. 21, pp. 666-677 (1978).

[7] Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall International Se­
ries in Computer Science (1985).

[8] Josephs, M.B., Hoare, C.A.R., He, J.: A Theory of Asynchronous Processes. Oxford
University Programming Research Group Technical Report (1989).

[9] Josephs, M.B., Udding, J.T.: An Algebra for Delay-Insensitive Circuits. In Proceed­
ings DIMACS/IFIP Workshop on Computer-Aided Verification, Rutgers University,
New Jersey, to appear (1990).

[10] Josephs, M.B., Udding, J.T.: Delay-Insensitive Circuits: An Algebraic Approach to
their Design. In Proceedings CONCUR '90, Amsterdam, to appear (1990).

[11] Josephs, M.B., Udding, J.T.: The Design of a Delay-Insensitive Stack. In Proceedings
Workshop on Designing Correct Circuits, Oxford, to appear (1990).

[12] Mead, C., Conway, L.: Introduction to VLSI Systems. Addison-Wesley (1980).

[13] Milner, A.J.R.G.: A Calculus of Communicating Systems. Lecture Notes in Computer
Science, Vol. 92, Springer-Verlag (1980).

[14] Milner, A.J.R.G.: Communication and Concurrency. Prentice Hall International Series
in Computer Science (1989).

[15J Snepscheut, van de, J.L.A.: Trace Theory and VLSI Design. PhD Thesis, Eindhoven
University of Technology (1983).

[16] Roscoe, A.W., Hoare, C.A.R.: The Laws of Occam Programming. Theoretical Com­
puter Science, Vol. 60, pp. 177-229 (1988).

[17] Udding, J.T.: Classification and Composition of Delay-Insensitive Circuits. PhD The­
sis, Eindhoven University of Technology (1984).

16

In this series appeared :

No. Author(s)

85/01 RH. Male

85/02 W.M.C.J. van Overveld

85/03 W.J.M. Lemmens

85/04 T. VerlIoeff
H.M.L.J.Schols

86/01 R Koymans

86/02 G.A. Bussing
K.M. van Hee
M. Voorhoeve

86/03 Rob Hoogerwoord

86/04 G.J. Houben
J. Paredaens
K.M. van Hee

86/05 J.L.G. Dietz
K.M. van Hee

86/06 Tom Verhoeff

86/07 R Gerth
L. Shira

86/08 R Koymans
R.K. Shyamasundar
W.P. de Roever
R Gerth
S. Arun Kumar

86/09 C. Huizing
R. Gerth
W.P. de Roever

86/10 J. Hooman

86/11 W.P. de Roever

86/12 A. Boucher
R. Gerth

86/13 R. Gerth
W.P. de Roever

Title

The formal specification and derivation of CMOS-circuits.

On arithmetic operations with M-out-of-N-codes.

Use of a computer for evaluation of flow films.

Delay insensitive directed trace structures satisfy the foam
the foam rubber wrapper postulate.

Specifying message passing and real-time systems.

ELISA, A language for formal specification of
information systems.

Some reflections on the implementation of trace structures.

The partition of an information system in several
systems.

A framework for the conceptual modeling of
discrete dynamic systems.

Nondeterminism and divergence created by
concealment in CSP.

On proving communication closedness of distributed
layers.

Compositional semantics for real-time distributed
computing (Inf.&Control 1987).

Full abstraction of a real-time denotational
semantics for an OCCAM -like language.

A compositional proof theory for real-time
distributed message passing.

Questions to Robin Milner - A responder's
commentary (IFIP86).

A timed failures model for extended communicating
processes.

Proving monitors revisited: a first step towards
tKFif}dng Object oriented systems (Fund. Informatica

86/14 R. Koymans

87/01 R. Gerth

87/02 Simon 1. Klaver
Chris F.M. Verbeme

87/03 G.J. Houben
J .Paredaens

87/04 T.Verhoeff

87/05 R.Kuiper

87/06 R.Koymans

87/07 R.Koyrnans

87/08 H.M.J.L. Scho1s

87/09 J. Kalisvaart
L.R.A. Kessener
W.J.M. Lernrnens
M.L.P. van Lierop
F.J. Peters
H.M.M. van de Wetering

87110 T.Verboeff

87/11 P.Lernrnens

87/12 K.M. van Hee and
A.Lapinski

87/13 J.C.S.P. van der Woude

87/14 J. Hooman

87/15 C. Huizing
R. Gerth
W.P. de Roever

87/16 H.M.M. ten Eike1der
J.c.F. Wilmont

87/17 K.M. van Hee
G.-J.Houben
J.L.G. Dietz

Specifying passing systems requires extending
temporal logic.

On the existence of sound and complete axiomati
zations of the monitor concept.

Federatieve Databases.

A formal approach to distributed information
systems.

Delay-insensitive codes - An overview.

Enforcing non-determinism via linear time temporal logic
specification.

Temporele logica specificatie van message
passing en real-time systemen (in Dutch).

Specifying message passing and real-time
systems with real-time temporal logic.

The maximum number of states after projection.

Language extensions to study structures for raster
graphics.

Three families of maximally nondeterministic
automata.

Eldorado ins and outs. Specifications of a data base manage­
ment toolkit according to the functional model.

OR and AI approaches to decision support systems.

Playing with patterns - searching for strings.

A compositional proof system for an occam-like
real-time language.

A compositional semantics for statecharts.

Normal forms for a class of formulas.

Modelling of discrete dynamic systems
framework and examples.

87/18 C.W.A.M. van Overveld An integer algorithm for rendering curved
surfaces.

87/19 A.J.Seebregts Optimalisering van fIle allocatie in
gedistribueerde database system en.

87/20 G.J. Houben The R2 -Algebra: An extension of an algebra
J. Paredaens for nested relations.

87/21 R. Gerth Fully abstract denotational semantics for concurrent
M. Codish PROLOG.
Y. Lichtenstein
E. Shapiro

88/01 T. Verhoeff A Parallel Program That Generates the M5bius Sequence.

88/02 K.M. van Hee Executable Specification for Information Systems.
G.J. Houben
L.J. Somers
M. Voorhoeve

88/03 T. Verhoeff Settling a Question about Pythagorean Triples.

88/04 G.J. Houben The Nested Relational Algebra: A Tool to Handle
J .Paredaens Structured Information.
D.Tahon

88/05 K.M. van Hee Executable Specifications for Information Systems.
G.J. Houben
L.J. Somers
M. Voorhoeve

88/06 H.M.J.L. Schols Notes on Delay-Insensitive Communication.

88/07 C. Huizing Modelling Statecharts behaviour in a fully abstract
R. Gerth way.
W.P. de Roever

88/08 K.M. van Hee A Formal model for System Specification.
G.J. Houben
L.J. Somers
M. Voorhoeve

88/09 A.T.M. Aerts A Tutorial for Data Modelling.
K.M. van Hee

88/10 J.C. Ebergen A Formal Approach to DeSigning Delay Insensitive Circuits.

88/11 G.J. Houben A graphical interface formalism: specifying nested
J.Paredaens relational databases.

88/12 A.E. Eiben Abstract theory of planning.

88/13 A. Bijlsma A unified approach to sequences, bags, and trees.

88/14 H.M.M. ten Eikelder Language theory of a lambda-calculus with
R.H. Mak recursive types.

.:)

88/15 R. Bos
C. Hemerik

88/16 C.Hemerik
J.P.Katoen

88/17 K.M. van Hee
G.J. Houben
L.J. Somers
M. Voorhoeve

88/18 K.M. van Hee
P.M.P. Rambags

88/19 D.K. Hammer
K.M. van Hee

88/20 K.M. van Hee
L. Somers
M. V oorhoeve

89/1 E.Zs.Lepoeter-Molnar

89/2 R.H. Mak
P.Struik

89/3 H.M.M. Ten Eikelder
C. Hemerik

89/4 J.Zwiers
W.P. de Roever

89/5 Wei Chen
T.Verhoeff
J.T.Udding

89/6 T.Verhoeff

89n P .struik

89/8 E.H.L.Aarts
A.E.Eiben
K.M. van Hee

89/9 K.M. van Hee
P.M.P. Rambags

89/10 S.Ramesh

89/11 S.Ramesh

89/12 A.T.M.Aerts
K.M. van Hee

An introduction to the category theoretic solution
of recursive domain equations.

Bottom-up tree acceptors.

Executable specifications for discrete event systems.

Discrete event systems: concepts and basic results.

Fasering en documentatie in software engineering.

EXSPECT, the functional part.

Reconstruction of a 3-D surface from its normal vectors.

A systolic design for dynamic programming.

Some category theoretical properties related to
a model for a polymorphic lambda-calculus.

Compositionality and modularity in process
specification and design: A trace-state based
approach.

Networks of Communicating Processes and their
(De-)Composition.

Characterizations of Delay-Insensitive
Communication Protocols.

A systematic design of a paralell program for
Dirichlet convolution.

A general theory of genetic algorithms.

Discrete event systems: Dynamic versus static
topOlogy.

A new efficient implementation of CSP with output guards.

Algebraic specification and implementation of infinite
processes.

A concise formal framework for data modeling.

89/13

89/14

89/15

89/16

89/17

90/1

90/2

90/3

90/4

90/5

90/6

90n

90/8

90/9

90/10

90/11

90/12

A.T.M.Aerts
K.M. van Hee
M.W.H. Hesen

H.C.Haesen

J.S.C.P. van der Woude

A.T.M.Aerts
K.M. van Hee

M.J. van Diepen
K.M. van Hee

W.P.de Roever-H.Barringer
C. Courcoubetis-D. Gabbay
RGertb-B.Jonsson-A.Pnueli
M.Reed-J.Sifakis-J.Vytopil
P.Wolper

K.M. van Hee
P.M.P. Rambags

R Gertb

A. Peeters

J.A. Brzozowski
J.C. Ebergen

A.J.J.M. Marcelis

A.J.J.M. Marcelis

M.B. Josephs

A.T.M. Aerts
P.M.E. De Bra
K.M. van Hee

M.J. van Diepen
K.M. van Hee

P. America
F.S. de Boer

P.America
F.S. de Boer

90/13 K.R Apt
F.S. de Boer
E.R Olderog

90/14 F.S. de Boer

90/15 F.S. de Boer

A program generator for simulated annealing
problems.

ELDA, data manipulatie taal.

Optimal segmentations.

Towards a framework for comparing data models.

A formal semantics for Z and the link between
Z and the relational algebra.

Formal methods and tools for the development of
distributed and real time systems, pp. 17.

Dynamic process creation in high-level Petri nets,
pp. 19.

Foundations of Compositional Program Refinement
- safety properties - , p. 38.

Decomposition of delay-insensitive circuits, p. 25.

On the delay-sensitivity of gate networks, p. 23.

Typed inference systems: a reference document, p. 17.

A logic for one-pass, one-attributed grammars, p. 14.

Receptive Process Theory, p. 16.

Combining the functional and the relational model,
p. 15.

A formal semantics for Z and the link between Z and the
relational algebra, p. 30. (Revised version of CSNotes 89/17).

A proof system for process creation, p. 84.

A proof theory for a sequential version of POOL, p. 110.

Proving termination of Parallel Programs, p. 7.

A proof system for the language POOL, p. 70.

Compositionality in the temporal logic of concurrent systems,

90/16 F.S. de Boer
C. Palamidessi

90/17 F.S. de Boer
C. Palamidessi

p. 17.

A fully abstract model for concurrent logic languages, p. 23.

On the asynchronous nature of communication in concurrent
logic languages: a fully abstract model based on sequences,
p.29.

1/

	1. Introduction
	2. The Model
	3. Process Algebra
	3.1 Chaos
	3.2 Nondeterministic Choice
	3.3 Guarded Choice
	3.3.1 Input-Guarded Choice
	3.3.2 Output-Guarded Choice
	3.3.3 Skip-Guarded Choice
	3.4 Concealment of Output
	3.5 Parallel Composition
	4. Verification of an Asynchronous Circuit
	5. Submodels
	5.1 Data Flow Networks
	5.2 Delay-Insensitive Circuits
	6. Conclusion
	A. Proofs of some stated results
	References

