9 research outputs found

    The complexity of Boolean surjective general-valued CSPs

    Full text link
    Valued constraint satisfaction problems (VCSPs) are discrete optimisation problems with a (Q∪{∞})(\mathbb{Q}\cup\{\infty\})-valued objective function given as a sum of fixed-arity functions. In Boolean surjective VCSPs, variables take on labels from D={0,1}D=\{0,1\} and an optimal assignment is required to use both labels from DD. Examples include the classical global Min-Cut problem in graphs and the Minimum Distance problem studied in coding theory. We establish a dichotomy theorem and thus give a complete complexity classification of Boolean surjective VCSPs with respect to exact solvability. Our work generalises the dichotomy for {0,∞}\{0,\infty\}-valued constraint languages (corresponding to surjective decision CSPs) obtained by Creignou and H\'ebrard. For the maximisation problem of Q≥0\mathbb{Q}_{\geq 0}-valued surjective VCSPs, we also establish a dichotomy theorem with respect to approximability. Unlike in the case of Boolean surjective (decision) CSPs, there appears a novel tractable class of languages that is trivial in the non-surjective setting. This newly discovered tractable class has an interesting mathematical structure related to downsets and upsets. Our main contribution is identifying this class and proving that it lies on the borderline of tractability. A crucial part of our proof is a polynomial-time algorithm for enumerating all near-optimal solutions to a generalised Min-Cut problem, which might be of independent interest.Comment: v5: small corrections and improved presentatio

    Surjective H-Colouring over reflexive digraphs

    Get PDF
    The Surjective H-Colouring problem is to test if a given graph allows a vertex-surjective homomorphism to a fixed graph H. The complexity of this problem has been well studied for undirected (partially) reflexive graphs. We introduce endo-triviality, the property of a structure that all of its endomorphisms that do not have range of size 1 are automorphisms, as a means to obtain complexity-theoretic classifications of Surjective H-Colouring in the case of reflexive digraphs. Chen (2014) proved, in the setting of constraint satisfaction problems, that Surjective H-Colouring is NP-complete if H has the property that all of its polymorphisms are essentially unary. We give the first concrete application of his result by showing that every endo-trivial reflexive digraph H has this property. We then use the concept of endo-triviality to prove, as our main result, a dichotomy for Surjective H-Colouring when H is a reflexive tournament: if H is transitive, then Surjective H-Colouring is in NL; otherwise, it is NP-complete. By combining this result with some known and new results, we obtain a complexity classification for Surjective H-Colouring when H is a partially reflexive digraph of size at most 3

    The Data Complexity of Ontology-Mediated Queries with Closed Predicates

    Get PDF
    In the context of ontology-mediated querying with description logics (DLs), we study the data complexity of queries in which selected predicates can be closed (OMQCs). We provide a non-uniform analysis, aiming at a classification of the complexity into tractable and non-tractable for ontologies in the lightweight DLs DL-Lite and EL, and the expressive DL ALCHI. At the level of ontologies, we prove a dichotomy between FO-rewritable and coNP-complete for DL-Lite and between PTime and coNP-complete for EL. The meta problem of deciding tractability is proved to be in PTime. At the level of OMQCs, we show that there is no dichotomy (unless NP equals PTime) if both concept and role names can be closed. If only concept names can be closed, we tightly link the complexity of query evaluation to the complexity of surjective CSPs. We also identify a class of OMQCs based on ontologies formulated in DL-Lite that are guaranteed to be tractable and even FO-rewritable

    35th Symposium on Theoretical Aspects of Computer Science: STACS 2018, February 28-March 3, 2018, Caen, France

    Get PDF
    corecore