648 research outputs found

    A Software Suite for the Control and the Monitoring of Adaptive Robotic Ecologies

    Get PDF
    Adaptive robotic ecologies are networks of heterogeneous robotic devices (sensors, actuators, automated appliances) pervasively embedded in everyday environments, where they learn to cooperate towards the achievement of complex tasks. While their flexibility makes them an increasingly popular way to improve a system’s reliability, scalability, robustness and autonomy, their effective realisation demands integrated control and software solutions for the specification, integration and management of their highly heterogeneous and computational constrained components. In this extended abstract we briefly illustrate the characteristic requirements dictated by robotic ecologies, discuss our experience in developing adaptive robotic ecologies, and provide an overview of the specific solutions developed as part of the EU FP7 RUBICON Project

    Enabling Machine Understandable Exchange of Energy Consumption Information in Intelligent Domotic Environments

    Get PDF
    In the 21st century, all the major countries around the world are coming together to reduce the impact of energy generation and consumption on the global environment. Energy conservation and its efficient usage has become a top agenda on the desks of many governments. In the last decade, the drive to make homes automated and to deliver a better assisted living picked pace and the research into home automation systems accelerated, usually based on a centralized residential gateway. However most devised solutions fail to provide users with information about power consumption of different house appliances. The ability to collect power consumption information can lead us to have a more energy efficient society. The goal addressed in this paper is to enable residential gateways to provide the energy consumption information, in a machine understandable format, to support third party applications and services. To reach this goal, we propose a Semantic Energy Information Publishing Framework. The proposed framework publishes, for different appliances in the house, their power consumption information and other properties, in a machine understandable format. Appliance properties are exposed according to the existing semantic modeling supported by residential gateways, while instantaneous power consumption is modeled through a new modular Energy Profile ontolog

    Modeling, Simulation and Emulation of Intelligent Domotic Environments

    Get PDF
    Intelligent Domotic Environments are a promising approach, based on semantic models and commercially off-the-shelf domotic technologies, to realize new intelligent buildings, but such complexity requires innovative design methodologies and tools for ensuring correctness. Suitable simulation and emulation approaches and tools must be adopted to allow designers to experiment with their ideas and to incrementally verify designed policies in a scenario where the environment is partly emulated and partly composed of real devices. This paper describes a framework, which exploits UML2.0 state diagrams for automatic generation of device simulators from ontology-based descriptions of domotic environments. The DogSim simulator may simulate a complete building automation system in software, or may be integrated in the Dog Gateway, allowing partial simulation of virtual devices alongside with real devices. Experiments on a real home show that the approach is feasible and can easily address both simulation and emulation requirement

    SAT based Enforcement of Domotic Effects in Smart Environments

    Get PDF
    The emergence of economically viable and efficient sensor technology provided impetus to the development of smart devices (or appliances). Modern smart environments are equipped with a multitude of smart devices and sensors, aimed at delivering intelligent services to the users of smart environments. The presence of these diverse smart devices has raised a major problem of managing environments. A rising solution to the problem is the modeling of user goals and intentions, and then interacting with the environments using user defined goals. `Domotic Effects' is a user goal modeling framework, which provides Ambient Intelligence (AmI) designers and integrators with an abstract layer that enables the definition of generic goals in a smart environment, in a declarative way, which can be used to design and develop intelligent applications. The high-level nature of domotic effects also allows the residents to program their personal space as they see fit: they can define different achievement criteria for a particular generic goal, e.g., by defining a combination of devices having some particular states, by using domain-specific custom operators. This paper describes an approach for the automatic enforcement of domotic effects in case of the Boolean application domain, suitable for intelligent monitoring and control in domotic environments. Effect enforcement is the ability to determine device configurations that can achieve a set of generic goals (domotic effects). The paper also presents an architecture to implement the enforcement of Boolean domotic effects, and results obtained from carried out experiments prove the feasibility of the proposed approach and highlight the responsiveness of the implemented effect enforcement architectur

    Provalets: Component-Based Mobile Agents as Microservices for Rule-Based Data Access, Processing and Analytics

    Get PDF
    Provalets are mobile rule agents for rule-based data access, semantic processing, and inference analytics. They can be dynamically deployed as microservices from Maven repositories into standardized container environments such as OSGi, where they can be used via simple REST calls. The programming model supports rapid prototyping and reuse of Provalets components to build Linked Enterprise Data applications where the sensible corporate data is not transmitted outside the enterprise, but instead the Provalets providing data processing and knowledge inference capabilities are moved closer to the data

    JEERP: Energy Aware Enterprise Resource Planning

    Get PDF
    Ever increasing energy costs, and saving requirements, especially in enterprise contexts, are pushing the limits of Enterprise Resource Planning to better account energy, with component-level asset granularity. Using an application-oriented approach we discuss the different aspects involved in designing Energy Aware ERPs and we show a prototypical open source implementation based on the Dog Domotic Gateway and the Oratio ER

    Moving forward on u-healthcare: A framework for patient-centric

    Get PDF
    Delivering remote healthcare services without deteriorating the ‘patient experience’ requires building highly usable and adaptive applications. Efficient context data collection and management make possible to infer extra knowledge on the user’s situation, making easier the design of these advanced ubiquitous applications. This contribution, part of a work in progress which aims at building an operative AmI middleware, presents a generic architecture to provide u-healthcare services, to be delivered both in mobile and home environments. In particular, we address the design of the Context Management Component (CMC), the module that takes context data from the sensing layer and performs data fusion and reasoning to build an aggregated ‘context image’. We especially explain the requirements on data modelling and the functional features that are imposed to the CMC. The resulting logical multilayered architecture -composed by acquisition and fusion, inference and reasoning levels- is detailed, and the technologies needed to develop the Context Management Component are finally specifie
    corecore