241,956 research outputs found

    Accelerating Reinforcement Learning through the Discovery of Useful Subgoals

    Get PDF
    An ability to adjust to changing environments and unforeseen circumstances is likely to be an important component of a successful autonomous space robot. This paper shows how to augment reinforcement learning algorithms with a method for automatically discovering certain types of subgoals online. By creating useful new subgoals while learning, the agent is able to accelerate learning on a current task and to transfer its expertise to related tasks through the reuse of its ability to attain subgoals. Subgoals are created based on commonalities across multiple paths to a solution. We cast the task of finding these commonalities as a multiple-instance learning problem and use the concept of diverse density to find solutions. We introduced this approach in [10] and here we present additional results for a simulated mobile robot task

    Multiple landmark detection using multi-agent reinforcement learning

    Get PDF
    The detection of anatomical landmarks is a vital step for medical image analysis and applications for diagnosis, interpretation and guidance. Manual annotation of landmarks is a tedious process that requires domain-specific expertise and introduces inter-observer variability. This paper proposes a new detection approach for multiple landmarks based on multi-agent reinforcement learning. Our hypothesis is that the position of all anatomical landmarks is interdependent and non-random within the human anatomy, thus finding one landmark can help to deduce the location of others. Using a Deep Q-Network (DQN) architecture we construct an environment and agent with implicit inter-communication such that we can accommodate K agents acting and learning simultaneously, while they attempt to detect K different landmarks. During training the agents collaborate by sharing their accumulated knowledge for a collective gain. We compare our approach with state-of-the-art architectures and achieve significantly better accuracy by reducing the detection error by 50%, while requiring fewer computational resources and time to train compared to the naïve approach of training K agents separately. Code and visualizations available: https://github.com/thanosvlo/MARL-for-Anatomical-Landmark-Detectio

    Design issues for agent-based resource locator systems

    Get PDF
    While knowledge is viewed by many as an asset, it is often difficult to locate particularitems within a large electronic corpus. This paper presents an agent based framework for the location of resources to resolve a specific query, and considers the associated design issue. Aspects of the work presented complements current research into both expertise finders and recommender systems. The essential issues for the proposed design are scalability, together ith the ability to learn and adapt to changing resources. As knowledge is often implicit within electronic resources, and therefore difficult to locate, we have proposed the use of ontologies, to extract the semantics and infer meaning to obtain the results required. We explore the use of communities of practice, applying ontology-based networks, and e-mail message exchanges to aid the resource discovery process

    Expert Finding by Capturing Organisational Knowledge from Legacy Documents

    No full text
    Organisations capitalise on their best knowledge through the improvement of shared expertise which leads to a higher level of productivity and competency. The recognition of the need to foster the sharing of expertise has led to the development of expert finder systems that hold pointers to experts who posses specific knowledge in organisations. This paper discusses an approach to locating an expert through the application of information retrieval and analysis processes to an organization’s existing information resources, with specific reference to the engineering design domain. The approach taken was realised through an expert finder system framework. It enables the relationships of heterogeneous information sources with experts to be factored in modelling individuals’ expertise. These valuable relationships are typically ignored by existing expert finder systems, which only focus on how documents relate to their content. The developed framework also provides an architecture that can be easily adapted to different organisational environments. In addition, it also allows users to access the expertise recognition logic, giving them greater trust in the systems implemented using this framework. The framework were applied to real world application and evaluated within a major engineering company

    Discovery Is Never By Chance: Designing for (Un)Serendipity

    No full text
    Serendipity has a long tradition in the history of science as having played a key role in many significant discoveries. Computer scientists, valuing the role of serendipity in discovery, have attempted to design systems that encourage serendipity. However, that research has focused primarily on only one aspect of serendipity: that of chance encounters. In reality, for serendipity to be valuable chance encounters must be synthesized into insight. In this paper we show, through a formal consideration of serendipity and analysis of how various systems have seized on attributes of interpreting serendipity, that there is a richer space for design to support serendipitous creativity, innovation and discovery than has been tapped to date. We discuss how ideas might be encoded to be shared or discovered by ‘association-hunting’ agents. We propose considering not only the inventor’s role in perceiving serendipity, but also how that inventor’s perception may be enhanced to increase the opportunity for serendipity. We explore the role of environment and how we can better enable serendipitous discoveries to find a home more readily and immediately

    Exploiting Domain Knowledge in Making Delegation Decisions

    Get PDF
    @inproceedings{conf/admi/EmeleNSP11, added-at = {2011-12-19T00:00:00.000+0100}, author = {Emele, Chukwuemeka David and Norman, Timothy J. and Sensoy, Murat and Parsons, Simon}, biburl = {http://www.bibsonomy.org/bibtex/20a08b683088443f1fd36d6ef28bf6615/dblp}, booktitle = {ADMI}, crossref = {conf/admi/2011}, editor = {Cao, Longbing and Bazzan, Ana L. C. and Symeonidis, Andreas L. and Gorodetsky, Vladimir and Weiss, Gerhard and Yu, Philip S.}, ee = {http://dx.doi.org/10.1007/978-3-642-27609-5_9}, interhash = {1d7e7f8554e8bdb3d43c32e02aeabcec}, intrahash = {0a08b683088443f1fd36d6ef28bf6615}, isbn = {978-3-642-27608-8}, keywords = {dblp}, pages = {117-131}, publisher = {Springer}, series = {Lecture Notes in Computer Science}, timestamp = {2011-12-19T00:00:00.000+0100}, title = {Exploiting Domain Knowledge in Making Delegation Decisions.}, url = {http://dblp.uni-trier.de/db/conf/admi/admi2011.html#EmeleNSP11}, volume = 7103, year = 2011 }Postprin

    Finding the right answer: an information retrieval approach supporting knowledge sharing

    Get PDF
    Knowledge Management can be defined as the effective strategies to get the right piece of knowledge to the right person in the right time. Having the main purpose of providing users with information items of their interest, recommender systems seem to be quite valuable for organizational knowledge management environments. Here we present KARe (Knowledgeable Agent for Recommendations), a multiagent recommender system that supports users sharing knowledge in a peer-to-peer environment. Central to this work is the assumption that social interaction is essential for the creation and dissemination of new knowledge. Supporting social interaction, KARe allows users to share knowledge through questions and answers. This paper describes KARe�s agent-oriented architecture and presents its recommendation algorithm

    Reinforcement learning for efficient network penetration testing

    Get PDF
    Penetration testing (also known as pentesting or PT) is a common practice for actively assessing the defenses of a computer network by planning and executing all possible attacks to discover and exploit existing vulnerabilities. Current penetration testing methods are increasingly becoming non-standard, composite and resource-consuming despite the use of evolving tools. In this paper, we propose and evaluate an AI-based pentesting system which makes use of machine learning techniques, namely reinforcement learning (RL) to learn and reproduce average and complex pentesting activities. The proposed system is named Intelligent Automated Penetration Testing System (IAPTS) consisting of a module that integrates with industrial PT frameworks to enable them to capture information, learn from experience, and reproduce tests in future similar testing cases. IAPTS aims to save human resources while producing much-enhanced results in terms of time consumption, reliability and frequency of testing. IAPTS takes the approach of modeling PT environments and tasks as a partially observed Markov decision process (POMDP) problem which is solved by POMDP-solver. Although the scope of this paper is limited to network infrastructures PT planning and not the entire practice, the obtained results support the hypothesis that RL can enhance PT beyond the capabilities of any human PT expert in terms of time consumed, covered attacking vectors, accuracy and reliability of the outputs. In addition, this work tackles the complex problem of expertise capturing and re-use by allowing the IAPTS learning module to store and re-use PT policies in the same way that a human PT expert would learn but in a more efficient way
    corecore