27 research outputs found

    Flexible operation of parallel grid-connecting converters under unbalanced grid voltage

    Get PDF

    AN ADAPTIVE HARMONIC COMPENSATION STRATEGY FOR THREE-PHASE SHUNT ACTIVE POWER FILTER BASED ON DOUBLE SECOND-ORDER GENERALIZED INTEGRATOR WITH PREFILTER

    Get PDF
    Abstract. This study presents a straightforward adaptive prefiltering algorithm based on a double second-order generalized integrator with prefilter to solve one of the power quality issues, this algorithm is in charge of the determination of the reference harmonic currents in the control of three-phase shunt active power filter which presents an effective way to enhance the grid current quality. The proposed algorithm is used twice, to extract the harmonic currents produced by the non-linear loads and be an interesting part in the estimation of the frequency and amplitude of the fundamental voltage in various anomalies which can be noticed on the grid voltage. The performance, precision, and robustness of the proposed method are evidenced under balanced, unbalanced, and distorted grid voltage in the simulation and experimental results obtained by the implementation of the shunt active power filter on MATLAB-Simulink environment and the dSPACE 1104 platform respectively.Аннотация. В данной работе представлен простой адаптивный алгоритм предфильтрации, основанный на двойном обобщенном интеграторе с предфильтром второго порядка (DSOGI-WPF) для решения одного из вопросов качества электроэнергии. Данный алгоритм отвечает за определение опорных гармонических токов при контроле трехфазного фильтра шунта активной мощности (SAPF). Предложенный алгоритм используется дважды: для извлечения гармонических токов, создаваемых нелинейными нагрузками, и также является интересной частью оценки частоты и амплитуды основного напряжения при различных аномалиях, которые можно заметить по напряжению сети. Эффективность, точность и надежность предложенного метода подтверждаются при сбалансированном, несбалансированном и искаженном напряжении сети результатами моделирования и экспериментов, полученными при реализации SAPF в среде MATLAB-Simulink и платформе dSPACE 1104, соответственно.

    A new LPF-based grid frequency estimation for the SOGI filter with improved harmonic rejection

    Get PDF
    This paper proposes a new method for the estimation of the grid voltage frequency using a low-pass filter (LPF) approach. The estimated frequency is used to tune a second order generalized integrator (SOGI) filter commonly used for grid monitoring purposes and applications requiring parameter estimation from the grid. A first-order LPF is used first for the estimation that behaves identically to the reported normalized SOGI-FLL. A second-order LPF is proposed instead to overcome this circumstance. The behavior of this approach is dynamically analyzed and a linearized model useful for design purposes is derived. The behavior of the proposed system is checked with simulations, showing that the model matches well with the real system and has a smoother transient response to step frequency perturbations and also a better rejection to harmonic distortion than previous approaches.Peer ReviewedPostprint (published version

    A Series-LC-Filtered Active Damper for AC Power Electronics Based Power Systems

    Get PDF

    Power calculation algorithm for single-phase droop-operated inverters considering nonlinear loads and unsing n-order SOGI filtering

    Get PDF
    The average active and reactive powers, P and Q, are crucial parameters that have to be calculated when sharing common loads between parallelized droop-operated single-phase inverters. However, the droop method algorithm should employ low-pass filters (LPF) with very low cut-off frequency to minimize the distortion impact in the provide droop amplitude and frequency references. This situation forces the droop control to operate at a very low dynamic velocity, degrading the stability of the parallelized system. For this reason, different solutions had been proposed in literature to increase the droop velocity, but the issues derived from the sharing of nonlinear loads had not been properly considered. This work proposes a novel method to calculate P and Q based on the fundamental components of the inverter's output voltage and current and using the measured phase angle between the output voltage and current. The method is used under normal and highly distorting conditions due to the sharing non-linear loads. The fundamental components are obtained by means of the highly filtering capability provided by norder cascaded second order generalized integrators (nSOGI). The proposed method leads to faster and more accurate P and Q calculations that enhances the droop-method dynamic performance. Simulations are provided to validate the proposal.Peer ReviewedPostprint (published version

    An active damper to suppress multiple resonances with unknown frequencies

    Get PDF
    The increasing use of power electronics devices tends to aggravate high-frequency harmonics and trigger resonances across a wide frequency range into power systems. This paper presents an active damper to suppress multiple resonances with unknown frequencies. The active damper is realized by a high-bandwidth power converter that can selectively dampen out the wideband resonances. A cascaded adaptive notch filter structure is proposed to detect the frequencies of resonances, which makes the active damper different from the resistive-active power filter for harmonic resonance suppression. The performance of the active damper is validated by implementing it to suppress the resonances in a grid-connected inverter with a long power cable. The results show that the active damper can become a promising approach to stabilizing the future power electronics based power systems

    Design of a High-Performance High-Pass Generalized Integrator Based Single-Phase PLL

    Full text link
    Grid-interactive power converters are normally synchronized to the grid using phase-locked loops (PLLs). The performance of the PLLs is affected by the non-ideal conditions in the sensed grid voltage such as harmonics, frequency deviations and dc offsets in single-phase systems. In this paper, a single-phase PLL is presented to mitigate the effects of these non-idealities. This PLL is based on the popular second order generalized integrator (SOGI) structure. The SOGI structure is modified to eliminate of the effects of input dc offsets. The resulting SOGI structure has a high-pass filtering property. Hence, this PLL is termed as high-pass generalized integrator based PLL (HGI-PLL). It has fixed parameters which reduces the implementation complexity and aids in the implementation in low-end digital controllers. The HGI-PLL is shown to have least resource utilization among the SOGI based PLLs with dc cancelling capability. Systematic design methods are evolved leading to the design that limits the unit vector THD to within 1% for given non-ideal input conditions in terms of frequency deviation and harmonic distortion. The proposed designs achieve the fastest transient response. The performance of this PLL has been verified experimentally. The results are found to agree with the theoretical prediction.Comment: 22 pages, 13 figures and 2 table
    corecore