541 research outputs found

    Cloud-Scale Entity Resolution: Current State and Open Challenges

    Get PDF
    Entity resolution (ER) is a process to identify records in information systems, which refer to the same real-world entity. Because in the two recent decades the data volume has grown so large, parallel techniques are called upon to satisfy the ER requirements of high performance and scalability. The development of parallel ER has reached a relatively prosperous stage, and has found its way into several applications. In this work, we first comprehensively survey the state of the art of parallel ER approaches. From the comprehensive overview, we then extract the classification criteria of parallel ER, classify and compare these approaches based on these criteria. Finally, we identify open research questions and challenges and discuss potential solutions and further research potentials in this field

    Straggler mitigation in hadoop mapreduce framework: a review

    Get PDF
    Processing huge and complex data to obtain useful information is challenging, even though several big data processing frameworks have been proposed and further enhanced. One of the prominent big data processing frameworks is MapReduce. The main concept of MapReduce framework relies on distributed and parallel processing. However, MapReduce framework is facing serious performance degradations due to the slow execution of certain tasks type called stragglers. Failing to handle stragglers causes delay and affects the overall job execution time. Meanwhile, several straggler reduction techniques have been proposed to improve the MapReduce performance. This study provides a comprehensive and qualitative review of the different existing straggler mitigation solutions. In addition, a taxonomy of the available straggler mitigation solutions is presented. Critical research issues and future research directions are identified and discussed to guide researchers and scholars

    Towards Low-Latency Batched Stream Processing by Pre-Scheduling

    Get PDF

    Efficient processing of similarity queries with applications

    Get PDF
    Today, a myriad of data sources, from the Internet to business operations to scientific instruments, produce large and different types of data. Many application scenarios, e.g., marketing analysis, sensor networks, and medical and biological applications, call for identifying and processing similarities in big data. As a result, it is imperative to develop new similarity query processing approaches and systems that scale from low dimensional data to high dimensional data, from single machine to clusters of hundreds of machines, and from disk-based to memory-based processing. This dissertation introduces and studies several similarity-aware query operators, analyzes and optimizes their performance. The first contribution of this dissertation is an SQL-based Similarity Group-by operator (SGB, for short) that extends the semantics of the standard SQL Group-by operator to group data with similar but not necessarily equal values. We realize these SGB operators by extending the Standard SQL Group-by and introduce two new SGB operators for multi-dimensional data. We implement and test the new SGB operators and their algorithms inside an open-source centralized database server (PostgreSQL). In the second contribution of this dissertation, we study how to efficiently process Hamming-distance-based similarity queries (Hamming-distance select and Hamming-distance join) that are crucial to many applications. We introduce a new index, termed the HA-Index, that speeds up distance comparisons and eliminates redundancies when performing the two flavors of Hamming distance range queries (namely, the selects and joins). In the third and last contribution of this dissertation, we develop a system for similarity query processing and optimization in an in-memory and distributed setup for big spatial data. We propose a query scheduler and a distributed query optimizer that use a new cost model to optimize the cost of similarity query processing in this in-memory distributed setup. The scheduler and query optimizer generates query execution plans that minimize the effect of query skew. The query scheduler employs new spatial indexing techniques based on bloom filters to forward queries to the appropriate local sites. The proposed query processing and optimization techniques are prototyped inside Spark, a distributed main-memory computation system

    Rock You like a Hurricane: Taming Skew in Large Scale Analytics

    Get PDF
    Current cluster computing frameworks suffer from load imbalance and limited parallelism due to skewed data distributions, processing times, and machine speeds. We observe that the underlying cause for these issues in current systems is that they partition work statically. Hurricane is a high-performance large-scale data analytics system that successfully tames skew in novel ways. Hurricane performs adaptive work partitioning based on load observed by nodes at runtime. Overloaded nodes can spawn clones of their tasks at any point during their execution, with each clone processing a subset of the original data. This allows the system to adapt to load imbalance and dynamically adjust task parallelism to gracefully handle skew. We support this design by spreading data across all nodes and allowing nodes to retrieve data in a decentralized way. The result is that Hurricane automatically balances load across tasks, ensuring fast completion times. We evaluate Hurricane’s performance on typical analytics workloads and show that it significantly outperforms state- of-the-art systems for both uniform and skewed datasets, because it ensures good CPU and storage utilization in all cases

    AdaptDB: Adaptive Partitioning for Distributed Joins

    Get PDF
    Big data analytics often involves complex join queries over two or more tables. Such join processing is expensive in a distributed setting both because large amounts of data must be read from disk, and because of data shuffling across the network. Many techniques based on data partitioning have been proposed to reduce the amount of data that must be accessed, often focusing on finding the best partitioning scheme for a particular workload, rather than adapting to changes in the workload over time. In this paper, we present AdaptDB, an adaptive storage manager for analytical database workloads in a distributed setting. It works by partitioning datasets across a cluster and incrementally refining data partitioning as queries are run. AdaptDB introduces a novel hyper-join that avoids expensive data shuffling by identifying storage blocks of the joining tables that overlap on the join attribute, and only joining those blocks. Hyper-join performs well when each block in one table overlaps with few blocks in the other table, since that will minimize the number of blocks that have to be accessed. To minimize the number of overlapping blocks for common join queries, AdaptDB users smooth repartitioning to repartition small portions of the tables on join attributes as queries run. A prototype of AdaptDB running on top of Spark improves query performance by 2-3x on TPC-H as well as real-world dataset, versus a system that employs scans and shuffle-joins
    • …
    corecore