
Purdue University
Purdue e-Pubs

Open Access Dissertations Theses and Dissertations

12-2016

Efficient processing of similarity queries with
applications
Mingjie Tang
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations

Part of the Computer Sciences Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Tang, Mingjie, "Efficient processing of similarity queries with applications" (2016). Open Access Dissertations. 1014.
https://docs.lib.purdue.edu/open_access_dissertations/1014

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1014&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1014&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1014&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1014&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1014&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations/1014?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1014&utm_medium=PDF&utm_campaign=PDFCoverPages

Graduate School Form
30 Updated

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By

Entitled

For the degree of

Is approved by the final examining committee:

To the best of my knowledge and as understood by the student in the Thesis/Dissertation
Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32),
this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of
Integrity in Research” and the use of copyright material.

Approved by Major Professor(s):

Approved by:
Head of the Departmental Graduate Program Date

Mingjie Tang

EFFICIENT PROCESSING OF SIMILARITY QUERIES WITH APPLICATIONS

Doctor of Philosophy

WALID G. AREF ELISA BERTINO
Chair

SUNIL PRABHAKAR SONIA FAHMY

WALID G. AREF

SUNIL PRABHAKAR/WILLIAM J. GORMAN 9/6/2016

EFFICIENT PROCESSING OF SIMILARITY QUERIES WITH APPLICATIONS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Mingjie Tang

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2016

Purdue University

West Lafayette, Indiana

ii

To my family

iii

ACKNOWLEDGMENTS

I am thankful to my advisor, Walid G. Aref, who leads me to explore and understand

the beauty of database system. He is a brilliant researcher who always pushes me to think

further, and shares his experience about the research process. I will not forget these days

he revised our paper until the middle night, even if he was sick. I am especially fortunate

to work with this great person and benefit from his perspective.

The work in this dissertation is the result of collaboration with many other people.

Chapter 2 was a joint work with Ruby Y. Tahboub, Walid G. Aref, Mikhail Atallah,

Qutaibah Malluhi, Mourad Ouzzani and Yasin. Siva [1]. Chapter 3 introduces the new in-

dex for efficient hamming distance query processing developed with Yongyang Yu, Walid

G. Aref, Qutaibah Malluhi, and Mourad Ouzzani [2]. Chapter 4 was a joint work with

Yongyang Yu, Walid G. Aref, Ahmed R. Mahmood, Qutaibah Malluhi, and Mourad Ouz-

zani [3, 4].

I am also very fortunate to invite Professor Bertio Elisa, Professor Sunil Prabhakar and

Professor Sonia Fahmy to be my commit members, and learn comments from them. These

suggestions enhance my dissertation greatly. Beyond direct collaborators on this project,

many other people contributed to my graduate work and made Purdue an unforgettable

experience. The friends at Purdue database research group include Yongyang Yu, Ahmed

M. Aly and Ahmed R. Mahmood always offer their help to improve this project. Pei He,

Yefei Sun, Bo Sang, Shandian Zhe, He Zhu, Dong Su, Ziang Ding and Youhan Fang were

great fun to hang out with and great collaborators on some neat ideas. I also want to

express my best regards to my friend Weihang Wang, she helped me to overcome many

unpredictable difficulties in the last eight years.

Last but not least, I want to thank my father Guanglun Tang, mother Shirong Chen, sis-

ter Yeyao Tang, brother Zaiye Chen and other friends for their unwavering support through-

out my PhD. Without their support, I can not do anything.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

ABSTRACT . x

1 INTRODUCTION . 1
1.1 Motivation . 1
1.2 Taxonomy of Similarity Query Processing 3
1.3 Summary of Results . 5
1.4 Dissertation Plan . 9

2 SIMILARITY GROUPBY OPERATORS FOR MULTI-DIMENSIONAL RE-
LATIONAL DATA . 10
2.1 Introduction . 10
2.2 Preliminaries . 13
2.3 Similarity Group-By Operators . 14

2.3.1 Similarity Group-By All (SGB-All) 15
2.3.2 Similarity Group-By Any (SGB-Any) 16

2.4 Applications . 18
2.5 Efficient Algorithm for SGB Operator 20

2.5.1 Framework . 20
2.5.2 Finding Candidate and Overlap Groups 22
2.5.3 The Bounds-Checking Approach 25
2.5.4 Handling False Positives L2 29

2.6 Algorithms for SGB-Any . 32
2.6.1 Finding Candidate Groups . 32
2.6.2 Processing New Points . 35

2.7 Complexity Analysis . 35
2.7.1 SGB-All . 36
2.7.2 SGB-Any . 38

2.8 Realization and Evaluation . 39
2.8.1 Implementation . 39
2.8.2 Datasets . 42
2.8.3 Effect of Similarity Threshold Eps 43
2.8.4 Speedup . 45
2.8.5 Comparison with Clustering Algorithm 45

v

Page
2.8.6 Overhead of SGB . 46

2.9 Related Work . 46
2.10 Summary . 49

3 EFFICIENT PROCESSING OF HAMMING-DISTANCE-BASED SIMILARITY-
SEARCH QUERIES OVER MAPREDUCE 50
3.1 Introduction . 50
3.2 Preliminaries . 53

3.2.1 Hamming-distance-based Similarity Operations 53
3.3 Hamming-select Algorithms . 55

3.3.1 Properties of Binary Codes 55
3.3.2 Radix-Tree-Based Approach 57
3.3.3 Static HA-Index . 58
3.3.4 Dynamic HA-Index . 60
3.3.5 Dynamic HA-Index Manipulation 62
3.3.6 HA-Index Query Processing 65
3.3.7 Analysis . 67

3.4 Parallel Algorithm for Hamming-Join 70
3.4.1 Overview of MapReduce-based Hamming-Join 71
3.4.2 Global HA-Index Building 72
3.4.3 Hamming-Join . 73
3.4.4 Shuffle Cost Analysis . 73

3.5 Related Work . 74
3.6 Performance Evaluation . 76

3.6.1 Results for Hamming-select 79
3.6.2 Results of Hamming-Join in MapReduce 81

3.7 Summary . 84

4 IN-MEMORY DISTRIBUTED SIMILARITY QUERY PROCESSING AND OP-
TIMIZATION FOR SPATIAL DATA . 90
4.1 Introduction . 90
4.2 Preliminaries . 93

4.2.1 Data Model and Operators . 93
4.2.2 Overview of Distributed Similarity Query Processing 94
4.2.3 Challenges . 96

4.3 Query Plan Scheduler . 97
4.3.1 Cost Model . 97
4.3.2 Execution Plan Generation 98
4.3.3 A Greedy Algorithm . 101

4.4 Local Execution . 103
4.4.1 Spatial-Range-Join . 104
4.4.2 kNN Join . 106

4.5 Spatial Bloom Filter . 107

vi

Page
4.5.1 Overview of sFilter . 108
4.5.2 sFilter in LocationSpark . 111

4.6 Experimental Study . 114
4.6.1 Experimental Setup . 115
4.6.2 Performance of Spatial Range Search and Join 118
4.6.3 Performance of kNN Search and Join 119
4.6.4 Effect of Query Distribution 121
4.6.5 Effect of sFilter . 122
4.6.6 Effect of the Number of Workers 122

4.7 Related Work . 124
4.8 Summary . 126

5 CONCLUSIONS . 127

REFERENCES . 130

VITA . 136

vii

LIST OF TABLES

Table Page

1.1 Contributions of this dissertation based on the aforementioned taxonomy for
similarity query processing . 8

2.1 SGB-All complexity for the L∞ distance 39

2.2 Performance evaluation queries on TPC-H 41

3.1 Symbols and their definitions . 52

3.2 Table S . 55

3.3 Table R . 55

3.4 Sample execution trace for H-Search . 87

3.5 Overall comparative study for Hamming-select: NUS-WIDE. 87

3.6 Overall comparative study for Hamming-select: Flickr. 88

3.7 Overall comparative study for Hamming-select: DBPedia. 88

3.8 Comparison with the state-of-the-art kNN-select approaches 89

4.1 Comparison with the spatial range search 117

4.2 Runtime of kNN search with microseconds unit 120

4.3 Runtime of kNN-Join with second unit 120

4.4 Performance of sFilter . 123

viii

LIST OF FIGURES

Figure Page

2.1 The semantics of similarity predicates ε = 3. 13

2.2 Data points using ε = 3 and L∞. 14

2.3 (a) A mobile ad hoc network (MANET), (b) The mobile devices table. . . . 18

2.4 Processing the point x using L∞ with ε = 4. 24

2.5 The ε-All bounding rectangle approach. 27

2.6 SGB-All: Performing a window query on Groups IX using ε = 4 and L∞ . 30

2.7 (a) The ε-radius circle, (b) The problem of false positive for L2, (c) The ε-
convex hull . 31

2.8 (a) The ε-Any bounding rectangle, (b) The false negative problem 33

2.9 (a) SGB-Any: Performing a window query (b) The disjoint data structure:
Union-Find . 34

2.10 The effect of similarity threshold eps on SGB-All and SGB-ANY 40

2.11 The effect of increasing data size on the SGB-All variants and SGB-ANY . 43

2.12 Comparison with clustering methods . 47

2.13 The effect of the data size on SGB vs. SQL GBY 47

3.1 Radix tree . 57

3.2 Static HA-Index . 59

3.3 Dynamic HA-Index . 61

3.4 Full binary codes and the corresponding HA-Index 67

3.5 An overview of Hamming-Join processing in MapReduce. 74

3.6 Shuffling cost of Hamming-Join and kNN-Join 79

3.7 DHA-Index building time and query processing when varying the window size. 82

3.8 Effect of sampling on query processing time and precision/recall 82

3.9 Effect of Hamming-distance threshold on Hamming select 84

ix

Figure Page

3.10 Speedup and scalability: Running time of MapReduce Hamming-Join and
kNN-Join. 85

4.1 Illustration of Spatial-Range-Join and kNN-Join operators 91

4.2 Architecture of LOCATIONSPARK . 96

4.3 Execution plan for Spatial-Range-Join . 100

4.4 Evaluation of local Spatial-Range-Join algorithms 105

4.5 Evaluation of local kNN-Join algorithms 105

4.6 sFilter structure (up left), the data (up right) and binary encoding of sFilter
(down) . 109

4.7 The performance of Spatial-Range-Join 116

4.8 Performance of kNN-Join by increasing the number of data points 116

4.9 Performance of Spatial-Range-Join on various query distribution 121

4.10 The effect of sFilter to reduce shuffle cost 123

4.11 Performance of Spatial-Range-Join and kNN-Join by various of number of ex-
ecutors . 124

x

ABSTRACT

Tang, Mingjie PhD, Purdue University, December 2016. Efficient Processing of Similarity
Queries with Applications. Major Professor: Walid G.Aref.

Today, a myriad of data sources, from the Internet to business operations to scien-

tific instruments, produce large and different types of data. Many application scenarios,

e.g., marketing analysis, sensor networks, and medical and biological applications, call for

identifying and processing similarities in ”big” data. As a result, it is imperative to develop

new similarity query processing approaches and systems that scale from low dimensional

data to high dimensional data, from single machine to clusters of hundreds of machines,

and from disk-based to memory-based processing. This dissertation introduces and studies

several similarity-aware query operators, analyzes and optimizes their performance.

The first contribution of this dissertation is an SQL-based Similarity Group-by operator

(SGB, for short) that extends the semantics of the standard SQL Group-by operator to

group data with similar but not necessarily equal values. We realize these SGB operators

by extending the Standard SQL Group-by and introduce two new SGB operators for multi-

dimensional data. We implement and test the new SGB operators and their algorithms

inside an open-source centralized database server (PostgreSQL).

In the second contribution of this dissertation, we study how to efficiently pro-

cess Hamming-distance-based similarity queries (Hamming-distance select and Hamming-

distance join) that are crucial to many applications. We introduce a new index, termed the

HA-Index, that speeds up distance comparisons and eliminates redundancies when per-

forming the two flavors of Hamming distance range queries (namely, the selects and joins).

In the third and last contribution of this dissertation, we develop a system for similarity

query processing and optimization in an in-memory and distributed setup for big spatial

data. We propose a query scheduler and a distributed query optimizer that use a new cost

xi

model to optimize the cost of similarity query processing in this in-memory distributed

setup. The scheduler and query optimizer generates query execution plans that minimize

the effect of query skew. The query scheduler employs new spatial indexing techniques

based on bloom filters to forward queries to the appropriate local sites. The proposed query

processing and optimization techniques are prototyped inside Spark, a distributed main-

memory computation system.

1

1 INTRODUCTION

1.1 Motivation

The large amount of data accumulated from sensors, social networks, computational

sciences, and location-aware services calls for advanced similarity query processing tech-

niques. Consider the following application scenarios for similarity query processing.

Motivating Scenario 1: DNA Microarray Data Analysis

Molecular biologists strive to understand the biological processes (e.g., diseases) that

are influenced by the activity of multiple gene expressions. One two-dimensional DNA

microarray (also referred to as biochip) is a kind of data matrix, in which each cell contains

a numeric value that corresponds to a given gene. A cell value is a correlated attribute

that represents the intensity of a gene within a sample. Two-dimensional microarray cells

are clustered into patterns (i.e., groupings of genes) that are used to explain the biological

process of interest. In contrast to costly standalone clustering operators that are external to

the database, biological databases can benefit from a Similarity Group By operator (SGB,

for short) to efficiently group two-dimensional microarray data within the database.

Motivating Scenario 2: Spatial Computing

Spatial computing [5] is a fundamental problem for various areas, e.g., GIS, data min-

ing, machine learning, and recommender systems. For example, a GPS allows people to

know their locations, nearby facilities, and routes to reach place of interest. Uber (e.g.,

Uberpool) provides the service for drivers to share their cars during the traffic rush hour.

Location-based augmented reality games (e.g., Pokeman go) enable players to use a mobile

device’s GPS capability to locate, capture, battle, and train virtual creatures. Recommen-

dation systems suggest more relevance products (e.g., advertisements, news and friends)

to users based on their spatial location information. Given the large volumes of captured

2

spatial data, a similarity query would retrieve data points that are inside a spatial range, or

data points that are among the k nearest neighbors to the query’s focal point.

Motivating Scenario 3: Location-based Social Networks

Location-based social networks allow users to share their current locations via check-in

services in social networks, e.g., Foursquare and Facebook. Social network applications

model human mobility patterns using geographic locations, time of movements, and social

ties (i.e., friends). Multi-dimensional spatial and temporal data are correlated in nature.

Supporting a similarity group-by operator over correlated multi-dimensional location data

is critical to correctly detecting groups of moving objects that share similar movement

patterns.

Motivating Scenario 4: Content-based Image Searching

Many companies, e.g., Google 1, Baidu 2, and Bing 3 have commercialized their image-

based search engines that use similarity search over billions of images. Typically, features

extracted from the images are modeled by high-dimensional vectors, e.g., color histograms,

texture features, edge orientations, etc. Given a query image and its high-dimensional

vector of extracted features, a similarity search is conducted to find the images that are

similar to or that are k-closest to the query image.

Motivating Scenario 5: Content-based Webpage Analysis

Similarity search is widely used in detecting duplicate web pages over the internet. De-

tecting duplicate web pages is useful in many real-world applications, e.g., web mirroring,

plagiarism, and spam detection [6]. Each web page is preprocessed to generate a high-

dimensional vector of topics that appear in this page (typically around 250 topics per page,

e.g., [7]). High-dimensional similarity search is involved to find documents in the web that

are similar to the query document.

1http://www.google.com/imghp
2http://stu.baidu.com/
3https://www.bing.com/images/

3

1.2 Taxonomy of Similarity Query Processing

There is a wide variety of applications that rely on similarity query processing. These

include databases [8, 9], data mining [10], machine learning [11–13], and GIS [5, 14, 15].

In these applications, given a similarity function and a set of objects, a similarity query

returns a set of objects that satisfy a certain similarity criterion. Following the introduction

for similarity querying in [16], we categorize similarity queries along six dimensions as

illustrated in the taxonomy below.

• Data Types

One dimension of the taxonomy is the data type where the concept of similarity

search applies. Similarity query operators, e.g., Similarity Join, Similarity Group

By, k-Nearest Neighbor (kNN, for short) and kNN Join have been proposed as ba-

sic database operators in [9] for numeric data using Euclidean distance to signify

similarity. In addition, there is a rapidly growing amount of multimedia data (e.g.,

text/documents, images, fingerprints and videos), and queries asking for objects sim-

ilar to a given one based on content similarity (e.g., [11, 16, 17]). In biological

databases, DNA/RNA or protein sequences are the basic objects, where an object is

modeled as a string. Similarity search becomes the problem to find a given sequence

of characters inside a longer sequence that is within a certain edit distance threshold

from the query [18–20]. Recently, there has been an explosion in the amounts of

location data produced by various devices, e.g., smart phones, satellites, and medical

devices [5, 14]. For example, NASA satellite data archives have exceeded 500 TB

and have been continuously growing. Twitter data with location information, e.g.,

latitude and longitude, are accumulating more than 20 million tweets per day.

• Data Dimensionality

The second aspect of the taxonomy is that of data dimensionality. Each object can

be represented or modeled by one-dimensional [9], multi-dimensional [1,4], or high-

dimensional vector data [2].

4

• Distance Metric

The distance metric used to detect similarity between two objects needs to be care-

fully chosen to be suitable for certain application scenarios. For example, Euclidean

Distance and Manhattan Distance are widely used in business intelligence [1, 9].

Hamming Distance is being used for content-based search [2], and cosine distance is

being used to measure the similarity of two documents for web search. Edit Distance

is adopted for the similarity of two strings (biological sequences) [18, 19]. More

details on metric space distance functions can be found in [10, 16].

• Data Operators

Three types of similarity queries have been receiving particular attention, namely

the Similarity Range Select, k-Nearest Neighbor (kNN), and Similarity Group By

(SGB). Similarity Range Select retrieves all elements within a distance threshold

to the query. kNN retrieves the k objects nearest to the query. The similarity be-

tween Range Select and kNN can be easily extended to Similarity-Range-Join (a.k.a.

Spatial-Range-Join) and kNN-Join. SGB operators divide data objects with similar

relationship but not necessarily equivalent relationship into the same groups.

• Data Storage

The data can be stored on disk or in main memory. Traditionally, data has resided

on the disk. The similarity computation time mainly counts the transmission time

between CPU and disk. This is due to the fact that the I/O accessing time is the

dominant factor in some applications. Recently, with the advancement in memory

technology, memory has become cheaper and larger in size, which makes it possible

to keep data in the main memory. This makes it possible to process data once it

arrives.

• Data Platform

Lately, the platform to compute the similarity queries on has undergone dramatic

changes. The join operation for two big tables is usually very expensive and takes

massive response time under the setting of one machine. Therefore, there is a trend

5

to move from computation platform from one single machine to clusters of hundreds

of machines (e.g., using Hadoop MapReduce 4, Hbase 5, Spark 6), and to develop

parallel computation frameworks to support similarity joins in the corresponding dis-

tributed platforms.

1.3 Summary of Results

1. Similarity Group By

• We introduce two new SGB operators in the multi-dimensional space. We de-

fine the class of order-independent SGB operators that produce the same results

regardless of the order in which the input data is presented to them. Using the

notion of interval graphs borrowed from graph theory, we prove that, for cer-

tain SGB operators, there exist order-independent implementations. For each

of these operators, we provide a sample algorithm that is order-independent.

Also, we prove that for other SGB operators, there does not exist an order-

independent implementation for them, and hence these SGB operators are ill-

defined and should not be adopted in extensions to SQL to realize similarity

group-by.

• We present new definitions of SGB operator over relational data. The first op-

erator is the clique (or distance-to-all) SGB, where all the tuples in a group are

within some distance ε from each other. The second operator is the distance-to-

any SGB, where a tuple belongs to a group if the tuple is within some distance ε

from any other tuple in the group. When a tuple satisfies the membership crite-

rion of multiple groups, we support three different semantics that would either

eliminate the tuple, put the tuple in any one group, or create a new group for

this tuple.

4http://hadoop.apache.org/
5http://hbase.apache.org/
6https://spark.apache.org/

6

• We realize and test new SGB operators and their algorithms inside PostgreSQL,

an open source SQL-based database management system. The experiments

demonstrate that the proposed algorithms can achieve up to three orders of

magnitude enhancement in performance over the baseline approaches. More-

over, the performance of the proposed SGB operators is comparable to that of

relational Group-by, and outperform state-of-the-art clustering algorithm (i.e.,

K-means [21], DBSCAN [22] and BIRCH) [23] from one to three orders of

magnitude.

2. Hamming distance-based Similarity querying

• We focus on two variants of the Hamming distance-based similarity querying,

namely Hamming-distance-based select and Hamming-distance-based join (for

short, Hamming-select and Hamming-join, respectively). We propose a new

index, termed the HA-Index, that is designed to reduce redundant and duplicate

distance computations during the Hamming-distance search. The HA-Index as-

sumes that the underlying datasets are preprocessed; data is mapped from the

high-dimensional space into one-dimensional binary codes that are fixed-length

strings of 0’s and 1’s. Then, the binary codes are sorted using the Gray order-

ing [24]. Sorting the binary codes in this way helps group together multiple

binary codes that share a common substring or non-contiguous yet similar se-

quences of bits. By computing the distances between the query binary code

and similar substrings, many redundant distance computations can be avoided

based on properties of binary codes.

• We introduce two approaches to improve the performance of Hamming-select

and Hamming-join. The first approach uses a simple Radix-tree index from

the literature. The second approach is based on the HA-Index with both a

static and a dynamic version. We also introduce the maintenance operations,

i.e., build, insert, update, and search operations, for the dynamic HA-Index.

For Hamming-joins over large and skewed data, we propose an efficient data

7

partitioning technique for balancing data computations among servers, and in-

troduce a distributed version of the HA-Index to reduce data shuffling inside

MapReduce.

• We conduct an extensive experimental study using real datasets and demon-

strate that the HA-Index (i) enhances the performance of Hamming-select and

Hamming-join by two orders of magnitude over state-of-the-art techniques, and

(ii) saves memory usage by more than one order of magnitude. We also eval-

uate how the proposed index improves approximate algorithms for kNN-select

and kNN-join operations.

3. Similarity query processing and optimization for in-memory distributed computing

environments

• We develop a new computing system for processing and optimizing similarity

queries over in-memory distributed spatial data.

• We address data and query skew issues to improve load balancing while exe-

cuting similarity operators, e.g., spatial-range-join and kNN-join, by generating

cost-optimized query execution plans over in-memory distribute spatial data.

• We introduce a new light-weight yet efficient spatial Bloom filter to reduce

communication cost.

• We realize the introduced query processing and optimization techniques inside

of Spark. We use the developed prototype system to conduct a large-scale eval-

uation on real spatial data and common benchmark algorithms and compare

our system against state-of-the-art distributed spatial data processing systems.

Experimental results show enhancements in performance by up to an order of

magnitude over existing in-memory and distributed spatial systems.

8

Ta
bl

e
1.

1.
:C

on
tr

ib
ut

io
ns

of
th

is
di

ss
er

ta
tio

n
ba

se
d

on
th

e
af

or
em

en
tio

ne
d

ta
xo

no
m

y
fo

rs
im

ila
ri

ty
qu

er
y

pr
oc

es
si

ng

Si
m

ila
ri

ty
G

ro
up

B
y

H
am

m
in

g-
D

is
ta

nc
e-

B
as

ed

Si
m

ila
ri

ty
Se

ar
ch

D
is

tr
ib

ut
ed

In
-m

em
or

y
Si

m
ila

ri
ty

Q
ue

ry
Pr

oc
es

si
ng

an
d

O
pt

im
iz

at
io

n

D
at

a
Ty

pe
s:

N
um

er
ic

al
Te

xt
an

d
Im

ag
e

Sp
at

ia
ld

at
a

D
at

a
D

im
en

si
on

al
ity

:
M

ul
ti-

D
im

en
si

on
al

H
ig

h-
D

im
en

si
on

al
M

ul
ti-

D
im

en
si

on
al

an
d

Po
ly

go
ns

D
at

a
D

is
ta

nc
e:

E
uc

lid
ea

n
an

d

M
an

ha
tta

n
D

is
ta

nc
e

H
am

m
in

g
D

is
ta

nc
e

E
uc

lid
ea

n
an

d
C

os
in

e

D
at

a
O

pe
ra

to
rs

:
Si

m
ila

ri
ty

G
ro

up
B

y
Si

m
ila

ri
ty

-s
el

ec
ta

nd

Si
m

ila
ri

ty
-J

oi
n

Sp
at

ia
l-

ra
ng

e-
se

le
ct

,S
pa

tia
l-

ra
ng

e-
jo

in

k
N

N
-s

el
ec

t,
k

N
N

-j
oi

n

D
at

a
St

or
ag

e:
D

is
k

D
is

k
M

em
or

y

D
at

a
Pl

at
fo

rm
:

C
en

tr
al

iz
ed

(e
.g

.,
Po

st
gr

eS
Q

L
)

C
en

tr
al

iz
ed

an
d

Pa
ra

lle
l(

e.
g.

,M
ap

R
ed

uc
e)

Pa
ra

lle
l(

e.
g.

,S
pa

rk
)

9

1.4 Dissertation Plan

We have published parts of the work presented in this dissertation [1–4, 25]. The work

on Similarity Group-by is presented in [1]. The study of the order independent properties

for SGB operator is presented in [25]. The Hamming-distance-based similarity query pro-

cessing is presented in [2]. The similarity query processing over in-memory distributed

spatial data is presented in [3, 4]. The contributions of this dissertation based on the afore-

mentioned taxonomy for similarity query processing is given in Table 1.1.

This rest of this dissertation is organized as follows. Chapter 2 introduces the Similarity

Group-By Operator for the relational data. Chapter 3 covers techniques for Hamming-

distance-based query processing. Chapter 4 presents the system to support distributed in-

memory similarity query processing for spatial data. Chapter 5 concludes this dissertation

and discusses possible areas for future work.

10

2 SIMILARITY GROUPBY OPERATORS FOR MULTI-DIMENSIONAL

RELATIONAL DATA

2.1 Introduction

The deluge of data accumulated from sensors, social networks, emerging computational

sciences, and location-aware services calls for advanced querying and analytic that are of-

ten dependent on efficient aggregation and summarization techniques. The SQL group-by

operator of a relational database is one main construct that is used in conjunction with ag-

gregate operations to partition the data into groups and produce useful summaries. Group-

ing is usually performed by aggregating into the same groups tuples with equal values on a

certain subset of the attributes. However, many applications are often interested in grouping

based on similar rather than strictly equal values.

Clustering [10] is a well-known technique for grouping similar data items in the multi-

dimensional space. In most cases, clustering is performed outside of the database system.

Moving the data outside of the database to perform the clustering and then back into the

database for further processing results in a costly impedance mismatch. Moreover, based

on the needs of the underlying applications, the output clusters may need to be further

processed by SQL to filter out some of the clusters and perform further SQL operations on

the remaining clusters. Hence, it is of great benefit to develop practical and fast similarity

group-by operators that can be embedded within SQL to avoid the impedance mismatch

and to benefit from the processing power of all the other SQL operators.

SQL-based Similarity Group-by (SGB) operators have been proposed in [9] to sup-

port several semantics to group similar but not necessarily equal data. Although many

applications can benefit from using existing SGB over Group-by, a key shortcoming of

SGB operators is that they focus on one-dimensional data. Consequently, data can only be

approximately grouped based on one attribute at a time. As a result, clusters reflecting cor-

11

related spatial and multi-attributes cannot be detected properly to form meaningful groups.

Furthermore, supporting SGB operators using existing SQL constructs and procedures may

result in high execution times in contrast to a native database intergrated SGB operator.

In this chapter, we introduce new similarity-based group-by operators that group multi-

dimensional data using various metric distance functions. More specifically, we propose

two SGB operators, namely SGB-All and SGB-Any, for grouping multi-dimensional data.

SGB-All forms groups such that a tuple or a data item, say o, belongs to a group, say g,

if and only if o is within a user-defined threshold from all other data items in g. In other

words, each group in SGB-All forms a clique of nearby data items in the multi-dimensional

space. For example, all the two-dimensional points (a-e) in Figure 2.1a are within Distance

3 from each other and hence form a clique. They are all reported as members of one group

as they are all part of the output of SGB-All. In contrast, SGB-Any forms groups such

that a tuple or a data item, say o, belongs to a group, say g, if and only if o is within a

user-defined threshold from at least one other data item in g. For example, all the two

dimensional points in Figure 2.1b form one group. Point a is within Distance 3 from Point

c that in turn is within Distance 3 from Points b, d, and f . Furthermore, Point e is within

Distance 3 from Point d, etc. Therefore, Points a-h of Figure 2.1b are reported as members

of one group as part of the output of SGB-Any.

Notice that in the SGB-All operator, a data item may qualify the membership criterion

of multiple groups. For example, Data item c in Figure 2.1a forms a clique with two

groups. In this case, we propose three semantics namely, on-overlap join-any, on-overlap

eliminate, and on-overlap form-new-group for handling these overlapped data items. We

provide efficient algorithms for handling correlated multi-dimensional attributes using each

of the two SGB operators, along with the three alternatives for handling tuples that overlap

multiple groups. The proposed algorithms use a filter-refine paradigm. In the filter step,

a fast yet conservative check is performed to identify the data items that are candidates

to form groups. Some of the data items resulting from the filter step will end up being

false-positives that will be discarded. The refinement step eliminates the false-positives to

produce the final output groups. Notice that for the case of SGB-Any, a data item cannot

12

belong to multiple groups. For example, consider a data item, say o, that is a member of

two groups, say g1 and g2, i.e., o is within distance epsilon from at least one other data

item in each of g1 and g2. In this case, based on the semantics of SGB-Any, Groups g1

and g2 merge into one encompassing bigger group that contains all members of g1, g2 and

common data item o.

The contributions of this chapter are summarized as follows:

1. We investigate new similarity group-by semantics and introduce two new operators,

namely SGB-All and SGB-Any, for grouping multi-dimensional data from within

SQL.

2. We present an extensible algorithmic framework to accommodate the various se-

mantics of SGB-All and SGB-Any along with the various options to handle the over-

lapping data among multiple groups. We introduce effective optimizations for both

operators.

3. We analyze the complexity of all the proposed algorithms. In addition, we prototype

the two operators inside PostgreSQL and study their performance using the TPC-H

benchmark. The experiments demonstrate that the proposed algorithms can achieve

up to three orders of magnitude enhancement in performance. Moreover, the perfor-

mance of the proposed SGB operators is comparable to that of relational Group-by.

The rest of this chapter proceeds as follows.

Section 2.2 provides background material. Section 2.3 introduces the new SGB oper-

ators. Section 2.4 presents application scenarios that demonstrate the use and practicality

of the various proposed semantics for SGB operators. Sections 2.5 and 2.6 introduce the

algorithmic frameworks for SGB-All and SGB-Any operators, respectively. Section 2.7

provides the complexity analysis of the proposed algorithms. Section 2.9 discusses the re-

lated work. Section 2.8 describes the in-database extensions to support the two operators

and their performance evaluation from within PostgreSQL. Section 2.10 contains conclud-

ing remarks.

13

5

3

6

631 2 4

1

2

4

5

5

3

6

631 2 4

1

2

4

5

(a) DISTANCE-TO-ALL (b) DISTANCE-TO-ANY

a

a

b

b

c

c
d

d

e

e

f

f

g

g
h

Figure 2.1.: The semantics of similarity predicates ε = 3.

2.2 Preliminaries

In this section, we provide background definitions and formally introduce similarity-

based group-by operators.

Definition 1 A metric space is a space M = 〈D, δ〉 in which the distance between two

data points within a domain D is defined by a function δ : D × D → R that satisfies the

properties of symmetry, non-negativity, and triangular inequality.

We use the Minkowski distanceLp as the distance function δ. We consider the following

two Minkowski distance functions. Let px be a data point in the multi-dimensional space

of the form px : 〈x1, ..., xd〉 and pxy is the value of the yth dimension of px. Then,

• The Euclidean distance

L2 : δ2(pi, pj) =

√∑
y

(piy − pjy)2

• The maximum distance

L∞ : δ∞(pi, pj) = max
y
|piy − pjy|.

Definition 2 A similarity predicate ξδ,ε is a Boolean expression that returns TRUE for two

multi-dimensional points, say pi and pj , iff the distance δ between pi and pj is less than or

equal to ε, i.e., ξδ,ε(pi, pj) : δ(pi, pj) ≤ ε. In this case, the two points are said to be similar.

Definition 3 Let T be a relation of tuples, where each tuple, say t, is of the form t =

{GA1, ..., GAk, NGA1, ..., NGAl, }, the subset GAc = {GA1, ..., GAk} be the grouping

14

Longitude

L
at

it
ud

e

Input order: a1, a2, a3, a4, a5

a1

a2

a3

a4a5
6

6 10

2

4

8

2

Figure 2.2.: Data points using ε = 3 and L∞.

attributes, the subset NGA = {NGA1, ..., NGAl} be the non-grouping attributes, and ξδ,ε

be a similarity predicate. Then, the similarity Group-by operator G〈GAc,(ξδ,ε)〉(R) forms a

set of answer groups Gs by applying ξδ,ε to the elements of GAc such that a pair of tuples,

say ti and tj , are in the same group iff ξδ,ε(ti.GAc, tj.GAc).

Definition 4 Given a set of groups G = {g1, ..., gm}, the Overlap Set Oset is the set of

tuples formed by the union of the intersections of all pairs of groups (g1, ..., gm), i.e.,

Oset = ∪(i,j)∈{1..m}(gi∩ gj), where i 6= j. In other words, Oset contains all the tuples that

belong to more than one group.

For simplicity, we study the case when the set of grouping attributes, GAc, contains

only two attributes. In this case, we can view tuples as points in the two-dimensional

space, each of the form p:(x1, x2). We enclose each group of points by a bounding rectangle

R:(pl, pr), where points pl and pr correspond to the upper-left and bottom-right corners of

R, respectively.

2.3 Similarity Group-By Operators

This section introduces the semantics of the two similarity-based group-by operators,

namely, SGB-All and SGB-Any.

15

2.3.1 Similarity Group-By All (SGB-All)

Given a set of tuples whose grouping attributes form a set, say P , of two-dimensional

points, where P = {p1, ..., pn}, the SGB-All operator Ǧall forms a set, say Gm, of groups

of points from P such that ∀g ∈ Gm, the similarity predicate ξδ,ε is TRUE for all pairs

of points 〈pi, pj〉 ∈ g, and g is maximal, i.e, there is no group g′ such that g ⊆ g′. More

formally,

Ǧall = {g | ∀pi, pj ∈ g, ξδ,ε(pi, pj) ∧ g is maximal}

Figure 2.1 gives an example of two groups (a-e) and (c,f,g), where all pairs of elements

within each group are within a distance ε ≤ 3. The proposed SQL syntax for the SGB-All

operator is as follows:

SELECT column, aggregate-func(column)

FROM table-name

WHERE condition

GROUP BY column DISTANCE-TO-ALL [L2 | LINF] WITHIN ε

ON-OVERLAP [JOIN-ANY | ELIMINATE |FORM-NEW-GROUP]

SGB-All uses the following clauses to realize similarity-based grouping:

• DISTANCE-TO-ALL: specifies the distance function to be applied by the similarity

predicate when deciding the membership of points within a group.

– L2: L2 (Euclidean distance).

– LINF: L∞ (Maximum infinity distance)

• ON-OVERLAP: is an arbitration clause to decide on a course of action when a data

point is within Distance ε from more than one group. When a point, say pi, matches

the membership criterion for more than one group, say g1 · · · gw, one of the three

following actions are taken:

– JOIN-ANY: the data point pi is randomly inserted into any one group out of

g1 · · · gw.

16

– ELIMINATE: discard the data point pi, i.e., all data points in Oset (see Defini-

tion 4) are eliminated.

– FORM-NEW-GROUP: insert pi into a separate group, i.e., form new groups

out of the points in Oset.

Example 1 The following query performs the aggregate operation count on the groups

formed by SGB-All on the two-dimensional grouping attributes GPSCoor-lat and

GPSCoor-long. The L∞ distance is used with Threshold ε = 3.

SELECT count(*)

FROM GPSPoints

GROUP BY GPSCoor-lat,GPSCoor-long DISTANCE-TO-ALL LINF

WITHIN 3

ON-OVERLAP <clause>

Consider Points a1-a5 in Figure 2.2 that arrive in the order a1, a2, · · · , a5 as in the

figure. After processing a4, the following groups satisfy the SGB-All predicates: g1 {a1, a2}

and g2 {a3, a4}. However, Data-point a5 is within ε from a1, a2 in g1 and a3, a5 in g2.

Consequently, an arbitration ON-OVERLAP clause is necessary. We consider the three

possible semantics below for illustration.

With an ON-OVERLAP JOIN-ANY clause, a group is selected at random. If g1 is se-

lected, the resulting groups are g1{a1, a2, a5} and g2{a3, a4}, and the answer to the query is

{3, 2}. With an ON-OVERLAP ELIMINATE clause, the overlapping point a5 gets dropped;

the resulting groups are g1 {a1, a2} and g2 {a3, a4}, and the query output is {2, 2}. With

an ON-OVERLAP FORM-NEW-GROUP clause, the overlapping point a5 is inserted into a

newly created group; the resulting groups are g1 {a1, a2}, g2 {a3, a4}, g3{a5} and the query

output is {2, 2, 1}.

2.3.2 Similarity Group-By Any (SGB-Any)

Given a set of tuples whose grouping attributes from a set, say P, of two dimensinal

points, where P = {p1, ..., pn}, the SGB-Any operator Ǧany clusters points in P into a set

17

of groups, say Gm, such that, for each group g ∈ Gm, the points in g are all connected by

edges to form a graph, where an edge connects two points, say pi and pj , in the graph iff

they are within Distance ε from each other, i.e,. ξδ,ε(pi, pj). More formally,

Ǧany = {g | ∀pi, pj ∈ g, (ξδ,ε(pi, pj) ∨ (∃ pk1, ..., pkn, ξδε(pi, pk1) ∧ ... ∧

ξδε(pkn, pj))) ∧ g is maximal}

The notion of distance-to-any between elements within a group is illustrated in Figure

2.1b, where ε = 3. All of the points (a-h) form one group. The corresponding SQL syntax

of the SGB-Any operator is as follows:

SELECT column, aggregate-func(column)

FROM table-name

WHERE condition

GROUP BY column DISTANCE-TO-ANY [L2 | LINF] WITHIN ε

SGB-Any uses the DISTANCE-TO-ANY predicate that applies the metric space function

while evaluating the distance between adjacent points. When using the semantics for SGB-

Any, the case for points overlapping multiple groups does not arise. The reason is that

when an input point overlaps multiple groups, the groups merge to form one large group.

Example 2 The following query performs the aggregate operation count on the groups

formed by SGB-Any on the two-dimensional grouping attributes GPSCoor-lat and

GPSCoor-long using the Euclidean distance with ε = 3.

SELECT count(*)

FROM GPSPoints

GROUP BY GPSCoor-lat and GPSCoor-long

DISTANCE-TO-ANY L2 WITHIN 3

Consider the example in Figure 2.2. After processing a4, the following groups are

g1{a1, a2} and g2{a3, a4}. Since Point a5 is within ε from both a1, a2 in g1 and a3, a4 in

g2, the two groups are merged into a single group. Therefore, the output of the query is

18

Mobile Devices Table

Latitude LongitudeMDID

m1

m2

lon1

lon2

lat1

lat2

...

...

(b)

m1

m2

m3

m4

m5

m6

(a)

Figure 2.3.: (a) A mobile ad hoc network (MANET), (b) The mobile devices table.

{5}. Any overlapping point will cause groups to merge and hence there is no need to add

a special clause to handle overlaps.

2.4 Applications

In this section, we present application scenarios that demonstrate the practicality and

the use of the various semantics for the proposed Similarity Group-by operators.

Example 3 Mobile Ad hoc Network (MANET) is a self-configuring wireless network of

mobile devices (e.g., personal digital assistants). A mobile device in a MANET commu-

nicates directly with other devices that are within the range of the device’s radio signal

or indirectly with distant mobile devices using gateways (i.e., intermediate mobile devices,

e.g., m1 and m2 in Figure 2.3a), note that the circle around each device is its signal rang.

In a MANET, wireless links among nearby devices are established by broadcasting special

messages. Radio signals are likely to overlap. As a result, uncareful broadcasting may

result in redundant messages, contention, and collision on communication channels Con-

sider the Mobile Devices table in Figure 2.3b that maintains the geographic locations of

the mobile devices in a MANET. In the following, we give example queries that illustrate

how MANETs can tremendously benefit from SGB-All and SGB-Any operators.

Query 1 Geographic areas that encompass a MANET. A mobile device, saym, belongs to

a MANET if and only if m is within the signal range from at least one other device mobile.

19

The SGB-ANY semantics identifies a connected group of mobile devices using signal range

as a similarity grouping threshold.

SELECT ST Polygon(Device-lat, Device-long)

FROM MobileDevices

GROUP BY Device-lat, Device-long

DISTANCE-TO-ANY L2 WITHIN SignalRange

Referring to the mobile devices in Figure 2.3a, the output of Query 1 returns a polygon that

encompasses mobile devices m1-m6.

Query 2 Candidate gateway mobile devices. A gateway represents an overlapping mobile

device that connects two devices that are not within each other’s signal range. The SGB-

All FORM-NEW-GROUP inserts the overlapped devices into a new group. Therefore, those

devices in the newly formed group are ideal gateway candidates.

SELECT COUNT(*)

FROM MobileDevices

GROUP BY Device-lat , Device-long

DISTANCE-TO-ALL L2 WITHIN SignalRange

ON-OVERLAP FORM-NEW-GROUP

The output of Query 2 returns the number of candidate gateway mobile devices. Along the

same line, identifying mobile devices that cannot serve as a gateway is equally important to

a MANET. SGB-All ELIMINATE identifies mobile devices that cannot serve as a gateway

by discarding the overlapping mobile devices.

Example 4 Location-based group recommendation in mobile social media. Several so-

cial mobile applications, e.g., WhatsApp and Line, employ the frequent geographical loca-

tion of users to form groups that members may like to join. For instance, users who reside

in a common area (e.g., within a distance threshold) may share similar interests and are

inclined to share news. However, members who overlap several groups may disclose infor-

mation from one group to another and undermine the privacy of the overlapping groups.

Query 3 demonstrates how SGB-ALL allows forming location-based groups without com-

promising privacy.

20

Query 3 Forming private location-based groups. The various SGB-All semantics form

groups while handling ON-OVERLAP options that restrict members to join multiple groups.

In Query 3, we assume that Table Users-Frequent-Location maintains the users’ data, e.g.,

user-id and frequent location. The user-defined aggregate function List-ID returns a list

that contains all the user-ids within a group.

SELECT List-ID(user-id),

ST Polygon(User-lat, User-long)

FROM Users− Frequent− Location

GROUP BY User-lat , User-long

DISTANCE-TO-ALL L2 WITHIN Threshold

[ON-OVERLAP JOIN-ANY | ELIMINATE | FORM-NEW-GROUP]

The output of Query 3 returns a list of user-ids for each formed group along with a poly-

gon that encompasses the group’s geographical location. The JOIN-ANY semantics rec-

ommends any one arbitrary group for overlapping members who in this case will not be

able to join multiple groups. The ELIMINATE semantics drops overlapping members from

recommendation, while FORM-NEW-GROUPS creates dedicated groups for overlapping

members.

2.5 Efficient Algorithm for SGB Operator

In this section, we present an extensible algorithmic framework to realize similarity-

based grouping using the distance-to-all semantics with the various options to handle the

overlapping data among the groups.

2.5.1 Framework

Procedure 1 illustrates a generic algorithm to realize SGB-All. This generic algorithm

supports the various data overlap semantics using one algorithmic framework. The algo-

rithm breaks down the SGB-All operator into procedures that can be optimized indepen-

dently. For each data point, the algorithm starts by identifying two sets (Line 2). The first

21

Algorithm 1: Similarity Group-By ALL Framework
Input: P : set of data points, ε: similarity threshold , δ: distance function , CLS:

ON-OVERLAP clause, G set of existing groups

Output: Set of output groups

1 for each data element pi in P do

2 (CandidateGroups,OverlapGroups)← FindCloseGroups(pi, G, ε, δ, CLS)

3 ProcessGroupingALL(pi, CandidateGroups, CLS)

4 if CLS is not JOIN-ANY And sizeOf(OverlapGroups)!= 0 then

5 ProcessOverlap(pi, OverlapGroups, CLS)

6 end

7 end

set, namely CandidateGroups, consists of groups that pi can join. pi can join a group,

say g, in CandidateGroups if the similarity predicate is true for all pairs 〈pi, p′i〉 ∀p′i ∈ g.

The second set, namely OverlapGroups, includes groups that have some (but not all) of

its data points satisfying the similarity predicate. A group, say g, is in OverlapGroups

if there exists at least two points p and q in g such that the similarity distance between pi

and p holds and the similarity distance between pi and q does not hold. OverlapGroups

serves as a preprocessing step required to handle the semantics of ELIMINATE and FORM-

NEW-GROUP encountered in later steps. Figure 2.4 gives four existing groups g1-g4 while

Data-point x is being processed. In this case, CandidateGroups contains {g2, g3} and

OverlapGroups contains {g1}.

Procedure ProcessGroupingALL (Line 3 of Procedure 1) uses CandidateGroups

and the ON-OVERLAP clause CLS to either (i) place pi into a new group, (ii) place pi

into existing group(s), or (iii) drop pi from the output, in case of an ON-OVERLAP clause.

Finally, Procedure ProcessOverlap (Line 5) uses OverlapGroups to verify whether ad-

ditional processing is needed to fulfill the semantics of SGB-All.

22

2.5.2 Finding Candidate and Overlap Groups

In this section, we present a straightforward approach to identify CandidateGroups

and OverlapGroups. In Section 2.5.3, we propose a new two-phase filter-refine approach

that utilizes a conservative check in the filter phase to efficiently identify the member groups

in CandidateGroups. Then, in Section 2.5.4, we introduce the refine phase that is applied

only if L2 is used as the distance metric to detect the CandidateGroups that falsely pass

the filter step.

Procedure 2 gives the pseudocode for Naive FindCloseGroups that evaluates the

distance-to-all similarity predicate between pi and all the points that have been previously

processed (Lines 6-15). The grouping semantics (Lines 16-20) identify how the two sets

CandidateGroups and OverlapGroups are populated.

Processing New Points

The second step of the SGB-All Algorithm in Procedure 1 places pi, the data point

being processed, into a new group or into an existing group, or drops pi from the output

depending on the semantics of SGB-All specified in the query.

Procedure 3 (ProcessGroupingAll) proceeds as follows. First, it identifies the cases

where CandidateGroups is empty or consists of a single group. In these cases, pi is in-

serted into a newly created group or into an existing group depending on p’s distance from

the existing group. Procedure ProcessInsert places the data point pi into a group. Next,

the ON-OVERLAP clause CLS is consulted to determine the proper course of action. The

JOIN-ANY clause arbitrates among the overlapping groups by inserting pi into a randomly

chosen group. The procedure ProcessEliminate (Line 13) handles the details of pro-

cessing the ELIMINATE clause. Consider the example illustrated in Figure 2.4, where

CandidateGroups consists of {g2, g3}. ProcessEliminate drops Point x.

Finally, Procedure ProcessNewGroup (Line 15) processes the FORM-NEW-GROUP

clause. It inserts pi into a temporary set termed S ′ for further processing. The SGB-All

23

Algorithm 2: Naive FindCloseGroupsALL
Input: pi: data point, ε: similarity threshold , δ: distance function, CLS: ON-OVERLAP

clause, G: set of existing groups

Output: Candidate, OverlapGroups

1 Candidate← NULL

2 OverlapGroups← NULL

3 for each group gj in G do

4 CandidateFlag = True

5 OverlapFlag = False

6 for each pk in gj do

7 if (Distance(pi, pk, δ)6 ε) then

8 OverlapFlag = True

9 else

10 CandidateFlag = False

11 if CLS == JOIN-ANY then

12 break

13 end

14 end

15 end

16 if CandidateFlag is True then

17 insert gj into Candidate

18 else if CLS is not JOIN-ANY and CandidateFlag is False and OverlapFlag is True then

19 insert gj into OverlapGroups

20 end

21 end

with FORM-NEW-GROUP option forms groups out of S ′ by calling SGB-All recursively

until S ′ is empty.

24

Algorithm 3: ProcessGroupingALL
Input: pi: data point, CLS: ON-OVERLAP clause, CandidateGroups

Output: updates CandidateGroups based on CLS semantics

1 if sizeof(CandidateGroups)== 0 then

2 create a new group gnew

3 ProcessInsert(pi, gnew)

4 else if sizeof(CandidateGroups) == 1 then

5 insert into existing group gout

6 ProcessInsert(pi, gout)

7 else

8 switch CLS do

9 case JOIN-ANY

10 gout ← GetRandomGroup(CandidateGroups)

11 ProcessInsert(pi, gout)

12 case ELIMINATE

13 ProcessEliminate(pi, CandidateGroups)

14 case FORM-NEW-GROUP

15 ProcessNewGroup(pi, CandidateGroups)

16 endsw

17 end

a1

a2
a3

b1

c1

X

b2

c2
c3

g1 {a1, a2, a3}
g2 {b1, b2}

g3 {c1, c2, c3}

d1

d2

g4 {d1, d2}

Figure 2.4.: Processing the point x using L∞ with ε = 4.

25

Handling Overlapped Points

The final step of SGB-All in Procedure 1 processes the groups in the Set

OverlapGroups. OverlapGroups consists of groups, where each group has some data

points (but not all of them) that satisfy the similarity predicate with the new input point

pi. This step is required by the ELIMINATE and FORM-NEW-GROUP semantics. Pro-

cedure ProcessOverlap handles the ELIMINATE semantics as follows. It iterates over

OverlapGroups and deletes overlapped data points. Consider the example illustrated in

Figure 2.4. Set OverlapGroups consists of {g1} with overlapped Data-Point a3. Finally,

ProcessOverlap handles the FORM-NEW-GROUP semantics by inserting the overlapped

data points into a temporary set termed S ′ and deletes these points from their original

groups.

The time complexity for SGB-All according the algorithmic framework in Proce-

dure 1 is dominated by the time complexity of FindCloseGroups. The time com-

plexity of ProcessGrouping and ProcessOverlap (Lines 3-6) is linear in the size of

CandidateGroups and OverlapGroups. Consequently, given an input set of size n, Pro-

cedure Naive FindCloseGroups incurs
(
n
2

)
distance computations that makes the upper-

bound time complexity of SGB-All quadratic i.e., O(n2). Section 2.5.3 introduces a filter-

refine paradigm to optimize over Procedure Naive FindCloseGroups.

2.5.3 The Bounds-Checking Approach

In this section, we introduce a group Bounds-Checking approach to optimize over Pro-

cedure Naive FindCloseGroups. Consider the data points of Group g illustrated in Figure

2.5a. Procedure Naive FindCloseGroups performs six distance computations to determine

whether a new data point x can join Group g. To reduce the number of comparisons, we in-

troduce a bounding rectangle for each Group g in conjunction with the similarity threshold

ε so that all data points that are bounded by the rectangle satisfy the distance-to-all similar-

ity predicate. For example, Data Element x in Figure 2.5b is located inside g’s bounding

rectangle. Therefore, g is a candidate group for x.

26

Definition 5 Given a set of multi-dimensional points and a similarity predicate ξδ∞,ε, the

ε-All Bounding Rectangle Rε−All is a bounding rectangle such that for any two points xi

and yi bounded by Rε−All, the simiarity predicate ξδ∞,ε(xi, yi) is true.

Consider Figure 2.5c, where the bounding rectangle Rε−All is constructed for a group

that consists of a single Point a1, where ε = 2 and the sides of the rectangle are 2ε by

2ε centered at a1. After inserting the second Point a2 into g, as in Figure 2.5d, Rε−All is

shrunk to include the area where the similarity predicate is true for both Points a1 and a2.

The invariant that Rε−All maintains varies depending on the distance metric used. For the

L∞ distance metric, Rε−All is updated such that if a Point, say xi, is inside Rε−All, then

xi is guaranteed to be within Distance ε from all the points that form Group g. For the

Euclidean distance, the invariant that Rε−All maintains is that if a point, says xi, is outside

Rε−All, then xi cannot belong to Group g. In this case, if xi is inside Rε−All, it is likely that

xi is within distance ε from all the points inside Rε−All. Hence, for the Euclidean distance,

Rε−All is a conservative representation of the group g and serves as a filter step to save

needless comparisons for points that end up being outside of the group. We illustrate in

Figures 2.5c- 2.5e how to maintain these invariants when a new point joins the group. We

use the case of L∞ for illustration. When a new point xi is inside the bounding rectange

Rε−All of Group g, then xi is within Distance ε from all the points in the group, and hence

will join Group g. Once xi joins Group g, the bounds of Rectangle Rε−All are updated to

retain the truth of Rε−All’s invariant. The sides of Rε−All will need to shrink and will be

updated as illustrated in Figures 2.5d-2.5e.

Notice that deciding membership of a point into the group requires a constant number

of comparisons regardless of the number of points inside Group g. Furthermore, the main-

tenance of the bounding rectangle of the group takes constant time for every inserted point

into g. Also, notice that Rε−All stops shrinking if its dimensions reach ε × ε, which is a

lower-bound on the size of Rε−All. Figure 2.5e gives the updated Rε−All after Point a3 is

inserted into the group.

Procedure 4 gives the pseudocode for Bounds-Checking FindCloseGroups. The pro-

cedure uses the ε-All bounding rectangle to reduce the number of distance computa-

27

(a) (b)

(c)
g {a1} g {a1, a2} g {a1, a2, a3}

5

3

6

631 2 4

1

2

4

5

5

3

6

631 2 4

1

2

4

5

5

3

6

631 2 4

1

2

4

5

a1 a1 a1

a2 a2

a3

5

3

631 2 4

1

2

4

5

5

3

631 2 4

1

2

4

5

x x

(d) (e)

Figure 2.5.: The ε-All bounding rectangle approach.

tions needed to realize FindCloseGroups using the L∞ distance metric. Procedure

PointInRectangleTest (Line 4) uses the ε-All rectangle to determine in constant time

whether gj is a candidate group for the input point. Procedure OverlapRectangleTest

(Line 6) tests whether the ε-All rectangle of pi overlaps Group gj’s bounding rectangle.

In case of an overlap, all data points in gj are inspected to verify whether the overlap is

nonempty. The correctness of the ε-All bounding rectangle for the L∞ distance metric fol-

lows from the fact that the rectangles are closed under intersection, i.e., the intersection of

two rectangles is also a rectangle.

A major bottleneck of the bounding rectangles approach is in the need to lin-

early scan all existing bounding rectangles that represent the groups to identify sets

CandidateGroups and OverlapGroups, which is costly. To speedup Procedure Bounds-

Checking FindCloseGroups, we use a spatial access method (e.g., an R-tree [26]), to index

the Rε−All bounding rectangles of the existing groups.

Procedure 5 gives the pseudocode for Index Bounds-Checking FindCloseGroups. The

procedure performs a window query on the index Groups IX (Line 4) to retrieve the set

GSet of all groups that intersect the bounding rectangleRpi for the newly inserted point pi .

Next, it iterates overGSet (Lines 4-11) and executes PointInRectangleTest to determine

whether the inspected group belongs to either one of the two sets CandidateGroups or

28

Algorithm 4: Bounds-Checking FindCloseGroups
Input: pi: data point, ε: similarity threshold , δ: distance function, CLS: ON-OVERLAP

clause, G: set of existing groups

Output: CandidateGroups, OverlapGroups

1 CandidateGroups← NULL

2 OverlapGroups← NULL

3 for each group gj in G do

4 if PointInRectangleTest(pi, gj) is True then

5 insert gj into CandidateGroups

6 else if CLS is not JOIN-ANY and OverlapRectangleTest(pi, gj) is True then

7 for each pk in gj do

8 if (Distance(pi, pk, δ)6 ε) then

9 insert gj into OverlapGroups

10 break

11 end

12 end

13 end

14 end

OverlapGroups. Finally, the elements of OverlapGroups are inspected to retrieve the

subset of elements that satisfy the similarity predicate.

Refer to Figure 2.6 for illustration. An R-tree index, termed Groups IX , is used to

index the bounding rectangles of the groups discovered so far. In this case, Groups IX

contains bounding rectangles for Groups g1-g4. Given the newly arriving Point x, a window

query of the ε-All rectangle for x is performed on Groups IX that returns all the intersect-

ing rectangles; in this case, g1, g2, and g3. The outcome of the query is used to construct

the sets CandidateGroups and OverlapGroups.

29

Algorithm 5: Index Bounds-Checking FindCloseGroups
Input: pi: data point, ε: similarity threshold , δ: distance function, CLS: ON-OVERLAP

clause, G: set of existing groups, Groups IX: index on G’s bounding rectangles

Output: CandidateGroups, OverlapGroups

1 CandidateGroups← NULL

2 OverlapGroups← NULL

3 Rpi ← CreateBoundingRectangle(pi, ε)

4 GSet←WindowQuery(pi, Rpi , Groups IX)

5 for each group gj in GSet do

6 if PointInRectangleTest(pi, gj) is True then

7 insert gj into CandidateGroups

8 else if CLS is not JOIN-ANY then

9 for each pk in gj do

10 if (Distance(pi, pk, δ)6 ε) then

11 insert gj into OverlapGroups

12 break

13 end

14 end

15 end

16 end

2.5.4 Handling False Positives L2

In this section, we study the effect of using L2 as a similarity distance function on the

SGB-All operator. Refer to Figure 2.7a for illustration. In contrast to the L∞ distance, the

set of points that are exactly ε away from a1 in the L2 metric space form a circle. Inserting

a2 (Figure 2.7b) is correct using the L∞ distance since a2 is inside the ε-All rectangle of

a1’s group. However, under the L2 distance, a2 is more than ε away from a1 since a2 lies

outside a1’s ε-circle. As a result, all points that are inside a1’s ε-All group rectangle but

30

a1

a2

a3

b1

c1

X

b2

c2

c3

g1 {a1, a2, a3}

g2 {b1, b2}

g3 {c1, c2, c3}

d1

d2

g4 {d1, d2}

g1 g2

g4

g3
R1R2

R3

g1 g3 g2 g4

R2 R3

R1
Groups_IX ...

...

Figure 2.6.: SGB-All: Performing a window query on Groups IX using ε = 4 and L∞

are outside the ε-circle (i.e., the grey-shaded area in Figure 2.7b) falsely pass the bounding

rectangle test.

Procedure Naive FindCloseGroups in (Procedure 2) inspects all input data points. There-

fore, the problem of false-positive points does not occur. On the other hand, the Bounds-

Checking approach introduced in Procedures 4 and 5 uses the ε-All rectangle technique to

identify the sets CandidateGroups and OverlapGroups and hence must address the issue of

false-positive points for the L2 distance metric.

We introduce a Convex Hull Test to refine the data points that pass the Bounds-

Checking filter step. Given a group of points, a convex hull [27] is the smallest convex

set of points within a group. In Figure 2.7c, the points a1-a5 form the convex hull set for

Group g. Based on the SGB-All semantics, the diameter of the conevex hull (i.e., the two

farthest points) satisfies the similarity predicate.

The Convex Hull Test, illustrated in Procedure 6, verifies whether a point is a false-

positive. This additional test can be inserted immediately after (Line 4) in Procedure 4 or

immediately after (Line 6) in Procedure 5. Consequently, any new point that lies inside

a group’s convex hull (e.g., Point y in Figure 2.7c) satisfies the similarity predicate. In

addition, in order to verify points that are outside the convex hull (e.g., Point x in Figure

31

(a) (b)

a1

ε-All Rectangle

L∞ distance

ε-radius circle

L2 distance

a1

a2

5

3

6

631 2 4

1

2

4

5

a1

a2

a3

a5

a4

x

y

7 8 9 10

7

(c)

Figure 2.7.: (a) The ε-radius circle, (b) The problem of false positive for L2, (c) The ε-

convex hull

Algorithm 6: Convex Hull Test
Input: pi: data point, g: existing group

Output: True if pi is not false positive, False otherwise

1 ConvexHullSet← getConvexHull(g)

2 if pi inside convex hull then

3 return True

4 else

5 farthestPoint← getMaxDistElem(ConvexHullSet, pi)

6 if distance(farthestDistPoint, pi) <= ε then

7 return True

8 end

9 end

10 return False

2.7c), it is enough to evaluate the similarity predicate between pi and the convex hull. The

correctness of the convex hull test follows from the fact that the convex hull set contains the

farthest point from pi, say pf . Therefore, it is sufficient to evaluate the similarity predicate

32

Algorithm 7: Similarity Group-By ANY Framework
Input: P : set of data points, ε: similarity threshold, δ: distance function, Points IX:

spatial index

Output: Set of groups G

1 for each data element pi in P do

2 CandidateGroups← FindCandidateGroups(pi,Points IX, ε, δ)

3 ProcessGroupingANY (pi, CandidateGroups)

4 end

between pi and pf (e.g., x and Point a3 in Figure 2.7c). Section 2.7 discusses the complexity

of the convex hull approach.

2.6 Algorithms for SGB-Any

In this section, we present an algorithmic framework to realize similarity-based group-

ing using the distance-to-any semantics. The generic SGB-Any framework in Procedure 7

proceeds as follows. For each data point, say pi, Procedure FindCandidateGroups

(Line 2) uses the distance-to-any similarity predicate to identify the set CandidateGroups

that consists of all the existing groups that pi can join. In contrast to SGB-All, in the

distance-to-any semantics, a point, say pi, can join a candidate group, say g, when pi is

within a predefined similarity threshold from at least one another point in g. Procedure

ProcessGroupingANY (Line 3) inserts pi into a new or an existing group.

2.6.1 Finding Candidate Groups

A Naive FindCandidateGroups approach similar to Procedure 2 can identify the set

CandidateGroups. However, this solution incurs many distance computations, and brings

the upper-bound time complexity of the SGB-Any framework to O(n2).

The filter-refine paradigm using an ε-group bounds-checking approach while applying a

distance-to-any predicate (i.e., similar to Procedures 4-6) suffers from two main challenges.

33

5

3

6

631 2 4

1

2

4

5

5

3

6

631 2 4

1

2

4

5
a3

a1

a2

8 97

a1

a2

a3

a4

a5

a6

Input order: a1, a2, a3 Input order: a1, a2, a3, a4, a5, a6

(a) (b)

Convex Hull Set: a1, a2, a4, a5

Figure 2.8.: (a) The ε-Any bounding rectangle, (b) The false negative problem

Consider Figure 2.8a that illustrates a group of points that satisfy the distance-to-any pred-

icate. In Figure 2.8a, the Point a1 is within ε from a2 that in turn is within ε from a3. By

drawing squares of size ε × ε around the input point and forming a bounding rectangle

that encloses all these squares results in a consecutive chain-like region and the area of

false-positive progressively increases in size as we add new data points. Furthermore, the

convex hull approach to test for false-positive points cannot be applied in SGB-Any as it

suffers from false-negatives caused by the fact that the length of the diameter of the con-

vex hull can actually be more than ε in the case of SGB-Any. Details are omitted here for

brevity. Consider Figure 2.8b, After processing Point a5, the convex hull set consists of

{a1, a2, a4, a5}. Point a6 is more than Distance ε from all of the points in the convex hull

set. However, a6 is within ε from Point a3. Therefore, the convex hull test suffers from the

problem of false-negatives caused by the fact that the length of the convex hull set diameter

is more than ε in SGB-Any semantics.

Consequently, FindCandidateGroups in Procedure 8 uses an R-tree index, termed

Points IX . Points IX maintains the previously processed data points to efficiently

find CandidateGroups. Refer to Figure 2.9 for illustration. For an incoming point, say

Point x, an ε-rectangle (Line 2 of Procedure 8) is created to perform a window query on

Points IX to retrieve PointsSet (Line 3). PointsSet corresponds to the points that are

within epsilon from x, e.g., {a3, c1, c2, c3, b1, b2}. Based on the semantics of SGB-Any,

CandidateGroups contains the groups that cover the points in PointsSet. For instance,

34

Algorithm 8: FindCandidateGroups
Input: pi: data point, Points IX: spatial index, δ: distance function, ε: similarity threshold

Output: CandidateGroups

1 CandidateGroups← NULL

2 Rpi ← CreateBoundingRectangle(pi, ε)

3 PointsSet←WindowQuery(pi, Rpi, Points IX)

4 if δ is L2 then

5 PointsSet← V erifyPoints(Points IX, δ, ε)

6 end

7 CandidateGroups← GetGroups(PointsSet)

8 insert pi into Points IX

Points_IX

c2

c1

c3

d2

d1

a1

a3a2

b2

b1

X

a1

a2

a3

b1

c1

X

b2

c2

c3

d1

d2

g1

g2 g4

g3
R1R2

R3

g1 g3 g2 g4

R2 R3

R1
...

...

a1 a2 a3 c1c2 c3 b1 b2 d1 d2

a1

a3a2 b2

b1

c2

c1

c3

d2

d1

X

g1 g2 g3

g4

Inserting x causes g1,

g2, and g3 to merge

(a) (b)

g-new

g4

Figure 2.9.: (a) SGB-Any: Performing a window query (b) The disjoint data structure:

Union-Find

point a3 belongs to g1, points {c1–c3} belong to g2, and points {b1–b2} belong to group

g3. Hence, CandidateGroups = {g1, g2, g3}. Procedure GetGroups (Line 7) employs a

Union-Find data structure [28] to keep track of existing, newly created, and merged groups

(see Figure 2.9b) to efficiently construct CandidateGroups given PointsSet.

35

Algorithm 9: ProcessGroupingANY
Input: pi: data point, CandidateGroups

Output: updates CandidateGroups

1 if CandidateGroups is Empty then

2 create a new group gnew

3 ProcessInsert(pi, gnew)

4 else if sizeof(CandidateGroups) == 1 then

5 insert into existing group gout

6 ProcessInsert(pi, gout)

7 else

8 MergeGroupsInsert(CandidateGroups, pi)

9 end

2.6.2 Processing New Points

Procedure 9 gives the pseudocode for ProcessGroupingANY. The procedure (Lines 1-

6) identifies the cases when CandidateGroups is empty, or when it consists of one group.

In these cases, pi is inserted into a newly created group or into an existing group. Next,

it handles the case that occurs when pi is close to more than one group. In the SGB-Any

semantics, all candidate groups that pi can join are merged into one group. Therefore, Pro-

cedure MergeGroupsInsert (Line 8) handles merging candidate groups and then inserts

pi into the merged groups. Referring to Figure 2.9b, Point x overlaps groups g1, g2, and g3.

Based on the semantics of SGB-Any, the overlapped groups g1, g2, and g3 are merged into

one encompassing bigger group, termed G–new. In this case, the root pointers of g1, g2

and x in the Union-Find data strucure are redirected to Point a1.

2.7 Complexity Analysis

We analyze the runtime of SGB-All and SGB-Any. Let n, k, |G|, |Gc|, |Gv| be the data

cardinality, the expected number of points per group, the number of existing groups, the

36

size CandidateGroups, and the size of OverlapGroups, respectively, where k ≤ n and

|G| ≤ n as each point can belong to only one group.

2.7.1 SGB-All

The runtime for SGB-All is output-sensitive and is influenced by several factors e.g.,

the ON-OVERLAP options, and the runtimes of FindCloseGroups and ProcessOver-

lap. These factors vary with ε and with the data distribution. For instance, the number of

Groups |G| can vary from 1 to n depending on the value of ε. For example, when ε is very

small, |G| = n. Next, we analyze the runtime complexity for Bounds-Checking and, the

on-the-fly index for Bounds-Checking using the various ON-OVERLAP options.

SGB-All Join-Any. Refer to Procedure 4 Bounds-Checking. It finds the groups

CandidateGroups by linearly testing all existing groups (Lines 4-6) to determine if point

pi can join Group gj . Each test takes constant time. Thus, the runtime of ON-OVERLAP

JOIN-ANY is bounded by the number of groups, i.e., O(n |G|).

Refer to Procedure 5. Groups IX is an on-the-fly R-tree that indexes the bounding

rectangles of all existing groups. Given a new data point, say pi, a window query of size

2ε on Groups IX finds the groups CandidateGroups that pi can join. Thus, the run-

time for Procedure 5 (Line 4) is O(log |G|) and the overall runtime of ON-OVERLAP

JOIN-ANY is O(n log |G|). When |G| = n (the number of inputs tuples), the worst-

case runtime of the on-the-fly Index for Bounds-Checking ON-OVERLAP JOIN-ANY is

no better than O(n log n). In contrast, when |G| is constant, e.g., 1, the best-case runtime

is O(n). Finally, the average-case runtime of the on-the-fly index for Bounds-Checking is

O(n log |G|).

SGB-All Eliminate. The semantics of ON-OVERLAP ELIMINATE incurs additional

(k |Gv|) time while inspecting Set OverlapGroups to retrieve the subset that satisfies

the similarity predicate (Lines 8-10) in Procedure 4 and (Lines 10-12) in Procedure 5).

In addition, ProcessEliminate (Line 13) in Procedure 3 incurs additional cost of |Gc| to

update the bounds of the candidates groups after removing the overlapped points. Thus, the

37

runtime of Bounds-Checking ON-OVERLAP ELIMINATE is O(n (|G| + |Gc| + |Gv| k))

while the runtime of on-the-fly Index for Bounds-Checking ON-OVERLAP ELIMINATE

is O(n (log |G|+ |Gc|+ |Gv| k)). Naturally, k = n/|G|, so the runtime of on-the-fly Index

for Bounds-Checking ON-OVERLAP ELIMINATE is O(n (log |G|+ |Gc|+n |Gv|/|G|)).

In the worst-case, |G| = n, |Gc| = |G| and |Gv|/|G| = constant, and the corresponding

runtime of on-the-fly Index for Bounds-Checking ON-OVERLAP ELIMINATE is O(n2).

In contrast, the best-case runtime is O(n) when the sizes |G| = |Gv| = |Gc| = 1. The

average-case runtime is O(n log |G|) when the sizes of OverlapGroups |Gv| � n and

CandidateGroups |Gc| � n.

SGB-All FORM-NEW-GROUP. Procedures ProcessNewGroup and Process-

OverlapNewGroup insert the overlapped points into a temporary set S ′. Upon finding

all points in S ′, SGB-All recursively performs a new round of Form-NEW-GROUP while

grouping the contents of S ′ until S ′ is empty. Let m be the recursion counter that is ini-

tially 0, and S ′m be the set S ′ at recursion stage m. Then, S ′0 is the input dataset where the

size of S ′0 i.e., |S ′0| = n. The time cost for each round is tm= O(|S ′m| O(FindClose-

GroupsALL) + O(ProcessOverlap)) that is tm=O(|S ′m| (|Gm| + |Gm
c | + |Gm

v | km),

where |Gm|, |Gm
c | and |Gm

v | are the number of existing groups, CandidateGroups, and

OverlapGroups at each round m, respectively. Thus, the overall runtime of SGB-All

FORM-NEW-GROUP is the sum of tm from recursion depth 0 to DP , where tm is the

cost at Recursion Depth m. Then, the complexity of Bounds-Checking is
∑DP

m=0 tm =∑d
m=0O(|S ′m| (|Gm| + |Gm

c | + |Gm
v | km)). Similarly, the time complexity of the on-

the-fly index for Bounds-Checking is
∑d

m=0O(S ′m (log |Gm| + |Gm
c | + |Gm

v | km)). The

best-case behavior of Index Bounds-Checking for FORM-NEW-GROUP occurs when set

OverlapGroups is empty and the size of CandidateGroups is constant. Then, the best-

case runtime is O(n). In contrast, if the recursion depth is almost n, the worst-case runtime

is O(n3). On average, the recursion counter m = constant � n and |S ′m| � n, and the

complexity is O(m n log(|G|)).

The Convex Hull Test in Section 2.5.4 forms a convex hull for each group gj to filter

out the false-positive points. The expected size of the convex hull for one group gj is h,

38

where h = log k [29], where k is the expected number points in gj . Refer to Procedure 6.

It takes O(log h) to test if a point is inside the convex hull (Line 2). Moreover, given

a point, say pi, located outside the convex hull, it takes O(log h) to obtain the farthest

point from pi (Line 5). Thus, for a group of points, gj , the time to test if pi can join gj is

O(log h + log h); that is O(log log k). ConvexHullTest is performed for each group that

passes the PointInRectangle test with O(log k) cost (using L∞). Thus, the computation

cost to extend Procedures 4 and 5 with ConvexHullTest is O(n |G| log k) for Bounds-

Checking and O(n log |G| log k) for the on-the-fly Index for Bounds-Checking. Finally,

the average-case runtime of the on-the-fly Index for Bounds-Checking when using L2 is

O(n log |G| log k). Notice that the actual running time is faster than the average-case

because the convex hull test is executed only if a new point has passed the Group gj’s

rectangle test.

2.7.2 SGB-Any

Refer to Procedure 8. For each new input point pi, the window query returns the pro-

cessed points that are within ε from pi. Given a set of n points, the complexity of the win-

dow query is O(n log n). Moreover, Procedures getGroups and MergeGroupsInsert

use Union-Find to keep track of new, existing, and merged groups. The amortized runtime

of Union-Find for n points isO(m′α(n)) [28], wherem′ is the total operations to build new

groups, m′ = |G|, α(n) is a very slowly growing function, and α(n) ≤ 4. Therefore, the

average case of Union-Find running time is O(n), where m′ ≤ n. Hence, the average-case

runtime of SGB-Any usinpg an on-the-fly index is O(n log n) +O(n), that is O(n log n).

Also, usingL2 requires an additional step (verifyPoints) to filter out the points that do not

satisfy the similarity predicate in OverlapGroups (Line 7) with a cost k′ per point, where

k′ is the expected number of points within a window query. Consequently, the runtime cost

of SGB-Any using L2 is O(n log n + n k′). k′ is influenced by ε. Thus, the worst-case

runtime when using L2 is n2, when k′ ≈ n. If k′ is constant, the average-case runtime is

39

O(n log n). The average-case runtime of the on-the-fly Index for SGB-Any is O(n log n)

for both L∞ and L2.

Table 2.1 summarizes the average-case running time of SGB-All using the proposed

optimizations for the L∞ distance metric. The All-Pairs algorithm corresponds to naive

FindCloseGroups in Procedure 1. Similarly, Bounds-Checking and On-the-fly Indexing cor-

responds to the Bounds-Checking and Index Bounds-Checking optimizations, where |G| is

the number of output Groups and m is the recursion depth for the ON-OVERLAP FORM-

NEW. In addition, the average-case running time of SGB-Any when using the index is

O(n log n). The worst-case and best-case running times, and detailed analysis are given in

the Appendix.

Table 2.1.: SGB-All complexity for the L∞ distance

JOIN-ANY ELIMINATE FORM-NEW-GROUP

All-Pairs O(n2) O(n2) O(n3)

Bounds-Checking O(n |G|) O(n |G|)) O(m n |G|)

on-the-fly Index O(n log |G|) O(n log |G|) O(m n log |G|)

2.8 Realization and Evaluation

2.8.1 Implementation

We realize the proposed SGB operators inside PostgreSQL. In the parser, the grammar

rules, and actions related to the “SELECT” statement syntax are updated with similar-

ity keywords (e.g., DISTANCE-TO-ALL and DISTANCE-TO-ANY) to support the SGB

query syntax. The parse and query trees are augmented with parameters that contain the

similarity semantics (e.g., the threshold value and the overlap action). The Planner and

Optimizer routines use the extended query-tree to create a similarity-aware plan-tree. In

this extension, the optimizer is manipulated to choose a hash-based SGB plan.

40

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10

0

10
1

10
2

10
3

10
4

10
5

Similarity Threshold: ε

Q
u
er

y
 T

im
e(

se
co

n
d
s)

 l
o
g

All-Pairs

Bounds-Checking

on-the-fly Index

(a) SGB-All:JOIN-ANY

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10

0

10
1

10
2

10
3

10
4

Similarity Threshold: ε
Q

u
er

y
 T

im
e(

se
co

n
d
s)

 l
o
g

All-Pairs

Bounds-Checking

on-the-fly Index

(b) SGB-All:ELIMINATE

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10

0

10
1

10
2

10
3

10
4

10
5

Similarity Threshold: ε

Q
u
er

y
 T

im
e(

se
co

n
d
s)

 l
o
g

All-Pairs

Bounds-Checking

on-the-fly Index

(c) SGB-All:FORM-NEW-GROUP

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10

0

10
1

10
2

10
3

10
4

Similarity Threshold: ε

Q
u
er

y
 T

im
e(

se
co

n
d
s)

 l
o
g

All-Pairs

on-the-fly Index

(d) SGB-ANY

Figure 2.10.: The effect of similarity threshold eps on SGB-All and SGB-ANY

41

Table 2.2.: Performance evaluation queries on TPC-H

Business Question: Retrieve large volume customers

GB1 Same as the TPCH-Q18

Business Question: Retrieve customers with similar buying power, account balance

SGB1

or

SGB2

SELECT max(ab), min(tb),max(tb), average(ab), array agg(R1.c custkey)

FROM (SELECT c custkey, c acctbal as ab FROM Customer WHERE c acctbal >100) as R1

(SELECT o custkey, sum(o totalprice) as tp FROM Orders, Lineitem WHERE o orderkey in (SELECT l orderkey

FROM lineitem GROUP BY Rl orderkey having sum(l quantity) >3000) and o orderkey =l orderkey

and o totalprice > 30000) as R2 WHERE R1.c custkey=R2.o custkey

GROUP BY ab,tp DISTANCE-ALL WITHIN ε USING lone/ltwo on overlap join-any/form-new/eliminate

or GROUP BY ab,tp DISTANCE-ANY WITHIN ε USING lone/ltwo

Business Question:

Report profit on a given line of parts (by supplier nation and year)

GB2 Same as the TPCH-Q9

Business Question:

Report profit and shipment time of parts share similar profit and shipment date

SGB3

or

SGB4

SELECT count(),sum(tprof), sum(stime) FROM

(SELECT ps partkey as partkey, sum(l extendedprice * (1 - l discount) - ps supplycost *l quantity) as tprof,

sum(l receiptdate-l shipdate) as stime FROM lineitem, partsupp,supplier WHERE ps partkey = l partkey and

s suppkey=ps suppkey GROUP BY ps partkey) as profit GROUP BY tprof, stime DISTANCE-ALL WITHIN ε

USING lone/ltwo on overlap join-any/form-new/eliminate or GROUP BY tprof, stime DISTANCE-ANY WITHIN

ε USING lone/ltwo

Business Question:

Determines top supplier who contributed the most to the overall revenue for parts)

GB3 Same as the TPCH-Q15

Business Question:

Report supplier who contributed the similar profit and account balance

SGB5

or

SGB6

SELECT array agg(s suppkey), sum(r.trevenue), sum(s acctbal)

FROM (SELECT l suppkey as suppkey, sum(l extendedprice * (1 - l discount)) as trevenue ,

sum(s acctbal) As acctbal FROM Lineitem WHERE l shipdate > date ’[1995-01-01]’ and l shipdate < date

’[1996-01-01]’+ interval ’10’ month GROUP BY l suppkey)as r GROUP BY r.trevenue, s acctbal DISTANCE-ALL

WITHIN ε USING lone/ltwo on overlap

join-any/form-new/eliminate or GROUP BY r.trevenue, s acctbal DISTANCE-ANY WITHIN ε USING lone/ltwo

The executor modifies the hash-based aggregate group-by routine. Typically, an ag-

gregate operation is carried out by the incremental evaluation of the aggregate function

on the processed data. However, the semantics of ON-OVERLAP ELIMINATE and ON-

OVERLAP FORM-NEW-GROUP can realize final groupings only after processing the

42

complete dataset. Therefore, the aggregate hash table keeps track of the existing groups

in the following way. First, the aggregate hash table entry (AggHashEntry) is extended

with a TupleStore data structure that serves as a temporary storage for the previously pro-

cessed data points. Next, referring to the Bounds-Checking FindCloseGroups presented in

Procedure 4, each group’s bounding rectangle is mapped into an entry inside the hash di-

rectory. Bounds-Checking FindCloseGroups linearly iterates over the hash table directory

to build the sets CandidateGroups and OverlapGroups. The Index Bounds-Checking in

Procedure 5 employs a spatial index to efficiently look up all existing groups a data point

can join. Consequently, we extend the executor with an in-memory R-tree that efficiently

indexes the existing groups’ bounding rectangles.

In the implementation of FindCloseGroupsAny in Procedure 8, a spatial index is created

to maintain the set of points that have been processed and assigned to groups. Moreover,

we extend the executor with the Union-Find data structure Disjoint-set forest to support the

operations GetGroups and MergeGroupsInsert.

2.8.2 Datasets

The goal of the experimental study is to validate the effectiveness of the proposed

SGB-All and SGB-Any operators using the optimization methods discussed in Sections 2.5

and 2.6. The datasets used in the experiments are based on the TPC-H benchmark [30], and

real-world social checking data Brightite and Gowalla [31]. Table 2.2 gives the queries

used for performance evaluation experiments on TPC-H data. The multi-dimensional at-

tribute is the combination of different tables. For example, SGB queries, i.e., SGB1/SGB2,

are combination of Customer and Order Table, and the number of tuples in the Customer

and Order tables is 150K ∗ SF and 1500K ∗ SF , respectively, where the scale factor SF

ranges from 1 to 60. For Brightite and Gowalla data, SGB queries follow Examples 1 and

3 to cluster users into groups by check-in information i.e., latitude and longitude.

The experiments are performed on an Intel(R) Xeon (R) E5320 1.86 GHz 4-core pro-

cessor with 8G memory running Linux, and using the default configuration parameters in

43

0 10 20 30 40 50 60
10

-1

10
0

10
1

10
2

10
3

Data Size(GB)

Q
u
er

y
 T

im
e(

se
co

n
d
s)

 l
o
g

Bounds-Checking

on-the-fly Index

(a) SGB-All:JOIN-ANY

0 10 20 30 40 50 60
10

-1

10
0

10
1

10
2

10
3

Data Size(GB)

Q
u
er

y
 T

im
e(

se
co

n
d
s)

 l
o
g

Bounds-Checking

on-the-fly Index

(b) SGB-All:ELIMINATE

0 10 20 30 40 50 60
10

0

10
1

10
2

10
3

10
4

Data Size(GB)

Q
u
er

y
 T

im
e(

se
co

n
d
s)

 l
o
g

Bounds-Checking

on-the-fly Index

(c) SGB-All:FORM-NEW-GROUP

0 5 10 15 20 25 30
10

-1

10
0

10
1

10
2

10
3

10
4

10
5

Data Size(GB)
Q

u
er

y
 T

im
e(

se
co

n
d
s)

 l
o
g

All-Pairs

on-the-fly Index

(d) SGB-ANY

Figure 2.11.: The effect of increasing data size on the SGB-All variants and SGB-ANY

PostgreSQL. At first, we focus on the time taken by SGB and hence disregard the data

preprocessing times, (e.g., the inner join and filter predicates in Query 18). Furthermore,

to understand the overhead of new SGB query, we calculate SGB response time with com-

plexity query(e.g., the SGB Query 3 to 6). In the chapter, we only give the execution time

of the L2 distance metric because the performance when using the L∞ distance metric

exhibits a similar behavior.

2.8.3 Effect of Similarity Threshold Eps

The effect of the similarity threshold ε on the query runtime is given in Figure 2.10

for SGB-Any and all three overlap variants of SGB-All; JOIN-ANY, ELIMINATE and

44

FORM-NEW-GROUP. The experiment’s data size is 0.5 million records. ε varies from 0.1

to 0.9.

Consider an unskewed dataset, Performing SGB-All using a smaller value of ε (e.g.,

0.1 or 0.2) forms too many output groups because the similarity predicate evaluates to true

on small groups of the data. On the other hand, increasing the value of ε forms large

groups that decreases the expected number of output groups. Thus, we observe in Fig-

ure 2.10(a), 2.10(b), 2.10(c) that the runtime of SGB-All using the various semantics de-

creases as the value of ε approaches 0.9 with the exception of ε of value 0.7. The slight

increase in runtime in the JOIN-ANY and FORM-NEW-GROUP semantics is attributed to

the distribution of the experimental of data.

The runtime and speedup in Figure 2.10(a), 2.10(b), 2.10(c) validate the advantage of

the optimizations for Bounds-Checking and on-the-fly Index over All-Pairs. The on-the-

fly Index approach shows two orders of magnitude speedup over All-Pairs, and Bounds-

Checking approach wins one order magnitude faster than that of All-Pairs. The reason

is that All-Pairs realizes similarity grouping by inspecting all pairs of data points in the

input, and its runtime is bounded by the input size. In contrast, Bounds-Checking defines

group bounds in conjunction with the similarity threshold to avoid excessive runtime while

grouping. Therefore, the runtime of Bounds-Checking is bounded by the number of output

groups. Lastly, indexing output groups using on-the-fly Index alleviates the effect of the

number of output groups on the overall runtime and makes it steady across the various

ON-OVERLAP options.

The effect of the similarity threshold ε on the query runtime for the SGB-Any query

is given in Figure 2.10(d). The experiment illustrates that the runtime for All-Pairs SGB-

Any decreases as the value of ε increases. Furthermore, the runtime of the on-the-fly Index

method slightly changes. As a result, the speedup between the All Pairs and the on-the-

fly Index methods slightly decreases. The runtime result validates that the performance

of the on-the-fly Index method is stable as we vary the value of ε. The reason is that the

Union-Find data structure efficiently finds and merges the candidate groups. Figure 2.10(d)

45

verifies that, for all values of ε, the runtime performance of the on-the-fly Index method for

SGB-Any is two orders of mangitude faster than the All-Pairs SGB-Any.

2.8.4 Speedup

Figure 2.11(a), 2.11(b) and 2.11(c) give the performance and speedup of the Bounds-

Checking and on-the-fly Index methods for large datasets with scale factor up to 60. The

similarity threshold ε is fixed to 0.2. We do not show the results for the naive approach

All-Pairs because its runtime increases quadratically as the data size increases. From Fig-

ure 2.11(a), 2.11(b) and 2.11(c), we observe that the runtime of the Bounds-Checking

method increases as the number and size of groups increases. The on-the-fly Index Bounds-

Checking method finds the sets CandidateGroups and OverlapGroups efficiently using

the R-tree index, and the runtime of on-the-fly Index Bounds-Checking method increases

steadily and is consistently lower than the Bounds-Checking methods. We observe that the

speedup of the on-the-fly Index Bounds-Checking method is an order of magnitude better

than that of Bounds-Checking.

Figure 2.11(d) gives the effect of varying the data size on the runtime of SGB-Any when

ε is fixed to 0.2. The TPC-H scale factor (SF) ranges from 1 to 32. We observe that, as the

data size increases, the runtime of the All-Pairs method increases quadratically, while the

runtime of the on-the-fly Index method has a linear speedup. Moreover, the speedup results

in the figure demonstrate that the on-the-fly Index method is approximately three orders of

magnitude faster than All-Pairs SGB-Any as the data size increases.

2.8.5 Comparison with Clustering Algorithm

We compared our algorithm with outside of database approach clustering, K-means [21],

DBSCAN [23], BIRCH [22]. For DBSCAN, we use the efficiently implementation from

[32], which provide the spatial index to enhance the range query. The similarity threshold

ε of DBSCAN and SGB is fixed to 0.2. Figure 2.12 shows the SGB method significantly

outperformed DBSCAN, BIRCH and K-means even by 1 to 3 order of magnitude on the

46

real-world data. The main reason is that cluster algorithm usually scan data more than once,

this involved more computation time. On the other hand, we are building groups while scan

tuples, and use group bound and spatial index to reduce the time to query data more than

once.

2.8.6 Overhead of SGB

Figure 2.13 illustrates the effect of the various data sizes on the runtime of similarity-

based groupings and traditional Group-By queries while varying the scale factor from 1G to

20G. The similarity threshold ε is fixed to 0.2. The semantics of the ON-OVERLAP clause

plays a key role on the runtime of SGB-All. For instance, the JOIN-ANY variant achieves

the best runtime among the SGB-All variants since it places overlapped elements into arbi-

trarily chosen groups. To the contrary, the FORM-NEW-GROUPS semantics incurs addi-

tional runtime cost while placing overlapped elements into new groups. The ELIMINATE

semantics drops all overlapped elements causing the size of the output groups to shrink.

Furthermore, we observe that the performance of the traditional Group-by operator is com-

parable to the SGB-All and SGB-Any variants when using the on-the-fly Index. The on-

the-fly Index SGB-All ON-OVERLAP JOIN-ANY shows better performance than that of

traditional Group-By, and the on-the-fly Index SGB-All ON-OVERLAP ELIMINATE bring

additional 15 percentage overhead when compared with the traditional Group-By because

the postprocessing step to eliminate the overlap Group sets. The on-the-fly Index SGB-All

ON-OVERLAP FORM-NEW shows 40 percent overhead than the traditional Group-By.

Finally, the on-the-fly Index SGB-Any brings an additional 20 percent overhead than when

compared with the traditional Group-By.

2.9 Related Work

Previous work on similarity-aware query processing addressed the theoretical founda-

tion and query optimization issues for similarity-aware query operators [9]. [33, 34] intro-

duce similarity algebra that extends relational algebra operations, e.g., joins and set oper-

47

(a) Brightkite (b) Gowalla

Figure 2.12.: Comparison with clustering methods

(a) GBY2 vs SGB3 and SGB4 (b) GBY3 vs SGB5 and SGB6

Figure 2.13.: The effect of the data size on SGB vs. SQL GBY

48

ations, with similarity semantics. Similarity queries and their optimization include algo-

rithms for similarity range search and K-Nearest Neighbor (KNN) [35], similarity join, and

similarity aggregates. Most of work focus on semantic and transformation rules for query

optimization purpose independently from actual algorithms to realize similarity-aware op-

erators. In contrast, our focus is on the latter.

Clustering forms groups of similar data for the purpose of learning hidden knowledge.

Clustering methods and algorithms have been extensively studied in the literature, e.g.,

see [10], and the corresponding algorithm are widely extended for data preprocessing, e.g.,

see [36–38]. The main clustering methods are partitioning, hierarchical, and density-based.

K-means [21] is a widely used partitioning algorithm that uses several iterations to refine the

output clusters. Hierarchical methods build clusters either divisively (i.e., top-down) such

as in BIRCH [23], or agglomeratively (i.e., bottom-up) such as in CURE [39]. Density-

based methods, e.g., DBSCAN [22], cluster data based on local criteria, e.g., density reach-

ability among data elements. The key differences between our proposed SGB operators and

clustering are: (1) the proposed SGB operators are relational operator that are integrated in

a relational query evaluation pipeline with various grouping semantics. Hence, they avoid

the impedance mismatch experienced by standalone clustering and data mining packages

that mandate extracting the data to be clustered out of the DBMS. (2) In contrast to stan-

dalone clustering algorithms, the SGB operators can be interleaved with other relational

operators. (3) Standard relational query optimization techniques that apply to the standard

relational group-by are also applicable to the SGB operators as illustrated in [9]. This is not

feasible with standalone clustering algorithms. Also, improved performance can be gained

by using database access methods that process multi-dimensional data.

An early work on similarity-based grouping appears in [40]. It addresses the inconsis-

tencies and redundancy encountered while integrating information systems with dirty data.

However, this work realizes similarity grouping through pairwise comparisons which in-

cur excessive computations in the absence of a proper index. Furthermore, the introduced

extensions are not integrated as first class database operators. The work in [41] focuses

on overcoming the limitations of the distinct-value group-by operator and introduces the

49

SQL construct “Cluster By” that uses conventional clustering algorithms, e.g., DBSCAN,

to realize similarity grouping. Cluster By addresses the impedance mismatch due to the

data being outside the DBMS to perform clustering. Our SGB operators are more generic

as they use a set of predicates and clauses to refine the grouping semantics, e.g., the dis-

tance relationships among the data elements that constitute the group and how inter-group

overlaps are dealt with.

Several DBMSs have been extended to support similarity operations. SIREN [42] is a

similarity retrieval engine that allows executing similarity queries over a relational DBMS.

POSTGRESQL-IE [43] is an image handling extension of PostgreSQL to support content-

based image retrieval capabilities, e.g., supporting the image data type and responding to

image similarity queries. While these extensions incorporate various notions of similarity

into query processing, they focus on the similarity search operation. SimDB [9] is a Post-

greSQL extension that supports similarity-based queries and their optimizations. Several

similarity operations, e.g., join and group-by, are implemented in as first-class database

operators. However, the similarity operators in SimDB focus on one-dimensional data and

do not handle multi-dimensional attributes.

2.10 Summary

In this chapter, we address the problem of similarity-based grouping over multi-

dimensional data. We define new similarity grouping operators with a variety of practical

and useful semantics to handle overlap. We provide an extensible algorithmic framework to

efficiently implement these operators inside a relational database management system un-

der a variety of semantic flavors. The performance of SGB-All performs up to three orders

of magnitude better than the naive All-Pairs grouping method. Moreover, the performance

of the optimized SGB-Any performs more than three orders of magnitude better than the

naive approach. Finally, the performance of the proposed SGB operators is comparable to

that of standard relational Group-by.

50

3 EFFICIENT PROCESSING OF HAMMING-DISTANCE-BASED

SIMILARITY-SEARCH QUERIES OVER MAPREDUCE

3.1 Introduction

Hamming-distance search over big data plays an important role in a large variety of

applications. For example, widely used search engines, such as Google, Baidu, and Bing,

use Hamming-distance search in their image content-based search engines that usually in-

dex billions of images (e.g., refer to [11]). Typically, each image is modeled by a high-

dimensional vector of extracted features, e.g., color histograms, texture features, and edge

orientation. Then, based on the learned similarity hash function, e.g., as in [11–13], each

image is converted into a binary code. Given a query image that gets modeled with the

same high-dimensional vector of features, the search engine maps it into a binary code

and performs a Hamming-distance search to find images whose binary codes have a Ham-

ming distance smaller than a given threshold ĥ from the query image. Hamming search

is also widely used to detect duplicate web pages in applications, e.g., web mirroring,

plagiarism, and spam detection [6]. A similarity hash function [44] is applied to map a

high-dimensional vector into a binary code, then a Hamming-distance range search finds

web documents that are similar to the query document.

Typically, computing the Hamming distance between two binary codes is performed by

an Exclusive-Or operation (XOR, for short) that is followed by a count operation to sum

up the number of ones in the XOR result. The number of ones corresponds to the number

of differing bits between the two binary codes. Thus, a linear scan over the binary codes

of the underlying dataset takes place to perform the XORing, the counting, and the ranking

to retrieve the objects within a certain range of tq (i.e., the ones within the predefined

Hamming distance threshold ĥ). Due to the linear scan, this approach is slow. When

joining two tables via a Hamming distance predicate, the linear scan approach induces a

51

quadratic cost to evaluate the join. An efficient indexing of the binary codes is called for to

perform the Hamming range query and avoid a complete scan over the underlying dataset,

while remaining low on memory usage.

The Hamming distance problem [45, 46] is first studied for small distance thresholds,

i.e., ĥ = 1. An algorithm proposed by Manku et al. [6] uses multiple hash tables to enhance

query speed. However, duplicating the hash entries multiple times for the entire datasets

is expensive and performance tends to degrade as a linear scan over tuples within a bucket

is required. HEngine [47] extends Manku’s algorithm to improve the query’s speed with

less memory. However, HEngine is sensitive to the Hamming distance threshold ĥ, and

it needs to generate one-bit differing binary code with each query, then carry out several

binary searches over sorted hash tables. Recently, MapReduce as a reliable distributed

computing model has been adopted for handling a variety of similarity queries, e.g., [6,

48–51]. Existing techniques for Hamming-distance queries cannot be easily extended for

MapReduce. The reason is that most of the existing techniques use centralized multiple

hash-table indexes. Because MapReduce needs to write intermediate data on disk when

shuffling data between the mappers and the reducers, rearranging multiple indexes and

multiple versions of the same data can be quite inefficient.

In this chapter, we focus on two variants of the Hamming distance query prob-

lem, namely Hamming-distance-based select and Hamming-distance-based join (for short,

Hamming-select and Hamming-join, respectively). We propose a new index, termed the

HA-Index, that is designed to reduce redundant and duplicate distance computations dur-

ing the Hamming-distance search. The HA-Index assumes that the underlying datasets are

preprocessed; data is mapped from the high-dimensional space into one-dimensional binary

codes that are fixed-length strings of 0’s and 1’s. Then, the binary codes are sorted using

the Gray ordering [24]. Sorting the binary codes in this way helps group together multiple

binary codes that share a common substring or non-contiguous yet similar sequences of

bits. By computing the distances between the query binary code and similar substrings,

many redundant distance computations can be avoided.

52

Table 3.1.: Symbols and their definitions

Symbol Definition

Rd d-dimensional vector space

n, |R| Number of tuples in dataset R

m, |S| Number of tuples in dataset S

tq Query tuple

k The required number of nearest neighbors

||ti, tj||h Hamming distance between tuples ti and tj

H Similarity Hash function

Ui Binary code for tuple ti

L = |U | Length of the binary code U

li The ith bit in the binary code

ĥ Hamming distance threshold

ĥ-select(tq, S) Hamming distance select for

tuple tq and datasets S

ĥ-join(R, S) Hamming distance join between datasets

R and S

N Number of data partitions

The contributions of this chapter are as follows.

• Based on properties of binary codes, we introduce two approaches to improve the per-

formance of Hamming-select and Hamming-join. The first approach uses a simple

Radix-tree index from the literature. The second approach is based on the HA-Index

with both a static and a dynamic version. We also introduce the maintenance opera-

tions, i.e., build, insert, update, and search operations, for the dynamic HA-Index.

53

• For Hamming-joins over large and skewed data, we propose an efficient data parti-

tioning technique for balancing data computations among servers, and introduce a

distributed version of the HA-Index to reduce data shuffling inside MapReduce.

• We conduct an extensive experimental study using real datasets and demonstrate that

the HA-Index (i) enhances the performance of Hamming-select and Hamming-join

by two orders of magnitude over state-of-the-art techniques, and (ii) saves memory

usage by more than one order of magnitude. We also evaluate how the proposed

index improves approximate algorithms for kNN-select and kNN-join operations.

The rest of this chapter proceeds as follows. Section 3.5 discusses related work. Sec-

tion 3.2 presents the problem definition. Section 3.3 introduces the centralized-server ap-

proach for approximate Hamming-select and Hamming-join. Section 3.4 introduces the

distributed version of the HA-Index using MapReduce and explains how Hamming-select

and Hamming-join can be performed in MapReduce. Section 3.6 presents and discusses

the experimental results. Finally, Section 3.7 contains concluding remarks.

3.2 Preliminaries

3.2.1 Hamming-distance-based Similarity Operations

We assume that data tuples represent points in a d-dimensional metric space, say Rd.

Given two data tuples, say ti and tj , let ||ti, tj|| be the distance between ti and tj in Rd. The

Hamming distance between ti and tj , denoted by ||ti, tj||h, helps in retrieving the tuples

in a dataset that are within some threshold from an input tuple, either ti or tj in this case.

Table 3.1 summarizes the symbols used in this chapter.

Definition 3.2.1 Hamming-distance-based Similarity Select [6] (referred to as Hamming-

select, for short): Given a query tuple, say tq, and a dataset, say S, with its corresponding

collection of binary codes, denoted by US , and an integer, say ĥ, that represents the sim-

ilarity threshold for the Hamming distance, Hamming-select identifies a subset from S,

denoted by ĥ-select(tq, S) for short, where ∀o ∈ ĥ-select(tq, S), ||o, tq||h ≤ ĥ.

54

Similarly, we define the Hamming-distance-based similarity join as follows.

Definition 3.2.2 Hamming-distance-based Similarity Join (referred to as Hamming-join,

for short): Given two collections of binary codes, say UR and US , that correspond to two

datasets, say R and S, respectively, and an integer, say ĥ, that represents the similarity

threshold for the Hamming distance, Hamming-join identifies the set ĥ-join(R, S) of tuple

pairs such that (ti, tj) ∈ ĥ-join(R, S) iff ti ∈ R and tj ∈ S and ||ti, tj||h ≤ ĥ.1

Example 5 Consider the set of binary codes given in Table 3.2.1 and a Hamming

distance threshold ĥ = 3. The query tuple tq has a binary code “101100010”.

The output of the Hamming-distance-based similarity select is {t0, t3, t4, t6}. Using

the same Hamming distance threshold ĥ, the output of the Hamming-distance-based

similarity join for the datasets in Tables 3.2.1 and 3.2.1 is {(r0, t0), (r0, t3), (r0, t4),

(r0, t6)},{(r1, t0), (r1, t3), (r1, t4), (r1, t6)}, {(r2, t3)}.

From the example above, one can produce the output set by simply scanning the table

one tuple at a time, performing Hamming distance calculation via the XOR operation, and

reporting the tuple as an output if the computed Hamming distance is smaller than or equal

to ĥ. If |S| = n, then the cost of computing Hamming-select consists of O(n) tuple reads

and O(n) Hamming-distance computations. Similarly, the cost of computing Hamming-

join between the two datasets R and S, where |R| = m and |S| = n respectively, with a

nested-loop join algorithm, consists of O(mn) tuple reads and O(mn) Hamming-distance

computations. The focus of this chapter is to develop a Hamming-distance-based tree index

to reduce the above costs.

1Different from the kNN-join, ĥ-join for datasets R and S is symmetric, i.e., ĥ-join(R, S)= ĥ-join(S, R).

55

Table 3.2.: Table S

tuple binary U

t0 001 001 010

t1 001 011 101

t2 011 001 100

t3 101 001 010

t4 101 110 110

t5 101 011 101

t6 101 101 010

t7 111 001 100

Table 3.3.: Table R

tuple binary U

r0 101 100 010

r1 101 010 010

r2 110 000 010

3.3 Hamming-select Algorithms

In this section, we first introduce the basic concept and principles of binary hash codes,

and illustrate the Radix-Tree-based approach. We then introduce two variants of our pro-

posed HA-Index, namely the static and dynamic HA-indexes along with their associated

algorithms.

3.3.1 Properties of Binary Codes

Definition 3.3.1 A binary code Û is said to be a fixed-length substring (FLSS) of another

binary code U if |U | = |Û | and there exist i and j, 1 ≤ i, i+ j ≤ |U | such that ∀i, i ≤ v ≤

56

i + j, and U [v] = Û [v]. Thus, only the bits between i and i + j are the same and all the

remaining can be any combination of 0s and 1s.

For example, consider Tuple t0 in Table 3.2.1. Let · denote a 0 or a 1. Based on

the above definition, Û=“ · · · ·0101 · ” is one FLSS of t0’s binary code “001101010”.

Alternatively, V̂ =“101 · · · · · ·” is not an FLSS of t0’s binary code.

Definition 3.3.2 A binary code, Û , is the fixed-length SubSequence (FLSSeq, for short)

of a binary code U if there exists a strictly increasing sequence of indices of U such that

∀j ∈ {1, 2, . . . , k′}, we have U [j] = Û [j] and |U | = |Û |.

For example, Û=“···0·1·1·” is one possible FLSSeq of t0’s binary code “001001010”

in Table 3.2.1. Thus, Û belongs to Set FLSSeq of Tuple t0. To compute the Hamming

distance between an FLSSeq and a query binary code, we only count the bit difference in

the corresponding effective bit positions. For instance, if one FLSSeq is Û=“ · · ·0 ·1 ·1 ·”

and the query binary code is U=“001001010”, the Hamming distance ||Û , U ||h=2.

Proposition 3.3.1 Hamming Downward Closure Property A binary code U ∈

ĥ-select(tq, S) iff each FLSS of U , say UFLSS , (each FLSSeq of U , say UFLSSeq, re-

spectively) meets the condition ||tq, UFLSS||h ≤ ĥ (||tq, UFLSSeq||h ≤ ĥ, respectively).

We omit the proof for simplicity. Instead, we illustrate the above proposition using the

following example.

Example 6 Refer to the Hamming-distance query in Example 5 and Table 3.2.1 and Ta-

ble 3.2.1. Suppose that the Hamming-distance threshold ĥ = 2. Consider the following

example cases:

• Case 1: Given a query binary code tq = “110010010”, since one FLSS, UFLSS =

“001······”, is the binary code of an FLSS for both t0 and t1 and ||UFLSS, tq||h ≥ 3,

then neither t0 nor t1 can belong to ĥ-select(tq, S).

57

0 1

01

t0

01

0 1

1100110011001100

001010 011101

01010 11101 10110 01010

t1

t3 t5 t4 t6

t7t2

Figure 3.1.: Radix tree

• Case 2: Given a query binary code tq = “110110010”, the binary code “·11001100”

is an FLSS (UFLSS) for both t2 and t7, ||UFLSS, tq||h ≥ 3, thus, neither t2 nor t7 can

belong to ĥ-select(tq, S).

• Case 3: Given a query binary code tq = “110100010”, the binary code “1010 ·1 · · ·”

is an FLSSeq for both t3 and t5, ||UFLSSeq, tq||h ≥ 3, therefore, neither t3 nor t5

can belong to ĥ-select(tq, S).

3.3.2 Radix-Tree-Based Approach

The idea behind using a Radix-Tree index (also termed the PATRICIA trie) [52] is to

merge the XOR operations for various binary codes if they happen to share FLSSs, e.g.,

similar to Case 1 of the example above. One XOR operation on a common FLSS can be

used to verify all participant tuples in this FLSS. Thus, we can build a prefix tree out of the

binary codes. Based on the above closure property (Proposition 3.3.1), we can compute the

Hamming distance with prefixes of the Radix-Tree from the root to find qualifying binary

codes in a top-down fashion.

Example 7 Figure 3.1 gives the corresponding Radix-Tree for the binary codes in Ta-

ble 3.2.1. From the Radix-Tree, Tuples t0 and t1 in Table 3.2.1 share the same FLSS

UFLSS = “001 · · · · · ·”. Given the query binary code tq = “110010110” and a Hamming-

58

distance query threshold ĥ = 2, both Tuples t0 and t1 can be discarded without computing

the whole Hamming distance for all binary positions, because the Hamming distance from

UFLSS with the first three bits of tq is bigger than the predefined threshold ĥ. Thus, process-

ing the Hamming-distance-based select can stop early at the upper level of the Radix-Tree.

Notice that although useful in the above example, the Radix-Tree-based approach has

several disadvantages, mainly due to its prefix-sensitiveness. For example, Tuples t2 and

t7 in Figure 3.1 are split into two branches in the Radix-Tree, although only the first bit

in the two tuples is different while all their remaining bits are the same. Thus, the search

path would go to different branches of the tree and redundant computations in these two

branches cannot be avoided. In the worst case, if the binary codes in the Radix-Tree do

not share common prefixes, then searching from the root will bring the computation cost as

bad as O(2L), because it would go through every branch of the Radix-Tree. As a result, we

propose the HA-Index to address the prefix-sensitivity of the Radix-Tree-based approach.

3.3.3 Static HA-Index

The idea behind the Static HA-Index is to share the common substrings, i.e., the max-

imal FLSSs, in contrast to sharing the common prefixes for the binary codes of the un-

derlying dataset. Thus, redundant Hamming distance computations can be avoided. Recall

Case 2 of Example 6, the FLSS for t2 and t7 is “ · 01101010”. For the Radix-Tree-

based approach in Figure 3.1, searching for the qualifying tuples would proceed to different

paths, which introduces redundant computations. Thus, if we are able to realize an index

that shares the common FLSSs, we would be able to avoid redundant and unnecessary

Hamming-distance computations.

Static bit segmentation: We segment the binary codes into fixed-length contiguous

substrings (called fixed-length segments). For instance, assuming that each segment is of

Size 3, the binary code for tuple t2 is divided into three segments, “011”, “001” and “100”.

The path along these segments can be traced via an undirected path. For example, the path

that corresponds to tuple t2 is illustrated in Figure 3.2 where it connects Nodes N2 to N11

59

001 011 101

001 011 101

100010 101

111

110

N1 N2 N3 N4

N5 N6 N7 N8

N9 N10 N11 N12110

Figure 3.2.: Static HA-Index

60

via Intermediate Node N6. Meanwhile, the path of Tuple t7 includes Nodes N4, N6 and

N11. Thus, Tuples t2 and t7 can share the same vertex nodes N6 and N11. While traversing

the index, the Hamming-distance computation for Nodes N6 and N11 will be performed

only once. In the next section, we demonstrate how the Static HA-Index can be used to

evaluate both the Hamming-select and Hamming-join operations.

The static HA-Index has several limitations though. Both the height and the length of

the paths in the Static HA-index are sensitive to the segment size. Because the segment

sizes are fixed, it is possible to miss common bit substrings that do not align to segment

boundaries. Also, both the Radix-Tree and the static HA-Index optimize for the FLSSs of

the binary codes. An index that would support FLSSeqs, in contrast to just the FLSSs

(recall that the FLSSs are subsets of the FLSSeqs), would allow for more shared dis-

tance computations and hence additional savings. Consider Case 3 of Example 6. Both

the Radix-Tree and Static-HA-Index approaches fail to capture the common FLSSeq be-

tween t3 and t5. In the next section, we introduce the Dynamic HA-Index to address these

limitations.

3.3.4 Dynamic HA-Index

Definition 3.3.3 Gray Order: is an ordering of the binary codes such that consecutive

binary codes differ only by one bit, i.e., the Hamming distance between two consecutive

binary codes that are sorted according to the Gray order is equal one [24].

Proposition 3.3.2 Gray Order and Clustering: When the binary codes are ordered based

on the Gray order, data tuples are naturally clustered [53],i.e., the Hamming distance

between consecutive ordered binary codes is small as the consecutively ordered binary

codes share common FLSSeqs.

For instance, the data tuples in Table 3.2.1 can be ordered based on the Gray order

of their corresponding binary codes in descending order, and the resulting sorted order

is {t0, t1, t2, t7, t4, t6, t3, t5}. Observe that the sorted binary codes provide two important

61

N1 N2 N3 N4 N5 N6

N7 N8 N9 N10

N12N11

….0.010 ….1.101 0…….. 1.….... ….101.. ….010..

..10.1... 101......

00.…... …1...10.1..0.100 ...0.1...

t0 t3 t1 t5 t2 t7 t4 t6

Figure 3.3.: Dynamic HA-Index

62

properties, namely the downward closure and the clustering properties, that facilitate ef-

ficient Hamming-distance-based query processing. Thus, our aim is to realize an index

structure that preserves and leverages these properties. The Dynamic HA-Index will strate-

gically divide the binary codes into segments (i.e., sequences of data points that are close

in their binary values according to the Gray order). As such, the clustering property is pre-

served to ensure that nodes with similar FLSSeqs are close to each other in the index. For

example, Tuples t2 and t7 are ordered next to each other, and these properties can overcome

the prefix-sensitivity of the Radix-Tree-based approach.

In the Dynamic HA-Index, the leaf nodes store data tuples while the non-leaf nodes

store the FLSSeqs of the children nodes. Refer to Figure 3.3 for an illustration. Internal

node N1 represents the FLSSeq = “ · · · 0 · 010” of Tuples t0 and t3. Internal node N2

represents the FLSSeq = “···1·101” that is common to both Tuples t1 and t5. Furthermore,

Internal NodeN7 represents the FLSSeq for NodesN1 andN2. Notice, all the descendants

of an HA-Index node can be safely discarded from further Hamming-distance computations

if the node’s corresponding FLSSeq does not qualify the Hamming-distance threshold,

thereby reducing computation overheads.

3.3.5 Dynamic HA-Index Manipulation

The primary objective of all the Dynamic HA-Index manipulation algorithms, including

build, delete, and insert, is to maintain the FLSSeq properties of the index while keeping

the size of the index reasonably small.

Bulkloading builds the Dynamic HA-Index in a bottom-up fashion. It has two steps.

The first step sorts all the data tuples according to the Gray order of their nondecreasing

binary codes. The second step scans these tuples sequentially using a sliding window with

w slots to form index nodes. Algorithm 10 illustrates the pseudo-code to build the Dynamic

HA-Index. A queue is initialized to store the temporary nodes from the window (Line

2). From the tuples within a window, Function extractFLSSeq extracts the maximal

FLSSeqs from the tuples’ binary codes to form new parent nodes (Line 5), and denotes

63

Algorithm 10: H-Build
Input: T : Set of data points, w: Window, md: Depth of HA-index, s: Sliding window size

Output: HA:HA-Index for dataset T

1 Sort T based on the non-decreasing Gray order of the tuples’ binary codes;

2 q: Queue;

3 for each data element ti of T inside Window w do

4 var n, n̂: Node;

5 n, n̂← extractFLSSeq(ti, · · · , ti+w); // n, the parent node of n̂

6 if n̂ is new then

7 insert n̂ into the current level of the HA-Index.

8 end

9 else

10 update n̂’s frequency

11 end

12 if n is not empty then

13 q.enqueue(n);

14 end

15 else

16 put Tuple ti inside Window w into the top level of the HA-Index;

17 end

18 w← w+s; //sliding the window

19 end

20 var d:0, begin:0, end:q.size;

21 while q is not empty and d ≤md do

22 // Process similar to Lines 4-18

23 // Use two pointers for q to record the HA-Index depth d

24 end

the new binary code of the child node. Then, the new temporal node is inserted into the

queue (Line 7). For instance, Tuples t0 and t1 share the same FLSSeq = “0010 · 1 · · · ”.

64

Thus, this FLSSeq’s corresponding new node is formed and is inserted into the queue.

To save memory storage, Function extractFLSSeq captures the binary code of t0 as

“ · · · ·0 · 010”. Therefore, the non-leaf nodes with the same FLSSeq are consolidated

into one node. Hence, Tuple t3 would be denoted with the same binary code as that of

t0, and would share the same binary codes. Notice that we record the frequency of each

node (Line 6-11). For example, Node N1 represents the binary code for t0 and t3. Thus,

the frequency for N1 is 2. If tuples inside the window do not share any FLSSeq among

each other, these tuples are linked to the top level of the HA-Index (Line 16). The window

continues to slide until all the data points are scanned in the first round. Lines 21-24 merge

the internal nodes as Lines 4-18 and we can use two pointers begin and end for the queue

to indicate the depth. The building process continues until the desired depth is reached.

In addition, more than one leaf node can be linked to the same internal node, e.g.,

Tuples t1 and t5 are linked to Internal Node N1 in Figure 3.3. Thus, we build a hash table

for the bottom node, e.g., N1, where the key is the leaf node’s binary codes, and value is

the tuple’s ID. Naturally, if users only want to learn the qualifying binary codes, then there

is no need to keep the leaf nodes of The HA-Index. An HA-Index without leaf nodes could

save the overhead of building hash tables, and can be used in MapReduce Hamming-join

as in Section 3.4.

Deletion removes a tuple with its corresponding binary code from a Dynamic HA-

Index. Algorithm 11 gives the corresponding process. First, a leaf node that contains the

tuple to be deleted is located by depth-first search using the tuple’s binary code as the search

key. One stack is used to denote the unexplored paths. Function bitmatch tests whether

one binary code is the FLSS or FLSSeq of the deleted tuple (Lines 3 and 14). Then, the

tuple is removed from the HA-Index. After deletion, the frequency of the corresponding

node needs to be decremented (Lines 5 and 16). If one node contains 0 or less entries, it is

removed.

Inserting a new data tuple into a Dynamic HA-Index is similar to the deletion process.

Insertion uses a depth-first search to locate the corresponding leaf node, then the search

process looks for the leaf node that shares the maximal FLSSeq with the newly inserted

65

data tuple. If no such leaf node is found, we put the newly inserted data tuple into a

temporary buffer. When the buffer reaches a predefined maximum size, a process similar

to H-Build is invoked to append these newly inserted tuples into the existing HA-Index. We

omit these details here for brevity as they are similar to Algorithms H-Delete and H-Build.

3.3.6 HA-Index Query Processing

With the dataset organized in an HA-Index, H-Search traverses the index to visit the

relevant index nodes in a breadth-first order with a queue to keep track of the unexplored

qualifying paths that match the query’s binary code. Algorithm 12 gives the pseudocode

for H-Search. Initially, H-Search fetches the index nodes/data points from the top level

of the HA-Index (Lines 2-6). If the Hamming distance between the query tuple and the

pattern of the corresponding node is smaller than the threshold ĥ, then the node is inserted

into the queue. For the non-top level nodes, in each round, the binary code of a node is

examined against the query binary code by invoking a Hamming-distance computation. If

its corresponding Hamming distance is smaller than the threshold (Line 12), the node is

further explored (Lines 13-17). When a leaf node of the HA-Index is reached, the qualified

data tuples are collected and are inserted into ret (Line 23-25). The algorithm terminates

when all the entries from the qualifying nodes are examined.

To illustrate the H-Search Algorithm, consider the tuples in Table 3.2.1. Figure 3.3

gives the corresponding HA-Index. The execution trace is given in Table 3.4, where query

binary code tq = “010001011” is searching the dataset in Table 3.2.1. Suppose that the

query binary code is tq = “010001011” and the Hamming-distance threshold is 3. Ini-

tially, the Hamming distance between tq and the top-level entries, i.e., ||N11, tq||h = 1 and

||N12, tq||h = 3, where both are no bigger than 3. Thus, NodesN11 andN12 are pushed into

the queue, and ret is still empty. Next, the children nodes of N11, i.e., Nodes N7 and N8

are visited. The Hamming distances ||N7, tq||h = 1 and ||N8, tq||h = 4 are computed. As

a result, the corresponding qualifying binary codes for Nodes N11 and N7 are combined,

66

Algorithm 11: H-Delete
Input: tq: Deleted query tuple,HA: HA-Index for queried dataset

1 s: Stack;

2 for each top level node ni in HA do

3 if bitmatch(tq, ni) then

4 s.push(ni);

5 ni.frequency← ni.frequency-1 ;

6 remove ni from HA if ni.frequency is 0 ;

7 end

8 end

9 while s is not empty do

10 var n: Node;

11 s.pop(n);

12 if n is a non-leaf node then

13 for all child nodes c of n do

14 if bitmatch(tq, ni) then

15 s.push(ni);

16 ni.frequency← ni.frequency-1 ;

17 remove ni from HA if ni.frequency is 0 ;

18 end

19 end

20 end

21 else

22 break;

23 end

24 end

which results in the pattern “0010 · 1 · · · ”. Thus, [N7, N11] is put into the queue. But

Node N8 is discarded from the qualifying candidates because the path N11 → N8 has a

combined Hamming distance ||N11, tq||h + ||N8, tq||h > 3. Then, N12 is explored and its

67

children nodes(e.g.,N9 and N10) are visited. According to the Hamming-distance closure

properties, [N9, N12] is inserted into the queue as well, while N10 is discarded. The H-

Search process continues until the queue is empty as shown in Table 3.4. Finally, Tuple

t0 is reported as one output tuple qualifying the query. Notice that each node maintains a

visited flag to indicate whether the node has already been visited or not. This helps avoid

redundant Hamming-distance computations. For example, Nodes N1 and N2 are already

visited. Therefore, we do not need to compute the Hamming distance for both nodes again,

and hence avoid unnecessary distance computation overhead. In addition, Algorithm H-

Search for the dynamic HA-Index can be applied to the static HA-Index, and thus is not

repeated in the chapter.

3.3.7 Analysis

Example 8 Assume that we have eight tuples t0 = “000”, t1 = “001”, t2 = “010”, · · · ,

and t7 = “111”, where all binary codes are distinct. At most 3 bits are needed to represent

all the tuples, i.e., the length L of the hash values is 3. According to the H-Build process

with Window Size of 2, the output HA-Index is illustrated in Figure 3.4.

000 110... 111...001

0.. 1..

.0. .1.

..0 ..1

Figure 3.4.: Full binary codes and the corresponding HA-Index

Observe that the number of internal nodes of this HA-index is 6, and the number of

edges is 8. Based on the breadth-first-search strategy of the H-Search algorithm, the worst

search cost is bounded by the number of internal nodes and the number of edges, denoted

by |V | and |E|, respectively. Refer to Figure 3.4 for illustration. The search cost is at worst

14. Suppose that the number of distinct binary codes is nd, and nd = 2L. An HA-Index for

68

this example is illustrated in Figure 3.4. The reason is that the FLSSeq for the binary codes

in the same window is maximized with Length L − 1, and this FLSSeq also shares the

maximum similar patterns with its neighboring FLSSeq. Therefore, for the dataset with

nd = 2L data points and the built HA-Index as in Figure 3.4, the number of internal nodes

|V | = 2L or |V | = 2 log2 nd, and number of edges |E| = 4(L−1) or |E| = 4(log2 nd−1).

This can be proven via induction (Details are omitted for brevity). Thus, the worst case for

H-Search on this HA-Index is |V | + |E| = 2 log2 nd + 4(log2 nd − 1), i.e., is O(log2 nd).

This indicates that H-Search can achieve the best performance under this scenario. We will

discuss more general cases later.

Window size We discuss the relationship between window size, say as w, and binary

string length L. Inspired by the previous extreme example, it is desirable that the n tuples

can span the space of binary strings of L bits. L can be chosen such that L = dlog2 ne, i.e.,

2L−1 < n ≤ 2L. Thus, if n is closer to 2L, then the corresponding HA-Index is closer to

the extreme case in our motivating example above. On the other hand, the smallest value

for n is 2L−1 + 1, and this is the worst case, i.e., the sparsest distribution of tuples on the

space of binary strings of Length L. For the simplicity of discussion, we assume that the

hashed binary strings are uniformly distributed.

Under the above assumption, the maximum Hamming distance Lm for a window of size

of w satisfies dlog2we ≤ Lm ≤ L. If Lm = L, then the binary strings in the same window

cannot be merged together since no shared bit position exists. Therefore, a careful choice

should be made on the window size w. The extreme case when w = n is apparently a

bad choice since no sharing pattern can be extracted from the window. A similar argument

applies for w = 1. For smaller values of w, many internal nodes are generated and this

results in indexes with larger heights. A suggested value for the window size w is w =

2dL/2e when n ≈ 2L. Suppose that w = 2dL/2e, then the maximum Hamming distance Lm

in each window satisfies dL/2e ≤ Lm ≤ L.

Number of nodes in an HA-Index If n ≈ 2L, suppose that there are only few windows

with Lm = L and we denote the number of these binary codes within that window as δ1.

Since the leaves share about half of the bits in their binary codes, this results in a number of

69

2dL/2e + δ1 of internals nodes 1-level higher above the leaves, where δ1 � 2dL/2e. With the

HA-index progressively growing, a higher level with 2dL/4e+ δ2 internal nodes can be built

where δ2 � δ1. In the same way, the HA-index grows to the highest level with 2dL/2
he+ δh

uppermost internal nodes, where h is the height of the index. Thus, the total number of

nodes |V | in the HA-index can be estimated by:

|V | = 2dL/2e + 2dL/4e + · · ·+ 2dL/2
he +

h∑
i=1

δi

= 2dlog2 n
1/2e + 2dlog2 n

1/4e + · · ·+
h∑
i=1

δi

< 2× 2dlog2 n
1/2e +

h∑
i=1

δi

< 2× 2dlog2 n
1/2e

= O(
√
n).

We can safely ignore the delta part since the summation is negligible compared to the

dominant term.

If n ≈ 2L−1, then the window size w needs to shrink to a proper length. Based on

the assumption of uniform distribution of the binary strings and Gray ordering, a proper

window size can be set to w = 2dL/4e. The maximum Hamming distance Lm within a

window satisfies dL/4e ≤ Lm ≤ L. A similar analysis suggests that the number of internal

nodes |V ′| satisfies:

|V ′| = 2dL/4e + 2dL/4
2e + · · ·+ 2dL/4

he +
h∑
i=1

δ′i

= 2dlog2 n
1/4e + 2dlog2 n

1/42e + · · ·+ 2dlog2 n
1/4he +

h∑
i=1

δ′i

= O(4
√
n).

Number of Edges in an HA-Index For the number of edges in an HA-index, there are

two extreme cases. Suppose that n ≈ 2L and we have already discussed that the two levels

above the leaves contain 2dL/2e and 2dL/4e internal nodes, respectively. The worst case is

70

that each of the 2dL/2e nodes connects to each of the 2dL/4e nodes. This induces about 23L/4

edges. Similarly, the edge number can be estimated,

|E| = 23L/4 + 23L/8 + · · ·+ 23L/2h+1

< 2× 23L/4 = O(
4
√
n3).

On the other hand, the best estimate is that there are no cross edges between the children

and different parents. For this case, a lower bound of the number of edges isO(
√
n), which

is similar to the number of vertices.

Query Cost and Storage Space of the HA-Index The cost of H-Search is bounded by

the number of nodes and edges, i.e., |V | + |E|. Therefore, the worst cost for H-Search is

traversing all the edges and nodes in the HA-index. This indicates that H-Search can be

bounded in the range [O(
√
n), O(

4
√
n3)]. Meanwhile, besides the storage of the leaf nodes,

the space usage of the HA-index also depends on the sum of the number of nodes and edges,

i.e., [O(
√
n), O(

4
√
n3)]. Compared to the state-of-the-art approaches [6, 47], the HA-Index

does not need to maintain several copies of the dataset. Thus, it can be kept in memory

for fast query processing. Furthermore, the internal nodes of the HA-Index store enough

binary information for the whole dataset, and hence introduce low overhead to broadcast

an HA-Index to each server.

3.4 Parallel Algorithm for Hamming-Join

To process Hamming-join on two datasets, say R and S, one straightforward approach

is to build an HA-Index for R, then execute H-Search on the built index for each tuple

of S. However, to build an HA-Index for R, sorting R would be slower as R gets larger.

Secondly, executing H-Search between each tuple of S and the HA-Index for R would

make the query time bounded by the number tuples in S. In this section, we address these

limitations of the centralized environment and introduce Hamming-join on the MapReduce

platform [54].

To support Hamming-join over MapReduce, we focus on two important issues. First,

load balancing is important because the slowest mapper or reducer determines the job run-

ning time. Secondly, data shuffle from the mappers to reducers usually results in large disk

71

I/O and network communication costs that heavily influences the run-time performance.

Therefore, we not only need to reduce the data shuffle cost, but also make sure data parti-

tions in each mapper or reducer are well balanced.

3.4.1 Overview of MapReduce-based Hamming-Join

In this section, we introduce our implementation of the Hamming-join operation in

MapReduce. As Figure 3.5 illustrates, the proposed algorithm includes three phases as

explained below.

• Preprocessing phase Retrieve a sample from Datasets R and S. Then, use the sam-

pled data to learn the hash function H . To handle data skew, build a data histogram

for the sampled data and learn the data partitioning rule for the entire MapReduce

job.

• Global HA-Index building phase Assume that the size of R is smaller than that of

S. Partition R based on the pivot values from the data preprocessing step, then build

the HA-Index for each partition using MapReduce by calling the H-Build function.

Then, merge each local HA-Index to realize a global HA-Index for R.

• Hamming-join phase To join HA-Index of R with tuples in S, two possible options

are applicable based on the size of R. More details are given later.

To learn the hash function, we utilize a random sample obtained from both R and S

using reservoir sampling [55]. With the learned hash function H , high-dimensional data

tuples in R and S are mapped into their corresponding binary codes. As discussed in the

previous section, hash binary codes are ordered using the Gray order to preserve the clus-

tering property. Hence, the data in each partition is more likely to share common FLSSeq

patterns. Then, we build the data histogram for the binary codes of the sampled data, and

get a set of pivot values, denoted by Pv, for each Partition Ptm. This guarantees that each

partition receives approximately the same amount of data, where data in the various parti-

tions is ordered according to the Gray order. More formally, given a set of data partitions

72

Pt, and a set Pv of corresponding binary code values that form the partitioning pivots, Tu-

ple ti ∈ Ptm, if the Gray order for ti’s binary code, say Ûi, belongs to the pivot range, i.e.,

Ûi ∈ [Pvm,Pvm+1), where Pvm and Pvm+1 are the pivot values for Partition Ptm.

Thus, let |Ptm| be the number of tuples belonging to Partition Ptm, Pivot set Pv par-

tition dataset R, s.t R =
N⋃
m=1

Ptm, and |Ptm| ' |Ptm+1|. Therefore, we can build the

HA-Index and Hamming-join in each server as illustrated below.

3.4.2 Global HA-Index Building

Given the set of pivot values Pv selected in the preprocessing step, a MapReduce job

partitions the data and builds an HA-Index locally in each partition. Specifically, before

launching the map function, the selected pivots Pv and the learned hash function H are

loaded into memory in each mapper via distributed cache in MapReduce. A mapper se-

quentially reads each input data tuple, say ti, from the mapper’s corresponding partition.

The hash function maps the high-dimensional input data tuples into their corresponding

binary codes, i.e., U . Then, a binary search is performed for the closest pivots in Pv. For

the closest partition region, Partition ID is assigned. Finally, the mapper(s) produce(s) as

output each object ti along with its Partition ID, original dataset tuple identifier (R or S),

and its binary code value U .

In the data shuffling phase, the key-value pairs emitted by all map functions are grouped

by each distinct Partition ID, and a reduce function is called within each node. Each re-

duce function computes the local HA-Index via the H-Build function of Section 4, and

produces the local HA-Index as output. In addition, a postprocessing step to merge the

various local HA-Indexes into one global HA-Index. Mainly, non-leaf nodes with the same

FLSSeq from the different local HA-Indexes are merged into one node, and the corre-

sponding edges between the index nodes are relinked. Because the HA-Index is relatively

small, the processing overhead is acceptable. After the first MapReduce job finishes, the

global HA-Index for dataset R is built. This index is used by H-Search in the next phase.

73

3.4.3 Hamming-Join

The second MapReduce job performs the Hamming-join in two possible ways.

Option(A): When Dataset R is small, i.e., storage of the leaf nodes of the HA-Index

does not dominate the space of the HA-Index, the HA-Index maintains the leaf nodes as

in Figure 3.3. Next, the Map function partitions Dataset S into N parts, i.e., S =
N⋃
i=1

Si.

Then, it duplicates the global HA-Index for Dataset R and broadcasts to each server. The

Map function computes the Hamming-join for Partition Si and the replicated HA-Index

of R. Specifically, before launching the MapReduce Job, the master node broadcasts the

pivots Pv, the hash function H , and the global HA-Index of R to various servers. The main

task of the mapper in the second MapReduce Job is to map high-dimensional data into

binary codes, then partition dataset S into N partitions. Next, each reducer performs the

Hamming-join between a pair of HA-Index and Ŝi, and output the Hamming-join results.

Option(B): If Dataset R is big, e.g.,the number of tuples |R| is more than millions,

the storage of leaf nodes of the HA-Index dominates the space usage of the HA-Index.

Therefore, the HA-Index of Dataset R does not maintain leaf nodes, and is duplicated

to each server. By this way, the H-Search Algorithm 12 only returns the qualifying binary

codes for Hamming-select, and a post-precessing step is carried out to find the tuple IDs for

the qualifying binary codes. Take query tuple t6 in Table 3.2.1 as an example. The H-Search

algorithm computes binary codes from Table 3.2.1, i.e., “101100010” and “101010010”,

which have a Hamming distance of 3 from t6. In order to find the tuple IDs for those

qualifying binaries, one post-processing step is invoked. Naturally, if Dataset R fits into

memory, then the qualifying binaries are joined with R’s hash table in memory. On the

other hand, if DatasetR is too large to fit in memory, MapReduce hash-join [56] for Dataset

R and the qualifying binaries is applied.

3.4.4 Shuffle Cost Analysis

The performance of MapReduce Hamming-join depends on the running time of

Hamming-select as well as on the data shuffling cost. Let |R| = m and |S| = n, re-

74

..

.

..

.

Shuffle

&

Sort

Shuffle

&

Sort

R1

..

.

..

.

..

.

..

.

Phase 2:

First MapReduce

Phase 3:

Second MapReduce

H-Build

DFS

Node1

Phase 1:

Preprocessing

R

S

Sampling,

Learn Hash,

Pivot Selection

G2

G3

..

.

..

.

..

.

..

.

..

.

..

.

Merge into

HA-Index

Of R

MAP

:HA-Index

H-Search

REDUCEREDUCE MAP

DFS

DFS

DFS

:Hashing and Partition

H-Build

H-Build

H-Search

H-Search

R4

R5

R8

Node2

R9

R12

Node3

Node1

Node2

Node3

S1

S10

S11

S18

S19

S29

G1

G1

G2

G3

Figure 3.5.: An overview of Hamming-Join processing in MapReduce.

spectively, d be the data dimension, and N be the number of partitions. In the previous

work [6], Dataset R is duplicated and broadcast to each server, and the data shuffling cost

is approximate to O(mNd+ nd). In this work, instead of duplicating the whole dataset R,

only the HA-Index, is broadcast to each server. Hence, the data shuffling cost is reduced

to O(|HA|N + n), where |HA| is the size of the HA-index. As introduced in Section 4,

the space storage of HA is bound to [O(
√
m), O(

4
√
m3)]. Therefore, the shuffling cost is

bounded in [O(
√
mN + n), O(

m
√
n3N + n)].

3.5 Related Work

Using the Hamming distance as a similarity metric has been studied in the theory com-

munity, e.g., [45, 46]. When the Hamming-distance query threshold is small, i.e., ĥ = 1,

Yao et.al [46] propose an algorithm with O(m log log(n)) query time and O(nm log(m))

space. Yao’s algorithm recursively cuts the query binary code and each binary code in the

75

dataset in half, and then finds exact matches in the dataset for the left or the right half of the

query binary code. [57] demonstrates that similarity search in chemical information via the

Tanimoto Similarity metric can be transformed into a Hamming-distance query. In a most

recent work [58], each binary code is mapped to a set and an inverted index is built on the

set.

Hamming-distance queries are attracting more attention for processing large volumes

of data. A relatively recent work [6] uses multiple hash tables, and hence more space,

to reduce the linear computation of the Hamming distance during query time. The idea

behind this approach is that if two binary codes are within a Hamming distance ĥ, then

at least one of the ĥ+1 segments are exact matches for two binary codes. This algorithm

needs to replicate the database multiple times, and it sorts each copy based on parts of

the segments. The Hamming-distance computation is still performed in a linear fashion

over tuples of the same bucket in a certain hash table. Thus, it fails to scale as data size

increases. For performing a Hamming-join of two datasets, say R and S, [6] extends the

sequential approach to MapReduce by broadcasting TableR into each server, then applying

a sequential algorithm between R and S. This approach is subject to a very heavy shuffling

cost and servers cannot work in a load-balanced way when data is skewed. HEngine [47]

adopts a similar idea to that in [6], but uses approximate matching instead by generating

multiple one-bit difference binary codes. The HEngine uses less memory but achieves

limited performance speedup. HmSearch [57] is an exact matching approach that index

over signature of the binary codes. The size of the index increases dramatically, because

HmSearch need to generated large amount of unique signatures. If used in the context of

MapReduce, the shuffling cost between the mappers and the reducers is expected to be

expensive. Our proposed HA-Index extracts and groups similar binary codes from among

the various tuples to reduce the cost of shuffling and hence is applicable to MapReduce

as we illustrate later in this chapter. Through data sampling, we partition that data in a

way that uniformly distributes the dataset among the reducer servers and hence enables

better load balancing. Experimental comparison with [6, 47] shows that our proposed HA-

76

Index is two orders of magnitude faster and uses ten times less memory as illustrated in the

experimental section of this chapter.

Two related and popular operations to Hamming distance queries are the k-nearest-

neighbor select (kNN-select) and k-nearest-neighbor join (kNN-join) [9, 59]. Given a

dataset, say S, and a query focal point, say tq, kNN-select finds in S the k-nearest-

neighbors to tq. Given two datasets, say R and S, R kNN-join S finds the k-nearest-

neighbors in S for each tuple in R. In high-dimensional spaces and because of the curse

of dimensionality [60], data-independent hash-based approximate kNN (e.g., locality sen-

sitive hashing (LSH) [61]) has attracted attention as it can speed-up query execution while

having acceptable error margins. Recently, data-dependent hashing has been proposed to

learn the hash function, say H(), given the underlying dataset, e.g., as in [12]. There has

been a plethora of work in learning good and representative hash functions, e.g., [11–13].

Given the learned similarity hash function H(), a tuple, say ti, is mapped into its binary

code, say Ui, i.e., H(ti) = Ui. Afterwards, all the binary codes of the dataset R are

scanned to find data tuples that are different from the query’s binary code Ui by at most

ĥ bit-positions. If the answer set size is more than k, then only the k-closest answers are

retained. However, if the size of the result set is less than k, then a larger distance threshold

is estimated and the near neighbor query is repeated. The process is stopped when k or

more answers are reported. Notice that the core of the method for approximate kNN search

is a Hamming-distance query with a threshold ĥ. In our experiments, we use the state-of-

the-art approach [12] to learn the hash function, and show how our proposed approach can

speed up approximate kNN-select and kNN-join.

3.6 Performance Evaluation

We implement all the algorithms in Java. The experiments for Hamming-select are

performed on an Intel(R) Xeon (R) E5320 1.86 GHz 4-core processor with 8G memory

running Linux. The experiments on MapReduce are performed on a cluster of 16 nodes of

77

Intel(R) Xeon (R) E5320 1.86 GHz 4-core machines with 8GB of main memory running

Linux. We use Hadoop 0.22 and apply the default cluster environment setting. We evaluate

the performance of the proposed techniques using the following three high-dimensional

real datasets: (1) NUS-WIDE2 is a web image dataset containing 269,648 images. We use

225-D block-wise color moments as the image features, thus obtaining a 225-dimension

data. (2) Flickr3 is a an image hosting website. We crawled 1 million images and extracted

512 features via the GIST Descriptor [62] (the data dimension is 512). (3) DBPedia4 data

aims to extract structured content from Wikipedia. We extract 1 million documents, and

then apply standard NLP techniques to pre-process the documents, e.g., to remove stop

words. We use the Latent Dirichlet Allocation (LDA) [7] model to extract topics, and we

keep 250 topics for each document.

To evaluate the performance on larger data sizes, we synthetically generate more data

while maintaining the same distribution as the original data distribution, e.g., as in [48,49].

Suppose that the original dataset D has k dimensions. First, we get the frequencies of

values in each dimension, and then sort the data in ascending order of their frequencies.

Therefore, k copies of the dataset D are generated, one copy per dimension, e.g., Dj one

copy of the dataset that is sorted based on the j-th dimension. Then, for each tuple, say

t, in Dataset D, t ∈ D, we create a new tuple, say t̂, according to the position of each

component of t in the corresponding sorted copy Dj . For example, t = (t1, . . . , tj, . . . , td)

and t′j is the first value larger than tj in copy Dj , then t̂ = (t′1, . . . , t
′
j, . . . , t

′
d). If tj is the

largest element in Copy Dj , then t̂j = tj . We use“×s” to denote the increase in dataset

size, where s ∈ [5, 25] is the increase or scale factor. We consider the following approaches

to evaluate Hamming-select:

(1) Nested-Loops is the naive approach to linearly XOR and count the binary data to

perform the Hamming-distance computation. (2) MultiHashTable [6] is the state-of-the-

art to search binary codes for similarity hashing that uses multiple-hash tables to reduce the

linear search cost. While a large number of hash tables can achieve better performance, we

2http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
3htttp://www.flickr.com
4http://wiki.dbpedia.org/About

78

limit ourselves to just 4 and 10 hash tables to avoid memory overflow. For short, we refer

to these two possibilities, as MH-4 and MH-10. (3) HEngines [47] is the most recent work

to improve the MultiHashTable approach in query time and memory usage. (4) Radix-

Tree is the approach introduced in Section 4.2. (5) Static HA-Index (SHA-Index) and

Dynamic HA-Index (DHA-Index) are the approaches introduced in Sections 4.3 and 4.4,

respectively. SHA-Index(32) or DHA-Index(32) means that the length of the binary code

is 32 bits.

We further evaluate the following approaches for kNN-select, and show how the ap-

proximate kNN-select can benefit from the enhancement of HA-Index searching over bi-

nary codes: (1) Locality-Sensitive Hashing(E2LSH) [61] is the state-of-the-art imple-

mentation for the data-independent LSH. We use 20 hash tables for E2LSH. (2) LSB-

TREE [63] uses the Z-order curve to map high-dimensional data into one-dimensional Z-

values, and index the Z-values using a B-tree. In our experiments, we build the LSB-Tree

with 25 trees to compare the performance.

Also, we evaluate the following approaches to test the Self-Hamming-join, and verify

how our approach of Map-Reduce Hamming-join can speedup the state-of-art algorithm

for exact Self-kNN-join: (1) Parallel-exact-KNN-join (short as PGBJ) [49] is the state-

of-the-art approach for performing exact kNN-join over multi-dimensional data in MapRe-

duce, and it is 10 times speedup over the Z-order curve based approach [50]. We get the

implementation generously provided by the authors [49]. (2) Parallel Hamming-join via

MultiHashTable (PMH, for short) that handles approximate batch queries for web page

duplicate identification [6]. PMH-10 means that 10 hash tables are used. (3) Parallel

Hamming-join via Dynamic HA-Index (MRHA-Index, for short) is the approach intro-

duced in Section 5. Specifically, in terms of the Hamming-join phase, if Option A is used,

we term it MRHA-Index-A, and if Option B is used, we term it MRHA-Index-B.

The performance measures for each algorithm include the query time, the index update

time, the index building time, memory usage, and the data shuffling cost. All performance

measures are averaged over eight runs. Some running times are not plotted because they

would use more than five hours. Unless mentioned, the default value of k is 50, and the

79

Hamming-distance threshold ĥ is 3. We choose the state-of-the-art Spectral Hashing [12] as

the hash function in our experiments, but our approach is not limited to this hash function.

3.6.1 Results for Hamming-select

Effectiveness of the HA-Index

5 10 15 20 25

10
−1

10
0

10
1

Data Size(times the original)

S
h

u
ff

li
n

g
 c

o
st

(G
B

)l
o

g

PGBJ

PMH−10

MRHA−INDEX−A

MRHA−INDEX−B

(a) NUS-WIDE

5 10 15 20 25

10
−1

10
0

10
1

Data Size(million)

S
h

u
ff

li
n

g
 c

o
st

(G
B

)l
o

g

PGBJ

PMH−10

MRHA−INDEX−A

MRHA−INDEX−B

(b) Flickr

5 10 15 20 25

10
−1

10
0

10
1

Data Size(million)

S
h

u
ff

li
n

g
 c

o
st

(G
B

)l
o

g

PGBJ

PMH−10

MRHA−INDEX−A

MRHA−INDEX−B

(c) DBPedia

Figure 3.6.: Shuffling cost of Hamming-Join and kNN-Join

Table 3.5, 3.6 and 3.7 summarizes the query time, index update time, and memory

space usage by the various approaches. The dynamic-HA-Index is the most efficient in

terms of query time and space usage, the binary code length is 32 bits. Notice for DHA-

Index, 28/11 means 28MB and 11MB space usage for internal and leaf nodes were kept

or only internal nodes, respectively. Specifically, index update corresponds to the op-

eration to delete one tuple first, then insert the same tuple back into the index. From

TableTable 3.5, 3.6 and 3.7 , we have the following observations: 1) The Radix-Tree and

HA-index-based approaches outperform the naive nested-loop and state-of-the-art meth-

ods [6, 47] on query time for the three datasets, mainly because the new proposed ap-

proach avoids many redundant Hamming-distance computations, and avoids scanning all

the underlying data when they are hashed into the same bucket; 2) The HA-Index-based

approach, i.e., the Static and Dynamic HA-Indexes, outperforms the Radix-Tree approach.

The speedup is around 10 times because the Radix-Tree behaves as a prefix tree when many

of the binary codes do not share long common prefixes, and hence cannot avoid the redun-

80

dant Hamming distance computations; 3) The Static HA-Index shows better index-update

time than that of the Dynamic HA-Index because the static segmentation enables us to track

different binary segmentations directly, thus, we can search the paths of binary codes more

efficiently; 4) The Radix-Tree and the HA-Index-based approaches save more memory than

the state-of-the-art methods [6,47] because the HA-Index-based approaches do not need to

duplicate tuples and can share common FLSSs and FLSSeqs for different binary codes.

This can reduce memory usage further; 5) For the Dynamic-HA-Index, if only the internal

nodes of the HA-Index are kept, the memory usage can be reduced further. For instance,

the memory usage for the Flickr and DBpedia datasets is reduced from 251MB and 225MB

to 63MB and 47MB, respectively.

Effect of Hamming-Distance Threshold

We evaluate whether the running time of proposed approach is sensitive to the query

threshold ĥ. Figure 3.9 gives the data query time when varying the Hamming-distance

threshold. Notice that the query time of both the HA-Index-based approaches increases

relatively slowly as the threshold increases. The reason is that the searching process in the

HA-Index usually terminates early in the upper-level nodes, and this can improve the query

speed. On the other hand, the searching path length of the Radix-Tree is not under control,

and it tends to reach each leaf node when the Radix-Tree shares very little and changes

to a prefix-tree-like format. However, state-of-the-art methods [6, 47] are sensitive to the

Hamming-distance threshold because both approaches have to scan intermediate data to

filter out non-qualifying tuples. Hence, the bigger ĥ is, the more intermediate results that

need to be scanned. This directly degrades the performance.

Effect of HA-Index Parameters

We study the effects of the window length and the index depth of the dynamic HA-Index

w.r.t. the index building and query processing times. The window length is normalized by

the number of tuples in the dataset. Figure 3.7(a) illustrates that the building time for the

HA-index drops as the depth decreases. The reason is that index construction stops early

while the depth is small. Meanwhile, the HA-Index building time grows as the window

size increases because the time to extract the same subpatterns for binaries of one window

81

depends on the number of tuples inside the window. Meanwhile, the query processing time

demonstrates stable growth as the window size and index depth increase. Observe that the

window size increases four times and the query processing time only grows by less than

10%. Thus, the HA-Index is not sensitive to these parameters.

Comparison of Approaches for kNN-Select

As introduced in Section 2, Hamming-select is a core operation for evaluating approx-

imate kNN-select. In this section, we demonstrate the performance gains when using the

HA-Index to speedup approximate kNN-select. Table 3.8 illustrates the runtime for data

querying and index construction for LSH, LSB-Tree, and the HA-Index-based approaches,

note that the dataset size is set to 300k tuples. Observe that the HA-Index-based approach

outperforms the state-of-the-art methods on all tasks when the binary code length is rel-

atively large (i.e., 32 or 64 bits). Compared to the LSH approach, both HA-index-based

approaches achieve two orders of magnitude speedup. The reason is that the LSH approach

assumes uniformity in the distribution of the underlying data while real datasets are not

uniform. In addition, the LSB-Tree can improve the query time compared to the LSH ap-

proach. However, the time to build the LSB-Tree index is expensive (more than 24 hours).

In addition, the query and index building times for the HA-Index-based approach increases

relatively smoothly as the binary code length increases. This demonstrates that the HA-

Index approach is robust with the binary code length. Finally, the LSB-Tree consumes

extensive disk space to store the index, LSB-Tree uses more than 20GB to store the index

for the Flickr data, while the HA-Index-based approach only takes less than 300MB. This

significantly reduces disk I/O time for the HA-Index-based approach.

3.6.2 Results of Hamming-Join in MapReduce

Shuffling Cost

We measure the effect of data size on the shuffling cost for PGBJ, PMH and the MRHA-

Index. Figure 3.6 gives the data shuffle costs when the data size varies. The shuffle cost is

plotted in logarithmic scale. The smaller the shuffle costs, the better the performance is. We

82

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
50

60

70

80

90

100

110

120

Window length

R
u

n
n

in
g

 t
im

e(
m

s)

depth=7

depth=6

depth=5

depth=4

(a) NUS-WIDE

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Window length

R
u

n
n

in
g

 t
im

e(
m

s)

depth=7

depth=6

depth=5

depth=4

(b) Flickr

Figure 3.7.: DHA-Index building time and query processing when varying the window

size.

(a) NUS-WIDE

0.05 0.1 0.15 0.2 0.25 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

Sampling percentage

P
re

ci
si

o
n

 a
n

d
 R

ec
al

l

Precision

Recall

(b) Flickr

Figure 3.8.: Effect of sampling on query processing time and precision/recall

observe that the shuffle costs for approximate kNN-join approach, i.e., PMH and MRHA-

INDEX, are 10 times smaller when compared to the PGBJ approach. The reason is that the

hashing technique maps the high-dimensional data into binary codes, and hence the data

shuffling cost does not depend on the dimensions of the data. Notice that the data shuffling

cost for PGBJ increases linearly with the data size. This is two orders of magnitude worse

when compared to the data shuffling cost for the MRHA-INDEX approach. Duplicating

and distributing the HA-Index into different nodes can improve the data shuffle cost 10

times less than that of the PMH approach. On the other hand, the larger shuffle cost would

83

stop the PGBJ approach from achieving a linear speedup and its corresponding execution

time shows quadratic increase. The corresponding running times are given below. Finally,

for the Hamming-join step in the HA-Index-based approach, Option B saves more data

shuffling cost than Option A because the former does not need to duplicate the whole

dataset into each server, and hence the space usage of the HA-Index remains relatively

small.

Scalability and Speedup

We investigate the scalability of the three approaches in Figure 3.10. The figure presents

the results by varying the data size from 1 to 25 times of the original dataset sizes. From

the figure, the overall execution time of PGBJ shows quadratic increase when the data

size increases. For example, PGBJ’s running time is almost 13 hours when the data is

DBPedia×15, which is excessively slow. The approximate kNN-join via similarity hash-

ing always outperforms the PGBJ approach. Comparing with the state-of-the-art PMH-10

approach, the running time of the HA-Index outperforms PMH-10 by 5 times.

Effect of Data Sampling

Figure 3.8(a) gives the query execution time for the various processing phases of

Hamming-join. From the Figure, more sampling of the data reflects the global data dis-

tribution more clearly, and this helps the sampling data pivot to partition different regions

more evenly, and hence, improves the parallel HA-Index building and Hamming-join query

time. The hash function learning usually takes more time, but for real-world applications,

we only need to learn the hash function again when a certain amount of the new data is

updated, which can save the time. Figure 3.8(b) illustrates how data sampling affects the

query quality. Observe that the precision and recall can moderately improve as the sampling

data size increases. However, the recall value is low.Improving the recall and precision can

be found in [64].

84

3.7 Summary

In this chapter, we study the problem of efficiently performing the Hamming-select

and Hamming-join operations. The proposed HA-Index approach executes the Hamming-

distance-based similarity operations while avoiding unnecessary Hamming-distance com-

putations. Extensive experiments using real datasets demonstrate that the proposed ap-

proaches outperforms the state-of-the-art techniques by two orders of magnitude. We ex-

plore how to extend the HA-Index approach to support Hamming-join in MapReduce. The

new proposed approach can reduce the data shuffling cost and save computation time. In

the future, it would be interesting to explore Hamming-distance similarity operation for

relational operation i.e., intersection [65].

(a) NUS-WIDE (b) Flickr (c) DBPedia

Figure 3.9.: Effect of Hamming-distance threshold on Hamming select

85

5 10 15 20 25
0

1

2

3

4

5

6

Data Size(times the original)

R
u
n
n
in

g
 t

im
e(

x
 1

0
3
 s

)

PGBJ

PMH−10

MRHA−INDEX−A

MRHA−INDEX−B

(a) NUS-WIDE

5 10 15 20 25
0

2

4

6

8

10

12

14

Data Size(million)

R
u
n
n
in

g
 t

im
e(

x
 1

0
3
 s

)

PGBJ

PMH−10

MRHA−INDEX−A

MRHA−INDEX−B

(b) Flickr

5 10 15 20 25
0

5

10

15

20

Data Size(million)

R
u

n
n

in
g

 t
im

e(
x

 1
0

3
 s

)

PGBJ

PMH−10

MRHA−INDEX−A

MRHA−INDEX−B

(c) DBPedia

Figure 3.10.: Speedup and scalability: Running time of MapReduce Hamming-Join and

kNN-Join.

86

Algorithm 12: H-Search

Input: tq: Query tuple, ĥ: Hamming distance query threshold, HA: HA-Index for queried

dataset

Output: ret: Qualified tuple in HA within Hamming distance ĥ from tuple tq

1 q: Queue.

2 for each top level node ni in HA do

3 if hdist(tq, ni) ≤ ĥ then

4 ni.h← hdis(tq, c);

5 q.enqueue(ni);

6 end

7 end

8 while q is not empty do

9 var n:Node;

10 q.dequeue(n);

11 if n is a non-leaf node then

12 for all children node c of n do

13 if (hdis(tq, c)+n.h)≤ ĥ then

14 var m:Node;

15 m.b← combine(c.b, n.b); //combine binary code of c and n

16 m.h← hdis(tq, c)+n.h; //update Hamming distance

17 m.children← c.children ;

18 q.enqueue(m);

19 end

20 end

21 end

22 else

23 var binary← getBinary(n);

24 var tuple← gettuple(binary);

25 ret.insert(tuple);

26 end

27 end

28 output ret;

87

Table 3.4.: Sample execution trace for H-Search

Queue Qualified tuples ret

N11, N12 ∅

N12, [N7, N11] ∅

[N7, N11], [N9, N12] ∅

[N9, N12] t0

∅ t0

Table 3.5.: Overall comparative study for Hamming-select: NUS-WIDE.

method query

time(ms)

update

time(ms)

space

usage(MB)

Nested-Loops 16.42 15.22 /

MH-4 6.22 0.21 475

MH-10 4.91 0.25 531

HEngines 3.53 0.45 210

Radix Tree 1.61 0.19 39

SHA-Index 0.87 0.16 29

DHA-Index 0.68 0.18 28/11

88

Table 3.6.: Overall comparative study for Hamming-select: Flickr.

method query

time(ms)

update

time(ms)

space

usage(MB)

Nested-Loops 42.97 41.19 /

MH-4 16.09 0.60 712

MH-10 14.03 0.83 1204

HEngines14.75 1.14 820

Radix Tree 3.98 0.64 365

SHA-Index 1.75 0.52 254

DHA-Index 0.74 0.58 251/63

Table 3.7.: Overall comparative study for Hamming-select: DBPedia.

method query

time(ms)

update

time(ms)

space

usage(MB)

Nested-Loops 59.16 53.53 /

MH-4 40.28 0.45 819

MH-10 34.46 0.64 1364

HEngines36.91 1.91 763

Radix Tree 17.64 0.44 352

SHA-Index 3.54 0.43 239

DHA-Index 1.07 0.51 225/47

89

Table 3.8.: Comparison with the state-of-the-art kNN-select approaches

Dataset Algorithm Query

time(ms)

Index

build time

NUS-WIDE

LSH 2400 680(s)

LSB-Tree(25) 47 37(Hr)

SHA-Index(32) 2.74 68(s)

SHA-Index(64) 4.78 97(s)

DHA-Index(32) 1.64 87(s)

DHA-Index(64) 2.43 103(s)

Flickr

LSH 340 1080(s)

LSB-Tree(25) 63 50(Hr)

SHA-Index(32) 2.21 176(s)

SHA-Index(64) 3.54 189(s)

DHA-Index(32) 2.17 210(s)

DHA-Index(64) 2.88 244(s)

DBpedia

LSH 266 340(s)

LSB-Tree(25) 59 44(Hr)

SHA-Index(32) 2.94 150(s)

SHA-Index(64) 4.88 290(s)

DHA-Index(32) 2.18 230(s)

DHA-Index(64) 3.85 310(s)

90

4 IN-MEMORY DISTRIBUTED SIMILARITY QUERY PROCESSING AND

OPTIMIZATION FOR SPATIAL DATA

4.1 Introduction

Spatial computing is becoming increasingly important with the proliferation of mo-

bile devices. Meanwhile, the growing scale and importance of location data have driven

the development of numerous specialized spatial data processing systems, e.g., Spatial-

Hadoop [14], Hadoop-GIS [66] and MD-Hbase [15]. By taking advantage of the power and

cost-effectiveness of MapReduce, these systems typically outperform spatial extensions on

top of relational database systems by orders of magnitude [66]. MapReduce-based systems

allow users to run spatial queries using predefined high-level spatial operators without wor-

rying about fault tolerance or computation distribution. However, these systems have the

following two main limitations: (1) They do not leverage the power of distributed memory,

and (2) They are unable to reuse intermediate data [67]. Nonetheless, data reuse is very

common in spatial data processing. For example, spatial datasets, e.g., Open Street Map

(OSM, for short,>60G) and Point of Interest (POI, for short,>20G) [14], are usually large.

It is unnecessary to read these datasets continuously from disk (e.g., using HDFS [68]) to

respond to user queries. Moreover, intermediate query results have to be written back to

HDFS, thus directly impeding the performance of further data analysis steps.

One way to address the above challenges is to develop an efficient execution engine

for large-scale spatial data computation based on an in-memory computation framework

(in this case, Spark [67]). Spark is a computation framework that allows users to work

on distributed in-memory data without worrying about data distribution or fault-tolerance.

Recently, various Spark-based systems have been proposed for spatial data analysis, e.g.,

SpatialSpark [69], GeoSpark [70], Magellan [71], Simba [72] and LocationSpark [3].

91

D1 D2

D3D4

q1 q3

q6

q2 q7

q5

q4

(a) Spatial-Range-Join

o2

o1

D1 D2

D3D4

q1

q6 o3

q5

q4

ro4

q2 q3

(b) kNN Join

Figure 4.1.: Illustration of Spatial-Range-Join and kNN-Join operators

Although addressing several challenges in spatial query processing, none of the existing

systems is able to overcome the computation skew introduced by spatial queries. “Spatial

query skew” is observed in distributed environments during spatial query processing when

certain data partitions get overloaded by spatial queries. Traditionally, distributed spatial

computing systems (e.g., [14,66,69]) first learn the spatial data distribution by sampling of

the input data. Afterwards, spatial data gets evenly partitioned into equi-sized partitions.

For example, in Figure 4.1, the data points with dark dots are evenly distributed into four

partitions. Given the partitioned data, consider the spatial range and kNN joins that serve

as primitive operations to combine two datasets, say D and Q, with respect to a spatial

relationship. Refer to Figure 4.1(a) for illustration. For each point q ∈ Q, a spatial range

join returns data points inD that are inside the radius of the circle centered at q. In contrast,

a kNN join (refer to Figure 4.1(b) for illustration) returns the k nearest-neighbors from the

dataset D for each query point q ∈ Q. Both spatial operators are expensive and may incur

computation skew in certain workers, thus greatly degrading the overall performance of

query processing.

For illustration, consider a large spatial dataset, with millions of points of interests

(POIs), that is preprocessed and is partitioned into different computation nodes based on

the spatial distribution of the data, e.g., one data partition represents data from San Fran-

cisco, CA, and another one for Chicago, IL, etc. Assume that we have incoming queries

92

from people looking for different POIs, e.g., restaurants, train or bus stations, and grocery

stores, around their locations. These spatial range queries are consolidated into batches to

be joined via an index to the POI data (e.g., using indexed nested-loops join). After par-

titioning the incoming spatial queries based on their locations, we observe the following

issues: During rush hours in San Francisco from 4PM to 6PM (PST), San Francisco’s cor-

responding data partition may encounter more queries than the data partition in Chicago,

since Chicago is already evening. Without an appropriate optimization technique, the data

partition for San Francisco will take much longer time to process its corresponding queries

while the workers responsible for the other partitions are lightly loaded. As another ex-

ample, in Figure 4.1, the data points (the dark dots) correspond to Uber car’s GPS records

where multiple users (the triangles) are looking for the Uber carpool service around. Par-

tition D1 that corresponds to an airport, experiences more queries than other partitions

because people may prefer using Uber at this location. Being aware of the spatial query

skew provides a new opportunity to optimize queries in distributed spatial data environ-

ments. The skew partitions have to be assigned more computation power to reduce the

overall processing time.

Furthermore, communication cost, generally a key factor of the overall performance,

may become a bottleneck. When a spatial query usually touches more than one data par-

tition, it may be the case that some of these partitions do not contribute to the final query

result. For example, in Figure 4.1(a), queries q2, q3, q4, and q5 overlap more than one data

partition (D1, D2, and D4), but these partitions do not contain data points that satisfy the

queries. Thus, scheduling queries (e.g., q4 and q5) to the overlapping data partition D4 in-

curs unnecessary communication cost. More importantly, for the spatial range join or kNN

join operators over two large datasets, the cost of network communication may become

prohibitive without proper optimization.

In this chapter, we introduce LOCATIONSPARK, an efficient in-memory distributed spa-

tial query processing system. In particular, it has a query scheduler with an automatic

skew analyzer and a plan optimizer to mitigate query skew. The query scheduler uses

a cost model to analyze the skew for spatial operators, and a plan generation algorithm

93

to construct a load-balanced query execution plan. After plan generation, local computa-

tion nodes select the proper algorithms to improve their local performance, based on the

available spatial indexes and the registered queries on each worker. Finally, to reduce the

communication cost when dispatching queries to their overlapping data partitions, LOCA-

TIONSPARK develops a new spatial Bloom filter (called sFilter) that can speed up query

processing by avoiding needless communication with data partitions that do not contribute

to the query answer. We implement LOCATIONSPARK as a library in Spark that provides

spatial query processing and optimization APIs based on the Spark’s standard dataflow op-

erators. LOCATIONSPARK requires no modifications to Spark, revealing a general method

to combine spatial data processing within distributed dataflow frameworks.

The rest of this chapter proceeds as follows. Section 4.2 presents the problem definition,

and an overview of LOCATIONSPARK. Section 4.3 introduces the cost model and the cost-

based query plan scheduler and optimizer and their corresponding algorithms. Section 4.4

presents the empirical study for local execution plans in local computation node. Sec-

tion 4.5 introduces the spatial Bloom filter, and explains how it can speedup spatial query

processing in a distributed setup. The experimental results are presented in Section 4.6.

Section 4.7 introduces the related work. Finally, Section 4.8 concludes this chapter.

4.2 Preliminaries

4.2.1 Data Model and Operators

LOCATIONSPARK stores spatial data as key-value pairs. A tuple, say oi, contains a

spatial geometric key ki and a related value vi. The spatial data type for key ki can be a

two-dimensional point, e.g., latitude-longitude, a line-segment, a poly-line, a rectangle, or

a polygon. The value type vi is specified by the user, e.g., a text data type if the data tuple

is a tweet. In this chapter, we assume that queries are issued progressively by users, and

are processed by the system in batches (i.e., similar to the DStream model [67]).

LOCATIONSPARK supports various types of spatial query predicates including spatial

range search, k-NN search, spatial range join, and kNN join. In this chapter, we focus our

94

discussion on the spatial range join and the kNN join operators. These two operators are

prohibitively expensive especially when processing big spatial data.

Definition 4.2.1 Spatial Range Search - range(q,D): Given a spatial range area q (e.g.,

circle or rectangle) and a dataset D, range(q,D) finds all tuples from D that overlap the

spatial range defined by q.

Definition 4.2.2 Spatial-Range-Join - Q onsj D: Given two dataset Q and D, Q onsjD,

combines each object q ∈ Q with its range search results from D, Q onsjD= {(q, o)|q ∈

Q, o ∈ range(q,D)}.

Definition 4.2.3 kNN Search - kNN(q,D): Given a query tuple q, a dataset D, and an

integer k, kNN(q,D), returns the output set {o|o ∈ D and ∀s ∈ D and s 6= o, ||o, q|| ≤

||s, q||}, where the number of output objects from D, |kNN(q, D)—, is k.

Definition 4.2.4 kNN-Join - Q onknn D: Given a parameter k, kNN join of Q and D

computes each object q ∈ Q with its k nearest neighbors fromD. Q onknnD= {(q, o)|∀q ∈

Q,∀o ∈ kNN(q,D)}.

4.2.2 Overview of Distributed Similarity Query Processing

To facilitate spatial query processing, we build a distributed spatial index for in-memory

spatial data. Given a spatial dataset D, we obtain samples from D and construct a spatial

index (e.g., an R-tree) with N leaves over the samples. We refer to this index on the sample

data by the global spatial index. Next, each worker partitions the dataset D into N parti-

tions according to the built global spatial index via data shuffling. The global spatial index

guarantees that each data partition approximately has the same amount of data. Then, each

worker takes 1/N th of the data, and builds a local spatial index for its local data parti-

tion, say Di. Finally, the indexed data (termed the LocationRDD) is cached into memory.

Figure 4.2 gives the architecture of LOCATIONSPARK and the physical representation of

the partitioned spatial data based on the procedure outlined above, where the master node

stores the global spatial index that indexes the data partitions, while each worker has a local

95

spatial index over the local spatial data within the partition. Notice that the global spatial

index partitions the data into local LocationRDDs as in Figure 4.2, and this index can be

copied into various workers to help partition the data in parallel. The type of local index,

e.g., a Grid, an R-tree, or an IR-tree, for a data partition can be determined based on the

specifics of the application scenarios.

For spatial range join, two strategies are possible; either replicate the outer table and

send it to the inner table data or replicate the inner table data and send it to the different

processing nodes where the outer table tuples are. In shared execution, the outer table is

typically a collection of range query tuples and the inner table is the queried dataset. If this

is the case, then it makes sense to send the outer table of queries to the inner data tables as

the outer table of queries will be much smaller in size compared to the inner data tables. In

this paper, we adopt the first approach because it is impracticable to replicate and forward

copies of the large inner data table.

Thus, each tuple q ∈ Q is replicated and is forwarded to the partitions that spatially

overlap q. These overlapping partitions are identified using the global index. Then, a post-

processing step merges the local results to produce the final output. For example, outer

table tuple q2 in Figure 4.1(a) is replicated and is forwarded to data partitions D1, D3,

and D4. Then, we execute a spatial range search on each data partition locally. Next, we

merge the local results to form the overall output of tuple q. As illustrated in Figure 4.2,

the outer table that corresponds to a shared execution plan’s collection of queries (termed

queryRDD) are first partitioned into qRDD based on the overlap between the queries in

qRDD and the corresponding data partitions. Then, local search takes place over the local

data partitions of LocationRDD.

The kNN join operator is implemented similarly in a simple two-round process. First,

each outer focal points qi ∈ Q is transferred to the worker that holds the data partition

that qi spatially belongs to. Then, the kNN join is executed locally in each data partition,

producing the kNN candidates for each focal point qi. Afterwards, the maximum distance

from qi to its kNN candidates, say radius ri, is computed. If the radius ri overlaps multiple

data partitions, point qi is replicated into these overlapping partitions, and another set of

96

Worker

D1

sFilter

 Index

Worker Worker Worker
D2 D... Dm

Plan

Optimizer

Skew

Analyzer

Partitioner
queryRDD

locationRDD

statistics

statistics

qRDD

Streaming

Master

HDFS
Static

batch

RDBMS batch

batchbatch

SchedulerScheduler

adaptive

sFilter

Figure 4.2.: Architecture of LOCATIONSPARK

kNN candidates is computed in each of these partitions. Finally, we merge the kNN can-

didates from the various partitions to get the exact result. For example, in Figure 4.1(b),

assume that we want to evaluate a 3NN query for Point q6. The first step is to find the

3NN candidates for q6 in data Partition D3. Next, we find that the radius r for the 3NN

candidates from Partition D3 overlaps Partition D4. Thus, we need to compute the 3NN of

q6 in Partition D4 as well. Notice that the radius r can enhance the 3NN search in Partition

D4 because only the data points within Radius r are among the 3NN of q6. Finally, the

3NN of q6 are o1, o2 and o3.

4.2.3 Challenges

The outer and inner tables (or, in shared execution terminology, the queries and the

data) are spatially collocated in distributed spatial computing. In the following discussion,

we refer to the outer table as being the queries table, e.g., containing the ranges of range

operations, or the focal points of kNN operations. We further assume that the outer (or

queries) table is the smaller of the two, in contrast to the inner table that we refer to by the

97

data table (in the case of shared execution of multiple queries together). The distribution of

the incoming spatial queries (in the outer tables) changes dynamically over time, with bursts

in certain spatial regions. Thus, evenly distributing the input data D to the various workers

may result in load imbalance at times. LOCATIONSPARK’s skew analyzer identifies the

skewed data partitions based on a cost model and then repartitions and redistributes the

data accordingly. The plan optimizer selects the optimal repartitioning strategies for both

the outer and inner tables, and consequently generates an overall optimized execution plan.

Communication cost is a major factor that affects system performance. LOCATION-

SPARK adopts a spatial Bloom filter to reduce network communication cost. The spatial

Bloom filter’s role is to prune the data partitions that overlap the spatial ranges from the

outer tables but do not contribute to the final operation’s results. This spatial Bloom filter is

memory-based and is space- and time-efficient. The spatial Bloom filter adapts its structure

as the data and query distributions change.

4.3 Query Plan Scheduler

This section addresses how to dynamically handle query (outer table) skew. First, we

present the cost functions for query processing and analyze the bottlenecks. Then, we show

how to repartition the skewed data partitions to speedup processing. This is formulated as

an optimization problem that we show is NP-complete. Thus, we introduce an approxi-

mation algorithm to solve the skew data repartitioning problem. Although presented for

spatial range joins, the proposed technique applies to kNN join as well.

4.3.1 Cost Model

The input dataset D (i.e., inner table of spatial range join) is distributed into N data

partitions, and each data partition Di is indexed and cached in memory. For the query

dataset Q (i.e., outer table of spatial range join), each query qi ∈ Q is shuffled to the data

partitions that spatially overlap with it. The shuffling cost is denoted by ε(Q,N). The

execution time of local queries at Partition Di is γ(Di) = γ(|Di|, |Qi|), where |Di| and

98

|Qi| are the number of data points and queries at Partition Di. The execution times of local

queries depend on the queries and built indexes, and the estimation of γ(Di) is presented

later. After the local results are computed, the postprocessing step merges these local results

to produce the final output. The corresponding cost is denoted by ρ(Q). Overall, the

runtime cost for the Spatial-Range-Join operation is:

C(D,Q) = ε(Q,N) + max
i∈[1,N]

γ(Di) + ρ(Q), (4.1)

where N is the number of data partitions. In reality, the cost of query shuffling is far less

than the other costs as the number of queries is much smaller than the number of data items.

Thus, the runtime cost can be estimated as follows:

C(D,Q) = max
i∈[1,N]

γ(Di) + ρ(Q) (4.2)

In Equation 4.2, data partitions are categorized into two types: skewed (D̂) and non-

skewed D̄. The execution time of the local queries in the skewed partitions is the bot-

tleneck. The runtime costs for skewed and non-skewed data partitions are maxi∈[1,N̂] γ(D̂i)

and maxj∈[1,N̄] γ(D̄j), respectively, where N̂ (and N̄) is the number of skewed (and non-

skewed) data partitions, and N = N̂ + N̄ . Thus, Equation 4.2 can be rewritten as follows:

C(D,Q) = max{max
i∈[1,N̂]

γ(D̂i), max
j∈[1,N̄]

γ(D̄j)}+ ρ(Q) (4.3)

4.3.2 Execution Plan Generation

The goal of the query optimizer is to minimize the query processing time subject to

the following constraints: (1) the limited number of available resources (i.e., the number

of partitions) in a cluster, and (2) the overhead of network bandwidth and disk I/O. Given

the partitioned and indexed spatial data, the cost estimator for query processing based on

sampling that we introduce below, and the available number of data partitions, the opti-

mizer returns an execution plan that minimizes query processing time. First, the optimizer

needs to determine if any partitions are skewed. Then, it repartitions them subject to the

introduced cluster and networking constraints. Then, the optimizer evaluates the plan given

99

the new repartitioned data to determine whether it minimizes query execution time or not

(Refer to Figure 4.3, where the red lines identify local operations, and black lines show

the data partitioning. Ds and Dns are the skew and non-skew data partitions, respectively.

Queries Q are partitioned into skew Qs and non skew Qns in Stage 1. Stages 2 and 3

execute spatial queries independently. Finally, Stage 4 merges the results.).

Estimating the runtime cost for executing the local queries and the cost of merging the

final results is not straightforward. The local query processing time γ(Di) is influenced

by various factors including the types of spatial indexes used, the number of data points in

Di, the number of queries directed to Di, related spatial regions and the available memory.

Similar to [73], we assume that the related cost functions are monotonic, and they can

be approximated using samples from the dataset and the queries. Thus, the local query

execution time is formulated as follows: γ(Di) = γ(D̃i, Q̃i, α, B) where D̃i is a sample

of the original dataset, Q̃i is the sample of the queries, B is the area of the underlying

spatial region, and α is the sample ratio to scale up the estimate to the entire dataset. After

computing a representative sample of the data points and queries via sampling technique,

e.g., using reservoir sampling [55], the cost function γ(Di) estimates the query processing

runtime in data partition Di. More details on computing γ(Di), ρ(Qi), and the sample size

can be learned from previous work [73].

Given the estimated runtime cost over skewed and non-skewed partitions, the optimizer

splits one skewed data Partition D̂i into m′ data sub-partitions. Assume that Q̂i is the set

of queries originally assigned to Partition D̂i. Let the overheads due to data shuffling, re-

indexing, and merging be β(D̂i), κ(D̂i) and ρ(Q̂i), respectively. Thus, after splitting a

skewed Partition D̂i, the new runtime is:

γ̂(D̂i) = β(D̂i) + max
s∈[1,m′]

{γ(Ds) + κ(Ds)}}+ ρ(Q̂i), (4.4)

Hence, we can split one skewed Partition D̂i into multiple partitions only if γ̂(D̂i)< γ(D̂i).

As a result, the new query execution time, say ̂C(D,Q), is:

̂C(D,Q) = max{max
i∈[1,N̂]

{γ̂(D̂i)}, max
j∈[1,N̄]

{γ(D̄j)}}+ ¯ρ(Q) (4.5)

100

Qs

Q

Qns

Rns

R

Rs

Stage 1
Stage 2

Stage 3

Stage 4

partition

LocationRDD

Ds

QueryRDD

Ds’

partition

partition

partition

Dns

Dns

IDs’
indexing

Figure 4.3.: Execution plan for Spatial-Range-Join

Thus, we can formulate the query plan generation based on the data repartitioning problem

as follows:

Definition 4.3.1 LetD be the set of spatially indexed data partitions,Q be the set of spatial

queries, M be the total number of data partitions, and their corresponding cost estimation

functions, i.e., query processing γ(Di), data repartitioning β(Di), and data indexing cost

estimates κ(Qi). The query optimization problem is to choose a skewed Partition D̂ from

D, repartition each D̂i ∈ D̂ into multiple partitions, and assign spatial queries to the new

data partitions. The new data partition set, say D′, contains partitions D′1, D
′
2, . . . , D

′
k. s.t.

(1) the ̂C(D,Q) < C(D,Q) and (2) |D′| ≤M .

Unfortunately, this problem is NP-complete. In the next section, we present a greedy

algorithm for this problem.

Theorem 4.3.1 Optimized query plan generation with data repartitioning for distributed

indexed spatial data is NP-complete.

The proof is given in [4].

101

4.3.3 A Greedy Algorithm

The general idea is to search for skew partitions based on their local query execution

time. Then, we split the selected data partitions only if the runtime can be improved.

If the runtime cannot be improved, or if all the available data partitions are consumed,

the algorithm terminates. While this greedy algorithm cannot guarantee optimal query

performance, in the experimental section, it shows one order of magnitude improvement

over the plan executing over the original partitions. Algorithm 13 gives the pseudocode for

the greedy partitioning procedure.

Algorithm 13 includes two functions, namely numberOfPartitions and repartition.

Function numberOfPartitions computes the number of partitions m′ for splitting one skew

partition. Naively, we could split a skew partition into two partitions each time. But this is

not necessarily efficient. Given data partitions D = {D1, D2, . . . , DN}, let Partition D1 be

the one with the largest local query execution time γ(D1). From Equation 4.2, the execu-

tion time is approximated by γ(D1)+ρ(Q). To improve the execution time, Partition D1 is

split into m′ partitions, and the query execution time for Partition D1 is updated to γ̂(D1).

For all other partitions Di ∈ D (i 6= 1), the runtime is the max{γ(Di)} + ρ(Q′) = ∆,

where i = [2, . . . , N] and Q′ are the queries related to all data partitions except D1. Thus,

the runtime is max{∆, γ̂(D1)}, and is improved if

max{∆, γ̂(D1)} < γ(D1) + ρ(Q) (4.6)

As a result, we need to compute the minimum value of m′ to satisfy Equation 4.6, since ∆,

γ(D1), and ρ(Q) are known.

Function repartition splits the skewed data partitions and reassigns the spatial queries

to the new data partitions using two strategies. The first strategy is to repartition based on

the data distribution. Because each data partition Di is already indexed by a spatial index,

the data distribution can be learned directly by recording the number of data points in each

branch of the index. Then, we repartition data points in Di into multiple parts based on the

recorded numbers while guaranteeing that each newly generated sub-partition contains an

equal amount of data. In the second strategy, we repartition a skewed Partition Di based on

102

the distribution of the spatial queries. First, we collect a sampleQs from the queriesQi that

are originally assigned to partitionDi. Then, we compute howQs is distributed in Partition

Di by recording the frequencies of the queries as they belong to branches of the index

over the data. Thus, we can repartition the indexed data based on the query frequencies.

Although the data sizes may not be equal, the execution workload will be balanced. In our

experiments, we choose this second approach to overcome query skew. To illustrate how

the proposed query-plan optimization algorithm works, consider the following example.

Running Example. Given data partitions D = {D1, D2, D3, D4, D5}, where the num-

ber of data points in each partition is 50, the number of queries in each partition Di,

1 ≤ i ≤ 5 is 30, 20, 10, 10, and 10, respectively, and the available data partitions M

is 5. The local query processing cost is γ(Di) = |Di| × |Qi| × pe, where pe = 0.2 is a

constant. The cost of merging the results is ρ(Q) = |Q| × λ × pm, where pm = 0.05, and

λ = 10 is the approximate number of retrieved data points per query. Data repartitioning

indexing costs are β(Di,m
′) = |Di|×m′×pr, and γ(Ds) = |Ds|×px, respectively, where

pr = 0.01 and px = 0.02.

Without any optimization, according to Equation 4.2, the estimated runtime cost for this

input dataset is 340. LOCATIONSPARK optimizes the query as follows. At first, it chooses

data Partition D1 as the skew partition to be repartitioned because D1 has the highest local

runtime (300), while the second largest cost is D2’s (200). Using Equation 4.6, the number

of partitionsm′ to splitD1 into is 2. Thus, the optimizer splitsD1 into two the partitionsD′1

and D′2 based on the query distribution within Partition D1. The number of data points in

D′1 andD′2 is 22 and 28, respectively, and the number of queries are 12 and 18, respectively.

Therefore, the new runtime is reduced to ≈ 200 + 25 because D1’s runtime is reduced to

≈ 100 based on Equation 4.4. Therefore, the two new data partitions D′1 and D′2 are

introduced in place of D1. Next, Partition D2 is chosen to be split into two partitions, and

the optimized runtime is ≈ 100 + 15. Finally, the procedure exits because there is only one

available partition left.

103

Algorithm 13: Greedy Partitioning Algorithm
Input: D: Indexed spatial data partitions,

Stat: Collected statistics, e.g., the number of data points and queries in data partition Di,

M : number of available data partitions.

Output: Plan: Optimized data and query partition plan, C: estimated query cost

1 h: Maximum Heap;

2 inserts Di into heap // data partitions are ordered by cost γ(Di) that is computed using Stat

3 Costo← γ(h.top) + ρ(Q) // old execution plan runtime cost

4 Plan

5 while M > 0 do

6 Var Dx← h.pop(); //get the partition with maximum runtime cost

7 Var m′← numberOfPartitions(h,Dx, M)

8 Var (Ds, PLs)← repartition(Dx, m′) //split Dx into m′ partitions

9 Costx ← β(Dx) +maxs∈[1,m′]{κ(Ds) + γ(Ds)}}+ ρ(Qx) //updated runtime cost over

selected skew partition

10 if Costx¡ Costo then

11 save Partitions Ds into h

12 save Partition plan PLs into Plan

13 Costo← Costx

14 M ←M -m′

15 end

16 else

17 break;

18 end

19 end

4.4 Local Execution

Once the query plan is generated, each computation node chooses a specific local ex-

ecution plan based on the queries assigned to it and the indexes it has. We implement

various centralized algorithms for spatial range join and kNN join operators within each

104

worker and study their performance. The algorithms are implemented in Spark. We use the

execution time as the performance measure.

4.4.1 Spatial-Range-Join

Two algorithms for spatial range join [74] are implemented. The first is indexed nested-

loops join, where we probe the spatial index repeatedly for each outer tuple (or range

query in the case of shared execution). The tested algorithms are nestRtree, nestGrid and

nestQtree, where they use an R-tree, a Grid, and a Quadtree as index for the inner table,

respectively.

The second algorithm for spatial range join is based on the dual-tree traversal [75]. It

builds two spatial indexes (e.g., an R-tree) over both the input queries (i.e., the outer table)

and the data (i.e, the inner table), and performs a depth-first search over the dual trees

simultaneously.

Figure 4.4(a) gives the performance of nestRtree, nestQtree, and dual-tree, where the

number of data points in each workers is set to 0.3 million. We do not show the results

for nestGrid, since it always shows the worst performance. The dual-tree approach pro-

vides a 1.8x speedup over the nestRtree. This conforms with other published results [74].

nestQtree achieves an order of magnitude improvement over the dual-tree approach. The

reason is that the minimum bounding rectangles (MBRs) of the spatial queries overlap

with multiple MBRs in the data index, and this reduces the pruning power of the under-

lying R-tree. The same trend is observed when increasing the number of indexed data

points (see Figure 4.4(b)). The dual-tree approach outperforms nestRtree, when the num-

ber of data points is smaller than 120k. However, dual-tree slows down afterwards. In

this experiment, we only show the results for indexing over two dimensional data points.

However, Quadtree performs worst when the indexed data are polygons [76]. Overall, for

multidimensional points, the local planner chooses nestQtree as the default approach. For

complex geometric types, the local planner uses the dual-tree approach based on an R-tree

implementation.

105

1 2 3 4 5 6 7 8 9 10

x 10
4

10
3

10
4

10
5

Number of queries

Q
u
er

y
 T

im
e(

m
s)

 l
o
g

nestRtree

nestQtree

dualTree

(a) Effect of outer table size

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

10
3

10
4

Number of data points

Q
u
er

y
 T

im
e(

m
s)

 l
o
g

nestRtree

nestQtree

dualTree

(b) Effect of inner table size

Figure 4.4.: Evaluation of local Spatial-Range-Join algorithms

20 40 60 80 100 120 140
0

0.5

1

1.5

2

x 10
4

k

Q
u
er

y
 T

im
e(

m
s)

sfcurve

pgbjk

spitfire

nestRtree

nestQtree

(a) Effect of k

0.5 1 1.5 2 2.5

x 10
5

0

2

4

6

8

10

12

x 10
4

Number of queries

Q
u

er
y

 T
im

e(
m

s)

sfcurve

pgbjk

spitfire

nestRtree

nestQtree

(b) Effect of inner table size

Figure 4.5.: Evaluation of local kNN-Join algorithms

106

4.4.2 kNN Join

Similar to Spatial-Range-Join, indexed nested-loops can be applied to kNN join, and

it computes the set of kNN objects for each query point in the outer table where an index

is built on the inner table (the data table). The other kinds of kNN join algorithms are

block-based. They partition the queries and the data points into different blocks, and find

the kNN candidates for queries in the same block. Then, a post-processing refine step

computes kNN for each query point in the same block. Gorder [77] divides query and data

points into different rectangles based on G-ordered data ordering, and utilizes two distance

bounds to reduce visiting unnecessary blocks. For example, the min-distance bound is the

minimum distance between the rectangles of the query points and the data points. The

max-distance bound is the maximum distance from the queries to their kNN sets. If the

max-distance is smaller than the min-distance bound, the related data block is pruned.

PGBJ [78] has a similar idea that extends to parallel kNN join using MapReduce. Recently,

Spitfire [79] is a parallel kNN self-join algorithm for in-memory data. It replicates the

possible kNN candidates into its neighboring data blocks. Both PGBJ and Spitfire are

designed for parallel kNN join, but they are not directly applicable to indexed data. The

reason is that PGBJ partitions queries and data points based on the selected pivots while

Spitfire is specifically optimized for kNN self-join.

LOCATIONSPARK enhances the performance of the local kNN join procedure. For

the Gorder [77], instead of using principal component analysis (PCA) in Gorder, which is

expensive, we apply the Hilbert curve to partition the query points. We term the modified

Gorder method sfcurve. We modify PGBJ as follows. First, we compute the pivots of the

query points based on a clustering algorithm (e.g., k-means) over sample data, and then

partition the query points are into different blocks based on the computed pivots. Next,

we compute the MBR of each block. Because the data points are already indexed (e.g.,

using an R-tree), the min-distance from the MBRs of the query points and the index data

is computed, and the max-distance bound is calculated based on the kNN results from the

107

pivots. This approach is termed pgbjk. In terms of spitfire, we use a spatial index to speedup

finding the kNN candidates.

Figure 4.5(a) gives the performance of the specialized kNN join approaches within alo-

cal computation node when varying k from 10 to 150. The nestQtree approach always

performs the best, followed by nestRtree, sfcurve, pgbjk, and spitfire. Notice that block-

based approaches induce extensive amounts of kNN candidates for query points in the same

block, and it directly degrades the performance of the kNN refine step. More importantly,

the min-distance bound between the MBR of the query points and the MBR of the data

points is much smaller than the max-distance boundary. Then, most of the data blocks

cannot be pruned, and result in redundant computations. On the other hand, the nested-

loops-based join algorithms prune some data blocks, because the min-distance bound from

the query point to the data points in the same block is bigger than the max-distance bound-

ary of this query point. Figure 4.5(b) gives the performance of the kNN join algorithms

by varying the number of query points. Initially, for small numbers of query points (less

than 70k), nestRtree outperforms sfcurve, then nestRtree degrades linearly with more query

points. Overall, we adopt nestQtree as the local kNN join algorithm.

4.5 Spatial Bloom Filter

In this section, we introduce a new spatial Bloom filter termed sFilter. The sFilter can

help decide for an outer tuple, say q, of a spatial range join, if there exist tuples in the

inner table that actually join with q. This helps reduce the communication overhead. For

example, consider an outer tuple q of a spatial range join where q has a range that overlaps

multiple data partitions of the inner table. Typically, all the overlapping partitions need

to be examined by communicating q’s range to them, and searching the data within each

partition to test for overlap with q’s range. This incurs high communication and search

costs. Using the sFilter, given q’s range that overlaps multiple partitions of the inner table,

the sFilter can decide which overlapping partitions contain data that overlaps q’s range

without actually communicating with and searching the data in the partitions. Only the

108

partitions that contain data that overlap with q’s range are the ones that will be contacted

and searched.

In the remaining of this section, we introduce the data structures for the sFilter and its

corresponding range search algorithm. Next, we describe how sFilter reduces unnecessary

communication costs as the scheduler assigns a query to local computation nodes. Finally,

we present an approach to update the sFilter adaptively when the distribution of data and

queries change over time.

4.5.1 Overview of sFilter

Figure 4.6 gives an example of an sFilter. The sFilter is motivated by in-memory in-

dexes [80, 81]. Conceptually, an sFilter is a quadtree variant that has internal and leaf

nodes [76]. Internal nodes are for index navigation, and leaf nodes, each has a marker to

indicate whether or not there are data items in the node’s corresponding region. We encode

the sFilter into two binary codes and execute queries over this encoding.

Binary Encoding of the sFilter

The sFilter is encoded into two long sequences of bits. The first bit-sequence corre-

sponds to internal nodes while the second bit-sequence corresponds to leaf nodes. Notice

that in these two binary sequences, no pointers are needed. Each internal node of the sFil-

ter takes four bits, where each bit represents one of the internal node’s children. These

children are encoded in clock time order. The bit value of an internal node determines the

type of its child nodes, i.e., whether the child is internal (a 1 value) or leaf (a 0 value).

For example, the root node A in Figure 4.6 has binary code 1011 (in clock time order) that

means it has three of its children being internal nodes, and one is a leaf node (the second

node). The four-bit encodings of all the internal nodes are concatenated together to form

the internal-node bit-sequence of the sFilter. The ordering of the internal nodes in this se-

quence is based on a breadth-first search traversal of the quadtree. In contrast, a leaf node

only takes one bit, and its bit value indicates whether or not data points exist inside the

109

0000 1000

0000

1 0010

1011

1 0 1 0

1 1 0 1

00001 0 1 0 1 0

1 0 1 1

00001011 1000 0010 0000 0000

d1 d2

q1q2

A

B C D

E F

aja0 ax

Internal

Leaf 1 1010 101 010 1101 1011

b0 bj

ay

0000 1000 0000 0000

1010 101 0110 1101

1011

a0

b0

1Shrink

Figure 4.6.: sFilter structure (up left), the data (up right) and binary encoding of sFilter

(down)

spatial quadrant corresponding to the leaf. For example, internal node B in Figure 4.6 has

four children, and the bit values for B’s leaf nodes are 1010 that indicates that the first and

third leaf nodes of B (in clock time order) contain data items.

To encode the bit-sequence for all the leaf nodes in an sFilter, during the same Breadth-

First Search on the underlying quad-tree of the sFilter to produce the bit-sequence for the

internal nodes, we simultaneously construct the bit-sequence for all the leaf nodes. Thus,

we produce two encodings, one for a BFS of the internal nodes and one for a BFS of the

leaf nodes. For example, the sFilter in Figure 4.6 is encoded into the two binary sequences

given in the figure. From the example, the two bit-sequences for the internal and leaf nodes

of the sFilter are {1011 0000 1000 0010 0000 0000} and {1 1010 101 010 1101 1011},

respectively. Thus, the space usage of the sFilter is bounded by the number of internal

and leaf nodes. Formally, the space usage of an sFilter is O(((4d−1 − 1)/3) × 4 + 4d−1)

Bits, where O(4d−1− 1)/3) and O(4d−1) are the numbers of internal nodes and leaf nodes,

respectively, and d is the depth of quadtree equal with o(log(n)). In the next section, we

demonstrate how to execute a spatial range query over the bit-sequences of the sFilter.

110

Query processing

Consider internal node D in Figure 4.6. D’s binary code is 0010, and the third bit has a

value of 1 at memory address ax of the internal nodes bit sequence. Thus, this bit refers to

D’s child F that is also an internal node at address aj . Because the sFilter has no pointers,

we need to compute F ’s address aj from ax. Observe that the number of bits with value 1

from the start address a0 of the binary code to ax can be used to compute the address.

Definition 4.5.1 Let a be the bit sequence that starts at address a0. χ(a0, ax) and τ(a0, ax)

are the number of bits with value 1 and 0, respectively, from addresses a0 to ax inclusive.

χ(a0, ax) is the number of internal nodes up to ax. Thus, the address aj of F is (a0 +

5× 4) because there are 5 bits with value 1 from a0 to ax. Similarly, if one child node is a

leaf node, its address is inferred from τ(a0, ax) as follows:

Proposition 4.5.1 Let a and b be the sFilter’s bit sequences for internal and leaf nodes in

memory addresses a0 and b0, respectively. To access a node’s child in memory, we need to

compute its address. The address, say aj , of the xth child of an internal node at address ax

is computed as follows. If the bit value of ax is 1, then aj = a0 + 4 × χ(a0, ax). If the bit

value of ax is 0, aj = b0 + τ(a0, ax).

We adopt the following two optimizations to speedup the computation of χ(a0, ax)

and τ(a0, ax): (1) Precomputation, and (2) Set counting. Let di be the memory address

of the first internal node at height (or depth) i of the underlying quadtree when traversed

in BFS order. For example, in Figure 4.6, nodes B and E are the first internal nodes

in BFS order at depths 1 and 2 of the quadtree, respectively. For all i ≤ depth of the

underlying quadtree, we precompute χ(a0, di), e.g., χ(a0, d1) and χ(a0, d2) in Figure 4.6.

Notice that d0 = a0 and χ(a0, d0) = 0. Then, address aj that corresponds to the memory

address of the xth child of an internal node at address ax can be computed as follows.

aj = a0 + (χ(a0, d1) + χ(d1, ax)) × 4. χ(a0, d1) is precomputed. Thus, we only need

to compute on the fly χ(d1, ax). Furthermore, evaluating χ can be optimized by a bit set

111

counting approach, i.e, a lookup table or a sideways addition 1 that can achieve constant

time complexity.

After getting one node’s children via Proposition 4.5.1, we apply Depth-First Search

(DFS) over the binary codes of the internal nodes to answer a spatial range query. The

procedure starts from the first four bits of bit sequence a, since these four bits are the root

node of the sFilter. Then, we check the four quadrants, say rs, of the children of the root

node, and iterate over rs to find the quadrants, say r′s, overlapping the input query range

qi. Next, we continue searching the children of r′s based on the addresses computed from

Proposition 4.5.1. This recursive procedure stops if a leaf node is found with value 1, or

if all internal nodes are visited. For example, Consider range query q2 in Figure 4.6. We

start at the root node A (with bit value 1011). Query q2 is located inside the northwestern

(NW) quadrant of A. Because the related bit value for this quadrant is 1, it indicates an

internal node type and it refers to child node B. Node B’s memory address is computed by

a0 + 1 × 4 because only one non-leaf node (A) is before B. B’s related bit value is 0000,

i.e., B contains four leaf nodes. The procedure continues until finding one leaf node of

B, mainly the southeastern child leaf node, with value 1 that overlaps the query, and thus

returns true.

4.5.2 sFilter in LocationSpark

The depth of the sFilter affects query performance. It is impractical to use only one

sFilter in a distributed setting. We embed multiple sFilters into the global and local spatial

indexes in LOCATIONSPARK. In the master node, separate sFilters are placed into the

different branches of the global index, where the role of each sFilter is to locally answer

the query for the specific branch it is in. In the local computation nodes, an sFilter is built

and it adapts its structure based on data updates and changes in query patterns.

1https://graphics.stanford.edu/˜seander/bithacks.html

112

Algorithm 14: Update sFilter in LocationSpark
Input: LocationRDD: Distributed/indexed spatial data,

Q: Input set of spatial range queries

Output: R: Results of the spatial queries

1 Var index← LocationRDD.index //get global index with embedded sFilters

2 Var qRDD← partition(Q,index) // Distribute in parallel the input spatial queries using the

global index

3 Var update sFilter← //function for updating the sFilter in each worker

4 {

5 for each query qi in this worker do

6 if query qi’s return result is empty then

7 insert(qi, sFilter) // adapt sFilter given qi

8 end

9 end

10 if sFilter.space > α then

11 shrink(sFilter) // shrink the sFilter to save space

12 end

13 }

14 R← LocationRDD.sjoin(qRDD)(update sFilter) //execute spatial join and update sFilter

in workers

15 Var sFilters← LocationRDD.collect sFilter() //collect sFilter from workers

16 mergesFilters(sFilters, index) // update sfilter in global index

17 return R

Spatial Query Processing Using the sFilter

Algorithm 14 gives the procedure for performing the spatial range join using the sFilter.

Initially, the outer (queries) table is partitioned according to the global index. The global

index identifies the overlapping data partitions for each query q. Then, the sFilter tells

which partitions contain data that overlap the query range (Line 2 of the algorithm). After

113

performing the spatial range join (Line 14), the master node fetches the updated sFilter

from each data worker, and refreshes the existing sFilters in the master node (Lines 15-16).

Lines 2-13 update the sFilter of each worker (as in Figure 4.2).

The sFilter can improve the kNN search and kNN join because they also depend on

spatial range search. Moreover, their query results may enhance the sFilter by lowering the

false positive errors as illustrated below.

Query-aware Adaptivity of the sFilter

The build and update operations of the sFilter are first executed at the local workers in

parallel. Then, the updated sFilters are propagated to the master node.

The initial sFilter is built from a temporary local quadtree [76] in each partition. Then,

the sFilter is adapted based on the query results. For example, consider Query q1 in Fig-

ure 4.6. Initially, the sFilter reports that there is data for q1 in the partitions. When q1 visits

the related data partitions, it finds that there are actually no data points overlapping with q1

in the partitions, i.e., a false-positive (+ve) error. Thus, we mark the quadrants precisely

covered by q1 in the sFilter as empty, and hence reduce the false positive errors if queries

visit the marked quadrants again. Function insert in Algorithm 14 recursively splits

the quadrants covered by the empty query, and marks these generated quadrants as empty.

After each local sFilter is updated in each worker, these updates are reflected into the mas-

ter node. The compact encoding of the sFilter saves the communication cost between the

workers and the master.

However, the query performance of the sFilter degrades as the size of the index in-

creases. Function shrink in Algorithm 14 merges some branches of the sFilter at the

price of increasing false +ve errors. For example, one can shrink internal node F in Fig-

ure 4.6 into a leaf node, and updating its bit value to 1, although one quadrant of F does

not contain data. Therefore, we might track the visit frequencies of the internal nodes, and

merge internal nodes with low visiting frequency. Then, some well-known data caching

policies, e.g., LRU or MRU, can be used. However, the overhead to track the visit frequen-

114

cies is expensive. In our implementation, we adopt a simple bottom-up approach. We start

merging the nodes from the lower levels of the index to the higher levels until the space

constraint is met. In Figure 4.6, we shrink the sFilter from internal node F , and replace

it by a leaf node, and update its binary code to 1. F ’s leaf children are removed. The ex-

perimental results show that this approach increases the false +ve errors, but enhances the

overall query performance.

4.6 Experimental Study

LOCATIONSPARK is implemented on RDDs, which are the distributed memory abstrac-

tion in Spark. LOCATIONSPARK is a library of Spark and provides Class LocationRDD to

conduct spatial operations [4]. Statistics are maintained at the driver program of Spark,

and the execution plans are generated at the driver. Local spatial indexes are persisted

in the RDD data partitions, while the global index is realized by extending the interface

of the RDD data partitioner. The data tuples and related spatial indexes are encapsulated

into the RDD data partitions. Thus, Spark’s fault tolerance naturally applies in LOCA-

TIONSPARK. The spatial indexes are immutable and are implemented based on the path

copy approaches. Thus, each updated version of the spatial index can be persisted into

disk for fault tolerance. This enables the recovery of a local index from disk in case of

failure in a worker. The Spark cluster is managed by YARN, and a failure in the master

nodes is detected and managed by ZooKeeper. In case of master node failure, the lost mas-

ter node is evicted and a standby node is chosen to recover the master. As a result, the

global index and the sFilter in the master node are recoverable. Finally, the built spatial

index data can be stored into disk, and enable further data analysis without additional data

repartitioning or indexing. LOCATIONSPARK is open-source, and can be downloaded from

https://github.com/merlintang/SpatialSpark.

115

4.6.1 Experimental Setup

Experiments are conducted on two datasets. Twitter: 1.5 Billion Tweets (around

250GB) are collected over a period of nearly 20 months (from January 2013 to July 2014)

and is restricted to the USA spatial region. The format of a tweet is: identifier, times-

tamp, longitude-latitude coordinates, and text. OSMP: is shared by the authors of Spatial-

Hadoop [14]. OSMP represents the map features of the whole world, where each spatial

object is identified by its coordinates (longitude, latitude) and an object ID. It contains 1.7

Billion points with a total size of 62.3GB. We generate two types of queries. (1) Uniformly

distributed (USA, for short): We uniformly sample data points from the corresponding

dataset and generate spatial queries from the samples. These are the default queries in

our experiments. (2) Skewed spatial queries: These are synthesized around specific spatial

areas, e.g., Chicago, San Francisco, New York (CHI, SF, NY, correspondingly, for short).

The spatial queries and data points are the outer table Q and the inner table D for the

experimental studies of the spatial range and kNN joins presented below.

Our study compares LOCATIONSPARK with the following: (1) GeoSpark [70] uses

ideas from SpatialHadoop but is implemented over Spark. (2) SpatialSpark [69] performs

partition-based spatial joins. (3) Magellan [71] is developed based on dataframe of Spark

to benefit from Spark SQL’s plan optimizer. However, Magellan does not have spatial

indexing. (4) State-of-art kNN-join: Since none of the three systems support kNN join,

we compare LOCATIONSPARK with a state-of-art kNN-join approach (PGBJ [78]) that is

provided by PGBJ’s authors. LocationSpark(opt) refers to the optimized query scheduler

and sFilter.

We use a cluster with six physical nodes, namely Hathi 2.Hathi consists of 6 Dell com-

pute nodes with two 8-core Intel E5-2650v2 CPUs, 32 GB of memory, and 48TB of local

storage per node for a total cluster capacity of 288TB. The Spark version is 1.5.0 with Yarn

cluster resource management. The performance is mainly measured by the average query

execution time for various spatial operators.

2https://www.rcac.purdue.edu/compute/hathi/

116

0 50 100 150

10
2

10
3

10
4

Queried Data Size(Million)

Q
u
er

y
 T

im
e(

se
co

n
d
s)

 l
o
g

GeoSpark

SpatialSPark

LocationSpark(opt)

(a) Twitter

30 40 50 60 70 80 90 100 110 120

10
3

Queried Data Size(Million)

Q
u

er
y

 T
im

e(
se

co
n

d
s)

 l
o

g

GeoSpark

SpatialSPark

LocationSpark(opt)

(b) OSMP

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

10
3

10
4

Number of Queries(Million)

Q
u

er
y

 T
im

e(
se

co
n

d
s)

 l
o

g

GeoSpark

SpatialSpark

LocationSpark(opt)

(c) Twitter

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

10
3

10
4

Number of Queries(Million)

Q
u
er

y
 T

im
e(

se
co

n
d
s)

 l
o
g

GeoSpark

SpatialSpark

LocationSpark(opt)

(d) OSMP

Figure 4.7.: The performance of Spatial-Range-Join

0 2 4 6 8 10 12 14 16 18 20

10
3

10
4

Data Size(Millon)

Q
u
er

y
 T

im
e(

se
co

n
d
s)

 l
o
g

LocationSpark

LocationSpark(opt)

(a) Twitter

0 10 20 30 40 50 60 70 80 90 100

10
3

10
4

Data Size(Millon)

Q
u
er

y
 T

im
e(

se
co

n
d
s)

 l
o
g

LocationSpark

LocationSpark(opt)

(b) OSMP

Figure 4.8.: Performance of kNN-Join by increasing the number of data points

117

Table 4.1.: Comparison with the spatial range search

Dataset System Query

time(ms)

Index

build time(s)

Twitter

LocationSpark(R-tree) 390 32

LocationSpark(Qtree) 301 16

Magellan 15093 /

SpatialSpark 16874 35

SpatialSpark(no-index) 14741 /

GeoSpark 4321 45

OSMP

LocationSpark(R-tree) 1212 67

LocationSpark(Qtree) 734 18

Magellan 41291 /

SpatialSpark 24189 64

SpatialSpark(no-index) 17210 /

GeoSpark 4781 87

118

4.6.2 Performance of Spatial Range Search and Join

Table 4.1 summarizes the spatial range search and spatial index build time by the var-

ious approaches. For a fair comparison, we cache the indexed data into memory, and

record the spatial range query processing time. From Table 4.1, observe the following:

(1) LOCATIONSPARK is 50 times better than Magellan on query execution time for the two

datasets, mainly because the spatial index (e.g., Global and Local index) of LOCATION-

SPARK can avoid visiting unnecessary data partitions. (2) LOCATIONSPARK with different

local indexes, e.g., the R-tree and Quadtree, outperforms SpatialSpark. The speedup is

around 50 times, since SpatialSpark (without index) has to scan all the data partitions.

SpatialSpark(with index) stores the global indexes into disk, and finds data partitions by

scanning the global index in disk. This incurs extra I/O overhead. Also, the local in-

dex is not utilized during local searching. (3) LOCATIONSPARK is around 10 times faster

than GeoSpark in spatial range search execution time because GeoSpark does not utilize

the built global indexes and scans all data partitions. (4) The local index with Quadtree

for LOCATIONSPARK achieves superior performance over the R-tree one in term of index

construction and query execution time as discussed in Section 4.4. 5) The index build time

among the three systems is comparable because they all scan the data points, which is the

dominant factor, and then build the index in memory.

Performance results (mainly, the execution times of the spatial range join) are listed in

Figure 4.7. For fair comparison, the runtime is counted as end to end, which includes the

time to initiate the job, build indexes, execute the join query, and save results into HDFS.

Performance results for Magellan are not shown because it performs Cartesian product and

hence has the worst execution time. Figures 4.7(a) and 4.7(b) present the results by varying

the data sizes of D (the inner table) from 25 million to 150 million, while keeping the size

of Q (the outer table) to 0.5 million. The execution time of GeoSpark shows quadratic

increase as the data size increases. GeoSpark’s running time is almost 3 hrs when the

data size is 150 million, which is extremely slow. SpatialSpark shows similar trends. The

reason is that both GeoSpark and SpatialSpark suffer from (1) the spatial skew issue where

119

some workers process more data and take longer time to finish. (2) the local execution plan

based on the R-tree and the Grid is slow. (3) processing of queries go to data partitions that

do not contribute to the final results. LOCATIONSPARK with the optimized query plans

and the sFilter outperforms the two other systems by an order of magnitude. A detailed

analysis for this speedup is presented below. Also, we study the effect of the outer table

size on performance. Figures 4.7(c) and 4.7(d) give the run time, and demonstrate that

LOCATIONSPARK is 10 times faster than the other two systems.

4.6.3 Performance of kNN Search and Join

Performance of kNN search is listed in Table 4.2. LOCATIONSPARK outperforms

GeoSpark by an order of magnitude. GeoSpark broadcasts the query points to each data

partition, and accesses each data partition to get the kNN set for the query. Then, GeoSpark

collects the local results from each partition, then sorts the tuples based on the distance to

query point of kNN. This is prohibitively expensive, and results in large execution time.

LOCATIONSPARK only searches for data partitions that contribute to the kNN query point

based on the global and local spatial indexes and the sFilter. It avoids redundant computa-

tions and unnecessary network communication for irrelevant data partitions.

For kNN join, Table 4.3 presents the performance results when varying k on the Twitter

and OSMP datasets. In terms of runtime, LOCATIONSPARK with optimized query plans

and with the sFilter always performs the best. LOCATIONSPARK without any optimizations

gives better performance than that of PGBJ. The reason is due to having in-memory compu-

tations and avoiding expensive disk I/O when compared to MapReduce jobs. Furthermore,

LOCATIONSPARK with optimization shows around 10 times speedup over PGBJ, because

the optimized plan migrates and splits the skewed query regions.

We test the performance of the kNN join operator when increasing the number of data

points while having the number of queries fixed to 1 million around the Chicago area. The

results are illustrated in Figure 4.8. Observe that LOCATIONSPARK with optimizations

performs an order of magnitude better than the basic approach. The reason is that the

120

optimized query plan identifies and repartitions the skew partitions. In this experiment, the

top five slowest tasks in LOCATIONSPARK without optimization take around 33 minutes,

while more than 75% tasks only take less than 30 seconds. On the other hand, with an

optimized query plan, the top five slowest tasks take less than 4 minutes. This directly

enhances the execution time.

Table 4.2.: Runtime of kNN search with microseconds unit

Dataset System k=10 k=20 k=30

Twitter

LocationSpark(R-tree) 81 82 83

LocationSpark(Q-tree) 74 75 74

GeoSpark 1334 1813 1821

OSMP

LocationSpark(R-tree) 183 184 184

LocationSpark(Q-tree) 73 73 74

GeoSpark 4781 4947 4984

Table 4.3.: Runtime of kNN-Join with second unit

Dataset System k=50 k=100 k=150

Twitter

LocationSpark(Q-tree) 340 745 1231

LocationSpark(Opt) 165 220 230

PGBJ 3422 3549 3544

OSMP

LocationSpark(Q-tree) 547 1241 1544

LocationSpark(Opt) 260 300 340

PGBJ 5588 5612 5668

121

(a) Twitter (b) OSMP

Figure 4.9.: Performance of Spatial-Range-Join on various query distribution

4.6.4 Effect of Query Distribution

We study the performance under various query distributions. As illustrated before, the

query execution plan is the most effective factor in distributed spatial computing. From

the experimental results for spatial range join and kNN join above, we already observe

that the system with optimization achieves much better performance over the unoptimized

versions. In this experiment, we study the performance of the optimized query scheduling

plan in LOCATIONSPARK under various query distributions. The performance of the spa-

tial range join operator over query set Q (the outer table) and dataset D (the inner table) is

used as the benchmark. The number of tuples for D is fixed as 15 million and 50 million

for Twitter and OSMP, respectively, while the size of Q is 0.5 million, and each query in

Q is generated from different spatial regions, e.g., CHI, SF, NY and USA. We do not plot

the runtime of Magellan on spatial join, as it uses Cartesian join, and hence has the worst

performance. Figure 4.9 gives the execution runtimes for the spatial range join operators in

different spatial regions. From Figure 4.9, GeoSpark performs the worst, followed by Spa-

tialSpark and then LOCATIONSPARK. LOCATIONSPARK with the optimized query plan

achieves an order of magnitude speedup over GeoSpark and SpatialSpark in terms of exe-

cution time. LOCATIONSPARK with optimized plans achieves more than 10 times speedup

over LOCATIONSPARK without the optimized plans for the skewed spatial queries.

122

4.6.5 Effect of sFilter

In this experiment, we measure the query processing time, the index construction time,

the false positive ratio and the space usage of the sFilter. Table 4.4 gives the performance

of various indexes in a local computation node. The Bloom filter is tested using breeze 3.

The sFilter(ad) represents the sFilter with adaptation of its structure given changes in the

queries, and with the merging to reduce its size as introduced in Section 4.5.2. From Ta-

ble 4.4, observe that sFilter achieves one and two orders of magnitude speedup over the

Quadtree- and R-tree-based approaches in terms of spatial range search execution time,

respectively. The sFilter(ad) improves the query processing time over the approach with-

out optimization, but the sFilter(ad) has the overhead to merge branches of the index to

control its size, and increases the false positive ratio. The Bloom filter does not support

spatial range queries. Table 4.4 also gives the space usage overhead for various local in-

dexes in each worker. The sFilter is 5-6 orders of magnitude less than the other types of

indexes, e.g., the R-tree and the Quadtree. This is due to the bit encoding of the sFilter that

eliminates the need for pointers. Moreover, the sFilter reduces the unnecessary network

communication. We study the shuffle cost for redistributing the queries. The results are

given in Figure 4.10. The sFilter reduces the shuffling cost for both spatial range and kNN

join operations. The shuffle cost reduction depends on the data and query distribution.

Thus, the more unbalanced the distribution of queries and data in the various computa-

tion nodes, the more shuffle cost is reduced. For example, for kNN join, the shuffle cost

is improved from 1114575 to 928933 when k is 30, achieving 18% reduction in network

communication cost.

4.6.6 Effect of the Number of Workers

Spark’s parallel computation ability depends on the number of executors and number

of CPU cores assigned to each executor, that is, the number of executors times the num-

ber of CPU cores per executor. Therefore, to demonstrate the scalability of the proposed

3https://github.com/scalanlp/breeze

123

Table 4.4.: Performance of sFilter

Dataset Index Query

time(ms)

Index

build(s)

False

positive

Memory

usage(MB)

Twitter

R-tree 19 17 / 112

Q-tree 0.4 1.8 / 37

sFilter 0.022 2 0.07 0.006

sFilter(ad) 0.018 2.3 0.09 0.003

bloom filter 0.004 1.54 0.01 140

OSMP

R-tree 4 32 / 170

Q-tree 0.5 1.2 / 63

sFilter 0.008 2.4 0.06 0.008

sFilter(ad) 0.006 6 0.10 0.006

bloom filter 0.002 2.7 0.01 180

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

2

4

6

8

10

12

14

16

18
x 10

5

Number of Queries(Million)

N
u

m
b

er
 o

f
S

h
u

ff
le

 R
ec

o
rd

s

LocationSpark

LocationSpark(opt)

(a) Spatial-Range-Join

10 15 20 25 30 35 40 45 50

4

5

6

7

8

9

10

11

12

13

14

x 10
5

k

N
u

m
b

er
 o

f
S

h
u

ff
le

 R
ec

o
rd

s

LocationSpark

LocationSpark(opt)

(b) kNN join

Figure 4.10.: The effect of sFilter to reduce shuffle cost

124

35 40 45 50 55 60 65 70 75 80
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Number of (Executors × Cores)

Q
u

er
y

 T
im

e(
se

co
n

d
s)

GeoSpark

SpatialSpark

LocationSpark(opt)

(a) Spatial-Range-Join

35 40 45 50 55 60 65 70 75 80
0

500

1000

1500

2000

2500

3000

3500

4000

Number of (Executor × Cores)

Q
u

er
y

 T
im

e(
se

co
n

d
s)

LocationSpark

LocationSpark(opt)

(b) kNN join

Figure 4.11.: Performance of Spatial-Range-Join and kNN-Join by various of number of

executors

approach, we change the number of executors from 4 to 10, and fix the number of CPU

cores assigned to each executor. We study the runtime performance for spatial range join

and kNN join operations using the Twitter and OSMP datasets. Because the correspond-

ing performance on the OSMP dataset gives similar trends as the Twitter dataset, we only

present the performance for the Twitter dataset in Figure 4.11, where the outer table size is

fixed to 1 million around Chicago area, and the inner table size is 15 million. We observe

that the performance of LOCATIONSPARK for the spatial range join and the kNN join im-

proves gradually with the increase in the number of executors. In contrast, GeoSpark and

SpatialSpark do not scale well in comparison to LOCATIONSPARK for spatial range join.

The performance of Magellan for spatial join is not shown because it is based on Cartesian

product and shows the worst performance.

4.7 Related Work

Spatial data management has extensively been studied for decades and some surveys

give good overviews. Gaede and Günther [82] provide a summary of data indexing for

points. Sowell et al. give a survey and experimental study for iterative spatial-join in

memory [74]. Recently, there has been considerable interest in supporting spatial data

125

management over Hadoop MapReduce. Afrati and Ullman [83] have proposed a frame-

work that computes a multi-join query in a single computation round. Liu et al. [78] study

how to use the Voronoi diagram data partition to speedup kNN join over MapReduce.

Hadoop-GIS [66] supports spatial queries in Hadoop by using a uniform grid index. Spa-

tialHadoop [14] builds global and local spatial indexes, and modifies the HDFS record

reader to read data more efficiently. MD-Hbase [15] extends HBase to support spatial data

update and queries. Hadoop MapReduce is good at data processing for high throughput and

fault-tolerance. Yet, Hadoop MapReduce has to write intermediate data into HDFS, and

hence impedes the performance of applications that require pipelines of multiple MapRe-

duce jobs.

Taking advantage of the very large memory pools available in modern machines, Spark

and Spark-related systems (e.g., Graphx, Spark-SQL, and DStream) [67,84] are developed

to overcome the drawbacks of MapReduce in specific application domains. In order to pro-

cess big spatial data more efficiently, it is natural to develop an efficient spatial data man-

agement systems based on Spark. Several prototypes have been proposed to support spatial

operations over Spark, e.g., GeoSpark [70], SpatialSpark [69], Magellan [71], Simba [72].

However, some important factors impede the performance of these systems, mainly, query

skew, lack of adaptivity, and excessive and unoptimized network and I/O communication

overheads. For exist Spatial-Range-Join [74, 75] and kNN join approaches [77–79], we

conduct experimental study to analyze their performance in section 4.4.

Kwon et al. [73, 85] propose a skew handler to address the computation skew in a

MapReduce platform. AQWA [86] is a disk-based approach that handles spatial computa-

tion skew in MapReduce. In LOCATIONSPARK, we overcome the spatial query skew for

spatial range join and kNN join operators, and provide an optimized query execution plan.

These operators are not addressed in AQWA. The query planner in LOCATIONSPARK is

different from relational query planners, i.e., join order and selection estimation. ARF [81]

supports one dimensional range query filter for data in disk. Calderoni et al. [87] study

spatial Bloom filter for private data. Yet, it does not support spatial range querying.

126

4.8 Summary

In this chapter, we develop a system for efficient spatial computing. We presented a

query executor and optimizer to improve the query execution plan generated for spatial

queries. We conduct an extensive experimental study for local execution plan generation.

We introduce a new spatial bloom filter to reduce the redundant network communication

cost. Empirical studies on various real datasets demonstrate the superiority of our ap-

proaches compared with existing systems.

127

5 CONCLUSIONS

In this dissertation, we study similarity query processing in various data platforms. There-

fore, one question arises, should we develop systems specifically for certain targeted appli-

cations, or build one system that fits all applications? This dissertation demonstrates that,

in many cases, we cannot apply one platform for the broad spectrum of applications.

While application requirements are rapidly evolving, our experiments demonstrate that

general systems without optimization usually perform worse. For example, systems with-

out optimization (e.g., Similarity group by query based on RDBMS and similarity query

based on Spark) show worse performance than optimized tailored systems. Thus, we be-

lieve that the developed techniques in this dissertation could be applied for various types of

applications. For example, we propose and implement the similarity group by operators in-

side an RDBMS to query relational data (e.g., bank and stock transaction data). We propose

a new index to speedup Hamming-distance search over high dimensional data (e.g., images

and web pages) based on Map-Reduce. We develop an in-memory distributed system for

similarity query processing over in-memory distributed spatial data. Overall, we believe

these specific designs and optimization based on the type of data and the specific platforms

can enable rapid innovation. Below, I present some future directions for research:

• Spatial data analysis: LOCATIONSPARK provides basic similarity query operators,

e.g., spatial range select, and kNN select. However, spatial data analysis tasks, e.g.,

spatial data clustering, spatial skyline computation, and detection of abnormal spatial

regions, are also crucially important. Therefore, we plan to support spatial data anal-

ysis based on LOCATIONSPARK. For example, spatial data clustering can be built

upon the spatial join operator, the similarity group by operator can reuse the spatial

range select operator. More importantly, we find that there are room to improve these

128

spatial data analysis tasks, because most of the similarity-aware operators are not

specifically designed for data analysis.

• Approximate similarity query processing: Similarity query processing with ap-

proximate results is vital for the following reasons: (1) The run-time for computing

exact query results is high, (2) In most cases, approximate query results are good

enough for a specific application. Therefore, developing new approximate similarity

query operators, e.g., approximate spatial range operators, approximate kNN oper-

ators, and approximate similarity group-by operators for in-memory spatial data is

a promising future direction. Therefore, we plan to develop new semantics for ap-

proximate similarity queries, and study how approximation factors, e.g., confidence

intervals, influence the run-time performance of a query. More importantly, an ap-

proximate query operator would change the query plan that is originally designed

for exact query operators. Thus, query plan optimization for approximate similarity

query operators is expected to attract more attention in the future.

• Interaction with big spatial data: Building a system to enable humans to inter-

act with big spatial data is a promising direction. It is impractical to display large

amounts of spatial data in one map. Furthermore, reading and transferring big spatial

data to users have the drawback of expensive runtime and network communication

cost. To interact with big spatial data efficiently, several new operators will be need

to be developed, e.g., a query operator to read big spatial data from higher to lower

resolution on the fly. Meanwhile, the system has to schedule more computing cycles

towards spatial regions dynamically, as users may change their focus over big spatial

data on the fly.

• Spatio-textual and Spatio-image data: Spatio-textual data represents an object by

its spatial location and textual information. There is an emerging need for efficient

data analytic techniques to make use of spatio-textual data. For example, with the

increase in awareness about the environment and the sense of belonging, individuals

may wish to find friends in their vicinity, and vice versa, queries can also satisfy the

129

needs of new friends that share similar interests (e.g., posting similar text). Mobile

photo sharing services, e.g., Flicker, Instagram, WeChat, and WhatsApp, facilitate

for its users to take pictures and videos while sharing them on a variety of social net-

working platforms. It has been reported that mobile image-sharing services (e.g., In-

stagram) are growing far more quickly than traditional social network services (e.g.,

Facebook). Similar to spatio-textual processing, a spatial-image object can also be

converted into a high-dimensional vector (e.g., GIST) with a geo-location annota-

tion. Similarity operations, e.g., similarity-join or kNN-join, over the transformed

high-dimensional data is a core operation in many applications, e.g., in collaborative

filtering and web search. Extending LOCATIONSPARK to support similarity oper-

ations over spatio-textual and spatial-image data is interesting and important. The

reason is that traditional spatial indexing is not able to handle high-dimensional data.

• Memory management for distributed in-memory spatial data: Memory is a pre-

cious resource. The system has to allocate this precious resource to different jobs

based on their priorities and users’ access patterns. We plan to develop techniques to

identify the frequently visited or less frequently visited spatial data with lower com-

putation overhead. We plan to develop new memory placement policies to move data

between memory and disk in order to achieve the best runtime performance for the

various workloads.

We hope that continued experience with different applications will help us address these

challenges, and lead to solutions that are applicable to many systems.

REFERENCES

130

REFERENCES

[1] MingJie Tang, Ruby Y. Tahboub, Walid G. Aref, Mikhail J. Atallah, Qutaibah M.
Malluhi, Mourad Ouzzani, and Yasin N. Silva. Similarity group-by operators for
multi-dimensional relational data. IEEE Trans. Knowl. Data Eng., 2016.

[2] MingJie Tang, Yongyang Yu, Walid G. Aref, Qutaibah M. Malluhi, and Mourad Ouz-
zani. Efficient processing of Hamming-distance-based similarity-search queries over
MapReduce. In EDBT, 2015.

[3] MingJie Tang, Yongyang Yu, Walid G. Aref, Qutaibah Malluhi, and Mourad Ouzzani.
LocationSpark: A distributed in-memory data management system for big spatial
data. In VLDB, 2016.

[4] MingJie Tang, Yongyang Yu, Walid G. Aref, Qutaibah M. Malluhi, Mourad Ouzzani,
and Ahmed R.Mahmood. LocationSpark: A distributed in-memory data management
system for big spatial data. CoRR, 2016.

[5] Shashi Shekhar, Steven K. Feiner, and Walid G. Aref. Spatial computing. Commun.
ACM, 2016.

[6] Gurmeet Singh Manku, Arvind Jain, and Anish Das Sarma. Detecting near-duplicates
for web crawling. In WWW, 2007.

[7] Andrew Kachites McCallum. MALLET: A machine learning for language toolkit.
http://mallet.cs.umass.edu, 2002.

[8] Yasin N Silva, Ahmed M Aly, Walid G Aref, and Per-Ake Larson. SimDB: A
similarity-aware database system. In SIGMOD, 2010.

[9] Yasin N. Silva, Walid G. Aref, Per-Ake Larson, Spencer Pearson, and Mohamed H.
Ali. Similarity queries: Their conceptual evaluation, transformations, and processing.
VLDB J., 2013.

[10] Jiawei Han, Micheline Kamber, and Jian Pei. Data mining: Concepts and techniques.
Morgan Kaufmann, 2006.

[11] Jingkuan Song, Yang Yang, Yi Yang, Zi Huang, and Heng Tao Shen. Inter-media
hashing for large-scale retrieval from heterogeneous data sources. In SIGMOD, 2013.

[12] Yair Weiss, Antonio Torralba, and Robert Fergus. Spectral hashing. In NIPS, 2008.

[13] Michael M. Bronstein, Er M. Bronstein, Fabrice Michel, and Nikos Paragios. Data
fusion through crossmodality metric learning using similaritysensitive hashing. In
CVPR, 2010.

[14] A. Eldawy and M.F. Mokbel. SpatialHadoop: A MapReduce framework for spatial
data. In ICDE, 2015.

131

[15] S. Nishimura, S. Das, D. Agrawal, and A.E. Abbadi. MD-HBase: A scalable multi-
dimensional data infrastructure for location aware services. In MDM, 2011.

[16] Edgar Chávez, Gonzalo Navarro, Ricardo Baeza-Yates, and José Luis Marroquı́n.
Searching in metric spaces. ACM Comput. Surv., 2001.

[17] Qin Lv, William Josephson, Zhe Wang, Moses Charikar, and Kai Li. Multi-probe
LSH: Efficient indexing for high-dimensional similarity search. In VLDB, 2007.

[18] Mohamed Y. Eltabakh, Mourad Ouzzani, and Walid G. Aref. BDBMS: A database
management system for biological data. In CIDR, 2007.

[19] Mohamed Y. Eltabakh, Mourad Ouzzani, Walid G. Aref, Ahmed K. Elmagarmid,
Yasin Laura-Silva, Muhammad U. Arshad, David E. Salt, and Ivan Baxter. Managing
biological data using BDBMS. In ICDE, 2008.

[20] Chuan Xiao, Wei Wang, and Xuemin Lin. Ed-Join: An efficient algorithm for simi-
larity joins with edit distance constraints. In VLDB, 2008.

[21] Tapas Kanungo, David M Mount, Nathan S Netanyahu, Christine D Piatko, Ruth
Silverman, and Angela Y Wu. An efficient k-means clustering algorithm: Analysis
and implementation. PAMI, 2002.

[22] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based
algorithm for discovering clusters in large spatial databases with noise. In SIGKDD,
1996.

[23] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. BIRCH: An efficient data clus-
tering method for very large databases. In SIGMOD, 1996.

[24] F. Gray. Pulse code communication. In U.S. Patent 2,632,058, 1953.

[25] MingJie Tang, Ruby Y. Tahboub, Walid G. Aref, Qutaibah M. Malluhi, and Mourad
Ouzzani. On order-independent semantics of the similarity group-by relational
database operator. CoRR, 2014.

[26] Antonin Guttman. R-trees: A dynamic index structure for spatial searching. In SIG-
MOD, 1984.

[27] Mark De Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computa-
tional geometry. Springer, 2008.

[28] Robert E. Tarjan and Jan van Leeuwen. Worst-case analysis of set union algorithms.
J. ACM, 1984.

[29] Mikhail J. Atallah. Computing the convex hull of line intersections. J. Algorithms,
1986.

[30] TPC-H version 2.15.0.

[31] Eunjoon Cho, Seth A. Myers, and Jure Leskovec. Friendship and mobility: User
movement in location-based social networks. In SIGKDD, 2011.

[32] Elke Achtert, Hans-Peter Kriegel, Erich Schubert, and Arthur Zimek. Interactive data
mining with 3D-parallel-coordinate-trees. In SIGMOD, 2013.

132

[33] Sibel Adali, Piero Bonatti, Maria Luisa Sapino, and VS Subrahmanian. A multi-
similarity algebra. In SIGMOD, 1998.

[34] Solomon Atnafu, Lionel Brunie, and Harald Kosch. Similarity-based operators and
query optimization for multimedia database systems. In Proceedings of the 12th Aus-
tralasian Database Conference, 2001.

[35] Bernhard Braunmuller, Martin Ester, H-P Kriegel, and Jörg Sander. Multiple similar-
ity queries: A basic DBMS operation for mining in metric databases. IEEE Trans.
Knowl. Data Eng., 2001.

[36] MingJie Tang, Yuanchun Zhou, Peng Cui, Weihang Wang, Jinyan Li, Haiting Zhang,
YuanSheng Hou, and Baoping Yan. Discovery of migration habitats and routes of
wild bird species by clustering and association analysis. In ADMA, 2009.

[37] MingJie Tang, Yuanchun Zhou, Jinyan Li, Weihang Wang, Peng Cui, YuanSeng Hou,
Ze Luo, Jianhui Li, Fuming Lei, and Baoping Yan. Exploring the wild birds’ migra-
tion data for the disease spread study of H5N1: A clustering and association approach.
Knowl. Inf. Syst., 2011.

[38] Yuanchun Zhou, MingJie Tang, Weike Pan, Jinyan Li, Weihang Wang, Jing Shao,
Liang Wu, Jianhui Li, Qiang Yang, and Baoping Yan. Bird flu outbreak prediction
via satellite tracking. IEEE Intelligent Systems, 2014.

[39] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. CURE: An efficient clustering
algorithm for large databases. In SIGMOD, 1998.

[40] Eike Schallehn, Kai-Uwe Sattler, and Gunter Saake. Efficient similarity-based oper-
ations for data integration. Data & Knowledge Engineering, 2004.

[41] Chengyang Zhang and Yan Huang. Cluster by: A new SQL extension for spatial data
aggregation. In GIS, 2007.

[42] Maria Camila N Barioni, Humberto Razente, Agma Traina, and Caetano Traina Jr.
SIREN: A similarity retrieval engine for complex data. In VLDB, 2006.

[43] Denise Guliato, Ernani V de Melo, Rangaraj M Rangayyan, and Robson C Soares.
POSTGRESQL-IE: An image-handling extension for postgreSQL. Journal of Digital
Imaging, 2009.

[44] Moses S. Charikar. Similarity estimation techniques from rounding algorithms. In
STOC, 2002.

[45] Minsky Marvin and A. Papert Seymour. Perceptrons. MIT Press, 1969.

[46] D. Greene, M. Parnas, and F. Yao. Multi-index hashing for information retrieval. In
FOCS, 1994.

[47] AX. Liu, Ke Shen, and E. Torng. Large scale Hamming distance query processing.
In ICDE, 2011.

[48] Rares Vernica, Michael J. Carey, and Chen Li. Efficient parallel set-similarity joins
using MapReduce. In SIGMOD, 2010.

[49] Wei Lu, Yanyan Shen, Su Chen, and Beng Chin Ooi. Efficient processing of k nearest
neighbor joins using MapReduce. In VLDB, 2012.

133

[50] Chi Zhang, Feifei Li, and Jeffrey Jestes. Efficient parallel kNN joins for large data in
MapReduce. In EDBT, 2012.

[51] H. Kllapi, B. Harb, and Cong Yu. Near neighbor join. In ICDE, 2014.

[52] Donald R. Morrison. Patricia: Practical algorithm to retrieve information coded in
alphanumeric. J. ACM, 1968.

[53] Christos Faloutsos. Multiattribute hashing using gray codes. In SIGMOD, 1986.

[54] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data processing on large
clusters. Commun. ACM, 2008.

[55] Jeffrey S. Vitter. Random sampling with a reservoir. ACM Trans. Math. Softw., 1985.

[56] Spyros Blanas, Jignesh M. Patel, Vuk Ercegovac, Jun Rao, Eugene J. Shekita, and
Yuanyuan Tian. A comparison of join algorithms for log processing in MapReduce.
In SIGMOD, 2010.

[57] Xiaoyang Zhang, Jianbin Qin, Wei Wang, Yifang Sun, and Jiaheng Lu. HmSearch:
An efficient Hamming distance query processing algorithm. In SSDBM, 2013.

[58] Ramzi Nasr, Rares Vernica, Chen Li, and Pierre Baldi. Speeding up chemical searches
using the inverted index: The convergence of chemoinformatics and text search meth-
ods. Journal of Chemical Information and Modeling, 2012.

[59] Cui Yu, Beng Chin Ooi, Kian-Lee Tan, and H. V. Jagadish. Indexing the distance: An
efficient method to KNN processing. In VLDB, 2001.

[60] Roger Weber, Hans-Jörg Schek, and Stephen Blott. A quantitative analysis and per-
formance study for similarity-search methods in high-dimensional spaces. In VLDB,
1998.

[61] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate
nearest neighbor in high dimensions. Commun. ACM, 2008.

[62] Aude Oliva and Antonio Torralba. Modeling the shape of the scene: A holistic repre-
sentation of the spatial envelope. International Journal of Computer Vision, 2001.

[63] Yufei Tao, Ke Yi, Cheng Sheng, and Panos Kalnis. Efficient and accurate nearest
neighbor and closest pair search in high-dimensional space. ACM Trans. Database
Syst., 2010.

[64] Jinyang Gao, Hosagrahar Visvesvaraya Jagadish, Wei Lu, and Beng Chin Ooi. DSH:
Data sensitive hashing for high-dimensional k-NN search. In SIGMOD, 2014.

[65] Wadha J. Al Marri, Qutaibah M. Malluhi, Mourad Ouzzani, MingJie Tang, and
Walid G. Aref. The similarity-aware relational intersect database operator. In SISAP,
2014.

[66] Ablimit Aji, Fusheng Wang, Hoang Vo, Rubao Lee, Qiaoling Liu, Xiaodong Zhang,
and Joel Saltz. Hadoop GIS: A high performance spatial data warehousing system
over MapReduce. In VLDB, 2013.

[67] Matei Zaharia. An Architecture for Fast and General Data Processing on Large Clus-
ters. Association for Computing Machinery and Morgan, 2016.

134

[68] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The
Hadoop distributed file system. In MSST, 2010.

[69] SpatialSpark. http://simin.me/projects/spatialspark/.

[70] Jia Yu, Jinxuan Wu, and Mohamed Sarwat. GeoSpark: A cluster computing frame-
work for processing large-scale spatial data. In ACM SIGSPATIAL, 2015.

[71] Magellan. https://github.com/harsha2010/magellan.

[72] Dong Xie, Feifei Li, Bin Yao, Gefei Li, Liang Zhou, and Minyi Guo. Simba: Efficient
in-memory spatial analytics. In SIGMOD, 2016.

[73] YongChul Kwon, Magdalena Balazinska, Bill Howe, and Jerome Rolia. Skew-
resistant parallel processing of feature-extracting scientific user-defined functions. In
SoCC, 2010.

[74] Benjamin Sowell, Marcos Vaz Salles, Tuan Cao, Alan Demers, and Johannes Gehrke.
An experimental analysis of iterated spatial joins in main memory. In VLDB, 2013.

[75] Thomas Brinkhoff, Hans-Peter Kriegel, and Bernhard Seeger. Efficient processing of
spatial joins using R-trees. SIGMOD Rec., 1993.

[76] Hanan Samet. Foundations of Multidimensional and Metric Data Structures. Morgan
Kaufmann Publishers Inc., 2005.

[77] Chenyi Xia, Hongjun Lu, Beng Chin, and Ooi Jing Hu. GORDER: An efficient
method for KNN join processing. In VLDB, 2004.

[78] Wei Lu, Yanyan Shen, Su Chen, and Beng Chin Ooi. Efficient processing of k nearest
neighbor joins using MapReduce. In VLDB, 2012.

[79] Georgios Chatzimilioudis, Constantinos Costa, Demetrios Zeinalipour-Yazti, Wang-
Chien Lee, and Evaggelia Pitoura. Distributed in-memory processing of all k nearest
neighbor queries. IEEE Trans. Knowl. Data Eng., 2016.

[80] Viktor Leis, Alfons Kemper, and Thomas Neumann. The adaptive radix tree: ARTful
indexing for main-memory databases. In ICDE, 2013.

[81] Karolina Alexiou, Donald Kossmann, and Per-Ake Larson. Adaptive range filters for
cold data: Avoiding trips to Siberia. In VLDB, 2013.

[82] Volker Gaede and Oliver Günther. Multidimensional access methods. ACM Comput.
Surv., 1998.

[83] Foto N. Afrati and Jeffrey D. Ullman. Optimizing joins in a map-reduce environment.
Technical report, National Technical University of Athens, Stanford University, De-
cember 2009.

[84] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw, Michael J.
Franklin, and Ion Stoica. Graphx: Graph processing in a distributed dataflow frame-
work. In OSDI, 2014.

[85] YongChul Kwon, Magdalena Balazinska, Bill Howe, and Jerome Rolia. SkewTune:
Mitigating skew in mapreduce applications. In SIGMOD, 2012.

135

[86] Ahmed M. Aly, Ahmed R. Mahmood, Mohamed S. Hassan, Walid G. Aref, Mourad
Ouzzani, Hazem Elmeleegy, and Thamir Qadah. AQWA: Adaptive query-workload-
aware partitioning of big spatial data. In VLDB, 2015.

[87] Luca Calderoni, Paolo Palmieri, and Dario Maio. Location privacy without mutual
trust. Comput. Commun., 2015.

VITA

136

VITA

Mingjie Tang has an M.S.(2010) in computer science from University of Chinese Academy

of Sciences, and a B.S.(2007) in computer science from Sichuan University, China. His

research interests include database system, data mining and machine learning.

	Purdue University
	Purdue e-Pubs
	12-2016

	Efficient processing of similarity queries with applications
	Mingjie Tang
	Recommended Citation

	Blank Page

