
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 8, 2022

870 | P a g e

www.ijacsa.thesai.org

Straggler Mitigation in Hadoop MapReduce

Framework: A Review

Lukuman Saheed Ajibade
1
,

Kamalrulnizam Abu Bakar
2

School of Computing

Universiti Teknologi Malaysia

Johor Bahru, Malaysia

Ahmed Aliyu
3

Dept. of Mathematics

Bauchi State University Gadau

Nigeria

Tasneem Danish
4

Systems and Computer Engineering

Dept.

Carleton University Canada

Abstract—Processing huge and complex data to obtain useful

information is challenging, even though several big data

processing frameworks have been proposed and further

enhanced. One of the prominent big data processing frameworks

is MapReduce. The main concept of MapReduce framework

relies on distributed and parallel processing. However,

MapReduce framework is facing serious performance

degradations due to the slow execution of certain tasks type

called stragglers. Failing to handle stragglers causes delay and

affects the overall job execution time. Meanwhile, several

straggler reduction techniques have been proposed to improve

the MapReduce performance. This study provides a

comprehensive and qualitative review of the different existing

straggler mitigation solutions. In addition, a taxonomy of the

available straggler mitigation solutions is presented. Critical

research issues and future research directions are identified and

discussed to guide researchers and scholars.

Keywords—Big data; blacklisting execution; Hadoop;

MapReduce; spark; speculative execution; straggler

I. INTRODUCTION

Due to the accelerated expansion of structured and
unstructured data generated by the internet of things (IoT),
social media, multimedia, etc., it is becoming increasingly
difficult to analyse the information and data that is being
generated. Applications like MapReduce, a fault-tolerant,
scalable, and user-friendly framework for data processing,
allow their users to efficiently process these enormous volumes
of data [1], [2] . The preparation and generation of a large
amount of data can be accomplished using the MapReduce
approach. This is because it provides a user-friendly
environment and provides solutions for a variety of ad hoc and
misses, including data sorting and web indexing, among others.
Bigger businesses, including Yahoo and Google, among others,
use MapReduce in their large information applications.

The variety in accessibility in the CPU, I/O conflict, or
network traffic is what causes stragglers. The MapReduce
Framework is complete once map and reduce have been
finished [3], [4]. The job is not finished in the MapReduce
framework until the very reduce and map tasks are finished.
Additionally, when the range of time employment increases [5-
8], the number of stragglers decreases. Some compute nodes
are quicker than others in a diverse environment. Faster
compute nodes will finish their work ahead of schedule and
wait for the stragglers to complete. Slower compute nodes are

known as stragglers (Fig. 1). Nodes can occasionally fail owing
to hardware or software issues. To prevent system performance
degradation, it is crucial to identify stragglers at an early stage.

Traditional database management solutions such as E-R
model are no longer suitable for processing and analysing of
massive amounts of data generated by today's big enterprises.
The bulk processing problem has become a major difficulty,
and its analytical tools are evolving quickly because of
Google's creation of MapReduce, which enabled millions of
users to locate material from millions of pages in less than one
tenth of a second. On the other hand, stragglers are widely
acknowledged as a significant bottleneck in the processing of
large amounts of data and they can have a considerable effect
on it. Some stragglers mitigation techniques are evaluated in
this paper.

Fig. 1. Straggler Nodes in Parallel Processing.

II. MAPREDUCE FRAMEWORK AND STRAGGLERS

For significant information preparation on bunch-based
figure designs, MapReduce is the ideal matching information
preparing model that has been suggested [5]. Inside server
centres, this system is utilised to support machine learning,
data mining, and search applications. Large-scale online search
applications must be addressed by the philosophy. Google was
the one that originally recommended handling extremely large-
scale online search applications.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 8, 2022

871 | P a g e

www.ijacsa.thesai.org

Programmers are granted licences to extricate themselves
from issues like parallelization, booking, and allocating so they
may concentrate on creating applications. Processing, storing,
visualising, and interpreting big data are the four main
components of contemporary businesses and organisations.
Applications on a parallel hardware cluster can be
automatically run by MapReduce. Terabytes and petabytes of
data can also be processed more quickly.

Due to the MapReduce capability to offer a highly effective
and efficient framework for the parallel execution of
applications, data allocation in distributed database systems,
and fault tolerance network connections, it has recently grown
in popularity in a variety of applications. Parallel map
assignments, as shown in Fig. 1, are carried out as a single
input data set consisting of a collection of "key value" sets that
are further divided into fixed produce and size blocks
transitional output. Information preparation tools called map
and reduce are included in the MapReduce programming
model as depicted in Fig. 2.

Fig. 2. MapReduce Phases.

When a user submits a job request during the Map-phase,
the tasks are mapped to commodity machines for execution. In
the Reduce phase, the Combiner lowers the network's data
transmission rate. The Reduce-phase includes the Sort or
Merging step. The time is utilised to combine the Map outputs
from various nodes, and this combining is referred to as the
Reduce time. The final stage in running the operation in a
MapReduce fashion is the Reduce-part. The impact of each
step in this process on runtime varies, so different weights
should be used to estimate each job's completion time (the
impact of each step on the execution process is determined by
the ratio of the time of each step to the overall process's
runtime).

The tasks that require more time to complete than
comparable tasks are known as stragglers. There are many
reasons for delaying the assignment, including the use of
inefficient machines, the amount of information to process,
framework obstructions, equipment heterogeneity, and
competition for the available resources [6], [7].

Additionally, if one task is running slowly on a particular
system, it is not important for other upcoming and current tasks
to execute slowly on that same machine. Three main
mechanisms must be kept in mind when addressing the
straggler issue:

 If it is discovered that the anticipated remaining time is
longer than the typical runtime, the procedure may be
resumed up to three times.

 A speculative duplicate is scheduled if the resource
measurement lowers unfavourably. The following
procedures estimate the expected remaining time
(trem) and the typical runtime (tnew), as shown.

 term = (telapsed * d/dread) + twrapup.

 tnew = processRate∗locationFactor∗d+schedLag.

Stragglers can occur for a variety of reasons, such as load
inequality, ineffective scheduling, data localization,
communication overheads, and hardware heterogeneity [8], [9].
Additionally, there have been initiatives to address one or more
of these worries to lessen the issue [10]–[12]. Even if all these
earlier attempts were significant and helpful in solving this
issue, more rigorous analytical techniques are required to fully
comprehend the effects of stragglers on the performance
slowdown in huge data [13], [14].

III. RELATED WORKS

For addressing data skew for joins in a MapReduce system
and avoiding stragglers, the SharesSkew algorithm was
suggested by [7]. When data is skewed, the method determines
the multi-way join in MapReduce. In essence, the method
divides up the work of performing multi-way joins and
maximises the amount of information transferred from the
Mappers to the Reducers.

The technique uses a modified version of the SharesSkew
algorithm to partition and share highly valued records in a
distinctive way to minimise communication costs. The
algorithm determines the heavy hitter value of an attribute
based on the sizes of the relations or the portion of the
connection with heavy hitters and how the sizes interact with
one another.

In contrast to existing techniques that limit the number of
Reducers employed, the SharesSkew approach merely limits
the number of tuples of each Reducer. As a result, the number
of tuples selected ensures that the data is distributed equally
among the Reducers. (For determining the parameters of the
proposed approach, both chain and symmetric joins are taken
into consideration.).

A dynamic skew mitigation approach called SkewTune in
MapReduce applications was proposed by [15]. The SkewTune
approach tries to address the following challenges: i) the
MapReduce system should not require extra input from user ii)
the system should be fully transparent and iii) there should be
minimal overhead even when there is no skew. If the node in
the cluster is idle, the SkewTune recognizes the task with the
highest anticipated remaining processing time. Afterwards, the
non-processed input data of the straggling task is proactively
re-partitioned such that it fully utilizes the nodes within cluster.
It then conserves the ordering of the input data for the original
output to be re-built by concatenation. The SkewTune is
implemented as an extension to Hadoop and the efficiency is
evaluated by employing several actual applications.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 8, 2022

872 | P a g e

www.ijacsa.thesai.org

In the quest to address the problem of load imbalance due
to data skew, a load balancing based on join algorithms in
MapReduce systems was proposed by [16]. The load balancing
algorithm named Fine-Grained partitioning for Skew Data
(FGSD) for reduced tasks. The FGSD employs the properties
of both output and input data via a proposed stream sampling
algorithm. In addition, FGSD provides an approach that
distributes the input data that help in handling efficient
redistribution and join product skew.

Consequently, the authors declare that FGSD achieved
better balancing of data distribution and minimizes execution
time of jobs with different degrees of data skew. FGSD does
not need any alteration to the MapReduce configuration and is
suitable for handling complex jobs. Similarly, Gavagsaz et al.
[17] focus on reducer phase to achieve load balancing in
MapReduce system by employing scalable straightforward
random sampling. The major problem in reducer phase is data
skew, which lead to a significant load imbalance and
degradation of performance. Therefore, a sorted balance
algorithm was proposed, which is centered on sampling results.
The Sorted Balance algorithm using SCalable random
sampling (SBaSC). The scalable sampling algorithm is
employed for monitoring a more exact approximate
distribution of the keys through sampling small fraction of the
intermediate data.

In MapReduce, reducer side data skew occurs due to
unbalanced allocation of intermediate map-output to reducers.
Therefore, [18] proposed an adaptive Learning Automata Hash
Partitioning (LAHP) algorithm to address the data skew
problem. The LAHP is based on learning automata game for
conventional allocation of intermediate key-value pairs to
designated reducers. It is achieved by setting a learning
automaton on each mapper node to control the allocated load
on each reducer. Thus, during execution of job, a learning
automata game is enabled.

In addition, the LAHP algorithm partitions the intermediate
key value pairs arbitrarily without considering the statistical
distribution of pre-processing and input data. A load balancing
mechanism that enhances MapReduce in Hadoop was
proposed for mitigating negative impact of data skew on the
performance of MapReduce [19]. Data skew has become a
typical problem in MapReduce processing for handling data
intensive applications. The mechanisms integrate Reservoir
Sampling and Greedy (RSG) algorithms. It further slots in the
concept of data locality in order to properly distribute the
workload of each reducer, which is based on priority-based
load-balancing mechanism (PLBM).

Wang et al. [20] proposed an enhanced Replication
Framework of Stragglers over a Large-scale Parallel processing
(RFSLP) for addressing the latency Framework of Stragglers
encountered due to replication of stragglers. The framework
analyzes replication latency-cost tradeoff and determines the
best replication strategy. The strategy considers three design
ideas including i) how many replicas are required ii) the time to
replicate straggling tasks and iii) whether to terminate main
copy or not. The framework analysis demonstrates that for
specific execution time allocation, a small quantity of task
replication can drastically minimize the cost of computing

resources and latency. Further, an algorithm that estimates cost
and latency based on the empirical allocation of task execution
period.

In another aspect, a Framework for Assessing Stragglers
Detection (FASD) mechanisms over MapReduce was proposed
by [21]. It focuses on detection of stragglers because most of
the existing works are centered on mitigating stragglers. In this
light, an all-inclusive framework for straggler detection and
mitigation was proposed. The detection strategy considers set
of metrics that can be employed for characterizing and
detecting stragglers. The metrics include fake positive, recall,
detection latency, precision, and undetected time. Further, an
architectural model was developed in such a way that the
metrics can be linked to determine performance. The
performance measure includes system energy overhead and
execution time. To demonstrate those metrics that are effective
in detecting stragglers and predict effectiveness in terms of
energy efficiency performance, a number of experiments were
conducted.

Similarly, a data partitioning concept, which is based on
intermediate node for mitigating skew over a spark computing
environment was proposed [22]. The main issue targeted in this
work is unbalanced partitioning, which leads to variation in the
amount of data processed by each Reducer task. Considering
the mentioned issue, a Spark Key Reassigning and Splitting
Partitioning (SKRSP) algorithm for handling the partition skew
from the source codes of Spark-core 2.11 has been developed.
The concept considers two approaches of balancing namely:
partition balance for intermediate data and partition balance
after shuffle operators. The contribution is in two folds first, a
Key Reassigning Harsh-based Partitioning (KRHP) and rang-
based Key Splitting Reassigning Partitioning (KSRP)
algorithms. These algorithms can create suitable strategy for
implementing the skew in the shuffle phase. The KSRP creates
a weighted bound for partitioning intermediate data for the
kind of sort-based applications. While KRHP stores these
reassigned keys, and the new reducers of these keys are from
other applications.

A proactive method named Hummer-1 for mitigating
stragglers based on partial clones was proposed by [23]. In the
existing solutions, different methods have been suggested
including speculative execution, blacklisting and proactive
mitigation. However, these solutions either waste much
resource or consume much time during execution. The
Hummer method trigger clones just when jobs are submitted
thus, tasks in one job are assigned with clones to reduce
stragglers. The initial default number of clones for a single task
is three, which has been found to be the best value since there
exist variations among nodes in the cluster [23]. To further
improve Hummer-1, Hummer-2 was introduced which uses
cloning for only tasks with high-risk delay. The authors claim
that the Hummer method consumed fewer resources and
minimize job delay that is, job completion time is reduced.

A Dynamic Server Blacklisting (DSB) framework was
proposed for lessening stragglers to evade Quality of Service
violation for time-sensitive applications [24]. The straggler task
may occur due to one or more of the following reasons:
heterogeneous hardware configuration, resource contention and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 8, 2022

873 | P a g e

www.ijacsa.thesai.org

so on. Straggler task could become severe due to increased
complexity and system scale.

The DSB is developed based on the two prominent
concepts namely speculative execution, which is
automatic/dynamic and blacklisting, which is manual
configuration. DSB considers the previous, which is historical
and present behavior of server node to improve straggler
mitigation efficiency. The computing servers are ranked at a
given time interval according to their present performance in

completing jobs instead of their physical facilities. The servers
with worst performance are momentarily blacklisted
dynamically. Thus, due to the strategy no new
replications/tasks are allotted to those straggler-prone nodes in
each time window. DSB further offers an alternative API in
such a way that the top worst nodes are blacklisted based on
their ranking. An optimal node is examined as a trade-off
between straggler mitigation efficiency and capacity loss.
Table I contains the comparison of existing load balancing
solutions.

TABLE I. COMPARISON OF LOAD BALANCING SOLUTIONS FOR STRAGGLER MITIGATION

Existing

Solutions

Comparisons

Remark Heterogeneity among

Network Node

Data Processing

Method

Priority-

based
Scheduling

Mitigatio0n Approaches

Speculative Blacklisting Proactive

ShareSkew

[7]
No MapReduce/Hadoop No Yes No No

Multi-way joins have not

been considered to

investigate an efficient multi-

round MapReduce algorithm.

SkewTune

[8]
Yes MapReduce/Hadoop No Yes No Yes

SkewTune approach may

lead to resource contention

due to high computation.

FGSD [9] No MapReduce/Spark No Yes No No

Similarity joins has not been

considered in the Fine-

grained skew data method

SBaSC [10] No MapReduce/Spark No Yes No No

The query level load

balancing and fairness need
to be optimized

LAHP [11] Yes MapReduce/Hadoop No Yes No No

Data skew could also occur

when the sizes of the keys are
different and affect the

shuffle time.

PLBM [12]
 No

MapReduce/Hadoop Yes Yes No No

The transfer cost is only

based on splitting capability.

Which may not be sufficient

achieving efficient load

balancing.

RFSLP [13] No MapReduce/Spark No Yes No No

Despite the use of scheduling

concept, priority has not been

assigned some critical tasks.

FASD [14] Yes MapReduce/Hadoop No Yes No No

The metric evaluation has

limitation of not able to

detect stragglers before
occurrence.

SKRSP [15] No Hadoop/Spark No Yes No No

In the intermediate data

distribution, the weight of

each key is calculated, which

could lead to overhead that
may result in data processing

delay

Hummer-1

[16]
Yes MapReduce No No No Yes

Computation time required

for deciding which task need

to be cloned could also

increase the execution time

Hummer-2

[16]
Yes MapReduce No No No Yes

The approach could lead to

increase in execution time

DSB [17] Yes MapReduce/Hadoop No Yes Yes No

Stragglers due to data skew

have not been considered in

this framework.

SkewTune

[8]
Yes MapReduce/Hadoop No Yes No Yes

SkewTune

 approach may

lead to resource contention
due to high computation.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 8, 2022

874 | P a g e

www.ijacsa.thesai.org

IV. SCHEDULING IN STRAGGLER MITIGATION

In this subsection, the solutions that employ scheduling
concepts considering adaptive, resource allocation and data
locality-aware scheduling in MapReduce framework have been
analyzed and presented.

A. Adaptive Scheduling

A problem of omission failure due to stragglers has been
addressed by proposing a Failure Detector Abstraction (FDA)
based on MapReduce system [25]. The omission failure is due
to timeout service adjustment, which strongly endangers the
workload performance. Various algorithms have been
suggested based on detector abstraction for describing the
timeout. Therefore, three different levels of failure detector
abstractions have been suggested namely, High Relax Failure
Detector (HR-FD), Medium Relax Failure Detector (MR-FD)
and Low Relax Failure Detector (LR-FD). The HR-FD serves
as a non-dynamic alternative to the default timeout. The
MRFD acts as non-static detector that modifies the timeout,
based on progress score of each workload. While the LR-FD
merges the MapReduce, non-static timeout using an exterior
monitoring system to enforce accurate failure detection. The
LR-FD is considering in case if there are strict deadline
bounded user requests. Meanwhile, the authors claim that there
is significant improvement in the timeout selection for user
request regardless of the failure injection time and workload
type. A Task scheduling optimization framework named ET-
scheduler was proposed to handle time sensitive jobs and high
resource consumption [26]. The existing scheduling technique
cannot complete job within the time constraint of the user.
Therefore, the ET-scheduler tries to allocate resources to the
tasks of job submitted. The scheduler makes sure that jobs are
completed within the time specified by user. It minimizes
consumption and modifies the time allocation in the process of
Map and Reduce.

A Map-Balance-Reduce (MBR) programming model was
proposed for improving parallel programming model for load
balancing over MapReduce [27]. The problem of load
imbalance occurs if the data matching to a specific key or
several keys account for majority of the data, then the Reduce
node task will create unbalanced load. The MBR model runs
on the custom Hadoop framework, which effectively processed
the unique data with unbalance data. MBR programming
model is designed based on two varied scheduling namely,
processing and self-adaptation scheduling. The processing
scheduling in MBR tries to find unbalanced task in advance, to
compile balance function. Then value/keys are pairs outputted
by Map, which are transmitted to balance the function. The
values are outputted by Map and can be pre-processed for
unbalanced data by calling the balance function process. In the
self-adaptation scheduling, if there exists unbalanced load, the
present Reduce task is terminated and then the unbalanced load
is dynamically split and schedule for distribution to attain
dynamic load balancing of the requested task.

Cheng et al. [28] proposed an enhanced MapReduce
solution using Adaptive task tuning (Ant) over a heterogeneous
environment. The solution tries to address poor performance
due to heterogeneous clusters. In the existing work, there is

homogeneous configuration of tasks on heterogeneous nodes,
which leads to load imbalance and thus causes poor
performance. The Ant can automatically determine the optimal
configuration for distinctive tasks executed on different nodes.
Ant algorithm performs better even when the jobs are large
with more than one rounds of map task execution. At the
beginning task are configured with randomly chosen settings.
To evade trapping in local optima and speed-up task tuning, the
algorithm employs genetic functions during task configuration.

B. Resource Allocation Scheduling

Huang et al. [29] proposed a Workload Alleviation
Scheduling Framework (WASF) in order to avoid negative
effect of intermediate data skew in small scale over
MapReduce cloud. The intermediate data skew is caused due to
unevenly allocation of intermediate data between nodes at run
time. Thus, the intermediate data skew makes the nodes in the
MapReduce cloud idle, which in turn leads to waste of
computation resources. This also leads to prolonging of
execution time, which gives user a bad experience in cloud
computing. The WASF dynamically and smartly used the
available computation resources for minimizing the
intermediate data skew. A method that employs result analysis
of profiling and relation of system parameters was proposed to
address the limitation of speculative and clone execution
method [30]. The limitation is in terms of performance
reduction due to heterogeneous clusters and task stragglers in
big data processing. The method tunes the quantity of task slots
of nodes dynamically to match the processing capability of the
nodes, which is based on present task progress rate and
resource consumption. Therefore, a Task Progress Rate-based
(TPR) approach has been developed. The tuning process is
further optimized to achieve faster convergence. Thus, the
method is implemented in the Hadoop MapReduce platform.

In [11], a Root-cause analysis for stragglers in Big data
environment named BigRoots was proposed for handling user
programs optimization problem. The BigRoots is a general
method that incorporates system features and framework for
root-cause analysis of stragglers in big data environment. It
analyses the stragglers using features from Big data framework
including system resource utilization, JVM garbage collection
time and shuffle read/write bytes. The system resources include
input/output, central processing unit and network, which can
detect both external and internal causes of stragglers. The
BigRoots is evaluated by injecting high resource utilization
over dissimilar system components and different case studies
were considered to analyze dissimilar workloads in Hibench to
evaluate the performance.

Lakshmi [31] proposed an algorithm for enhancing Map
and Shuffle Phases (MSP) over Hadoop MapReduce in Big
data environment. In the MapReduce, the shuffle phase uses
individual shuffle services component with efficient
input/output policy. Meanwhile, the map phase’s output serves
as an input to the subsequent phase. Thus, map phase requires
intermediate checkpoints that regularly observe all splits
created by intermediate phase. Therefore, the algorithm is
designed as shuffle as a service component for decreasing the
total execution time of task, monitoring map phase based on
skew handling and improve resource consumption in a cluster.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 8, 2022

875 | P a g e

www.ijacsa.thesai.org

C. Data Locality-aware Scheduling

A MapReduce concept based on data routing and locality
was proposed to handle data imbalance in local and remote
machines and to avoid network congestion [32]. A scheduling
and routing algorithm named Joint Scheduler was proposed to
balance task allocation to local and remote machines and to
provide data routing that evade network congestion. The
proposed algorithm is centered on bringing data close to
computation instead of bringing computation close to data.
Hence, it uses both communication network and computing
resources efficiently. It is proven that the Joint Scheduler can
support any load of jobs as used in the existing algorithm,
which achieves the highest capacity region.

In [33], a task scheduling algorithm named rTuner was
proposed to improve performance of the MapReduce job. The
existing solutions are faced with the limitation of heterogeneity

and resource contention, which lead to performance
degradation in terms of overall job execution time. Thus, the
rTuner consider the key objective to improve the reduce task
execution time in both heterogeneous and homogeneous
settings. Unlike the map task, the reduce task involves three
phases namely, copy, shuffle and reduce phases. If the
underlying situation is not analyzed by the scheduling
algorithm, re-scheduling a straggler reduce task might
negatively impact on the performance of the system.

Therefore, the rTuner study the reduce tasks’ straggling
causes and then tunes the reduce task. If tasks happen to be a
straggler, then the rTuner re-schedules it to a suitable node,
which depends on the situation. In summary, Table II presents
the comparison of existing scheduling solutions in straggler
mitigation.

TABLE II. COMPARISON OF SCHEDULING SOLUTIONS FOR STRAGGLER MITIGATION

Existing

Solutions

Comparisons

Remark Heterogeneity

among Network

Node

Data Processing

Method

Priority-

based

Scheduling

Mitigatio0n Approaches

Speculative Blacklisting Proactive

FDA [19] Yes MapReduce Yes Yes No No

The failure detector

abstraction did not consider
data intensive computing

systems.

ET-scheduler

[20]
No MapReduce/Hadoop No Yes No No

The scheduling optimization

does not consider

prioritization of task

MBR [21] No MapReduce/Hadoop No Yes No No

The pre-processing

scheduling of the MBR

model does not consider
prioritization of the critical

task

Ant [22] Yes MapReduce No Yes No No

The multi-tenant MapReduce

settings has not been

considered

WASF [23] No MapReduce/Hadoop No Yes No No

The scheduling framework

does not consider prioritizing

smaller or bigger workload

TPR [24] Yes MapReduce/Hadoop Yes Yes No No
This approach does not

consider the shuffle phase.

BigRoots [25]
No

Spark/MapReduce No Yes No No

The relationship between

locality and network

utilization has not been
investigated for the Root

cause

MSP [26] No Hadoop/MadReduce Yes Yes No No

Meanwhile, heterogeneity of

the network nodes has not

been considered, which is
important in the case of

resource contention

Joint Scheduler

[26]
No MapReduce Yes No No Yes

Heterogeneity among

network nodes has not been

considered.

rTuner [27] Yes MapReduce/Hadoop No Yes No No

It is often fuzzy when

deciding to declare a task as a

straggler. However, the
fuzziness has not been

considered in rTuner.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 8, 2022

876 | P a g e

www.ijacsa.thesai.org

Advantages and Disadvantages of Load Balancing
Techniques (Algorithms).

Load techniques are either static or dynamic and each one
has its own limitations and advantages which includes:

Advantages

 The static load balancing techniques are usually very
efficient in stable environment because they do not
need to monitor the resources during run-time.

 In a stable environment, operational properties do not
change over time and loads are generally uniform and
constant at the running time.

 Dynamic load balancing techniques are more flexible
in dynamic computing environments.

 Dynamic load balancing techniques usually take into
consideration different types of attributes in the
environment both prior to and during run-time.

 Dynamic techniques can consider changes and provide
better results in heterogeneous and dynamic
environments.

Disadvantages

 Static load balancing techniques are not flexible and
cannot accept changes of attributes during execution
time.

 Static load balancing techniques do not consider
continuous monitoring of the nodes hence they cannot
consider load changes during run-time.

 When dynamic load balancing considers all changes
during runtime it become more complex and dynamic
to handle.

 Under certain conditions, dynamic load balancing
techniques tend to have decreased performance in
services.

V. OPEN ISSUES AND RESEARCH CHALLENGES

In this section, we have highlighted many research issues,
which need research attention to attain efficient and effective
straggler mitigation in MapReduce framework. The research
issues are focused on how to balance the distribution of loads
across the machines and how to efficiently schedule tasks to
resource of the machines in order minimize slow tasks, which
causes delay and negatively affect job completion time. The
detailed discussions of the issues are as follows:

 Data Skew Caused by Inefficient Distribution of Data
in Reducer Phase.

The main issues that affect the performance of the
MapReduce framework is that some task take longer execution
time to finish than others. This is due to data skew. The data
skew is termed as inequality in the quantity of data allocated to
each task or imbalance in the amount of work needed to
process such data. These kinds of data are usually skewed in
nature. Thus, it causes poor parallel processing, inequality of
reducers input and high varied reducer execution time hence, it

enlarges the completion time of the MapReduce job. Further,
the intermediate data sharing in input data is not known, thus
generating a strategy for the data group adjustment is difficult.
It leads to the imbalance in the data distribution for a given
task, which in turn causes stragglers. In addition, data skew
could also occur when the sizes of keys are different and affect
the shuffle time, which may cause straggler. Therefore, there is
a need to develop a strategy that determines the values and
keys for achieving balanced distribution of data, which
mitigates the skewness of the data and improve the job
completion time.

 Data Replication and Placement Issue.

The MapReduce framework is well known for its ability to
handle large task and perform parallel processing during task
handling. These strengths have encouraged researcher to
employ replication strategy to minimize latency in job
completion time. However, the replication concept has caused
redundancy in task execution, which causes high resource
consumption. Since the replication strategy generate redundant
data there is a need for concepts that consider queuing and
priority of the replicated data in terms of critical tasks for
efficient job completion time. Because when there is large
number of tasks that need to be executed, then the replication
of these tasks will have impact on the computing resources
hence, also affecting the task execution time due to resource
constrain, which could cause stragglers.

 Poor Resource Allocation for Computation-Intensive
Tasks.

In the existing MapReduce framework, some solutions use
computational resources in a loose way on the basis that
numerous idle nodes available can be used to collaboratively
handle intermediate data skew. However, MapReduce system
could be on a small scale and/or the task could be in a large
scale. The proper utilization of the resource is very important
in the case of a sophisticated system. In the existing solution,
they smartly utilize computation resources in nodes and
dynamically distribute workload of a node with other nodes by
dispatching skewed intermediate data to a resource allocator. In
addition, heterogeneity of the network nodes when allocating
computation-intensive tasks to machines has not been
considered, which is very significant in the case of resource
contention. Consequently, the improper resource allocation to
task could also lead to creation of straggler, which affect the
job completion time of the Map Reduce framework. Therefore,
considering the challenges, there is a need to design and
develop an improved straggler mitigation solution that
considers efficient resource allocation for task distribution.

 Inefficient Task-Resource Matching.

This usually results in sending simple tasks to machines
with high computational capabilities and complex tasks to slow
machines which may end up increasing the total job
completion time.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 8, 2022

877 | P a g e

www.ijacsa.thesai.org

VI. CONCLUSIONS

We have extensively reviewed existing related works and
present the most recent research development in straggler
mitigation approaches. The straggler issue has become
challenging in MapReduce framework. Considering the
negative effects of straggler, several solutions have been
proposed that focus on load balancing and scheduling of the
distributed task. Thus, a comprehensive review of the existing
studies has been suggested in this paper. This review classified
load balancing solutions into data skew and
replication/placement approaches. While the scheduling
approaches are classified into adaptive, resource allocation and
data locality-aware scheduling. Further, open issues and
research challenges are highlighted. The straggler problem
degrades the performance of the existing data processing
frameworks, specifically MapReduce. Therefore, there is a
need to further explore more robust solution on how to
effectively mitigate stragglers.

REFERENCES

[1] G. Ananthanarayanan et al., “Scarlett: Coping with Skewed Content
Popularity in MapReduce Clusters.”.

[2] I. A. T. Hashem et al., “MapReduce scheduling algorithms: a review,”
Journal of Supercomputing, vol. 76, no. 7, pp. 4915–4945, Jul. 2020,
doi: 10.1007/s11227-018-2719-5.

[3] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica, “Effective
Straggler Mitigation: Attack of the Clones.,” Nsdi, pp. 185–198, 2013,
doi: 10.1.1.366.6261.

[4] M. Reissig, “New Trends in the Theory of Nonlinear Weakly
Hyperbolic Equations of Second Order,” 1997.

[5] S. N. Khezr and N. J. Navimipour, “MapReduce and Its Applications,
Challenges, and Architecture: a Comprehensive Review and Directions
for Future Research,” Journal of Grid Computing, vol. 15, no. 3.
Springer Netherlands, pp. 295–321, Sep. 01, 2017. doi: 10.1007/s10723-
017-9408-0.

[6] G. Ananthanarayanan et al., “Reining in the outliers in map-reduce
clusters using mantri,” Proceedings of the 9th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2010, pp. 265–
278, 2019.

[7] M. Zaharia, A. Konwinski, A. D. Joseph, and R. Katz, “Improving
MapReduce Performance in Heterogeneous Environments.”

[8] J. Rey, M. Cogorno, S. Nesmachnow, and L. A. Steffenel, “Efficient
prototyping of fault tolerant map-reduce applications with Docker-
Hadoop,” in Proceedings - 2015 IEEE International Conference on
Cloud Engineering, IC2E 2015, 2015, pp. 369–376. doi:
10.1109/IC2E.2015.73.

[9] U. Kumar and J. Kumar, “A Comprehensive Review of Straggler
Handling Algorithms for MapReduce Framework,” International Journal
of Grid and Distributed Computing, vol. 7, no. 4, pp. 139–148, Aug.
2014, doi: 10.14257/ijgdc.2014.7.4.13.

[10] Y. Chen, S. Alspaugh, and R. H. Katz, “Design Insights for MapReduce
from Diverse Production Workloads,” 2012. [Online]. Available:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-17.html

[11] H. Zhou, Y. Li, H. Yang, J. Jia, and W. Li, “BigRoots: An Effective
Approach for Root-Cause Analysis of Stragglers in Big Data System,”
IEEE Access, vol. 6, pp. 41966–41977, 2018, doi:
10.1109/ACCESS.2018.2859826.

[12] M. Fatih, A. Aktas¸, P. Peng, and E. Soljanin, “Effective Straggler
Mitigation: Which Clones Should Attack and When?”

[13] A. Kamal Abasi, A. Tajudin Khader, M. Azmi Al-Betar, S. Naim, S.
Naser Makhadmeh, and Z. Abdi Alkareem Alyasseri, “A Text Feature
Selection Technique based on Binary Multi-Verse Optimizer for Text
Clustering; A Text Feature Selection Technique based on Binary Multi-
Verse Optimizer for Text Clustering,” 2019. [Online]. Available:
http://www.unine.ch/Info/clef/,

[14] A. H. Katrawi, R. Abdullah, M. Anbar, and A. K. Abasi, “Earlier stage
for straggler detection and handling using combined CPU test and LATE
methodology,” International Journal of Electrical and Computer
Engineering, vol. 10, no. 5, pp. 4910–4917, Oct. 2020, doi:
10.11591/ijece.v10i5.pp4910-4917.

[15] Y. C. Kwon, M. Balazinska, B. Howe, and J. Rolia, “SkewTune in
action: Mitigating skew in MapReduce applications,” Proceedings of the
VLDB Endowment, vol. 5, no. 12, pp. 1934–1937, 2012, doi:
10.14778/2367502.2367541.

[16] E. Gavagsaz, A. Rezaee, and H. Haj Seyyed Javadi, “Load balancing in
join algorithms for skewed data in MapReduce systems,” Journal of
Supercomputing, vol. 75, no. 1, pp. 228–254, 2019, doi:
10.1007/s11227-018-2578-0.

[17] E. Gavagsaz, A. Rezaee, and H. Haj Seyyed Javadi, “Load balancing in
reducers for skewed data in MapReduce systems by using scalable
simple random sampling,” Journal of Supercomputing, vol. 74, no. 7,
pp. 3415–3440, 2018, doi: 10.1007/s11227-018-2391-9.

[18] M. A. Irandoost, A. M. Rahmani, and S. Setayeshi, “Learning automata-
based algorithms for MapReduce data skewness handling,” Journal of
Supercomputing, vol. 75, no. 10, pp. 6488–6516, 2019, doi:
10.1007/s11227-019-02855-0.

[19] F. H. Syue, V. A. Kshirsagar, and S. C. Lo, “Improving mapreduce load
balancing in hadoop,” ICNC-FSKD 2018 - 14th International
Conference on Natural Computation, Fuzzy Systems and Knowledge
Discovery, pp. 1339–1345, 2018, doi: 10.1109/FSKD.2018.8687158.

[20] G. Joshi and G. W. Wornell, “Efficient Straggler Replication in Large-
Scale,” vol. 4, no. 2. 2019.

[21] T. D. Phan, G. Pallez, S. Ibrahim, and P. Raghavan, “A new framework
for evaluating straggler detection mechanisms in mapreduce,” ACM
Transactions on Modeling and Performance Evaluation of Computing
Systems, vol. 4, no. 3, 2019, doi: 10.1145/3328740.

[22] Z. Tang, W. Lv, K. Li, and K. Li, “An Intermediate Data Partition
Algorithm for Skew Mitigation in Spark Computing Environment,”
IEEE Transactions on Cloud Computing, vol. PP, no. c, p. 1, 2018, doi:
10.1109/TCC.2018.2878838.

[23] J. Li, C. Wang, D. Li, and Z. Huang, “Partial clones for stragglers in
MapReduce,” Communications in Computer and Information Science,
vol. 503, pp. 109–116, 2015, doi: 10.1007/978-3-662-46248-5_14.

[24] X. Ouyang, C. Wang, and J. Xu, “Mitigating stragglers to avoid QoS
violation for time-critical applications through dynamic server
blacklisting,” Future Generation Computer Systems, vol. 101, pp. 831–
842, 2019, doi: 10.1016/j.future.2019.07.017.

[25] B. Memishi, M. S. Pérez, and G. Antoniu, “Failure detector abstractions
for MapReduce-based systems,” Inf Sci (N Y), vol. 379, pp. 112–127,
2017, doi: 10.1016/j.ins.2016.08.013.

[26] Y. Ren, H. Li, and L. Wang, “Research on MapReduce Task Scheduling
Optimization,” IOP Conference Series: Materials Science and
Engineering, vol. 466, no. 1. 2018. doi: 10.1088/1757-
899X/466/1/012016.

[27] J. Li, Y. Liu, J. Pan, P. Zhang, W. Chen, and L. Wang, Map-Balance-
Reduce: An improved parallel programming model for load balancing of
MapReduce, vol. 105. Elsevier B.V., 2020, pp. 993–1001. doi:
10.1016/j.future.2017.03.013.

[28] D. Cheng, J. Rao, Y. Guo, and X. Zhou, “Improving MapReduce
performance in heterogeneous environments with adaptive task tuning,”
Proceedings of the 15th International Middleware Conference,
Middleware 2014. pp. 97–108, 2014. doi: 10.1145/2663165.2666089.

[29] T. C. Huang, K. C. Chu, J. H. Lin, G. H. Huang, and C. K. Shieh,
“Workload Alleviation Scheduling Framework to Alleviate Negative
Performance Impact of Intermediate Data Skew in Small-Scale
MapReduce Cloud,” 2018 International Conference on System Science
and Engineering, ICSSE 2018, pp. 1–6, 2018, doi:
10.1109/ICSSE.2018.8520003.

[30] X. Zhao, K. Kang, Y. Sun, Y. Song, M. Xu, and T. Pan, “Insight and
reduction of MapReduce stragglers in heterogeneous environment,”
Proceedings - IEEE International Conference on Cluster Computing,
ICCC, pp. 1–8, 2013, doi: 10.1109/CLUSTER.2013.6702673.

[31] J. V. N. Lakshmi, “Data analysis on big data: Improving the map and
shuffle phases in Hadoop Map Reduce,” International Journal of Data

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 8, 2022

878 | P a g e

www.ijacsa.thesai.org

Analysis Techniques and Strategies, vol. 10, no. 3. pp. 305–316, 2018.
doi: 10.1504/IJDATS.2018.094130.

[32] W. Wang and L. Ying, “Data locality in MapReduce: A network
perspective,” 2014 52nd Annual Allerton Conference on
Communication, Control, and Computing, Allerton 2014, pp. 1110–
1117, 2014, doi: 10.1109/ALLERTON.2014.7028579.

[33] R. Patgiri and R. Das, “rTuner: A performance enhancement of
MapReduce job,” ACM International Conference Proceeding Series. pp.
176–186, 2018. doi: 10.1145/3177457.3191710.

