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Abstract—Processing huge and complex data to obtain useful 

information is challenging, even though several big data 

processing frameworks have been proposed and further 

enhanced. One of the prominent big data processing frameworks 

is MapReduce. The main concept of MapReduce framework 

relies on distributed and parallel processing. However, 

MapReduce framework is facing serious performance 

degradations due to the slow execution of certain tasks type 

called stragglers. Failing to handle stragglers causes delay and 

affects the overall job execution time. Meanwhile, several 

straggler reduction techniques have been proposed to improve 

the MapReduce performance. This study provides a 

comprehensive and qualitative review of the different existing 

straggler mitigation solutions. In addition, a taxonomy of the 

available straggler mitigation solutions is presented. Critical 

research issues and future research directions are identified and 

discussed to guide researchers and scholars. 
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I. INTRODUCTION 

Due to the accelerated expansion of structured and 
unstructured data generated by the internet of things (IoT), 
social media, multimedia, etc., it is becoming increasingly 
difficult to analyse the information and data that is being 
generated. Applications like MapReduce, a fault-tolerant, 
scalable, and user-friendly framework for data processing, 
allow their users to efficiently process these enormous volumes 
of data [1], [2] . The preparation and generation of a large 
amount of data can be accomplished using the MapReduce 
approach. This is because it provides a user-friendly 
environment and provides solutions for a variety of ad hoc and 
misses, including data sorting and web indexing, among others. 
Bigger businesses, including Yahoo and Google, among others, 
use MapReduce in their large information applications. 

The variety in accessibility in the CPU, I/O conflict, or 
network traffic is what causes stragglers. The MapReduce 
Framework is complete once map and reduce have been 
finished [3], [4]. The job is not finished in the MapReduce 
framework until the very reduce and map tasks are finished. 
Additionally, when the range of time employment increases [5-
8], the number of stragglers decreases. Some compute nodes 
are quicker than others in a diverse environment. Faster 
compute nodes will finish their work ahead of schedule and 
wait for the stragglers to complete. Slower compute nodes are 

known as stragglers (Fig. 1). Nodes can occasionally fail owing 
to hardware or software issues. To prevent system performance 
degradation, it is crucial to identify stragglers at an early stage. 

Traditional database management solutions such as E-R 
model are no longer suitable for processing and analysing of 
massive amounts of data generated by today's big enterprises. 
The bulk processing problem has become a major difficulty, 
and its analytical tools are evolving quickly because of 
Google's creation of MapReduce, which enabled millions of 
users to locate material from millions of pages in less than one 
tenth of a second. On the other hand, stragglers are widely 
acknowledged as a significant bottleneck in the processing of 
large amounts of data and they can have a considerable effect 
on it. Some stragglers mitigation techniques are evaluated in 
this paper. 

 

Fig. 1. Straggler Nodes in Parallel Processing. 

II. MAPREDUCE FRAMEWORK AND STRAGGLERS 

For significant information preparation on bunch-based 
figure designs, MapReduce is the ideal matching information 
preparing model that has been suggested [5]. Inside server 
centres, this system is utilised to support machine learning, 
data mining, and search applications. Large-scale online search 
applications must be addressed by the philosophy. Google was 
the one that originally recommended handling extremely large-
scale online search applications. 
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Programmers are granted licences to extricate themselves 
from issues like parallelization, booking, and allocating so they 
may concentrate on creating applications. Processing, storing, 
visualising, and interpreting big data are the four main 
components of contemporary businesses and organisations. 
Applications on a parallel hardware cluster can be 
automatically run by MapReduce. Terabytes and petabytes of 
data can also be processed more quickly. 

Due to the MapReduce capability to offer a highly effective 
and efficient framework for the parallel execution of 
applications, data allocation in distributed database systems, 
and fault tolerance network connections, it has recently grown 
in popularity in a variety of applications. Parallel map 
assignments, as shown in Fig. 1, are carried out as a single 
input data set consisting of a collection of "key value" sets that 
are further divided into fixed produce and size blocks 
transitional output. Information preparation tools called map 
and reduce are included in the MapReduce programming 
model as depicted in Fig. 2. 

 

Fig. 2. MapReduce Phases. 

When a user submits a job request during the Map-phase, 
the tasks are mapped to commodity machines for execution. In 
the Reduce phase, the Combiner lowers the network's data 
transmission rate. The Reduce-phase includes the Sort or 
Merging step. The time is utilised to combine the Map outputs 
from various nodes, and this combining is referred to as the 
Reduce time. The final stage in running the operation in a 
MapReduce fashion is the Reduce-part. The impact of each 
step in this process on runtime varies, so different weights 
should be used to estimate each job's completion time (the 
impact of each step on the execution process is determined by 
the ratio of the time of each step to the overall process's 
runtime). 

The tasks that require more time to complete than 
comparable tasks are known as stragglers. There are many 
reasons for delaying the assignment, including the use of 
inefficient machines, the amount of information to process, 
framework obstructions, equipment heterogeneity, and 
competition for the available resources [6], [7].  

Additionally, if one task is running slowly on a particular 
system, it is not important for other upcoming and current tasks 
to execute slowly on that same machine. Three main 
mechanisms must be kept in mind when addressing the 
straggler issue: 

 If it is discovered that the anticipated remaining time is 
longer than the typical runtime, the procedure may be 
resumed up to three times. 

 A speculative duplicate is scheduled if the resource 
measurement lowers unfavourably. The following 
procedures estimate the expected remaining time 
(trem) and the typical runtime (tnew), as shown. 

 term = (telapsed * d/dread) + twrapup. 

 tnew = processRate∗locationFactor∗d+schedLag. 

Stragglers can occur for a variety of reasons, such as load 
inequality, ineffective scheduling, data localization, 
communication overheads, and hardware heterogeneity [8], [9]. 
Additionally, there have been initiatives to address one or more 
of these worries to lessen the issue [10]–[12]. Even if all these 
earlier attempts were significant and helpful in solving this 
issue, more rigorous analytical techniques are required to fully 
comprehend the effects of stragglers on the performance 
slowdown in huge data [13], [14]. 

III. RELATED WORKS 

For addressing data skew for joins in a MapReduce system 
and avoiding stragglers, the SharesSkew algorithm was 
suggested by [7]. When data is skewed, the method determines 
the multi-way join in MapReduce. In essence, the method 
divides up the work of performing multi-way joins and 
maximises the amount of information transferred from the 
Mappers to the Reducers. 

The technique uses a modified version of the SharesSkew 
algorithm to partition and share highly valued records in a 
distinctive way to minimise communication costs. The 
algorithm determines the heavy hitter value of an attribute 
based on the sizes of the relations or the portion of the 
connection with heavy hitters and how the sizes interact with 
one another. 

In contrast to existing techniques that limit the number of 
Reducers employed, the SharesSkew approach merely limits 
the number of tuples of each Reducer. As a result, the number 
of tuples selected ensures that the data is distributed equally 
among the Reducers. (For determining the parameters of the 
proposed approach, both chain and symmetric joins are taken 
into consideration.). 

A dynamic skew mitigation approach called SkewTune in 
MapReduce applications was proposed by [15]. The SkewTune 
approach tries to address the following challenges: i) the 
MapReduce system should not require extra input from user ii) 
the system should be fully transparent and iii) there should be 
minimal overhead even when there is no skew. If the node in 
the cluster is idle, the SkewTune recognizes the task with the 
highest anticipated remaining processing time. Afterwards, the 
non-processed input data of the straggling task is proactively 
re-partitioned such that it fully utilizes the nodes within cluster. 
It then conserves the ordering of the input data for the original 
output to be re-built by concatenation. The SkewTune is 
implemented as an extension to Hadoop and the efficiency is 
evaluated by employing several actual applications. 
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In the quest to address the problem of load imbalance due 
to data skew, a load balancing based on join algorithms in 
MapReduce systems was proposed by [16]. The load balancing 
algorithm named Fine-Grained partitioning for Skew Data 
(FGSD) for reduced tasks. The FGSD employs the properties 
of both output and input data via a proposed stream sampling 
algorithm. In addition, FGSD provides an approach that 
distributes the input data that help in handling efficient 
redistribution and join product skew. 

Consequently, the authors declare that FGSD achieved 
better balancing of data distribution and minimizes execution 
time of jobs with different degrees of data skew. FGSD does 
not need any alteration to the MapReduce configuration and is 
suitable for handling complex jobs. Similarly, Gavagsaz et al. 
[17] focus on reducer phase to achieve load balancing in 
MapReduce system by employing scalable straightforward 
random sampling. The major problem in reducer phase is data 
skew, which lead to a significant load imbalance and 
degradation of performance. Therefore, a sorted balance 
algorithm was proposed, which is centered on sampling results. 
The Sorted Balance algorithm using SCalable random 
sampling (SBaSC). The scalable sampling algorithm is 
employed for monitoring a more exact approximate 
distribution of the keys through sampling small fraction of the 
intermediate data. 

In MapReduce, reducer side data skew occurs due to 
unbalanced allocation of intermediate map-output to reducers. 
Therefore, [18] proposed an adaptive Learning Automata Hash 
Partitioning (LAHP) algorithm to address the data skew 
problem. The LAHP is based on learning automata game for 
conventional allocation of intermediate key-value pairs to 
designated reducers. It is achieved by setting a learning 
automaton on each mapper node to control the allocated load 
on each reducer. Thus, during execution of job, a learning 
automata game is enabled. 

In addition, the LAHP algorithm partitions the intermediate 
key value pairs arbitrarily without considering the statistical 
distribution of pre-processing and input data. A load balancing 
mechanism that enhances MapReduce in Hadoop was 
proposed for mitigating negative impact of data skew on the 
performance of MapReduce [19]. Data skew has become a 
typical problem in MapReduce processing for handling data 
intensive applications. The mechanisms integrate Reservoir 
Sampling and Greedy (RSG) algorithms. It further slots in the 
concept of data locality in order to properly distribute the 
workload of each reducer, which is based on priority-based 
load-balancing mechanism (PLBM). 

Wang et al. [20] proposed an enhanced Replication 
Framework of Stragglers over a Large-scale Parallel processing 
(RFSLP) for addressing the latency Framework of Stragglers 
encountered due to replication of stragglers. The framework 
analyzes replication latency-cost tradeoff and determines the 
best replication strategy. The strategy considers three design 
ideas including i) how many replicas are required ii) the time to 
replicate straggling tasks and iii) whether to terminate main 
copy or not. The framework analysis demonstrates that for 
specific execution time allocation, a small quantity of task 
replication can drastically minimize the cost of computing 

resources and latency. Further, an algorithm that estimates cost 
and latency based on the empirical allocation of task execution 
period. 

In another aspect, a Framework for Assessing Stragglers 
Detection (FASD) mechanisms over MapReduce was proposed 
by [21]. It focuses on detection of stragglers because most of 
the existing works are centered on mitigating stragglers. In this 
light, an all-inclusive framework for straggler detection and 
mitigation was proposed. The detection strategy considers set 
of metrics that can be employed for characterizing and 
detecting stragglers. The metrics include fake positive, recall, 
detection latency, precision, and undetected time. Further, an 
architectural model was developed in such a way that the 
metrics can be linked to determine performance. The 
performance measure includes system energy overhead and 
execution time. To demonstrate those metrics that are effective 
in detecting stragglers and predict effectiveness in terms of 
energy efficiency performance, a number of experiments were 
conducted. 

Similarly, a data partitioning concept, which is based on 
intermediate node for mitigating skew over a spark computing 
environment was proposed [22]. The main issue targeted in this 
work is unbalanced partitioning, which leads to variation in the 
amount of data processed by each Reducer task. Considering 
the mentioned issue, a Spark Key Reassigning and Splitting 
Partitioning (SKRSP) algorithm for handling the partition skew 
from the source codes of Spark-core 2.11 has been developed. 
The concept considers two approaches of balancing namely: 
partition balance for intermediate data and partition balance 
after shuffle operators. The contribution is in two folds first, a 
Key Reassigning Harsh-based Partitioning (KRHP) and rang-
based Key Splitting Reassigning Partitioning (KSRP) 
algorithms. These algorithms can create suitable strategy for 
implementing the skew in the shuffle phase. The KSRP creates 
a weighted bound for partitioning intermediate data for the 
kind of sort-based applications. While KRHP stores these 
reassigned keys, and the new reducers of these keys are from 
other applications. 

A proactive method named Hummer-1 for mitigating 
stragglers based on partial clones was proposed by [23]. In the 
existing solutions, different methods have been suggested 
including speculative execution, blacklisting and proactive 
mitigation. However, these solutions either waste much 
resource or consume much time during execution. The 
Hummer method trigger clones just when jobs are submitted 
thus, tasks in one job are assigned with clones to reduce 
stragglers. The initial default number of clones for a single task 
is three, which has been found to be the best value since there 
exist variations among nodes in the cluster [23]. To further 
improve Hummer-1, Hummer-2 was introduced which uses 
cloning for only tasks with high-risk delay. The authors claim 
that the Hummer method consumed fewer resources and 
minimize job delay that is, job completion time is reduced. 

A Dynamic Server Blacklisting (DSB) framework was 
proposed for lessening stragglers to evade Quality of Service 
violation for time-sensitive applications [24]. The straggler task 
may occur due to one or more of the following reasons: 
heterogeneous hardware configuration, resource contention and 
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so on. Straggler task could become severe due to increased 
complexity and system scale. 

The DSB is developed based on the two prominent 
concepts namely speculative execution, which is 
automatic/dynamic and blacklisting, which is manual 
configuration. DSB considers the previous, which is historical 
and present behavior of server node to improve straggler 
mitigation efficiency. The computing servers are ranked at a 
given time interval according to their present performance in 

completing jobs instead of their physical facilities. The servers 
with worst performance are momentarily blacklisted 
dynamically. Thus, due to the strategy no new 
replications/tasks are allotted to those straggler-prone nodes in 
each time window. DSB further offers an alternative API in 
such a way that the top worst nodes are blacklisted based on 
their ranking. An optimal node is examined as a trade-off 
between straggler mitigation efficiency and capacity loss. 
Table I contains the comparison of existing load balancing 
solutions. 

TABLE I. COMPARISON OF LOAD BALANCING SOLUTIONS FOR STRAGGLER MITIGATION 

Existing 

Solutions 

Comparisons 

Remark Heterogeneity among 

Network Node 

Data Processing 

Method 

Priority-

based 
Scheduling 

Mitigatio0n Approaches 

Speculative Blacklisting Proactive 

ShareSkew  

[7]  
No  MapReduce/Hadoop  No  Yes  No  No  

Multi-way joins have not 

been considered to 

investigate an efficient multi-

round MapReduce algorithm.  

SkewTune  

[8]  
Yes  MapReduce/Hadoop  No  Yes  No  Yes  

SkewTune approach may 

lead to resource contention 

due to high computation.  

FGSD [9]  No  MapReduce/Spark  No  Yes  No  No  

Similarity joins has not been 

considered in the Fine-

grained skew data method  

SBaSC [10]  No  MapReduce/Spark  No  Yes  No  No  

The query level load 

balancing and fairness need 
to be optimized  

LAHP [11]  Yes  MapReduce/Hadoop  No  Yes  No  No  

Data skew could also occur 

when the sizes of the keys are 
different and affect the 

shuffle time.  

PLBM [12]  
  No 

   
MapReduce/Hadoop  Yes  Yes  No  No  

The transfer cost is only 

based on splitting capability. 

Which may not be sufficient 

achieving efficient load 

balancing.  

RFSLP [13]  No  MapReduce/Spark  No  Yes  No  No  

Despite the use of scheduling 

concept, priority has not been 

assigned some critical tasks.  

FASD [14]  Yes  MapReduce/Hadoop  No  Yes  No  No  

The metric evaluation has 

limitation of not able to 

detect stragglers before 
occurrence.  

SKRSP [15]  No  Hadoop/Spark  No  Yes  No  No  

In the intermediate data 

distribution, the weight of 

each key is calculated, which 

could lead to overhead that 
may result in data processing 

delay  

Hummer-1 

[16]  
Yes  MapReduce  No  No  No  Yes  

Computation time required 

for deciding which task need 

to be cloned could also 

increase the execution time  

Hummer-2  

[16]  
Yes  MapReduce  No  No  No  Yes  

The approach could lead to 

increase in execution time  

DSB [17]  Yes  MapReduce/Hadoop  No  Yes  Yes  No  

Stragglers due to data skew 

have not been considered in 

this framework.  

SkewTune  

[8]  
Yes  MapReduce/Hadoop  No  Yes  No  Yes  

SkewTune 

 approach may 

lead to resource contention 
due to high computation.  
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IV. SCHEDULING IN STRAGGLER MITIGATION 

In this subsection, the solutions that employ scheduling 
concepts considering adaptive, resource allocation and data 
locality-aware scheduling in MapReduce framework have been 
analyzed and presented. 

A. Adaptive Scheduling 

A problem of omission failure due to stragglers has been 
addressed by proposing a Failure Detector Abstraction (FDA) 
based on MapReduce system [25]. The omission failure is due 
to timeout service adjustment, which strongly endangers the 
workload performance. Various algorithms have been 
suggested based on detector abstraction for describing the 
timeout. Therefore, three different levels of failure detector 
abstractions have been suggested namely, High Relax Failure 
Detector (HR-FD), Medium Relax Failure Detector (MR-FD) 
and Low Relax Failure Detector (LR-FD). The HR-FD serves 
as a non-dynamic alternative to the default timeout. The 
MRFD acts as non-static detector that modifies the timeout, 
based on progress score of each workload. While the LR-FD 
merges the MapReduce, non-static timeout using an exterior 
monitoring system to enforce accurate failure detection. The 
LR-FD is considering in case if there are strict deadline 
bounded user requests. Meanwhile, the authors claim that there 
is significant improvement in the timeout selection for user 
request regardless of the failure injection time and workload 
type. A Task scheduling optimization framework named ET-
scheduler was proposed to handle time sensitive jobs and high 
resource consumption [26]. The existing scheduling technique 
cannot complete job within the time constraint of the user. 
Therefore, the ET-scheduler tries to allocate resources to the 
tasks of job submitted. The scheduler makes sure that jobs are 
completed within the time specified by user. It minimizes 
consumption and modifies the time allocation in the process of 
Map and Reduce. 

A Map-Balance-Reduce (MBR) programming model was 
proposed for improving parallel programming model for load 
balancing over MapReduce [27]. The problem of load 
imbalance occurs if the data matching to a specific key or 
several keys account for majority of the data, then the Reduce 
node task will create unbalanced load. The MBR model runs 
on the custom Hadoop framework, which effectively processed 
the unique data with unbalance data. MBR programming 
model is designed based on two varied scheduling namely, 
processing and self-adaptation scheduling. The processing 
scheduling in MBR tries to find unbalanced task in advance, to 
compile balance function. Then value/keys are pairs outputted 
by Map, which are transmitted to balance the function. The 
values are outputted by Map and can be pre-processed for 
unbalanced data by calling the balance function process. In the 
self-adaptation scheduling, if there exists unbalanced load, the 
present Reduce task is terminated and then the unbalanced load 
is dynamically split and schedule for distribution to attain 
dynamic load balancing of the requested task. 

Cheng et al. [28] proposed an enhanced MapReduce 
solution using Adaptive task tuning (Ant) over a heterogeneous 
environment. The solution tries to address poor performance 
due to heterogeneous clusters. In the existing work, there is 

homogeneous configuration of tasks on heterogeneous nodes, 
which leads to load imbalance and thus causes poor 
performance. The Ant can automatically determine the optimal 
configuration for distinctive tasks executed on different nodes. 
Ant algorithm performs better even when the jobs are large 
with more than one rounds of map task execution. At the 
beginning task are configured with randomly chosen settings. 
To evade trapping in local optima and speed-up task tuning, the 
algorithm employs genetic functions during task configuration. 

B. Resource Allocation Scheduling 

Huang et al. [29] proposed a Workload Alleviation 
Scheduling Framework (WASF) in order to avoid negative 
effect of intermediate data skew in small scale over 
MapReduce cloud. The intermediate data skew is caused due to 
unevenly allocation of intermediate data between nodes at run 
time. Thus, the intermediate data skew makes the nodes in the 
MapReduce cloud idle, which in turn leads to waste of 
computation resources. This also leads to prolonging of 
execution time, which gives user a bad experience in cloud 
computing. The WASF dynamically and smartly used the 
available computation resources for minimizing the 
intermediate data skew. A method that employs result analysis 
of profiling and relation of system parameters was proposed to 
address the limitation of speculative and clone execution 
method [30]. The limitation is in terms of performance 
reduction due to heterogeneous clusters and task stragglers in 
big data processing. The method tunes the quantity of task slots 
of nodes dynamically to match the processing capability of the 
nodes, which is based on present task progress rate and 
resource consumption. Therefore, a Task Progress Rate-based 
(TPR) approach has been developed. The tuning process is 
further optimized to achieve faster convergence. Thus, the 
method is implemented in the Hadoop MapReduce platform. 

In [11], a Root-cause analysis for stragglers in Big data 
environment named BigRoots was proposed for handling user 
programs optimization problem. The BigRoots is a general 
method that incorporates system features and framework for 
root-cause analysis of stragglers in big data environment. It 
analyses the stragglers using features from Big data framework 
including system resource utilization, JVM garbage collection 
time and shuffle read/write bytes. The system resources include 
input/output, central processing unit and network, which can 
detect both external and internal causes of stragglers. The 
BigRoots is evaluated by injecting high resource utilization 
over dissimilar system components and different case studies 
were considered to analyze dissimilar workloads in Hibench to 
evaluate the performance. 

Lakshmi [31] proposed an algorithm for enhancing Map 
and Shuffle Phases (MSP) over Hadoop MapReduce in Big 
data environment. In the MapReduce, the shuffle phase uses 
individual shuffle services component with efficient 
input/output policy. Meanwhile, the map phase’s output serves 
as an input to the subsequent phase. Thus, map phase requires 
intermediate checkpoints that regularly observe all splits 
created by intermediate phase. Therefore, the algorithm is 
designed as shuffle as a service component for decreasing the 
total execution time of task, monitoring map phase based on 
skew handling and improve resource consumption in a cluster. 
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C. Data Locality-aware Scheduling 

A MapReduce concept based on data routing and locality 
was proposed to handle data imbalance in local and remote 
machines and to avoid network congestion [32]. A scheduling 
and routing algorithm named Joint Scheduler was proposed to 
balance task allocation to local and remote machines and to 
provide data routing that evade network congestion. The 
proposed algorithm is centered on bringing data close to 
computation instead of bringing computation close to data. 
Hence, it uses both communication network and computing 
resources efficiently. It is proven that the Joint Scheduler can 
support any load of jobs as used in the existing algorithm, 
which achieves the highest capacity region. 

In [33], a task scheduling algorithm named rTuner was 
proposed to improve performance of the MapReduce job. The 
existing solutions are faced with the limitation of heterogeneity 

and resource contention, which lead to performance 
degradation in terms of overall job execution time. Thus, the 
rTuner consider the key objective to improve the reduce task 
execution time in both heterogeneous and homogeneous 
settings. Unlike the map task, the reduce task involves three 
phases namely, copy, shuffle and reduce phases. If the 
underlying situation is not analyzed by the scheduling 
algorithm, re-scheduling a straggler reduce task might 
negatively impact on the performance of the system. 

Therefore, the rTuner study the reduce tasks’ straggling 
causes and then tunes the reduce task. If tasks happen to be a 
straggler, then the rTuner re-schedules it to a suitable node, 
which depends on the situation. In summary, Table II presents 
the comparison of existing scheduling solutions in straggler 
mitigation. 

TABLE II. COMPARISON OF SCHEDULING SOLUTIONS FOR STRAGGLER MITIGATION 

Existing 

Solutions 

Comparisons 

Remark Heterogeneity 

among Network 

Node 

Data Processing 

Method 

Priority-

based 

Scheduling 

Mitigatio0n Approaches 

Speculative Blacklisting Proactive 

FDA [19] Yes MapReduce Yes Yes No No 

The failure detector 

abstraction did not consider 
data intensive computing 

systems. 

ET-scheduler 

[20] 
No MapReduce/Hadoop No Yes No No 

The scheduling optimization 

does not consider 

prioritization of task 

MBR [21] No MapReduce/Hadoop No Yes No No 

The pre-processing 

scheduling of the MBR 

model does not consider 
prioritization of the critical 

task 

Ant [22] Yes MapReduce No Yes No No 

The multi-tenant MapReduce 

settings has not been 

considered 

WASF [23] No MapReduce/Hadoop No Yes No No 

The scheduling framework 

does not consider prioritizing 

smaller or bigger workload 

TPR [24] Yes MapReduce/Hadoop Yes Yes No No 
This approach does not 

consider the shuffle phase. 

BigRoots [25] 
No 

  
Spark/MapReduce No Yes No No 

The relationship between 

locality and network 

utilization has not been 
investigated for the Root 

cause 

MSP [26] No Hadoop/MadReduce Yes Yes No No 

Meanwhile, heterogeneity of 

the network nodes has not 

been considered, which is 
important in the case of 

resource contention  

Joint Scheduler 

[26] 
No MapReduce Yes No No Yes 

Heterogeneity among 

network nodes has not been 

considered. 

rTuner [27] Yes MapReduce/Hadoop No Yes  No No 

It is often fuzzy when 

deciding to declare a task as a 

straggler. However, the 
fuzziness has not been 

considered in rTuner.  
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Advantages and Disadvantages of Load Balancing 
Techniques (Algorithms). 

Load techniques are either static or dynamic and each one 
has its own limitations and advantages which includes: 

Advantages 

 The static load balancing techniques are usually very 
efficient in stable environment because they do not 
need to monitor the resources during run-time. 

 In a stable environment, operational properties do not 
change over time and loads are generally uniform and 
constant at the running time. 

 Dynamic load balancing techniques are more flexible 
in dynamic computing environments. 

 Dynamic load balancing techniques usually take into 
consideration different types of attributes in the 
environment both prior to and during run-time. 

 Dynamic techniques can consider changes and provide 
better results in heterogeneous and dynamic 
environments. 

Disadvantages 

 Static load balancing techniques are not flexible and 
cannot accept changes of attributes during execution 
time. 

 Static load balancing techniques do not consider 
continuous monitoring of the nodes hence they cannot 
consider load changes during run-time. 

 When dynamic load balancing considers all changes 
during runtime it become more complex and dynamic 
to handle. 

 Under certain conditions, dynamic load balancing 
techniques tend to have decreased performance in 
services. 

V. OPEN ISSUES AND RESEARCH CHALLENGES 

In this section, we have highlighted many research issues, 
which need research attention to attain efficient and effective 
straggler mitigation in MapReduce framework. The research 
issues are focused on how to balance the distribution of loads 
across the machines and how to efficiently schedule tasks to 
resource of the machines in order minimize slow tasks, which 
causes delay and negatively affect job completion time. The 
detailed discussions of the issues are as follows:  

 Data Skew Caused by Inefficient Distribution of Data 
in Reducer Phase. 

The main issues that affect the performance of the 
MapReduce framework is that some task take longer execution 
time to finish than others. This is due to data skew. The data 
skew is termed as inequality in the quantity of data allocated to 
each task or imbalance in the amount of work needed to 
process such data. These kinds of data are usually skewed in 
nature. Thus, it causes poor parallel processing, inequality of 
reducers input and high varied reducer execution time hence, it 

enlarges the completion time of the MapReduce job. Further, 
the intermediate data sharing in input data is not known, thus 
generating a strategy for the data group adjustment is difficult. 
It leads to the imbalance in the data distribution for a given 
task, which in turn causes stragglers. In addition, data skew 
could also occur when the sizes of keys are different and affect 
the shuffle time, which may cause straggler. Therefore, there is 
a need to develop a strategy that determines the values and 
keys for achieving balanced distribution of data, which 
mitigates the skewness of the data and improve the job 
completion time. 

 Data Replication and Placement Issue. 

The MapReduce framework is well known for its ability to 
handle large task and perform parallel processing during task 
handling. These strengths have encouraged researcher to 
employ replication strategy to minimize latency in job 
completion time. However, the replication concept has caused 
redundancy in task execution, which causes high resource 
consumption. Since the replication strategy generate redundant 
data there is a need for concepts that consider queuing and 
priority of the replicated data in terms of critical tasks for 
efficient job completion time. Because when there is large 
number of tasks that need to be executed, then the replication 
of these tasks will have impact on the computing resources 
hence, also affecting the task execution time due to resource 
constrain, which could cause stragglers. 

 Poor Resource Allocation for Computation-Intensive 
Tasks. 

In the existing MapReduce framework, some solutions use 
computational resources in a loose way on the basis that 
numerous idle nodes available can be used to collaboratively 
handle intermediate data skew. However, MapReduce system 
could be on a small scale and/or the task could be in a large 
scale. The proper utilization of the resource is very important 
in the case of a sophisticated system. In the existing solution, 
they smartly utilize computation resources in nodes and 
dynamically distribute workload of a node with other nodes by 
dispatching skewed intermediate data to a resource allocator. In 
addition, heterogeneity of the network nodes when allocating 
computation-intensive tasks to machines has not been 
considered, which is very significant in the case of resource 
contention. Consequently, the improper resource allocation to 
task could also lead to creation of straggler, which affect the 
job completion time of the Map Reduce framework. Therefore, 
considering the challenges, there is a need to design and 
develop an improved straggler mitigation solution that 
considers efficient resource allocation for task distribution. 

 Inefficient Task-Resource Matching. 

This usually results in sending simple tasks to machines 
with high computational capabilities and complex tasks to slow 
machines which may end up increasing the total job 
completion time. 
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VI. CONCLUSIONS 

We have extensively reviewed existing related works and 
present the most recent research development in straggler 
mitigation approaches. The straggler issue has become 
challenging in MapReduce framework. Considering the 
negative effects of straggler, several solutions have been 
proposed that focus on load balancing and scheduling of the 
distributed task. Thus, a comprehensive review of the existing 
studies has been suggested in this paper. This review classified 
load balancing solutions into data skew and 
replication/placement approaches. While the scheduling 
approaches are classified into adaptive, resource allocation and 
data locality-aware scheduling. Further, open issues and 
research challenges are highlighted. The straggler problem 
degrades the performance of the existing data processing 
frameworks, specifically MapReduce. Therefore, there is a 
need to further explore more robust solution on how to 
effectively mitigate stragglers. 
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